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ABSTRACT OF THE DISSERTATION

Sleep Rhythms and Consolidation Strategies:
Advances in Modeling Life-Long Learning

by

Ryan Golden

Doctor of Philosophy in Neurosciences with a Specialization in Computational Neurosciences
University of California San Diego, 2023

Professor Maxim Bazhenov, Chair

This dissertation was an investigation into the computational roles of sleep rhythms in the
consolidation of memory, and how these roles may be leveraged to the benefit of machine learning and
medicine. In Chapter 1 we used an artificial spiking neural network model to validate that a consolidation
strategy thought to be taken by the procedural memory system — incrementally learning a new skill by
interleaving bouts of training with periods of sleep — can prevent catastrophic forgetting when faced with
learning a novel task. In particular, we demonstrated that memory replay during sleep acted to keep the

network’s synaptic weight state near to previous memory manifolds as it learns the new task. In Chapter

xii



2, we utilized a biophysical thalamocortical network model to further study this procedural memory
consolidation strategy, as well as a declarative memory consolidation strategy — incrementally
transferring a new memory to the cortex by hippocampal indexing during sleep. While both strategies
were able to prevent catastrophic forgetting, we found that the procedural memory strategy suffers from
fine-tuning and works best when training bouts are short and protracted in time. The declarative memory
strategy does not suffer from this same fine-tuning problem, suggesting it may be engaged when training
bouts are chunked rather than distributed in time. Moreover, our model suggests that the declarative
memory consolidation strategy may simply be a compressed version of the procedural memory strategy,
with the hippocampus generating simulated training samples to be indexed to the cortex during sleep. We
anticipate that such a strategy will be useful in mitigating catastrophic forgetting in machine learning, as
others in our lab have shown the procedural memory consolidation strategy to be. Finally, in Chapter 3,
we made use of a two-phase biophysical-anatomical and dynamic-neuronal network in order to model the
effects of electrical stimulation of the cortical surface and studies the circuit mechanisms behind how this
could be used to induce directed traveling waves. We found that cortical surface stimulation differentially
recruits distinct subtypes of inhibitory interneurons, which shape the oscillatory frequency and direction
of the wave. In the future, we hope to develop this work further to model the induction of sleep rhythms

with this network, and how this may be used to aid clinical treatment of memory and sleep disorders.
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Chapter 1 Sleep prevents catastrophic forgetting in spiking neural networks by forming a joint

synaptic weight representation

PLOS COMPUTATIONAL BIOLOGY

L)

Check for
updates

G OPEN ACCESS

Citation: Golden R, Delanois JE, Sanda P,
Bazhenov M (2022) Sleep prevents catastrophic
forgetting in spiking neural networks by forming a
joint synaptic weight representation. PLoS Comput
Biol 18(11): €1010628. https://doi.org/10.1371/
journal.pchi.1010628

Editor: Daniel Bush, University College London,
UNITED KINGDOM

Received: April 22, 2022
Accepted: October 3, 2022
Published: November 18, 2022

Peer Review History: PLOS recognizes the
benefits of transparency in the peer review
process; therefore, we enable the publication of
all of the content of peer review and author
responses alongside final, published articles. The
editorial history of this article is available here:
https://doi.org/10.1371/journal.pcbi.1010628

Copyright: © 2022 Golden et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: Al relevant data are
within the paper and its Supporting Information
files.

RESEARCH ARTICLE

Sleep prevents catastrophic forgetting in
spiking neural networks by forming a joint
synaptic weight representation

Ryan Golden"2®, Jean Erik Delanois 2%, Pavel Sanda®, Maxim Bazhenov '+2*

1 Neurosciences Graduate Program, University of California, San Diego, La Jolla, California, United States of
America, 2 Department of Medicine, University of California, San Diego, La Jolla, California, United States of
America, 3 Department of Computer Science and Engineering, University of California, San Diego, La Jolla,
California, United States of America, 4 Institute of Computer Science of the Czech Academy of Sciences,
Prague, Czech Republic

@ These authors contributed equally to this work.
* mbazhenov@ucsd.edu

Abstract

Artificial neural networks overwrite previously learned tasks when trained sequentially, a
phenomenon known as catastrophic forgetting. In contrast, the brain learns continuously,
and typically learns best when new training is interleaved with periods of sleep for memory
consolidation. Here we used spiking network to study mechanisms behind catastrophic for-
getting and the role of sleep in preventing it. The network could be trained to learn a complex
foraging task but exhibited catastrophic forgetting when trained sequentially on different
tasks. In synaptic weight space, new task training moved the synaptic weight configuration
away from the manifold representing old task leading to forgetting. Interleaving new task
training with periods of off-line reactivation, mimicking biological sleep, mitigated cata-
strophic forgetting by constraining the network synaptic weight state to the previously
learned manifold, while allowing the weight configuration to converge towards the intersec-
tion of the manifolds representing old and new tasks. The study reveals a possible strategy
of synaptic weights dynamics the brain applies during sleep to prevent forgetting and opti-
mize learning.

Author summary

Artificial neural networks can achieve superhuman performance in many domains.
Despite these advances, these networks fail in sequential learning; they achieve optimal
performance on newer tasks at the expense of performance on previously learned tasks.
Humans and animals on the other hand have a remarkable ability to learn continuously
and incorporate new data into their corpus of existing knowledge. Sleep has been hypoth-
esized to play an important role in memory and learning by enabling spontaneous reacti-
vation of previously learned memory patterns. Here we use a spiking neural network
model, simulating sensory processing and reinforcement learning in animal brain, to
demonstrate that interleaving new task training with sleep-like activity optimizes the
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network’s memory representation in synaptic weight space to prevent forgetting old
memories. Sleep makes this possible by replaying old memory traces without the explicit
usage of the old task data.

Introduction

Humans are capable of continuously learning to perform novel tasks throughout life without
interfering with their ability to perform previous tasks. Conversely, while modern artificial
neural networks (ANNs) are capable of learning to perform complicated tasks, ANNs have dif-
ficulty learning multiple tasks sequentially [1-3]. Sequential training commonly results in cata-
strophic forgetting, a phenomenon which occurs when training on the new task completely
overwrites the synaptic weights learned during the previous task, leaving the ANN incapable
of performing a previous task [1-4]. Attempts to solve catastrophic forgetting have drawn on
insights from the study of neurobiological learning, leading to the growth of neuroscience-
inspired artificial intelligence (AI) [5-8]. While proposed approaches are capable of mitigating
catastrophic forgetting in certain circumstances, a general solution which can achieve human
level performance for continual learning is still an open question [9].

Historically, an interleaved training paradigm, where multiple tasks are presented within a
common training dataset, has been employed to circumvent the issue of catastrophic for-
getting [4,10,11]. In fact, interleaved training was originally construed to be an approximation
to what the brain may be doing during sleep to consolidate memories; spontaneously reactivat-
ing memories from multiple interfering tasks in an interleaved manner [11]. Unfortunately,
explicit use of interleaved training, in contrast to memory consolidation during biological
sleep, imposes the stringent constraint that the original training data be perpetually stored for
later use and combined with new data to retrain the network [1,2,4,11]. Thus, the challenge is
to understand how the biological brain enables memory reactivation during sleep without
access to past training data.

Parallel to the growth of neuroscience-inspired ANNS, there has been increasing investiga-
tion of spiking neural networks (SNNs) which attempt to provide a more realistic model of
brain functioning by taking into account the underlying neural dynamics and by using biologi-
cally plausible local learning rules [12-15]. A potential advantage of the SNNs, that was
explored in our new study, is that local learning rules combined with spike-based communica-
tion allow previously learned memory traces to reactivate spontaneously and modify synaptic
weights without interference during off-line processing-sleep. Indeed, a common hypothesis,
supported by a vast range of neuroscience data, is that the consolidation of memories during
sleep occurs through synaptic changes enabled by reactivation of the neuron ensembles
engaged during learning [16-20]. It has been suggested that Rapid Eye Movement (REM)
sleep supports the consolidation of non-declarative or procedural memories, while non-REM
sleep supports the consolidation of declarative memories [16,21-23].

Here we used a multi-layer SNN with reinforcement learning to investigate whether inter-
leaving periods of new task training with periods of sleep-like autonomous activity, can cir-
cumvent catastrophic forgetting. The network can be trained to learn one of two
complementary complex foraging tasks involving pattern discrimination but exhibits cata-
strophic forgetting when trained on the tasks sequentially. Significantly, we show that cata-
strophic forgetting can be prevented by periodically interrupting reinforcement learning on a
new task with sleep-like phases. From the perspective of synaptic weight space, while new task
training alone moves the synaptic weight configuration away from the old task’s manifold-a
subspace of synaptic weight space that guarantees high performance on that task—and towards
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the new task manifold, interleaving new task training with sleep replay allows the synaptic
weights to stay near the old task manifold and still move towards its intersection with the man-
ifold representing the new task, i.e., converge to the intersection of these manifolds. Our study
predicts that sleep prevents catastrophic forgetting in the brain by forming joint synaptic
weight representations suitable for storing multiple memories.

Results

Human and animal brains are complex and although there are many differences between spe-
cies, critical common elements can still be identified from insects to humans. From an ana-
tomic perspective, this includes largely the sequential processing of sensory information, from
raw low level representations on the sensory periphery to high level representations deeper in
the brain followed by decision making networks controlling the motor circuits. From a func-
tional perspective, this includes local synaptic plasticity, combination of different plasticity
rules and sleep-wake cycle that was shown to be critical for memory and learning in variety of
species from insects [24-26] to vertebrates [16]. In this new study we model a basic brain neu-
ral circuit including many of these anatomical and functional elements. While our model is
extremely simplified, it captures critical processing steps found, e.g., in insect olfactory system
where odor information is sent from olfactory receptors to the mushroom bodies and then to
the motor circuits. In vertebrates, visual information is sent from the retina to early visual cor-
tex and then to decision making layers in associative cortices to drive motor output. Many of
these steps are plastic, in particular decision making circuits utilize spike timing dependent
plasticity (STDP) in insects [27] and vertebrates [28,29].

Fig 1A illustrates a feedforward spiking neural network (see also Methods: Network Struc-
ture for details) simulating the basic steps from sensory input to motor output. Excitatory syn-
apses between the input (I) and hidden (H) layers were subjected to unsupervised learning
(implemented as non-rewarded STDP) [28,29] while those between the H and output (O) lay-
ers were subjected to reinforcement learning (implemented using rewarded STDP) [30-33]
(see Methods: Synaptic plasticity for details). Unsupervised plasticity allowed neurons in layer
H to learn different particle patterns at various spatial locations of the input layer I, while
rewarded STDP allowed the neurons in layer O to learn motor decisions based on the type of
the particle patterns detected in the input layer [14]. While inspired by the processing steps of
a biological brain, this structure also mimics basic elements of the feedforward artificial neural
networks (ANNs), including convolutional layer (from I to H) and fully connected layer (from
H to O) [34].

Complementary complex foraging tasks can be robustly learned

We trained the network on one of two complementary complex foraging tasks. In either task,
the network learned to discriminate between rewarded and punished particle patterns in order
to acquire as much reward as possible. We consider pattern discriminability (ratio of rewarded
vs punished particles consumed) as a measure of performance, with chance performance
being 0.5. All reported results are based on at least 10 trials with different random network
initialization.

The paradigm for Task 1 is shown in Fig 1B. First, during an unsupervised learning period,
all 4 types of 2-particle patterns (horizontal, vertical, positive diagonal, and negative diagonal)
were present in the environment with equal densities. This was a period, equivalent to a devel-
opmental critical period in the brain (or training convolutional layers in ANN), when the net-
work learned the environmental statistics and formed, in layer H, high level representations of
all possible patterns found at the different visual field locations (see Fig 2 for details).
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Fig 1. Network architecture and foraging task structure. (A) The network had three layers of neurons with a feed-forward connectivity
scheme. Input from virtual environment was simulated as a set of excitatory inputs to the input layer neurons (“visual field”- 7x7 subspace of
50x50 environment) representing the position of food particles in an egocentric reference frame relative to the virtual agent. Each hidden

layer neuron received an excitatory synapse from 9 randomly selected input layer neurons. Each output layer neuron received one excitatory

and one inhibitory synapse from each hidden layer neuron. The most active neuron in the output layer (size 3x3) determined the direction of
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movement. (B) Mean performance (redline) and standard deviation (blue lines) over time: unsupervised training (white), Task 1 training
(blue), and Task 1 (green) and Task 2 (yellow) testing. The y-axis represents the agent’s performance, or the probability of acquiring rewarded
as opposed to punished particle patterns. The x-axis is time in aeons (1 acon = 100 movement cycles). (C) The same as shown in (B) except
now for: unsupervised training (white), Task 2 training (red), and Task 1 (green) and Task 2 (yellow) testing. (D) Examples of trajectories
through the environment at the beginning (left) and at the end (middle-left) of training on Task 1, with a zoom in on the trajectory at the end
of training (middle-right), and the values of the task-relevant food particles (right). (E). The same as shown in (D) except for Task 2.

https:/doi.org/10.1371/journal.pcbi.1010628.9001

Unsupervised training was followed by a reinforcement learning period, equivalent to task spe-
cific training in the brain (or training a specific set of classes in an ANN), during which the
synapses between layers I and H were frozen while synapses from H to O were updated using a
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rewarded STDP rule. The reinforcement learning period was when the network learned to
make decisions about which direction to move based on the visual input. For Task 1, horizon-
tal patterns were rewarded and negative diagonal patterns were punished (Fig 1D). During
both the rewarded training and the testing periods only 2 types of patterns were present in the
environment (e.g. horizontal and negative diagonal for Task 1).

After training Task 1, mean performance across ten trials on Task 1 was 0.70 + 0.02 while
performance on the untrained Task 2 was 0.53 + 0.02 (chance level). The naive agent moved
randomly through the environment (Fig 1D, left), but after task training, moved to seek out
horizontal patterns and largely avoid negative diagonal ones (Fig 1D, right). The complemen-
tary paradigm for Task 2 (vertical patterns are rewarded, and positive diagonal are punished)
is shown in Fig 1C and 1E. These results demonstrate that the network is capable of learning
and performing either one of the two complementary complex foraging tasks. The similarity
between these tasks is evident in their definition (symmetrical particle orientations; Fig 1D
and 1E), through the similar performances attained by the network on each task (Fig 1B and
1C), and through the similar levels of activity induced in the network when training each task
(S1A and S1B Fig)

To understand how sensitive a trained network was to pruning, we employed a neuronal
dropout procedure which progressively removes neurons from the hidden layer at random (52
Fig). We found the network was able to keep performance steady on either task following
training until around 70% of the hidden layer was pruned. Such high resiliency suggests the
network utilizes a highly distributed coding strategy to develop its policy.

Next, to understand synaptic changes during training, we computed receptive fields of each
neuron in layer O with respect to the inputs from layer I (see schematic in Fig 2A and 2C).
This was done by first computing the receptive fields of all of the neurons in layer H with
respect to I, then performing a weighted average where the weights were given by the synaptic
strength from each neuron in layer H to the particular neuron in layer O. Fig 2A shows a rep-
resentative example of the receptive field which developed after training on Task 1 for one spe-
cific neuron in layer O which controls movements to the upper-left direction. This neuron
responded most robustly to bars of horizontal orientation (rewarded) in the upper-left quad-
rant of the visual field and, importantly, did not respond to bars of negative diagonal orienta-
tion (punished).

Fig 2B shows examples of receptive fields of six neurons in layer H which synapse strongly
onto the upper-left neuron in layer O (the neuron shown in Fig 2A). These neurons formed
high level representations of the input patterns, similar to the neurons in the primary visual
system or later layers of a convolutional neural network [35-37]. The majority of these recep-
tive fields revealed strong selection for the horizontal (i.e. rewarded) food particles in the
upper-left quadrant of the visual field. As a particularly notable example, one of these layer H
neurons (Fig 2B; middle-right) preferentially responded to negative diagonal (i.e. punished)
food particles in the bottom-right quadrant of the visual field. Thus, spiking in this neuron
caused the agent to move away from these punished food particles. Similar findings after train-
ing on Task 2 are shown in Fig 2C and 2D.

To further quantify the network’s sensitivity to various particle types we developed a metric
termed the Particle Responsiveness Metric (PRM) to gauge how specific particles influence
activity of the output layer neurons (see the section Methods: Particle responsiveness metric
for further details). Using PRM on all food particle orientations across ten trials, we found that
following Task 1 training the network is drawn to horizontal particles (S3A Fig) while post
Task 2 training vertical particles drive output layer activity (S3B Fig), thus quantitatively sup-
porting the qualitative results displayed in Fig 2.
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Sleep prevents catastrophic forgetting of the old task during new task
training

We next tested whether the model exhibits catastrophic forgetting by training sequentially on
Task 1 (old task) followed by Task 2 (new task) (Fig 3A). Following Task 2 training, mean per-
formance across ten trials on Task 1 was down to no better than chance (0.52 + 0.02), while
performance on Task 2 improved to 0.69 + 0.03 (Fig 3A and 3B). Thus, sequential training on
a complementary task caused the network to undergo catastrophic forgetting of the task
trained earlier, remembering only the most recent task.

Interleaved training was proposed as a solution for catastrophic forgetting [4,10,11]. In the
next experiment, after training on Task 1, we simulated interleaved T1/T2 training (Interlea-
vedr; 1,) when we alternated short presentations of Task 1 and Task 2 every 100 movement
cycles (Fig 3C). Sample network activity from this period can be seen to closely resemble single
task training (S1C Fig). Following interleaved training, the network achieved a mean perfor-
mance of 0.68 £0.03 on Task 1 and a performance of 0.65 + 0.04 on Task 2 across trials. There-
fore, interleaved training allowed the network to learn new Task 2 without forgetting
previously learned Task 1. However, while interleaved training made it possible to learn both
tasks, it imposes the stringent constraint that all the original training data (in our case explicit
access to the Task 1 environment) be stored for later use and combined with new data to
retrain the network [1,2,4,11].

Sleep is believed to be an off-line processing period when recent memories are replayed to
avoid damage from new learning. We previously showed that sleep replay improves memory
in a thalamocortical network [38-40] and when a network was trained to learn interfering
tasks sequentially, sleep prevented the old task memory from catastrophic forgetting [41]. Can
we implement a sleep like phase to our model to protect an old task and still accomplish new
task learning without explicit re-training of the old task? In vivo, activity of the neocortical
neurons during REM sleep is low-synchronized and similar to baseline awake activity [42].
Therefore, to simulate REM sleep-like activity in the model, the rewarded STDP rule was
replaced by unsupervised STDP, the input layer was silenced while hidden layer neurons
were artificially stimulated by Poisson distributed spike trains in order to maintain spiking
rates similar to that during task training (see Methods: Simulated Sleep for details).

Sample network activity recorded during this sleep phase is visualized in the raster plots
shown in S1D Fig.

Again, we first trained the network on Task 1. Next, we implemented a training phase
consisted of alternating periods of training on Task 2 (new task) lasting 100 movement
cycles and periods of “sleep” of the same duration (we will refer to this training phase as
Interleaveds 1,) (Fig 3E). Importantly, no training on Task 1 was performed at any time
during Interleaveds 1. Following Interleaveds r,, the network achieved a mean perfor-
mance across ten trials of 0.68 + 0.05 on Task 2 and retained a performance of 0.70 + 0.03
on Task 1 (Fig 3E and 3F), comparable to single Task 1 (0.70 + 002) or Task 2 (0.69 + 0.03)
performances (Fig 1B and 1C) and exceeding those achieved through Interleavedr, 1, train-
ing (Fig 3C and 3D).

We interpret these results as follows (see below for detailed synaptic connectivity analysis).
Each episode of new Task 2 training improves Task 2 performance but damages synaptic con-
nectivity responsible for old Task 1. If continuous Task 2 training is long enough, the damage
to Task 1 becomes irreversible. Having a sleep phase after a short period of Task 2 training
enables spontaneous forward replay between hidden and output layers (H->O) that preferen-
tially benefits the strongest synapses. Thus, if Task 1 synapses are still strong enough to main-
tain replay, they are replayed and weights are increased.
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Interleavedr, 1, training allowed new Task 2 learning without forgetting old Task 1. (E) Task paradigm similar to that shown in (A) but
with Interleaveds 1 training (gray) instead of Task 2 training. (F) Mean and standard deviation of performance during testing on Task 1
(blue) and Task 2 (red). Embedding sleep phases to the new Task 2 training protected old Task 1 memory.

https://doi.org/10.1371/journal.pcbi.1010628.9003

Sleep can protect synaptic configuration from previous training but does
not provide training by itself

In simulations presented in Fig 3, during sleep phase, each hidden layer neuron was stimulated
by noise, a Poisson distributed spike train, and we ensured that its firing rate during sleep
would be close to the mean rate of that neuron firing across all the preceding training sessions.
Therefore, intensity of the noise input during Interleaveds r, was influenced by preceding
Task 1 training and could also vary between H neurons. To eliminate the possibility that such
input may provide direct Task 1 training during sleep, three additional experiments were con-
ducted. First, we applied Interleaveds 1, phase to a completely naive network. Importantly,
even though this network was never trained on Task 2, we used information about hidden
layer neuron firing rates after Task 2 training from another experiment. In other words, we
artificially took into account Task 2 firing rate data to design random input during sleep to
check if this might be sufficient to improve the network performance on Task 2. We found
that the network learns Task 1 but Task 2 performance remained at baseline (S4A and S4B
Fig). In a second experiment, a similar period of Interleaveds 1, was applied following Task 1
training (S4C and $4D Fig) and we found that it maintained performance on Task 1 but again
without any performance gain for Task 2.

In a third experiment, we repeated the sequence shown in Fig 3E, however, during the sleep
phase, we provided each hidden layer neuron with a Poisson spike train input which was
drawn (independently) from the same distribution, i.e., we used the same input firing rate for
all hidden layer neurons determined by the mean firing of the entire hidden layer population
as opposed to the private spiking history of individual H neurons in the Fig 3E and 3F experi-
ments (termed Uniform-Noise Sleep (US)). The network’s performance under this implemen-
tation of noise, Interleavedys 1y, (S4E and S4F Fig) was similar to that from our original sleep
implementation (see Fig 3E and 3F). Taken together, these results suggest that the properties
of the input that drives firing during sleep are not essential to enable replay, any similar to
awake random activity in layers H and O is sufficient to prevent forgetting.

Sleep replay protects critical synapses of the old tasks

To reveal synaptic weights dynamics during training and sleep, we next traced “task-relevant”
synapses, i.e. synapses identified in the top 10% of the distribution following training on that
specific task. We first trained Task 1, followed by Task 2 training (Fig 4A) and we identified
“task-relevant” synapses after each task training. Next, we continued by training Task 1 again
but we interleaved it with periods of sleep: T1->T2->Interleaveds ;. Sequential training of
Task 2 after Task 1 led to forgetting of Task 1, but after Interleaveds ) Task 1 was relearned
while Task 2 was preserved (Fig 4A and 4B), as in the experiments in the previous section (Fig
3C). Importantly, this protocol allowed us to compare synaptic weights after Interleaveds 1,
training with those identified as task-relevant after individual Task 1 and Task 2 training (Fig
4C). The structure in the distribution of Task 1-relevant synapses formed following Task 1
training (Fig 4C; top-left) was destroyed following Task 2 training (top-middle) but partially
recovered following Interleaveds 1, training (top-right). The distribution structure of Task
2-relevant synapses following Task 2 training (bottom-middle) was not present following Task
1 training (bottom-left) and was partially retained following Interleaveds r; training (bottom-
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https://doi.org/10.1371/journal.pcbi.1010628.9004

right). It should be noted that this qualitative pattern can be distinctly observed in a single trial
(Fig 4C; Blue Bars), but also generalizes across trials (Fig 4C; Orange Line). Thus, sleep can
preserve important synapses while incorporating new ones.

To better understand the effect of Interleaveds 1, training on the synaptic weights, we
trained a support vector machine (SVM; see Method: Support Vector Machine Training for
details) to classify the synaptic weight configurations between layers H and O according to
whether they serve to perform Task 1 or Task 2 on every trial. Fig 4D shows that the SVMs
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robustly and consistently classified the synaptic weight states after Task 1 and Task 2 training
while those after Interleaveds 1, fell significantly closer to the decision boundary. This indi-
cates that the synaptic weight matrices which result from Interleaveds 1, training are a mixture
of Task 1 and Task 2 states. Using principal components analysis (PCA), we found that while
synaptic weight matrices associated with Task 1 and Task 2 training cluster in distinct regions
of PC space, Interleaveds 1, training pushes the synaptic weights to an intermediate location
between Task land Task 2 (Fig 4E). Importantly, the smoothness of this trajectory to its steady
state suggests that Task 2 information is never completely erased during this evolution. We
take this as evidence that Interleavedg r, training is capable of integrating synaptic information
relevant to Task 1 while protecting Task 2 information.

This analysis applied during interleaved training of Task 1 and Task 2 (Interleavedy 1),
revealed similar results (S5 Fig), suggesting that Interleavedsr, can enable similar synaptic
weights dynamics as Interleavedr, 1, training, but without access to the old task data (old
training environment).

Receptive fields of decision-making neurons after sleep represent multiple
tasks

To confirm that the network had learned both tasks after Interleaveds r, training, we visualized
the receptive fields of decision-making neurons in layer O (Fig 5; see Fig 2 for comparison).
Fig 5A shows the receptive field for the neuron in layer O which controls movement in the
upper-left direction. This neuron responded to both horizontal (rewarded for Task 1) and ver-
tical (rewarded for Task 2) orientations in the upper-left quadrant of the visual field. Although
it initially appears that this layer O neuron may also be responsive to diagonal patterns in this
region, analysis of the receptive fields of neurons in layer H (Fig 5B) revealed that these recep-
tive fields are selective to either horizontal food particles (left six panels; rewarded for Task 1)
or vertical food particles (right six panels; rewarded for Task 2) in the upper-left quadrant of
the visual field. Other receptive fields were responsible for avoidance of punished particles for
both tasks (see examples in Fig 5B, bottom-middle-right and bottom-middle-left). Thus, the
network utilizes one of two distinct sets of layer H neurons, selective for either Task 1 or Task
2, depending on which food particles are present in the environment. To validate these qualita-
tive results we inspected the PRM metrics for all food particle orientations across ten trials fol-
lowing Interleaveds r, training. The comparatively high mean values for horizontal and
vertical food particle orientations revealed the network’s movement was significantly driven
by these rewarded food particle orientations (horizontal and vertical), quantifying multitask
memory integration into the network’s synaptic weight matrix. (S3C Fig).

Periods of sleep allow for integration of a new task memory without
interference through renormalization of task-relevant synapses

To visualize synaptic weight dynamics during Interleaveds 1, training, traces of all synapses
projecting to a single representative layer O neuron were plotted (Fig 6A). As in Fig 4, we
wanted to monitor task specific synapses, so we used the training paradigm of T1->T2-
>Interleaveds 1, and Task 1 and Task 2 relevant synapses were identified after each individual
task training. At the onset of Interleaveds r, training (i.e. 240,000 aeons), the network was only
able to perform on Task 2, meaning the strong synapses in the network were specific to this
task. These synapses were represented by a cluster ranging from ~0.08 to ~0.4; the rest of syn-
apses grouped near 0. As Interleavedg t, training progressed, Task 1 specific synapses moved
to the strong cluster and some, presumably less important, Task 2 synapses moved to the weak
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particles (left half) or vertical food particles (right half) in the upper-left quadrant of the visual field, promoting movement in that direction and
acquisition of the rewarded patters.

https://doi.org/10.1371/journal.pcbi.1010628.g005

cluster. After a period of time the rate of transfer decreased and the total number of synapses
in each group stabilized, showing that the network approached equilibrium (Fig 6B).

To visualize how sleep renormalizes task relevant synapses, we plotted two-dimensional
weight distributions for T1->T2 (Fig 6C) and T2->Interleavedg r; (Fig 6D) experiments (see
Methods: 2-D Synaptic Weight Distributions for details). To establish a baseline, in Fig 6C (left)
the weight state at the end of Task 1 training (X-axis) (see overall timeline of this experiment
in Fig 4A) was compared to itself (Y-axis). This formed a perfectly diagonal plot. The next
comparison (Fig 6C, middle) was between the weight state after Task 1 training (X-axis) and a
time early on Task 2 training (Y-axis). At that time, synapses were only able to modify their
strength slightly, causing most points to lie close to the diagonal. As training on Task 2 contin-
ued, synapses moved far away from the diagonal (Fig 6C, right). Two trends were observed: (a)
set of synapses that had a strength near zero following Task 1 training increased strength fol-
lowing Task 2 training (Fig 6D, right, red dots along Y-axis); (b) many strongly trained by
Task 1 synapses were depressed down to zero (Fig 6C, right, red dots along X-axis). The latter
illustrates the effect of catastrophic forgetting—complete overwriting of the synaptic weight
matrix caused performance of Task 1 to return to baseline after training on Task 2.

Does sleep prevent overwriting of the synaptic weight matrix? Fig 6D plots used the weight
state at the end of training Task 2 as a reference which is then compared to different times dur-
ing Interleaveds r training. The first two plots (Fig 6D, left/middle) are similar to those in Fig
6C. However, after continuing Interleaveds 1, training (Fig 6D, right) many synapses that were
strong following Task 2 training were not depressed to zero but rather were pushed to an inter-
mediate strength (note cluster of points parallel to X-axis). Thus, Interleaveds 1, training pre-
served strong synapses from a previously learned task while also introducing new strong
synapses to perform the new task.

Can we prevent old task forgetting simply by freezing a fraction of old task-relevant synap-
ses to prevent their damage by new training? We found that freezing 1% of Task 1-relevant
weights allowed Task 2 to be learned, but was not capable of preserving Task 1 (S6A Fig).
Freezing 5% of Task 1-relevant weights (S6B Fig) resulted in modest performance on both
tasks, but significantly below that seen after Interleaveds 1, (see Fig 3F). Finally, freezing 10%
of Task 1-relevant weights (S6C Fig) was capable of fully preserving Task 1 performance, but
prevented Task 2 from being learned.

Thus, in all cases, some degree of retroactive or prospective interference was observed
highlighting the fact that the sleep-like phase performs a significantly more sophisticated mod-
ification to the weight matrix than simply freezing (or amplifying) task relevant synapses.
Sleep is capable of intelligently selecting which certain strong synapses to maintain in addition
to which weak synapses should be strengthened. Indeed, the sleep phase results in a large clus-
ter of weights being renormalized around an intermediate value of synaptic strength in the net-
work. This may also explain why we observed somewhat better overall performance
(combined performance on both tasks) after sleep compare with interleaved training (see Fig
3). Indeed, interleaved training requires repetitive activation of the entire memory pattern, so
if different memory patterns compete for synaptic resources then each phase of interleaved
training will enhance one memory trace but damage the others. This is in contrast to spontane-
ous replay during sleep when only task specific subsets of neurons and synapses may be
involved in each replay episode. It is worth mentioning that freezing a fraction of synaptic
weights that are most relevant to old tasks (however, implemented in more complex form) is
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https://doi.org/10.1371/journal.pcbi.1010628.9006
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one of the approaches in machine learning to avoid catastrophic forgetting-Elastic Weight
Consolidation [7].

Periods of interleaved sleep and new task training push the network weight
state towards the intersection of Task 1 and Task 2 synaptic weights
configuration manifolds

Can many distinct synaptic weight configurations support a given task, or is each task sup-
ported by a unique synaptic connectivity matrix? Our previous analysis suggests that each task
can be served by at least two different configurations-one unique for that task (Task 1 or Task
2) and another one that supports both Task 1 and Task 2. To further explore this question and
to identify possible task-specific solution manifolds (My; and M) and their intersection
(Mryr72) in synaptic weights space, we used multiple trials of Task 1 and Task 2 training to
sample the manifolds (Fig 7A). Here, red/blue dots indicate an exclusive high degree of perfor-
mance on Task 1/2 respectively, while cyan and greed dots indicate states where the network is
able to perform on both tasks simultaneously. Since this analysis was generated utilizing a wide
variety of simulation paradigms with many corresponding trials differing in randomness, we
believe it allows us to draw generalized conclusions. We therefore interpret these results as evi-
dence that synaptic weight space includes a manifold, My, where different configurations of
weights (red, green, cyan dots) all allow for Task 1 to perform well. This manifold intersects with
another one, My, where different weights configurations (blue, green, cyan dots) are all suitable
for Task 2. Fig 7B and 7C show 2D dimensionality reductions to PCA space, and include trajec-
tories in addition to end states. One can see that PC 1 seems to capture the extent to which a syn-
aptic weight configuration is associated with Task 1 (positive values) or Task 2 (negative values),
while PC 2 and PC 3 capture the variance in synaptic weight configurations associated with Task
1 and Task 2, respectively. Note, the trajectories through this space (red/blue lines) during Inter-
leaved, 1 and Interleaveds /1 training would also belong to the respective task manifolds as
performance on the old tasks was never lost in these training scenarios.

We next calculated the distance from the current synaptic weight configurations to My,
(Fig 7D), M, (Fig 7E), and My, (Fig 7F; see Methods: Distance from Solution Manifolds for
details) during different training protocols. Fig 7D and 7E show that while Sequential (T1-
>T2 or T2->T1) training causes synaptic weight configurations to diverge quickly from its
initial solution manifold (i.e. M1, or M) and to remain far (suggesting quick forgetting of the
original task), both Interleavedy, 1, and Interleaveds /> training cause synaptic weight con-
figurations to stay relatively close to the initial solution manifold as a new task was learned.
(Note, that we certainly under sampled My, and M, which may explains initial distance
increase.) Importantly, Fig 7F shows that both Interleavedy, 1, and Interleaveds 11 training
cause synaptic weight configurations to smoothly converge towards M1, while Sequential
training avoids this intersection entirely.

In Fig 7G we present a schematic depiction of these results. The task-specific manifolds,
My and My, are depicted in 3D as two volumes whose boundaries are defined by two orthog-
onal elliptic paraboloids with opposite orientation. The ellipsoidal intersection approximates
the volume comprising Mrr». Fig 7H and 71 depict a cartoon of trajectories taken by the net-
work in this space following Task 2 and Task 1 training, respectively. Sequential training
causes the network to jump directly from one task-specific solution manifold to the other,
resulting in catastrophic forgetting. In contrast, interleaving new task training with sleep
(Interleaveds 1,12) prevents catastrophic forgetting by keeping the network close to the old
task solution manifold as it converges towards My, —a region capable of supporting both
tasks simultaneously.
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https://doi.org/10.1371/journal.pcbi.1010628.9007

Discussion

We report that a multi-layer spiking neural network utilizing reinforcement learning exhibits
catastrophic forgetting upon sequential training of two complementary complex foraging
tasks, however the problem is mitigated if the network is allowed, during new task training, to
undergo intervening periods of spontaneous reactivation which are equivalent to the periods
of sleep in a biological brain. Old task was spontaneously replayed during sleep, therefore
interleaving new task training with sleep was effectively equivalent to explicit interleaved train-
ing of the old and new tasks without the need to store and train on previous task data or envi-
ronments. At the synaptic level, training a new task alone led to complete overwriting of
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synaptic weights responsible for the old task. In contrast, interleaving periods of reinforcement
learning on a new task with periods of unsupervised plasticity during sleep preserved critical
old task synapses to avoid forgetting and enhanced synapses relevant for a new task to allow
new task learning. Thus, in synaptic weight space, the network weight configuration was
pushed towards the intersection of the manifolds representing synaptic weight configurations
associated with individual tasks—an optimal compromise for performing both tasks.

The critical role that sleep plays in learning and memory is supported by a vast, interdisci-
plinary literature spanning both psychology and neuroscience [16,22,43-45]. Specifically, it
has been suggested that REM sleep supports the consolidation of non-declarative or proce-
dural memories while non-REM sleep supports the consolidation of declarative memories
[16,21,22]. In particular, REM sleep has been shown to be important for the consolidation of
memories of hippocampus-independent tasks involving perceptual pattern separation, such as the
texture discrimination task [16,46]. Despite the difference in the cellular and network dynamics
during these two stages of sleep [16,22], both are thought to contribute to memory consolidation
through repeated reactivation, or replay, of specific memory traces acquired during learning
[16,21,39,44,47-49]. These studies suggest that through replay, sleep can support the process of
off-line memory consolidation to circumvent the problem of catastrophic forgetting.

From mechanistic perspective, the sleep phase in our model protects old memories by
enabling spontaneous reactivation of neurons and changing synapses responsible for previ-
ously learned tasks. We previously reported that in the thalamocortical model a sleep phase
may enable replay of spike sequences learned in awake to improve post-sleep performance
[38-40] and to protect old memories from catastrophic forgetting [41]. Here we found, how-
ever, that a single episode of new task training using reinforcement learning could quickly
erase old memories to the point that they cannot be recovered by subsequent sleep. The solu-
tion was similar to how the brain slowly learns procedural (hippocampal-independent) memo-
ries [16,21,22,46,50]. Each episode of new task training improves new task performance only
slightly but also damages slightly synaptic connectivity responsible for the older task. Subse-
quent sleep phases enable replay that preferentially benefits the strongest synapses, such as
those from old memory traces, to allow them to recover.

We found that multiple distinct configurations of synaptic weights can support each task,
suggesting the existence of task specific solution manifolds in synaptic weight space. Sequential
training of new tasks makes the network to jump from one solution manifold to another,
enabling memory for the most recent task but erasing memories of the previous tasks. Inter-
leaving new task training with sleep phases enables the system to evolve towards intersection
of these manifolds where synaptic weight configurations can support multiple tasks (a similar
idea was recently proposed in the machine learning literature to minimize catastrophic inter-
ference by learning representations that accelerate future learning [51]). From this point of
view having multiple episodes of new task training interleaved with multiple sleep episodes
allows gradual convergence to the intersection of the manifolds representing old and new
tasks, while staying close to the old task manifold. In contrast, a single long episode of new task
learning would push the network far away from the old task manifold making it impossible to
recover by subsequent sleep.

Although classical interleaved training of the old and new tasks showed similar perfor-
mance results in our model as interleaving new task training with sleep, we believe the latter to
be superior on the following theoretical grounds. Classical interleaved training will necessarily
cause the system to oscillate about the optimal location in synaptic weight space which can
support both tasks because each training cycle uses a cost function specific to only a single
task. While this can be ameliorated with a learning rate decay schedule, the system is never
actually optimizing for the desired dual-task state. Sleep, on the other hand, can support not
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only replays of the old task, but also support replays which are a mixture of both tasks
[41,52,53]. Thus, through unsupervised plasticity during sleep replay, the system is able to per-
form approximate optimization for the desired dual-task (or multi-task) state.

Our results are in line with a large body of literature suggesting that interleaved training is
capable of mitigating catastrophic forgetting in ANNs [4,10,11] and SNNs [12,13], which led
to a number of replay-like algorithms involving storing a subset of previous veridical inputs
and mixing them with more recent inputs to update the networks (reviewed in [9]). The novel
contribution from our study is that the data intensive process of storing old data and using
them for retraining can be avoided in SNN by implementing periods of noise-induced sponta-
neous reactivation during new task training; similar to how brains undergo offline consolida-
tion periods during sleep resulting in reduced retroactive interference to previously learned
tasks [16,50]. Indeed, we recently successfully implemented a similar approach in feedforward
ANNSs, where sleep-like phase prevented catastrophic forgetting and improved generalization
and adversarial robustness [54-56]. And our results are in line with previous work done in
humans showing that perceptual learning tasks are subject to retroactive interference by com-
peting memories without an intervening period of REM sleep [21,46]. Moreover, performance
on visual discrimination tasks in particular have been shown to steadily improve over succes-
sive nights of sleep [46], consistent with our findings that interleaving multiple periods of sleep
with novel task learning leads to optimal performance on each task.

In comparing our modeling results to those found in the literature on biological learning, it
is important to note an important difference in the “baseline” state of an animal undergoing
an experimental training condition versus a neural network model. In our model, and indeed
in all neural network models, the system begins as a “blank slate” without knowledge of any
previous learning or competing demands. In contrast, animals under experimental training
paradigms have a wealth of experiences which would serve as priors to bias the subsequent
learning during training, leading potentially to proactive interference. Moreover, training is
typically conducted across multiple days, with intervening periods during which the animal
will be subject to an array of various task-irrelevant stimuli and organismal demands possibly
leading to retroactive interference. Both of these ensure that the baseline state of the animal
entering a given training session is far from that of the “blank slate” a neural network model
enters with, as well as that recently learned memories may start degrading quickly in the brain
while the network weights remain unchanged post training (unless new task is explicitly
trained). Due to this stark differences, we focus our attention on the interference phenomena
which follow training on an initial task as opposed to initial learning. Viewed from this per-
spective, initial task training in our network can serve a similar role to the prior personal his-
tory of an animal subject.

While our model represents a dramatic simplification of a living system, we believe that it
captures some important elements of how animal and human brains interact with the external
world. The primary visual system is believed to employ a sequence of processing steps when
visual information is increasingly represented by neurons encoding higher level features [35-
37]. In insects, complex patterns of olfactory receptors activation by odors are encoded by
sparse patterns of the mushroom body Kenyon cells firing [57-59]. This processing step is also
similar to the function performed by convolutional layers of an ANN [34] and it was reduced
to very simple convolution from the input to hidden layer in our model. Subsequently, in the
vertebrate brain, associative areas and motor cortex are trained to make decisions based on
reward signals released by neuro modulatory centers [10,60-62]. In insects, Kenyon cells make
plastic (subject to rewarded STDP) projections to the lobes [27,63]. This was reduced in our
model to synaptic projections from the hidden to output (decision making) layer implement-
ing rewarded STDP to learn a task [30-32]. While NREM sleep in vertebrates is characterized
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by complex patterns of synchronized neuronal activity [16], REM sleep is characterized by
low-synchronized firing [42], similar to activity during sleep-like phase in our model and para-
doxical sleep with similar properties has been reported in honeybee and fruit fly [64-66].

Our study predicts synaptic level mechanisms of how sleep-based memory reactivation can
protect old memory traces during training of a new interfering memory task. It suggests that,
at least for procedural memories that are directly encoded to the cortical network connectivity
during new training, multiple episodes of training interleaved with periods of sleep provide
necessary mechanisms to prevent forgetting old memories. Interleaving new task training with
sleep enables the connectivity matrix to evolve towards the joint synaptic weight configuration,
representing the intersection of manifolds supporting individual tasks. Sleep makes this possi-
ble by replaying old memory traces without explicit usage of the old training data.

Methods
Environment

Foraging behavior took place in a virtual environment consisting of a 50x50 grid with ran-
domly distributed “food” particles. Each particle was two pixels in length and could be classi-
fied into one of four types depending on its orientation: vertical, horizontal, positively sloped
diagonal, or negatively sloped diagonal. During the initial unsupervised training period, the
particles are distributed at random with the constraints that each of the four types are equally
represented and no two particles can be directly adjacent. During training and testing periods
only the task-relevant particles were present. When a particle was acquired as a result of the
virtual agent moving, it was removed from its current location (simulating consumption) and
randomly assigned to a new location on the grid, again with the constraint that it not be
directly adjacent to another particle. This ensures a continuously changing environment with
a constant particle density. The density of particles in the environment was set to 10%. The vir-
tual agent can see a 7x7 grid of squares (the “visual field”) centered on its current location and
it could move to any adjacent square, including diagonally, for a total of eight directions.

Network structure

The network was composed of 842 spiking reduced (map-based) model neurons (see Methods:
Map-based neuron model below) [67,68], arranged into three feed-forward layers to mimic a
basic biological circuit: a 7x7 input layer (I), a 28x28 hidden layer (H), and a 3x3 output layer
(O) with a nonfunctional center neuron (Fig 1). Input to the network was simulated as a set of
suprathreshold inputs to the neurons in layer I, equivalent to the lower levels of the visual sys-
tem, which represent the position of particles in an egocentric reference frame relative to the
virtual agent (positioned in the center of the 7x7 visual field). The most active neuron in layer
O, playing the role of biological motor cortex, determined the direction of the subsequent
movement. Each neuron in layer H, which can be loosely defined as higher levels of the visual
system or associative cortex, received excitatory synapses from 9 randomly selected neurons
inlayer I. These connections initially had random strengths drawn from a normal distribution.
Each neuron in layer H connected to every neuron in layer O with both an excitatory (Wij)
and an inhibitory (WIij) synapse. This provided an all-to-all connectivity pattern between
these two layers and accomplished a balanced feed-forward inhibition [69] found in many bio-
logical structures [69-74]. Initially, all these connections had uniform strengths and the
responses in layer O were due to the random synaptic variability. Random variability was a
property of all synaptic interactions between neurons and was implemented as variability in
the magnitude of the individual synaptic events.
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Policy

Simulation time was divided up into epochs of 600 timesteps, each roughly equivalent to 300
ms. At the start of each epoch the virtual agent received input corresponding to locations of
nearby particles within the 7x7 “visual field”. Thus 48 of the 49 neurons in layer I received
input from a unique location relative to the virtual agent. At the end of the epoch the virtual
agent made a single move based on the activity in layer O. If the virtual agent moved to a grid
location with a “food” particle present, the particle was removed and assigned to a randomly
selected new location.

Each epoch was of sufficient duration for the network to receive inputs, propagate activity
forward, produce outputs, and return to a resting state. Neurons in layer I which represent
locations in the visual field containing particles received a brief pulse of excitatory stimulation
sufficient to trigger a spike; this stimulation was applied at the start of each movement cycle
(epoch). At the end of each epoch the virtual agent moved according to the activity which has
occurred in layer O. Each simulation consisted of millions of these movement cycles / epochs,
therefore a unit of time was introduced termed aeon (1 aeon = 100 epochs) for concise
reporting.

The activity in layer O controlled the direction of the virtual agent’s movement. Each of the
neurons in layer O mapped onto a specific direction (i.e. one of the eight adjacent locations or
the current location). The neuron in layer O which spiked the greatest number of times during
the first half of the epoch defined the direction of movement for that epoch. If there was a tie,
the direction was chosen at random from the set of tied directions. If no neurons in layer O
spiked, the virtual agent continued in the direction it had moved during the previous epoch.

There was a 1% chance on every move that the virtual agent would ignore the activity
inlayer O and instead move in a random direction. Moreover, for every movement cycle that
passed without the virtual agent acquiring a particle, this probability was increased by 1%. The
random variability promoted exploration vs exploitation dynamics and essentially prevented
the virtual agent from getting stuck in movement patterns corresponding to infinite loops.
While biological systems could utilize various different mechanisms to achieve the same goal,
the method we implemented was efficient and effective for the scope of our study.

Neuron models

For all neurons we used spiking model identical to the model used in in [14,15] that can be
described by the following set of difference equations [68,75,76]:

Vi =LV 1, +B,),

Ly =1,—u(V,+1) + po + po,,

where Vn is the membrane potential, In is a slow dynamical variable describing the effects of
slow conductances, and # is a discrete time-step (0.5 ms). Slow temporal evolution of I was
achieved by using small values of the parameter y << 1. Input variables 3, and g,, were used to
incorporate external current I“'n (e.g. background synaptic input): 8, = g1, 0, = o’I°,..
Parameter values were set to 0 = 0.06, ° = 0.133, 0° = 1, and y = 0.0005. The nonlinearity fo
(V,,I,,) was defined in the form of the piece-wise continuous function:

(1~ V)" +1, V, <0
iV B) =4 w1, 0<V,<a+L&V, ,<0
-1 o+1,<V,orV, >0,

n = n—1

20



PLOS COMPUTATIONAL BIOLOGY Sleep prevents networks from catastrophic forgetting by optimizing the weight state

where a = 3.65. This model is very computationally efficient, and, despite its intrinsic low
dimensionality, produces a rich repertoire of dynamics capable of mimicking the dynamics of
Hodgkin-Huxley type neurons both at the single neuron level and in the context of network
dynamics [68,75,77].

To model the synaptic interactions, we used the following piece-wise difference equation:

P (1 — R+ 2XR)g,, /W, spike,,
S =14 0, otherwise,

I’s,yn - _gi;vn(V'[;osl i Vrp)'

Here gsyn is the strength of the synaptic coupling, modulated by the target rate Wj of receiving
neuron j. Indices pre and post stand for the pre- and post-synaptic variables, respectively. The
first condition, spikepre, is satisfied when the pre-synaptic spikes are generated. Parameter y
controls the relaxation rate of synaptic current after a presynaptic spike is received (0 <y < 1).
The parameter R is the coefficient of variability in synaptic release. The standard value of R is
0.12. X is a random variable sampled from a uniform distribution with range [0, 1]. Parameter
Vrp defines the reversal potential and, therefore, the type of synapse (i.e. excitatory or inhibi-
tory). The term (1-R+2XR) introduces a variability in synaptic release such that the effect of
any synaptic interaction has an amplitude that is pulled from a uniform distribution with
range [1-R,1+R] multiplied by the average value of the synapse.

Synaptic plasticity
Synaptic plasticity closely followed the rules introduced in [14,15]. A rewarded STDP rule
[30-33] was operated on synapses between layers H and O while a standard STDP rule oper-
ated on synapses between layers I and H. A spike in a post-synaptic neuron that directly fol-
lowed a spike in a pre-synaptic neuron created a pre before post event while the converse
created a post before pre event. Each new post-synaptic (pre-synaptic) spike was compared to
all pre-synaptic (post-synaptic) spikes with a time window of 120 iterations.

The value of an STDP event (trace) was calculated using the following equation [28,29]:

It~ 4]

T

tr, = Ke’

where ¢, and t, are the times at which the pre- and post-synaptic spike events occurred respec-
tively, Tc is the time constant and is set to 40 ms, and K is maximum value of the trace try and
is set to -0.04 for a post before pre event and 0.04 for a pre before post event.

A trace was immediately applied to synapse between neurons in layers I and H. However,
for synapses between neurons in layers H and O the traces were stored for 6 epochs after its
creation before being erased. During storage, a trace had an effect whenever there was a
rewarding or punishing event. In such a case, the synaptic weights are updated as follows:

traces W
W, — w,.,.H<1 +W"_‘*Ak).
k i

tr, Sum
A = s .. tr .
* rp<t“tk+c> A"g" v
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traces

tr,
Sum,, = XA: m B

Avg, — (1 —9)Avg, + dSum

try

where t is the current timestep, S,,, is a scaling factor for reward/punishment, trk is the magni-
tude of the trace, tk is the time of the trace event, c is a constant (= 1 epoch) used for decreasing
sensitivity to very recent spikes, W; = X; Wj; is the total synaptic strength of all connections
from the neuron i in layer H to all neurons in layer O, W;, is a constant that is set to the initial
value(target value) of Wi at the beginning of the simulation. The term W;,/W; helped to keep
the output weight sum close to the initial target value. The effect of these rules was that neu-
rons with lower total output strength could increase their output strength more easily.

The network was rewarded when the virtual agent moved to a location which contained a
particle from a “food” pattern (horizontal in Task 1, vertical in Task 2) and §,, = 1, and
received a punishment of S, = -0.001 when it moved to a location with a particle from a neu-
tral pattern(negative/positive diagonal in Task 1/2). A small punishment of S,, = -0.0001 was
applied if the agent moved to a location without a particle present to help the virtual agent
learn to acquire “food” as rapidly as possible. During periods of sleep the network received a
constant reward of S, = 0.5 on each movement cycle.

To ensure that neurons in layer O maintained a relatively constant long-term firing rate,
the model incorporated homeostatic synaptic scaling which was applied every epoch. Each
timestep, the total strength of synaptic inputs W; = X; Wj; to a given neuron in layer O was set
equal to the target synaptic input W), -a slow variable which varied over many epochs depend-
ing on the activity of the given neuron in layer O-which was updated according to:

W (1+ D,,) spike rate < target rate
W, «—
A W (1 - D,,) spike rate > target rate

To ensure that the net synaptic input W; to any neuron was unaffected by plasticity events
at the individual synapses at distinct timesteps and equal to Wj,, we implemented a scaling
process akin to heterosynaptic plasticity which occurs after each STDP event. When any excit-
atory synapse of neuron in layer O changed in strength, all other excitatory synapses received
by that neuron were updated according to:

W,

Wy

Additionally, all inhibitory synapses were modified via a similar heterosynaptic update rule fol-
lowing each STDP event where the strength of every outgoing inhibitory weight from a given
neuron was set to the negative mean of all outgoing excitatory synapses of that same neuron.
More rigorously:

Wiy

ik
WI; —mZWu
1

Simulated sleep

To simulate the sleep phase, we inactive the sensory receptors (i.e. the input layer of network),
cut off all sensory signals (i.e. remove all particles from the environment), and decouple output
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layer activity from motor control (i.e. the output layer can spike but no longer causes the agent
to move). We also change the learning rule between the hidden and output layer from
rewarded to unsupervised STDP (see Methods: Synaptic Plasticity for details) as there is no way
to evaluate decision-making without sensory input or motor output.

To simulate the spontaneous activity observed during REM sleep, we provided noise to
each neuron in the hidden layer in a way which ensured that the spiking statistics of each neu-
ron was conserved across awake and sleep phases. To determine these spiking rates, we
recorded average spiking rates of neurons in the hidden layer H during preceding training of
both Task 1 and Task 2; these task specific spiking rates were then averaged to generate target
spiking rates for hidden layer neurons. Interleaveds r, training consisted of alternating inter-
vals of this sleep phase and training on Task 1, with each interval lasting 100 movement cycles
(although no movement occurred).

Support vector machine training

A support vector machine with a radial basis function kernel was trained to classify synaptic
weight configurations as being related to Task 1 or Task2. Labeled training data were obtained
by taking the excitatory synaptic weight matrices between the hidden and output layers from
the last fifth of the Task 1 and Task 2 training phases (i.e. after performance had appeared to
asymptote). These synaptic weight matrices were then flattened into column vectors, and the
column vectors were concatenated to form a training data matrix of size number of features x
number of samples. The number of features was equal to the total number of excitatory synap-
ses between the hidden and output layer- 6272 dimensions. We then used this support vector
machine to classify held out synaptic weight configurations from Task 1 and Task 2 training,
as well as ones which resulted from Interleavedr, 1, and Interleaveds r, training.

2-D synaptic weight distributions (Fig 6)

First for each synapse we found how its synaptic strength changes between two slices in time,
where the given synapse’s strength at time slice 1 is the point’s X-value and strength at time
slice 2 is its Y-value. Then we binned this space and counted synapses in each bin to make two
dimensional histograms where blue color corresponds to a single synapse found in a bin and
brown corresponds to the max of 50 synapses. These two-dimensional histograms assist in
visualizing the movement of all synapses between the two slices in time that are specified by
the timelines at the top of each plot. Conceptually, it is important to note that if a synapse does
not change in strength between time slice 1 and time slice 2, then point the synapse corre-
sponds to in this space will lie on the diagonal of the plot since the X-value will match the Y-
value. If a great change in the synapse’s strength has occurred between time slice 1 and time
slice 2, then the synapse’s corresponding point will lie far from the diagonal since the X-value
will be distant from the Y-value. The points on the X-(Y-) axis represent synapses that lost
(gained) all synaptic strength between time slice 1 and time slice 2.

Distance from solution manifolds (Fig 7)

Each of the two solution manifolds (i.e. Task 1 and Task 2 specific manifolds) were defined by
the point-sets in synaptic weight space which were capable of supporting robust performance
on that particular task, namely the sets My; and M. This included the synaptic weight states
from the last fifth of training on a particular task(i.e. after performance on that task appeared
to asymptote) and all of the synaptic weight states from the last fifth of both Interleavedy, 1,
and Interleaveds 111> training. The intersection of the two solution manifolds (i.e. the point-
set My;12) was defined solely by the synaptic weight states from the last fifth of both
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Interleavedr, 1, and Interleaveds , training. As the network evolved along its trajectory in
synaptic weight space, the distance from the current point in synaptic weight space, pt, to the
two solution manifolds and their intersection were computed as follows:

d"(p; M,) = min(d"(p;, x)).

Here, d " is the n-dimensional Euclidean-distance function, where 7 is the dimensionality of
synaptic weight space (i.e. n = 6272 here), M. is the point-set specific to the manifold or inter-
section in question (i.e. either My, My, or My 12), and x is a particular element of the point-
set M.

Particle responsiveness metric (PRM)

The particle responsiveness metric (PRM) developed to quantify how responsive the network’s
weight matrix is to specific food particle orientations thereby allowing the quality of the recep-
tive field for a given task to be determined was defined as follows:

PRM(Particle Type) =
Z grand(DirectionMask(O) ® Z Wy_o * Z (W, @ P) * grand(W,, ® P)°)
YOE€Qutput VYHeHidden YYPeParticleMasks

Here Output is the set of all output layer neurons, O; Hidden is the set of all hidden layer neu-
rons, H; ParticleMasks is the set of masks, P, representing all possible locations of a single
instance of a ParticleType in the input field (e.g., horizontal bars would be a set of masks with a
single horizontal bar placed in all possible locations in the visual field; each particle mask P
consists of a 7 x 7 matrix of zeros with ones being placed in locations that correspond to cur-
rent food pixels). Wy, is a 7x7 synaptic weights matrix of a given hidden layer neuron H; ®
gives Hadamard (or element-wise) product of two matrixes, grand(A) is a grand sum of all the
elements of a matrix A (grand(A) = e’Ae, where ¢ is all-ones vector). DirectionMask(O) takes
in an output layer neuron, O, and returns a matrix that represents the direction of motion with
respect to the input field. For example, when the neuron that directs the critter to move up and
to the left is supplied as input, the function returns a 7 x 7 matrix of zeros with the top left 3 x 3
submatrix being ones. Wy_. simply returns the synapse strength from the source (H) to desti-
nation (O) neuron.

Although this is seemingly an intricate metric, it captures many desired features of the net-
work’s connectivity and responses to food particles present in the visual field. Conceptually,
this metric is similar to the method used for developing the receptive fields of output layer neu-
rons with respect to the input field (Figs 2 and 5). PRM builds upon this qualitative visualiza-
tion, allowing us to numerically assess how specific particles influence output layer neurons to
spike when present in the portion of the visual field that corresponds to the direction of
motion for that neuron. The intuitions of the metric are as follows: WP develops a notion
of how well the current hidden neuron’s (H) connections to the input layer overlaps with the
current food particle (P) placed at specific location. The resulting matrix is then multiplied by
grand(W,OP)?% which emphasizes contribution of the H neurons receiving input from adja-
cent pixels in correct orientation (i.e., sensitive to the food particles) vs those receiving input
from random pixels. Indeed, when a hidden layer neuron H overlaps strongly with a food par-
ticle P, the chances of spiking are significantly increased, thus this nonlinear term captures the
high impact overlapping receptive fields and food particles has on output layer activity. Wy_.o
captures how strongly the current output layer neuron O is listening to the current hidden
layer neuron H.
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These described pieces are multiplied together to form a weighted input receptive field of
the output layer neuron with respect to a specific hidden layer neuron and food particle type /
location. The sum of these terms for all hidden layer neurons and food particle locations is
taken for a single output layer neuron, achieving a global view of all hidden layer neurons and
food particle types / locations influencing the current output layer neuron. The grand(A) oper-
ation between the DirectionMask(O) and the previously described summed term is then taken
to see how much the summed weighted receptive fields overlap with the corresponding direc-
tion of movement for output neuron O. This process is repeated for all output layer neurons to
get a global quantification of how the current food particle influences activity in the direction
of motion for all output layer neurons. When this metric is calculated for a given network state
across food particle types we can observe what food particles impact output layer activity and
drive the critter to move, highlighting what particle orientations the network is attracted to.

Supporting information

S1 Fig. Spike rasters showing network activity across various training regimes. (A-D) Rep-
resentative spike rasters from various training regimes. The vertical axis specifies a unique
neuron in the network while time in epochs is shown horizontally. Here a single dot represents
a specific neuron spiking at a given time while the color of the dot dictates what layer that neu-
ron belongs to (green, blue, red corresponding to input, hidden, and output layers respec-
tively). Panels A, B, C, D correspond to sample activity from Task 1 training, Task 2 training,
Ity 2 training and Ig 1, training respectively. Note, in panel D activity is taken during a period
of sleep when the hidden layer is spontaneously activated. Thus, there are hidden (blue) and
output (red) layer spikes while the input (green) layer is completely silent.

(EPS)

S2 Fig. Model displays graceful degradation in performance as a result of hidden layer
dropout. (A) Mean performance (red line) and standard deviation (blue lines) over time:
unsupervised training (white), Task 1 training (blue), Task 1 testing (green). Hidden layer neu-
rons are randomly removed during testing period. Gradient bar above Task 1 testing (green)
displays the number of hidden layer neurons over time starting at 784 and decreasing down to
0. The testing performance remains high until ~25% of neurons are left, after which it starts to
drop. This highlights the formation of a distributed synaptic structure between hidden and
output layer neurons developed during training, ensuring output layer activity is not dictated
by a select few hidden layer neurons. (B) Same as in (A) but for Task 2.

(EPS)

$3 Fig. Particle responsiveness metric (PRM) shows correspondence between type of train-
ing and particles preferred by the network. (A-D) Mean and standard deviation (blue bars
and black lines respectively) of the PRM for various types of training and particle orientations
across ten trials. The title of each plot reflects the most recently trained stage, the vertical axis
corresponds to the value of the PRM while the horizontal axis identifies the particle type (bold
labels indicate ideal particles the network would be attracted to following the corresponding
training). It can be seen that the metric indicates the network is most responsive to the corre-
sponding ideal particle types following a specific training regime e.g. Post Task 1 the network
is most responsive to horizontal particles (A), Post Task 2 the network is most responsive to
vertical particles (B), Post Is 1, the network is most responsive to horizontal and vertical parti-
cles (C), Post Ity 1, the network is most responsive to horizontal and vertical particles (D).
(EPS)
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S4 Fig. Effect of sleep to protect old memory does not depend on specific properties of
noise applied during sleep phase. (A) Mean performance (red line) and standard deviation
(blue lines) over time: unsupervised training (white), Interleaveds 1 (grey), Task 1/2 testing
(green/yellow). (B) Mean and standard deviation of performance during testing on Task 1
(blue) and Task 2 (red). Following Interleaveds 11, mean performance on Task 1 was

0.60 + 0.03 while Task 2 was 0.49 + 0.05. (In all experiments, 0.5 represents chance perfor-
mance.) Note that periods of Task 1 training interleaved with sleep do not lead to increase in
performance on untrained Task 2, even when Task 2 data from another experiment were used
to set up mean firing rates of the random input during sleep. (C) Same as in (A) but the
sequence of training was: unsupervised training (white), Task 1 training (blue), Task 1/2 test-
ing (green/yellow), Interleaveds 1, (grey), Task 1/2 testing (green/yellow). (D) Mean and stan-
dard deviation of performance during testing on Task 1 (blue) and Task 2 (red) after Task 1
training and after Interleaveds ;. Following Task 1 training, mean performance on Task 1 was
0.70 + 0.02 while Task 2 was 0.53 + 0.02. Post Interleaveds 1, training, mean performance on
Task 1 was 0.71 + 0.02 and Task 2 was 0.51 + 0.02. Task 1 performance remained high after
Interleavedg 1 but no improvement on Task 2 was observed. (E) Mean performance (red line)
and standard deviation (blue lines) over time: unsupervised training (white), Task 1 training
(blue), Task 1/2 testing (green/yellow), Interleavedys 1, (burnt orange), Task 1/2 testing
(green/yellow). (F) Mean and standard deviation of performance during testing on Task 1
(blue) and Task 2 (red). Following Task 1 training, mean performance on Task 1 was

0.70 + 0.02 while Task 2 was 0.53 + 0.02. Post Interleavedys 1, training, mean performance on
Task 1 was 0.67 + 0.05 and Task 2 was 0.69 + 0.03.

(EPS)

S5 Fig. Interleaving old and new task training allows integrating synaptic information rele-
vant to new task while preserving old task information. (A) Mean performance (red line)
and standard deviation (blue lines) over time: unsupervised training (white), Task 1 training
(blue), Task 1/2 testing (green/yellow), Task 2 training (red), Task 1/2 testing (green/yellow),
Interleavedr, 1, training (purple), Task 1/2 testing (green/yellow). (B) Mean and standard
deviation of performance during testing on Task 1 (blue) and Task 2 (red). Following Task
Itraining, mean performance on Task 1 was 0.69 + 0.02 while Task 2 was 0.53 + 0.02. Con-
versely, following Task 2 training, mean performance on Task 1 was 0.52 + 0.02 while Task2
was 0.69 + 0.04. Following Interleaved; 1, training, mean performance on Task 1 was 0.65
+0.03 while Task 2 was 0.67 + 0.04. (C) Distributions of task-relevant synaptic weights (blue
bars-single trial, orange line / shaded region-mean / std across 10 trails. The distributional
structure of Task 1-relevant synapses following Task 1 training (top-left) is destroyed following
Task 2 training (top-middle), but partially recovered following. Interleavedr; 1, training (top-
right). Similarly, the distributional structure of Task 2-relevantsynapses following Task 2 train-
ing (bottom-middle), which was not present following Task Itraining (bottom-left), was par-
tially preserved following Interleavedr, r, training (bottom-right).(D) Box plots with mean
(dashed green line) and median (dashed orange line) of the distance to the decision boundary
found by an SVM trained to classify Task 1 and Task 2 synaptic weight matrices for Task 1,
Task 2, and Interleavedr, 1, training across trials. Task 1 and Task 2synaptic weight matrices
had mean classification values of -0.069 and 0.069 respectively, while that of Interleavedr 1,
training was 0.016. (E) Trajectory of H to O layer synaptic weights through PC space. Synaptic
weights which evolved during Interleavedr, 1, training (green dots)clustered in a location of
PC space intermediary between the clusters of synaptic weights which evolved during training
on Task 1 (red dots) and Task 2 (blue dots).

(EPS)
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S6 Fig. Freezing a fraction of task specific strong synapses preserves differing degrees of
performance in a sequential learning paradigm. (A-C) Mean and standard deviation of per-
formance during testing on Task 1 (blue) and Task 2 (red). Left, Performance after Task 1
training. Right, Performance after Task 2 training when a fraction of the strongest (after Task
1 training) synapses remained frozen- 1% (A), 5% (B), 10% (C). In all cases, after Task 1 train-
ing, Task 1 performance was 0.70 + 0.02 and Task 2 performance was 0.53 + 0.02. (A) Freezing
the top 1% of Task 1 synapses resulted in a Task 1 performance of 0.54 + 0.02 and Task 2 per-
formance of 0.68 + 0.03. (B) Freezing the top 5% of Task 1 synapses resulted in a Task 1 perfor-
mance of 0.65 + 0.02 and Task 2 performance of 0.61 + 0.01. (C) Freezing the top 10% of Task
1 synapses resulted in a Task 1 performance of 0.70 + 0.03 and Task 2 performance of

0.53 + 0.03. Freezing the top 1% of Task 1 synapses was not sufficient to maintain Task 1 per-
formance, thus enabling Task 2 relevant synapses to dominate the network; however, freezing
the top 10% of Task 1 synapses fully retains Task 1 performance preventing Task 2 to be
learned.

(EPS)
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Figure 1.8. (S1 Fig) Spike rasters showing network activity across various training regimes.
(A-D) Representative spike rasters from various training regimes. The vertical axis specifies a
unique neuron in the network while time in epochs is shown horizontally. Here a single dot
represents a specific neuron spiking at a given time while the color of the dot dictates what layer
that neuron belongs to (green, blue, red corresponding to input, hidden, and output layers
respectively). Panels A, B, C, D correspond to sample activity from Task 1 training, Task 2
training, Ity 72 training and Is 11 training respectively. Note, in panel D activity is taken during a
period of sleep when the hidden layer is spontaneously activated. Thus, there are hidden (blue)
and output (red) layer spikes while the input (green) layer is completely silent.
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Figure 1.9. (S2 Fig) Model displays graceful degradation in performance as a result of
hidden layer dropout.

(A) Mean performance (red line) and standard deviation (blue lines) over time: unsupervised
training (white), Task 1 training (blue), Task 1 testing (green). Hidden layer neurons are
randomly removed during testing period. Gradient bar above Task 1 testing (green) displays the
number of hidden layer neurons over time starting at 784 and decreasing down to 0. The testing
performance remains high until ~25% of neurons are left, after which it starts to drop. This
highlights the formation of a distributed synaptic structure between hidden and output layer
neurons developed during training, ensuring output layer activity is not dictated by a select few
hidden layer neurons. (B) Same as in (A) but for Task 2.
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Figure 1.10. (S3 Fig) Particle responsiveness metric (PRM) shows correspondence between
type of training and particles preferred by the network.

(A-D) Mean and standard deviation (blue bars and black lines respectively) of the PRM for
various types of training and particle orientations across ten trials. The title of each plot reflects
the most recently trained stage, the vertical axis corresponds to the value of the PRM while the
horizontal axis identifies the particle type (bold labels indicate ideal particles the network would
be attracted to following the corresponding training). It can be seen that the metric indicates the
network is most responsive to the corresponding ideal particle types following a specific training
regime e.g. Post Task 1 the network is most responsive to horizontal particles (A), Post Task 2
the network is most responsive to vertical particles (B), Post Is 1 the network is most responsive
to horizontal and vertical particles (C), Post It1,12 the network is most responsive to horizontal
and vertical particles (D).

Horizontal Vertical Horizontal Vertical
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Figure 1.11. (S4 Fig) Effect of sleep to protect old memory does not depend on specific
properties of noise applied during sleep phase.

(A) Mean performance (red line) and standard deviation (blue lines) over time: unsupervised
training (white), Interleaveds 1 (grey), Task 1/2 testing (green/yellow). (B) Mean and standard
deviation of performance during testing on Task 1 (blue) and Task 2 (red). Following
Interleaveds 11, mean performance on Task 1 was 0.60 + 0.03 while Task 2 was 0.49 + 0.05. (In
all experiments, 0.5 represents chance performance.) Note that periods of Task 1 training
interleaved with sleep do not lead to increase in performance on untrained Task 2, even when
Task 2 data from another experiment were used to set up mean firing rates of the random input
during sleep. (C) Same as in (A) but the sequence of training was: unsupervised training (white),
Task 1 training (blue), Task 1/2 testing (green/yellow), Interleaveds 1 (grey), Task 1/2 testing
(green/yellow). (D) Mean and standard deviation of performance during testing on Task 1 (blue)
and Task 2 (red) after Task 1 training and after Interleaveds 1. Following Task 1 training, mean
performance on Task 1 was 0.70 £ 0.02 while Task 2 was 0.53 £ 0.02. Post

Interleaveds 11 training, mean performance on Task 1 was 0.71 + 0.02 and Task 2 was 0.51 +
0.02. Task 1 performance remained high after Interleaveds 1 but no improvement on Task 2 was
observed. (E) Mean performance (red line) and standard deviation (blue lines) over time:
unsupervised training (white), Task 1 training (blue), Task 1/2 testing (green/yellow),
Interleavedus 12 (burnt orange), Task 1/2 testing (green/yellow). (F) Mean and standard deviation
of performance during testing on Task 1 (blue) and Task 2 (red). Following Task 1 training,
mean performance on Task 1 was 0.70 + 0.02 while Task 2 was 0.53 £ 0.02. Post
Interleavedys 12 training, mean performance on Task 1 was 0.67 + 0.05 and Task 2 was 0.69 +
0.03.
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Figure 1.12. (S5 Fig) Interleaving old and new task training allows integrating synaptic
information relevant to new task while preserving old task information.

(A) Mean performance (red line) and standard deviation (blue lines) over time: unsupervised
training (white), Task 1 training(blue), Task 1/2 testing (green/yellow), Task 2 training (red),
Task 1/2 testing (green/yellow), Interleavedry 12 training (purple), Task 1/2 testing
(green/yellow). (B) Mean and standard deviation of performance during testing on Task 1 (blue)
and Task 2 (red). Following Task 1training, mean performance on Task 1 was 0.69 + 0.02 while
Task 2 was 0.53 + 0.02. Conversely, following Task 2 training, mean performance on Task 1
was 0.52 £ 0.02 while Task2 was 0.69 + 0.04. Following Interleavedry 12 training, mean
performance on Task 1 was 0.65 £0.03 while Task 2 was 0.67 = 0.04. (C) Distributions of task-
relevant synaptic weights (blue bars—single trial, orange line / shaded region—mean / std across
10 trails. The distributional structure of Task 1-relevant synapses following Task 1 training (top-
left) is destroyed following Task 2 training (top-middle), but partially recovered following.
Interleavedry 72 training (top-right). Similarly, the distributional structure of Task 2-
relevantsynapses following Task 2 training (bottom-middle), which was not present following
Task 1training (bottom-left), was partially preserved following Interleavedrs T2 training (bottom-
right).(D) Box plots with mean (dashed green line) and median (dashed orange line) of the
distance to the decision boundary found by an SVM trained to classify Task 1 and Task 2
synaptic weight matrices for Task 1, Task 2, and Interleavedr1 72 training across trials. Task 1
and Task 2synaptic weight matrices had mean classification values of -0.069 and 0.069
respectively, while that of Interleavedry 12 training was 0.016. (E) Trajectory of H to O layer
synaptic weights through PC space. Synaptic weights which evolved during

Interleavedry 72 training (green dots)clustered in a location of PC space intermediary between the
clusters of synaptic weights which evolved during training on Task 1 (red dots) and Task 2 (blue
dots).
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Figure 1.13. (S6 Fig) Freezing a fraction of task specific strong synapses preserves differing
degrees of performance in a sequential learning paradigm.

(A-C) Mean and standard deviation of performance during testing on Task 1 (blue) and Task 2
(red). Left, Performance after Task 1 training. Right, Performance after Task 2 training when a
fraction of the strongest (after Task 1 training) synapses remained frozen— 1% (A), 5% (B), 10%
(C). In all cases, after Task 1 training, Task 1 performance was 0.70 £ 0.02 and Task 2
performance was 0.53 £ 0.02. (A) Freezing the top 1% of Task 1 synapses resulted in a Task 1
performance of 0.54 £ 0.02 and Task 2 performance of 0.68 + 0.03. (B) Freezing the top 5% of
Task 1 synapses resulted in a Task 1 performance of 0.65 + 0.02 and Task 2 performance of 0.61
+ 0.01. (C) Freezing the top 10% of Task 1 synapses resulted in a Task 1 performance of 0.70 =
0.03 and Task 2 performance of 0.53 + 0.03. Freezing the top 1% of Task 1 synapses was not
sufficient to maintain Task 1 performance, thus enabling Task 2 relevant synapses to dominate
the network; however, freezing the top 10% of Task 1 synapses fully retains Task 1 performance
preventing Task 2 to be learned.
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Chapter 1, in full, is a reprint of the material as it appears in PLOS Computational
Biology 18(11): 1010628, under the title “Sleep prevents catastrophic forgetting in spiking
neural networks by forming a joint synaptic weight representation”, Golden, Ryan; Delanois, J.
Erik; Sanda, Pavel; Bazhenov, Maxim, PLOS, 2022. The dissertation author was the co-primary

investigator and author of this paper, along with J. Erik Delanois.
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Chapter 2 Hippocampal indexing alters the stability landscape of synaptic weight space allowing
life-long learning

ABSTRACT

Systems consolidation theory posits that the hippocampus rapidly encodes new
information during wakeful behavior. This hippocampal memory trace is subsequently
assimilated into the cortex during sleep. This powerful idea explains fundamental learning
principles, but the process by which sleep modulates synaptic weight space to intricately
integrate new memories into the existing knowledge pool remains unknown. In this study, we
employed a biophysically-realistic thalamocortical network model to assess the stability
landscape of synaptic weight dynamics during task training and subsequent sleep. Our findings
indicate that a cortical network synaptic weight space comprises a subspace, a memory manifold,
where various weight configurations yield high performance for a given task. After training,
sleep acts to propel the system further along this memory-specific manifold, thus improving
performance. When training for a new, competing memory occurs, the system may move away
from the established memory manifold toward the new task manifold, potentially leading to
‘catastrophic forgetting.' This issue is mitigated by employing a dual cortico-hippocampal
memory system. Offline memory consolidation, involving mapping newly established
hippocampal memory traces to the cortex, guides the system along the old memory manifold
toward its intersection with the new memory manifold, thereby circumventing the risk of
forgetting the old task. Our study presents a novel theory regarding the role of sleep in memory
consolidation, offering a convenient ‘geometric’ framework for understanding the dynamics of
the synaptic weight space induced by sleep and predicting the usefulness of dual-memory system

in preventing catastrophic forgetting and facilitating robust memory consolidation.
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SIGNIFICANCE STATEMENT

The ability to store, process, and retrieve information is arguably the foundation of
intelligent behavior. Sleep extracts invariant features from learned information, leading to the
generation of explicit knowledge and insight. Despite a wealth of facts, our fundamental
understanding of how memories are encoded in brain networks is very modest. Here, we propose
a novel framework for understanding how memories are encoded in synaptic weight space and
how sleep dynamics alter the synaptic landscape. Our approach explains why new task learning
may lead to memory interference and how sleep enables continual learning. The results advance

our knowledge of how the brain solves some fundamental problems in life-long learning.

INTRODUCTION

Continual learning is a foundation of human intelligence. To survive under constantly
changing environmental conditions, human and animal brains must continuously encode and
assimilate new memories to appropriately guide behavior. Under such circumstances,
minimizing memory interference becomes a priority. Not only we can learn without interference,
but we learn better when related information was learned in the past and new learning can
improve on what we learned before. The difficulty of performing such learning tasks is
illustrated by the on-going attempts to achieve scalable continual learning in artificial neural
networks (ANNSs) without suffering severe retroactive interference known as catastrophic
forgetting (Mccloskey and Cohen 1989, McClelland, McNaughton et al. 1995, French 1999,
Hayes, Krishnan et al. 2021).

Sleep has been hypothesized to play an important role in memory consolidation and
generalization of knowledge in biological systems (Walker and Stickgold 2004, Ji and Wilson

2007, Lewis and Durrant 2011). During sleep, neurons are spontaneously active without external
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input and generate complex patterns of synchronized activity across brain regions (Steriade,
McCormick et al. 1993). Two critical components which are believed to underlie memory
consolidation during sleep are spontaneous replay of memory traces and local unsupervised
synaptic plasticity (Wilson and McNaughton 1994, Stickgold and Walker 2007, Wei, Krishnan et
al. 2016). Using biophysical models of thalamocortical network implementing sleep-wake
transition (Krishnan, Chauvette et al. 2016), we previously showed that replay of recently
learned memories along with relevant old memories can improve learning and enables the
network to form orthogonal memory representations to enable coexistence of competing
memories within overlapping populations of neurons (Wei, Krishnan et al. 2016, Wei, Krishnan
et al. 2018, Gonzalez, Sokolov et al. 2020, Wei, Krishnan et al. 2020). Recent work also revealed
that implementing sleep-like processing in ANNSs can mitigate catastrophic forgetting and
improve generalization (Tadros, Krishnan et al. 2020, Tadros, Krishnan et al. 2020, Tadros and
Bazhenov 2022, Tadros, Krishnan et al. 2022, Delanois, Ahuja et al. 2023).

While the progress has been made by incorporating ideas of how the brain functions
during sleep in biophysical and artificial networks, we still lack understanding of the
fundamental principles governing sleep-induced dynamics in the synaptic weights space. There
are little doubts that both awake learning and sleep consolidation change synaptic weight
landscape, however, the extreme dimensionality of the synaptic weight space hinders progress in
understanding the principles behind learning- and consolidation-induced synaptic weights
dynamics. It further limits our ability to apply neuroscience principles to artificial intelligence, in
which continual learning remains an unsolved problem (Hayes, Krishnan et al. 2021,

Kudithipudi, Aguilar-Simon et al. 2022).
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In this new study, we applied biophysical models of the thalamocortical system capable of task
learning in awake and memory replay during sleep to develop the concept of a “memory
manifold” — a subspace of the synaptic weight space that describes a set of synaptic weights
which allow for strong cued recall of specific memories. We then applied this theory to explain
how selective memory replay during slow-wave sleep allows formation of new memory traces
without catastrophic forgetting of the old memories. Starting from procedural (hippocampus-
independent ) memories, we expanded idea of memory manifolds to declarative memories and
we demonstrated that the dual hippocampo-cortical memory system, as proposed in Systems
Consolidation Theory (Wilson and McNaughton 1994, Rasch and Born 2013), may provide an
optimal mechanism of a new memory training as the system never leaves the vicinity of the old

tasks memory manifolds.

RESULTS
Network Model

The network model utilized throughout the study was built upon thalamocortical models
previously used in earlier work (Krishnan, Chauvette et al. 2016, Gonzalez, Sokolov et al. 2020).
The basic circuit (Figure 1A) consists of a single cortical layer with excitatory pyramidal cells
(PYs) and inhibitory interneurons (INs), and a single thalamic layer with excitatory
thalamocortical cells (TCs) and inhibitory reticular interneurons (REs). All neurons were
modeled according to the Hodgkin-Huxley formalism, and synaptic connections between cells
were set deterministically within a local radius and held at a constant weight value except for
PY-PY synapses. These synapses were set probabilistically within a local radius with the initial

weight values Gaussian distributed (Figure 1B) but allowed to vary according to local spike-
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timing-dependent plasticity (STDP) rules. In the model, transitions between awake and non-
rapid-eye-movement stage 3 (N3) sleep were simulated by changing cellular and synaptic
parameters to mimic the effects of the distinct neuromodulatory tone of each brain state

(Krishnan, Chauvette et al. 2016). See Methods for more details about the network model.

Differential replay of sequence memories during sleep improves recall performance

An example of an experimental simulation paradigm consisting of testing, training, and
N3 sleep stages is shown in Figure 2A. During the awake state, the network was trained with one
of two sequence memories (S1 or S2), represented by five sequentially ordered, cell groups of
ten neurons (EDCBA or ABCDA, respectively; see Figure 2B, left and middle). These sequences
were chosen to elicit maximal interference according to our STDP rules. Training proceeded by
simulating DC current injections to activate each cell group, with a small delay between groups
allowing for STDP to strengthen connections. During N3 sleep, the network exhibited
spontaneous slow oscillations (<1 Hz) with silent Down states and active Up States (Figure 2B,
right). Additionally, during the awake state, recall was tested to measure performance at
baseline, after training the sequence memory, and after sleep (Figure 2C). Recall was assessed
during the awake state by activating the first cell group and testing for pattern completion of the
trained sequence. (See Figure 2C insets). Recall performance was found to reliably increase for
S1 (Figure 2C, top) and S2 (bottom) following both training and sleep. The coloring for the
performance bars indicated which memories the network is capable of recalling: gray — neither;
red — S1 only; blue — S2 only; purple — both. The later result suggested that the network was

reactivating the trained sequence during sleep.
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In order to verify differential neural reactivation that depends on the trained memory
sequence, we used PCA to perform a dimensionality reduction on the neural firing rate data
during Up states in each of the two memory sequence conditions (Figure 2D; see Methods for
details). It can be seen that the Up state trajectories following training S1 (red) and S2 (blue) are
separable in the first two principal components, indicating robust, reliable, differential
reactivation. We took advantage of this differential reactivation to train a linear SVM to predict
the probability of S1 or S2 replay on each Up state by using a single trial of each sequence
memory as training data (see Methods for details). Figure 2E shows the replay probability for
each memory during each Up state of sleep averaged across trials (for an example of the replay

probabilities for a single random seed, see Supp. Figure 1A).

Sleep can rescue both interference effects induced by sequentially training sequence memories
Next, we simulated the case of two, sequentially trained sequence memories (S1 and S2)
followed by a period of sleep. Under this simulation paradigm, the network was shown to exhibit
a retroactive interference effect on S1 recall (Figure 2F, left) that can be seen after S2 training.
Additionally, a prospective interference effect was exhibited on S2 recall (Figure 2F, right) that
can be seen by comparison to the single memory case (Figure 2C, bottom) after S2 training.
Figure 2G shows that the average replay probability for each sequence oscillated about 0.5,
indicating that each memory was replayed approximately evenly during sleep. Importantly, for
any given trial simulation, replay for each Up state was nearly always robustly classified as S1 or

S2 (Supp. Figure 1B).

Interference can be characterized by the network falling off its “memory manifolds”
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To visualize the synaptic changes which occur from training and memory consolidation
during sleep, we used PCA to perform dimensionality reduction on the synaptic weight data
between PY-PY cells. Additionally, we sampled a subset of synaptic weight space and tested
recall performance to generate contour plots in PC space which serve as the synaptic
performance landscape — indicating the approximate recall performance on S1 (red) and S2
(blue) independently (Figure 3, left), and jointly on S1 & S2 (purple; Figure 3, right) for a given
synaptic weight state. See the Methods for details on the PCA implementation and the synaptic
performance landscape.

Figure 3A shows that initial training of S1 (red arrow) and S2 (blue arrow) push the
network in the performance landscape from its initial location (black dot) to regions of greater
recall performance for the respective memory. The coloring of the trajectories was determined by
the memories that could be robustly recalled: gray — neither; red — S1 only; blue — S2 only;
purple — both. We refer to regions in synaptic weight space with robust memory recall as either
single or joint “memory manifolds”. Figure 3B shows that subsequent N3 sleep pushes the
networks further along their current memory manifolds in the same direction as training.
However, if instead of sleep, competing memory training occurred (Figure 3C), the networks
were pushed off each single memory manifold (red/blue) into a region of ignorance (gray) where
neither sequence could be recalled. From this region of ignorance, subsequent sleep (Figure 3D)
was able to move the network onto the joint memory manifold. It should be noted that the
terminal locations of all three memory manifolds displayed stable dynamics, such that further

sleep resulted negligible movement synaptic weight space.

Sleep moves the network towards stable regions of memory manifolds
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Finally, Figure 3E shows examples of under/overtraining of S2 (blue) following initial S1
(red) training. The first undertraining example halted S2 training before the network fell off the
S1 memory manifold, and subsequent sleep pushed the network towards the stable region of the
S1 manifold. Supp. Figure 2A shows the average replay probability for this case, with each
memory initially replaying at roughly equal probability before S1 replay comes to dominate by
the end of sleep. The second undertraining example halted S2 training just after the network fell
off the S1 manifold. In this case, subsequent sleep pushed the network through a region of the S1
manifold before moving onto the joint memory manifold. Supp. Figure 2B shows that replay
initially becomes biased towards S1 before slowly returning towards more equal replay.
Similarly, the first overtraining example halts the network just after it passes the intersection in
the region of ignorance, and subsequent sleep pushed it towards the joint memory manifold.
Supp. Figure 2C shows the average replay probabilities stay more balanced in this case.
However, in another overtraining example, the network was trained on S2 until it reached the S2
manifold, where subsequent sleep pushed the network towards its stable region. Here the average
replay probabilities are initial balanced before S2 comes to dominate by the end of sleep (Supp.
Figure 2D). Taken together, these under/overtraining dynamics reveal that sleep tends to move

the network towards stable regions of memory manifolds.

Hippocampal indexing during sleep allows for new memory consolidation without interference
Although sleep could rescue retroactive and proactive interference by moving the

network toward a stable region of the joint memory manifold, it relied on the network passing

through a region of ignorance to do so. The authors are unaware of any study where animals

displayed the following behavioral dynamics: underwent catastrophic forgetting on the initial
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task without achieving significant performance improvements on the competing task, but then
displayed robust performance on both immediately following sleep. Given this disparity, we
hypothesized that simulating the effects of hippocampal indexing to guide cortical replay during
sleep might allow the network to encode the competing memory with minimal interference to the
initial memory. The example simulation paradigm (Figure 4A) shows that, following a baseline
test, S1 was trained (Figure 4B, left) before conducting another post-training test. Following this,
the network was transitioned into N3 sleep and hippocampal indexing was induced by detecting
the onset of each Up State (i.e. the Down-to-Up transition) and applying DC input the network to
sequentially activate each cell group in S2 with a 5 ms delay (Figure 4B, right). Finally, the
network was left in the sleep state without hippocampal indexing being applied before a final
test. Hippocampal indexing was chosen to only last for the first half of sleep since rodent studies
indicate that hippocampal replay for recent tasks is more robust in early than late sleep (Ji and
Wilson 2007), and declarative memory consolidation is thought to be more strongly associated
with early sleep (Plihal and Born 1999, Mednick, Cai et al. 2011, Rasch and Born 2013).

Figure 4C shows the recall performance for S1 (left) steadily increased throughout all
stages of the simulation, while indexing causes a jump in S2 recall (right) that is maintained
following subsequent sleep. The average replay probabilities (Figure 4D) show that the network
became increasingly likely to replay S2 during the course of indexing. Moreover, halting
indexing when the memories had an approximately equal chance of being replayed allowed the
network to maintain continued replay of each during subsequent sleep. However, if indexing
were allowed to continue throughout the entirety of sleep, catastrophic retroactive interference

occurred (Figure 4E, left) at the expense of an extremely robust competing memory (right).
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Figure 4F illustrates that this occurs by the competing memory coming to completely dominate
replay well before the end of sleep.

Finally, we investigated how these Up state trajectories appeared in neural activity space
by utilizing the PCA representation employed previously (Figure 2D; see Methods for details).
Figure 4G shows the average Up state trajectory for the network during indexing (purple) fall
within an intermediate region of those of Up states after only training S1 (red) or S2 (blue) on the
left. On the right, Up state trajectories during indexing were sorted as follows: p(S1>0.95) — S1
replay (red); p(S2>0.95) — S2 replay (blue); p(0.05<S1<0.95) — S1/S2 replay (purple). This was
based off the densities obtained from integrating the single trial replay probabilities for indexing
over time (Supp. Figure 1C); most of the replay probabilities are very near to 0 or 1, with a more
sparse and uniform distribution between p=0.05 and p=0.95. From this sorting of Up state
trajectories, it is clear that S1 and S2 replays which occur during indexing are separable in neural
activity space. Moreover, the way the S1/S2 replay trajectories first overlap the S2 replays (i.e.
the sequence which is indexed at the beginning of each Up state) before jumping over to overlap
the S1 replays (i.e. the sequence which was initially trained in the network) suggests that
interleaved replay of the two memories may allow the network to stay on its initial memory
manifold as it moves towards the joint memory manifold. This is further suggested by the fact
that S1/S2 replays become increasingly common throughout the second half of indexing (see
Figure 2 — Supplement 1C). Figure 4H quantifies the trajectory overlaps just described (Figure

4G, right).

Hippocampal indexing causes interleaved memory replay within individual Up states
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Based off the above observation (Figure 4G, right), we quantified the amount of synaptic
reactivation in the S1 and S2 direction during the indexed phase of each up state and the post-
index phase. The indexed phase was defined as the first 50 ms following the detection of the
Down-to-Up transition during which the simulated index was applied. This was done by
counting the number of Up states each synapse experienced a net change towards potentiation.
Figure 5A displays this reactivation count (color scale) for the top 30% of synapses during the
indexed (left) and post-indexed (right) phases during the first 1000 s of indexed sleep. During the
indexed phase more reactivation occurred among synapses that facilitate S2 recall (blue
template), while during the post-index phase more reactivation occurred among synapses that
facilitate S1 recall (red template).

Figure 5B summarizes this further, displaying the proportion of the sum total of
reactivations in the S1 (red line) and S2 (blue line) templates compared to the sum of both
templates, averaged over 1000 s intervals of indexed sleep. During the indexed phase (left)
greater reactivation of S2 facilitating synapses occurs throughout the entirety of sleep. However,
during the post-index phase S1 reactivation is initially greater, before declining and being
overtaken by S2 reactivation around the middle of sleep, after which S2 reactivation dominates.
Therefore, our model predicts that indexing causes interleaved memory replay within individual
Up states, with the recent, indexed memory being replayed first, followed by replay of older

memory traces in the cortical network.

Hippocampal indexing moves the network to its joint memory manifold without falling off its

initial single memory manifold
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Examining synaptic weight space in the case of indexing was found to require a third
principal component in addition to the previous two needed to visualize the single memory and
sequential memory training paradigms. This fact prohibited generation of the synaptic
performance landscape, as we cannot visualize three dimensional contours. On account of this,
Figure 6 displays two different perspective of a three-dimensional principal component
representation of the paths of the networks through synaptic weight space, with the trajectory
coloring encoding the same information as in Figure 3. In the case of normal indexing (left) the
network begins at the red (resp. blue) corner of the rhombus after training S1 (resp. S2) and
moves negatively (resp. positively) in the third principal component dimension towards a newly
discovered stable region of the joint memory manifold. Significantly, this happens without the
network falling off the S1 (resp. S2) manifold. In the case of over indexing (right), the networks
are pushed past the new stable regions and continue onto the opposite single memory manifolds

from which they began.

Hippocampal indexing keeps synaptic weights lower and results in sparser stable solutions
Next, we investigated how the synaptic weight dynamics differed between the cases on
sequential training and indexing. Figures 7A & B plot the synaptic weight values for all pairs of
bi-directionally connected neurons in these cases. This was done because pairs without bi-
directional connectivity are not subject to competition under the STDP rules used here. To make
this more concrete, take a pair of neurons with one in cell group A and the other in group B. In
this case, the S1 synaptic weight would be the strength of the synapse going from B->A (since
S1is defined as EDCBA), while the S2 synaptic weight would be the strength of the synapse

from A->B. The colored regions of the plots identify regions where the bi-directional pair had
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prioritized either the S1 (red) or S2 (blue) synapse at the expense of the opposing synapse
becoming effectively disconnected.

For both simulation paradigms, the weight values had a Gaussian distribution at baseline
(Figures 7A&B, left), and the bulk of the density moved towards the red corner as a result of S1
training (Figures 7A&B, middle-left). After this point the two simulations paradigms diverge.
Both sequential training and indexing resulted in densities that were more symmetric about the
line y=x, indicating a roughly equal distribution of synaptic resources between the two
memories. However, S2 training (Figure 7A, middle-right) resulted in the density moving much
further into top-right corner of the plot compared to S2 indexing (Figure 7B, middle-right),
which kept the density more localized around the line y=-x. This indicates that sequential
training tends to result in many bi-directional pairs which are strongly activating but in both
directions; this ambiguity prevents them from contributing to differential memory encoding.
Under both simulation paradigms, sleep resulted in bi-directional pairs being pushed further into
either the red or blue corners by amplifying any S1/S2 encoding bias which was already present
in the pair (Figure 7A&B, right). In the case of sequential training (Figure 7A, right), the
reduction of ambiguous bi-directional pairs can also be observed by the void that appears in the
top-right corner of the plot.

Figure 7C shows the synaptic weight distributions obtained by sequential training
(purple) and indexing (green) paradigms just after the simulation phase in the corresponding
columns panels A and B, respectively. It can be seen that after sleep, the distribution converged
on by indexing appears to have more weak synapses and less strong synapses when compared to

that found after sequential training.
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To better quantify this, we computed the sparsity of a synaptic weight filtration at each
time of the time points discussed above. Briefly, a synaptic weight filtration is generated from
the data by taking the synaptic weight matrix and repeatedly binarizing it according to a dense
set of thresholds which cover all possible weight values a synapse can take in simulation. This
results in a stack of binary matrices which preserve all of the information from the original
floating-point populated synaptic weight matrix, but allows computing binary matrix properties,
such as sparsity (i.e., the ratio of zero-valued entries to the total number of entries) on the weight
data (see Methods for more details).

Figure 7D plots the average sparsity of the filtrations across trials (solid line), and the
standard error (shaded region), for the sequential training (purple) and indexing (green)
paradigms. At baseline (Figure 7D, left), both paradigms resulted in a sharp sigmoidal curve
characterizing the sparsity of the filtration stacks. This makes sense since, at baseline, the weight
values are Gaussian distributed around an initial value (see Figure 7C, left). In the plot, we see
that when we use the initial weight value as a threshold, approximately half of the weights get
zeroed out upon binarization, and most weight values are very near to the initial value. Further
evidence of the underlying Gaussian structure can be shown by choosing a threshold slightly left
of the initial weight and observing that there are no weights in the network which have a lower
value than this threshold (i.e. sparsity = 0). Alternatively, choosing a threshold slightly to the
right results in a sparsity of 1, indicating that all synaptic weight values are below this threshold.

As a result of S1 training (Figure 7D, middle-left), the sparsity curves of both filtration
curves undergo a deformation — primarily to the right of the initial weight value with less
deformation to the left. This indicates that many synaptic weights have increased, with some at

maximum strength (i.e., presence of non-unity sparsity values near the max weight threshold)
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while another subset has decreased, but not to the extent of the minimum strength (i.e., lack of
non-zero sparsity values near the min weight threshold). Following subsequent S2 training or S2
indexing, the sparsity filtration curves (Figure 7D, middle-right) change differentially. The
sparsity curve after S2 training (purple) indicates that <10% of synaptic weights are below the
initial weight value, while that of S2 indexing (green) has this number at >30%. Moreover, the
asymmetric sigmoid shape of the S2 training (purple) curve indicates that the weight distribution
in biased towards strong values, while the logit shape of S2 indexing (green) suggests the weight
values are distributed bimodally at the boundaries (see Figure 7C, middle-right).

Finally, further sleep has the effect of deforming the S2 training (purple) curve from an
asymmetric sigmoid into a logit shape, and further flattening the logit shape of the S2 indexing
curve (green; Figure 7D, right). While both of these sparsity curves correspond to weight values
which are bimodally distributed at the boundaries, the fact that the S2 indexing curve is
significantly larger than that of S2 training for all threshold values at the end of the simulation
indicates that indexing finds regions on the joint memory manifold which are significantly

sparser, and thus, more resource efficient, than sequential training.

DISCUSSION

Using a biophysically realistic thalamocortical network model capable of task learning in
the awake state and consolidation during sleep, we characterized the neural network dynamics in
synaptic weight space during both sleep and wake. Figure 8 summarizes these dynamics with
illustrative schematics. When the initial training was sufficient to bring the system into the
vicinity of the task-specific memory manifold (a task-specific subspace in synaptic weight

space), sleep replay induced a convergence dynamic towards the memory attractor. Learning a
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new task introduced a transition away from the old task-specific manifolds and towards the new
task manifold (Figure 8; top). With subsequent sleep it was possible to transition to joint-task
memory manifold (Figure 8A), but this was found to require a fine-tuned training duration and
was more likely to induce a failure to consolidate the new memory (i.e. proactive interference;
Figure 8B), or catastrophic forgetting (i.e. retroactive interference; Figure 8C). In this scenario,
slow task training interleaved with periods of sleep (Supp. Fig 3), as in procedural
(hippocampus-independent) learning, was necessary to prevent damage to the old tasks (Figure
8D). Fast learning of a new task could be accomplished by utilizing a complementary learning
systems approach, involving a fast-learning hippocampus and a slow-learning cortex (Figure
8E), as is the case with declarative memories. In such a case, each slow wave included
hippocampus-dependent replay of a new memory during the initial slow-wave phase and
intrinsically driven cortical replay of old memories during the later slow-wave phase. This
dynamic allowed the system to remain near the old task manifold while converging toward its
intersection with the new task manifold, providing optimal learning dynamics so long as
indexing did not persist too long into sleep (Figure 8F).

It is interesting to note that our model suggests the complementary learning systems
approach can be seen as a maximally compressed version of the strategy taken for procedural
memory consolidation, with the indexed and post-indexed phases corresponding to the training
and sleep phases, respectively. Importantly, each indexed phase only receives a single sample
from the hippocampus, and each post-indexed phase to the spontaneous replay during a single
Up-state. Both are at the minimum limit of what could conceivably be labeled training and sleep

periods.
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Humans and animals have a remarkable ability to learn continuously, incorporate new data into
their corpus of existing knowledge, and generalize episodic memories beyond a single
experience. In contrast, artificial neural networks (ANNSs) suffer from "catastrophic forgetting™
whereby they achieve optimal performance on newer tasks at the expense of performance on
previously learned tasks (Mccloskey and Cohen 1989, McClelland, McNaughton et al. 1995,
French 1999, Hayes, Krishnan et al. 2021). ANNSs have poor generalization properties when
tested on datasets with even small deviations from the training distribution such as non-Gaussian
data noise (Geirhos, Temme et al. 2018), which makes ANN predictions unreliable in “real-life”
scenarios. This dichotomy between learning new tasks and the ability to retain and generalize
knowledge across all tasks in mammals and ANNSs has given rise to the stability-plasticity
dilemma (French 1999, Abraham and Robins 2005, Mermillod, Bugaiska et al. 2013). On the
one hand, a network must be plastic such that the parameters in the network can change in order
to accurately represent and respond to new tasks. On the other hand, a network must be stable
such that it maintains knowledge of older tasks. Although deep neural networks (LeCun, Bengio
et al. 2015) can achieve supra-human level of performance on tasks ranging from complex
games to image recognition, they lie at a sub-optimal point on the stability-plasticity spectrum.
ANNSs have long been known to be able overcome catastrophic forgetting under varying
degrees of data-intensive interleaved training strategies (McClelland, McNaughton et al. 1995,
Hasselmo 2017, Saxena, Shobe et al. 2022), and it has recently been shown that the same applies
to biophysical (Gonzalez, Sokolov et al. 2020) and artificial spiking neural networks (Golden,
Delanois et al. 2022). Moreover, the procedural memory consolidation strategy of interleaved
training and sleep has now been shown to mitigate catastrophic forgetting in ANNSs (Tadros,

Krishnan et al. 2020, Tadros, Krishnan et al. 2022), artificial spiking networks (Golden, Delanois
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et al. 2022), and biophysical spiking networks (Supp. Figure 3). Our results with biophysical
spiking networks suggest that it may be advantageous to adapt the indexing strategy described
here to ANNS.

The critical role that sleep plays in learning and memory is supported by a vast,
interdisciplinary literature spanning both psychology and neuroscience (Paller and Voss 2004,
Walker and Stickgold 2004, Oudiette, Antony et al. 2013, Rasch and Born 2013, Stickgold
2013). Specifically, it has been suggested that REM sleep supports the consolidation of non-
declarative or procedural memories, while non-REM sleep supports the consolidation of
declarative memories (Mednick, Cai et al. 2011, Rasch and Born 2013, Stickgold 2013). In
particular, REM sleep has been shown to be important for the consolidation of memories of tasks
involving perceptual pattern separation, such as the texture discrimination task (Stickgold, James
et al. 2000, Rasch and Born 2013). Despite the difference in the cellular and network dynamics
during these two stages of sleep (Rasch and Born 2013, Stickgold 2013), both are thought to
contribute to memory consolidation through repeated reactivation, or replay, of specific memory
traces acquired during learning (Hennevin, Hars et al. 1995, Paller and VVoss 2004, Mednick, Cai
et al. 2011, Oudiette, Antony et al. 2013, Rasch and Born 2013, Lewis, Knoblich et al. 2018,
Wei, Krishnan et al. 2018).

During NREM sleep, the features of the neocortical SO to repeatedly reset networks
during the Down phase has led to the hypothesis that the neocortical SO provides a global
temporal frame within the cortex and between brain regions for offline memory processing and
reactivation (Isomura, Sirota et al. 2006, Ji and Wilson 2007, Rasch, Buchel et al. 2007, Molle,
Eschenko et al. 2009, Wierzynski, Lubenov et al. 2009). The key element of the consolidation

stage during NREM sleep is cortical replay triggered by hippocampal SWR events (Peyrache,
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Khamassi et al. 2009). In rodents, temporally ordered firing sequences related to a recent
experience are replayed in both hippocampus and neocortex synchronously (Ji and Wilson 2007,
Mehta 2007) during SO. Such sequence replay has been proposed to be a neural substrate of
memory consolidation (Barnes and Wilson 2014) and is believed to result in synaptic changes in
the neocortex responsible for integration of memory representations (Schwindel and
McNaughton 2011).

What are the underlying mechanisms that support continual learning in biological
systems? What is the basis for robust learning that is resilient against potential interference from
new experiences? Building upon our recent work (Wei, Krishnan et al. 2016, Wei, Krishnan et
al. 2018, Gonzalez, Sokolov et al. 2020, Wei, Krishnan et al. 2020), here we proposed and tested
using biophysical model a hypothesis that: (a) The same memory can be represented by multiple
different configurations of synaptic weights, forming a “memory manifold” in the space of all
synaptic weights, i.e., any point on this manifold would allow successful retrieval of a memory;
(b) New task training moves the synaptic weight configuration away from the manifold
representing old tasks potentially leading to forgetting. (c) Biological sleep allows simultaneous
replay of old and new memory traces, and thus mitigates catastrophic forgetting by pushing the
synaptic weight configuration towards the intersection of the solution manifolds representing
multiple tasks. (d) Complementary memory systems including a fast learning hippocampus and a
slow learning cortex, provides an optimal mechanism of a new memory training as the system

never leaves the vicinity of the old tasks” memory manifolds.

METHODS

Thalamocortical network model
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Network architecture. Throughout this study, we make use of a slightly modified version
of a thalamocortical network which has been previously described in detail (Krishnan, Chauvette
et al. 2016, Gonzalez, Sokolov et al. 2020). In brief, the network consisted of a cortical module
containing 500 excitatory pyramidal neurons (PYs) and 100 inhibitory interneurons (INs), and a
thalamic module containing 100 excitatory thalamocortical neurons (TCs) and 100 inhibitory
reticular interneurons (REs). Connectivity in the network was determined by cell type and a local
radius (see Fig. 1), and excitatory synapses were mediated by AMPA and/or NMDA currents,
while inhibitory synapses were mediated by GABAAa and/or GABARg currents.

In the cortex, PYs synapsed onto PY's and INs with a radii of Rampapy-pv) = 20,
RnMDARPY-PY) = 5, Rampapy-in) = 1, and Rnmpaey-iny = 1. All connections were deterministic
within these radii, expect for AMPA synapses between PY's, which had a 60% probability of
connection. Additionally, INs synapsed onto PYs with a radius of Rcasa-agn-py) = 5. In the
thalamus, TCs synapsed onto REs with a radius of Rawvpracrc-re) = 8 and RES synapsed onto REs
and TCs with radii of Reasa-ARe-RE) = 5, Reasa-ARe-Tc) = 8, and Reasa-BRre-Tc) = 8. Between the
cortex and thalamus, TCs synapsed onto PYs and INs with radii of Rampa(tcry) = 15, Rampa(Tc-
Ny = 3, while PY's synapsed onto TCs and REs with radii of Rampapy-tc) = 10, and Rampapy-RE)

=8.

Wake — Sleep transitions. To model the state transitions between awake and N3 sleep, we
modulated the intrinsic and synaptic currents of our neuron models to account for differing
concentrations of neuromodulators that partially govern these arousal state transitions. As these

mechanisms have been described in detail in (Krishnan, Chauvette et al. 2016), here we will
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simply outline the approach. The model included the effects of changing acetylcholine (ACh),
histamine (HA), and GABA concentrations as follows: ACh — by modulating the potassium leak
current in all cell types, as well as excitatory AMPA synapses within the cortex; HA — by
modulating the hyperpolarization-activated cation current in TC cells; and GABA — by
modulating inhibitory GABAergic synapses within the cortex and thalamus. To transition the
network from awake to sleep, we modeled the effects of reduced ACh and HA but increased

GABA concentrations to reflect experimental observations (Vanini, Lydic et al. 2012).

Intrinsic currents. All cell types were modeled using the Hodgkin-Huxley formalism, and
cortical PYs and INs contained dendritic and axo-somatic compartments that have been
previously described (Wei, Krishnan et al. 2018). The dynamics of the membrane potential were
modeled according to:

v,

R

= —Ip* =I5 — If™ =I5 — AChgiqIf* — IF"A — I — g(Vp — Vg) — 7,

gWVp = Vs) = I — 1§¥°F I,
where C,, is the membrane capacitance, Vj,s are the dendritic and axo-somatic membrane
voltages respectively, IV is the fast sodium (Na*) current, IN¢F is the persistent Na* current,
1K™ s the slow voltage-dependent non-inactivating potassium (K*) current, 1€¢¢ is the slow
calcium (Ca?*)-dependent K* current, AChgy, represents the change in K* leak current 15" which
is dependent on the level of ACh during the different arousal states, /¥4 is the high-threshold
Ca2* current, I is the chloride (CI) leak current, g is the conductance between the dendritic and

axo-somatic compartments, and Y™ is the total synaptic current input to the neuron. IN neurons
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contained all intrinsic currents present in PY with the exception of the IN%?. All intrinsic ionic
currents (I7) were modeled in a similar form:

I = gmMhV(V - E)).
where g; is the maximum conductance, m (activation) and h (inactivation) are the gating
variables, V is the voltage of the compartment, and E; is the reversal potential of the ionic

current. The gating variable dynamics are described as follows:

dx X=X
dat 1,
/(a4 B)
* Qr '
o = oy + B

where x = m or h, 7 is the time constant, Q is the temperature related term, Q =
QU(T=23)/10) = 29529 with Q = 2.3 and T = 36.

In the thalamus, TCs and REs contained a single compartment with membrane potential
dynamics given by:

dv,
Cmd_tD = —INa —IK —AChgklIKL _IT _Ih - IL _IS)/TL’

where IN® is the fast Na* current, I¥ is the fast K* current, IXL is the K* leak current, I7 is the
low-threshold Ca?* current, I™ is the hyperpolarization-activated mixed cation current, I* is the
ClI- leak current, and I5¥™ is the total synaptic current input to the neurons. The I™ current was
only expressed in TCs. The influence of histamine (HA) on I was implemented as a shift in the
activation curve by HA, as described by:

1

V+75+ HAgp\"
1+exp( ET )

My =
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Synaptic currents. The equations for our synaptic current models have been described in
detail in our previous studies (Krishnan, Chauvette et al. 2016, Wei, Krishnan et al. 2018). To
model the effects of ACh and GABA, we modified the standard equations as follows:

IstnBA = YGABA, Isyn [0](V - Esy‘n);
Ié‘}”ff“ = AChampa syn [0](V - Esy‘n);
where g, is the maximal conductance at the synapse, [O] is the fraction of open channels, and
Eyn is the channel reversal potential (Ecasa-a = -70 mV, Eavpa = 0 mV, and Enmpa = 0 mv).
The parameter y 454, Mmodulated the GABA synaptic currents for IN-PY, RE-RE, and RE-TC
connections. For INs y 454, Was 0.22 and 0.44 for awake and N3 sleep, respectively, while for
RES ¥apa, Was 0.6 and 1.2. ACh,yp, defined the influence of ACh levels on AMPA synaptic

currents for PY-PY, TC-PY, and TC-IN. For PYs AChy,yp4 Was 0.133 and 0.4332 for awake and

N3 sleep, respectively, while for TCs AChypp, Was 0.6 and 1.2.

In addition to spike-triggered post-synaptic potentials (PSPs), spontaneous miniature PSPs
(mPSPs) were implemented for both excitatory and inhibitory synapses within the cortex. The
dynamics are similar to the typical PSPs described above, but the arrival times were governed by
an inhomogeneous Poisson process where the next release time trejease IS given by:

tretease = (2/(1 + exp(—=(t —ty)/v)) —1)/250,
where t, is the time of the last presynaptic spike, and v was the mPSP frequency
(UAMPA

minicpy—py) = 30, Upinitey—ivy = 30, and vi2 v _pyy = 30). The maximum conductances

for mPSPs were gty —pyy = 0.03 1S, giminicpy—iny = 0.02 uS, and g2y _pyy = 0.02 uS.
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Finally, short-term synaptic depression was also implemented in AMPA synapses within
the cortex. To model this phenomenon, the maximum synaptic conductance was multiplied by a
depression variable (D < 1), which represents the amount of available “synaptic resources” as
described in (Bazhenov, Timofeev et al. 2002). This short-term depression was modeled as

follows:
t—t;
D=1- (1 —-D;(1- U))exp (_T)’
where D; is the value of D immediately before the i, event, (t — t;) is the time after the i ;,

event, U = 0.073 is the fraction of synaptic resources used per action potential, and T = 700ms

is time constant of recovery of synaptic resources.

Spike-timing-dependent plasticity. The potentiation and depression of AMPA synapses
between PY's were governed by the following spike-timing-dependent plasticity (STDP) rule:

Gampa < Gampa t Gmax F(AL),

A, e 1Bt/ if At >0
—A_e~ 18t/ if At < 0

F@ﬂ={
where g4 Was the maximal conductance of g4upa, F Was the STDP kernel, and At was the
relative timing of the pre- and post-synaptic spikes. The maximum potentiation/depression were
set to A+.-=0.002, while the time constants were set to t+. = 20 ms. A. was reduced to 0.001
during training to reflect the effects of changes in acetylcholine concentration during focused

attention on synaptic depression during task learning observed experimentally (Blokland 1995,

Shinoe, Matsui et al. 2005, Sugisaki, Fukushima et al. 2016).
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Sequence training and testing. Training and testing of memory sequences was performed
similarly to our previous study (Wei, Krishnan et al. 2018). In brief, each sequence was
comprised of the same 5 groups of 10 PYs (i.e PYs 200 - 249), with Sequence 1 (S1) ordered
E(240-249), D(230-239), C(220-229), B(210-119), A(200-209), and Sequence 2 (S2) ordered
A(200-209), B(210-219), C(220-229), D(230-239), E(240-249). Each training bout consisted of
sequentially activating each group via a 10 ms direct current pulse with a 5 ms delay between
group activations. Training bouts occurred every 1 s during the training period. This training
structure was chosen to ensure strong interference between S1 and S2 according to our STDP
rule. Test bouts occurred every 1 ms during testing periods, in which only the first group in each
sequence was activated (E for S1; A for S2), and recall performance was measured based on the

extent of pattern completion for the remainder of the sequence within a 350 ms window.

Data Analysis
All analyses were performed with standard MatLab and Python functions. Data are
presented as mean + standard error of the mean (SEM) unless otherwise stated. For each

experiment a total of 6 simulations with different random seeds were used for statistical analysis.

Sequence performance measure. A detailed description of the performance measure used
during testing can be found in (Wei, Krishnan et al. 2018) and the code is available at
https://github.com/o02gonzalez/sequencePerformanceAnalysis (Gonzalez 2020). Briefly, the
performance of the network on recalling a given sequence following activation of the first group
of that sequence was measured by the percent of successful sequence recalls. We first detected

all spikes within the predefined 350 ms time window for all 5 groups of neurons in a sequence.
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https://github.com/o2gonzalez/sequencePerformanceAnalysis

The firing rate of each group was then smoothed by convolving the average instantaneous
firing rate of the group’s 10 neurons with a Gaussian kernel with window size of 50 ms. We then
sorted the peaks of the smoothed firing rates during the 350 ms window to determine the
ordering of group activations. Next, we applied a string match (SM) method to determine the
similarity between the detected sequences and an ideal sequence (ie. A-B-C-D-E for S1). SM

was calculated using the following equation:

N
SM=2+N-— Zu(stest,ssub i) — il,
i=1

where N is the sequence length of Stest, Stest IS the test sequence generated by the network during
testing, Ssub IS @ subset of the ideal sequence that only contains the same elements of Stest, and
L(Stest> Ssupli]) is the location of the element Ssu[i] in sequence Stest. SM was then normalized
by double the length of the ideal sequence. Finally, the performance was calculated as the
percent of recalled sequences with SM > Th = 0.8, where Th is a threshold indicating that the
recalled sequence must be at least 80% similar to the ideal sequence to be counted as a

successful recall as previously done in (Wei, Krishnan et al. 2018).

Representation of firing rate space. To visualize dimensionality reduced trajectories
during Up-states in firing rate space, we took single random seeds of a simulations in which only
S1 or only S2 was trained prior to N3 sleep and detected Up-states in each. We then generated
spike rasters of the PY activity in the trained region during each Up-state, and converted these
into firing rates by taking a moving average of the spike rasters with a sliding window length of
10 ms, resulting in a set of N-by-T; matrices, where N = 50 was the number of PYs, and T; was

the duration of j"" Up-state with j = 1, ... Nyp. The firing rate matrices were then interpolated to
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be the same duration across each up state, and concatenated, resulting in an N-by-(Tmax*Nup)
matrix where Tmax Was the duration of longest Up-state across all data sets. Principal components
analysis (PCA) was then performed on the firing rate data to reduce it from 50 to 2 dimensions.
This linear PCA kernel was then applied to the data from all random seeds for a particular
simulation paradigm, and the mean and standard deviation of PCs 1 and 2 were plotted for

visualization.

Replay probability. To estimate the probability of S1 and S2 being replayed during a
given Up-state, we took the interpolated firing rate data for each Up-state that was used to train
the PCA kernel, unrolled the N-by-T; matrices into (NxT;j)-dimensional column vectors,
providing the observations to train a linear support vector machine (SVM), with labels
determined by whether the Up-state came from the simulation with S1 or S2 training before N3
sleep, and scores were transformed to posterior probabilities. This SVM was then used to predict
the posterior probabilities of S1 and S2 replay for each Up-state for a given random seeds of a
particular simulation paradigm. To compute the average posterior probabilities, we first
interpolated the data so that each random seed had the same number of data points — specifically,

the maximum number of Up-states in a single simulation from that paradigm.

Representation of synaptic weight space. In order to visualize the trajectories of the
network through synaptic weight space, we trained a linear PCA kernel on the synaptic weight
timeseries data of all synapses in the trained region from every random seed of each simulation
paradigm discussed in the paper. The data was then transformed into PC space, with either 2 or 3

dimensions retained for plotting.
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Performance contours in synaptic weight space. In order to construct the recall
performance contours, we first estimated the locations of the potential attractor sites by
computing the centroids of the final weight state configurations for the S1 training, S2 training,
and the sequential training simulation paradigms in full-dimensional weight space, found the
unique 2-dimensional planar subspace which these three points define, and then densely sampled
weight state configurations from this subspace. These weight state configurations were then
input into the network model to have recall performance evaluated. These sampled weight states
were then projected into 2-dimensional PC space along with the corresponding mean
performance values for S1 and S2 individually (Figure 3, left; red and blue), and S1&S2 jointly
(Figure 3, right; purple), and a mesh with contour gradients was computed for each set of recall

performance measures.

Sparsity of synaptic weight filtrations. In order to compute the sparsity of synaptic weight
matrices, we first transformed these floating-point valued matrices into a stack of binary matrices
using the following information-preserving filtration. We first compiled a dense set of synaptic
weight values to act as thresholds, in particular, generated the set by starting at the mean initial
weight value, and then incrementing/decrementing by the minimum potentiation/depression
value permitted by our simulation until we reached the maximum/minimum weight value. Each
threshold was then used to generate a binarized synaptic weight matrix by setting all entries less
than the threshold equal to zero, and all those greater than or equal to it to 1. The sparsity of
these binarized matrices was then computed, and the sparsity at each threshold value was

averaged across random seeds.
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Figure 2.1. Network Architecture. (A) Basic network architecture (PY: excitatory pyramidal
neurons; IN: inhibitory interneurons; TC: excitatory thalamocortical neurons; RE: inhibitory
thalamic reticular neurons). Excitatory synapses are represented by lines terminating in a dot,
while inhibitory synapses are represented by lines terminating in bars. Arrows indicate the
direction of the connection. (B) Top panel shows the initial weighted synaptic matrix for the
PYs. The color in this plot represents the strength of the AMPA connections between PY
neurons, with white indicating the lack of synaptic connection. Bottom panel shows a zoom-in of
the top panel for the subregion where training occurs.
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Figure 2.2. Sleep rescues interference induced by sequential training. (A) Network activity
during an example simulation depicting all 500 PY's on the y-axis and the membrane potential
(color scale) of each over time (x-axis). The network undergoes testing periods (T; black) at
baseline, after Training (red), and after N3 Sleep (purple). (B) Examples of network activity
during one bout of S1 (left) or S2 (middle) training, and during a single up state of N3 Sleep
(right). (C) Recall performance for S1 (top) or S2 (bottom) during all testing periods. Insets
include spike rasters showing examples of pattern completion (red/blue dots) following cued
(black dots) recall. Bars are colored according to which memories the network can pattern
complete at that point in the simulation: none (gray), red (S1), blue (S2), or purple (§51&S2). (D)
Average firing rate trajectory in PC space during up states of a network trained on S1 (red), S2
(blue), or S1&S2 (purple) before sleep. (E) Average probability of replaying S1 (red) or S2
(blue) during an up state at a given point in sleep; top panel (S1 trained), bottom panel (S2
trained). Based on an SVM classifier trained on held out trials of sims where either S1 or S2
were trained before sleep. (F) Same as (C) but for a simulation where S2 was trained
sequentially after S1 and prior to sleep; S1 recall (left), S2 recall (right). (G) Same as (F) but for
the sequential training simulation.
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Figure 2.3. Synaptic performance landscape reveals multi-stability and fine-tuning. All
panels show the evolution of the network through dimensionality reduced synaptic weight space.
Contour lines and coloring correspond to single memory recall performance (left panels) for S1
(red) and S2 (blue), and to joint memory recall performance (right panels; purple). Trajectories
are colored according to which memories the network can pattern complete at that point in the
simulation: none (gray), red (S1), blue (S2), or purple (§51&S2). (A) Evolution during S1 (red
arrow) or S2 (blue arrow) training onto each memory manifold (red/blue trajectories). (B) N3
sleep moves each network further along its current memory manifold. (C) Sequential training by
the competing memory moves the network to a gray central region where neither memory can be
recalled. (D) N3 sleep moves the networks onto the joint memory manifold (purple trajectories)
where both can be recalled. (E) Examples of under/over-training S2 following S1 training
reveals the necessity of fine-tuning the training durations for sleep to evolve the network to the
joint memory manifold.
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Figure 2.4. Hippocampal indexing during sleep induces consolidation without interference.
(A) Network activity during the simulation in which the network undergoes periods of testing (T;
black), training (S1; red), N3 Sleep with S2 Indexing (green), and N3 sleep (purple). (B)
Examples of network activity during one bout of S1 training (left), and during a single up state of
N3 Sleep (right) where indexing is simulated at the beginning of the up state (black boxes). (C)
S1 (left) and S2 (right) recall performance show that the network consolidates S2 without
interference to S1. (D) Average replay probability shows S2 replay probability slowly increases
during the course of indexing (green) until it is roughly even with S1 replay probability by the
time sleep without indexing (purple) begins. (E) Same as (C) but for simulations in which
indexing continued for the entire duration of sleep. Only S2 could be recalled at the end of the
simulation. (G) Same as (D) but for simulations in which indexing continued for the entire
duration of sleep. S2 replay probability was shown to increase to unity with continual indexing.
(G) Left panel shows the average firing rate trajectory in PC space during up states after single
memory training (S1 - red; S2 - blue) and during normal indexing (purple). Right panel shows
average trajectories during normal indexing grouped according to the replay probability of each
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Figure 2.5. Indexing causes interleaved memory reactivation within individual up states.
(A) Synaptic reactivation during the indexed (left) and post-indexed (right) phases for the top
30% of reactivated synapses. The Y-/X-axis correspond to the pre/postsynaptic neuron IDs, and
the color scale indicates the number of Up-states a particular synapse experienced a net
potentiation event during the referenced phase. Red and blue squares indicate synapses
considered relevant for S1 and S2 respectively. (B) The relative proportions of S1 (red) and S2
(blue) relevant synaptic reactivations during the indexed (left) and post-indexed (right) phases of
sleep, averaged over 1000 s in non-overlapping windows. Error bars depict standard deviation.
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Figure 2.6. Indexing evolves the network along the current memory manifold toward the
intersection. (A) Evolution of the networks during normal indexing (left) shows the network
moves along its current memory manifold (i.e. S1 - red; S2 - blue), primarily in the PC3
dimension, until it reaches an intersection of the manifolds (purple) that is stable with subsequent
sleep. Evolution during over indexing (right) shows that if indexing is not halted, it pushes the
network out of the intersection (purple) and back onto the single memory manifold which
corresponds to the index. (B) Same as (A) but with the plot rotated 45 degrees about the PC3
axis.
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Figure 2.7. Indexing leads to sparser memory representations than sequential training and
sleep. (A-B) Each panel shows scatter plots of synaptic weights between all PYs in the trained
region that have bi-directional synapses between them. The weight in the S1 direction is on the
x-axis, while that in the S2 direction is on the y-axis. Colored corners indicate regions where the
synaptic pair has been strongly biased towards S1 (red) or S2 (blue) at the expense of the
opposing memory. (A) Snapshots during a simulation with sequential training and sleep. (B)
Snapshots during a simulation with normal indexing during sleep. (C) Distributions of synaptic
weights at each time point from (A-B) for sequential training (purple) and normal indexing
(green) with the y-axis on a log-scale. (D) Average sparsity across a dense set of synaptic weight
thresholds for simulations with sequential training (purple) and normal indexing (green).
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Figure 2.9. (S1) Classification of memory replay on individual UP states is robust in a
single network. Averaged (left) and single network (right) replay probabilities for (A) S1
training only; (B) sequential training; and (C) normal indexing. The single network plots
highlight that the majority of individual Up-states are robustly classified as either S1 or S2 across
all conditions.
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Following significant undertraining of S2 the network begins sleep in a mixed replay state and
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the network diverges from a mixed replay state towards an S1 dominated replay state before
slowly relaxing towards a more mixed state. (C) Following moderate overtraining of S2 the
network’s replay state briefly oscillates about and then remains in a mixed replay state. (D)
Following significant overtraining of S2 the network slowly converges towards an S2 dominated
replay state from its initial mixed replay state.
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Examples of network activity during one bout of S1 training (left), and during a training to sleep
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sleep period (right). (C) S1 (left) and S2 (right) recall performances show that the network
consolidates S2 without interference to S1. (D) Average replay probability shows S2 (blue)
replay probability begins below that of S1 (red) until roughly 250 s into interleaved S2/N3 sleep.
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Chapter 2, in full, is currently being prepared for submission for publication of the
material. Gonzalez, Oscar C.; Golden, Ryan; Delanois, J. Erik; Bazhenov, Maxim. The
dissertation author was the co-primary investigator, along with Oscar C. Gonzalez, and the

primary author of this paper.
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Chapter 3 Multielectrode cortical stimulation induces traveling waves

Systems/Circuits

Multielectrode Cortical Stimulation Selectively Induces
Unidirectional Wave Propagation of Excitatory Neuronal
Activity in Biophysical Neural Model

Alma S. Halgren,"? Zarek Siegel,"* Ryan Golden,'* and Maxim Bazhenov'?

'Department of Medicine, University of California - San Diego, La Jolla, California 92093-7374, *Department of Integrative Biology, University of
California - Berkeley, Berkeley, California 94720, and *Neurosciences Graduate Program, University of California - San Diego, La Jolla, California
92093-7374

Cortical stimulation is emerging as an experimental tool in basic research and a promising therapy for a range of neuro-
psychiatric conditions. As multielectrode arrays enter clinical practice, the possibility of using spatiotemporal patterns of elec-
trical stimulation to induce desired physiological patterns has become theoretically possible, but in practice can only be
implemented by trial-and-error because of a lack of predictive models. Experimental evidence increasingly establishes travel-
ing waves as fundamental to cortical information-processing, but we lack an understanding of how to control wave properties
despite rapidly improving technologies. This study uses a hybrid biophysical-anatomical and neural-computational model to
predict and understand how a simple pattern of cortical surface stimulation could induce directional traveling waves via
asymmetric activation of inhibitory interneurons. We found that pyramidal cells and basket cells are highly activated by the
anodal electrode and minimally activated by the cathodal electrodes, while Martinotti cells are moderately activated by both
electrodes but exhibit a slight preference for cathodal stimulation. Network model simulations found that this asymmetrical
activation results in a traveling wave in superficial excitatory cells that propagates unidirectionally away from the electrode
array. Our study reveals how asymmetric electrical stimulation can easily facilitate traveling waves by relying on two distinct
types of inhibitory interneuron activity to shape and sustain the spatiotemporal dynamics of endogenous local circuit
mechanisms.

Key words: biophysical model; cortical simulation; multielectrode arrays; network model; stimulation

/Signiﬁcance Statement \

Electrical brain stimulation is becoming increasingly useful to probe the workings of brain and to treat a variety of neuro-
psychiatric disorders. However, stimulation is currently performed in a trial-and-error fashion as there are no methods to pre-
dict how different electrode arrangements and stimulation paradigms will affect brain functioning. In this study, we
demonstrate a hybrid modeling approach, which makes experimentally testable predictions that bridge the gap between the
microscale effects of multielectrode stimulation and the resultant circuit dynamics at the mesoscale. Our results show how
custom stimulation paradigms can induce predictable, persistent changes in brain activity, which has the potential to restore
Knormal brain function and become a powerful therapy for neurological and psychiatric conditions. j

Introduction by disrupting or hyperactivating local brain processing (E.
Brain stimulation is widely used in both experimental and clini- ~ Halgren et al,, 1978; Salzman et al,, 1990; Tehovnik et al,, 2002).
cal settings. In basic research, it is used to probe neural function ~ In clinical settings, direct manipulation of activity via Stm’}ulatmn
has also been shown to be effective in the treatment of several

Received Sep. 1, 2021; revised Dec. 27, 2022; accepted Jan. 13, 2023. neurological and psychiatric disorders. Deep brain stimulation
Author contributions: ASH, ZS., RG, and M.B. designed research; ASH. and Z. performed research; ASH, 25, (DBS) has been successful in the treatment of movement disor-
anj ::68 analyze("i1 data; ASH. wrote the first draft of the paper; ASH, RG, and MB. edited the paper; ASH, ZS., ders, such as Parkinson’s disease (Blumenfeld and Bronte-Stewart,

.B. wrote ti L . )
B 2015; Baizabal-Carvallo and Alonso-Juarez, 2016; Papageorgiou et

This work was supported by National Institutes of Health, National Institute of Neurological Disorders and X
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stimulation has also shown promise in both the restoration and
enhancement of critical cognitive functions, such as memory.
DBS has been shown experimentally to enhance memory encod-
ing when applied during learning (Suthana et al., 2012), and
closed-loop stimulation protocols have proven to be effective
during periods of poor memory encoding as well as during
memory recall (Ezzyat et al., 2018; Kahana et al., 2018; Kucewicz
etal, 2018a,b).

While brain stimulation is sometimes conceptualized as
disrupting pathological activity to restore normal activity, increas-
ingly the explicit goal is to directly generate normal activity.
Experimental evidence supports traveling waves as critical to
normal brain activity. These propagating waves are funda-
mental to brain information-processing as they coordinate
neural behavior across all spatial scales, from within-layer
to whole-brain interactions, as well as across temporal scales,
from tens to hundreds of milliseconds. By mediating commu-
nication across multiple brain areas, propagating activity puta-
tively performs a variety of cognitive functions, such as the
processing of visual stimuli or long-term memory consolidation
(Muller et al.,, 2018). For example, sleep spindles traveling across
the cortical surface at multiple scales have been hypothesized to
synchronize convergent co-firing of neurons, resulting in spike
timing-dependent plasticity and consequent memory consolidation
(Dickey et al., 2021). Similarly, the alpha rhythm which modulates
visual processing appears to be a traveling wave from association to
primary areas (M. Halgren et al., 2019). Accordingly, the ability to
predict and control traveling waves has far-reaching implications
for improving and controlling cognitive function.

Currently, there is no method for reliably generating direc-
tional traveling waves with electrical stimulation. Past efforts to
develop new paradigms of stimulation which reinstate particular
brain activity states have largely depended on trial and error.
Recently, we described a method for modeling the effects of cort-
ical stimulation that enables one to predict the consequences of
stimulation in silico, and thereby develop stimulation protocols
that achieve desired results in vivo (Komarov et al., 2019). This
earlier study was limited to the effects of stimulation of a single
electrode and thus did not evoke directional propagation. In this
new study, we describe an initial attempt to model a multielec-
trode stimulation paradigm that produces unidirectional travel-
ing waves in the cortex. With multielectrode arrays increasingly
entering clinical practice (Ha et al., 2017), our model harnesses
the additional complexity and control during stimulation that
multielectrode protocols allow for.

This modeling approach includes two phases. In the first
phase, a biophysical model is used to predict spiking probability
in response to a spatially-varied electric field potential in recon-
structed rat somatosensory cortical neurons obtained from www.
neuromorpho.org (Ascoli et al., 2007). We found that the hyper-
polarization or depolarization of individual neurons varied
according to cell type and cortical depth, and also varied with
respect to the polarity of the applied electric field. The diversity
in excitation responses underlies the propagating wave activity
that we observed in the second phase of the model. In this second
phase, we constructed a Hodgkin-Huxley model of a rat somato-
sensory cortical network composed of multiple interconnected cort-
ical columns, each containing a circuit of inhibitory and excitatory
cells connected within and across cortical layers. Approximating
stimulation effects using the activation probabilities calculated in
Phase 1, we found that fast inhibitory activity, coupled with excita-
tory cells’ preference for anodal stimulation, resulted in a unidirec-
tional, propagating wave of activity. Importantly, we found that the
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Table 1. § y of d. with ted cells’
No. of

Cell type reconstructions Reference Strain (age)
Pyramidal cells (Layer I1/11l) 2 Tehovnik et al., 2006 Wistar (P20-P25)
Pyramidal cells (Layer IV) n Traub et al., 1994 Wistar (P19-P21)
Pyramidal cells (Layer V) 14 Wang et al., 2002 Wistar (P20-P21)
Basket cells (Layer II/Ill) 96 Wester and Contreras, 2012 Wistar (P13-P15)
Basket cells (Layer IV) 82 Wester and Contreras, 2012 Wistar (P13-P15)
Basket cells (Layer V) 57 Wester and Contreras, 2012 Wistar (P13-P15)
Martinotti cells (Layer II/Ill) 13 Douglas and Martin, 1991 Wistar (P13-P16)
Martinotti cells (Layer V) 7 Douglas and Martin, 1991 Wistar (P13-P16)
Horizontal intemeurons (Layer I) 59 Wang et al., 2004 Wistar (P13-P16)
Descending interneurons (Layer ) 29 Wang et al., 2004 Wistar (P13-P16)

Small interneurons (Layer 1) 27 Wang et al., 2004 Wistar (P13-P16)

“Cell types (from www.neuromorpho.org) that were used in the biophysical component of the model.

temporal component of the wave (the timing of cell firing within
the excitatory-inhibitory feedback loop) resulted from an interac-
tion between pyramidal and basket inhibitory cells, suggesting that
a brief pulse of suprathreshold amplitude is sufficient to facilitate os-
cillatory activity thought to be endogenous to cortical columnar cir-
cuits. The spatial component (asymmetry) of the wave, however,
was shown to depend on the unique activation profile of Martinotti
inhibitory cells under this stimulation paradigm relative to the
pyramidal and basket cells. These results suggest a simple
multielectrode pattern for evoking traveling waves and pro-
vide testable predictions for experimental confirmation and
parameter optimization.

Materials and Methods

Cell reconstruction selection. All neuronal cell reconstructions were
chosen from publicly available datasets on www.neuromorpho.org
(Wang et al., 2002, 2004; Staiger et al., 2004; Schubert et al., 2006; Ascoli
et al., 2007; Muralidhar et al., 2013). The types of cells and their respec-
tive datasets are listed in Table 1. We used multiple cell reconstructions
for each cell type to account for anatomical diversity. We used experi-
mental measurements to approximate the cutoff depths for each layer
(see Fig. 1a) (Markram et al., 2004; Wang et al., 2004).

Calculating the electric field potential generated by the electrode
array. The electrode array modeled in this study was composed of three
square electrodes (each 150 um x 150 pm) placed linearly on the surface
of the cortex. Two electrodes had negative current (—75pA each) and
one electrode had positive current (150 pA) (see Fig. 1a), and stimula-
tion was applied for 200 us. This was done to adhere to the constraints
of clinical applications of electrical stimulation which require a net neu-
tral current to be delivered to the tissue. These values are in accordance
with common experimental parameters (Ha et al., 2017). Assuming that
the current sources are homogeneous square electrodes, we calculated
the electric field potential of each electrode as follows:

Af2

p.l // dxdy
Al B X =2 +(Y —y)'+2

Here I is net current, p. is extracellular resistivity, and A is the length
of the square electrode edge (see Fig. 1a). In this study, A = 150 um and
net current [ is either —75 or 150 nA. The derivation of this formula can
be found in our previous work (Komarov et al., 2019). We summed all
three electric field potentials at each point in space to determine the
overall electric field potential.

Estimating the activating function. This paper used a similar
approach to that of Komarov et al. (2019) to estimate the firing probabil-
ity for each neuronal reconstruction. The basis of this approach is the
activating function, a formula derived from cable theory that describes
the effective transmembrane current that arises because of extracellular

O(X,Y,Z) = 1)
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and measures 150 em x 150 m, and the spacing between each electrode is also 150 zm. The two leftmost electrodes are negative (cathodal) and deliver negative 75 A of current each,
while the rightmost electrode is positive (anodal) and delivers 150 1A of current, and the stimulation period is 200 s. Layer depths are approximated from experimental measurements of rat
cortex (Markram et al., 2004; Wang et al., 2004; Defelipe et al., 2012) as follows: layer | is 0-100 1, layer II/1ll is 100-500 zm, layer IV is 500-750 m, and layer V is 750-900 pm. b, Axial
potential along a horizontal axonal fiber located 100 zzm below the cortical surface. The activating function is the second spatial derivative of the electric potential. ¢, d, As a result of b, hori-
zontal fibers are activated by the anode and hyperpolarized by the cathodes (d). The opposite is true for vertical fibers (c). The vast majority of direct stimulation occurs in layers | and II/1ll

because of the decay of electric potential with depth.

electrical stimulation. This was used to calculate the transmembrane
voltage in each axonal segment of every cell reconstruction. We then
applied a threshold of activation to determine whether an axonal
response was triggered. This threshold was drawn from in vivo experi-
ments which define the threshold injected current I required to induce a
threshold effective current fat the axonal initial segment located at a dis-
tance d from the electrode (Douglas and Martin, 1991; R. J. Greenberg et
al, 1999). In previous work (Komarov et al., 2019), we simulated one
such experiment by computing the activation current f at the axon initial
segment of a layer II/III pyramidal cell while varying the stimulation cur-
rent ] and distance d. This simulation used a 200 us-duration stimulating
pulse, which is typical of similar in vivo experiments (Douglas and
Martin, 1991; R. J. Greenberg et al., 1999). The value f = fy, = 3 pA/um’
fully replicated the experimentally-observed current-distance relation-
ship across varying stimulation currents and distances. Thus, this thresh-
old value f;;, was used to determine whether each axonal segment was
activated by induced transmembrane current.

Since we compute the activating function in each small compartment
composing an entire axonal arborization, jitter in the edges of the ana-
tomical reconstruction could introduce numeric noise in our calculation.
To minimize this issue, we estimate the direction of each axonal
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component (the mini segment forming a compartment in the recon-
struction) using the position in space of neighboring compartments up
to 10 um away. The estimated direction is then crucial to computing the
activating function, which, by definition, is calculated along the axonal
element direction.

An important note is that this protocol neglects the effects of axonal
branching at adjacent segments. Instead, it acts as though the axon con-
tinued, unbranched, in a direction given by the sum of the two orienta-
tion vectors of the bifurcated segments. However, given that we base our
activation probabilities (see Computing the average activation probabil-
ity per cell type below) on the total length of activated segments within a
reconstruction, and then average across all reconstructions of that cell
type, we believe that this impact is negligible.

Computing the average activation probability per cell type. To deter-
mine whether a given neuronal reconstruction would be activated by
applied current, we used the activating function to calculate how many
axonal segments had above-threshold transmembrane current values
that could initiate an axonal action potential (assumed at nodes of
Ranvier); these above-threshold axonal segments are collectively called
the trigger area. The activating function threshold was set to f, = 3pA/
pum’ for myelinated axons and to fy, = 60 pA/um® for unmyelinated



axons, since unmyelinated segments are significantly less excitable as
they have fewer sodium channels (Cogan et al., 2016). In this model, we
assumed pyramidal and basket cells are myelinated and Martinotti and
layer I interneurons are unmyelinated based on experimental data
(Thomson et al.,, 2002; Wang et al., 2004; Tomassy et al., 2014). For each
cell reconstruction at a given point in space (ie., a given coordinate in
the x-z plane; see Fig. 1a), we found the probability of firing as outlined
in prior work (Komarov et al., 2019). Given that variation in cell position
and orientation within each cortical layer are present in nature, we addi-
tionally average across neuronal rotations and vertical shifts. Thus, we
computed the average activation probability for each cell type/cortical
layer pairing as follows: for each cell reconstruction, we first positioned
the soma at a point along the x axis within its cortical layer. We then per-
formed four rotations (0° 90°, 180°, and 270°) about the vertical axis of
the cell reconstruction in three-dimensional (3D) space, and at every
rotation we calculated the likelihood of activation by computing the acti-
vating function across the axonal arbor, as outlined above. We then aver-
aged across these four probabilities and set the result as the activation
probability for said point. After this, we incrementally shifted the soma
of the reconstruction vertically within its cortical layer and found the
mean activation probability at each point. We averaged across all vertical
shifts within the cortical layer to obtain an approximate spiking proba-
bility for this cell reconstruction at this point along the x axis. Along the
x axis, we computed the activation probability of all cell reconstructions
and then averaged across all cell reconstructions within a given cell type
and cortical layer (see Fig. 3).

Computational model of the cortical circuit. The network model is
composed of 11 interconnected cortical columns, where each column
contains layer I interneurons and pyramidal, basket, and Martinotti cells
from layers II-V (same as the biophysical analysis). The number of cells
within each column is outlined in Table 2. This balance of excitatory to
inhibitory cell types approximates the true cell composition of the rat
somatosensory cortex, where pyramidal cells are the primary excitatory
cells and basket and Martinotti cells comprise the majority of inhibition
within and across layers (Markram et al., 2004; Wang et al., 2004). Cells
were constructed to only spike if receiving synaptic input or electrical
stimulation. Each cell behaves according to Hodgkin-Huxley dynamics,
with a handful of parameters differentiating excitatory and inhibitory
cells. Basket cells were modeled as fast-spiking cells, while all other cell
types were modeled as regular-spiking cells with spike rate adaptation.
Inhibitory cells fired more quickly than excitatory cells in response to
activation because all interneurons were modeled as having a lower leak
current than excitatory cells (Santos et al., 2012). Some additional pa-
rameters were as follows: a fast Na*-K" spike generating mechanism
(all cells), a high-threshold activated Ca** current (for pyramidal cells),
and a slow calcium-dependent potassium (AHP) current (for regular-
spiking cells).

The network architecture and function mirror that of Komarov et al.
(2019) with the following exceptions: first, our network contains multi-
ple columns while that in Komarov et al. (2019) only contains one; sec-
ond, the initial activation probabilities in our network are derived from
the first phase of our model (see Fig. 3) instead of from the probabilities
calculated in prior work (Komarov et al., 2019); and third, our model
contains slightly different cells (e.g., layer I cells) than those included
previously (Komarov et al., 2019). The Hodgkin-Huxley equations that
govern the dynamics of our model can be found in our prior work
(Komarov et al., 2019).

Initially, the network runs without stimulating input for 200 ms to
simulate preexisting activity. Then the network is stimulated and runs
for an additional 500 ms. To simulate electrical stimulation, we used the
binary term I to inject above-threshold current into a subset of ran-
domly chosen neurons within each cell type/cortical layer pairing such
that the fraction of neurons induced to spike corresponds to the activa-
tion probabilities calculated in the biophysical phase of the model (see
Fig. 3). For neurons in columns 1-3 and 9-11, the activation probabilities
were set to zero. This was because the electric field generated by the elec-
trode design was effectively null at locations this far from the stimulating
electrodes. The term 7 &,(t) models spontaneous background activity as
a white noise process (¢) with SD 7. All model parameters are listed in
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Table 2. Structure of the network”

Cortical cell type Layer Cells/column Total cells
IN | 12 132
PY ] 100 1100
BC ] 100 1100
MC U] 24 264
PY v 12 132
BC \ 12 132
MC | 12 132
PY v 12 132
BC v 12 132
MC v 12 132
Total 308 3388
“The layer, cells per column, and total cells per cell type used in the network model.

Table 3. Connectivity within the network”

Presynaptic Postsynaptic

Type  Layer Type  Layer  Cross-column Type  Strength  Probability
PY I/ PY /1 True AMPA 04 0.1
PY v PY v True AMPA 04 0.1
PY v PY v True AMPA 0.4 0.1
PY (I} PY {11} False AMPA 075 0.1
PY I/ BC 71 False AMPA 075 0.1

PY 7 MC fi7m False
PY I/ PY v False

AMPA  0.75 0.1
AMPA  0.25 0.05

PY v PY ] False AMPA 15 0.05
PY v PY v False AMPA  0.75 0.1
PY v BC v False AMPA 075 0.1

PY v MC v False AMPA 075 0.1

By, v BC I/ False AMPA 15 0.05
PY v MC s False AMPA 15 0.05
PY ) PY v False AMPA 075 0.1

PY v PY I/ False AMPA 0.5 0.05
PY v BC v False AMPA 075 0.1

PY ) MC v False AMPA 075 0.1

MC 7 PY I/ False GABA 075 0.05
MC ] PY v False GABA 075 0.05
MC 7 PY v False GABA 075 0.05
MC v PY I/ False GABA 075 0.05
MC v PY v False GABA 075 0.05
MC v PY v False GABA 075 0.05

MC v PY (] False
MC ) PY v False

GABA 075 0.05
GABA 075 0.05

MC ) PY v False GABA 075 0.05
BC 7 PY I/ False GABA 15 0.25
BC v PY v False GABA 15 0.25
BC v PY v False GABA 15 0.25
MC ) PY v False GABA 1 0.2
MC v PY v False GABA 15 0.25
IN | PY (] False GABA 03 03
IN | PY v False GABA 03 03
IN | PY v False GABA 03 03
PY ] IN | False AMPA 03 03

“Type, strength, and probability of connections between all cell types and layers. These values were estimated
from experimental data of anatomic connectivity across slices of the rat cortex (Thomson et al., 2002).

Komarov et al. (2019, their Table S2) (unless specified in the description
of simulations), and the network structure and connectivity are described
in Table 2 and Table 3, respectively. Cells were synaptically coupled by
excitatory (AMPA) and inhibitory (GABA,) connections. The strength
and probability of connections between layers and cell types were set
according to a canonical cortical circuit (Thomson et al., 2002).

Average network activity. To quantify network behavior across 50
simulations per current strength, we averaged the percentage of spiking
across all cell types at each cortical column (see Fig. 5¢).
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Figure 2.

Representative reconstructions and averaged axonal density for neuronal cell types modeled. For each neuronal cell type used in the cortical microcircuit model, we plot both a sin-

gle representative anatomical reconstruction as well as an averaged axonal density heatmap for all the reconstructions of that type. Cells are arranged by layer and type; the first row represents
layer | inhibitory neurons. The representative layer | intemeuron is a horizontal cell, but we average across small, descending, and horizontal layer | interneurons in both the axonal heatmap as
well as in our analyses. The following rows represent pyramidal, basket, and Martinotti cells across layers II/Ill, IV, and V (layer Va for pyramidal cells). We did not have neuronal reconstructions
for layer IV Martinotti cells and averaged spiking probability results from layers II/lll and layer V Martinotti cells for subsequent analyses. In the axonal density (AD) plots, color represents the
averaged density computed using all available reconstructions for the given cell type. The color scale is logarithmic for visual clarity. AD gives a sense of the general orientation and density of
axon branches for each cell type, which is key to understanding subsequently computed activation probabilities.

Results

Building upon existing in silico models that simulated the effects
of cortical surface stimulation from a single electrode (Komarov
et al,, 2019), in this study we sought to explore the spatial dy-
namics of stimulation by modeling an asymmetrical three-elec-
trode configuration applied to the rat somatosensory cortex
(Fig. la). This configuration was initially chosen to break the
symmetry between the anodal and cathodal currents and pur-
sued further because of the wave propagation observed in the
network model as a result of the electrode choice. The paper is
organized as follows. We first calculated the electric field poten-
tial created by the system of three electrodes: two cathodes (at
—75 A each) and a single anode (at 150 nA). Next, we esti-
mated the activation probability for each cell type/cortical layer
pairing by computing the activating function in biophysical
reconstructions of axonal arbors. We then constructed a corti-
cal microcircuit model with Hodgkin-Huxley dynamics to
model the network effects of stimulation based on the previ-
ously-calculated spiking probabilities.

Cell activation results from a combination of morphology
(cell type) and depth within the column

The applied electric field potential generated by the system of
three electrodes (assuming homogeneous tissue) is shown in

88

Figure 1a. To estimate the probability of specific cell types being
activated by stimulation, we simulated the various cell types
based on 3D morphological reconstructions of neurons derived
from electron microscopy available from www.neuromorpho.org
(Ascoli et al,, 2007). The excitatory cells we considered were py-
ramidal cells across layers II-V, while the inhibitory neurons
included basket cells and Martinotti cells across layers II-V in
addition to layer I interneurons (Table 1). Example reconstruc-
tions as well as average axon density plots per cell type/cortical
layer (Fig. 2) demonstrate the significant differences in axonal
arborization and density among the different cell types, as well as
between cells of the same type based in different layers.

The hyperpolarization or depolarization of a neuronal fiber
within a constant electric field can be modeled with one-dimen-
sional cable theory in conjunction with the activating function.
The activating function (for details, see Materials and Methods)
(Komarov et al., 2019) computes the net transmembrane current
generated by external stimulation (while ignoring preexisting
synaptic currents). According to one-dimensional cable theory,
the activating function is the second-order spatial derivative of
the electric potential along the neuronal fiber. The case of a per-
fectly horizontal fiber is shown in Figure 1b. Through this, we can
draw relationships between the orientation and excitation of a
fiber in response to a given stimulation polarity. Indeed, horizontal
fibers were depolarized by anodal stimulation and hyperpolarized
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Figure 3. Probability of spiking as a function of horizontal distance from the center of the electrode array for each cell type and cortical layer. Average (solid line) cell spiking probability and

95% confidence intervals (shaded region) for each reconstruction were calculated for soma locations across the entire X-Z plane of the corresponding cortical layer by averaging spiking probabil-
ity across rotations and vertical shifts of all cell reconstructions. Activation probabilities were calculated across four stimulating current strengths, with the maximum anodal stimulation current
set to 150 A and the maximum cathodal stimulation current set to —75 1A per electrode over a 200 us stimulation period. Right, Insets, Activation profiles for 25%, 50%, and 75% stimula-
tion strength. Pyramidal cells (excitatory, @) and basket cells (inhibitory, b) are highly activated by anodal stimulation and are minimally activated by cathodal stimulation because of their mye-
lination and horizontally oriented axonal arbors. Martinotti cells (inhibitory, ¢) are activated by all electrodes with a slight preference for the cathodes but lack myelination and thus show less

activation overall. Layer | i (d) are also

by cathodal stimulation; in contrast, vertical fibers were hyper-
polarized by anodal stimulation and depolarized by cathodal
stimulation (Fig. 1d and Fig. ¢, respectively). While each neu-
ron has unique axonal fibers that span 3D space, these maps of
activation and suppression zones for orthogonal axonal orien-
tations give us insight into how each cell type will behave across
the stimulated space given its average axon density and orienta-
tion (Fig. 2).

We next calculated spiking probability in response to the
applied electric field potential for each cell type/cortical layer
pairing by averaging across the activating function results of their
respective cell reconstructions; each cell reconstruction was shuf-
fled by rotating and shifting along the vertical axis, and multiple
reconstructions were considered for each cell type (for details,
see Materials and Methods) (Komarov et al., 2019). This calcula-
tion compares the overall excitability of each reconstruction to
an experimentally derived threshold (fy, = 3pA/um?) to deter-
mine the probability of spiking. This threshold was set 20 times
higher for unmyelinated cell types (Martinotti cells and layer I
interneurons) compared to myelinated cell types (pyramidal and
basket cells) since unmyelinated fibers are relatively unexcitable
and lack nodes of Ranvier (Markram et al,, 2004; Wang et al,
2004; Defelipe et al., 2012). The results of these calculations are
shown in Figure 3.

To explore the parameter space of the model, we calculated
activation probabilities at 25%, 50%, and 75% of the maximum
stimulation current (150 uA for the anode and —75 A for each
cathode), which are displayed in Figure 3. The activation

d and are minimally excited by stimulation.

probabilities scale upward with increasing applied current for all
cell types except Martinotti. At the weakest applied current, at
which the absolute values of current amplitudes are <50 uA,
layer II/III Martinotti cells exhibit a slight preference for
cathodal stimulation, layer V Martinotti cells exhibit a slight
preference for anodal stimulation, and layer IV cells show no
strong preference. However, at all currents above the weakest,
Martinotti cells across all layers display a slight preference for
cathodal stimulation, and the activation probabilities appear
to have reached a plateay; that is, increasing the applied cur-
rent increases activation probabilities for all cell types except
Martinotti. The average axonal density heatmaps in Figure 2
as well as the presence or absence of myelination explain the
variation of activation responses across cell types and cortical
layers.

Across all layers, pyramidal cells were strongly activated by
the anode and minimally activated by the cathodes, with layer IV
showing the greatest, layer V the least, and layer II/III an inter-
mediate probability of activation (Fig. 3a). As shown in Figure 2,
all pyramidal cells vertically span the cortical layers regardless of
soma position. However, layer II/IIT and layer IV pyramidal cells
exhibit significant horizontal axonal density close to the cortical
surface and thus responded more strongly to stimulation overall
(and to cathodal stimulation in particular), whereas the bulk of
layer Va pyramidal axons lie in deeper layers and lack the super-
ficial axonal density to be adequately stimulated above threshold.
Pyramidal cells display a strong overall response to stimulation
due to their myelinated axons.
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Figure 4. Microcircuit diagram of a single cortical column in modeled network. This depiction of a single cortical column details the cell types across cortical layers and the synaptic connec-
tions between them in our microcircuit network model. Circular labels (IN, LI inteeurons; BC, basket cells; MC, Martinotti cells) represent inhibitory neurons. Triangular labels (PY, pyramidal
cells) represent excitatory neurons. Green connections represent excitatory synapses, with the circular end indicating the postsynaptic cell and the unlabeled end indicating the presynaptic cell.
Purple connections represent inhibitory synapses, with the perpendicular line indicating the postsynaptic end. Teal-colored connections are also excitatory but represent connections from py-
ramidal cells to others in adjacent columns (cross-columnar synapses). The gray box that surrounds the pyramidal cells within each layer includes all synaptic connections to all pyramidal cells,
not just the ones closest to the synapse in the figure. The only cross-column synapses present are within-layer pyramidal-pyramidal excitatory connections to adjacent columns. Layer | includes
only inhibitory intemeurons, which inhibit pyramidal cells in all three deeper layers and are reciprocally excited by the same cells. Each of the deeper layers contain pyramidal, basket, and
Martinotti cells. Within a cortical column, pyramidal cells reciprocally excite other pyramidal cells in their same layer as well as across cortical layers. Basket cells act as local interneurons as
they only inhibit and are excited by pyramidal cells within their own layer. In contrast, while Martinotti cells are only excited by pyramidal cells within their own layer, they universally inhibit
pyramidal cells across all layers. In this model, inhibitory cells receive only excitatory synaptic inputs. The number of neurons in each column is listed in Table 2 and the probability and strength

of each synaptic connection s listed in Table 3.

Basket cells also exhibited a strong preference for anodal stimu-
lation and little activation underneath the cathodes (Fig. 3b).
However, their responses were significantly more tiered according
to cortical layer compared with pyramidal cells because basket cell
arborization is localized within the same layer as the soma
(Fig. 2). Their preference for anodal stimulation is due to
their largely horizontal axonal arbor that stretches out
within each layer. Basket cells were the only myelinated in-
hibitory cell type in our model and therefore demonstrated
a significantly stronger spiking response overall relative to
Martinotti or layer I interneurons.

Martinotti cells across all layers are moderately activated by
both anodal and cathodal stimulation but showed a slight prefer-
ence for the latter (Fig. 3¢). This is because all Martinotti cells
make universal connections with pyramidal cells via layer I (Fig.
2); therefore, the majority of their arborizations lie in vertical
axonal fibers connecting the soma to layer I, with additional den-
sity spread out horizontally across layer I. However, they exhib-
ited a dampened stimulation response overall because of their
unmyelinated axons.

Last, since layer I axon fibers are unmyelinated and stay local-
ized to layer I (resulting in mainly horizontal arborization), layer
I interneurons displayed a slight preference for anodal stimula-
tion but little activation overall (Fig. 3d).

Cortical microcircuit model shows directional propagation
when stimulated with three electrode array

In the previous section, we estimated the activation probabilities
of isolated neurons within an applied electric field. To understand
how stimulation affects the dynamics between neurons and ulti-
mately the overall dynamics of the cortex, we constructed and
stimulated a network model of the cortex using simplified neuron
models and previously-calculated activation probabilities. Each
cortical column was modeled as a canonical microcircuit (Douglas
et al., 1989; Thomson et al., 2002; da Costa and Martin, 2010;
Defelipe et al., 2012) containing the same cell types and cortical
layers as the biophysical analysis above. A schematic of the cell
types across cortical layers and their synaptic connections is shown
in Figure 4.

The only cross-column synapses present are pyramidal-
pyramidal excitatory connections to adjacent columns. Layer I
includes only inhibitory interneurons, which inhibit pyramidal
cells in all three deeper layers and are reciprocally excited by
the same cells. Each of the deeper layers contain pyramidal, bas-
ket, and Martinotti cells. Within a cortical column, pyramidal
cells reciprocally excite other pyramidal cells in their same layer
as well as across cortical layers. Basket cells act as local inter-
neurons as they only inhibit and are excited by pyramidal cells
within their own layer. In contrast, while Martinotti cells are
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Figure 5.  Directed propagation of pyramidal activity in raster plot of microcircuit simulation trial. A raster plot displaying network behavior during and after stimulation in one trial of the

microcircuit simulation across all cortical columns at maximum applied current. Each cell within the microcircuit has its own coordinate on the y axis. Each dot is an action potential. Green dots
indicate spikes that are directly triggered by electrical stimulation (occurs during first 5 ms). Blue dots indicate spikes triggered via synaptic input. a, The first 50 ms of the simulation (the net-
work is silent beyond this period). b, Zoom in to the first 10 ms in the five central columns. ¢, The percentage of spikes (all cell types) per cortical column, then averaged across 50 simulations
at each applied current value (25%, 50%, 75%, and 100% applied current, with the anodal current listed, from left to right, respectively).

only excited by pyramidal cells within their own layer, they uni-
versally inhibit pyramidal cells across all layers. In this model,
inhibitory cells receive only excitatory synaptic inputs. The
number of neurons in each column is listed in Table 2 and the
connectivity within the network is described in Table 3.

Following a brief stimulation period in which the activa-
tion probabilities from the biophysical calculations were
applied to the model, the network was allowed to run with-
out any external input for 500 ms, during which time it
behaved according to synaptic interactions between neurons.

To test the robustness of network behavior, we conducted
50 simulations for four different values of stimulation cur-
rent (25%, 50%, 75%, and 100% current, respectively) and
calculated the percentage of total spikes in each cortical col-
umn averaged across these simulations (Fig. 5c). At the
weakest applied current, spiking is highest underneath the
anode and tapers off on either side as the stimulating current
is not strong enough to induce propagating activity in either
direction (Fig. 5¢, leftmost plot). At >50% current, however,
activity propagates unidirectionally as a traveling wave to the
right. The following simulation example and subsequent
explanations and analyses focus on network stimulation with
the maximum current applied as it corresponds to strong
asymmetric network behavior within physiological current
bounds.

A raster plot and voltage and conductance traces of one
microcircuit trial at maximum applied current are shown in
Figures 5 and 6. The trial shown is one example of the general
behavior of the microcircuit in the majority of trials at maximum
applied current (Fig. 5¢, rightmost plot) in which spiking activity,
particularly from LII/III pyramidal cells, propagates to the
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rightward columns but not past the leftmost electrode. Given
this unique spiking activity and the biological importance of LII/
III pyramidal cells in mediating communication across cortical
regions, we chose to focus our analyses on the network behavior
of LII/III pyramidal cells.

Directionality of the stimulation-triggered wave can be
explained by network inhibition
The activation probability curves in Figure 3 provide intuition
into the network behavior during and immediately after the
stimulation period (0-5ms; Fig. 5b). Let us first examine the col-
umn underneath the anodal electrode (Fig. 5b, column 7). While
both layer II/III and layer IV pyramidal cells were predicted to
be highly activated underneath the anodal electrode (Fig. 3), only
layer IV pyramidal cells were directly activated. Although all py-
ramidal cells were inhibited by moderate Martinotti activity,
only layer II/III pyramidal cells were locally inhibited by strong
synchronous layer II/III basket cell activity while other layers
were not because basket cell response drops off with increasing
cortical depth and because basket cells are only inhibit pyramidal
cells within their own layer. Following stimulation, layer IV py-
ramidal cells excited layer II/III pyramidal cells and triggered a
cluster of layer II/III activity. There was negligible layer V excita-
tion during stimulation and none following because of their low
excitation probabilities and relatively small neuronal population.
Network behavior underneath the cathodal electrodes con-
trasted sharply with anodal stimulation response and underpinned
unidirectional excitatory propagation (Fig. 5b, columns 5 and 6).
Although layers II/IIl and IV pyramidal cells were still moderately
activated by cathodal stimulation (Fig. 3a), very few cells were
pushed above threshold because of strong inhibition. Martinotti
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cells in the group, and their average (within the same column, layer, and subtype) in red. Sharp increases in the

light gray trace indicate action potentials (spikes). Darker gray regions correspond to times when large numbers of cells spiked.

cells showed a preference for cathodal stimulation (according to
Fig. 3) and thus fired early in the stimulation period, inhibiting py-
ramidal cells across all cortical depths (since Martinotti cells uni-
versally synapsed to all pyramidal cells in the network). This
strong inhibitory force coupled with moderate superficial basket
cell activity silenced almost all pyramidal activity across cortical
layers.

In the column directly to the left of the electrode array (Fig.
5b, column 4), there was negligible activity across all cell types
and cortical layers. Not only did the electric field potential drop
off significantly at this distance, but pyramidal and basket cells
were already minimally activated by the cathodal electrodes, and
Martinotti cells were only moderately activated by the cathodal
electrodes because of their lack of myelination. In the absence of
stimulating electric field potential or activating input from neigh-
boring cortical columns, the leftmost three columns exhibited no
spiking activity at all (Fig. 5a, columns 1-3). Hence, the excita-
tory pyramidal activity present underneath the electrodes did not
propagate leftward past the cathodal electrodes. This activity,
however, did travel rightward past the electrode array, growing
stronger and more synchronous as it propagated.

On the other side of the array, in the cortical column directly
to the right of the anodal electrode (Fig. 5b, column 8), there was
moderate direct activation of pyramidal cells and little direct acti-
vation of inhibitory cells. This follows from Figure 3, which
depicts pyramidal cells continuing to be activated by the anodal
electrode. While basket cells were also moderately activated by
anodal stimulation, their joint inhibition with Martinotti cells
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was not enough to counter pyramidal stimulation response. This
allowed for dense clusters of excitatory activity in pyramidal cells
following stimulation.

In the second column to the right of the electrode array (Fig.
5a, column 9), we see a dense cluster of highly synchronized py-
ramidal layer II/III activity that was slightly delayed from the ac-
tivity in the column to its left. Although pyramidal cells were no
longer directly stimulated in this cortical column, this activity
resulted from the rightward cross-columnar propagation of exci-
tatory signaling. Remarkably, this substantial, synchronized py-
ramidal activity grew more and more synchronous as the wave
propagated rightward across cortical columns. This unidirec-
tional propagation of excitatory signaling is an exceptional prod-
uct of asymmetrical stimulation (Fig. 5a, columns 9-11).

Following the stimulation period and initial clusters of activity
that die down at ~10ms after stimulation, there were a handful of
waves of activity that ping-ponged between excitatory and inhibi-
tory cells in columns with pyramidal excitation (Fig. 5a, columns 6-
11). In these columns, pyramidal activity activated both Martinotti
and basket cells, which in turn inhibited pyramidal activity. There
were a few iterations of this negative feedback loop over the course
of a few milliseconds before pyramidal spiking was halted entirely.

Analysis of synaptic currents reveals mechanism of
asymmetrical spiking activity

Next, we analyzed the voltage traces of individual neurons and
synaptic dynamics to explain the causes of pyramidal asymmetri-
cal spiking activity (Fig. 6).
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Figure 7. Cell type-specific silencing indicates distinct roles of inhibitory intemeurons in temporal and spatial dynamics of the traveling wave. Raster plots displaying network activity in the
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Voltage traces revealed that layer II/III pyramidal cells
were initially depolarized underneath the anodal electrode
(column 7), as they were highly activated by anodal stimula-
tion. However, a large inhibitory conductance immediately
following the stimulation period (the first g; peak) dampened
any stimulation-induced depolarization and hyperpolarized
these pyramidal cells. Inhibitory conductance then fell and
excitatory conductance rose as layer II/III pyramidal cells
gained excitatory input from neighboring layers and col-
umns, bringing layer II/III pyramidal cells to threshold and
triggering action potentials. The second peak in inhibitory
conductance midway through the pyramidal action potential
was caused by pyramidal cell input into the inhibitory cells,
which initiated a negative feedback loop that quickly subsided as
pyramidal cells were silenced by inhibition. This effect occurred
in all columns with substantial pyramidal activity.

Although there were similar inhibitory and excitatory con-
ductance dynamics in the column underneath the central catho-
dal electrode (column 6), the excitatory conductance was of a
smaller magnitude overall, and there were fewer action potentials
because pyramidal cells were less excited by cathodal stimulation.
Underneath the leftmost electrode (column 5), moderate inhibi-
tory conductance outweighed negligible excitatory conductance,

leading to minimal pyramidal activity. There was little excitation
in column 4 or any of the other leftward columns (not shown). On
the other side of the electrode array, in column 8, high initial excita-
tory conductance and minimal inhibitory conductance resulted in
strong initial pyramidal spiking. Pyramidal action potentials became
more and more synchronous as they traveled rightward, as evi-
denced by increasingly overlapped voltage traces. Together, these
observations reveal the mechanisms of activity propagation to
the right but not to the left in these stimulation settings.

Cell type-specific silencing reveals distinct roles of inhibitory
interneurons in shaping and sustaining traveling waves

To better understand the role of basket and Martinotti cells in
shaping and sustaining traveling waves, we performed cell type-
specific silencing experiments using the previously described net-
work model paradigm in Figure 5. Silencing basket cells resulted
in persistent activity rapidly spreading bidirectionally from the
central column similar to what may be observed during a sei-
zure-like event (Fig. 7a). Compared with the control network in
Figure 5a, without basket cells, the pyramidal cell activity within a
given column never halts once initiated and appears more akin to
a standing wave which spreads bidirectionally throughout the net-
work rather than propagates. Alternatively, silencing Martinotti
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cells preserved the propagating nature of the wave across columns
(ie, activity in each column self-terminated after 20-25ms).
However, this propagation was still bidirectional (Fig. 7b). Thus,
these experiments demonstrate that both types of inhibitory cells
may be necessary for the spatial asymmetry of the wave, while sug-
gesting that basket cells may be more important for wave propaga-
tion by more effectively halting excitatory activity once initiated.

Discussion

In this work, we predict that an asymmetrical cortical stimulation
protocol using a combination of anodal and cathodal electrodes
may trigger propagating excitatory activity that shows strong
directional preference. Our model had two steps: we first con-
structed a biophysical model to predict activation probabilities
across cell types in response to an asymmetrically-applied electric
field potential, and then incorporated these probabilities into a
cortical microcircuit to model the network effects of stimulation.
We found that pyramidal cells and basket cells are highly acti-
vated by the anodal electrode and minimally activated by the
cathodal electrodes because of their myelination and horizontal
axonal arbors, while layer I interneurons are only moderately
activated by the anodal electrode despite their horizontal axonal
arbors due to lack of myelination. Martinotti cells also exhibit
moderate activation due to lack on myelination, but show a slight
preference for cathodal stimulation due to their predominately
vertically-oriented axonal arbors. Network model simulations
revealed that this asymmetrical activation results in a traveling
wave in superficial excitatory cells that propagates away from the
electrode array, past the anodal electrode, and into adjacent cort-
ical columns, but does not propagate in the opposite direction
past the leftmost cathodal electrodes (Fig. 8).
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We found that distinct classes of inhibitory cells are the cause
of separable components of the unidirectional propagation.
Basket cells were necessary for the wave to propagate (as opposed
to spread as a standing wave), but both basket and Martinotti
cells were needed for asymmetrical spatial propagation. While
activity directly under the central column is defined by the stim-
ulation protocol, as the activity propagates laterally through
horizontal excitatory connections, the increasing synchrony
of cell firing is likely mediated by a PING type mechanism
(Whittington et al., 2000) (Martinotti cells were not neces-
sary for this aspect of the activity, as shown in Figure 7b).

Importantly, only the spatial component of the traveling
wave is dependent on the particular electrode design of the
stimulation paradigm; the temporal component is a mani-
festation of endogenous cortical columnar circuitry. This
allows for endogenous oscillatory activity to be spatially
guided through the network, without inducing artificial fre-
quencies as a result of stimulation. These two classes of in-
hibitory cells could be deactivated optogenetically in rodents
during stimulation to test the predictions of the model. Electrical
stimulation paradigms that rely on current steering to guide activ-
ity along particular trajectories are widely used both experimen-
tally and clinically and have demonstrated robust efficacy at the
macroscopic network level, but are still poorly understood at the
mesoscopic circuit level. Ultimately, we believe that this model is a
first step toward understanding the circuit mechanisms which are
engaged during these stimulation practices.

Traveling waves in the brain
Multielectrode recordings in human and animal subjects have
demonstrated the ubiquity of traveling waves in cognitive



function (Muller et al, 2018). They relay information across a
range of distances and thereby coordinate fundamental processes
such as memory, perception, language, orientation, executive
functions, and more across distant brain regions (Rubino et al.,
2006; Wu et al, 2008; Muller et al, 2018; Salimpour and
Anderson, 2019). Recordings have also shown that propagating
activity present in the human cortex is often directional, traveling
from one point to another. The ability to generate directional
propagation via stimulation would allow for unique precision in
and control over induced activity. This has widespread implica-
tions for the restoration or enhancement of high-level brain
function, particularly because many neuropsychiatric disorders
are marked by abnormal or absent propagating activity.

In the model, propagating activity was confined to supragra-
nular cortical layers. This may not be a limitation if the goal is to
reproduce natural waves, because spontaneous traveling waves
in the human cortex have also been found to be largely confined
to upper layers, including the alpha rhythm during waking (M.
Halgren et al., 2019), and spindles and slow oscillation during
sleep (Cash et al., 2009; M. Halgren et al., 2018).

Traveling waves have long been studied with a variety of com-
putational models, and numerous mechanisms have been pro-
posed to explain how activity propagates across neuronal
networks (Ermentrout and Kleinfeld, 2001; Breakspear, 2017).
Cortical propagating waves that are triggered specifically by elec-
trical stimulation have been recorded in mammalian cortical sli-
ces (Kim et al, 1995; Wu et al., 2001; Wester and Contreras,
2012), as well as in non-human mammals (Contreras et al., 1997;
Xu et al., 2007; Stieger et al., 2020) and simulated in non-mamma-
lian computational models (Chen et al., 2008), but remain under-
studied in human subjects. This previous experimental work, both
in vivo and in silico, has yielded scarce evidence of asymmetrical
traveling wave propagation or reliable wave generation analo-
gous to that reported here. To the extent that previous work has
focused on traveling wave propagation initiated by stimulation
(Alekseichuk et al., 2019), these studies examined stimulation
through the skull and meninges, and are thus not directly com-
parable to this model of intracranial stimulation of the cortical
surface. Many computational models exist that model the
effects of stimulation on the brain, including some that have
constructed Hodgkin-Huxley microcircuits (Douglas et al.,
1995; Haeusler and Maass, 2007) and modeled cortical sur-
face stimulation (Anderson et al., 2009). However, few have
modeled multielectrode or asymmetrical stimulation or
reproduced traveling waves using surface electrodes. Many
existing stimulation models have focused on stimulation of a
particular nerve (Raspopovic et al., 2011; Helmers et al., 2012) or
an isolated cell type (Traub et al, 1994; R. J. Greenberg et al.,
1999), as opposed to the functioning cortical microcircuit pre-
sented here, which can be more readily adapted to other cortical
regions by adjusting the parameters and neuronal reconstructions
used. In addition, stimulation has more often been simulated in
these models by a simple application of suprathreshold current or
a uniform electric field (Radman et al., 2007, 2009). Thus, by com-
bining the two-phase biophysical model with asymmetrical, multi-
polar surface stimulation, our approach synthesizes existing
achievements into a single coherent, clinically-adaptable model
that uniquely sheds light on the generation of propagating wave
activity.

Clinical relevance of our findings
Brain stimulation is becoming increasingly common in clinical
and experimental settings, especially using multielectrode arrays
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(Lewis et al,, 2015). As such, it is pressing that we develop accu-
rate models of the effects that multielectrode stimulation has on
neural activity. While sometimes the explicit goal of stimulation
may be to disrupt aberrant activity to restore normal functioning,
increasingly the goal is to induce the desired brain activity
directly via stimulation, as our work demonstrates.

Changes in neural plasticity result from patterned activity,
with the particular changes in connectivity contingent on the
specific timing and order of activity (Bennett and Bair, 2015).
Stimulation protocols that induce neural activity which contin-
ues past the stimulus duration are more likely to alter cellular
and synaptic properties in favor of the induced activity, in con-
trast to stimulation protocols that briefly activate broad swaths of
cells without triggering existing activity patterns. Thus, initiating
propagating waves within tailored spatiotemporal constraints is a
promising way to retrain neural networks and enhance or silence
brain functions in a targeted way.

The generation of traveling waves may serve as a promising
therapy for a variety of neurological disorders. For example, it
has been previously suggested that triggering propagating activ-
ity in perilesional areas where waves are otherwise aberrant or
absent may be an effective therapy for post-stroke aphasia
(Beuter et al., 2020). While the ultimate clinical applications of
this technique are uncertain, stimulation-induced traveling
waves may have the potential to offset inhibition in cortical
spreading depression (Liebetanz et al., 2006; Santos et al., 2012),
reduce the risk of seizure while determining which brain tissue to
remove from epilepsy patients (Nagaraj et al., 2015), and enhance
memory formation when applied during learning or recall periods
(Suthana et al,, 2012; Batterink et al.,, 2016; Ezzyat et al, 2018;
Kucewicz et al., 2018a,b), as consistency in traveling wave direc-
tion is positively correlated with working memory efficiency
(Zhang et al., 2018).

Limitations

In this work, we modeled a single, short stimulating pulse.
However, clinical stimulation is most often composed of longer
pulses or pulse trains and is usually performed with bipolar elec-
trodes delivering biphasic pulses to prevent damaging Faradic
currents (Merrill et al,, 2005; Cogan et al., 2016). These stimula-
tion paradigms modulate properties over time that are not
accounted for in the current model, such as underlying dendritic
and axonal dynamics as well as synaptic interactions. Thus, our
biophysical approach may be expanded in future studies to
incorporate these steady-state properties through alternative
modeling approaches, such as the cylinder model (Rall, 1962;
Tranchina and Nicholson, 1986) or the multicompartmental
model (Berzhanskaya et al., 2013). However, we chose to model
the activation probability of the axonal instead of the dendritic
arbor in this work because experimental evidence shows that the
nodes of Ranvier, followed by the axon hillock, are the most excit-
able neuronal elements by far via direct stimulation (Gustafsson
and Jankowska, 1976; Swadlow, 1992; Rattay, 1999; Tehovnik et
al., 2006) as they both have a high concentration of sodium chan-
nels (Catterall, 1981). In contrast, direct stimulation of the dendri-
tic arbor generates transmembrane currents that propagate to the
axon hillock, but these effects are strongly attenuated and delayed,
and are negligible compared with direct stimulation of the nodes
of Ranvier and axon hillock.

Consistent with the findings that the axon is the most likely
site of action potential initiation under electrical stimulation, our
approach has focused specifically on estimating this probability
while neglecting other aspects of stimulation which may alter



subsequent network activity. In particular, effects of stimulation
on nonlinear, often calcium-mediated, properties of the den-
drites and axon terminals would be expected to significantly out-
last the duration of stimulation. Both of these locations can
directly influence synaptic efficacy, or even decorrelate synaptic
release from action potential initiation (Katz and Miledi, 1967),
and therefore could substantially alter subsequent network dy-
namics in neural tissue.

Moreover, previous modeling studies have indicated that the
most depolarized neural element is not always the site of action
potential initiation (McIntyre and Grill, 1999). This was particu-
larly found to be the case when the electrode was positioned near
the cell body, which resulted in maximal depolarization in the
dendrites or soma, but with action potential initiation taking
place in the axon or at the initial segment. For the present study,
this breakdown in the assumptions of the activating function
approach is mitigated by the more proximal relationship of the
axons than the soma to the electrode and the short pulse dura-
tion, as such conditions have been found to show greater corre-
spondence between the site of maximal depolarization and
action potential initiation, both of which typically occurred in
axonal segments (Rattay and Aberham, 1993; McIntyre and
Grill, 1999). In future studies which consider longer stimulus
durations or DBS paradigms where the electrode may be more
proximal to the soma than axonal - conditions that are particu-
larly pertinent to clinical applications — an active cable theory
model would need to be used to properly account for action
potential initiation.

In the microcircuit phase of the model, the connectivity
between different cell types follows a canonical microcircuit
model. While this approach characterizes the main signal
pathways and feedback loops present within cortical col-
umns (Douglas et al., 1989; da Costa and Martin, 2010;
Defelipe et al., 2012), finer details are not modeled, such as
descending projections to inhibitory cells from excitatory
cells (Thomson et al., 2002) or the contribution of less com-
mon interneuron cell types. The cells within the cortical
microcircuit model could be extended from single-compart-
ment to multicompartment neurons (Bonjean et al., 2012) to
distinguish tuft versus soma-targeting interneurons, which
may further differentiate the inhibitory power of inter-
neuron cell types (Markram et al., 2004). This phase of the
model may be further expanded from a 2D plane to a 3D cir-
cuit in the volume of cortex underneath the electrodes to
understand how activity spreads across space.

While moving to multicompartment neurons with active
properties would alleviate many of the limitations of our
approach discussed above, it also presents unique difficulties.
Such models are vastly higher-dimensional than the passive
cable and point-neuron models considered here and are diffi-
cult to properly constrain because of the lack of experimental
data on the distribution of passive and active ion channels
within different cell types necessary for data-driven parame-
terization. Without such constraints, these high-dimensional
models are liable to be finely tuned within their vast parame-
ter space to be able to exhibit nearly any desired activity and
run the risk of diverging from biologically realistic parameter
regimens and decoupling the modeled activity from plausible
cellular mechanisms. Given that our goal in this study was to
shed light on the cellular and circuit mechanisms underlying
electrical stimulation and current steering rather than pro-
vide robust statistical predictions of the results of this partic-
ular electrical stimulation design, we opted to use models
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which, although known to be incomplete, are capable of more
robustly constrained parameterization.

Alternative modeling approaches

In this modeling work, we have focused on estimating transient,
cell type-specific responses to electrical stimulation, and subse-
quently incorporated these estimates into a biophysical network
model of the canonical cortical column. In this sense, we directly
model certain effects of electrical stimulation at the microscopic,
cellular level, and then import these findings into a mesoscopic,
cortical circuit model. Previous work has approached the problem
of modeling the effects of electrical stimulation in diverse ways at
multiple scales. At the microscopic level, McIntyre et al. (2004a)
used a multicompartmental cable theory model with active prop-
erties to study the effect of DBS on the cellular properties of single
thalamocortical relay neurons (McIntyre et al, 2004a). More
recently, such an approach was used to study single-cell responses
to intracortical and uniform electric field stimulation for a variety
of cell types obtained from human and rat cortical neuron recon-
structions (Aberra et al, 2018). At more macroscopic levels,
researchers have used finite-element methods to model epidural
electrical stimulation of the motor cortex which can account for
cortical folding (Wongsarnpigoon and Grill, 2008, 2012; Aberra et
al,, 2018), and have incorporated data from human diffusion ten-
sor MRI to estimate the volume of tissue activated by DBS in the
subthalamic nucleus (McIntyre et al., 2004b).

Generalization of this approach

While this work modeled a specific stimulation protocol for a
particular and still simplified cortical network architecture, the
approach is generalizable to a variety of basic science and clinical
applications. This versatility comes from the modular structure
of the model, which completely decouples the biophysical-ana-
tomical model from the dynamic-neuronal network model. This
makes it possible to use the same activation probabilities for a va-
riety of network models so long as they contain analogs of the
initial cell types. Additionally, circumventing the computational
complexity of simulating high-dimensional compartmental
models facilitates the widespread investigation of much larger
networks than studied in this paper. Indeed, recent empirical
studies have collected an enormous amount of new data regard-
ing cell properties and local- and long-range connectivity, but
current modeling efforts have yet to take advantage of these data.
It is still not feasible to simulate large-scale network models,
including different brain structures (Sanda et al., 2021) and/or
multiple cortical regions and long-range connectivity (Rosen et
al,, 2019), which would be built on anatomically realistic cell
reconstructions and include multiple layers and different cell
types. This severely limits how new anatomical and functional
data are used in the model design, and we suggest that the hybrid
approach we present here may help to partially overcome these
limitations.

In conclusion, this work models an asymmetrical stimulation
paradigm that could be implemented to initiate unidirectional
traveling waves in the cortex. A biophysical model is integrated
with a computational network model to predict the behavior of
single neurons as well as the cortical network dynamics resulting
from multielectrode stimulation. This model provides hypothe-
ses and stimulation paradigms which can be verified experimen-
tally. It expands on the capabilities of our hybrid modeling
approach to show how it can be deployed to probe the relation-
ship between the microscale effects of electrical stimulation and
the mesoscale consequences at the level of circuit dynamics.
These results demonstrate how complex stimulation protocols



could be harnessed to generate persistent changes in activity with
the potential to restore normal brain function in neurological
and psychiatric conditions.
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