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RESEARCH ARTICLE

Computational strategies 
for alternative single-step Bayesian regression 
models with large numbers of genotyped 
and non-genotyped animals
Rohan L. Fernando1* , Hao Cheng1, Bruce L. Golden2 and Dorian J. Garrick1,3

Abstract 

Background: Two types of models have been used for single-step genomic prediction and genome-wide associa-
tion studies that include phenotypes from both genotyped animals and their non-genotyped relatives. The two types 
are breeding value models (BVM) that fit breeding values explicitly and marker effects models (MEM) that express the 
breeding values in terms of the effects of observed or imputed genotypes. MEM can accommodate a wider class of 
analyses, including variable selection or mixture model analyses. The order of the equations that need to be solved 
and the inverses required in their construction vary widely, and thus the computational effort required depends upon 
the size of the pedigree, the number of genotyped animals and the number of loci.

Theory: We present computational strategies to avoid storing large, dense blocks of the MME that involve imputed 
genotypes. Furthermore, we present a hybrid model that fits a MEM for animals with observed genotypes and a BVM 
for those without genotypes. The hybrid model is computationally attractive for pedigree files containing millions of 
animals with a large proportion of those being genotyped.

Application: We demonstrate the practicality on both the original MEM and the hybrid model using real data with 
6,179,960 animals in the pedigree with 4,934,101 phenotypes and 31,453 animals genotyped at 40,214 informative 
loci. To complete a single-trait analysis on a desk-top computer with four graphics cards required about 3 h using the 
hybrid model to obtain both preconditioned conjugate gradient solutions and 42,000 Markov chain Monte-Carlo 
(MCMC) samples of breeding values, which allowed making inferences from posterior means, variances and covari-
ances. The MCMC sampling required one quarter of the effort when the hybrid model was used compared to the 
published MEM.

Conclusions: We present a hybrid model that fits a MEM for animals with genotypes and a BVM for those without 
genotypes. Its practicality and considerable reduction in computing effort was demonstrated. This model can readily 
be extended to accommodate multiple traits, multiple breeds, maternal effects, and additional random effects such 
as polygenic residual effects.

© The Author(s) 2016. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Two types of equivalent mixed linear models are used 
for whole-genome analyses in livestock [1]. The first 
type, which we refer to as marker effects models (MEM), 

includes random effects (α) of marker genotype covari-
ates (Mg) in the model [2, 3]. The second type, which we 
refer to as breeding value models (BVM), includes the 
breeding values of the animals, ug = Mgα, as a random 
effect that has a covariance computed from Mg [1, 2, 4–6] 
rather than from the pedigree.

It was shown that the BVM can be adapted for what 
is known as single-step genomic best linear unbiased 

Open Access

Ge n e t i c s
Se lec t ion
Evolut ion

*Correspondence:  rohan@iastate.edu 
1 Department of Animal Science, Iowa State University,  
Ames, IA 50011, USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-5821-099X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12711-016-0273-2&domain=pdf


Page 2 of 8Fernando et al. Genet Sel Evol  (2016) 48:96 

prediction (SS-GBLUP) that combines information 
from animals with genotypes and from those with-
out genotypes in a single BLUP analysis [7–9]. How-
ever, the SS-GBLUP analysis requires computing the 
inverse of G, which is the matrix of genomic relation-
ships of the animals with genotypes [8, 9]. When the 
number Ng of genotyped animals exceeds the number 
of markers, G is singular, but a full-rank matrix such as 
G∗ = 0.95G+ 0.05A, with A being the pedigree-based 
relationship matrix might be used in its place. Single-
step analyses based on the MEM do not require com-
puting G or its inverse [10]. Furthermore, Bayesian 
regression analyses based on the MEM are not limited 
to assuming a normal prior for α, which is implicit in 
SS-GBLUP; Bayesian regression models can accom-
modate various priors including the t distribution 
as in BayesA [3, 11], the double exponential distribu-
tion as in Bayesian LASSO [12] or mixtures of the t 
distribution or the normal distribution [3, 11, 13] as 
in BayesB or BayesC. However, the MME that corre-
spond to single-step MEM (SS-MEM) types of models 
contain dense blocks that correspond to the imputed 
genotypes of animals with missing genotypes [10], and 
those blocks can be large if many animals have missing 
genotypes.

Liu et al. [14] developed a single-step method based on 
the BVM with direct estimation of marker effects (SSME-
GBLUP). An advantage of that method over SS-GBLUP is 
that it does not require computing G or its inverse. Also, 
their method can be used for Bayesian regression mod-
els [14]. However, the MME for SSME-GBLUP contains 
expressions that involve the inverse of the pedigree-based 
relationship matrix, Agg , for the animals with genotypes. 
This is a dense matrix, and therefore a computational 
strategy was proposed to avoid computing its inverse but 
it requires solving a dense system of equations of order 
Ng within each round of Jacobi or pre-conditioned con-
jugate gradient (PCG) iteration for solution of the MME 
or within each round of MCMC sampling for Bayes-
ian inference with models such as BayesA or BayesB [3]. 
Equation (A1) in Legarra and Ducrocq [15] also present 
a set of similar MME with marker effects for genotyped 
animals and breeding values for non-genotyped animals. 
As with the MME in Liu et al. [14], the advantage of the 
MME of Legarra and Ducrocq [15] is that they do not 
require the computation of G or its inverse but require 
computing the inverse of Agg. Recently, in some livestock 
such as dairy cattle, Ng has increased towards a million 
or more, and thus, solving a dense system of equations of 
order Ng within each round of iteration will place a heavy 
burden on SSME-GBLUP in computing time and storage 
requirements.

The objective of this paper is to present computational 
strategies for whole-genome analyses based on the SS-
MEM that avoid storing large, dense blocks of the MME 
that involve imputed genotypes. First, we will show this 
for the MME given in [10]. Second, we will present what 
we refer to as a hybrid type model (HM) that uses a MEM 
for the animals with marker genotypes and a BVM for ani-
mals without genotypes. The MME that correspond to this 
model also has dense blocks that correspond to animals 
with missing genotypes. However, in Bayesian regression 
analyses based on this hybrid model, storing the dense 
blocks can be avoided even more efficiently than was the 
case for the MME given in [10]. Finally, we will present the 
computer storage and time required for a real application.

Theory
In most genomic analyses, the columns of the matrix Mg 
of marker covariates are centered to have zero expec-
tations. This ensures that the vector of breeding val-
ues, ug = Mgα, has a mean of 0. Centering Mg requires 
knowing the expected value of the marker covariates 
for founder animals. Often, these expected values are 
unknown, but can be incorporated into the model as a 
location parameter [10, 16]. However, to simplify our 
presentation without loss of generality we assume that 
Mg is a matrix of correctly centered marker covariates.

Marker effects model for single‑step Bayesian regression
As in Fernando et al. [10], a MEM for single-step Bayes-
ian regression analyses can be derived from writing the 
model equation as:

where the vectors and matrices for animals without gen-
otypes are denoted with a subscript n and those for the 
animals with genotypes with a subscript g. Thus, yn and 
yg are the vectors of phenotypic values, Xn and Xg are 
the incidence matrices for the fixed effects, β, Zn and Zg 
are incidence matrices that relate the breeding values of 
animals, 

[

Mnα + ǫ
Mgα

]

, to the phenotypic values, Mg is the 
matrix of centered marker covariates for animals with 
genotypes, Mn = AngA

−1
gg Mg, is the matrix of imputed 

marker covariates for animals with missing genotypes, 
α is the vector of random marker effects, ǫ is the vector 
of imputation residuals with null means and covariance 
matrix proportional to the inverse of Ann, the sub-matrix 
corresponding to animals with missing genotypes in the 
inverse of the matrix A of pedigree-based additive rela-
tionships, and e is a vector of residuals. The matrix of 
imputed genotypes can be more efficiently computed by 
solving the sparse system of equations [10]:

(1)

[

yn
yg

]

=

[

Xn

Xg

]

β +

[

Zn 0
0 Zg

][

Mnα + ǫ
Mgα

]

+ e,
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Depending on the prior used for α, Model (1) can be 
used for a range of single-step Bayesian regression analy-
ses, including single-step BLUP, BayesA, BayesB, BayesC 
or Bayesian LASSO [10]. Those models (1) and their cor-
responding analyses assume that the breeding values 
can be adequately explained by the marker covariates. If 
that assumption does not hold, a polygenic residual with 
a mean of zero and a covariance matrix that is propor-
tional to A can be included as an additional effect in the 
model.

The MME that correspond to Model (1) for BayesC 
with π = 0 are:

where X =

[

Xn

Xg

]

, Z =

[

Zn 0
0 Zg

]

, M =

[

Mn

Mg

]

, 

y =

[

yn
yg

]

, σ 2
α is the variance of marker effects, σ 2

g  is the 

additive genetic variance, and σ 2
e  is the residual vari-

ance. These Eq. (3) contain matrix-by-matrix products 
and matrix-by-vector products involving the dense 
matrix Mn of imputed genotypes. We will assume here 
that X′ZM,M′Z′X and M′Z′ZM are small enough to be 
stored in memory. Below, we present computing strate-
gies for calculations that involve Z′

nZnMn or its trans-
pose without storing these large matrices in memory. If 
the matrices, X′ZM and M′Z′X, are large, the computing 
strategies presented below can also be adapted for calcu-
lations that involve these matrices as will be done in our 
example application.

Computing strategies
First, we will discuss the calculations necessary to apply 
PCG to (3). Following this, we will discuss how to use (3) 
to obtain Markov chain Monte-Carlo (MCMC) samples 
of the location parameters of Model (1) from their full 
conditional distributions.

Preconditioned conjugate gradient iteration The PCG 
algorithm is widely used to iteratively solve the MME, 
e.g., [17, 18]. In each iteration of PCG, the left-hand-side 
of the MME (LHS-MME) is post-multiplied by a vector. 
However, the LHS-MME given in (3) contains two dense 
sub-matrices, Z′

nZnMn and its transpose, that may be too 
large for storage in memory; the remaining sub-matrices 
in LHS-MME can be stored in memory either because 

(2)AnnMn = −AngMg .

(3)















X′X X′ZM X′
nZn

M′Z′X M′Z′ZM + I
σ 2
e

σ 2
α

M′
nZ

′
nZn

Z′
nXn Z′

nZnMn Z′
nZn + Ann σ

2
e

σ 2
g





















β̂

α̂

ǫ̂






=





X′y

M′Z′y

Z′
nyn



,

they are not too large or because they are sparse. In each 
round of PCG, Z′

nZnMn needs to be post-multiplied by a 
vector q that has the same order as α and the transpose 
of this matrix by a vector s that has the same order as ǫ . 
The first of these products can be done without storing 
Z′
nZnMn in memory as follows. Post-multiplying both 

sides of Eq. (2) by q gives:

where x = Mnq and b = −Ang (Mgq). Note that for effi-
cient computation, the matrix Mg is first multiplied by 
q and the resulting vector is then premultiplied by the 
sparse matrix −Ang to get b. Solving the sparse system 
(4) gives the product x = Mnq without storing the large 
dense matrix Mn in memory, and premultiplying x by 
Z′
nZn gives the first product that is required for PCG. To 

obtain the second product, note that from Eq. (2),

Thus, the required product M′
nZ

′
nZns can be written as 

−M′
gA

gn(Ann)−1Z′
nZns. To compute this efficiently, first 

the product b = Z′
nZns is obtained. Then, solving the 

sparse system:

gives x = (Ann)−1Z′
nZns, where b and x have been reused 

to denote intermediate results in these computations. 
Next, x is premultiplied by the sparse matrix −Agn and 
the resulting vector is premultiplied by M′

g to get the 
second product that is required for PCG. The remain-
ing matrix-by-vector products for PCG can be obtained 
directly because these matrices are stored in memory.

We will now describe how these matrices and the right 
hand sides involving Mn can be computed in order to 
form the other elements of the MME without storing Mn 
in memory.

Consider computing:

without storing Mn in memory. Let m′
ni

 denote row i of 
ZnMn. Then, M′

nZ
′
nZnMn can be written as:

Thus, the matrix product M′
nZ

′
nZnMn can be computed 

without storing Mn in memory if each row of ZnMn can 
be obtained without computing the entire matrix. Rear-
ranging (2), row i of ZnMn can be computed as:

(4)
AnnMnq = −AngMgq

Annx = b,

(5)M′
n = −M′

gA
gn(Ann)−1

.

(6)Annx = b,

M′Z′ZM = M′
nZ

′
nZnMn +M′

gZ
′
gZgMg ,

(7)M′
nZ

′
nZnMn =

∑

i

mnim
′
ni
.

(8)m′
ni
= −e′iZn(A

nn)−1AngMg ,
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where e′i is a row vector with 1 in the ith position and 0s 
elsewhere, and the product e′iZn(A

nn)−1 can be obtained 
by solving the sparse system:

where b = Z′
nei. Note that the solution to (9) gives 

x′ = e′iZn(A
nn)−1, without having to invert Ann. These 

row vectors of ZnMn can also be used to compute 
X′
nZnMn as:

where xi is used here to denote the ith column of X′
n, 

which is the first term of

which is a product of Mn. Similarly, the right-hand-side 
vector M′Z′y can be written as the sum:

which is a product of Mn, and its first term can be com-
puted as:

where yi is used to denote the ith element of yn.
Note that computing m′

ni
 corresponding to row i of 

ZnMn using Eq. (8) can be done independently of its 
computation for any other row, and thus, the computa-
tions in Eqs. (7), (10), and (11) can be easily parallelized.

There are a number of approaches to compute m′
ni

 that 
can be used. One approach for solving Eq. (9) for n less 
than approximately ten million using a typical worksta-
tion computer is to obtain a sparse Cholesky factor of Ann 
and directly solve for each m′

ni
 using forward and back-

ward substitution. Software libraries exist for obtaining a 
Cholesky factor of large sparse matrices [19] using multi-
ple threads or general purpose graphics processing units 
(GPU). Once the factor is obtained, independent threads 
can be used to solve in parallel from a single memory 
copy of the factor. Note that the Cholesky factor of Ann 
may be denser than Ann, depending upon the nature of 
the relationships between genotyped and non-genotyped 
animals. For example, if non-genotyped animals com-
prise only non-parents, then Ann is diagonal and solution 
for m′

i is trivial. For larger linear systems with non-gen-
otyped parents where the Cholesky factor is too large, 
indirect solution using high performance methods on 
GPU is a practical alternative. The PCG algorithm paral-
lelizes well and performs efficiently on GPU.

MCMC sampling Gibbs sampling is a widely used 
MCMC method for inference with Bayesian regression 
models, e.g., [3, 20, 21]. One of the most time-consuming 

(9)Annx = b,

(10)X′
nZnMn =

∑

i

xim
′
ni
,

X′ZM = X′
nZnMn + X′

gZgMg ,

M′Z′y = M′
nZ

′
nyn +M′

gZ
′
gyg ,

(11)M′
nZ

′
nyn =

∑

i

mniyi,

tasks in these analyses is single-site sampling of the loca-
tion parameters from their full-conditional distributions. 

Let θ =





β
α
ǫ



 denote the location parameters in Model 

(1). Then, following [22], the full-conditional distribution 
for θi under BayesC with π = 0 is:

where ELSE is used to denote all the other parameters in 
the model and the vector of phenotypes, θ̃i is the solution 
to:

cii is the ith diagonal of the matrix C that denotes the 
LHS-MME given in (3), ri is the right-hand-side ele-
ment from (3) corresponding to θi, and c′i is row i of C . 
However, as mentioned previously, some sub-matrices 
of the LHS-MME given in (3) are dense and too large to 
be stored in memory. However, as explained below, the 
same strategy used to avoid storing these sub-matrices in 
PCG calculations can also be used here.

Consider computing the full conditional mean and var-
iance for θi = αj. Then cii, the ith diagonal element from C 

is obtained from the jth diagonal of B = M′Z′ZM + I
σ 2
e

σ 2
α

, 

which can be stored in memory. Similarly, ri − c′iθ + ciiθi 
is computed as:

where dj is element j of the vector

b′j is row j and bjj is the jth diagonal of B. We have already 
seen how the large, dense matrix M′

nZ
′
nZn can be multi-

plied by a vector such as ǫ without storing this matrix in 
memory, and this same strategy can be used here to com-
pute M′

nZ
′
nZnǫ. The full-conditional distribution for αj, 

under BayesC with π = 0, becomes:

where α̃j is the solution to:

The right-hand-side of this Eq. (13) is also used for cal-
culations that involve variable selection in BayesB and 
BayesC when π > 0 [21, 23].

Similarly, to compute full-conditional mean and vari-
ance for θi = ǫj, cii is obtained from the jth diagonal of B 

that now denotes B = Z′
nZn + Ann σ

2
e

σ 2
g

, and

θi|ELSE ∼ N

(

θ̃i, c
−1
ii σ 2

e

)

,

(12)ciiθ̃i = ri − c′iθ + ciiθi,

ri − c′iθ + ciiθi = dj − b′jα + bjjαj ,

d = M′Z′y −M′Z′Xβ −M′
nZ

′
nZnǫ,

αj|ELSE ∼ N

(

α̃j , b
−1
jj σ 2

e

)

,

(13)bjjα̃j = dj − b′jα + bjjαj .
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where dj is element j of the vector that now denotes:

The product Z′
nZnMnα is obtained as described for PCG 

calculations. Then, the full-conditional distribution for ǫj 
becomes:

where ǫ̃j is the solution to

Samples of model effects such as β ,α, and ǫ, or their 
linear functions that represent breeding values namely 
Mgα for genotyped animals or Mnα + ǫ for non-geno-
typed animals can be accumulated as sums and sums of 
squares to obtain posterior means and prediction error 
variances. Alternatively, samples of fitted model effects 
can be written to a file for post-processing.

Hybrid model for single‑step Bayesian regression
The large, dense matrix Mn appears in the MEM given by 
Model (1). This is avoided here by using a BVM for ani-
mals with missing genotypes rather than expressing their 
breeding values as the sum of the effects of their imputed 
marker genotypes plus their separate imputation residu-
als. The advantages of the MEM such as allowing for 
alternative priors for marker effects are retained by still 
fitting a MEM but only for animals with genotypes. The 
hybrid model equation is:

with un = Mnα + ǫ, and thus, this single-step hybrid 
model (SS-HM) is equivalent to the SS-MEM (1). To con-
struct the MME for this model (14), we need to invert the 
covariance matrix corresponding to the random effects, 
namely � = Var

([

α
un

])

. That inverse can be obtained 
by first writing the random effects of (14) as:

Then, � can be written as:

and its inverse can be obtained as:

ri − c′iθ + ciiθi = dj − b′jǫ + bjjǫj ,

d = Z′
nyn − Z′

nXnβ − Z′
nZnMnα.

ǫj|ELSE ∼ N

(

ǫ̃j , b
−1
jj σ 2

e

)

,

bjj ǫ̃j = dj − b′jǫ + bjjǫj .

(14)

[

yn
yg

]

=

[

Xn

Xg

]

β +

[

0 Zn

ZgMg 0

][

α
un

]

+ e,

[

α
un

]

=

[

I 0
Mn I

][

α
ǫ

]

.

� =

[

I 0
Mn I

]

Var

([

α
ǫ

])[

I M′
n

0 I

]

=

[

I 0
Mn I

][

Iσ 2
α 0

0 (Ann)−1σ 2
g

][

I M′
n

0 I

]

,

Now, using the result 
Mn = AngA

−1
gg Mg = −(Ann)−1AngMg [10], in the off-

diagonal blocks of the second term, �−1 becomes:

and then the MME for the HM (14) can be written as:

where Q = M′
gZ

′
gZgMg + I

σ 2
e

σ 2
α

+M′
nA

nnMn
σ 2
e

σ 2
g
. These 

equations involve Mg rather than Mn, except in Q, the 
diagonal block that corresponds to α̂, which has dimen-
sion equal to the number of marker covariates, often less 
than 50,000, regardless of the number of genotyped or 
non-genotyped animals. Furthermore, we assume here 
that X′

gZgMg and M′
gZ

′
gXg are small enough to be stored 

in memory.
The only difference between Eq. (15) and the MME 

given by Equation (A1) in Legarra and Ducrocq [15] 
is in Q. Using the notation in this paper, the matrix 
expression M′

nA
nnMn that is present in the Q is 

expressed as M′
g (A

gg − A−1
gg )Mg in that paper [15], 

which involves the inverse of Agg that is difficult to 
compute. However, these two expressions are iden-
tical because (Agg − A−1

gg ) = Agn(Ann)−1Ang and 
Mn = −(Ann)−1AngMg.

Computing strategies 
The matrix Mn of imputed genotypes does not appear 
alone in the MME (15), but the MME involve rather 
the matrix product M′

nA
nnMn. However, M′

nA
nnMn 

can be computed efficiently without needing to store 
the entire Mn matrix in memory, in situations when the 
number of genotyped animals is less than the number 
of non-genotyped animals. To do so, first from Eq. (5) 
M′

nA
nn = −M′

gA
gn. Next, column i of Mn is obtained 

by solving the sparse system (2) for column i and 

�−1 =

[

I −M′
n

0 I

]

[

I 1

σ 2
α

0

0 Ann 1

σ 2
g

]

[

I 0
−Mn I

]

=

[

I 0
0 0

]

1

σ 2
α

+

[

−M′
n

I

]

Ann 1

σ 2
g

[

−Mn I
]

=

[

I 0
0 0

]

1

σ 2
α

+

[

M′
nA

nnMn −M′
nA

nn

−AnnMn Ann

]

1

σ 2
g

.

�−1 =





I 1

σ 2
α

+M′
nA

nnMn
1

σ 2
g
M′

gA
gn 1

σ 2
g

AngMg
1

σ 2
g

Ann 1

σ 2
g



,

(15)













X′X X′
gZgMg X′

nZn

M′
gZ

′
gXg Q M′

gA
gn σ 2

e

σ 2
g

Z′
nXn AngMg

σ 2
e

σ 2
g

Z′
nZn + Ann σ

2
e

σ 2
g

















β̂

α̂

ûn



 =





X′y

M′
gZ

′
gyg

Z′
nyn



,
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premultiply it by the sparse matrix Agn. This gives col-
umn i of the product AgnMn, which has the same size 
as Mg. The columns of AgnMn can be computed one at a 
time or in parallel. Premultiplying AgnMn by −M′

g gives:

This needs to be done only once to set up the MME 
and has order equal to the number of marker genotypes 
which is often much less than the number of genotyped 
or non-genotyped animals.

These MME also contain two large, dense sub-matri-
ces, namely AngMg and its transpose. As described pre-
viously, in the PCG iteration and in the Gibbs sampling, 
these matrices need to be post-multiplied by a vector. 
When the number of genotyped animals is sufficiently 
smaller than the number of non-genotyped animals, 
these matrix-by-vector products can be obtained more 
efficiently by storing in memory the sparse matrix Ang 
and the dense but smaller matrix Mg rather than their 
product AngMg. In each round of PCG iteration or Gibbs 
sampling, the matrix-by-vector product AngMgq, for 
example, is obtained by first multiplying the dense matrix 
Mg by the vector q and then premultiplying the result by 
the sparse matrix Ang. The corresponding calculation for 
the MEM required solving sparse systems of equations 
given by Eq. (4) in each round of PCG or Gibbs sampling, 
in addition to the two matrix-by-vector multiplications 
that are also required here.

In situations when the number of genotyped animals 
exceeds the number of non-genotyped animals, using SS-
MEM that explicitly involves Mn in off-diagonal blocks 
may be competitive with SS-HM.

Application of hybrid model
An example dataset from the American Simmen-
tal Association is used to demonstrate the comput-
ing effort to obtain PCG samples from (15) and the 
relative computing effort to obtain MCMC samples for 
the MME of (15) compared to (3). The vector of phe-
notypes comprised of 4,934,101 birth weight observa-
tions; there were 6,179,960 animals in the pedigree file; 
31,453 animals in the pedigree file were genotyped and 
23,290 of those had birth weight observations. After fil-
tering marker covariates for low minor allele frequency, 
40,214 marker effects were included in the model. There 
were 399,036 fixed effects, including the herd-year-
season effects defined in the same manner as in the 
routine national evaluation. To keep this presentation 
that compares the computational effort involved in fit-
ting (3) and (15) simple, our application was limited to 
a single trait ignoring maternal genetic and permanent 
environmental effects. Furthermore, we did not include 
a comparison with SS-GBLUP since that model cannot 

(16)−M′
gA

gnMn = M′
nA

nnMn.

accommodate mixture priors for marker effects as used 
in this example.

The analyses were performed using a workstation built 
on an ASUS X99E WS motherboard, a Xeon E5-1650V3 
3.5  Ghz processor overclocked to 4.2  Ghz, 128  GB of 
DDR4 ECC RAM at 2133  Mhz and four NVidia Titan 
X GPU, with 9TB of workspace in a RAID5 configura-
tion comprising four SATA disks. The operating system 
was Ubuntu 14.04 LTS, and the BOLT software package 
(http://manual.thetasolutionsllc.com/IntroBolt) built 
with the CUDA Toolkit 7.5 was used.

The vector y, and matrices X,Z,Ann,Agn,Ang , and Mg 
were built from data files using BOLT tools. Ordering the 
pedigree file, construction of A−1, including calculation 
of inbreeding, and its partitioning into blocks represent-
ing genotyped and non-genotyped animals took 3  min 
and required 1.0 Gb of disk storage and 302 Mb of mem-
ory. While A−1 was being formed, y, X and Z were cre-
ated in about 10 s and required 38, 78 and 83 Mb of disk 
storage. When stored in memory, they required 19.7, 59.2 
and 59.2 Mb respectively. The matrix Mg required 4.2 Gb 
of disk and memory when stored in single precision.

The matrix product X′
gZgMg and its transpose M′

gZ
′
gXg 

were not explicitly formed, instead computations involv-
ing those terms were done in parts as described previ-
ously in this paper. The sparse Cholesky decomposition 
of the 6,148,507 order Ann matrix took just under 4 min. 
The imputation of Mn, using forward and backward 
substitution with the Cholesky factor, and its premul-
tiplication by Agn took just over 35 min using eight par-
allel processes. The creation of the matrix products 
M′

gZ
′
gZgMg and M′

nA
nnMn each took about 20  s using 

2  GPU after obtaining the imputed values and required 
6.2 Gb of disk storage and memory when stored in single 
precision.

For the analysis using Eq. (15) the PCG solution of the 
MME stored in double precision took just under 40 min, 
using a single GPU and diagonal preconditioning. 
Because the PCG was performed in double precision just 
under 18 Gb of memory was required to store all the sub-
matrices comprising the left-hand side. The right-hand 
side required 53Mb of memory. Additional memory for 
work space of approximately 4 Gb was required for PCG. 
Convergence was determined by comparing solutions 
from every 200 rounds of iteration to solutions from 5000 
rounds. By 1800 rounds the correlation and regression of 
solutions with those from 5000 rounds were very close to 
one (.99 each). The PCG residual value was near 1.1e−05 . 
The PCG solution does not give the posterior mean of 
the marker effects for a model with mixture priors, but 
was used to define starting values for MCMC sampling of 
all the effects in the MME, but using a mixture prior for 
marker effects.

http://manual.thetasolutionsllc.com/IntroBolt
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Starting with the same PCG solution but different ran-
dom number generator seed values, using 4 parallel chains 
each drawing 10,500 samples on its own GPU took 70 min 
to obtain a total of 42,000 Gibbs samples, using π = 0.95 
and known variance ratios in Eqs. (3) and (15). Each of the 
parallel Gibbs Sampler jobs shared a single copy in shared 
memory of the left-hand-side matrices, reducing the 
memory requirements and reading from disk.

Experience has shown that 40,000 samples after burn-
in is sufficient to obtain posterior means of breeding 
values that are stable for the hybrid model and MEM. 
However, we confirmed this by sampling four additional 
parallel chains each with length 250,000 samples after a 
5000 sample burn. The purpose of these very long chains 
was to confirm that the 40,000 length post-burn-in chain 
was sufficient, thus supporting the timings provided here 
to achieve useful results. The correlation of the poste-
rior means of the breeding values for genotyped animals 
and non-genotyped animals from the aggregated 40,000 
length chain was .99 and 1.0, respectively, with the pos-
terior means from the aggregated 1,000,000 length chain. 
However, a chain longer that 40,000 may be needed to 
accurately estimate PEV for animals with intermediate 
to low accuracies. Because only off-diagonal blocks of 
the left-hand side are used in the GPU computation for 
updating the right-hand-sides for each vector of single-
site Gibbs samples for β, α or un, and the Gibbs samples 
were obtained using single precision, the entire left-hand 
side without the diagonal blocks fit on the GPU. This 
strategy also allowed the GPU to asynchronously update 
the right-hand-side while the next set of effects was being 
sampled using the CPU.

The Gibbs sampler was performed using single preci-
sion for storage of the left- and right-hand sides, requir-
ing approximately half as much memory as the 18  Gb 
required for the PCG which was performed in double 
precision. Additional memory for work space of approxi-
mately 2  Gb was required for the Gibbs sampler. The 
total time required to assemble the left- and right-hand 
sides, after the matrix components were formed, was 
just under 3 min. The total job time for all steps, starting 
with the raw data, to obtain posterior mean estimates of 
the MCMC samples of marker effects and MCMC sam-
ples of breeding values of the genotyped and non-geno-
typed animals and their prediction error variances (from 
the posterior variances of their MCMC samples), took 
approximately 3 h.

The memory required to store Mg is determined by 
the product of the number of animals genotyped and the 
number of marker covariates. A compressed dense format 
(CBRC) allows this matrix to be 32 times larger than with 
the double precision version used above, but increased 
the computing time for PCG in this example by 25%.

An additional Gibbs sampler run was made with the 
MME of (3) that used Eq. (4), which requires within each 
iteration, forward and backward solves using the factor of 
Ann. The time required to obtain one sample of all effects 
was 2.0 s. Using the MME of (15) required only 0.44 s for 
each sample of all effects. Accordingly, the hybrid model 
has considerable advantage over that of [10]. These two 
computing approaches should give the same estimates of 
breeding values as they represent equivalent models as 
explained in the theory section. The correlations between 
the MCMC-derived estimates of breeding values between 
the two approaches were 1.0 for non-genotyped animals 
and over 0.99 for genotyped animals.

Computational performance of Eq. (15) was compared 
ignoring the genotypes on approximately half the geno-
typed animals to demonstrate the effect of the proportion 
of genotyped animals on computing time. This reduced 
dataset left 15,694 animals with genotype information of 
which 11,683 had a birth weight observation. The total 
number of animals in the pedigree file and number of 
observations on birth weight were the same as before. 
After filtering the marker covariates for low minor allele 
frequency, 40,211 marker loci remained. The time nec-
essary to complete the PCG solver was about 3 min less 
than the 27 min needed for the larger analysis, which had 
approximately double the number of genotyped animals. 
The reduction in time necessary to complete the PCG 
solver was primarily due to reductions in time used for 
matrix multiplications involving the smaller matrix Mg. 
The time necessary to obtain the 42,000 Gibbs samples 
was reduced by about 20% to 1 h. Imputation required 24 
instead of 35  min. Creating M′

gZ
′
gZgMg and M′

nA
nnMn 

required just under 20 s, the same as before. Thus, dou-
bling the proportion of genotyped animals increased the 
total job time from about 2.5 to 3 h.

Discussion
Fernando et  al. [10] introduced a single-step MEM that 
is equivalent to SS-GBLUP in the special case when 
all markers are fitted in the model. It has the advan-
tage compared to SS-GBLUP that it can accommodate 
a wider class of models with different priors including 
mixture distributions. However, the MME correspond-
ing to that model includes large, dense off-diagonal sub-
matrices, Z′

nZnMn and its transpose, between the blocks 
for marker effects and the imputation residuals. These 
sub-matrices are prohibitively large from a storage and 
computational viewpoint when there is a large number of 
non-genotyped animals. We have shown here that these 
limitations can be circumvented by representing those 
sub-matrices as:

−Z′
nZn(A

nn)−1AngMg
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and its transpose, and by doing matrix multiplica-
tion in parts. This is possible for large problems but 
requires repeated solutions of an equation of the form 
Annx = b. A similar solution is used in every iteration 
of SS-GBLUP when an APY inverse is exploited [18]. 
Nevertheless, the model in [10] is practical for realistic 
problems as demonstrated. It does not require approxi-
mations [18] as in SS-GBLUP when large numbers of 
animals are genotyped.

Here we have introduced a single-step HM that is 
equivalent to the MEM in [10] and in a special case 
equivalent to SS-GBLUP. The HM includes marker 
effects and breeding values, and the off-diagonal sub 
matrices comprise the term AngMg . Computations 
that involve this sub-matrix can be done efficiently in 
parts without having to solve equations of the form 
Annx = b.

The off-diagonal sub-matrices in both these models 
are the same size, the lower off-diagonal matrix being of 
the order of the number of non-genotyped animals by 
the number of markers. In SS-HM, this sub-matrix has a 
more convenient structure for storage and computation 
than is generally the case for SS-MEM. We have demon-
strated its practicality and its considerable reduction in 
computing effort. This model can be readily extended to 
accommodate multiple traits, multiple breeds, maternal 
effects, and additional random effects such as polygenic 
residual effects.
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