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 NUCLEAR MAGNETIC MOMENTS AND
HYPERFINE ANOMALIES OF Rel86, Re188 AND Am241, Am242

Lloyd Armstrong, Jr.
Lawrence Radiation L.aboratory
University of California
Berkeley, California
ABSTRACT

The method of triple resonance in an atomic beam has been used
to measure the nuclear moments of two isotopes each of rhenium and

americium, These moments were found to be

b (Re'8) = +1.728(0.003) nm
pp(Re188) = +1,777(0.005) nm
py(Am24l)= +1,58(0.03) nm

p.I(AmZ42) = +0.3808(0.0015) nm.

All values were corrected for diamagnetic shielding. These values of

the moments lead to anomalies of
186A188

10.1(0.4)%

for Re, and

241,242

H

+1.7(2.0)%

for Am.

In addition, the hyperfine structures of Re and Am were calcu-

. lated relativistically. It was found that relativistic effects alone ex-

plain the hyperfine structul‘e of Re, but that both relativistic effects and

core polarization are needed to explain the hyperfine structure of Am,
The nuclear moménts of Re and Am were analyzed by means of

the Nilsson model. Excellent agreement was found between theorical

and experimental values with the use of quenched g factors.



. I. INTRODUCTION
’I‘his paper describes measurements of nuclear magnetic morn_ehtsl
made on two ,rh,éniurn and two americium isotopes. These four isotop.es.
have much in 'c.ommon‘: Both Re and Am have electronic ground states
with zero orb{tal angular momentum, and all four isotopés lie in regions
best described by the collective model. |
" The measurements were all made by the method of triple reso-
nance in an atomic beam. Prior to this work, this method had been
used on stable isotopes only. These measurements showed that the
technique was efficient enough to be used on beams of radioactive nuclei,
which are generally very much less intense than beams of stable nuclei.
This paper also describes in detail two methods of calculating
relativistic hyperfine structures. The part of this work concerning Re
has already been published; 1 this Re paper was one of the first in which
relativistic effects in heavy atoms were considered, and the importance

of the effect was clearly shown.
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II. THEORY

A, Fine Structure

The nonrelativistic Hamiltonian for a noninteracting atom in a
field-free region is given to a good approximation by
= piz Zez e‘Z ’
3 = — - + Q(r.i) Ei' s, + X = ] + Schfs. (1)

=g tem T i>j  Tij

In this expression, fi is the distance from a (point) nucleus to the i‘gh
elec’_tron, TS is the distance between the i_th‘ and ;]':th electrons, and
g(ri) .Ci s is the interaction energy of the spin dipole moment of the
ith electron with the field produced by its own orbital motion. There
are also contributions to JC from the interaction of the orbital motions
of two electrons, the interaction of the spins of two electrons, and
interactions between the spin of one electron and the orbit of another;
these contributions are small and are usually neglected.

The expression in brackets represents the inteﬁaction of orbital
electrons with a point nucleus, and gives rise to the atomic fine struc-
ture. The term Gchfs’ the hyperfine-structure Hamiltonian, contains
the corrections necessary to explain the interaction of the orbital
electrons with a nucleus having a finite volume. This term is much
smaller than the fine-structure Hamiltonian and can be considered a
perturbation.

As the fine-structure Hamiltonian is itself too complicated to
allow an exact solution, the usual procedure is to solve instead the

equation

P
el =) S suE). @)

Here U(ri) is the spherically symmetric avérage of the other charges
at the position of the ith electron. For good choices of U(ri), the
remaining term V = §€ - 3¢' will be small and can be treated by
perturbation theory. Not only is ' separable into parts containing
only the coordinates of a single electron, but these parts are further

separable into radial and angular parts. The wave function that is a

4
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solution to JC' = E' . can therefore be given by a product of single-

particle wave functions, each having the form

2

b = R (n2)Y  (6,¢.) (3)

i
(but see Sec. II.D).
For light atoms, eZ/riJ. >> g(ri)£i° S and the latter term can

be considéred a perturbation, We can define S = Zs; and L = = li,
: i i

the total spin and orbital angular momenta. Since ez/ri. does not

depend on the particle spin coordinates, S and ez‘/rij obviously commute.
' . 2

Consideration of the action of a typical component L on '~ X e /ri.,

D J
€. 8> 12)

1/2

= z {ez/riijX} : ‘ (4)
i\ | .

shows that L. also commutes with = ea/rij, making both L. and S
i>j _ :
"good'" quantum numbers to a high degree of accuracy. Because ¥C
is -spherically symmetric, its eigenvalues cannot depend on ML or MS’
but only on L. and'S. The eigenvalues of ¥ are therefore
(22+1)(2s+1)-fold degenerate; the corresponding eigenstates comprise

a term. The perturbing term Z g(ri)fi- s, does not commute with
1

either L or S, but does with their vector sum T=T+ § This
latter statement can be easily verified by looking at the commutator

of any component of J with Ii- S.; €.
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“

The perturBation ? §(r.1)£i~ s; therefore splits a term into multiplets
of degeneracy 2J+1 labeled by L, S, and J. This coupling scheme is
called LS or Russell-Saunders coupling.

-At the opposite extreme, 2 g(ri)ii'si >> 3 ez/rij, and the
£} L&

2 and s values for each electron couple to a j véﬁue, with the j's
then coupling to J, i.e., T = ? —_]’1 This is called j-j coupling.

In most actual situations, neither LS nor j-j coupling can com-
pletely explain the results. That is, neither ez/rij nor g(ri)ﬁ_i- s, 1is
overwhelmingly larger than the otier, and I, S, and j can no longer
commute with the Hamiltonian. J, however, is a good quantum m;rnber,
since it commutes with both perturbation terms.

Addition of an external magnetic field destroys the spherical
symmetry of the atomic environment, replacing it with a two—dirﬁen—
sional sym_mefry. The atomic states must therefore transform ac{
cording to R2, and be labeled by projection values along the directibn
of the magnetic field (z direction). Because R2 has only one-dimensional
representations, the degeneracy of the eigenvalues is completely lifted.

" The interaction of an atom with an external field is described
by the Hamiltonian |
1

3 g™ Mo (L HEg)H . | (6)
The term Z}Cixt is not diagonal in the LSJMJ system, but is in the
LMLSMS

interaction dominates (for the LS coupling case), and L and S still . o

system. For small values of H, however, the spin-orbit

couple to J to a high degree of accuracy. In this case
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J(J+1) + L(L+1) -S(S+1)
2J(J+1)

<LSJMJ| - gL, + gg)H, 'LSJMJ> = -1y {

J(J+1) +S(S+1) - L(L+1)

+ g } M_H
=S 2J(J+1) J oz

= - gyt My (7)

B. Hyperfine Structure

1. Nonrelativistic Treatment

Thus far we have neglected the effects of the nucleus on the fine
structure, 1i,e,, Jchfs' As mentioned above, these‘ effects are due to
the finite size of the nucleus., For instance, if the nucleus is not a
point charge at the origin, we must express the Coulomb interaction
between an electron and the nucleus as an integral over volume elements

of the electron and the nucleus, i.e.,

~
P.P
/"'- > = en .
\JCE | o dr dT, (8)
To /T, ] Te —rnJ

1

where Pe = - qu* (e) U(e), Py = eQJ*(n)qJ(n). If we assume that ) >ro
expand 1/r in terms of Legendre polynomials, and use the spherical

harmonic addition theorem, this becomes

-
B < m ! 4 Pe K
<JCE> 8 Xai_ S SRFT TRIL L -m (0e?e)d7e
K m =

[ [ & K UK
X[ j 2K+ Ph Tn Ym (enq)n)dTn _ (9)
JT



.OTY

Ky = z ofe). F¥m) .
K

(10)

‘The terms_QK and Fooare spherical tensor operators of rank K operating

on the electronic and nuclear coordinates, respectively.

(9) and (40) shows that they are given by

QK - 40 = e v
m T fZRF TRA
. .
and
K _ 4 K K
Fm - ¢ J7RF1 'na In(en

If we consider only stationary nuclear and electric-current

distributions, that is, V. j = 0, then we can write

[N
H

cVv n X Mn

and

Tee
[}

cV XM .
e e

Here Me and Mn are, like B and H, pseudovectors. Ramsey has

(11a)

(11b)

(12a)

(12b)

shown that under these conditions we can write the magnetic interaction

<3_CM> =+ %C] Aj dr

as:

r

(5¢ \p :;

i
F o x|
S e n

v-M Vv M
e e n m

dr dr .
e n

(13)

This has the same form as (8); by the same procedure used in treating

the Coulomb interaction we obtain

Comparison of
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5y = E MK(e)° NK(H) ' (14)
!K ! .
where
' v .M
K [ 4x e ¢ K
My = [ 2r¥ TR Yin(0e0) (t5)
e N
and
K . 47 . K K
Nrn »\/2K+1 (vn Mn) “n Ym (9n¢n). ep)

The perturbing term Schfs = ZCM + SCE ‘does not commute with
either J or I, the nuclear spin, but does with their vector sum F, This

statement can be proved by considering the effect of any component of
F on the term '

m K K-
Y 0T Y 06) Y (0,6),
m

i, €.,

m K K
P 0T YR 0,6, YE 0, 4)
m

- m _K K .
S EF HF) Y 0T Y (060) Y (0,4

~

m

- _ < m K K
S (N W S 1_)2; (-1) Y (6,6,) Y_._(6_¢ )
m

_ m K K,
- [z 0T Y0, Y_m(9n4>n)]Fx. (16)
m : '

The 2J+1 degenerate fine-structure levels are therefore split into
21+1 or 2J+1 (whichever number is smaller) levels by the hyperfine-

structure interaction. The new levels are 2F+1 degenerate in the

absence of an external field.
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The interaction of the nucleus with an external field is given by
ZCZ = g p.I- H= -u. H, The total interaction of the atom with an
ext ™0 I 1 >
external magnetic field is then given by JCext :J-Cext + Jcext
-8 ko Je H _‘gIHOI' H., This term does not commute with F, but as in
the fine-structure case, F is an approximately good quantum number

at low fields. Therefore, at low fields the effect of the magnetic field

is to remove the 2F+1 degeneracy of the eigenvalues through the inter-

action
.<IJFMl$CextlIJFM> = -gpi HM (17) -
where
_ F(F+1) £ J(J+1) - I(I+1) F(F+1) + I(I+1) - J(J+1)
8p ~ B3 TR (R &y ZE(FT1) .

In the high-field region (nuclear Paschen—‘Back), F is no longer a good
qu.ahtum mirribe‘r and eigenstates are best labeled by IMIJMJ.
+ Matrix elements of operators having the form of (10) and (14)
‘are eé.sily taken in a representation where I and J couple to
' F [(IJFM) representation]:

- K, K| mrae\ = z pAIHE '
Z\IJI‘M[Q FU 1R M) (=1)° B Sy
K . : K

Xai'}' LR lalley (aie

: : (18)
The 6j symbol shows that the series breaks off for either J+J <K
orI +1' <K, | .

» The total Hamiltonian 3{’T =3¢ + gcext is invariant under 1, the
parity operator, and therefore the eigenvectors of JC must also be
eigenvectdi‘s of w. In addition, <LIJ|0 [¢> must have positive parity,
since integrals over all space cannot depend on axis inversion, Be-
cause  has a definite parity, qJZ will have positive parity; 6 must

therefore have positive parity for <xp]6 1L|J> to be nonzero.
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-9.

Operators Q.K and FK‘both have the parity of ,YK, that is, (-1)K.
Therefore, only K even values are allowed in the electric case. Since
M (M )is a pseudovector, V.M (V- M ) is a pseudoscalar having

e n K K e " K K+1

parity -1, and M" and N have the parity of (-1)Y", or (-1) .
Therefore, only K odd values are allowed in the magnetic case.

The first allowed electric interaction is Qoo F_O, which is exactly
the Coulomb term given in (1). The second allowed term is QZ- FZ,

the electric quadrupole term. By defining

Q = (2/e) (11]Qg [1r) | (19a)
aj = -(2/e) <JJ[FS|JJ> o (19b)

and using (18), one obtains -

—eZqJQ[3K(K+1) - AL(I+1) T(T+1)]

3

(iJFM]QZ-FZ [IFM) =
| B1J(21-1)(27-1)

‘ : (20)
where K = F(F+1) - I(I+1) - J(J+1). v

The term Q is, of course, the nuclear quadrupole moment
(or —ilQ33), and qy is the gradient of the z component of the electric
ﬁeld at the origin, +<8EZ/8 z> . One generally defines

B = -e“q Q. @2

The first allowed magnetic interaction is M1'N1. Consideration

of the classical interpretation of I\/I1 and N1 shows that

[V +m cos6 f[j X{(-r )
<JJ[M(1)|JJ\ =/ £ ar - 1| DXy dr
/ rZ e CJ r3 e
. € e
= - [B4(0)],, | (22)

and

{miNgliy = o / (rxi), dr = (u)_ . o (23)
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Using (18), (22), and (23), we can then write

}'LIBZ

I.J. ' 24
=5 (24)

<IJFM.1M1-N1 [1JFM> = -
One generally defines the rna.gnetic dipole constant A as

I‘LIBZ
1J

A= - (25)

An expression for the magnetic field at the nucleus can easily be
‘derived for a single nonrelativistic electron in a central field. The -
magnetic field due to an electron with position T, velocity v, and

—
angular momentum {£. is
- —»
B o= vxl-r) . _eh
cr

The field due to a dipole is

A ( 3“rr>= 0[? ]
\

- peama—s

S 3

T

The total field is then

2p :
— 0 - —> 35 -
B = - - {f g Szr r} . (26)

r

The last term on the right can be further simplified into

: , 1
___7_.3(3; 2T - 3s-clyct - o33 [(sci)oci}

5' | — - 1
-3 Z (li 1 0;} NZEFL 3 {(cicﬂKs}
K

il

g‘- N10 (s C2)1,
where we have used in the last step

‘- ‘ ‘/
[ Ky CKZ) K3 K3 J : 1\K1 K, K3>. K3

C (-1) 2 N N

®

-
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- The z component of (26) then becomes

R

y S 2py , “ 2
) 0 S

The above d1scuss1on is valid only for the case of r, >T

however, s electrons have large values of |¢l at the origin and.

‘thereby violate this restriction. This density at the origin does not

affect the electric quadrupole moment, since s electrons have

spherically symmetric densities and therefore cannot contribute to the

- quadrupole interaction;_ Z’E‘errni3 showed that in the magnetic dipole

interaction there was a ''contact" term due to the nonspherical nature
of the s electron spin densities at the nucleus: | '

167

AL — g o’¢o|

(28a)
for a single s ‘electron. This term is derived in Sec. II. B.2. When

more than one s electron is involved, or when electrons of different

£'s also coﬁtribute to J, the proper form for (28) is
2
167 0 Z
A 5y 3 (39]2 5,5 8037 ) . (28b)
: _ i

2. Relativistic Treatment

The Hamiltonian for a single relativistic electron in a central

field is

, _— .
JHyR) = (arcp + fme™ - eV ) ¢ = Ey, (29)
where
/1 0 /o &)
ﬁ:io_i) s a:{_* 0,,andO“Pauhsplnma’crlces.
\ ) “\o o/

This is the relativistic equivalent of (2). Here ¢ 1is a column

matrix of four rows, and can be separated into

Y
i

Where in the nonrelativistic limit ¢ goes to zero and  is the non-

relativistic wave function. S_olution's. to (29) are



~-12 -

Lpe ' '
Y, =<’Z_Jm I=f+1asj=4%1/2
meoA\® gm /. :
- F(r)
l’bﬁjm T Tr Yk’jm (31)
& - iG(r)
£im r £im’
where
- < ¢ L b 1/2
Y, = ) 2 \ NZTFL Yoy
jm L. m, m_ m , m, “m
m,m s/ S
£ s

Equations for F alfld G can be obtained by solving (29) using (31), and

then using
. .
a-p =a, [Pr t— }

r{(1 +o-L)
where a_ = a-°7r,
: T
and (0- r)Y.ﬂ‘jm Tim
(G'T)YI. :-Yﬂjm -
This gives
d K> 1 2
—— - —|F= —{({mc“"+E+eV_ )G
(dr T “he : c (32)
[d K) 1 2
\EHT+ ?/ G = s (mc™ - E -eVC)F,
where

(1+0-L)=K¢§, (1+0-L)b=-Ko.

We see from the above equations that £

is no longer a good quantum
number for individual electrons, but that j is.



_ -13-
y v ' As in Sec. II. A, our perturbing Hamiltonian is given by
Jop (R)-1C o(R) = [ar (cp + eA) + pme” —eV]- 5y (R) = -e(V-V ) + ea- A,
(33)
* We see that the electronic terms, those deriving from a scalar potential,
have exactly the same form in (29) as in (1). We therefore would.expect
A that the electric quadrupole operator is the same in the relativistic as
in the nonrelativistic case. The interaction with a veétor potential is,
however, quite_different, and we should expect the operators for the
magnetic moments to _bé changed in going from the nonrelativistic to
the relativistic. Schwartz4 has shown that ea< A can be expanded in a
series of the same form as (14). The general derivation is rather
complicated, but an expression can be derived for the particular case
of the dipole term, - .
We saw in the previous sécfion that the nucleus has a magnetic

dipole moment Hp this produces an A given by

pp X T
Since a = 3 o , we are interested in terms of the form eg-A
o 0
e X x
. = - I - . rxo
eg*A = eC —5— T ey 3
T T
1 C 1 1
= epye ————Z——C X0 - —ieNZ2 EI' (——Z——C ) . (35)
r . r .
We can equate this with the nonrelativistic dipole 6perat0rs
1 1
> - A —_ C'o
—HI-BJ——le’\/ZHIo( 2)
r
{w or
. S | .
B -ie vz &0 (36)
‘. . T

A typical matrix element of the dipole interaction will then be



-14-

| o o - /F:(r)Y
' N\ I F@) o fiG() 10 ed- Al r “4'j'm'
<¢jmleajA|+J"ml> f( T Y,Qjml( T YZJm] egs A opliG! Y-
. . ' . \T . fljlml
X dT
S A 1G(x) |
=i Yﬁjm|e0' Al = YE'j' m' | dr
JL , J
o F' (r) ]
T am e A5 R
e (el B )] ES
= +uNZ e {tim[(C o) | 2! it m) > dr
, ' - Jo t
| o a W g
i NZe{Bim]clo)g e it mY = dr
i _ /
. 0 T
-4 \[2? 4yj-mte! {j 13\ 1 I NI
= pre (-1 \-m m_'/) _% 1 _% J _J
o0 [ﬂw
X [ FGZ' dr + (’ FYZCY dr . (37)
-0 ro 0 r . ‘

As stated above, the electric quadrupole operator is the same
in the relativistic case as in the nonrelativistic.

We therefore wish
to evaluate '



) . . /'/. . . v
:E (_1)J-m+J'+3/Z {J ?) ' ><J 3 Jl'\/ NZjF1 ,_\[th+1
e . . —E‘ . ! ’

» ” l‘ 1 :
% <%+%G3-)dr. - (38)

Many times eigenstates are expanded in terms of an Emﬂsms
wave function, It is therefore of interest to calculate matrix elements
in this scheme. Since £ is not a good quantum number, we must first

expand ﬁ‘m£

sm_ wave functions in terms of ff'sjmj wave functions.

gmyem )= G |¢ j=et3m) + Cyle =2-2m)

where C1 and C2 are Clebsch-Gordan coefficients. For simplicity,
we restrict ourselves in what follows to corifi'gurations of particles
having only one angular momentum, that is, the electronic properties

of the atom arise from the configuration (ﬂ‘)N.‘ Then

<£m£sms |6 |em? gsm’ s> =C,CYy <£j+m‘lt9 'Rj,,_ m'> + CZ‘C'Z (:fj_mlle lﬁj_m't}.

+C,CY (im0 m) +C,C {2 ml6 |25,

o | (39)
where + indicates the (j:£+%) state, -~ the (j=£-%) state.
We can now combine (36), (37), (38), and (39) to get
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’ | | F.G,

- ) 2m(g + 1) Sy
<£m£sms[BJZ lfm'zsm's> =C,C'je - ; — dr

| (0+5) (2t3) Jo

)
F G
Zmi -
" 3 2 0 *
| [(E+m+1)(£j—m+%—)]1/2 ® F.G +F G
-e(C,Cl, + C,CY) 2 - LA P

“ (22 +1) - o r -

(40)
and
i | - L Wip e -mm® 1 rlia?
: <£m sm ‘q ’Em sm >: c,C', 5 { dr
. £ st =J £ s 1712 1 3 J 3
| (2+5)(2+5) 0 ro
| (£-5)(L+3) - 3m® FZ 4+ g2
+ C,C. - - dr
22 1 1 ' : r3
-(l—z-)(KJr-Z—) /0
.00
T dr.

1 1 L1/2
12m[ (£ ts ot m)(£ ts - m)] _ F.F_+G,G
0 r

-(C4CY + CoCY) TV EIF 2L T3 3

(41)
In many cases, configurations may be too complicated to expand
. in determinantal product states. In such cases, one would prefer to
have the relat_ivi‘stic term expressed in terms of tensor operators.
That is, we want |
(lleaalliy =) oy GIWSMy @)

K

where

[ 5
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(kK)1 _ (t,\VK)1
(e ly = s s /o (43)
Gl 117y = stss) [1 /2.
Using | | | ' ’
GIWSRY 5 = s a2
. (44)
J £ 2 K
/2 1/2 oy (-1)< B
i1

and Eq. (37), we obtain

”~

| I 1/2 I )] FG' + F'G
- -1y (2 it]) - P TN d
HI [J] ] (—1/2 1 _1/2 'r& | r

. - - ‘5, ¢ ¢ K|
:§: a x LT« K] V2 4y K e a2, }
T Y

Then, multiplying both sides by

£ 1 K
Z 1/2 1/2 } <[j][j'][;<][f<11/2

AL U A B

-

we obtain

, .
VO e ettt Y, ) LI

G.KK

ijt

T

If LK 4 F.G., +F,G.
X‘éi/z 1/2;< j JJZ J ] dr .
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Expanding this leads to

: 8 2 Z.
Qyn = =2 p_e [+1)" P, +LL+)P_+ L7 P
e N 9(22+1)° = + -]

m

ag, =+ 2p e (;ﬁ:i; -2( )P, + P, + 2P _ ]  (45)
... =4 2 / £(£+1) [4(£+1)(2£-1)P
12 3 Wzere) er3ye-1) ++

- (21'-1)(21+3)P+_ +42(24+3)P_ ],

[ .
We know that a g = 0 for other values of « and K, and

P = _—Z—; — dr | . (46)

For a many-particle configuration, we need make only the substitution

N
_ Z W((KS{M in (42). We then find that
=

(47)

RN L (o)t (01)1 (12)1
X = Z e.la A.l—a10W +a01W +312W
1

and

Grlixlls)

G 2
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- We can further Simpli_fy this térm by writing -

W(o’i)iﬁ.' PR F2 z

- ® | ey

o A '..1/2 L . '

| W(10)1 :{(Z{‘T{)} : S (49)
. L /2

whan ¥ {(21—11)@2@ ] TG (0c?)

and by using S=(L+2S8)~Jand L = 2J - (L. + 2S); Equation (47) then

~ becomes

X=af +pTty L (a_cz;; NET I | (50)

Using (27) and (50), we then obtain

A;=[<a - B+ Y)-g - 2>+a+vPT<J>}% (54)
where '
ISP AIEY
PT(1) = ——
Callala) ‘
. e
fa-pry) =t {:;: (21-1)(2'.44)1:”._ Sowrnpe, (1}1%21)1{_] i;;‘m;

a=a,, NZ/2IH

| e-neeisy 11/2
Y7 S TR

*

The term %PT(J) is nearly equal to the nonrelativistic A value,
Thus the relativistic A value looks very much like the nonrelativistic

A value, plus a part depending on g " and a part constant within a

x

configuration.’
In a completely analogous manner we find for the guadrupole
moment : ‘ .
T 210, .\ -/ («K)2 1. >
- (il = <ollit) = z b e (illw R[5 (52)

<K
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where

o / (20)(241) | o
by =~ [ ==t [-(4+2)R,, + 3R, _+ (£-1)R
1 Jes)een) IR TR =

L 6(£-1)(L)(£+1)(£+2)
by3 = ‘\/ 3
(25) (24 ~1)(2£+1)7(2£+3)

[@L-1)R,, + 4R, - (2L+3)R__]

(53)

by = [ 24(2+1) 3
02 5(28-1)(28+1)° (24+3)

[(2[—1ﬂ£+Z)R++~+6R4} +(£-1M2£+3)R__].

‘b K: 0 for other x and K, where
K . .

[Fi‘f G_?;
R, ., = dr
Ty T3
) r
[ Fia Gt
R =/ 1.~ dr (54)
-— 3
. .
cE T
. F,F_+G,G_ 5
+- 7 3 Te
4 r

The extension to the many-part'icle configuration proceeds as above,

with | I\I
z8= - ) & cta
i=1 i (55)
B (11)2 |, (13)2 (02)2
= by W t by W t by, W
and : ' -
, ) I 2 T\
2 2 , \ .
B =2e°Q {1]|z HJ>( |- (56)
b -J 0 J/ '

In making relativistic calculations, it is useful to have the non-
relativistic limits of the radial integrals so that one may at any time

‘pass to the more familiar nonrelativistic equations as a check, As
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stated above, in the nonrelativistic limit, ¢ and therefore G goes to
zero, and F becomes the nonrelativistic radial wave function R. In

addition, F, and F _, as well as G, and G_, approach the same values,

" because £ rather than j becomes more nearly a good quantum

number. Thus (41) and (56) can be easily reduced to their nonrelativistic
FG

limits. Reduction of the integral e[ -— dr, however, is more com-
plicated and requires use of (32). *
| r r
o] TS L en e ok )
rz 2mc rZ dr T +
_ e !(F+ dF,/x) 2 4 .
Zmc | \ T —dr I r (57)

Wi

3 1. 2
= Mo {"1 <1/r> - 'Z[(R/r) ]1.:0} ’
where in the first step we have set mc2 + B+ ch = chz. Likewise,

[ F G_ |
e f :—Z—~—dr = Mg {(£+_1) <1/r3> —% [(R/r)z]rzo} (58a)

and
F,G_+F G,

e ;1 . ar = g {(1/7[3) -‘[<R/r)2]r:0}. (58b)

o

Let us now look at a diagonai element of (40) in the nonrelativistic
limit for the case of a single s electron. In this case, ‘C1 =1, CZ = 0,

and <BJ> becomes

— 2 2 . 811' ‘;'2
(By). o3 LR/ )= - 5 kg [4]* (59)
Then
1 16w 2 2
Ag =17 WMBy, T 3 ey g 14’0‘

as given in (28).
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There is another important correction caused by relativistic
effects in atomic physics; although it properly belongs in the field of
fine structure, it fits most logically into the discussion at this point.
This is the ”Breit—Ma.rtc_g;ena'u”5 correction to gy Calculation of this
effect proceeds along the lines of the calculation of the dipolé inter -
action. One introduces a perturbation term A = - %r X H, where H

is an externally applied field, Then

e0*A = - % ed+rXH = —%‘- eH- 0 Xr = +1i —2-2— eH-4(or_C1)1vr.' (60)
Comparison with (35) shows that this perturbation term is
exactly (r_3/2)(ﬁ/ﬁl) times the operator for the dipole interaction.

That is

bpe By = - gkl Hy 6

&
o
A
)
T

where the last term on the right is the nonrelativistic operator. We

can therefore use the results of (51) with only minor changes. The

radial integrals P++, P , and P+_ must be changed to F++, F_, and
F+_, where

F++=]rF+G+dr

F__ =jr F G dr ©(62)

F 2[ r(F+G_ + F_G+)dr.

These three infeg‘rals can be rewritten to make the nonrelativistic limits

more obvious. Using (32), we obtain

. h 2
[rFiGidr = o= (J[ZK:’:G:{: dr - K, - 1/2)

- h '
’/‘I‘(F_*_G_’f“G_*_F_)‘dl‘“— *IT—I—'(:[F+F_(11'.

With these forms of the integrals in (51), and multiplying by
(H/ZHI)('i/HOH)’ we obtain ‘

and
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gJ(i'e_l)“: ’ag‘J(nrel) + bPT(J) + ¢ (64)
Whére -
az 1 243. (22> +32% - 1) [car - 48% %—!Z[-H)f(}zdr + %3—2}(1+1)[F+F dr
(22+1) o + - -

a"-]F+F_dr

b =
200+ | j - [ ]
c = - ms{(ZI'i'Z) G+dr - 21_)[ G_dr + &J F+F_dr - ZJ .

In the nonrelativistic limit, Gd: -~ 0, F:!: - R, anda =1, b=c¢ = 0.

- C. Second-Order Effects |

The perturbation terms (10) and (14) involving the orbital electrons

and the nucleus are not spherically symmetric, and therefore tend to

“break down both I and J as good quantum numbers. These effects

are generally small, and can easily be treated by second-order perturba-
ti_on theory; they can, howev_er, be very important in cases such as the
measull'emgnt of anomaliesv, ‘when very accurate values for A and gr are
required.

Since excited I levels are typically of the order of a few hundred

keV abbve the ground state, and excited J levels of the order of only a

few hundred crri__i, we need concern ourselves only with the breakdown

- of J. The effects of this breakdown can be divided into two groups:

effects on'terms with energy depending explicitly on the external field
(gI ahd_gj), and effecté on terms not depending explicitly on the field
(A, B, etc.).

"The values of A, B, etc. are obtained experimentally primarily
at low fields, where F is a good quantum number. It is most reason-
able, therefore, fo look at second-order effects on the interactions?." (10)
and (14)A where F is a good quantum number. These effects will have

the form



.24 -

ke Ko

Y2
k, k, I J'F
<1J'FM[Q F laM AN {IJFM>| )ZHZF“J[ }
, 1

~LJ I "k
k. k.
x@wamoﬂmfw¢2

2I+2F+2T I 'F g

J k 2 k 2
¢ o) N IR AL YA Ty

—

. I J' Vi o F
4 (o1)2HRFH2T { J
J k, l
A

k1 k.,ki\kz,y
NI B YA E T TV

(65)

We can write the general term

) 1
()P o F}R;I g F | Y ek iI JF |
J I (71 k,j = J I K (66)
where
Kk, +k,+J' +1 k, k, K| [k, k, K}
1
Koy ¢ (ZKH)J : { toe r

11 I 5‘.J J Jn

Insertion of (66)into. (65) shows that each of the above second-order
perturbati011 terms looks like a first-order term of rank K, where

k1 + kZ =2K= lk;[ -k That is, the dipole term can give second-

2 |-
order effects that look like terms from dipoles and quadrupoles.

As values of g1 and gy are normall_y- obtained from high-field
measurements, corrections to these terms will be obtained in the-
IM,JM .éys.tern. The term linear in H in the second-order pertuybﬁ’fion

I J
is-of the form

-®
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K, K
(v a5 B vyt YYD W[ Y VIR

IM/I K /3 KJ'\, a0
= (-1) ' N
\M 0 M)\M 0 M,/ \M 0 My

X <IHAB%HI><J||BK[|J'><J Legtes|ln) HL (67)

Thus, for the transition AMI = 0, AMJ = £1, the above term (67),
which depends on MJ, will give a contribution to the energy, thereby
affecting the measured value of gy A like argument shows the above
expression will also affect the value of g1 inferred from a AMJ = 0,
AMI = 1 transition, In particular, the term with K = 1 will have an

MI dependence exactly the same as that of g1Mg I-H. Because the

MJ dependence, however, can never be the same as t]],a.t of g3t Js H,
the possibility exists that by observation of transitions between different
pairs of MJ states, an indication of the amount of admixing might be

obtained,

D. Exchange Polarization

Many atoms in S states have been shown experimentally to have
nonzero values of A, the dipole-interaction constant, The S states,
however, are spherically symmetric and should have no hyperfine
structure. These nonzero values of A have generally been explained
by the mechanisim of exchange polarization, which causes contributions
to the Fermi contact term from closed shell, or core, electrons. .

The approximate Hamiltonian (2) has eigenfunctions of the type
of (3), which are products of angular and radial paltb. The radial

equations obtained from (2) are dependent only on' n and £; this.

'dczpehdence results in an R. that is equal for all e]e(,tron.: in a shell,

regardless of their my or m dependence., The e /1 pelturbdtlon
term, however, removes this equivalence through the exchange term
- <L|41(a)L[J2(b) Ie /r12(411(b)L1;2(a,)> . This term is zero for electrons

having different m, and attractive for electrons of like m,. Therefore,
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~because core s__' electrons having the same value of m_ as the outer
valence electrons will be drawn out from the nucleus, a nonzero value
of HJT(O)I2 - |q) (O).l2 for two core s electrons in the same shell
will result. . (4 refers tom = + 1/27 4 tom_ = - 1/2).
Cohen, Goodings, and Heine wused a straightforward application
of»perturbatlon methods to calculate the changes in Li and Na of core
s functions due to the exchange interaction. They found that when they
used bound-state s functioné for the terms in the perturbation ex-
pansion, the calculated effe"cf. was an order of magnitude too small to
| exp‘lain the experimental results. Other calculations8 have tended to
confirm that the bound-state wavefunctions are not a sufficient set of
functions for the perturbation problem, but rather that the continuum
states must also be considered (therefore providing a complete set).
Although the necessity of including the continuum makes this
approach impractical, the perturbation method is valuable in showing
the general form of the solution. To second order, the change in A

will be given by '

327 “N“o 2n+1

aa = 32 <z sL.s® 's,SLI|[} 5,600 RNy Ly, 850 s, 51 L

1 117 ®

s, s'

Ne, (0 o 20ty ooy oy 2 N 2 1 ‘
x (s Lyss 5,81 L' [/ |7, 1,87 T8, 8,1, 0, )

(68)

1
<J‘HJ||J> (E'_-E)
The reduced matrix element above is just

(-t L {J 1 Jl}(lﬂ—f——-s—l-v/z/sl!sa [ls*)
| NZ o lst Los ) [e/2)1] /

Cn\
I
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From this we see that only the triplet state of ss' is important in second

order.

The matrix element of e?‘/rij with n = 1 can easily be obtained

from the work of Rajnak and 'Wybourneg; it is

5,-5} 11/2] 12 <s|

5 s|ls') R est, s£)8(31, 1,)6(51,5,)8 (L1, L,)8(L,, L),
2

(-1)

Combining these two expressions gives

(0) ., (0)

s

[]

(sLi|s||sLy) -2 RY(£s1, s£)5(L, L' )8(S' S)6(n, 1)5(n, 1)

X 5(J', JZ)ES(S' ,52)6(1{‘ ,'L6)6(L2L'1).
o GElsly

If J=17J, we can write § = L-.f 25 - 1, e g1~
| Gl 77

making
. e nd, v b (0)g_, (0)
327 MNMo R™(#s',s8) Ts' 'Tg
pA = (g 1) 22 WO ’ (69)
J 3 I L‘;i‘,l [z] ASS' )

for all levels of the configuration JZN. Higher order terms will not
have this same dependence on L, S, and J, but should be much smaller,
Then '

A=A +aA+B, : (70)

where A1 is given by (25), AA by (69), and B includes the higher order

terms. If B is negligibly small, we see that (70) has the same J
dependence as (51). This means that one cannot easily separate con-
tributions to A from core polarization and relativity. | A

An alternative approach to the problem of exchange polarization
is offered by the spin-polarized Hartree~Fock method. In this method,
one solves two Hartree-Fock equations per shell, one for each m

projection. These equations will have slightly different potentials
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because of the éxchange term with the valence electron.
This method should make it possible to predict all effects of
promoting core s electrons to higher s states, but does not include
the effect of promoting s electrons to d states; this is a third-order

effect and should usually be small, however,

E. Hyperfine Anomalies

According to (25), the A values of two isotopes of the same

element should be related by

Ay mBOT,  glt) -
K, T @B, T g7

Here'BJ(i) = BJ(Z), because BJ is a function of the electronic rather

than the nuclear properties of the atom. Deviations from (71) occur,

however, and these deviations are expressed in terms of an anomaly

A,
i
g (1) A,
(14 48,) 50 (72)

In the heavier elements, A arises from errors associated with
the assumptwn that M is a point dipole., The two largest correctlonb,
the Bohr- We1sskopf10 and Breit- Rosenthal correctlons, arise from
f1n1te-volume distributions of the nuclear magnetization and of the
nuclear charge, respectively.

In the Bohr-Weisskopf correction, we assume that the nucléus
has a magnetic-dipole density w(R) associated with the nuclear spin g
this density gives rise to an AS at the electron position T of

As(r) = _J{ dTnm(R)gSS(n)XVr ___.._.1:__ s

I bl

r—R[

where g_ is the g factor of the spin. We can write the contribution

to A from the orbital momentum AL as
1 j ze [ P
AL(r) - —c_:-_/[ : dTn T mc sf Lpn v dTn '
: ,r - RI n ’r - R’ B
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We must then substitute the sum A = A, + Ag for A as given in (34)
into (33). .
Electrons Si/Z and Pi/Z are the only ones‘ with nonzero densities
near the nucleus; they are therefore the only ones that will be affected
by the finite nuclear size, For Si/Z and Pi/IZ electrons, wé can make
the simplification - '

{ _ 2e F
eftb_a-At,dee == T

ird"r G 5 (& X T),
Joe 3

Where +(-) refers to the si/Z(Pi/Z state. This 51mp11f1catlon is done
by expanding the angular parts of { into sums of IfmzsrnS wave -
functions, operating with . g« A = O‘ZAZ + O‘+A_ + 0_A+ , and inte-
grating over the spin coordinates. Then for the energy due to the spin

moment, we write
"

_ 2e FG - =g = 1
WS + -—Z;T-r e. d'Te :3— i r X j dTngsm(R)(S (n) X Vv r m—] .

) 2e | (. FG | T 1 / 1

ER §(nf§ )
r .

1

Because Si/Z and Pi/Z electrons have nonzero density at the origin,
and thereby penetrate into the nucleus, we must make expansions of

for both r >R and r <R, The problem is simplified because

1
’r -R
the nature of the integral over the electron coordinates shows that the
only expansion term that can have a nonzero effect is that containing

Yg (Qecpe). Performing the indicated operations yields

s i R
; P
- 4 J FG _ T
WS =+ 3~j d'rn m(R_)gSS (D)U — dr - ¢ J — FG dr‘ s
iR r 0 R
(73)
where
. F' —
g - —'1— l - . 3(0 . R.)R _]
Sz L R2 -} z
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The energy due to a point dipole would be

>
0 _ 4e ¥FG '
wg= 3 [drwReS, j S ar. (14)
] 0 r
We can therefore write
w.=wl(1 - K. (75)
S S s’ .
where
R /1 T
0 T R
KS - .
© FG dr
f :
r
0
In a like manner we obtain
. ) R
_ de | . | FG r
WL _‘T dan(R)gLin j —Z dr + -—R-—3 FG drj .
R 0 (76)
The energy in the point-dipole approximation is
00
0 _ 4e FG
WL = ; d'rnt.o(R)gLLZ —2— dr, (77)
0
leading to
w. =w%(1-K,), (78)
L L L”
where ' R

T 1
: — FGdr
f (5 %)
[ -—-—z—-dr

If ag is the fraction of total-hyperfine-structure energy due to

the spin moment, and ar is that due to the orbital moment, then



-31-
W= W1 -agKg -a K )

='Wb(1- €).

The effect of finite volume of nuclear charge is to change the

values of F and G within the nucleus from the values of FO and GO

obtained for a point nucleus. This correction can be incorporated into

the above corrections by writing

R /1 T
jo ( ~+ L -—3—\FGdr

_ T R
Ks* —s ¥
] 070
J z &
0 r
and (80)

"R{ 1 r

/ (_._2 + —3—>FG dr
K. = 40 T R

L~ co. F G ?
070
/ > dr
.o T
where F, G are the true radial functions within the nucleus.
Then
g (1) (1 -e,) w A
1 17 _ 1 _ 1 ’ 81
gI(Z) (1 - 62) W, A,
and from (72), we see that
€, - €
2 1 '
L2 = —;-—————- . (82)
. - EZ

F. Collective Model of the Nucleus

In this model a long-range correlation between the nucleons

causes a relatively long term stability in the nuclear shape; that is,

the particles move in some collective motion.. We may view such

correlation as being a result of coupling between particle and nuclear
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surface.  The particle moves in a nonspherically symmetric field
caused by a distortion of the nuclear surface; because of its motion,

the particle itself will then provide a nonspherically symmetrié potential

in which the other particles move. .
The simplest deformed body to consider is the ellipsoid, with

R=RO{1+ Z aij:‘n(e";w)},

m

(83a)

where 6',¢' are angles with respect to the principle axes of the nucleus,

The constants 'arh' can be written

ag = B cos vy
1 . .
a,, = \—7—72: B sin y (83b)
Ay =0

In the laboratory system, the Hamiltonian of the ellipsoid ex-

clusive of center-of-mass motion can be written

a1 w12, 1K 2
x= 5 Z Bld "+ % } Cla_| (84)

m

if we assume a harmonic-oscillator-type potential,
The am' s are the deformation parameters corresponding to the

a_'s obtained when R is expressed in terms of space-fixed axes.
Manipulation of (84) then gives
(85)

e JC=3CBY) +3 L, s
Where C - 3 L%{ .
' ,_ (86)

gcrot: Z _Z—TS.K

iy w 2 . 2 21 v e e - o o e . :
with Sk~ 4B~ sin (y - K_g. ).. If VYT, T :}Crot is the
- Hamiltonian for the symmetric top, with eigenfunctions of the type

Dlz& e o \I/), The rotational constants of the collective nucleus are
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therefore L2 = R(R+1), LZ = a (z is the space-fixed axis}), and L3 =6
(3 is the body-symmetry axis).

Let us néw assume there are one or two unpaired particles of

total angular momentum T outside the core..' The total Hamiltonian

will then become

=3Pyt Jcrot + JCP
where ZCP is the single-particle Hamiltonian,
The angular momentum of the last particles will couple to that
of the core to give a total angular momentum: ~j>+ R = T. Let us ex-

press (86) in terms of I:

3 2 3 . 2 - r . .
R = (I, =-].) SV . ? 2
- K _ K 'K _ h 2 A A .2
Coop ™ ) T ) pail ol KRN R R P L P
K=1 K=1 .

Because of the axial symmetry of the core potential, JC will be diagonal
in j3 =, The total Hamiltonian will be diagonal with respect to
IZ = M, but not necessarily with respect to 13 = K. When these quantum

numbers are used, (86) becomes

2 ¢ 2 2 2
RO 2 2 1 H 2 A . . Ao 2
( - 1y - _ n- _ ~
oot = 2 %I(H ) - K" - Q j+ 2%3(1( Q) 75 Wi+ 13 tom J
. (87)
For low-lying states, 3 is very small, and ‘Scrot will be

minimum for K = @ The term I tends to break down K as a good

J
quantum number, but when K = SZ a perturbation calculation shows this
breakdown is negligible, That is, states of different K correspond to
different single-particle states, and the very large difference in single-
particle energies in the denominator of the perturbation coefficient
makes the coefficient go to zero. Since neither JC(By) nor ZCp depend
on K, K = @ will also be 2 minimum for JC.

Let us de'fine

2
jol 2 _ B :
Then an eigenfunction of (87) (neglecting the term in j+I_) invariant

under rotations around the symmetry axis is
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| 21+4\/2 | 1 HK+Q T
T (IMKRQ) =( - 2) - | PurXaet (-1) Dy k
161 :

(-1)) ¢

<
L X ja |
j (89)
where we write = z C.x because j, and not j2 is a good
XQ~ & ¥iakia 3 S @ goo
' J
quantum number,

We now take a diagonal element of (87), using (89) and letting

K= Q.

Eq =g +%§ {1(1+1) _2K” + i1 bga(-1 TRE T Z)a]; : (90)
Here a is the decoupling parameter
a= - z (- 1)J 2 ’C 1[ - The last terrn on the right (90) is the

j
only nonzero diagonal term arising from the I+j_ term in (87), [In
obtaining (90), one must remember that I3 refers to the component of
a space-fixed vector along a moving axis, and (Ii’ IZ) = - iI3, etc, |

We see from (90) that when K # %, the minimum value of EIK occurs for
I=+

- We can now consider the term ¢ K One must make some sort
of assumption concerning the nature of the potential between the un-
paired nucleons and the core. Nilsson12 has assumed an isotropic‘
harmonic oscillator potential, witha Cl-s term added to prov1de
agreement with the shell model near closed shells, and a Dﬁ term
to make the potential more like a square Well for large values of £,

" The harmonic oscillator has wi = wa =1 + 6)w0, wi = (1 - —§6)wé,

with § = \/T B =pB. Then ZCp mixes in states with f' = £+2,

and breaks down A and 2, the three projections of the particle's
angular momentum £ and spin s. For very large deformations; A
and ng (the harmonic-oscillator quantum numbers along the 3 axis)
become good quantum numbers. Nilsson therefore labels his states by
their large deformation quantum numbers Nn3A.SZ> . At intermediate

deformations this can be expressed as
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Nn,AR ) alnlemz) . (91)
InZ.

This type of Hamiltonian gives equal energies for states of both
t+§2 and -, This equality causes problems in the determination of
‘ground state I's when there are two unpaired nucleons outside the core,
-That is, the states with Qa = Qi + QZ and Qb !Q ‘are degenerate,
and K and therefore I can equal either. Gallagher and Moszkowskl
have predicted that the spins of the two odd particles tend to align them-
selves parallel to each other, so that =, + &, if @, = A1 + 1,

- 1. - - . - 1 - 71

Q, =N, E5 Q= |Q -Q,|i0Q, =0 5, Q) Air

Using the above relations, we can now calculate the nuclear

dipole and quadrupole moments. The magnetic dipole moment is given

by

(gg) @D+, g, {5 I> +gy-gr) (I I)}

=/ o \ - 1
Br T <g s, Tty g'RRZ/_MI -1 I+

s

1 1 T o2 2 |
T T [g£1+gR+ zles - 8y) ¢ gy 'au)Jvl (92)

for a single unpaired particle, and
R ) Y @y - 2p,)
M7t | R Eipp T 7 ‘Bsp gfp £ 24 2

(93)

| WSS |

1 2 2
* 7 &gp Z (agy —ag)
In

for two unpaired particles. ‘
In (91), one uses + for = Qp + Qn. o= Q“ - S?..p, then the signs
- of the second and third terms must be made negative. Equations (90)
and (91) hold only if K # 1/2, |
The tetal quadrupele moment is the sum of the single-particle
and core moments. Inthe range of Qalidity of the Nilsson model, the
former is much smaller than the latter and can be neglected. We

define Qs as the core quadrupole moment as measured in the
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1aborafory system, and QO as the moment with respect to the nuclear

axes. Then
S A

: 8 2 2
Q‘s - /_BE GMKI Z anO (6n¢n)rn|IMK>

n=1

8n L2 2 >
/3T <IMK|Z z a Y. (6!¢1)Dy, (8 @ ¥)[IMK
o n m
8 2 \ S S S >
[ =% <IMK’DOO’IMK/§ <IMK| Z a Yg (6 ¢!)re |IMK
| - ‘

3KZ - 1(1+1)
(TF1)(2T+3)

i

Q (94)

0"

We see from (83) that for the 3 axis to be a symmetry axis,
y = 0°, and R =Ry[1+ BY% (6¢)]. Then if we assume p(r) equalto a

constant, and [p(r)dv equal to Z,

Q :/ r2(3 cos®0 - 1)p(r)dv

0 .
— It , f-RO(1+f3Yg) .
- /_51/ YO(9¢)quOj» p(r)rdr ‘ (95)
~ 2
= 0.8 ZRB

‘to first order in B.
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[1I. EXPERIMENTAL METHOD

The atomic-beam method utilizes two regions of a large and
inhomogeneous magnetic field and one of a constant magnetic field
to measure atdmic-energy differences arising from the hyperfine
interactions., A béa'm machiné of the '"flop-in'' design is shown in
Fig 1; in this machine the two regions of inhomogeneous field
(produced by the A and B magnets) have their gradients in the

same direction. In these two regions, the atoms '"feel' a force given

by F_ = - _.._____BZCEXt = M —-—-—BH This latter uation is obtained b
y ¥y 37 " &My mz e ™ et equati mned by

evaluating SCGX as defined above (17) in the Paschen-Back region

t
and neglecting the term in gp which is about 1/2000 of g5 In
order to be detected, an atom must have its deflection in the A
region cancelled by its deflection in the B region; this cancellation

can occur if M, (A) = -MJ(B), This condition requires that the, .

J
atom undergo a transition in the C region. Transitions are induced

by introducing into the C region a-small magnetic field oscillating
at the Bohr frequency of the atom in the constant (and large rélative
to th.e oscillating field) C field,

Exact transition probabilities, in general difficult to calculate,
depend on such things as the relative strengths of the static and |
oscillating fields, the velocity spectrum of the beam, and the number
of possible transitions occurring at frequencies near the Bohr
frequency of the desired transition. Two common results should be
noted, however. First is that (single quantum) transitions occur
when the oscillating frequency is equal to the Bohr frequency of the
atom, i.e. v = Ei———{:——?l . Second is that the probability will depend

. : 2 . .
in some way on |<¢fl Scpert’l LIJi>| , where, in this case, .

‘ = - . 1 . 1 . . .
Zcpert ngOJ H gI“OI H', Dep(indlng on theAtype of trans1tlf)n to
be induced, H' is either HO cos wtl + HO sin ,wtj or. H, cos wtk,’

can be written (neglecting the term in g;) as
wH . pert uH . T

02 0 (J_ ot 4 J+e _lwt); in the second as —-92-——9 JZ (elmt + e-lwt)

The first term obviously connects states differing by %1 in my,
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Fig. 1. Schematic arrangement and trajectory in an atomic -
beam flop-in apparatus.
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and the second is diagonal in m Simple conservation-of-energy

3
and -momentum considerations show that left-handed polarized photons

(ml = 1) will cause AM = +1 transitions if Em >Em—'1’ and right-

handed polarized photons (mz = -1) will do the same if Em < Em-i'
TN 2 . e .

If |<L|Jf| C.‘Cpertl 41.1> | is taken in the low-field representation,

the allowed transitions are aM_ =0, £1, and AF =0, 4. If it is

taken in the high -field representFaLtion, the allowed transitions are
AMJ:O,a:i; AMI‘Z:l:'l, 0; or AMJ:AMI=0. _
The limitations on observable transitions by the beam machine

| [MJ(A) = —MJ(B)] and by the transition probabilities for magnetic -
dipole transitions means that only transitions labeled by Greek letters

in Figs, 6, 7, and 8 can ordinarily be observed in a beam machine,
These transitions can be described as one of two types: (a) AF =0,

7= + 1, A.I\/[I = 0 in high fieid; or

(b) QF =x1, AMpg = 0 inlow field, and forbidd?z;riil)iig(:f}ii?._ [(T[}.;i)
fog*lin;f1§1ii(?+l1()m_/ Bf(iJei(;l)field-dependent part “OH[ ST g7
+ : STEFD) gI], and a high-field field-dependent part
HngJ' Because &1 is abqut 1/2000 of gy the low-field dependence

' AMF = +1 in low field, and aAM

on gy of this transition is almost undetectable in most beam machines.
The latter transition is used to fix the constants A, B, and C
because of its independence (to first order) of g &5 and H.
These two types of transitions are therefore relativély insensitive
to g;.

L . 14 .

The triple-resonance method™ " allows one to observe transi-

=+14, AM. =0. These

I J
‘transitions are labeled by numbers in Figs. 6, 7, and 8. The

tions that are in the high-field limit A M

field -dependent part of this transition is just gIHO.H, which allows
precise measurement of the value of g1 This method consists of
subjecting the atoms to the frequencies of, first, an ordinary
resonance of the first type described above, then one of the AMI‘= +1,
A.MJ = O.resonances, and finally to the first frequency again, The
energy levels involved are shown schematically in Fig, 2,

One can then calculate the signal strength for one, two, and
three hairpins, If the probability of inducing a transition in the A

hairpin is PA’ then
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MUB-8117

Fig. 2. Triple-loop signal equations:

SAZZnPA
SABZZn(PA+PB—ZPAPB) |
SABC =Zn(PA+PB —ZPAPB +PAPBPC)
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S, =2nP

A A’

where we have assumed all hyperfine levels to be equally populated

with n particles. Likewise

Syp = 20P, (1 - Py) + 2n(1 - PA)P'B
=2n(P, + Py - 2P, Pp)
and
Sypc = 2n(P, + Py - 2P, Py + P, PP},

Thus if PA and P, are nonzero and constant, the signal strength

B
This relationship enables one to trace out a

=+1, aM

will vary as Pc.
resonance with AMI T = 0, thus allowing gr to be

measured directly.
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IV, APPARATUS

The machine used for both experiments was essentially that
described by White, 15, Consequently the only details discussed here
are those in which the machine differs from this earlier description,

The mosf important difference was the positioning of three
hairpins, rather than just oné, in the C-magnet region (Fig. 3), The.
individual hairpins were 3/4-in. long in the beam direction and roughly
1 in, apé.rt. The two end hairpins, being nearer to the A and B
magnets, respectiVely, were in much less homogeneous fi_elds than
was the center hairpin. Resonance line widths at high fields in the
end hairpins were therefore 3 to 6 times as broad as those in the
center hairpin, '

‘ ‘During these experiments the A and B magnets were driven
in series by the B-magnet supply. The A-magnet su}.)ply, which had
better regulation than the C-magnet supplyb, was modified to drive
the C ,rhagnet. Although the resulting C-magnet power supply é-ould
drive the C magnet to only slightly above 700 G rather than to
1000 G,as. had the previous supply, regulation was much improved,

The early work on Re was done with an oven loader like that
described by Schlecht, 10

work was done with the oven loader shown in Fig., 4. Because this

_ and the later Re work and all of the Am

latter oven loader allowed the sample to be placed nearer the entrance
~to the A magnet than had the previous loader, signal intensities were

increased. The radio-frequency equipment used is listed in Table I,



Fig, 3.
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Schematic of magnets and hairpins,

MUB-4246



-44 -

ZN-5189

Fig. 4. Oven loader used for Re and Am.
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Table I. Radio-frequency equipment.

Frequency range

Instrument : (Mc/sec)
Oscillators: »
Hewlett-Packard 608C ' 10.0 to 480.0
Tektronix 190A ‘ 0.35 to 50.0
General Radio 1208B 65.0 to 500.0
General Radio 1209B | 250.0 to 920.0
General Radio 1218A 900.0 to 2000.0
Rohde and Schwarz SLRD 275.0 to 2750.0
Hewlett-Packard 540A transfer oscillator 100.0 to 220.0
Amplifiers:
IFI 500 wide-band amplifier ' 0.5 to 240.0
IFI 510 wide-band amplifier _ 0.5 to 240.0

Frequency-measuring instruments:

Hewlett-Packard 524B electronic counter ~0.0 to 10.0
Hewlett-Packard 52451, electronic counter 0.0 to 100.0
Hewlett-Packard 525A frequency converter - 0.0 to 100.0
Hewlett-Packard 525B frequency con{/erter 100.0 to 220.0
Hewlett-Packard 525C frequency converter 100.0 to 500.0
Hewlett-Packard 5253B frequency converter 50.0 to 500.0
- Hewlett-Packard 5254A frequency converter 300.0 to 3000.0
Northeastern Engineering 14-26C frequency '
converter - 200.0 to 1000.0




-46-

V. RHENIUM

A, Introduction

- The research on rhenium was undertaken primarily for two
reasons. First, the ground configuration of Re is a half-filled shell
5(65)2 6S

5/

The spherical symmetry of such states indicates that at the nucleus

in the Hund' s rule ground state, which in this case is (5d) 3¢
there are no hyperfine fields caused by the electrons in the half-filled
shell; other effects such as core polarization and relativity then be-
comé dominant and‘are more easily studied. Second, Re is in a state
of intermediate deformation accordiﬁg to the Nilsson nuclear model,
and it is of interest to see if the model is still valid in this region.

The starting point is the work of Schlecht, White, and McColm, 17
who measured to lﬁigh precision g7 and the hyperfine constants A and B
for both Re186 and Re188. The interpretation of our results was greatly
aided by Trees' 18 analysis of the optical spectrum of Re, which included

the effects of both breakdown of LS coupling and configuration mixing.

- B., Experimental Method and Results

Beams of Re were obtained by electron bombardment of 20-mil
Re wires. In this method, the Re wire is placed ﬁear a W wire that
has sufficient current passing through it to produce large emission
currents. The Re wire is then made to act as a collector by being biased
to a positive voltage. The Re wires were of natural Re that had been
bombarded at a flux of 1014 neutrons/cm-sec for either 4 hours (to
‘produce Re188) or 3 days (to produce Re186). A detailed description
of the irradiation procedures and the oven loaders used for electron
bombardment of wires is.given by Schlecht. 16

As indicated in Sec. III, in our experiment the A and B hair-
pins were set on the AF = 0, AMF = x1 transition and the signal from
each hairpin was maximized separately. This then led to a minimum
signal for A and B together. In practice a signal-to-noise ratio of
about 10:1 could be obtained in each hairpin separately, and the two-
hairpin signal was only slightly above background.b- This low lev'el
indicated that both PA and PB were near unity, The C-hairpin frequency

was then varied, and signal-to-noise ratios of about 8:1 or 9:1 could
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be obtained with the triple-loop resonance. At the C fields used (200

to 500 G), the line widths in the A and B hairpins were 300 to 400 kc/sec.
This meant that the C field could drift about 60 kc/sec without signifi-
cantly affecting either PA or PB' Triple-resonance lines at these fields
were approximately 25 kc/sec wide. Some observed triple-resonance
lines are shown in Fig. 5. | _ |

Figure 6 is a schematic of the hyperfine levels of both Re
isotopes. The A and B hairpins were set on the resonance §3,

(5/2, +1/2) <= (5/2, -1/2). The triple resonahCes observed are
numbered 1, 3, and 4. Resonance number 2 was not observed, probably
because the right power was not used in the C hairpin. The C-hairpin
resonances were very power sensitive, and the power required for us

to observe the different transitions at one field setting varied consider-
ably, sometimes by a factor of 100.

The data obtained by the triple-resonance method were combined
with that of Schlecht et al. 12 for purposes of data reduction. The com-
bined observations were fitted to a Hamiltonian of the form
B[ 3(1- J)2 + 3/2(I- J) ~ 1(I+1)J(T+1)]

213(21-1)(23-1) - gt Ho-gppgl H
(96)

3 = Al-J +

by means of the IBM 7090 program HYPERFINE 4. Values of A, B, gy
and gy were all varied. The final results are (Table II):

Rei86

A =+ 78,3060(10) Mc/sec
B=7F 8.3595(16) Mc/sec

gy= - 1.951988(39)
g, =+ 9.34(2) x 107

R 188
A = £ 80.4326(8) Mc/sec
B =7+ 7.7463(11) Mc/sec
5p = - 1..952072(60)4
gy =+ 9.61(3) X 10°

The values of gy A, and B are essentially those of Schlecht et al, 17

The triple resonances fix the value of g1 only,
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Fig., 5. Some observed triple-resonance lines in Re.

(a) Re188, H = 300G, (7/2, 1/2)<(5/2, 1/2);
(b) Rel® H =500a, (5/2, 1/2)— (3/2, 3/2);
186

(c) Re "7, H=300G, (5/2, 1/2)«=(3/2, 1/2).
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Fig. 6. Breit-Rabi diagram for Re186 and Re188.
I=1, J=5/2
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Table II. Re data fit.

Re186 Data Fit
A = - 78.3060(.0010) Mc/sec gy = - 1.951988(39)
B =+ 8.3595(16) Mc/sec g X 10% = 9.341(23)
Transition
M M’ | H Frequency Residual
I8 F F' F (gauss) (Mc/sec) (Mc/sec)
7/2 1/2 <= 5/2  -1/2 199.9229 24.735(5) 0.0002
3/2  -3/2 «<=5/2 -1/2 299.8773 16.647(6) 0.002
3/2  -1/2 <= 5/2 1/2 299.9612 59.380(5) 0.008
1/e 1/2 <= 5/2  -1/2 299.8598 3.169(4). - 0.003
3/2  -1/2 <= 5/2 1/2 399.7824 54.343(4) - 0.001
3/2  -3/2 «=5/2 -1/2 399.7974 22.334(4) - 0.004
7/2 A/2 ~=5/2  -1/2 399.8003 6.936(4) - 0.003
3/2 -1/2 <= 5/2 1/2 499.8241 51.064(3) - 0.002
3/2  -3/2 ~—=5/2 -1/2 499.8241 26.026(3) 0.001
R8188 Data Fit
A = - 80.4326(8) Mc/sec gy = - 1.952072(60)
B =+ 7.7463(11) Mc/sec g, ¥ 10% = 9.607(.029)
Transition
. H Frequency Residual
F MF F' M F (gauss) (Mc/sec) (Mc/sec)
7/2 1/2 <= 5/2 -1/2 99.9675 92.755(3) - 0.0004
3/2 -1/2 <= 5/2 1/2 299.8889 61.835(1) 0.0003
3/2  -3/2 «=5/2 -1/2 299.8819 15.895(2) 0.001
7/2 1/2 <= 5/2 -1/2 299.8714 3.938(1) 10.00008
3/2  -3/2 «—=5/2 -1/2 399.7780 21.837(2) 0.0002
Fit to the observed triple resonances according to the Hamiltonian
¥ 1 . Ty T 1 . T O SR )
AT T + BZIJ(ZI-i)(ZJ—i)B(T e+ 3/2@7) - 1(I+1)J(J+1)] gyu I H - gup T H.

>
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The magnetic moment of Rel85 has been measured to be
My = +3.144 nm, 19.and the dipole constant has been measured to be
A(185) = -72(24) Mc/sec. 20 These two measurements, in conjunction
with our measurement showing that p1(186) and pI(188) are positive,
unambiguously determine the sign of both A(186) and A(4188) to be
negative.‘

The hyperfine anomaly is given by
A186/A188

VT e 0.1(0.4)%.
g /g

186, 188 _

The values of g1 should be corrected for diamagnetic shielding, 21 i, €.,

- measured 1
g1~ 8; T -0

We can use 1/(1 - 0) = 1.00714, the value for Z = 64, Then
g,(186) = 9.41(2) x 107"
p1(186) = 1.728(3) nm
g,(188) = 9.68(3) X 1074
HI(188) = 1,777(5) nm.

A weighted mean of the two values of g7 is

6 -
gJ( 55/2) = -1.952021(33).

C. Second-Order Effects

There are two types of second-order effects, caused by mixing
in of higher J states, which can affect the results of this experiment.
These types are corrections to g which directly affect our results,
and corrections to A, which affect the measured anomaly.

It is possible to obtain an approximate upper limit for the effect
without embarking on the detailed analysis outlined in Sec. II.C. Thus

for corrections to gp We can evaluate

2 Wits Wmag

ghHoH = ,
- 1
. E;-E}




-52-

where W is the energy due to terms linear in A and B (evaluated in

hfs
the IMIJMJ representation) of a AMI =+ 1, AMJ = 0 transition
B[3M% - J(3+1)]3[ME(1) - MZ (2)]
- J I I
th - .A.MJ- -
s : S 4(IN2T-1)(I)(2I-1)

. . N ' . . - X
Here Wmag is just gJ}.LOHMJ, and gy is the §pur10us gy term. The first
excited J state in the ground configuration of Re lies approximately

14,000 cm” ! above the ground level. ¢ Then

. 6
g~ PUBON@IZXA0T o yyyo77,
4.2 X 10

which is an order of magnitude smaller than the uncertainty in g1 At
500 G, this would correspond to a shift in frequency of 0.3 kc, which
would be completely undetectable, '

In like manner, we can obtain an order-of-magnitude estimate

of the error in A:

J J

4(80- 80) x 10°

4.2x10™%

u

~6.0x107° Mc/sec.

This, of course, is also negligibly small.

Another possible source of error in our measurement arises
from the well-known Bloch—Seigert23’ 2 effect. When two oscillating
frequencies are present simultaneously, as they are in this experiment,

resonance frequencies are shifted by an amount

w
A(.A.) = —"——'—O“‘ 2 b

(wo - wi)
where Wy is the frequency of the transition being observed, and wy
is the other frequency. In this case wy corresponds to the C transition,
typically of the order of 50 Mc/sec‘;vand w'i is the A or B transition
frequency, typically of the order of 1000 Mc/sec. Then
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romr =20 = 5)(10_5Mc/sec,

(103)%

which is 1/500th a C resonance line width.

D. Hyperfine Fields ‘

Treé518 has shown that in Re the 6S_S/2 ground state is not pure |
but contains components due both to the breakdown of L. and S and to
admixing of the configuration (5d)6(6s)-into the ground configkuration

(5d)5(6s)2. ‘Trees gives as the ground-state wavefunction18

w(J = 5/2) -

JE@?“Z‘[(’SS/Q NT108 | *Py /) +10.006 ]4D5/2'/\+«/'(5f?>’()"3 | (43p)4p5/2>

- NT005|5°D, ) - V003 4Dy 1, ) #0100 [3F )

The calculation of the magnetic field at the nucleus Bz

2 . 1
- 0 rs 2
BZ - = -;3—'— {Elz - 10 (GC )i O]
i g

and the gradient of the electric field at the nucleus q5

1 - 2
a7 = ——-3—r Z (3 cos™ 6 - 1)i

can be carried out by expanding the wavefunctions above into sums of -
determinantal product states. This method is straightforward and is
described in detail in Condon and Shortley. 24 The important terms in
the e‘vaiuation of BZ and qJ, when \II(S/Z) is used, will, because of the
size of the coefficients in ¥(5/2), obviously arise from elements

diagonal in ‘6S> and |4P> ~and from off-diagonal elements depending
on lés > . However, BZ and qJ can only connect states with AL =0, 1, .
2, AS = 0, x4, These criteria mean that only the first four states in

¥(5/2) will be important, The first three of these are given by
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@170 " 2Ny

t

.
] 85/25/2>

|4P5/25/2> = L v(3A-l-n'\'f_6—‘B‘+'\/—6-C + 3D)

]4155/2 5/2> - 1 {\/277'(A +Né B -6 C-D) —r%{_—;{%’m +F +G)

+2(H+I+J+K+ L+ M)q ,

f

where ‘

a=2"1 0T 2T H=2"1 0 0717
B=2"1T0" 1t 4" 1 =2%17 00 1t
C:2+2-O+_1+_’-2+ ] J:Z+1+0+O_-—1_‘

p=2'1T1maat 2t k=2"2mam a2t
E=2"1"1"0" 27 L=2"271t 4 2t
F-2"1170" 2" M=2t2 1t it o
G=2"1T170" 2"

.The fourth term . |(43AP)4P > is in the configuration (5d)665. The
six d electrons couple'to a'3P state of seniority 4, which then couples
to the s electron to form a 4p state. The |43P> state is most easily
formed by first coﬁstructing a ld4 3P> state of seniority 4 and fhen ‘
multiplying it by a ldz 1S> state. The resulting sum will naturally
have many states that must be dro'pped because they aire forbidden by

the Pauli principle, and many that are not in standard order as defined

by Condon and Shortley. 24 The result is that

|43P22> SR {4\/7? A' - 16B' - 4C' + 46 D' - 6N6 E!
4105 _ S

-6NG6 F o+ 86 G+ 20H! j ,

where
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arv=2"271" 0" 2 2m mo=2TaT et 2t
g =2t270" 0 1t 27 =24t ot T
c =2t ittt gr=2taT et 2t
p =2 1ot it 2t mo=271 0T 0 ol

Then |(43P)4P5/2 5/2> = |43p2 2> |231/2‘71/2> . This state is, of
course, important because of its contribution to A due to its unpaired
s electron [Eq. (28)]. V

The states con.structed. in this manner are unique to within a
phase factor. That is, when constructing a state orthogonal to Lpa,
one can use either +¢b or -Lpb. In order{éo assure that our phase con-
vention is consistent with that of Trees, =~ we have evaluated the
coefficients in ¥(5/2) ) according to perturbation theory. The perturbing
‘ term that breaks down L and S as good quantum numbers is z d‘qi' S

where ad > 0. Then 1

1 6 - 4 NGl
E, -E, (S50 821 L 250, |"Py pp 5/2) = 2 <0,
1 E -
s ‘p s ‘p

showing that |4P5/2 has been constructed to agree with Trees'
notation. Second-order theory is required for the ]4D5/2> term,

since Z 21' s, can change L by only 1.

le-si| 5/&5/?.>< 5/25/2|ZJZ s, | D5/&5/Z\

(B, -Eg ) By -E, )

<6S5/z

S D S P

_ N15 > 0,
5(E, -E, JE, -E, )
b5 ip 6s “p

confirming the phase assignment of 4D5/2. The final term l(4 P) 5/2>
is important only in diagonal matrix elements, so the phase is of no

real importance.
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In order to evaluate BZ and qy one needs to know the two radial -
parameters < 1/r3>5d and I\II(O) \zs Cohen25 has calculated Hartree

solutions to the Dirac equation for the ground states of tungsten (Z = 74)

and platinum (Z = 78), Utilizing the discussion of Sec. II. B, one can .

write
o0
S Y EG 4
dipole aaoil 1) , :2
: Jy
~ 00
<1/r3> _J ‘ 2+ g2 dr
quad r§ °
0

These equations were evaluated for W.and Pt, and a linear interpolation
was made to Re(Z = 75). These values are given in Table I
_ The value of I\I/(O) lz can be obtained from Cohen's functions by

means of the equation

2 1 J[ FCZ} dr

waa
0 . T

which can be obtained from (59). This equation was also evaluated for
W and Pt and a linear interpolation made; results are shown in Table
TIL. | | |
A check on this last value can be obtained by looking at the ,
optical data of Schuler and Korsching26 on Re187. They have measured
the hyperfine structures of the states 8P7/2 and 8P5/2. in the configuration
d5sp, obtaining A(8P7/2) = 143.46 mK and A(SPS/Z) = 109.96 mK.
Assuming that d5 couples to SS/Z’ which then couples to the s 281/2

and the p 2P3/2 to form a |8P9/2 9/2> ‘state, we can write

}8_P7/2 7/2> = 1/\/79'51/\[2[\/’5]5/2 3/z> |1/2 1/2> 3/2 3/2>

+ |5/2 5/2>|1/z - 1/;> 13/2 3/2>]- %]5/;5/2‘}[1/2 1/2>'\3/2 1/2)}

and
|8P5/2 5/2>: 1/60«[6—077{\/”3"615/2 1/2>|1/2 1/.2.>|3/z 3/2) : B
+NT15[5/2 3/2>|1/z _1/z>|3/2- 3/z> - 5V5]|5/2 3/2>|1/z 1/2>.'|.3/2 1/2)
- 5]5/2 5/z> |1/2 - 1/2>|3/z 1/2) + 15|5/2'5/2> |1/2 1/2>]3/2 _1/z>},
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Table III. Re numerical parameters (in units of a0_3).

w? Pt ReP
(1/x7) {ipote ' 4.7 10.0 6.0
<1/r3>ggadrupole 5.1 - 11.1 6.6
2
[z (0) ¢, 19.7 24.7 20.9
©F G ,
e 0, _.__rT_ dr o : 14.0 P, 29.7 B, 17.9 M,
© F G,
e . —-;—2—-— dr - - 16.0 P‘O - 9.6 HO
©«F G +F G,
e f - > —— dr JETS 8.6 p 5.2 p
0 r 0 0
o T2+ G2 . ‘
f e 5.1 11.1 6.6
0 T
© F2 4 G
[o T dr - 8.3 5.0
©F F +G.G
f Tt 4 ' 9.0 5.4
0 r

a. These are evaluated from Cohen's wave functions of W and Pt.

b. The values for Re are obtained by linear interpolation.
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where we have written |685/2 m>"1as |5/2 m> ;. etc. 'I‘héArneasured
A values in this conf1gu1 atlon will be almost totally due to the un-
paired s electron, dssumlng that this is the total contr1but10n, ‘one

_ obtains -

8 8 %6s
APy o) ¢ 75“7"

8 AT s

where ag is given by Eq.. (28). The disagreement between the ratio
of these two A values with the ratio of the experimental values indicates
that the simple coupling scheme is not (:o1np1etely-corfect. However,
the calculated values, 1ilcé the experimental values, are nearly the .
same. Other coupling schemes also lead to vé]uca of c‘Lpproximately‘
/7 for both J states. Assuming that A( P7/Z A( PS/Z) ag /7,

we obtain ag ~ 0.8 mK, to be compared with a value of a = 0.7 mK

5 bs
as given by Cohen' s data,

that would be ubtamed using’ I\If
Evaluation of B, and qJ tlwn procecds in a btralghtforwa.rd

‘ rnannel, and one obtalub

1.

A =+ 44,8 P Mc/sec = + 78.4 Mc/sec

B

il

+ 33.0 Q Mc/sec,
The contributions to thesé quantities from the various matrix elements
are shown in Table IV, | _ '

The magnitude of A is c:or'_réct, but apparently the sign is wrong.
We therefore must consider relativistic effects. Since the non-
relativistic treatment is in terms of determinantal wave functions, we
Shail use the first method discussed in Sec. II B. 2.

The integrals f(F_G__/r;)dr and [(F]7 + G /1 )dr have been
evaluated for both W'and Pt by means of Colu,n s wavefunctions and
linear interpolations made to Re. The values of ¥y and GJr have not been
calculated for W, since the ground state of tungsten has no Sd5 5
~electrons, The Re integrals containing F_'_
tained by scaling down the Pt integrals by the same factor as was used

and _Cr+ were therefore ob-

for the integrals in F_and G .



-59x

Table IV. Nonrelativistic matrix elements in rhenium.

Dipole elements

<4_P5/2 5/2‘HZ,4P5/2 5/2) = - g‘% <1_13_> _
<4P5/2 5/2|H, |655/2 5/2) =0
<4D5/2 5/2|H, ,655/2 5/2) = E@ H0<_1§>

Quadrupole elements

<4P5/2 5/2]3 cos® 0 - 1|4D5/2 5/2) = - -173«/75

<4P5/2 5/2|3 cos® 6 -1 |4p5/2 5/2) =0
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One then obtains a relativistic correction to the nonrelativistic

values of

1
il

A
B

- 83.5 Py Mc/sec
- 28.0 Q Mc/sec,
giving for the total calculated values
A = - 38,7 M Mc/sec
B = 4.7 Q Mc/sec.

The relativistic matrix elements are shown in Table V, and the various

- 146.1 Mc/sec

- 67,7 Mc/sec

contributions to A and B are collected in Table VI,

The agreement between calculated and experimental values is
now fairly good. It is impossible to determine whether the difference
between the measured and calculated A values is due to uncertainties
in the relativistic parameters or to core polarization.

Comparison of measured and calculated values for B shows that
Q = 1,7 barns. This implies that QO’ the nuclear quadrupole moment
with respect to the symmetry axis of the nucleus, is QO = 10Q = 17 barns.
If we assume a deformation parameter of § = 0,2 (see Sec. V.E) for Re,
then

4 2

QO = < ZR06 = 6,0 barns,

which is considerably smaller than the above prediction. This discr'ep—.
ancy could arise either from uncertainties in radial integrals.or from
quadrupéle shielding. Sternheimerz_7 has calculated an antishielding
factor of R = -0,51 for the configuration (5d)4 in tungsten. If this

number applies to Re, then
Q=1,7=Q' (41 -R)

Q' = 1_;5 = 1‘1’.

and QO would become 11 ba'rng. In any case, in the region of Re the
antishielding factors are of the right sign to bring the two values of Q
closer together. ‘

An alternate method of‘calcu]_ating relativistic radial integrals
involves use of the Casimir28 correction factors. VChoosing
Zeff = Z - 11 = 64, and using the <1/r3> values used in the non-

relativistic calculations, we obtain relativistic corrections a quarter

the size of our previous result. This result, in direct contrast to the



Table V., Relativistic matrix elements in rhenium.
Dipole elements
, é'P-H ieP__ _ 9P+_
6 .
< S5/2 5/2[}1 ] 5/2 5/2> 420/175 80/75 40/25
4 4 NN -
<‘P5/2 5/Z!Hi! Ps/o 5/2) 11088/5250 1392/2250 576/750
{6 4 \
NS5/, 5/2|H | Ps/o 5/2, 0 0 o
<655/2 5/2!Hz!4D5/2 5&§ -168/175 NI2749  -142/75N 12749 - 14/25N12/49
Quadrupole elements
R,, R__ Ry
<6 5/2 ‘(M [65 5/2\ 0 0 0
5/2 ! 3 5/2 =%/
/4 20 -1),4
S P5/25/2!GEEE§§__J¢ p5/25/2} 0 0 0
Tr : ‘ .
< 5/25/2|4122E_§;;il';o 5/2 5/2} 624/1225(1/NT5)  42/175(4N15) 3546/3675(1/N15)
. 2 .
{6 [(3cos™0-1)14p 575y - -4/25(1 252/525(1/N'5
\ 55/25/2!__—_;3__- ! PS/ZS/Q/‘ 112/175(4N'5) /25(4NB) /525(4/N'5)

79~
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Table VI. Contribution to the hyperfine constants

A and B in rhenium.

Magnitude.
Source A (Mc/sec) B (Mc/sec)

Breakdown of LS coupling

within (5d)°(6s)? | | 33.6 0 +33.0Q°
Configuration mixing g _ .

(54)°(65) - 1.2, . 030Q
Relativistic corrections - 83.5 By S - 28.0Q
Total calculated v - 38.7 gy 4.7Q
Total experimental ' - 46.0 P : 8.0

a. P in nm.

b. Q in barns.
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earlier one, is insufficient to explain the experimental results. For
this reason, we believe the Casimir factors are only a quarter as big
as they should be for d electrons. This result is not surprising, since
Schwartz29 showed that the Casimir factors were accurate, but fortui-
tously so, for p electrons; and Sandars30.has shown them to be only a

tenth as big as they should be for f electrons.

E. Nuclear Structure

Mottelson and Nilsson31 have.calculated equilibrium values of
the deformation parameter § for odd A nuclei in the region 151 <A <195,
using the collective model with a harmonic-oscillator single-particle
potential. Expefimental values of § were then obtained from values of
QO based on observed E2 transition probabilities, Agreement between
calculated and measured §6's for both odd-A and even-even nuclei is
good over most of the region, particularly for 74W and 7605.'

The predicted value of § for - Re is 0.19, which agrees favorably

75
with the value 0.22 obtained from the measured quadrupole moment of

185
e

R . This 6 and the measured ground-state spins of 5/2+ for both
Re185 and Re187 led to the assignment of [402] 5/2 to the 75th proton.
186 188

Because both Re and Re have I = 1-, the 111th and 113th
neutrons have been assigned to the [512]3/2 state, This assignment
186 ~ 0-2%
is supported by the

fits the Mottelson-Nilsson ener'gy-level diagram exactly if §&

and 0,19 < 6188 < 0,22. The ordering 6188 < 6186

results of our experiment. The quadrupole constants B are a measure

of the deformation, and B'188 < B186 implies that 61 For the

88 < %186
proposed state assignments, an increasing nuclear moment implies
smaller deformation (see Table VII). Therefore, the results
91(188) > HI(186) supports the conclusion 6188 < 6186'

The magnetic moment P has been calculated with these state
assignments and the wave functions of Nilsson and Mottelson. We
calculated this moment for various positive values of §, with both free
nuclegn g factors ang.zthe quenched g factors (gsp = 4,0, 8gpn = " 2.4)
suggested by Chiao. The results are shown in Table VII, The value

Z/A was used for the core g factor, Chiao has suggested, on the

gr-
basis of different pairing energies for neutrons and protons, that ER
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Table VII. Nuclear moments calculated with

Nilsson wave functions. @

n
2 4 6
Free-nucleon g factors 2.11 1.92 , 1.84
Quenched-nucleon g factors 1.89 : 1.77 1.72
a. Proton state [402t](5/2+).

Neutron state [512¢ ] (3/2-).
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for odd-odd nuclei should be gr ~ 3/4 Z/A. If this value were used,
each of the results in Table VII would be lowered by 0.05 nm.
Table VII shpws that when quenched g factors are used, HI_(188)
is predicted very well by a deformation of 0.2, and 91(186) by a
deformation of slightly less than 0.3. This is in good agreement with

the deformations assumed.,
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VI, AMERICIUM

- A, Introduction
The research on americium, like fhat on rhenium, was under—‘
taken primarily for two reasons, First, americium, like rhenium,
has an L, =0 ground statev arising from a half-filled shell; in this
case, the ground state is (5f) (65) 7/2. "Second, because the twp

241 242, have very different nuclear

isotopes studied, Am and Am
structures according to the Nilsson model, it is interesting to study
the effects caused by such a difference,

Marrus, Nierenberg and Winocur33 have measured g A,
and B of both Am °*!and am?%?,

a breakdown of .LS coupling in the ground state of Am, and obtained

They also found that there was
a wavefunction for this state,

B. Experimental Methods and Results

Americium-241 in an HCI ‘solu_tion was obtained from the
stocl{pile‘of the Lawrence Radiation Laboratory group headed by
Burris Cunningham. Americium oxide was made from the solution
by adding NH4

until oxidation occurred,

OH and heating the precipitate [Am(OH)3] in a furnace

The atomic-beam oven used was of Ta, witha Ta inner
liner, The americium oxide, together with an excess of lanthanum
metal, was placed in the oven, When the oven was heated to approxi-
mately 1000°C, the lanthanum reduced the Am203 to Am metal,

The reductlon proceeded very slowly, however, requlrmg several
hours, Despite several efforts, we never observed the rapid reduc-
tion in a molybdenum ovén described by Wmocur34. - The difference
in results was assumed to be caused by differences in impurities in
the samples used, | |

The é_xperimental method used was identical to that used on
rhenium. Signal-to-noise ratios of 3;1 were obtainable with the
hairpins singly and also with all three hairpins together. The
241 (I =5/2) and Am%%?
schématicqlly in Figs, 7 and 8, respectively, The A and B

hyperfine levels of Am (I = 1) are shown
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hairpins were set on the resonances labeled a, the C hairpin on
the resonances labeled by Arabic numerals. Some observed triple-
resonance lines are shown in Fig. 9, | v
| The Arn‘242 data, which consist of one high-field single~hairpin -
transition and six triple—lbop transitions, were combined with that
of Marrus et al. 33 for the purpose of data reduction, The data were"
fitﬁed to a Hamiltonian of the form of Eq. (96), and A, B, gJ, and
gy were varied, ' ‘
~ We encountered difficulty in observing high-field a transitions
in Am24 ¢ at the frequencies predicted on the basis of the results of
Marrus et al. 33 Observation ofalow-field direct transition confirmed -
Marrus's value of A and B, When these values of A and B, and
g5 of Am242 were used to predict resonance frequencies, high-field
a transitions were observed., The data obtained in this experiment,
one direct transition and six triple-loop transitions, were combined
with Marrus's direct-transition data for data reduction. These com-
bined data were also fitted to a Hamiltonian of the form of Eq. (96),
but this time only - A, B, and gy were varied, with g5 fixed at the
value of g5 found in Am242,
"Final results were (Table VIII):
A =+ 17,1437 (0.0028) Mc/sec)

B =+ 123,8477(0.0323) Mc/sec Am
gr = * 3.42 (0.06) X 10-4

241

A =+ 10.1282 (0.0014) Mc/sec \

B = 6$9.6339 (0.0013) Mc/sec ‘l 242
o ( Am~™"
g7 = - 1.937884 (0.000067) {

gI: +2.059 (0.008) X 10-4 }

This leads to a hyperfine anomaly of

241,242 7 (2.0)%.
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MUB-8119
Fig. 9. Some observed triple-resonance lines in Am,
(a) Am?*%, H = 700G, (2.5, -0.5) < (3.5, 0.5);
(b) Am?*!, H = 180G, (3.0, 1.0)«— (4.0, 0.0);
(c) Am®*?, H = 700G, (2.5, 0.5)«> (4.5,-0.5).
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Table VIII. Américium-data fit.
Am2dt
A =+ 17.1437(28) Mc/sec 4
B = 7123.8477(323) Mc/sec g < 10° = 3.425(57)
'I.‘ransiti,on
M ; M H Frequency Residual
B o F F T F (gauss) (Mc/sec) (Mc/sec)
6/2 2/2 <= 8/2 0/2 74.5736 4.870(15)  -0.00233
10/2  -2/2 ~—=8/2 0/2 74.5736  14.520(25) - 0.01042
6/2 2/2 «~— 8/2 0/2 179.9427 7.220(6) -0.00322
10/2 - 2/2 == 8/2 0/2 179.9473 8.225(7) 0.00240
6/2 2/2 ~—8/2 0/2 449.8825 7.827(6) 0.00204
10/2 - 2/2 <> 8/2 0/2 449.8677 6.290(6) 0.00008
10/2 - 2/2 <~ 8/2 i 2/2 2.7993  81.491(7) 0.00007
Am2d2
A =+ 10.1282(14) Mc/sec gy = - 1.937884(67)
B = % 69.6339(13) Mc/sec g X 10% = 2.059(8)
Transition '
F MF - F M'F (gaI;-Ilss) 1‘211;/‘[32/‘1::;))’ l({&il;l;:i)
5/2 1/2 <—=5/2 - 1/2 300.0164  815.245(30)  -0.00241
5/2 1/2 <> 17/2 3/2 299.9033 35.704(5) 0.00034
5/2 1/2 <> 9/2 - 1/2  299.8955  40.934(3) - 0.00153
5/2 1/2 <= 9/2 -1/2 699.8325 41.636(2) 0.00011
5/2 1/2 <= 1/2 3/2 699.8162 33.932(2) - 0.00054
5/2 - 1/2 <> 17/2 1/2 699.8180 43.032(3) ' 0.001141
5/2 - 1/2 <= 9/2 - 3/2 699.8144 30.487(2) 0.00037
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Correcting the values of gI for diamagnetic shielding and using the

value of ¢ corresponding to Z = 65 gives

g(241) = +3.45 (0.06) x 107
prl241) = +1.58 (0.03)
g(242) = +2.074 (0.008) X 10-4

pp(242) = +0.3808 (0.0015).

Because both measured 's have the same sign, both values of A
M1 _ g .

must also have the same sign,

C. _S_ec ond-Order Effects

An upper limit to the second-order corrections to g1 ‘and A
can be obtained as in Sec. V.C. The first excited states of Am lie

more than 15, 000 ém—1 above the ground state, 35 Then

6 7

| 2:80-2X10° -7

g
L 45 x 10t

Because this is of the same order as the ur'lce'rtainty in gp ’
a more thorough analysis is called for., Equation (67) shows, however,
that t.here'a‘re-n:o second-order corrections to gr »if the grou"nd state
is pure .887/2. This is so because, due to zini + Z"Si’ the perturba-
tion term is diagonal in L and S; the admixed J state, J', must"
therefore be formed by coupling 85 toa J other than 7/2—-;this is
impossible, As we shall see in Secv. VI. D. the ground state is not
pure 887/2, but has small amounts of 6P7/2v and 6D7/é mixed in,
An important feature of the half-filled shell is that all diagonal matrix
elements of the quadrupole operator are zero., This feature, plus the
~ fact that the perturbation term is diagonal in L and S, means that
the large quadrupole-interaction constant can have no second-order
effects even in én impure ground state, The dipole interaction,
however, can produce'i'second-vorder_' effects in an impure ground

state, and an estimate of the upper limit to this effect is given by
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1 6
2¢17-3-2%10 -8

1 =~ 2 : ~
g1 (0.3) - 2X 1077,

4.5 X 10

where 0.3 is the fraction of the ground state composed of 6P and
6D. This number is less than a tenth the uncertainty in g and
shows that second-order perturbations do not measurably influence
the value of g1

An upper limit to the error in A will be

(av)®

E. -EF
EJ EJ

A'=

_(90)% x 10°

4.5 x 1014

5

= 2 X 107~ Mc/sec.

This, too, is negligibly small,

D. Hyperfine Fields

" Marrus et al. 33 have shown that there is a breakdown of LS

coupling in Am. The wavefunction they give for the ground state is

(I = 7/2) = 0.882 1857/2‘> E 0.457|6P7/2> - 0,114 |6D7/2> ,

where the phases have been fixed to agree with Rac:a.h's36 conventions,
On the basis of this wavefunction, they calculated the nonrelativistic

values of A and B: They found for Am®*!

A
B

+ 16.6 Mc/sec
+ 145 Mc/sec.

11

These numbers agree in magnitude with the measured values, but
the sign of the ratio B/A is wrong. As with the case of Re, the
next stép was to consider relativistic corrections to A and B,

For calculations in Am, we used the.second method discussed

in Sec. II.B,2. Then, from Eq. (51),
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0.558)
T

A= -(0.064) (a - B +y) +a +y(
‘Here 0,558/7 is’ -(HZ/ZJHO—?)’ with HZ as given by Marrus et al,

: o
An error in this paper gives HZ =~ 0.41 po <1/r3> rather than the -
correct value of - 0.558 ko <1/r3> . The relativistic Am wave-
functions of Lieberman, Waber, and Cromer” ' were used to evaluate
the radial integrals appearingin a - f +vy, a, and y. These

integrals are given in Table IX. Then

' M
(a - B +vy) =2.353 " (3)
o Ia.O
MM
a=-0.447 =
Iao
g L
y = 18.286 -3
.Iao
Using these values, we obtain
Y
A = 1,160 I (3)
IaO
giving
A (241) = 34.5 Mc/sec
A (242) = 20.8 Mc/sec.

If we assume that core polarization is responsible for the discrepancy

between these numbers and the measured numbers, then

A A (241)
AA (242)

- 17, - 51 Mc/sec
- 11, - 31 Mc/sec,

L2

1

where the first number above holds if the measured A's are
positive, the second if the A's are negative. It is of value at this

point to obtain an estimate of the uncertainty in the r_ad-ial integrals
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Table IX. Am and Pu relativistic radial integrals (in units of a0_3).

Am Pﬁ
F G ’
++ , a
e —rz———- dr = v - 23.5Ap.0> - 21.3 po
F_G_ ,
e f—rz-— dr | = 31.6 M 28.6 by
FG +F G
+ gt a
ef — dr = 6.7 M 6.1 B
T
F2'+ G2 . '
-_3——+ LA - 7.6
T i ) ' ‘
FT+ G
f_‘_r_g__‘ ar = 8.6 7.6
FF +G G
t -t 8.2

L"‘"\
=
Wi
o
)
]

a. Obtained by scaling.
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used, One parameter closely related to these integrals is {, the
sp1n -orbit coupling constant, since all are proportional to <'1/r3>
The d1fference 1n energy eigenvalues for f7/2 and f5/2 electrons
should be just 5 L the wavefunctions used then give { (Am) = 3020 cm
Blume, Freeman, and Watson38 showed that, in the rare earths, ¢{
obtained from a Hartree-Fock calculation is aecreased by about 10%
if two-body interactions such as spinv-other-orbit are considered. If
such a factor holds for Am, then the value of { given by these wave -
functions would be lowered to approximately 2700 crn-1. The correct
value of { (Am) 1is approximately 2400 cm-1, An { calculated from
these wavefunctions would then be about 12% too large.
Foglio and Pryce3,9from an investigation based on the Thomas-

Fermi model, found that in the reglon of Pu and Am, ¢/ <1/r >

= 370 cm 1/Au or <'1/r3> 3. We can also calculate <'1/r3>

%0
2 -
from <1/r3> + G dr, obta1n1ng <1/r3> 03. This is

20% higher than that obtamed-from the relationship suggested by
Foglio and Pryce.

| Although there is, unfortunately, no’way of estimatiﬁg whether
the ratios of the various radial integrals are in error, it appears that
.the magnitudes of vthese integrals may be too high by about 15%. If
such is the case, the numbers above for A should be decreased by
15%, with corresponding decreases in AA. ' v

We can estimate the amount of core polarization involved in

Am by looking at corel polarization in Pu, Bauche and Judd8
investigated core polarization in Pu in the six J levels of 7F
These levels .all have values of gy lying between -1.495 and - 1,424,
which means, according to (69), that the core polarization should be

approxi/mately a constant for all six levels. Then for all levels,
AJ(meas) = AJ(calc) + AA, (97)

Bauche and Judd treated Hys in addition to A A, as an
unknown, so that there were two adjustable parameters in the above
equation, With six J states, the parameters Were overdetermined,
If the various equations of Eq. (97) were consistent, then the straight

lines that they define should meet in a point, They found that

-1
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AA = -15 = 9 Mc/sec

pp = 0.17 (0.04) nm.

Because their work was done nonrelativistically, AA must
include both core polarization and relativistic effects, In.an effort to
separate these effects, we repeated their work calculating A relativ-
istically and using the relativistic Pu wavefunctions of Lieberman -
et al. 37 Their Pu calculations do not include wavefunctions for an

f7/2 electron37; integrals for f electrons were obtained by scaling

7/2
down the Am integrals by the ratio of the Pu f5/2' integral to the
Am f5/2 integral., This is equivalent to scaling down the factors

a -p+y, etc. by the same factor, giving

ok
a -B+\{?2.015—£—-39
. IaO'
Bop b
a = -0.133 I3°
Iao
Ty
y = 16.570 30.
IaO

The resulting calculated values for A are given in Table X, together
with the measured values of A, The measured values of A for J
from 2 to 6 have an uncertainty of 15 Mc/sec; the magnitude of A

for J =1 is known to 5 kc/sec, but the sign of A is unknown. The
_ nearly horizontal broken lines in Fig. 10 represent this uncertainty
in sign for J =1,

The equation plotted in Fig. 10 is

A (meas) = yQ + AA,

where y = [A(calc) a031]/(HI,HO). and € = (HIHO/IaO3) F. [F “is the
scaling factor that varies the magnitude of the radial integrals used
in Af(calc)]. From the discussion concerning the Am integrals, we
would expect F to be less than one.

Comparison of Fig. 10 with the corresponding figure given by

Bauche and Judd8 shows that the lines in our graph meet no more
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Fig. 10. Plot of A(meas) = y2 + AA for Pu,
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Table X. A values of Pu239.
A(meas) Afcalc)
(Mc/sec) (Mc/sec)

Ty

111.0 , 9.97 L0
: ' ’ Ia”

)
93.0 _ 8.27 "
81.0 ' 6.94 "
60.0 v 5.04 "
27.6 2.84 "

+ 5.13 0.48 "




-80-

nearly in a point than they do in the earlier graph, This is of no real
importance bécause, due to the uncertainty in A for J = 2 to 6,
any such meeting would be accidental. The important lines areé those
corresponding to J = 1, because they have essentially no uncertainty
in.the AA and iﬁtercepts. In the relativistic work, these lines
slope less than in the nonrelativistic work, “
A recent measurement of HI(Pu239) by Faust, Marrus, and
Nierenberg4o shows that by = 0.20 nm. A vertical broken line in
Fig. 10 represents the value of Q for this 1 and F =1, If all A
values were raised by the full 15 Mc/sec uncertainty, the lines could
cross at the intercept of this line with the J = 4 line for A < 0.
However, the method used to obtain these - A values should make the
A's for the lower J values much more accurate than those of higher
J values (the uncertainty in A for low J might be no more than
10%). Thus, it seems likely that the lines should meet in the region
of =14 or Q = 10, depending on Whethér A is less or greiat'e:r
than zero. Such a meeting would correspond to rnultiplying the
relativistic radial integrals by F = 0.74 or 0.55 for € = 14 and 10,
respectively. The ratio of <1/r3 obtained from the spin-orbit
‘constant to the relativistic <1/r3> is 0.76, ‘which agrees well with
the former number (0, 04), If our assumption that the A's for
J =2, 3, 4 are well known is correct, this would seem to indicate
that A(Pu) is less than zero; if it is inc.orrec’c, there is still reason
to believe that F = 0,75 could be the intersec‘tion point, Because of
the slight slope of the J =1 line, however, the amount of core
polarization does not vary much between the values of € correspond-

ingto F =0.75 and F = 1.0. The value is approximately
AA(Pu) = -2, -12 Mc/séc,

depending on whether A(Pu) is positive or negative. Defining the
'crossing point in the graph given by Bauche and Judd8 as the point

on the J =1 line corresponding to pp = 0.20 nm, one obtains

AA = -14, -28 Mc/sec.

From Eq. (69), we see‘that,' assuming that the energy levels

of the 5f, 7s, and s' electrons and the eigenfunctions lIJ,_]S(O) and
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¢S,(0) are the same for Pu and Am,

AA(Am) _ (SJ(Am) + 1) p (Am) I(Pu)
A A(Pu) ﬂ(gJ(Pu) T (PO T{Am)

A A(AmZYYy = 3.2 A A(PY)
.AA(Am242) = 1.9 A A(Pu)

or |
AA(Am241) = -6.5, -39 Mc/sec
AA(Am242_) = -4, -23 Mc/sec,

the choice depending on the sign of A for the J = 14 state of Pu,
These numbers are consistent with those obtained above for AA if
the A's of Am and Pu both have the same sign,

The value of B is calculated on the basis of Eq. (56). The
angular matrix elements are given in Table XI. The following 9-j

symbols were required in the calculation:

5/2 5/2 1
1 2 1l :-—71——— N3/5
7/2  1/2 2| 2737
J

5/2 5/2 1 _
1 2 3 :'7?'1%"”"'“7375
2%.3%. 7%
7/2 7/2 2 '

The radial integrals are given in Table VIII and the various contri-
butions to Z2 in Table XII. The final result is
eZQ

3

0 (98)
.28.2 Q Mc/sec,

4

B =0.120

a
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Table XI. Angular matrix elements of quadrupole interaction.

(7 epwi3 |7 °p) = 33
(7 Op|wO% ¢’ ®p) - N5/ 14

& e w0} - -9/2(v2/3)
¢ Pswt s’ °p) = 2N




(&
*
<

Table XII. Matrix elements of Z°.
Riy R,. ~ R__
<857/2 |22 11697/2> 8/49(N15) - 24/245(W15) - 16/2_45(\f1_5)
<6p7/'2 HZZH(’D?/z} - 250/3- 7> (N6/7) - 1784/3- 5- 73:(\‘/'(377") - 396/3- 5- 72 (N6 /7)
:



-84-

Since the measured quadrupole moment of Arn241 is

+4.9 barns, 41 B(241) is predicted positive, which forces A(241)
to be negative. As positive B and negative A are consistent with
all of the above results, we believe that this. is a true representation
of their signs. If it is, then both A(242) and B(242) are negative.

Contributions to A and B. from relativistic and other .effeqts
are tabulated'in Table XIII.

Comparison of Eq. (98) with the measured B. values \&ould_
then give

Q(241) = 4.4 barns

Q(242) =-2.5 barns,

E. Nuclear Structure

Fred and Tomkins, 42 on the basié of spectrum analysis,

241

determined the spin of Am to be T =5/2, After investigating

the a decay of Arn‘241 ‘to Np237, Stephens, Asaro, and Perlman4-3
concluded that the unpaired 95th proton must be in the Nilsson orbital
5/2-[523]. This assignment fits the Nilsson energy-level diagram
exactly if 0.,21< 6 < 0,28. One can also obtain a value for fhe |
deformation from the optically measured quadrupole moment.

0 =4.9 ba.rns,q"1 using Eqs. (94) and (95); the derived value of

6 = 0,21 supports the proposed orbital assignment-of protons,

The magnetic moment by of Am241 has been calculated on
the basis of the Nilsson wavefunctions. Table XIV shows the results
of this calculation, which was performed for several positive values
of & with both free nucleon g factors .and quenched g factors.32_
The value gr Z/A was used. We see that, when free nucleon g
factors are used‘, the measured moment is predicted for & = 0.15;
with quenched g factors, 6 is predicted for slightly greater than
0.2. Because the result with quenched g factors is consistenf with
that previously obtaihed; we believe that the use éf qu.ehche'd g
factors in calculations concerning Arn241 is justified.

In Am242, the odd neutron is probably in the Nilsson orbit
5/2+[622]. This assignment, which corresponds to 0,22 < 6 < 0,26,

is also made for the odd neutron in the ground states.of the isotones
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Table XIII. Contributions to the hyperfine constants

A and B in americium.

Magnitude
A (Mc/sec) B (Mc/sec)
Breakdown of LS coupling a
T 2 by _ b
within (5f) (7s)” 26.4 I 27.9 Q
Relativistic corrections 28.5 -IE 0.3 Q
_ ' [
Core polarization : - 81.6 T 0
: ' M : :
Total calculated - 26.7 T 28.2 Q
!
Total measured . - 26.7 T 25.3 Q

a. },LI in nm.

b. Q in barns.

B



-86-

. Table XIV. Am241 nuclear moments calculated

. . . a
with Nilsson wavefunctions.

2z 4 6 -
Free-nucleon g factors 1.89 1.32 - 1.07
Quenched g factors : 1.95 1.58 1.41

a. Proton state 5/2 -[523].
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Pu241. and Crn243 Usmg the couplmg rules of Gallagher and

Moszkowski, 13 we then have K = QP '_.QN' =0 for Am242

For a K 0 nucleus, by = gRI' if we accept the proposed value of
K, we then have a’ d1rect measurement of the core g factor. The
measured value of gr» Of H[’ is 0. 381, to be compered to the
usually used value of gR =Z/A = 0. 39&.

Because K =0, we have
Q : "5— QO.
Using the (Q obtained in the precedlng sectlon we have Q = 12.5

barns, This is of the proper sign and magnltude [Q (241) = 13.5 barns]

for a nuclide in this region,



-88-

ACKNOWLEDGMENTS
I thank thé many people involved in bringing this research to a
successful conclusion, especially: |
Professor William A, Nierenberg for his support,
Professor Richard Marrus for his constant help and - b
encouragement, » ‘
Eldred Calhoon of the Health Chemistry monitors for his
valuable aid in handling radioactive samples, |
Douglas B, Macdonald for his engineering aid,
Miss Christina Frank for typing the original version of the
manuséript, and
My psychologist..
This research was supported by the U, S. Atomic Energy

Commission,



10.
11.
12.

13.

14.

15.

16.

17.

-89.

REFERENCES

Lloyd Armstrong, Jr., and Richard Marrus, Phys. Rev. 138,
B310 (1965). '

N. F. Ramsey, Molecular Beams (Oxford University Press,
London, 1956).

E. Fermi, Z, Physik _6_(2, 32.0(1930).

C. Schwartz, Phys. Rev. 97, 380 (4955).

G. Breit, Nature 122, 649 (1928); H. Margenau, Phys., Rev. 57,
383 (1940). '

P, G. H. Sandars and G. K. Woodgate, Proc. Roy. Soc, (London)
A257, 269 (1960); V. Heine, Phys. Rev. 107, 1002 (1957).

M. Cohen, D, A, Goodings, and V. Heine, Proc. Phys. Soc.
(London) 73, 811 (1959).

J. Bauche and B. R, Judd, Proc. Phys. Soc. (London) 83, 145
(1964).

K. Rajnak and B. G. Wybourne, Phys. Rev, _1_3_%, 280 (1963).
A, Bohr and V, F. Weisskopf, Phys. Rev, 7, 94 (1950).

J. E. Rosenthal and G; Breit, Phys. Rev. 41, 429 (1932).

S. G. Nilsson, Kgl. Danske Videnskab. Selskab, Mat-Fys.
Medd. 29, No. 16 (1955).

C. J. Gallagher, Jr., and S, A. Moszkowski, Phys, Rev. 111,
1282 (1958). .

W. A, Nierenberg and G. O. Brink, J. Phys. Radium 19, 816

- (1958); P, G. H. Sandars and G, K, Woodgate, Nature 181,

1395 (1958).
M. B. White, Hyperfine Structures and Nuclear Moments of

Lul76m 5 80 5. 80m 41%32 (Ph.D. Thesis), UCRL-10321,
September 1962,

R. G. Schlecht, Hyperfine Structures and Anomaly of L16 and
Li7 and the Hyperfine Structures of R6186 and Re188 (Ph. D,
Thesis), UCRL-11047, October 1963, '

R. G. Schlecht, M. B, White, D, W, McColm, Phys. Rev. 138,

B306 (1965).



18.
19.

20,
21,

22.

23,
24,

25.

26.
217.

28.

29.
30.

31.

32,

33.

34,

-90-

R. H. Trees, Phys. Rev. 142, 165 (1958). -

D, Strominger, J. M. Hollander, and G. T. Seaborg, Rev. Mod.
Phys. 30, 585 (1958).

R. Winkler, Naturwissenschaften 10, 236 (1964).

Hans Kopferman, Nuclear Moments, English version by

E. E. Schneider (Academic Press, New York, 1958),

Charlotte E. Moore, Atomic Energy Levels (National Bureau of
Standards, Washington, D, C., 1958), Vol, III, NBS-467.

F. Bloch and A, Siegert, Phys. Rev. 57, 522 (1940).

E. U, Condon and G, H. Shortley, Theory of Atomic Structure

(Cambridge University Press, Cambridge, England, 1957).
Stanley Cohen, Relativistic Self-Consistent Calculation for the
Normal Tungsten Atom, UCRI.-8634, 1959; Relativistic Self~
Consistent Calculation for the Normal Platinum Atom, UCRL48635,
1959, |

H. Schuler and H, Korsching, Z. Physﬂ;jgék 168 (1937).

R. M. Sternheimer, Phys. Rev. 80, 102 (1950); 84, 244 (4951);
?_?_, 736 (1954); 105, 158 (1957).

‘H, B, G. Casimir, On the Interaction Between Atomic Nuclei

and Electrons ( Teyler's Tweede Genootschap, Haarlem, 1936),
C. Schwartz, Phys. Rev. 105, 173 (1957).

Quoted by B, Bleaney as private communication from

P. G. H., Sandars (1964).

B. R. Mottelson and S. G. Nilsson, Kgl. Danske Videnskab.

‘Selskab, Mat-Fys. Skrifter 41, No. 8 (1959).

J. O. Rasmussen and L., W. Chiao, in Proceedings of the

International Conference on Nuclear Structure, Kingston,

edited by D. A, Bromley and E. W, Vogt (University of Toronto
Press, Toronto, Canada, 1960), p. 646; Lung-wen Chiao,

The Magnetic Properties of Deformed Nuclei, UCRL-9648, 1961.
R. Marrus, W. A, Nierenberg, and J. Winocur, Phys. Rev.
120, 1429 (1960).

Joseph Winocur, Some Nuclear and Electronic Ground-State
Properties of‘PaZ33, An1241 and 16-hr Am242 {Ph. D, Thesis),
UCRL-9174, April 1963,

3



L

35.
36.

37.

38.

39.

© 40,

41.

42.
43,

-91-

M. Fred and F, S, Tomkins, J. Opt. Soc., Am, 47, 1076 (1957).
G. Racah, Phys, Rev, 62, 438 (1942); 63, 367(1943); 76, 1352
(1949).

D. Lieberman, J, T, Waber, and D, T, Cromer, (Los Alamos
Scientific Laboratory, 1965) private communication.

M. Blume, A. J. Freeman, and R, E, Watson, Phys, Rev. 134,
A320 (1964).

M. E. Foglio and M. H. L. Pryce, Mol, Phys, 4, 287 (1961).
J. Faust, R. Marrus, and W. A, Nierenberg, Phys. Letters 16,
71 (1965). ‘

T. E. Manning, M. Fred, F. S, Tomkins, Phys. Rev, 102, 1108
(1956).

M. Fred and F, S. Tomkins, Phys. Rev. 89, 318 (1953).

F. S. Stephens, Frank Asaro, and I, Perlman, Phys, Rev, 113,
242 (1959).




This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-

mission, nor any person acting on behalf of the Commission:

A.

Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report.

As used 1in the above, "person acting on behalf of the

Commission" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee

of such contractor prepares, disseminates, or provides access

to,

any information pursuant to his employment or contract

with the Commission, or his employment with such contractor.



—






