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ABSTRACT OF THE DISSERTATION 

 

Sleep Rhythms and Consolidation Strategies: 

Advances in Modeling Life-Long Learning 

 

 

by 

 

Ryan Golden 

 

Doctor of Philosophy in Neurosciences with a Specialization in Computational Neurosciences 

University of California San Diego, 2023 

Professor Maxim Bazhenov, Chair 
 

 

 This dissertation was an investigation into the computational roles of sleep rhythms in the 

consolidation of memory, and how these roles may be leveraged to the benefit of machine learning and 

medicine. In Chapter 1 we used an artificial spiking neural network model to validate that a consolidation 

strategy thought to be taken by the procedural memory system – incrementally learning a new skill by 

interleaving bouts of training with periods of sleep – can prevent catastrophic forgetting when faced with 

learning a novel task. In particular, we demonstrated that memory replay during sleep acted to keep the 

network’s synaptic weight state near to previous memory manifolds as it learns the new task. In Chapter 
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2, we utilized a biophysical thalamocortical network model to further study this procedural memory 

consolidation strategy, as well as a declarative memory consolidation strategy – incrementally 

transferring a new memory to the cortex by hippocampal indexing during sleep. While both strategies 

were able to prevent catastrophic forgetting, we found that the procedural memory strategy suffers from 

fine-tuning and works best when training bouts are short and protracted in time. The declarative memory 

strategy does not suffer from this same fine-tuning problem, suggesting it may be engaged when training 

bouts are chunked rather than distributed in time. Moreover, our model suggests that the declarative 

memory consolidation strategy may simply be a compressed version of the procedural memory strategy, 

with the hippocampus generating simulated training samples to be indexed to the cortex during sleep. We 

anticipate that such a strategy will be useful in mitigating catastrophic forgetting in machine learning, as 

others in our lab have shown the procedural memory consolidation strategy to be. Finally, in Chapter 3, 

we made use of a two-phase biophysical-anatomical and dynamic-neuronal network in order to model the 

effects of electrical stimulation of the cortical surface and studies the circuit mechanisms behind how this 

could be used to induce directed traveling waves. We found that cortical surface stimulation differentially 

recruits distinct subtypes of inhibitory interneurons, which shape the oscillatory frequency and direction 

of the wave. In the future, we hope to develop this work further to model the induction of sleep rhythms 

with this network, and how this may be used to aid clinical treatment of memory and sleep disorders.



 

1 

Chapter 1 Sleep prevents catastrophic forgetting in spiking neural networks by forming a joint 

synaptic weight representation 
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Figure 1.8. (S1 Fig) Spike rasters showing network activity across various training regimes. 

(A-D) Representative spike rasters from various training regimes. The vertical axis specifies a 

unique neuron in the network while time in epochs is shown horizontally. Here a single dot 

represents a specific neuron spiking at a given time while the color of the dot dictates what layer 

that neuron belongs to (green, blue, red corresponding to input, hidden, and output layers 

respectively). Panels A, B, C, D correspond to sample activity from Task 1 training, Task 2 

training, IT1,T2 training and IS,T1 training respectively. Note, in panel D activity is taken during a 

period of sleep when the hidden layer is spontaneously activated. Thus, there are hidden (blue) 

and output (red) layer spikes while the input (green) layer is completely silent. 

 

https://journals.plos.org/ploscompbiol/article/file?type=supplementary&id=10.1371/journal.pcbi.1010628.s001
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Figure 1.9. (S2 Fig) Model displays graceful degradation in performance as a result of 

hidden layer dropout. 

(A) Mean performance (red line) and standard deviation (blue lines) over time: unsupervised 

training (white), Task 1 training (blue), Task 1 testing (green). Hidden layer neurons are 

randomly removed during testing period. Gradient bar above Task 1 testing (green) displays the 

number of hidden layer neurons over time starting at 784 and decreasing down to 0. The testing 

performance remains high until ~25% of neurons are left, after which it starts to drop. This 

highlights the formation of a distributed synaptic structure between hidden and output layer 

neurons developed during training, ensuring output layer activity is not dictated by a select few 

hidden layer neurons. (B) Same as in (A) but for Task 2. 

https://journals.plos.org/ploscompbiol/article/file?type=supplementary&id=10.1371/journal.pcbi.1010628.s002
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Figure 1.10. (S3 Fig) Particle responsiveness metric (PRM) shows correspondence between 

type of training and particles preferred by the network. 

(A-D) Mean and standard deviation (blue bars and black lines respectively) of the PRM for 

various types of training and particle orientations across ten trials. The title of each plot reflects 

the most recently trained stage, the vertical axis corresponds to the value of the PRM while the 

horizontal axis identifies the particle type (bold labels indicate ideal particles the network would 

be attracted to following the corresponding training). It can be seen that the metric indicates the 

network is most responsive to the corresponding ideal particle types following a specific training 

regime e.g. Post Task 1 the network is most responsive to horizontal particles (A), Post Task 2 

the network is most responsive to vertical particles (B), Post IS,T1 the network is most responsive 

to horizontal and vertical particles (C), Post IT1,T2 the network is most responsive to horizontal 

and vertical particles (D). 

 

https://journals.plos.org/ploscompbiol/article/file?type=supplementary&id=10.1371/journal.pcbi.1010628.s003
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Figure 1.11. (S4 Fig) Effect of sleep to protect old memory does not depend on specific 

properties of noise applied during sleep phase. 

(A) Mean performance (red line) and standard deviation (blue lines) over time: unsupervised 

training (white), InterleavedS,T1 (grey), Task 1/2 testing (green/yellow). (B) Mean and standard 

deviation of performance during testing on Task 1 (blue) and Task 2 (red). Following 

InterleavedS,T1, mean performance on Task 1 was 0.60 ± 0.03 while Task 2 was 0.49 ± 0.05. (In 

all experiments, 0.5 represents chance performance.) Note that periods of Task 1 training 

interleaved with sleep do not lead to increase in performance on untrained Task 2, even when 

Task 2 data from another experiment were used to set up mean firing rates of the random input 

during sleep. (C) Same as in (A) but the sequence of training was: unsupervised training (white), 

Task 1 training (blue), Task 1/2 testing (green/yellow), InterleavedS,T1 (grey), Task 1/2 testing 

(green/yellow). (D) Mean and standard deviation of performance during testing on Task 1 (blue) 

and Task 2 (red) after Task 1 training and after InterleavedS,T1. Following Task 1 training, mean 

performance on Task 1 was 0.70 ± 0.02 while Task 2 was 0.53 ± 0.02. Post 

InterleavedS,T1 training, mean performance on Task 1 was 0.71 ± 0.02 and Task 2 was 0.51 ± 

0.02. Task 1 performance remained high after InterleavedS,T1 but no improvement on Task 2 was 

observed. (E) Mean performance (red line) and standard deviation (blue lines) over time: 

unsupervised training (white), Task 1 training (blue), Task 1/2 testing (green/yellow), 

InterleavedUS,T2 (burnt orange), Task 1/2 testing (green/yellow). (F) Mean and standard deviation 

of performance during testing on Task 1 (blue) and Task 2 (red). Following Task 1 training, 

mean performance on Task 1 was 0.70 ± 0.02 while Task 2 was 0.53 ± 0.02. Post 

InterleavedUS,T2 training, mean performance on Task 1 was 0.67 ± 0.05 and Task 2 was 0.69 ± 

0.03. 
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Figure 1.12. (S5 Fig) Interleaving old and new task training allows integrating synaptic 

information relevant to new task while preserving old task information. 

(A) Mean performance (red line) and standard deviation (blue lines) over time: unsupervised 

training (white), Task 1 training(blue), Task 1/2 testing (green/yellow), Task 2 training (red), 

Task 1/2 testing (green/yellow), InterleavedT1,T2 training (purple), Task 1/2 testing 

(green/yellow). (B) Mean and standard deviation of performance during testing on Task 1 (blue) 

and Task 2 (red). Following Task 1training, mean performance on Task 1 was 0.69 ± 0.02 while 

Task 2 was 0.53 ± 0.02. Conversely, following Task 2 training, mean performance on Task 1 

was 0.52 ± 0.02 while Task2 was 0.69 ± 0.04. Following InterleavedT1,T2 training, mean 

performance on Task 1 was 0.65 ±0.03 while Task 2 was 0.67 ± 0.04. (C) Distributions of task-

relevant synaptic weights (blue bars–single trial, orange line / shaded region–mean / std across 

10 trails. The distributional structure of Task 1-relevant synapses following Task 1 training (top-

left) is destroyed following Task 2 training (top-middle), but partially recovered following. 

InterleavedT1,T2 training (top-right). Similarly, the distributional structure of Task 2-

relevantsynapses following Task 2 training (bottom-middle), which was not present following 

Task 1training (bottom-left), was partially preserved following InterleavedT1,T2 training (bottom-

right).(D) Box plots with mean (dashed green line) and median (dashed orange line) of the 

distance to the decision boundary found by an SVM trained to classify Task 1 and Task 2 

synaptic weight matrices for Task 1, Task 2, and InterleavedT1,T2 training across trials. Task 1 

and Task 2synaptic weight matrices had mean classification values of -0.069 and 0.069 

respectively, while that of InterleavedT1,T2 training was 0.016. (E) Trajectory of H to O layer 

synaptic weights through PC space. Synaptic weights which evolved during 

InterleavedT1,T2 training (green dots)clustered in a location of PC space intermediary between the 

clusters of synaptic weights which evolved during training on Task 1 (red dots) and Task 2 (blue 

dots). 

https://journals.plos.org/ploscompbiol/article/file?type=supplementary&id=10.1371/journal.pcbi.1010628.s005
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Figure 1.13. (S6 Fig) Freezing a fraction of task specific strong synapses preserves differing 

degrees of performance in a sequential learning paradigm. 

(A-C) Mean and standard deviation of performance during testing on Task 1 (blue) and Task 2 

(red). Left, Performance after Task 1 training. Right, Performance after Task 2 training when a 

fraction of the strongest (after Task 1 training) synapses remained frozen– 1% (A), 5% (B), 10% 

(C). In all cases, after Task 1 training, Task 1 performance was 0.70 ± 0.02 and Task 2 

performance was 0.53 ± 0.02. (A) Freezing the top 1% of Task 1 synapses resulted in a Task 1 

performance of 0.54 ± 0.02 and Task 2 performance of 0.68 ± 0.03. (B) Freezing the top 5% of 

Task 1 synapses resulted in a Task 1 performance of 0.65 ± 0.02 and Task 2 performance of 0.61 

± 0.01. (C) Freezing the top 10% of Task 1 synapses resulted in a Task 1 performance of 0.70 ± 

0.03 and Task 2 performance of 0.53 ± 0.03. Freezing the top 1% of Task 1 synapses was not 

sufficient to maintain Task 1 performance, thus enabling Task 2 relevant synapses to dominate 

the network; however, freezing the top 10% of Task 1 synapses fully retains Task 1 performance 

preventing Task 2 to be learned. 

 

https://journals.plos.org/ploscompbiol/article/file?type=supplementary&id=10.1371/journal.pcbi.1010628.s006
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Chapter 1, in full, is a reprint of the material as it appears in PLOS Computational 

Biology 18(11): e1010628, under the title “Sleep prevents catastrophic forgetting in spiking 

neural networks by forming a joint synaptic weight representation”, Golden, Ryan; Delanois, J. 

Erik; Sanda, Pavel; Bazhenov, Maxim, PLOS, 2022. The dissertation author was the co-primary 

investigator and author of this paper, along with J. Erik Delanois.   
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Chapter 2 Hippocampal indexing alters the stability landscape of synaptic weight space allowing 

life-long learning 

 

ABSTRACT  

Systems consolidation theory posits that the hippocampus rapidly encodes new 

information during wakeful behavior. This hippocampal memory trace is subsequently 

assimilated into the cortex during sleep. This powerful idea explains fundamental learning 

principles, but the process by which sleep modulates synaptic weight space to intricately 

integrate new memories into the existing knowledge pool remains unknown. In this study, we 

employed a biophysically-realistic thalamocortical network model to assess the stability 

landscape of synaptic weight dynamics during task training and subsequent sleep. Our findings 

indicate that a cortical network synaptic weight space comprises a subspace, a memory manifold, 

where various weight configurations yield high performance for a given task. After training, 

sleep acts to propel the system further along this memory-specific manifold, thus improving 

performance. When training for a new, competing memory occurs, the system may move away 

from the established memory manifold toward the new task manifold, potentially leading to 

'catastrophic forgetting.' This issue is mitigated by employing a dual cortico-hippocampal 

memory system. Offline memory consolidation, involving mapping newly established 

hippocampal memory traces to the cortex, guides the system along the old memory manifold 

toward its intersection with the new memory manifold, thereby circumventing the risk of 

forgetting the old task. Our study presents a novel theory regarding the role of sleep in memory 

consolidation, offering a convenient 'geometric' framework for understanding the dynamics of 

the synaptic weight space induced by sleep and predicting the usefulness of dual-memory system 

in preventing catastrophic forgetting and facilitating robust memory consolidation. 

 



 

40 

SIGNIFICANCE STATEMENT 

The ability to store, process, and retrieve information is arguably the foundation of 

intelligent behavior. Sleep extracts invariant features from learned information, leading to the 

generation of explicit knowledge and insight. Despite a wealth of facts, our fundamental 

understanding of how memories are encoded in brain networks is very modest. Here, we propose 

a novel framework for understanding how memories are encoded in synaptic weight space and 

how sleep dynamics alter the synaptic landscape. Our approach explains why new task learning 

may lead to memory interference and how sleep enables continual learning. The results advance 

our knowledge of how the brain solves some fundamental problems in life-long learning. 

 

INTRODUCTION 

Continual learning is a foundation of human intelligence. To survive under constantly 

changing environmental conditions, human and animal brains must continuously encode and 

assimilate new memories to appropriately guide behavior. Under such circumstances, 

minimizing memory interference becomes a priority. Not only we can learn without interference, 

but we learn better when related information was learned in the past and new learning can 

improve on what we learned before. The difficulty of performing such learning tasks is 

illustrated by the on-going attempts to achieve scalable continual learning in artificial neural 

networks (ANNs) without suffering severe retroactive interference known as catastrophic 

forgetting (Mccloskey and Cohen 1989, McClelland, McNaughton et al. 1995, French 1999, 

Hayes, Krishnan et al. 2021).  

Sleep has been hypothesized to play an important role in memory consolidation and 

generalization of knowledge in biological systems (Walker and Stickgold 2004, Ji and Wilson 

2007, Lewis and Durrant 2011). During sleep, neurons are spontaneously active without external 
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input and generate complex patterns of synchronized activity across brain regions (Steriade, 

McCormick et al. 1993). Two critical components which are believed to underlie  memory 

consolidation during sleep are spontaneous replay of memory traces and local unsupervised 

synaptic plasticity (Wilson and McNaughton 1994, Stickgold and Walker 2007, Wei, Krishnan et 

al. 2016).  Using biophysical models of thalamocortical network implementing sleep-wake 

transition (Krishnan, Chauvette et al. 2016), we previously showed that replay of recently 

learned memories along with relevant old memories can improve learning and enables the 

network to form orthogonal memory representations to enable coexistence of competing 

memories within overlapping populations of neurons (Wei, Krishnan et al. 2016, Wei, Krishnan 

et al. 2018, Gonzalez, Sokolov et al. 2020, Wei, Krishnan et al. 2020). Recent work also revealed 

that implementing sleep-like processing in ANNs can mitigate catastrophic forgetting and 

improve generalization (Tadros, Krishnan et al. 2020, Tadros, Krishnan et al. 2020, Tadros and 

Bazhenov 2022, Tadros, Krishnan et al. 2022, Delanois, Ahuja et al. 2023).  

While the progress has been made by incorporating ideas of how the brain functions 

during sleep in biophysical and artificial networks, we still lack understanding of the 

fundamental principles governing sleep-induced dynamics in the synaptic weights space. There 

are little doubts that both awake learning and sleep consolidation change synaptic weight 

landscape, however, the extreme dimensionality of the synaptic weight space hinders progress in 

understanding the principles behind learning- and consolidation-induced synaptic weights 

dynamics. It further limits our ability to apply neuroscience principles to artificial intelligence, in 

which continual learning remains an unsolved problem (Hayes, Krishnan et al. 2021, 

Kudithipudi, Aguilar-Simon et al. 2022). 
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In this new study, we applied biophysical models of the thalamocortical system capable of task 

learning in awake and memory replay during sleep to develop the concept of a “memory 

manifold” – a subspace of the synaptic weight space that describes a set of synaptic weights 

which allow for strong cued recall of specific memories. We then applied this theory to explain 

how selective memory replay during slow-wave sleep allows formation of new memory traces 

without catastrophic forgetting of the old memories. Starting from procedural (hippocampus-

independent ) memories, we expanded idea of memory manifolds to declarative memories and 

we demonstrated that the dual hippocampo-cortical memory system, as proposed in Systems 

Consolidation Theory (Wilson and McNaughton 1994, Rasch and Born 2013), may provide an 

optimal mechanism of a new memory training as the system never leaves the vicinity of the old 

tasks memory manifolds. 

 

RESULTS 

Network Model 

The network model utilized throughout the study was built upon thalamocortical models 

previously used in earlier work (Krishnan, Chauvette et al. 2016, Gonzalez, Sokolov et al. 2020). 

The basic circuit (Figure 1A) consists of a single cortical layer with excitatory pyramidal cells 

(PYs) and inhibitory interneurons (INs), and a single thalamic layer with excitatory 

thalamocortical cells (TCs) and inhibitory reticular interneurons (REs). All neurons were 

modeled according to the Hodgkin-Huxley formalism, and synaptic connections between cells 

were set deterministically within a local radius and held at a constant weight value except for 

PY-PY synapses. These synapses were set probabilistically within a local radius with the initial 

weight values Gaussian distributed (Figure 1B) but allowed to vary according to local spike-
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timing-dependent plasticity (STDP) rules. In the model, transitions between awake and non-

rapid-eye-movement stage 3 (N3) sleep were simulated by changing cellular and synaptic 

parameters to mimic the effects of the distinct neuromodulatory tone of each brain state 

(Krishnan, Chauvette et al. 2016). See Methods for more details about the network model. 

 

Differential replay of sequence memories during sleep improves recall performance 

An example of an experimental simulation paradigm consisting of testing, training, and 

N3 sleep stages is shown in Figure 2A. During the awake state, the network was trained with one 

of two sequence memories (S1 or S2), represented by five sequentially ordered, cell groups of 

ten neurons (EDCBA or ABCDA, respectively; see Figure 2B, left and middle). These sequences 

were chosen to elicit maximal interference according to our STDP rules. Training proceeded by 

simulating DC current injections to activate each cell group, with a small delay between groups 

allowing for STDP to strengthen connections. During N3 sleep, the network exhibited 

spontaneous slow oscillations (<1 Hz) with silent Down states and active Up States (Figure 2B, 

right). Additionally, during the awake state, recall was tested to measure performance at 

baseline, after training the sequence memory, and after sleep (Figure 2C). Recall was assessed 

during the awake state by activating the first cell group and testing for pattern completion of the 

trained sequence. (See Figure 2C insets). Recall performance was found to reliably increase for 

S1 (Figure 2C, top) and S2 (bottom) following both training and sleep. The coloring for the 

performance bars indicated which memories the network is capable of recalling: gray – neither; 

red – S1 only; blue – S2 only; purple – both. The later result suggested that the network was 

reactivating the trained sequence during sleep.  
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In order to verify differential neural reactivation that depends on the trained memory 

sequence, we used PCA to perform a dimensionality reduction on the neural firing rate data 

during Up states in each of the two memory sequence conditions (Figure 2D; see Methods for 

details). It can be seen that the Up state trajectories following training S1 (red) and S2 (blue) are 

separable in the first two principal components, indicating robust, reliable, differential 

reactivation. We took advantage of this differential reactivation to train a linear SVM to predict 

the probability of S1 or S2 replay on each Up state by using a single trial of each sequence 

memory as training data (see Methods for details). Figure 2E shows the replay probability for 

each memory during each Up state of sleep averaged across trials (for an example of the replay 

probabilities for a single random seed, see Supp. Figure 1A).  

 

Sleep can rescue both interference effects induced by sequentially training sequence memories 

Next, we simulated the case of two, sequentially trained sequence memories (S1 and S2) 

followed by a period of sleep. Under this simulation paradigm, the network was shown to exhibit 

a retroactive interference effect on S1 recall (Figure 2F, left) that can be seen after S2 training. 

Additionally, a prospective interference effect was exhibited on S2 recall (Figure 2F, right) that 

can be seen by comparison to the single memory case (Figure 2C, bottom) after S2 training. 

Figure 2G shows that the average replay probability for each sequence oscillated about 0.5, 

indicating that each memory was replayed approximately evenly during sleep. Importantly, for 

any given trial simulation, replay for each Up state was nearly always robustly classified as S1 or 

S2 (Supp. Figure 1B).   

 

Interference can be characterized by the network falling off its “memory manifolds” 
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To visualize the synaptic changes which occur from training and memory consolidation 

during sleep, we used PCA to perform dimensionality reduction on the synaptic weight data 

between PY-PY cells. Additionally, we sampled a subset of synaptic weight space and tested 

recall performance to generate contour plots in PC space which serve as the synaptic 

performance landscape – indicating the approximate recall performance on S1 (red) and S2 

(blue) independently (Figure 3, left), and jointly on S1 & S2 (purple; Figure 3, right) for a given 

synaptic weight state. See the Methods for details on the PCA implementation and the synaptic 

performance landscape. 

Figure 3A shows that initial training of S1 (red arrow) and S2 (blue arrow) push the 

network in the performance landscape from its initial location (black dot) to regions of greater 

recall performance for the respective memory. The coloring of the trajectories was determined by 

the memories that could be robustly recalled: gray – neither; red – S1 only; blue – S2 only; 

purple – both. We refer to regions in synaptic weight space with robust memory recall as either 

single or joint “memory manifolds”. Figure 3B shows that subsequent N3 sleep pushes the 

networks further along their current memory manifolds in the same direction as training. 

However, if instead of sleep, competing memory training occurred (Figure 3C), the networks 

were pushed off each single memory manifold (red/blue) into a region of ignorance (gray) where 

neither sequence could be recalled. From this region of ignorance, subsequent sleep (Figure 3D) 

was able to move the network onto the joint memory manifold. It should be noted that the 

terminal locations of all three memory manifolds displayed stable dynamics, such that further 

sleep resulted negligible movement synaptic weight space.  

 

Sleep moves the network towards stable regions of memory manifolds 
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Finally, Figure 3E shows examples of under/overtraining of S2 (blue) following initial S1 

(red) training. The first undertraining example halted S2 training before the network fell off the 

S1 memory manifold, and subsequent sleep pushed the network towards the stable region of the 

S1 manifold. Supp. Figure 2A shows the average replay probability for this case, with each 

memory initially replaying at roughly equal probability before S1 replay comes to dominate by 

the end of sleep. The second undertraining example halted S2 training just after the network fell 

off the S1 manifold. In this case, subsequent sleep pushed the network through a region of the S1 

manifold before moving onto the joint memory manifold. Supp. Figure 2B shows that replay 

initially becomes biased towards S1 before slowly returning towards more equal replay. 

Similarly, the first overtraining example halts the network just after it passes the intersection in 

the region of ignorance, and subsequent sleep pushed it towards the joint memory manifold. 

Supp. Figure 2C shows the average replay probabilities stay more balanced in this case. 

However, in another overtraining example, the network was trained on S2 until it reached the S2 

manifold, where subsequent sleep pushed the network towards its stable region. Here the average 

replay probabilities are initial balanced before S2 comes to dominate by the end of sleep (Supp. 

Figure 2D). Taken together, these under/overtraining dynamics reveal that sleep tends to move 

the network towards stable regions of memory manifolds.  

 

Hippocampal indexing during sleep allows for new memory consolidation without interference 

Although sleep could rescue retroactive and proactive interference by moving the 

network toward a stable region of the joint memory manifold, it relied on the network passing 

through a region of ignorance to do so. The authors are unaware of any study where animals 

displayed the following behavioral dynamics: underwent catastrophic forgetting on the initial 
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task without achieving significant performance improvements on the competing task, but then 

displayed robust performance on both immediately following sleep. Given this disparity, we 

hypothesized that simulating the effects of hippocampal indexing to guide cortical replay during 

sleep might allow the network to encode the competing memory with minimal interference to the 

initial memory. The example simulation paradigm (Figure 4A) shows that, following a baseline 

test, S1 was trained (Figure 4B, left) before conducting another post-training test. Following this, 

the network was transitioned into N3 sleep and hippocampal indexing was induced by detecting 

the onset of each Up State (i.e. the Down-to-Up transition) and applying DC input the network to 

sequentially activate each cell group in S2 with a  5 ms delay (Figure 4B, right). Finally, the 

network was left in the sleep state without hippocampal indexing being applied before a final 

test. Hippocampal indexing was chosen to only last for the first half of sleep since rodent studies 

indicate that hippocampal replay for recent tasks is more robust in early than late sleep (Ji and 

Wilson 2007), and declarative memory consolidation is thought to be more strongly associated 

with early sleep (Plihal and Born 1999, Mednick, Cai et al. 2011, Rasch and Born 2013). 

Figure 4C shows the recall performance for S1 (left) steadily increased throughout all 

stages of the simulation, while indexing causes a jump in S2 recall (right) that is maintained 

following subsequent sleep. The average replay probabilities (Figure 4D) show that the network 

became increasingly likely to replay S2 during the course of indexing. Moreover, halting 

indexing when the memories had an approximately equal chance of being replayed allowed the 

network to maintain continued replay of each during subsequent sleep. However, if indexing 

were allowed to continue throughout the entirety of sleep, catastrophic retroactive interference 

occurred (Figure 4E, left) at the expense of an extremely robust competing memory (right). 
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Figure 4F illustrates that this occurs by the competing memory coming to completely dominate 

replay well before the end of sleep.  

Finally, we investigated how these Up state trajectories appeared in neural activity space 

by utilizing the PCA representation employed previously (Figure 2D; see Methods for details). 

Figure 4G shows the average Up state trajectory for the network during indexing (purple) fall 

within an intermediate region of those of Up states after only training S1 (red) or S2 (blue) on the 

left. On the right, Up state trajectories during indexing were sorted as follows: p(S1≥0.95) – S1 

replay (red); p(S2≥0.95) – S2 replay (blue); p(0.05<S1<0.95) – S1/S2 replay (purple). This was 

based off the densities obtained from integrating the single trial replay probabilities for indexing 

over time (Supp. Figure 1C); most of the replay probabilities are very near to 0 or 1, with a more 

sparse and uniform distribution between p=0.05 and p=0.95. From this sorting of Up state 

trajectories, it is clear that S1 and S2 replays which occur during indexing are separable in neural 

activity space. Moreover, the way the S1/S2 replay trajectories first overlap the S2 replays (i.e. 

the sequence which is indexed at the beginning of each Up state) before jumping over to overlap 

the S1 replays (i.e. the sequence which was initially trained in the network) suggests that 

interleaved replay of the two memories may allow the network to stay on its initial memory 

manifold as it moves towards the joint memory manifold. This is further suggested by the fact 

that S1/S2 replays become increasingly common throughout the second half of indexing (see 

Figure 2 – Supplement 1C). Figure 4H quantifies the trajectory overlaps just described (Figure 

4G, right).  

 

Hippocampal indexing causes interleaved memory replay within individual Up states 
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Based off the above observation (Figure 4G, right), we quantified the amount of synaptic 

reactivation in the S1 and S2 direction during the indexed phase of each up state and the post-

index phase. The indexed phase was defined as the first 50 ms following the detection of the 

Down-to-Up transition during which the simulated index was applied. This was done by 

counting the number of Up states each synapse experienced a net change towards potentiation. 

Figure 5A displays this reactivation count (color scale) for the top 30% of synapses during the 

indexed (left) and post-indexed (right) phases during the first 1000 s of indexed sleep. During the 

indexed phase more reactivation occurred among synapses that facilitate S2 recall (blue 

template), while during the post-index phase more reactivation occurred among synapses that 

facilitate S1 recall (red template).  

Figure 5B summarizes this further, displaying the proportion of the sum total of 

reactivations in the S1 (red line) and S2 (blue line) templates compared to the sum of both 

templates, averaged over 1000 s intervals of indexed sleep. During the indexed phase (left) 

greater reactivation of S2 facilitating synapses occurs throughout the entirety of sleep. However, 

during the post-index phase S1 reactivation is initially greater, before declining and being 

overtaken by S2 reactivation around the middle of sleep, after which S2 reactivation dominates. 

Therefore, our model predicts that indexing causes interleaved memory replay within individual 

Up states, with the recent, indexed memory being replayed first, followed by replay of older 

memory traces in the cortical network. 

 

Hippocampal indexing moves the network to its joint memory manifold without falling off its 

initial single memory manifold 
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Examining synaptic weight space in the case of indexing was found to require a third 

principal component in addition to the previous two needed to visualize the single memory and 

sequential memory training paradigms. This fact prohibited generation of the synaptic 

performance landscape, as we cannot visualize three dimensional contours. On account of this, 

Figure 6 displays two different perspective of a three-dimensional principal component 

representation of the paths of the networks through synaptic weight space, with the trajectory 

coloring encoding the same information as in Figure 3. In the case of normal indexing (left) the 

network begins at the red (resp. blue) corner of the rhombus after training S1 (resp. S2) and 

moves negatively (resp. positively) in the third principal component dimension towards a newly 

discovered stable region of the joint memory manifold. Significantly, this happens without the 

network falling off the S1 (resp. S2) manifold. In the case of over indexing (right), the networks 

are pushed past the new stable regions and continue onto the opposite single memory manifolds 

from which they began.  

 

Hippocampal indexing keeps synaptic weights lower and results in sparser stable solutions 

Next, we investigated how the synaptic weight dynamics differed between the cases on 

sequential training and indexing. Figures 7A & B plot the synaptic weight values for all pairs of 

bi-directionally connected neurons in these cases. This was done because pairs without bi-

directional connectivity are not subject to competition under the STDP rules used here. To make 

this more concrete, take a pair of neurons with one in cell group A and the other in group B. In 

this case, the S1 synaptic weight would be the strength of the synapse going from B->A (since 

S1 is defined as EDCBA), while the S2 synaptic weight would be the strength of the synapse 

from A->B. The colored regions of the plots identify regions where the bi-directional pair had 
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prioritized either the S1 (red) or S2 (blue) synapse at the expense of the opposing synapse 

becoming effectively disconnected.  

For both simulation paradigms, the weight values had a Gaussian distribution at baseline 

(Figures 7A&B, left), and the bulk of the density moved towards the red corner as a result of S1 

training (Figures 7A&B, middle-left). After this point the two simulations paradigms diverge. 

Both sequential training and indexing resulted in densities that were more symmetric about the 

line y=x, indicating a roughly equal distribution of synaptic resources between the two 

memories. However, S2 training (Figure 7A, middle-right) resulted in the density moving much 

further into top-right corner of the plot compared to S2 indexing (Figure 7B, middle-right), 

which kept the density more localized around the line y=-x. This indicates that sequential 

training tends to result in many bi-directional pairs which are strongly activating but in both 

directions; this ambiguity prevents them from contributing to differential memory encoding.  

Under both simulation paradigms, sleep resulted in bi-directional pairs being pushed further into 

either the red or blue corners by amplifying any S1/S2 encoding bias which was already present 

in the pair (Figure 7A&B, right). In the case of sequential training (Figure 7A, right), the 

reduction of ambiguous bi-directional pairs can also be observed by the void that appears in the 

top-right corner of the plot.  

Figure 7C shows the synaptic weight distributions obtained by sequential training 

(purple) and indexing (green) paradigms just after the simulation phase in the corresponding 

columns panels A and B, respectively. It can be seen that after sleep, the distribution converged 

on by indexing appears to have more weak synapses and less strong synapses when compared to 

that found after sequential training. 
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To better quantify this, we computed the sparsity of a synaptic weight filtration at each 

time of the time points discussed above. Briefly, a synaptic weight filtration is generated from 

the data by taking the synaptic weight matrix and repeatedly binarizing it according to a dense 

set of thresholds which cover all possible weight values a synapse can take in simulation. This 

results in a stack of binary matrices which preserve all of the information from the original 

floating-point populated synaptic weight matrix, but allows computing binary matrix properties, 

such as sparsity (i.e., the ratio of zero-valued entries to the total number of entries) on the weight 

data (see Methods for more details).  

Figure 7D plots the average sparsity of the filtrations across trials (solid line), and the 

standard error (shaded region), for the sequential training (purple) and indexing (green) 

paradigms. At baseline (Figure 7D, left), both paradigms resulted in a sharp sigmoidal curve 

characterizing the sparsity of the filtration stacks. This makes sense since, at baseline, the weight 

values are Gaussian distributed around an initial value (see Figure 7C, left). In the plot, we see 

that when we use the initial weight value as a threshold, approximately half of the weights get 

zeroed out upon binarization, and most weight values are very near to the initial value. Further 

evidence of the underlying Gaussian structure can be shown by choosing a threshold slightly left 

of the initial weight and observing that there are no weights in the network which have a lower 

value than this threshold (i.e. sparsity = 0). Alternatively, choosing a threshold slightly to the 

right results in a sparsity of 1, indicating that all synaptic weight values are below this threshold.  

As a result of S1 training (Figure 7D, middle-left), the sparsity curves of both filtration 

curves undergo a deformation – primarily to the right of the initial weight value with less 

deformation to the left. This indicates that many synaptic weights have increased, with some at 

maximum strength (i.e., presence of non-unity sparsity values near the max weight threshold) 
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while another subset has decreased, but not to the extent of the minimum strength (i.e., lack of 

non-zero sparsity values near the min weight threshold). Following subsequent S2 training or S2 

indexing, the sparsity filtration curves (Figure 7D, middle-right) change differentially. The 

sparsity curve after S2 training (purple) indicates that <10% of synaptic weights are below the 

initial weight value, while that of S2 indexing (green) has this number at >30%. Moreover, the 

asymmetric sigmoid shape of the S2 training (purple) curve indicates that the weight distribution 

in biased towards strong values, while the logit shape of S2 indexing (green) suggests the weight 

values are distributed bimodally at the boundaries (see Figure 7C, middle-right).  

Finally, further sleep has the effect of deforming the S2 training (purple) curve from an 

asymmetric sigmoid into a logit shape, and further flattening the logit shape of the S2 indexing 

curve (green; Figure 7D, right). While both of these sparsity curves correspond to weight values 

which are bimodally distributed at the boundaries, the fact that the S2 indexing curve is 

significantly larger than that of S2 training for all threshold values at the end of the simulation 

indicates that indexing finds regions on the joint memory manifold which are significantly 

sparser, and thus, more resource efficient, than sequential training. 

 

DISCUSSION 

Using a biophysically realistic thalamocortical network model capable of task learning in 

the awake state and consolidation during sleep, we characterized the neural network dynamics in 

synaptic weight space during both sleep and wake. Figure 8 summarizes these dynamics with 

illustrative schematics. When the initial training was sufficient to bring the system into the 

vicinity of the task-specific memory manifold (a task-specific subspace in synaptic weight 

space), sleep replay induced a convergence dynamic towards the memory attractor. Learning a 
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new task introduced a transition away from the old task-specific manifolds and towards the new 

task manifold (Figure 8; top). With subsequent sleep it was possible to transition to joint-task 

memory manifold (Figure 8A), but this was found to require a fine-tuned training duration and 

was more likely to induce a failure to consolidate the new memory (i.e. proactive interference; 

Figure 8B), or catastrophic forgetting (i.e. retroactive interference; Figure 8C). In this scenario, 

slow task training interleaved with periods of sleep (Supp. Fig 3), as in procedural 

(hippocampus-independent) learning, was necessary to prevent damage to the old tasks (Figure 

8D). Fast learning of a new task could be accomplished by utilizing a complementary learning 

systems approach, involving a fast-learning hippocampus and a slow-learning cortex (Figure 

8E), as is the case with declarative memories. In such a case, each slow wave included 

hippocampus-dependent replay of a new memory during the initial slow-wave phase and 

intrinsically driven cortical replay of old memories during the later slow-wave phase. This 

dynamic allowed the system to remain near the old task manifold while converging toward its 

intersection with the new task manifold, providing optimal learning dynamics so long as 

indexing did not persist too long into sleep (Figure 8F).  

It is interesting to note that our model suggests the complementary learning systems 

approach can be seen as a maximally compressed version of the strategy taken for procedural 

memory consolidation, with the indexed and post-indexed phases corresponding to the training 

and sleep phases, respectively. Importantly, each indexed phase only receives a single sample 

from the hippocampus, and each post-indexed phase to the spontaneous replay during a single 

Up-state. Both are at the minimum limit of what could conceivably be labeled training and sleep 

periods.  
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Humans and animals have a remarkable ability to learn continuously, incorporate new data into 

their corpus of existing knowledge, and generalize episodic memories beyond a single 

experience. In contrast, artificial neural networks (ANNs) suffer from "catastrophic forgetting" 

whereby they achieve optimal performance on newer tasks at the expense of performance on 

previously learned tasks (Mccloskey and Cohen 1989, McClelland, McNaughton et al. 1995, 

French 1999, Hayes, Krishnan et al. 2021). ANNs have poor generalization properties when 

tested on datasets with even small deviations from the training distribution such as non-Gaussian 

data noise (Geirhos, Temme et al. 2018), which makes ANN predictions unreliable in “real-life” 

scenarios. This dichotomy between learning new tasks and the ability to retain and generalize 

knowledge across all tasks in mammals and ANNs has given rise to the stability-plasticity 

dilemma (French 1999, Abraham and Robins 2005, Mermillod, Bugaiska et al. 2013). On the 

one hand, a network must be plastic such that the parameters in the network can change in order 

to accurately represent and respond to new tasks. On the other hand, a network must be stable 

such that it maintains knowledge of older tasks. Although deep neural networks (LeCun, Bengio 

et al. 2015) can achieve supra-human level of performance on tasks ranging from complex 

games to image recognition, they lie at a sub-optimal point on the stability-plasticity spectrum. 

ANNs have long been known to be able overcome catastrophic forgetting under varying 

degrees of data-intensive interleaved training strategies (McClelland, McNaughton et al. 1995, 

Hasselmo 2017, Saxena, Shobe et al. 2022), and it has recently been shown that the same applies 

to biophysical (Gonzalez, Sokolov et al. 2020) and artificial spiking neural networks (Golden, 

Delanois et al. 2022). Moreover, the procedural memory consolidation strategy of interleaved 

training and sleep has now been shown to mitigate catastrophic forgetting in ANNs (Tadros, 

Krishnan et al. 2020, Tadros, Krishnan et al. 2022), artificial spiking networks (Golden, Delanois 
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et al. 2022), and biophysical spiking networks (Supp. Figure 3). Our results with biophysical 

spiking networks suggest that it may be advantageous to adapt the indexing strategy described 

here to ANNs.  

The critical role that sleep plays in learning and memory is supported by a vast, 

interdisciplinary literature spanning both psychology and neuroscience (Paller and Voss 2004, 

Walker and Stickgold 2004, Oudiette, Antony et al. 2013, Rasch and Born 2013, Stickgold 

2013). Specifically, it has been suggested that REM sleep supports the consolidation of non-

declarative or procedural memories, while non-REM sleep supports the consolidation of 

declarative memories (Mednick, Cai et al. 2011, Rasch and Born 2013, Stickgold 2013). In 

particular, REM sleep has been shown to be important for the consolidation of memories of tasks 

involving perceptual pattern separation, such as the texture discrimination task (Stickgold, James 

et al. 2000, Rasch and Born 2013). Despite the difference in the cellular and network dynamics 

during these two stages of sleep (Rasch and Born 2013, Stickgold 2013), both are thought to 

contribute to memory consolidation through repeated reactivation, or replay, of specific memory 

traces acquired during learning (Hennevin, Hars et al. 1995, Paller and Voss 2004, Mednick, Cai 

et al. 2011, Oudiette, Antony et al. 2013, Rasch and Born 2013, Lewis, Knoblich et al. 2018, 

Wei, Krishnan et al. 2018).  

During NREM sleep, the features of the neocortical SO to repeatedly reset networks 

during the Down phase has led to the hypothesis that the neocortical SO provides a global 

temporal frame within the cortex and between brain regions for offline memory processing and 

reactivation (Isomura, Sirota et al. 2006, Ji and Wilson 2007, Rasch, Buchel et al. 2007, Molle, 

Eschenko et al. 2009, Wierzynski, Lubenov et al. 2009). The key element of the consolidation 

stage during NREM sleep is cortical replay triggered by hippocampal SWR events (Peyrache, 
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Khamassi et al. 2009). In rodents, temporally ordered firing sequences related to a recent 

experience are replayed in both hippocampus and neocortex synchronously (Ji and Wilson 2007, 

Mehta 2007) during SO. Such sequence replay has been proposed to be a neural substrate of 

memory consolidation (Barnes and Wilson 2014) and is believed to result in synaptic changes in 

the neocortex responsible for integration of memory representations (Schwindel and 

McNaughton 2011).  

What are the underlying mechanisms that support continual learning in biological 

systems? What is the basis for robust learning that is resilient against potential interference from 

new experiences? Building upon our recent work (Wei, Krishnan et al. 2016, Wei, Krishnan et 

al. 2018, Gonzalez, Sokolov et al. 2020, Wei, Krishnan et al. 2020), here we proposed and tested 

using biophysical model a hypothesis that: (a) The same memory can be represented by multiple 

different configurations of synaptic weights, forming a “memory manifold” in the space of all 

synaptic weights, i.e., any point on this manifold would allow successful retrieval of a memory; 

(b) New task training moves the synaptic weight configuration away from the manifold 

representing old tasks potentially leading to forgetting. (c) Biological sleep allows simultaneous 

replay of old and new memory traces, and thus mitigates catastrophic forgetting by pushing the 

synaptic weight configuration towards the intersection of the solution manifolds representing 

multiple tasks. (d) Complementary memory systems including a fast learning hippocampus and a 

slow learning cortex, provides an optimal mechanism of a new memory training as the system 

never leaves the vicinity of the old tasks’ memory manifolds. 

 

METHODS 

Thalamocortical network model 
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Network architecture. Throughout this study, we make use of a slightly modified version 

of a thalamocortical network which has been previously described in detail (Krishnan, Chauvette 

et al. 2016, Gonzalez, Sokolov et al. 2020). In brief, the network consisted of a cortical module 

containing 500 excitatory pyramidal neurons (PYs) and 100 inhibitory interneurons (INs), and a 

thalamic module containing 100 excitatory thalamocortical neurons (TCs) and 100 inhibitory 

reticular interneurons (REs). Connectivity in the network was determined by cell type and a local 

radius (see Fig. 1), and excitatory synapses were mediated by AMPA and/or NMDA currents, 

while inhibitory synapses were mediated by GABAA and/or GABAB currents.  

In the cortex, PYs synapsed onto PYs and INs with a radii of RAMPA(PY-PY) = 20, 

RNMDA(PY-PY) = 5, RAMPA(PY-IN) = 1, and RNMDA(PY-IN) = 1.  All connections were deterministic 

within these radii, expect for AMPA synapses between PYs, which had a 60% probability of 

connection. Additionally, INs synapsed onto PYs with a radius of RGABA-A(IN-PY) = 5. In the 

thalamus, TCs synapsed onto REs with a radius of RAMPA(TC-RE) = 8 and REs synapsed onto REs 

and TCs with radii of RGABA-A(RE-RE) = 5, RGABA-A(RE-TC) = 8, and RGABA-B(RE-TC) = 8. Between the 

cortex and thalamus, TCs synapsed onto PYs and INs with radii of RAMPA(TC-PY) = 15, RAMPA(TC-

IN) = 3, while PYs synapsed onto TCs and REs with radii of RAMPA(PY-TC) = 10, and RAMPA(PY-RE) 

= 8. 

 

Wake – Sleep transitions. To model the state transitions between awake and N3 sleep, we 

modulated the intrinsic and synaptic currents of our neuron models to account for differing 

concentrations of neuromodulators that partially govern these arousal state transitions. As these 

mechanisms have been described in detail in (Krishnan, Chauvette et al. 2016), here we will 
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simply outline the approach. The model included the effects of changing acetylcholine (ACh), 

histamine (HA), and GABA concentrations as follows: ACh –  by modulating the potassium leak 

current in all cell types, as well as excitatory AMPA synapses within the cortex; HA – by 

modulating the hyperpolarization-activated cation current in TC cells; and GABA – by 

modulating inhibitory GABAergic synapses within the cortex and thalamus. To transition the 

network from awake to sleep, we modeled the effects of reduced ACh and HA but increased 

GABA concentrations to reflect experimental observations (Vanini, Lydic et al. 2012). 

 

Intrinsic currents. All cell types were modeled using the Hodgkin-Huxley formalism, and 

cortical PYs and INs contained dendritic and axo-somatic compartments that have been 

previously described (Wei, Krishnan et al. 2018). The dynamics of the membrane potential were 

modeled according to: 

𝐶𝑚

𝑑𝑉𝐷

𝑑𝑡
=  −𝐼𝐷

𝑁𝑎 − 𝐼𝐷
𝑁𝑎𝑃 − 𝐼𝐷

𝐾𝑚 − 𝐼𝐷
𝐾𝐶𝑎 − 𝐴𝐶ℎ𝑔𝑘𝑙𝐼𝐷

𝐾𝐿 − 𝐼𝐷
𝐻𝑉𝐴 − 𝐼𝐷

𝐿 − 𝑔(𝑉𝐷 − 𝑉𝑆) − 𝐼𝑠𝑦𝑛, 

𝑔(𝑉𝐷 − 𝑉𝑆) = −𝐼𝑆
𝑁𝑎 − 𝐼𝑆

𝑁𝑎𝑃 − 𝐼𝑆
𝐾, 

where 𝐶𝑚 is the membrane capacitance, 𝑉𝐷 ,𝑆 are the dendritic and axo-somatic membrane 

voltages respectively, 𝐼𝑁𝑎 is the fast sodium (Na+) current, 𝐼𝑁𝑎𝑃 is the persistent Na+ current, 

𝐼𝐾𝑚 is the slow voltage-dependent non-inactivating potassium (K+) current, 𝐼𝐾𝐶𝑎 is the slow 

calcium (Ca2+)-dependent K+ current, 𝐴𝐶ℎ𝑔𝑘𝑙 represents the change in K+ leak current 𝐼𝐾𝐿 which 

is dependent on the level of ACh during the different arousal states, 𝐼𝐻𝑉𝐴 is the high-threshold 

Ca2+ current, 𝐼𝐿 is the chloride (Cl-) leak current, 𝑔 is the conductance between the dendritic and 

axo-somatic compartments, and 𝐼𝑠𝑦𝑛 is the total synaptic current input to the neuron. IN neurons 
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contained all intrinsic currents present in PY with the exception of the 𝐼𝑁𝑎𝑃. All intrinsic ionic 

currents (𝐼𝑗) were modeled in a similar form: 

𝐼𝑗 = 𝑔𝑗𝑚𝑀ℎ𝑁(𝑉 − 𝐸𝑗). 

where 𝑔𝑗 is the maximum conductance, 𝑚 (activation) and ℎ (inactivation) are the gating 

variables, 𝑉 is the voltage of the compartment, and 𝐸𝑗 is the reversal potential of the ionic 

current. The gating variable dynamics are described as follows: 

𝑑𝑥

𝑑𝑡
= −

𝑥 − 𝑥∞

𝜏𝑥
 , 

𝜏𝑥 =
(1 (𝛼𝑥 + 𝛽𝑥)⁄ )

𝑄𝑇
, 

𝑥∞ =
𝛼𝑥

(𝛼𝑥 + 𝛽𝑥)
, 

where 𝑥 = 𝑚 or ℎ, 𝜏 is the time constant, 𝑄𝑇 is the temperature related term, 𝑄𝑇 =

 𝑄((𝑇−23)/10) = 2.9529, with 𝑄 = 2.3 and 𝑇 = 36. 

In the thalamus, TCs and REs contained a single compartment with membrane potential 

dynamics given by: 

𝐶𝑚

𝑑𝑉𝐷

𝑑𝑡
=  −𝐼𝑁𝑎 − 𝐼𝐾 − 𝐴𝐶ℎ𝑔𝑘𝑙𝐼𝐾𝐿 − 𝐼𝑇 − 𝐼ℎ −  𝐼𝐿 − 𝐼𝑠𝑦𝑛, 

where 𝐼𝑁𝑎 is the fast Na+ current, 𝐼𝐾 is the fast K+ current, 𝐼𝐾𝐿 is the K+ leak current, 𝐼𝑇 is the 

low-threshold Ca2+ current, 𝐼ℎ is the hyperpolarization-activated mixed cation current, 𝐼𝐿 is the 

Cl- leak current, and 𝐼𝑠𝑦𝑛 is the total synaptic current input to the neurons. The 𝐼ℎ current was 

only expressed in TCs. The influence of histamine (HA) on 𝐼ℎ was implemented as a shift in the 

activation curve by 𝐻𝐴𝑔ℎ as described by: 

𝑚∞ =
1

1 + 𝑒𝑥𝑝 (
𝑉 + 75 + 𝐻𝐴𝑔ℎ

5.5
)

 . 
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Synaptic currents. The equations for our synaptic current models have been described in 

detail in our previous studies (Krishnan, Chauvette et al. 2016, Wei, Krishnan et al. 2018). To 

model the effects of ACh and GABA, we modified the standard equations as follows: 

𝐼𝑠𝑦𝑛
𝐺𝐴𝐵𝐴 =  𝛾𝐺𝐴𝐵𝐴𝐴

 𝑔𝑠𝑦𝑛 [𝑂](𝑉 − 𝐸𝑠𝑦𝑛), 

𝐼𝑠𝑦𝑛
𝐴𝑀𝑃𝐴 =  𝐴𝐶ℎ𝐴𝑀𝑃𝐴 𝑔𝑠𝑦𝑛 [𝑂](𝑉 − 𝐸𝑠𝑦𝑛), 

where 𝑔𝑠𝑦𝑛 is the maximal conductance at the synapse, [𝑂] is the fraction of open channels, and 

𝐸𝑠𝑦𝑛 is the channel reversal potential (EGABA-A = -70 mV, EAMPA = 0 mV, and ENMDA = 0 mv). 

The parameter 𝛾𝐺𝐴𝐵𝐴𝐴
 modulated the GABA synaptic currents for IN-PY, RE-RE, and RE-TC 

connections. For INs 𝛾𝐺𝐴𝐵𝐴𝐴
 was 0.22 and 0.44 for awake and N3 sleep, respectively, while for 

REs 𝛾𝐺𝐴𝐵𝐴𝐴
 was 0.6 and 1.2.  𝐴𝐶ℎ𝐴𝑀𝑃𝐴 defined the influence of ACh levels on AMPA synaptic 

currents for PY-PY, TC-PY, and TC-IN. For PYs 𝐴𝐶ℎ𝐴𝑀𝑃𝐴 was 0.133 and 0.4332 for awake and 

N3 sleep, respectively, while for TCs 𝐴𝐶ℎ𝐴𝑀𝑃𝐴 was 0.6 and 1.2.  

 

In addition to spike-triggered post-synaptic potentials (PSPs), spontaneous miniature PSPs 

(mPSPs) were implemented for both excitatory and inhibitory synapses within the cortex. The 

dynamics are similar to the typical PSPs described above, but the arrival times were governed by 

an inhomogeneous Poisson process where the next release time trelease is given by: 

𝑡𝑟𝑒𝑙𝑒𝑎𝑠𝑒 =  (2/(1 +  𝑒𝑥𝑝(−(𝑡 − 𝑡0)/𝜐)) − 1)/250 , 

where 𝑡0 is the time of the last presynaptic spike, and 𝜐 was the mPSP frequency 

(𝜐𝑚𝑖𝑛𝑖(𝑃𝑌−𝑃𝑌)
𝐴𝑀𝑃𝐴 =  30, 𝜐𝑚𝑖𝑛𝑖(𝑃𝑌−𝐼𝑁)

𝐴𝑀𝑃𝐴 =  30, and 𝜐𝑚𝑖𝑛𝑖(𝐼𝑁−𝑃𝑌)
𝐺𝐴𝐵𝐴 =  30). The maximum conductances 

for mPSPs were 𝑔𝑚𝑖𝑛𝑖(𝑃𝑌−𝑃𝑌)
𝐴𝑀𝑃𝐴 = 0.03 𝜇𝑆, 𝑔𝑚𝑖𝑛𝑖(𝑃𝑌−𝐼𝑁)

𝐴𝑀𝑃𝐴 = 0.02 𝜇𝑆, and 𝑔𝑚𝑖𝑛𝑖(𝐼𝑁−𝑃𝑌)
𝐺𝐴𝐵𝐴 = 0.02 𝜇𝑆.  
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Finally, short-term synaptic depression was also implemented in AMPA synapses within 

the cortex. To model this phenomenon, the maximum synaptic conductance was multiplied by a 

depression variable (𝐷 ≤ 1), which represents the amount of available “synaptic resources” as 

described in (Bazhenov, Timofeev et al. 2002). This short-term depression was modeled as 

follows: 

𝐷 = 1 − (1 − 𝐷𝑖(1 − 𝑈))𝑒𝑥𝑝 (−
𝑡−𝑡𝑖

𝜏
), 

where 𝐷𝑖 is the value of 𝐷 immediately before the 𝑖𝑡ℎ event, (𝑡 − 𝑡𝑖) is the time after the 𝑖 𝑡ℎ 

event, 𝑈 = 0.073 is the fraction of synaptic resources used per action potential, and 𝜏 = 700𝑚𝑠 

is time constant of recovery of synaptic resources. 

 

Spike-timing-dependent plasticity. The potentiation and depression of AMPA synapses 

between PYs were governed by the following spike-timing-dependent plasticity (STDP) rule: 

𝑔𝐴𝑀𝑃𝐴  ← 𝑔𝐴𝑀𝑃𝐴 + 𝑔𝑚𝑎𝑥 𝐹(∆𝑡), 

𝐹(Δ𝑡) = {
𝐴+ 𝑒−|Δ𝑡|/𝜏+ , 𝑖𝑓 Δ𝑡 > 0

−𝐴− 𝑒−|Δ𝑡|/𝜏− , 𝑖𝑓 Δ𝑡 < 0
  

where 𝑔𝑚𝑎𝑥 was the maximal conductance of 𝑔𝐴𝑀𝑃𝐴, F was the STDP kernel, and t was the 

relative timing of the pre- and post-synaptic spikes. The maximum potentiation/depression were 

set to A+/- = 0.002, while the time constants were set to +/- = 20 ms. A- was reduced to 0.001 

during training to reflect the effects of changes in acetylcholine concentration during focused 

attention on synaptic depression during task learning observed experimentally (Blokland 1995, 

Shinoe, Matsui et al. 2005, Sugisaki, Fukushima et al. 2016).  
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Sequence training and testing. Training and testing of memory sequences was performed 

similarly to our previous study (Wei, Krishnan et al. 2018). In brief, each sequence was 

comprised of the same 5 groups of 10 PYs (i.e PYs 200 - 249), with Sequence 1 (S1) ordered 

E(240-249), D(230-239), C(220-229), B(210-119), A(200-209), and Sequence 2 (S2) ordered 

A(200-209), B(210-219), C(220-229), D(230-239), E(240-249). Each training bout consisted of 

sequentially activating each group via a 10 ms direct current pulse with a 5 ms delay between 

group activations. Training bouts occurred every 1 s during the training period. This training 

structure was chosen to ensure strong interference between S1 and S2 according to our STDP 

rule. Test bouts occurred every 1 ms during testing periods, in which only the first group in each 

sequence was activated (E for S1; A for S2), and recall performance was measured based on the 

extent of pattern completion for the remainder of the sequence within a 350 ms window.    

 

Data Analysis 

All analyses were performed with standard MatLab and Python functions. Data are 

presented as mean  standard error of the mean (SEM) unless otherwise stated. For each 

experiment a total of 6 simulations with different random seeds were used for statistical analysis. 

 

Sequence performance measure. A detailed description of the performance measure used 

during testing can be found in (Wei, Krishnan et al. 2018) and the code is available at 

https://github.com/o2gonzalez/sequencePerformanceAnalysis (González 2020). Briefly, the 

performance of the network on recalling a given sequence following activation of the first group 

of that sequence was measured by the percent of successful sequence recalls. We first detected 

all spikes within the predefined 350 ms time window for all 5 groups of neurons in a sequence.

https://github.com/o2gonzalez/sequencePerformanceAnalysis
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 The firing rate of each group was then smoothed by convolving the average instantaneous 

firing rate of the group’s 10 neurons with a Gaussian kernel with window size of 50 ms. We then 

sorted the peaks of the smoothed firing rates during the 350 ms window to determine the 

ordering of group activations. Next, we applied a string match (SM) method to determine the 

similarity between the detected sequences and an ideal sequence (ie. A-B-C-D-E for S1). SM 

was calculated using the following equation: 

𝑆𝑀 = 2 ∗ 𝑁 − ∑|𝐿(𝑆𝑡𝑒𝑠𝑡, 𝑆𝑠𝑢𝑏[𝑖]) − 𝑖|

𝑁

𝑖=1

, 

where N is the sequence length of Stest, Stest is the test sequence generated by the network during 

testing, Ssub is a subset of the ideal sequence that only contains the same elements of Stest, and 

𝐿(𝑆𝑡𝑒𝑠𝑡, 𝑆𝑠𝑢𝑏[𝑖]) is the location of the element Ssub[i] in sequence Stest. SM was then normalized 

by double the length of the ideal sequence. Finally, the performance was calculated as the 

percent of recalled sequences with SM ≥ Th = 0.8, where Th is a threshold indicating that the 

recalled sequence must be at least 80% similar to the ideal sequence to be counted as a 

successful recall as previously done in (Wei, Krishnan et al. 2018).  

 

Representation of firing rate space. To visualize dimensionality reduced trajectories 

during Up-states in firing rate space, we took single random seeds of a simulations in which only 

S1 or only S2 was trained prior to N3 sleep and detected Up-states in each. We then generated 

spike rasters of the PY activity in the trained region during each Up-state, and converted these 

into firing rates by taking a moving average of the spike rasters with a sliding window length of 

10 ms, resulting in a set of N-by-Tj matrices, where N = 50 was the number of PYs, and Tj was 

the duration of jth Up-state with j = 1, … Nup. The firing rate matrices were then interpolated to 
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be the same duration across each up state, and concatenated, resulting in an N-by-(Tmax*Nup) 

matrix where Tmax was the duration of longest Up-state across all data sets. Principal components 

analysis (PCA) was then performed on the firing rate data to reduce it from 50 to 2 dimensions. 

This linear PCA kernel was then applied to the data from all random seeds for a particular 

simulation paradigm, and the mean and standard deviation of PCs 1 and 2 were plotted for 

visualization. 

 

Replay probability. To estimate the probability of S1 and S2 being replayed during a 

given Up-state, we took the interpolated firing rate data for each Up-state that was used to train 

the PCA kernel, unrolled the N-by-Tj matrices into (NxTj)-dimensional column vectors, 

providing the observations to train a linear support vector machine (SVM), with labels 

determined by whether the Up-state came from the simulation with S1 or S2 training before N3 

sleep, and scores were transformed to posterior probabilities. This SVM was then used to predict 

the posterior probabilities of S1 and S2 replay for each Up-state for a given random seeds of a 

particular simulation paradigm. To compute the average posterior probabilities, we first 

interpolated the data so that each random seed had the same number of data points – specifically, 

the maximum number of Up-states in a single simulation from that paradigm. 

 

Representation of synaptic weight space. In order to visualize the trajectories of the 

network through synaptic weight space, we trained a linear PCA kernel on the synaptic weight 

timeseries data of all synapses in the trained region from every random seed of each simulation 

paradigm discussed in the paper. The data was then transformed into PC space, with either 2 or 3 

dimensions retained for plotting.  
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Performance contours in synaptic weight space. In order to construct the recall 

performance contours, we first estimated the locations of the potential attractor sites by 

computing the centroids of the final weight state configurations for the S1 training, S2 training, 

and the sequential training simulation paradigms in full-dimensional weight space, found the 

unique 2-dimensional planar subspace which these three points define, and then densely sampled 

weight state configurations from this subspace. These weight state configurations were then 

input into the network model to have recall performance evaluated. These sampled weight states 

were then projected into 2-dimensional PC space along with the corresponding mean 

performance values for S1 and S2 individually (Figure 3, left; red and blue), and S1&S2 jointly 

(Figure 3, right; purple), and a mesh with contour gradients was computed for each set of recall 

performance measures. 

 

Sparsity of synaptic weight filtrations. In order to compute the sparsity of synaptic weight 

matrices, we first transformed these floating-point valued matrices into a stack of binary matrices 

using the following information-preserving filtration. We first compiled a dense set of synaptic 

weight values to act as thresholds, in particular, generated the set by starting at the mean initial 

weight value, and then incrementing/decrementing by the minimum potentiation/depression 

value permitted by our simulation until we reached the maximum/minimum weight value. Each 

threshold was then used to generate a binarized synaptic weight matrix by setting all entries less 

than the threshold equal to zero, and all those greater than or equal to it to 1. The sparsity of 

these binarized matrices was then computed, and the sparsity at each threshold value was 

averaged across random seeds. 
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Figure  2.1. Network Architecture. (A) Basic network architecture (PY: excitatory pyramidal 

neurons; IN: inhibitory interneurons; TC: excitatory thalamocortical neurons; RE: inhibitory 

thalamic reticular neurons). Excitatory synapses are represented by lines terminating in a dot, 

while inhibitory synapses are represented by lines terminating in bars. Arrows indicate the 

direction of the connection. (B) Top panel shows the initial weighted synaptic matrix for the 

PYs. The color in this plot represents the strength of the AMPA connections between PY 

neurons, with white indicating the lack of synaptic connection. Bottom panel shows a zoom-in of 

the top panel for the subregion where training occurs. 
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Figure 2.2. Sleep rescues interference induced by sequential training. (A) Network activity 

during an example simulation depicting all 500 PYs on the y-axis and the membrane potential 

(color scale) of each over time (x-axis). The network undergoes testing periods (T; black) at 

baseline, after Training (red), and after N3 Sleep (purple). (B) Examples of network activity 

during one bout of S1 (left) or S2 (middle) training, and during a single up state of N3 Sleep 

(right). (C) Recall performance for S1 (top) or S2 (bottom) during all testing periods. Insets 

include spike rasters showing examples of pattern completion (red/blue dots) following cued 

(black dots) recall. Bars are colored according to which memories the network can pattern 

complete at that point in the simulation: none (gray), red (S1), blue (S2), or purple (S1&S2). (D) 

Average firing rate trajectory in PC space during up states of a network trained on S1 (red), S2 

(blue), or S1&S2 (purple) before sleep. (E) Average probability of replaying S1 (red) or S2 

(blue) during an up state at a given point in sleep; top panel (S1 trained), bottom panel (S2 

trained). Based on an SVM classifier trained on held out trials of sims where either S1 or S2 

were trained before sleep. (F) Same as (C) but for a simulation where S2 was trained 

sequentially after S1 and prior to sleep; S1 recall (left), S2 recall (right). (G) Same as (F) but for 

the sequential training simulation. 
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Figure 2.3. Synaptic performance landscape reveals multi-stability and fine-tuning. All 

panels show the evolution of the network through dimensionality reduced synaptic weight space. 

Contour lines and coloring correspond to single memory recall performance (left panels) for S1 

(red) and S2 (blue), and to joint memory recall performance (right panels; purple). Trajectories 

are colored according to which memories the network can pattern complete at that point in the 

simulation: none (gray), red (S1), blue (S2), or purple (S1&S2). (A) Evolution during S1 (red 

arrow) or S2 (blue arrow) training onto each memory manifold (red/blue trajectories). (B) N3 

sleep moves each network further along its current memory manifold. (C) Sequential training by 

the competing memory moves the network to a gray central region where neither memory can be 

recalled. (D) N3 sleep moves the networks onto the joint memory manifold (purple trajectories) 

where both can be recalled. (E) Examples of under/over-training S2 following S1 training 

reveals the necessity of fine-tuning the training durations for sleep to evolve the network to the 

joint memory manifold.  
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Figure 2.4. Hippocampal indexing during sleep induces consolidation without interference. 

(A) Network activity during the simulation in which the network undergoes periods of testing (T; 

black), training (S1; red), N3 Sleep with S2 Indexing (green), and N3 sleep (purple). (B) 

Examples of network activity during one bout of S1 training (left), and during a single up state of 

N3 Sleep (right) where indexing is simulated at the beginning of the up state (black boxes). (C) 

S1 (left) and S2 (right) recall performance show that the network consolidates S2 without 

interference to S1. (D) Average replay probability shows S2 replay probability slowly increases 

during the course of indexing (green) until it is roughly even with S1 replay probability by the 

time sleep without indexing (purple) begins. (E) Same as (C) but for simulations in which 

indexing continued for the entire duration of sleep. Only S2 could be recalled at the end of the 

simulation. (G) Same as (D) but for simulations in which indexing continued for the entire 

duration of sleep. S2 replay probability was shown to increase to unity with continual indexing. 

(G) Left panel shows the average firing rate trajectory in PC space during up states after single 

memory training (S1 - red; S2 - blue) and during normal indexing (purple). Right panel shows 

average trajectories during normal indexing grouped according to the replay probability of each 

up state (>95% S1 = red; >95% S2 = blue; otherwise = purple). 
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Figure 2.5. Indexing causes interleaved memory reactivation within individual up states. 

(A) Synaptic reactivation during the indexed (left) and post-indexed (right) phases for the top 

30% of reactivated synapses. The Y-/X-axis correspond to the pre/postsynaptic neuron IDs, and 

the color scale indicates the number of Up-states a particular synapse experienced a net 

potentiation event during the referenced phase. Red and blue squares indicate synapses 

considered relevant for S1 and S2 respectively. (B) The relative proportions of S1 (red) and S2 

(blue) relevant synaptic reactivations during the indexed (left) and post-indexed (right) phases of 

sleep, averaged over 1000 s in non-overlapping windows. Error bars depict standard deviation. 
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Figure 2.6. Indexing evolves the network along the current memory manifold toward the 

intersection. (A) Evolution of the networks during normal indexing (left) shows the network 

moves along its current memory manifold (i.e. S1 - red; S2 - blue), primarily in the PC3 

dimension, until it reaches an intersection of the manifolds (purple) that is stable with subsequent 

sleep. Evolution during over indexing (right) shows that if indexing is not halted, it pushes the 

network out of the intersection (purple) and back onto the single memory manifold which 

corresponds to the index. (B) Same as (A) but with the plot rotated 45 degrees about the PC3 

axis. 
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Figure 2.7. Indexing leads to sparser memory representations than sequential training and 

sleep. (A-B) Each panel shows scatter plots of synaptic weights between all PYs in the trained 

region that have bi-directional synapses between them. The weight in the S1 direction is on the 

x-axis, while that in the S2 direction is on the y-axis. Colored corners indicate regions where the 

synaptic pair has been strongly biased towards S1 (red) or S2 (blue) at the expense of the 

opposing memory. (A) Snapshots during a simulation with sequential training and sleep. (B) 

Snapshots during a simulation with normal indexing during sleep. (C) Distributions of synaptic 

weights at each time point from (A-B) for sequential training (purple) and normal indexing 

(green) with the y-axis on a log-scale. (D) Average sparsity across a dense set of synaptic weight 

thresholds for simulations with sequential training (purple) and normal indexing (green).  
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Figure 2.8. Systems consolidation prevents interference through interleaved replay within 

up states. Cartoon schematics illustrating the network dynamics across memory manifolds for 

(A) Sequential Training, (B) Under-Training, (C) Over-Training, (D) Interleaved Training, (E) 

Indexing, and (F) Over-Indexing. Spirals represent regions on manifolds which appear to be 

stable and attracting under sleep dynamics. 
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Figure 2.9. (S1) Classification of memory replay on individual UP states is robust in a 

single network. Averaged (left) and single network (right) replay probabilities for (A) S1 

training only; (B) sequential training; and (C) normal indexing. The single network plots 

highlight that the majority of individual Up-states are robustly classified as either S1 or S2 across 

all conditions. 
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Figure 2.10. (S2) Replay probabilities during sleep following under/over-training. (A) 

Following significant undertraining of S2 the network begins sleep in a mixed replay state and 

slowly converges to an S1 dominated replay state. (B) Following moderate undertraining of S2 

the network diverges from a mixed replay state towards an S1 dominated replay state before 

slowly relaxing towards a more mixed state. (C) Following moderate overtraining of S2 the 

network’s replay state briefly oscillates about and then remains in a mixed replay state. (D) 

Following significant overtraining of S2 the network slowly converges towards an S2 dominated 

replay state from its initial mixed replay state. 
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Figure 2.11. (S3) Interleaving S2 training with N3 sleep following S1 training allows for 

recall of both old and new memories. (A) Network activity during the simulation in which the 

network undergoes periods of testing (T; black), training (S1; red), and 12 cycles of interleaved 

S2 training (blue) with N3 Sleep (purple), with each phase of the cycle lasting 25 s. (B) 

Examples of network activity during one bout of S1 training (left), and during a training to sleep 

transition with the last bout of an S2 training period and a single up state at the start of an N3 

sleep period (right). (C) S1 (left) and S2 (right) recall performances show that the network 

consolidates S2 without interference to S1. (D) Average replay probability shows S2 (blue) 

replay probability begins below that of S1 (red) until roughly 250 s into interleaved S2/N3 sleep. 
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Chapter 2, in full, is currently being prepared for submission for publication of the 

material. Gonzalez, Oscar C.; Golden, Ryan; Delanois, J. Erik; Bazhenov, Maxim. The 

dissertation author was the co-primary investigator, along with Oscar C. Gonzalez, and the 

primary author of this paper. 
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Chapter 3 Multielectrode cortical stimulation induces traveling waves 
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Chapter 3, in full, is a reprint of the material as it appears in The Journal of Neuroscience, 

under the title “Multielectrode cortical stimulation selectively induces unidirectional wave 

propagation of excitatory neuronal activity in biophysical neural model”, April 2023; 

43(14):2482-2496. Halgren, Alma S.; Siegel, Zarek; Golden, Ryan; Bazhenov, Maxim. The 

dissertation author was one of the primary investigators and authors of this paper, but also 

serving in a supervisory role as a mentor for the primary investigator, Alma S. Halgren. 




