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Background: Individuals at high risk to develop alcoholism often manifest neurocognitive deficits as well as
increased impulsivity. The goal of the present study is to elucidate reward processing deficits, externalizing dis-
orders, and impulsivity as elicited by electrophysiological, clinical and behavioral measures in subjects at high
risk for alcoholism from families densely affected by alcoholism in the context of brain maturation across age
groups and gender.
Methods: Event-related potentials (ERPs) and current source density (CSD) during a monetary gambling task
(MGT) were measured in 12–25 year old offspring (N= 1864) of families in the Collaborative Study on the Ge-
netics of Alcoholism (COGA) Prospective study; the high risk (HR,N=1569) subjectswere from families densely
affected with alcoholism and the low risk (LR, N = 295) subjects were from community families. Externalizing
disorders and impulsivity scores were also compared between LR and HR groups.
Results:HR offspring from older (16–25 years)male and younger (12–15 years) female subgroups showed lower
P3 amplitude than LR subjects. The amplitude decrement was most prominent in HR males during the loss con-
dition. Overall, P3 amplitude increase at anterior sites and decrease at posterior areas were seen in older com-
pared to younger subjects, suggesting frontalization during brain maturation. The HR subgroups also exhibited
hypofrontalitymanifested as weaker CSD activity during both loss and gain conditions at frontal regions. Further,
the HR subjects had higher impulsivity scores and increased prevalence of externalizing disorders. P3 amplitudes
during the gain condition were negatively correlated with impulsivity scores.
Conclusions:Oldermale and younger female HR offspring, compared to their LR counterparts, manifested reward
processing deficits as indexed by lower P3 amplitude and weaker CSD activity, along with higher prevalence of
externalizing disorders and higher impulsivity scores.
Significance: Reward related P3 is a valuablemeasure reflecting neurocognitive dysfunction in subjects at risk for
alcoholism, as well as to characterize reward processing and brain maturation across gender and age group.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Alcoholism is a complex disorder with multiple etiological pathways
involving a host of genetic and environmental factors alongwith their in-
teractions in its onset, manifestations, course, and treatment outcome.
Converging evidence supports the notion that there may be a wide
range of genetic, biological, neurocognitive and environmental factors in-
volved in the causal pathways to develop alcoholism. Electrophysiological
namics Lab, SUNY Downstate
, NY 11427, USA.
jan).
measures, such as electroencephalogram (EEG), event-related potentials
(ERPs), and event-related oscillations (EROs) have played a vital role as
biological markers or endophenotypes to understand neurocognitive
mechanisms involved in alcohol use and related disorders (see Porjesz
et al., 2005, for a review). These electrophysiological methods provide a
direct measure of brain activity with high temporal sensitivity to under-
stand neurocognitive processes, while being non-invasive and inexpen-
sive for its applications. Specifically, ERPs can measure dynamically
changing brain activity in real time during perceptual, motor, and cogni-
tive processing while performing a task (Picton and Hillyard, 1988). ERPs
have been widely and successfully used to examine neurocognitive
processing during various experimental tasks in normal populations as
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well as in a range of clinical conditions including alcoholism (Porjesz and
Begleiter, 1985; Begleiter and Porjesz, 1990a; Porjesz et al., 1996, 2005;
Porjesz and Begleiter, 1997).

A landmark finding in the electrophysiology of human alcoholism is
that individuals with alcohol dependence as well as their high risk off-
spring show low voltage P3(00) amplitude (for reviews, see Begleiter
and Porjesz, 1990b; Porjesz and Begleiter, 1990, 1991, 1997; Polich
et al., 1994; Porjesz et al., 2005). P3 is a robust, positive going ERP
wave occurring around 300–700 ms following the onset of a stimulus,
indicative of its context (Donchin and Coles, 1988) or importance
(Sutton et al., 1978; Begleiter et al., 1983) during signal/cognitive
processing. Since the first report by Begleiter et al. (1984) of low P3 am-
plitude in the sons of alcoholic fathers (in a study without any alcohol
challenge), this finding has been replicated across many different
experimental paradigms in male as well as female high risk subjects
(i.e., offspring of alcoholics) in diverse samples (for reviews, see
Porjesz et al., 2005; Rangaswamy and Porjesz, 2014).

It was a turning point in alcoholism research that lower P3 ampli-
tude, observed in alcoholic individuals (Porjesz and Begleiter, 1981;
Oscar-Berman, 1987; Pfefferbaum et al., 1987; Porjesz et al., 1987;
Cohen et al., 1995, 1997b; Rodriguez Holguin et al., 1999a; Hada et al.,
2000; Prabhu et al., 2001; Cohen et al., 2002; Suresh et al., 2003;
Kamarajan et al., 2005a, 2010; Fein and Chang, 2006; Fein and Andrew,
2011), was also found in individuals with a family history of alcoholism
who were considered to be genetically vulnerable but had not yet
developed alcoholism (Elmasian et al., 1982; O'Connor et al., 1987;
Porjesz and Begleiter, 1990; Benegal et al., 1995; Porjesz et al., 1996;
Ramachandran et al., 1996; Kamarajan et al., 2005b) and had never or
only rarely been exposed to alcohol (Begleiter et al., 1984, 1987;
Whipple et al., 1988, 1991; Hill and Steinhauer, 1993; Steinhauer and
Hill, 1993; Hill et al., 1995). However, itmust be stated that P3 reduction
in high risk subjects, as a phenomenon, is not consistent or ubiquitous in
the literature, but often with equivocal as well as subgroup-specific
findings, and has been found to be strongest in younger males (for a
meta-analysis, see Polich et al., 1994). For example, some studies report-
ed that P3 reductions were observed only in boys of alcoholic parents
(e.g., Hill and Steinhauer, 1993), while other studies found the effect
in both genders (e.g., Porjesz et al., 1996). Similarly, this effect has
been found to be stronger in younger subjects (e.g., Begleiter et al.,
1987; Polich et al., 1994) but still robust in adolescents/young adults
(O'Connor et al., 1987; Porjesz and Begleiter, 1990; Porjesz et al.,
1996; Ramachandran et al., 1996; Van der Stelt et al., 1998; Kamarajan
et al., 2005b). Possible reasons for these inconsistent and/or subgroup
specific findings may include the following: (i) the studies may differ
methodologically (in terms of sample characteristics, task paradigms,
ERP recording and signal processing, statistical techniques, etc.);
(ii) definition of “risk” may differ across studies; and (iii) P3 reduction
may in fact be a function of age, gender, and task paradigms and may
be moderated by several confounding (or unmeasured) factors such as
personality traits, situational/familial/sociocultural factors, and other
variations due to genetic and epigenetic factors.

It is also important to note that low P3 is not unique to alcoholics and
their high risk relatives, but is also found in individualswith oneormore
externalizing disorders or disinhibitory conditions (Carlson et al., 1999;
Hill and Shen, 2002; Iacono et al., 2002, 2003; Iacono andMcGue, 2006;
Patrick et al., 2006; Carlson et al., 2007; Hicks et al., 2007; Iacono et al.,
2008; Patrick, 2008; Gilmore et al., 2010a,b, 2012). As reported by sev-
eral studies, an underlying feature among risk propensity, externalizing
disorders and alcoholism is the concept of “impulsivity”, which is a
conglomerate of personality traits that can result in premature, unduly
risky and poorly conceived actions, and is known to be closely related
to disinhibitory traits and clinical vulnerability (Gorenstein and
Newman, 1980; Martin et al., 1994; Olson et al., 1999; Krueger and
Piasecki, 2002; Hall et al., 2007; Kamarajan et al., 2007; Crews and
Boettiger, 2009; Romer et al., 2009). Interestingly, P3 amplitude
has been found to be either negatively correlated with impulsivity or
lower in high impulsive subjects regardless of having a diagnosis of
alcoholism and/or related disorders (Justus et al., 2001; Moeller
et al., 2004; Chen et al., 2007; Ruchsow et al., 2008; Kamarajan
et al., 2010).

Alcoholism has often been characterized as a reward deficit disorder
(Koob, 2013; Forbes et al., 2014), and several studies have successfully
used ERPs to examine reward processing in healthy individuals
(Homberg et al., 1980, 1981; Begleiter et al., 1983; Ivanitsky et al.,
1986; Gehring and Willoughby, 2002; Yeung and Sanfey, 2004; Hajcak
et al., 2005; Nieuwenhuis et al., 2005; Toyomaki and Murohashi,
2005a,b; Hajcak et al., 2006, 2007; Holroyd et al., 2006; Yu and Zhou,
2006; Kamarajan et al., 2009, 2010), as well as in alcoholic and HR off-
spring (Porjesz et al., 1987; Ramsey and Finn, 1997; Fein and Chang,
2008). Major ERP components studied during outcome/feedback pro-
cessing during monetary gambling tasks (MGT) are the outcome-
related negativity (ORN) or N2 (between 200 ms and 300 ms) and the
outcome-related positivity (ORP) or P3 (between 300 ms and 600 ms)
(Gehring and Willoughby, 2002; Yeung and Sanfey, 2004; Hajcak
et al., 2005, 2006; Yeung et al., 2005; Holroyd et al., 2006; Cohen and
Ranganath, 2007; Kamarajan et al., 2009). In our previous ERP study of
reward processing using a MGT in alcoholics, we found that alcoholics
showed significantly lower amplitudes of N2/ORN and P3/ORP compo-
nents and decreased current density in cingulate gyrus, along with
higher levels of impulsivity and risk-taking features than controls
(Kamarajan et al., 2010). While FRN/N2 is another important compo-
nent of feedback processing, the current study focuses solely on the P3
component for the following reasons: 1) dealingwith both components
(P3 and N2) in a single study with multiple factors (risk group, gender,
age group) may render the study too complex; 2) with regard to alco-
holism and risk, P3 is considered to be the most robust ERP component
and a sensitive biomarker, and therefore the analysis of P3 has assumed
its precedence in the current study; 3) FRN/N2 is a relatively subtle
component and more prone to artifact distortions, rendering it more
difficult to measure (especially in such a large sample of adolescents
and young adults) compared to the large P3 component; and 4) imple-
mentation of a more sophisticated source localization method
(e.g., sLORETA) may be essential to examine the key brain sources
(e.g., anterior cingulate region) attributed to the FRN (Crowley et al.,
2013). For these reasons, only the P3 component has been dealt with
in the current study. As current source density (CSD), a source deriva-
tion method of electrophysiological activity, has been successfully
used in several neuropsychiatric disorders including alcoholism (for a
review, see Kamarajan et al., 2015), we have also compared CSD topog-
raphy across the groups (see Section 2.5 for more information on the
CSD method).

The overarching aim of the present study is to examine reward pro-
cessing (as indexed by P3 amplitude and CSD), and externalizing fea-
tures in HR offspring recruited from high density alcoholism families
in comparison with LR (comparison) subjects recruited from a commu-
nity sample in the COGA Prospective Study, in the context of brainmat-
uration across age groups and gender. This is the first ERP study using a
monetary gambling paradigm to study HR offspring, and has been de-
signed to examine the following hypotheses: (1) HR offspring will
show lower P3 amplitude during reward processing than low-risk
(LR) individuals from the comparison families; 2) HR group will show
current density differences in both magnitude and topography as
compared to the LR group; and (3) HR group will have higher impul-
sivity scores than the LR group. As the literature regarding P3 reduc-
tion in high risk subjects, as mentioned earlier, has often been
equivocal with regard to gender- and age-based subgroups, the
current study also investigates the effects of age and gender on P3 am-
plitudes in specific subgroups. It is expected that findings of the present
study may shed further light on the complex relationship among
reward processing deficits (indexed by P3 amplitude and CSD), impul-
sivity, and externalizing disorders involved in the development of
alcoholism.
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2. Materials and methods

2.1. Participants

The sample included 1864 adolescents and young adults (903males
and 961 females) between 12 and 25 years of age (see Table 1) andwas
derived from the prospective study of the Collaborative Study on the
Genetics of Alcoholism (COGA) (Begleiter et al., 1995; Edenberg et al.,
2005). The prospective study began in 2004, focusing on participants
who were relatives (e.g., offspring) of the high-risk and comparison
(comparison) families ascertained in previous phases of COGA. Partici-
pants are reassessed every two years with clinical, behavioral and
neurophysiological assessments. Data from six collection sites have
been included in this study: SUNY Downstate Medical Center at
Brooklyn, New York; University of Connecticut Health Science Center;
Washington University School of Medicine in St. Louis; University of
California at San Diego; University of Iowa, and Indiana University
School of Medicine. Recruitment and assessment procedures have
been described elsewhere (Begleiter et al., 1995; Reich et al., 1998;
Foroud et al., 2000; Nurnberger et al., 2004), and are also available at
this website: https://zork5.wustl.edu/coganew/data/instruments.html.
The experimental protocols were approved by each site's institutional
review board, and informed consent was obtained from all participants.

Subjects were excluded from neurophysiological assessment if
they had any of the following: (1) recent substance or alcohol use
(i.e., positive breath-analyzer test and/or urine screen), (2) hepatic
encephalopathy/cirrhosis of the liver, (3) history of head injury, sei-
zures or neurosurgery, (4) uncorrected sensory deficits, (5) history/
symptoms of psychoses, (6) self-reported positive test for human im-
munodeficiency virus, and (7) other acute/chronic medical illnesses
that affects brain function. The HR group consisted of individuals from
the COGA high density alcoholism families who had at least one parent
with DSM-IV alcohol dependence, while the LR group consisted of indi-
viduals from the community families without any parental history of al-
cohol dependence. The groups were further subdivided based on
gender and age group (12–15 and 16–25 years old) (see Table 1). As
the age distribution was skewed in the overall sample (i.e., relatively
more subjects were represented at younger ages), the sample was
subdivided into these age groups, in order to provide adequate sample
sizes for each age group and ensure good pubertal and post-pubertal
representation. Table 2 shows lifetime prevalence rates of externalizing
disorders for HR and LR groups. These externalizing scores were higher
in HR offspring compared to LR individuals in each gender aswell in the
total sample (see Table 2).

2.2. Assessment tools

The clinical and impulsivity data of the sample were collected with
three instruments: (1) SSAGA — The Semi Structured Assessment for
the Genetics of Alcoholism (Bucholz et al., 1994) evaluated clinical diag-
noses and symptoms; (2) FHAM — The Family History Assessment
Table 1
Number of participants categorized by age group, gender, and risk group.

Age group Gender Risk group Total

Low-risk (LR) High-risk (HR)

12–15 years Male 70 317 387
Female 96 329 425
Total 166 646 812

16–25 years Male 64 452 516
Female 65 471 536
Total 129 923 1052

Total Male 134 769 903
Female 161 800 961
Total 295 1569 1864
Module (Rice et al., 1995) assessed major psychiatric disorders among
relatives of the participants; and (3) BIS — The Barratt Impulsiveness
Scale (BIS) (Patton et al., 1995) provided ratings of impulsivity in
three categories viz., attentional, motor, and non-planning, yielding in-
dividual as well as total scores.

2.3. Monetary gambling task

The monetary gambling task (MGT) used in this study is illustrated
in Fig. 1. Each trial beganwith a choice stimulus (CS), with two numbers
10 (left box) and 50 (right box), with a monetary value in US cents,
displayed for 800 ms. The participants select a bet of either 50¢ or 10¢,
and receive feedback of either loss or gain for the selected amount
(outcome stimulus, OS). The task details have been described in
our previous publications (Kamarajan et al., 2008, 2009, 2010,
2012). The inter-stimulus interval between a CS and OS, and be-
tween an OS and next CS is 1500 ms. The task involved a total of
172 trials, each with one of four possible outcomes: Loss 50, Loss
10, Gain 50, and Gain 10. P3 amplitudes were measured during the
ERP epochs of outcome stimuli (1000 ms poststimulus) which
contained the feedback of either loss or gain for each trial (i.e., the
epochs following colored frames in Fig. 1).

2.4. EEG data acquisition and signal analysis

Identical experimental procedures and EEG acquisition systems
were used at all neurophysiology collection sites of COGA (Begleiter
et al., 1995; Porjesz and Begleiter, 1995) with inter-laboratory consis-
tency in recordings (Alexander et al., 1994; Cohen et al., 1994;
Kuperman et al., 1995; Rohrbaugh et al., 1997). Subjects were seated
comfortably 1 m from a monitor in a dimly lit sound-attenuated RF-
shielded booth (Industrial Acoustics, Inc., Bronx, NY, USA), and wore a
61-channel electrode cap (Electro-Cap International, Inc., Eaton, OH,
USA) based on the Extended 10–20 Systems (Chatrian et al., 1985;
Chatrian et al., 1988; Oostenveld and Praamstra, 2001) (Fig. 2), with a
reference electrode at the tip of the nose and with a ground electrode
at the forehead. The electrooculogram (EOG) was recorded by a supra-
orbital vertical electrode and by a horizontal electrode on the external
canthus of the left eye. Electrode impedances were maintained below
5 kΩ. Electrical activity was amplified 10,000 times using SynAmps2
amplifiers (Compumedics USA, Charlotte, NC) and was recorded
continuously over a bandwidth of DC–100.0 Hz on a Neuroscan system
(Versions 4.3–4.5; CompumedicsUSA, Charlotte, NC) at sampling rate of
500 Hz. All EEG data were resampled offline at 256 Hz for the analyses.
Artifact rejection threshold during preprocessing was set at ±100 μV.

ERP waveforms were filtered at 0.03–16.0 Hz and the P3 amplitude
was measured as the voltage difference from the pre-stimulus baseline
window (0–100 ms) to the largest positive going peak within the post-
stimulus time window (275–600 ms) after the onset of an outcome
stimulus. A semi-automatic computerized algorithm developed in our
laboratory identified the P3 peak as a time point on the P3 wave with
maximum amplitude within the 275–600 ms post-stimulus time win-
dow (Cohen et al., 2002; Kamarajan et al., 2009). Further, ERP wave-
forms were visually analyzed for the correctness of peak identification
andmorphology of the waveforms. Since the P3 topography for smaller
and larger amounts (10¢ and 50¢) were similar (Kamarajan et al., 2009,
2010), trials for the two amounts (10¢ and 50¢) were combined for the
loss condition (loss 10¢ + loss 50¢) as well as for the gain condition
(gain 10¢ + gain 50¢) in order to have more trials per subject and
more subjects per group. Mean trial numbers across the risk groups in
each condition are: LR = 39.12 and HR = 36.51 for the loss condition;
LR = 42.24 and HR = 40.53 for the gain condition. Although signal-
to-noise-ratio (SNR) andminimum number of trials needed for the sta-
bility P3 in gambling paradigmhave not been determined in the current
study, trial numbers for each condition seem to be adequate. In view of
the findings that the SNR did not differ when the trial numbers

https://zork5.wustl.edu/coganew/data/instruments.html


Table 2
Prevalence rates in counts and percentage (in parentheses) for the diagnoses of externalizing disorders (EXT) in LR andHR groups in the total sample andwithin gender. Note that the HR
group had higher prevalence rates in all the diagnoses than the LR group. Significance levels based on Chi-square test have beenmarkedwith asterisks (inHR columns). Diagnosis of SUD is
based on DSM-IV criteria for dependence or abuse. Empty cell (with a dash) represents the count of zero.

Diagnosis Male (affected cases) Female (affected cases) Total (affected cases)

LR HR LR HR LR HR

Alcohol 9 (6.98) 112 (14.95)⁎⁎ 5 (3.16) 90 (11.49)⁎⁎⁎ 14 (4.88) 202 (13.19)⁎⁎⁎

Tobacco 5 (3.88) 64 (8.54)⁎ 2 (1.27) 62 (7.92)⁎⁎⁎ 7 (2.44) 126 (8.22)⁎⁎⁎

Marijuana 9 (6.98) 123 (16.55)⁎⁎ 2 (1.27) 75 (9.59)⁎⁎⁎ 11 (3.85) 198 (12.98)⁎⁎⁎

Cocaine – 9 (1.20) – 8 (1.02) – 17 (1.11)⁎

Stimulant – 6 (0.80) – 13 (1.66)⁎ – 19 (1.24)⁎

Sedative – 3 (0.40) – 4 (0.51) – 7 (0.46)
Opiate – 5 (0.67) – 9 (1.15) – 14 (0.92)⁎

Other drugs – 8 (1.07) – 12 (1.53)⁎ – 20 (1.30)⁎⁎

ASPD 3 (8.33) 40 (15.56) 1 (2.56) 25 (8.31) 4 (5.33) 65 (11.65)
CD 5 (3.88) 81 (10.81)⁎⁎ 5 (3.16) 45 (5.76) 10 (3.48) 126 (8.24)⁎⁎

ADHD 3 (2.33) 27 (3.63) 2 (1.27) 13 (1.66) 5 (1.75) 40 (2.62)
ODD 1 (0.78) 21 (2.94) 1 (0.64) 13 (1.70) 2 (0.70) 34 (2.30)⁎

Any SUD 15 (11.63) 189 (25.17)⁎⁎⁎ 8 (5.06) 154 (19.52)⁎⁎⁎ 23 (8.01) 343 (22.27)⁎⁎⁎

Any EXT 20 (15.50) 239 (31.82)⁎⁎⁎ 14 (8.86) 186 (23.57)⁎⁎⁎ 34 (11.85) 425 (27.60)⁎⁎⁎

⁎ p b 0.05.
⁎⁎ p b 0.01.
⁎⁎⁎ p b 0.001.
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exceeded eight for the ERN/Pe components (Olvet and Hajcak, 2009),
and that the components can be reliably measured with 8 trials for
ERN (Olvet and Hajcak, 2009) and with 20 trials for the FRN (Marco-
Pallares et al., 2011), it is very unlikely that SNR-related issuesmay con-
found the results of the current study given the higher number of trials
in each condition.
Fig. 1. Schematic illustration of the monetary gambling task. Each trial starts with a choice stim
participant selects one of the amounts and receives an outcome of either gain (green box) or los
gain of 50¢ and the next trial with a loss of 10¢ are illustrated.
2.5. Current source density mapping

The recorded EEG potential at each electrode does not represent
brain sources solely adjacent to the electrode location (Nunez, 1981),
because of two limitations (Kayser and Tenke, 2015): (i) EEG is mea-
sured as a potential difference between the recorded electrode and
ulus (CS) which lasts for 800 ms and displays two amounts (10¢ or 50¢) to bet with. The
s (red box) for the selected amount as shown by the outcome stimulus (OS). A trial with a



Fig. 2. Sixty-one electrodes as recorded in the current study from the surface of the scalp.
Twelve electrodes (F3, FZ, F4, C3, CZ, C4, P3, PZ, P4, O1, OZ, O2) representing frontal, cen-
tral, parietal and occipital regions were selected for statistical analyses.
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the reference electrode, and (ii) the EEG signal is a mixture of propagat-
ed neuroelectric activity frommultiple local and distal brain sources and
is smeared by volume conduction. Both of these limitations can be mit-
igated by use of the surface Laplacian algorithm (Hjorth, 1975),which is
a simple mathematical transformation applied to the EEG surface po-
tentials (for a tutorial review on this topic, see Kayser and Tenke,
2015). The CSD provides information about local radial current density
representing components of the primary neural activity in the scalp re-
gion (Nunez and Pilgreen, 1991). Thus, the CSD topographic map is a
spatially enhanced representation of current generators with more
sharply localized peaks than those of the scalp potential, while eliminat-
ing volume-conducted contributions from distant regions and sources
(Tenke and Kayser, 2012). CSD topography thus represents reference-
free estimates of radial current flow at the scalp represented in positive
and negative polarities (Kayser and Tenke, 2015). The positivity or
“source” represents current flow from the brain toward the scalp
(i.e., outward flow), while the negativity or “sink” indicates current
flow toward the brain from the scalp (i.e., inward flow) (Nunez and
Srinivasan, 2006). CSD methods have been successfully implemented
in several neuropsychiatric disorders (Kamarajan et al., 2015) including
alcoholism (Ramachandran et al., 1996; Ji et al., 1999; Hada et al., 2000;
Kamarajan et al., 2005a, 2012) in order to understand possible brain
sources underlying scalp-recorded potentials. In the present study,
CSD maps were constructed from the Laplacian transformed grand av-
eraged data of P3 amplitudes, for each group and condition, as described
byWang and Begleiter (1999). Z-scored maps for P3 amplitude as well
as CSD were plotted so that topographic patterns could be compared
across groups regardless of the magnitude of amplitude/CSD. Topo-
graphic activation patterns of sources and sinks between LR and HR
groups were compared.

2.6. Statistical analyses

Statistical analyses were performed using SPSS 21.0 (IBM Corpora-
tion, Armonk, NY). Prevalence rates of externalizing diagnoses were
compared between HR and LR groups in each gender as well as total
samples using Chi-square test with significance testing for Likelihood
Ratio (see Table 2). P3 amplitudes from 12 electrodes (F3, FZ, F4, C3,
CZ, C4, P3, PZ, P4, O1, OZ, O2) were analyzed using a repeatedmeasures
analysis of variance (RM-ANOVA) of the general linear model involving
Risk Group (HR and LR), Age Group (12–15 and 16–25 years), and Gen-
der (male and female) as between-subjects factors, and Task condition
(Loss and Gain) and Region (frontal, central, parietal, and occipital) as
within-subjects factors. Four scalp regions with three electrodes per re-
gion (Frontal: F3, FZ, F4; Central: C3, CZ, C4; Parietal: P3, PZ, P4; Occip-
ital: O1, OZ, O2) were included in the model. Although affected status
(i.e., individuals with any externalizing diagnosis as shown in Table 2)
was initially used as a covariate in the RM-ANOVA model, it was re-
moved from the later analysis which is presented here, as the covariate
(i.e., externalizing factor) showed neither a main effect nor any interac-
tion effect with any factors in the model. As the electrophysiology data
for the within-subjects factors in the current study did not adhere to
the sphericity assumption (i.e., the equality of the variances of the dif-
ferences between levels of repeated measures factor, such as region),
we usedmultivariate test statistics, which are not dependent on the as-
sumption of sphericity (O'Brien and Kaiser, 1985; Field, 1988). Hence
this provides an appropriate alternative method to analyze EEG data
with repeated-measures multivariate analyses of variance, which does
not assume sphericity and therefore does not require any corrections
(cf. Bell and Cuevas, 2012). Bonferroni adjusted pairwise comparisons
within each significant main and interaction effects were analyzed
using estimated marginal means (EMM) and standard errors (SE). The
BIS scores between LR and HR groups were analyzed using one-way
ANOVA. The relationship between P3 amplitudes and BIS scores was
examined using Pearson correlation coefficients.

3. Results

3.1. Prevalence rates of externalizing disorders

Table 2 shows comparison of prevalence rates of externalizing
(EXT) disorders, which includes DSM-IV lifetime diagnosis for SUD
(dependence/abuse) and other related disorders, such as anti-social
personality disorder (ASPD), conduct disorder (CD), attention deficit
hyperactivity disorder (ADHD), and oppositional defiant disorder
(ODD). “Other drugs” refers to the substances other than those men-
tioned in the list. Significant differences in the prevalence rates between
LR and HR subjects were observed in several diagnoses for all three
comparisons: (i) Males: alcohol, tobacco, marijuana, CD, any SUD, and
any EXT; (ii) Females: alcohol, tobacco, marijuana, stimulant, other
drugs, any SUD, and any EXT; and (iii)All subjects: alcohol, tobacco,mar-
ijuana, cocaine, stimulant, opiate, other drugs, CD, ODD, any SUD, and
any EXT. The diagnoses that were significant in all the comparisons
were: alcohol, tobacco, marijuana, any SUD, and any EXT.

3.2. Mean P3 values across the subgroups

Qualitative comparison of mean P3 values for each subgroup during
loss and gain conditions are illustrated in Fig. 3. Section 3.2 describes the
statistical comparison of P3 amplitudes across factors with RM-ANOVA.
Lower P3 amplitudes in HR compared to LR subjects (solid vs. broken
lines within each panel in Fig. 3) was more evident in both younger
and older male subjects only during the loss condition (top left panel),
as well as in younger female subjects during both loss and gain condi-
tions (orange lines in right-side panels). Further, a comparison between
genders (left-side vs. right-side panels in Fig. 3), indicates that younger
males during both loss and gain conditions showed higher P3 ampli-
tudes than their female counterparts (cyan vs. orange lines). Further-
more, older subjects showed increased P3 amplitudes in anterior sites
and a decrease in posterior regions compared to younger subjects
(darker vs. lighter colored lines within each panel in Fig. 3), reflecting
brain maturation during development (“frontalization”).



Fig. 3. Qualitative comparison of mean P3 values for each subgroup during loss and gain conditions across 12 electrodes representing 4 regions (frontal: F3, FZ, F4; central: C3, CZ, C4;
parietal: P3, PZ, P4; occipital: O1, OZ, O2). HR offspring display markedly lower P3 amplitude than LR subjects in both younger and older male subgroups during loss condition as well
as in younger female subjects during both loss and gain conditions.
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3.3. RM-ANOVA results

Table 3 lists the main and interaction effects in the RM-ANOVA
model, and Fig. 4 illustrates the pairwise comparisons of the estimated
marginal means of the P3 amplitude between the levels of risk groups,
gender, and age groups at each scalp region for the loss and gain
conditions. P3 amplitude showed significant main effects for age
group, condition, and region along with the following 2-way and
3-way interaction effects: (i) age group × gender, (ii) age group ×
region, (iii) gender × region, (iv) condition × region, (v) risk
group × condition × region, (vi) gender × condition × region
(Table 3). These results are explained for each major factor (risk
group, gender, and age group) in the order of higher order (com-
plex) to lower order (simpler) effects in the subsections below.
3.3.1. Risk group
A higher order interaction (risk group × condition × region) was

found for risk group, suggesting that P3 amplitudes between risk
groups varied in specific regions and conditions. Follow-up analysis
revealed that HR offspring had significantly lower P3 amplitudes in
parietal and occipital regions only during loss condition. Further,
Bonferroni corrected multiple pairwise comparisons (see Fig. 4,
panels A1–A2) revealed that risk group differences in P3 ampli-
tudes (HR b LR) was significant in older males (in central and
parietal regions) as well as in younger females in occipital region
during the loss condition (see Fig. 5).
3.3.2. Gender
In terms of gender effects, the 3-way interaction gender × condi-

tion × region interaction revealed that males displayed significantly
higher P3 amplitude than females only at the parietal region during
the gain condition. Significant gender × age group interaction indicated
that males showed higher P3 amplitude than females only in the youn-
ger age group. Gender × region effect showed that overall P3 ampli-
tudes were higher for males (than females) in central, parietal, and
occipital regions, while the frontal region showed the opposite pattern
(females N males). Comparison between males and females across
other factors (see Fig. 4, panels B1–B2) revealed that males displayed
higher P3 amplitudes (with significant differences mainly among youn-
ger subjects) than females in all but the older HR subgroup.
3.3.3. Age group
The age group × gender effect showed that younger male

subjects manifested significantly higher P3 amplitude, but this pattern
(younger N older) was not statistically significant in female subjects. In
terms of gender differences across scalp regions, the younger age
group showed significantly higher P3 amplitude in parietal and occipital
regionswhile the older group showed significant increases in the frontal
region as revealed by age group × region effect. Overall, younger sub-
jects displayed significantly higher P3 amplitude than older subjects
as shown by the main effect of age group. Comparisons between age
groups across other factors (see Fig. 4, panels C1–C2) confirm that this
pattern (younger N older) is true in several subgroups except for the



Table 3
Themain and interaction effects of the RM-ANOVA of P3 amplitude (dependent variable)
with several between-subjects and within-subjects factors. Degrees of Freedom, F value,
and p value are shown. Significant effects have been highlighted with bold font.

Effect df F p

Risk-group 1 1.70 0.1926
Gender 1 0.82 0.3646
Age-group 1 7.53 0.0061⁎⁎

Risk-group × gender 1 1.70 0.1927
Risk-group × age-group 1 0.72 0.3973
Gender × age-group 1 4.31 0.0381⁎

Risk-group × gender × age-group 1 1.14 0.2863
Condition 1 234.77 b 0.0001⁎⁎⁎

Condition × risk-group 1 2.66 0.1034
Condition × gender 1 1.53 0.2161
Condition × age-group 1 2.73 0.0984
Condition × risk-group × gender 1 0.01 0.9302
Condition × risk-group × age-group 1 0.19 0.6638
Condition × gender × age-group 1 2.96 0.0854
Condition × risk-group × gender × age-group 1 2.17 0.1407
Region 3 1165.91 b 0.0001⁎⁎⁎

Region × risk-group 3 2.21 0.0851
Region × gender 3 4.33 0.0047⁎⁎

Region × age-group 3 38.79 b 0.0001⁎⁎⁎

Region × risk-group × gender 3 0.74 0.5263
Region × risk-group × age-group 3 0.79 0.5021
Region × gender × age-group 3 0.54 0.6560
Region × risk-group × gender × age-group 3 0.15 0.9289
Condition × region 3 24.34 b 0.0001⁎⁎⁎

Condition × region × risk-group 3 2.93 0.0327⁎

Condition × region × gender 3 2.99 0.0301⁎

Condition × region × age-group 3 1.99 0.1128
Condition × region × risk-group × gender 3 1.43 0.2321
Condition × region × risk-group × age-group 3 1.24 0.2935
Condition × region × gender × age-group 3 0.46 0.7116
Condition × region × risk-group × gender × age-group 3 0.87 0.4538

⁎ p b 0.05.
⁎⁎ p b 0.01.
⁎⁎⁎ p b 0.001.
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anterior regions in older females, where the opposite pattern (older N
younger) was observed.

3.3.4. Within-subjects factors
Effects of within-subjects factors (condition × region, condition, and

region) were highly significant (p b 0.001). Condition × region interac-
tion indicated that P3was larger in the gain compared to the loss condi-
tion in all regions, and this observation was further confirmed by the
condition main effect. The region main effect showed that overall P3
amplitudewas highest in the parietal region, followed by central, occip-
ital and frontal regions (i.e., parietal N central N occipital N frontal), thus
indicating that P3 scalp voltage has a posterior topography.

3.4. Current source density

Topographic maps of CSD for each subgroup during loss and gain
conditions are shown in Fig. 6 (panels A1, A2, B1, and B2). Differences
across conditions and groups have been observed in sources (positivity)
and sinks (negativity). Overall, the results showed that the loss condi-
tion had predominant left and right frontal sources, while the gain con-
dition had an additional mid-frontal source as well. Younger and older
male HR offspring displayed weaker source activation at the left and
right frontal regions during both loss and gain conditions in comparison
their LR counterparts. Among females, the right frontal source was
weaker during both loss and gain conditions in younger HR subjects
compared to their LR counterparts. Further, a weaker prefrontal sink ac-
tivation was found in younger male HR offspring compared to male LR
subjects during both loss and gain conditions and only during the loss
condition in females. Central and posterior sinks were almost compara-
ble across groups.

3.5. BIS impulsivity

3.5.1. Impulsivity scores between LR and HR subjects
Comparisons of impulsivity scores between LR and HR groups are

shown in Fig. 7. Overall, in the total sample, the HR offspring displayed
significantly increased impulsivity on each of the scores: non-planning
(F = 26.47; p b 0.0001), motor (F = 34.21; p b 0.0001), attentional
(F = 28.47; p b 0.0001), and total (F = 45.44; p b 0.0001). Specifically,
younger HR males exhibited significantly higher impulsivity in non-
planning (F=6.87; p=0.0091), motor (F=15.01; p=0.0001), atten-
tional (F = 5.35; p = 0.0213), and total impulsivity (F = 13.64; p =
0.0003) than their LR counterparts. On the other hand, older HR males
showed increased impulsivity only in motor (F = 5.44; p = 0.0202)
and total impulsivity (F = 5.56; p = 0.0188) compared to older LR
males. Among females, younger HR offspring had significantly higher
impulsivity on all the scores than the LR subjects: non-planning (F =
13.36; p = 0.0003), motor (F = 16.21; p = 0.0001), attentional (F =
28.49; p b 0.0000), and total impulsivity (F = 27.80; p b 0.0001).
Similarly, older HR females showed significantly increased BIS scores for
non-planning (F = 7.52; p = 0.0063), motor (F = 6.21; p = 0.0130),
and total impulsivity (F = 8.85; p = 0.0031) compared to older LR
females.

3.5.2. Correlations between BIS scores and P3 amplitudes
The relationship between P3 amplitude and impulsivity has been

summarized in Table 4. Gain-related P3 amplitudes had significant neg-
ative correlations with BIS scores, while there was no such relationship
observed for the loss condition. The significant correlations during the
gain conditionwere: FZwith non-planning, attentional, and total scores,
CZ with attentional and total scores, and both PZ and OZwith attention-
al score. Although these correlations were statistically significant, the
values of the coefficients (r) are much smaller, and therefore these re-
sults should be interpretedwith caution. Correlationswithin the groups
(risk group, gender and age group) were not significant.
4. Discussion

The goal of the present study was to elucidate reward processing
deficits as indexed by P3 amplitude and CSD topography in the HR off-
spring from high density alcoholism families in contrast to the LR indi-
viduals from the comparison families, in the context of brainmaturation
across age groups and gender. Impulsivity scores were compared be-
tween the risk groups, and the relationship between P3 amplitude
and impulsivity in the context of age and gender was also examined.
The current study has yielded several findings:

(1) HR offspring from older male and younger female subgroups
showed significantly lower P3 amplitude than LR comparison
subgroups during the loss condition;

(2) Lower CSD activity at frontal sources in the HR older male and
younger female subgroups compared to the comparison LR
groups was observed;

(3) Males had higher P3 amplitude than females in both younger
and older LR groups as well in the younger HR group, while the
opposite pattern (female N male) was observed in the older HR
subjects;

(4) Younger subjects produced significantly higher P3 amplitudes
than older subjects during loss and gain conditions in both LR
and HR groups;

(5) HR subjects as a whole and in each subgroup showed increased
BIS impulsivity scores compared to their LR counterparts;

(6) P3 amplitudes (during gain condition) were negatively correlat-
ed with impulsivity scores.



Fig. 4.Multiple comparisons across different groups during loss and gain conditions. Estimatedmarginal means and standard error (±1 SE) of pairwise comparisons between the levels of
risk groups (panel-sets A1 and A2), gender (panel-sets B1 and B2), and age groups (panel-sets C1 and C2) in loss and gain condition have been plotted for each scalp region (F: frontal; C:
central; P: parietal; and O: occipital). Bonferroni adjusted level of significance for each comparison is shown in asterisks (*p b 0.05, **p b 0.01, ***p b 0.001).
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4.1. P3 deficits and risk for alcoholism

4.1.1. P3, cognitive function and reward processing
In the current study, HR older male and younger female subgroups

exhibited significantly lower P3 amplitude during reward processing
than the comparison LR subgroups. In stimulus discrimination para-
digms, P3 amplitude has been theorized to reflect a capacity or set of
brain resources related to mental processes (Kok, 1997, 2001), or sub-
jective probability, stimulus meaning, and information transmission
(Johnson, 1986). On the other hand, in the reward paradigms, P3



Fig. 5. Topographic maps and waveforms showing significant difference in P3 amplitude between HR and LR subjects in older males (panel A) and younger females (panel B) during the
loss condition. The vertical dotted line in thewaveformplots (middle subpanels) represents the onset of outcome stimulus, and thehorizontal dashed line indicates thebaseline (0 μV). The
color scales for the topographic maps (left and right subpanels) represent P3 amplitude in μV.
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amplitude has been shown to index both valence and/or magnitude of
the reward (e.g., Homberg et al., 1981; Begleiter et al., 1983; Otten
et al., 1995; Yeung and Sanfey, 2004; Goldstein et al., 2006). Distinct to-
pographic patterns and specific brain sources for different outcomes
(i.e., loss and gain) have also been reported (Kamarajan et al., 2009,
2010). This suggests that lower P3 amplitude in a monetary gambling
paradigm may be due to dysfunctional reward processing at the neural
level.
4.1.2. Lower P3 in HR offspring
The major finding of the present study was that older male HR off-

spring and younger female HR offspring showed significantly lower P3
amplitudes during the loss condition. Although the present study is
the first to report P3 deficits during reward processing in a monetary
gambling paradigm in HR offspring, similar reward-related P3 deficits
have been previously reported in alcoholics (Porjesz et al., 1987;
Kamarajan et al., 2010) and their offspring (Ramsey and Finn, 1997).
Since, reward related P3 amplitude has been found to be sensitive to
both the valence (loss/gain) andmagnitude (larger/smaller) of the out-
comes (Toyomaki andMurohashi, 2005a; Kamarajan et al., 2009, 2010),
it can be taken as an index of reward processing. Hence, low P3
amplitudes manifested by HR offspring may represent dysfunctional
or suboptimal reward processing.
4.2. Topographic differences in P3

Although P3 differences between the risk groups were signifi-
cant at central and parietal regions for the loss condition in older
males and at occipital region in younger females, the source analy-
sis using surface Laplacian (CSD maps) revealed weaker current
density in HR offspring at the frontal sources. These frontal deficits
or ‘hypofrontality’ of HR subjects as demonstrated in CSD maps
may explain the lower P3 in these individuals (as discussed in de-
tail in the following sections). Further, imaging studies in adoles-
cent subjects who were vulnerable for and/or diagnosed with
substance use disorders (SUDs) (Bava et al., 2009, 2010; Bava and
Tapert, 2010; Casey and Jones, 2010; Dayan et al., 2010; Feldstein
Ewing et al., 2014) and other externalizing disorders (Rubia et al.,
1999; Rubia et al., 2000) have shown evidence for frontal lobe dys-
function, possibly due to a “dysmaturational pathogenesis for
hypofrontality” as phrased by Rubia et al. (2000) in their work on
ADHD children.



Fig. 6. Topographic maps of CSD activity [panels A1, A2, B1, B2], and Z-scores [panels C1, C2, D2, D2]. Lower CSD activations of frontal sources and sinks are seen in HR offspring (more
prominently among males) than LR group. Z-score maps are shown to highlight the topographic patterns more clearly across the different groups, but the magnitudes between the Z-
score maps cannot be compared.
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4.2.1. P3 differences between risk groups in each gender
It should be noted that statistically significant P3 differences be-

tween HR and LR subjects were specific to age group, gender and
task condition (Fig. 4, panels A1 and A2). In males, the P3 difference
between the risk groups was statistically significant solely in the
older age group at the central and parietal regions and only in the
loss condition (Fig. 4, panel A1). In females, on the other hand, statis-
tically significant P3 differences were observed only in the younger
group at the occipital region during the loss condition (Fig. 4, panel
A2). This finding suggests that although both male and female HR
children/adolescents manifest lower P3 amplitudes, this deficit
becomes augmented in males as they age during development
while it gets attenuated in females as they age into late adolescence
and young adulthood. This gender specific finding is in line with pre-
vious findings indicating that low P3 amplitudes in high risk off-
spring of alcoholics have been reported more often in males
(Begleiter et al., 1984, 1987; O'Connor et al., 1986; O'Connor et al.,
1987; Whipple et al., 1991; Berman et al., 1993; Benegal et al.,
1995; Ramachandran et al., 1996; Cohen et al., 1997a; Ramsey and
Finn, 1997; Rodriguez Holguin et al., 1999b) than in females
(Porjesz et al., 1996; Van der Stelt et al., 1998), while there are only
a few studies showing P3 differences (between risk groups) in both
males and females (e.g., Van der Stelt et al., 1998). Further, lower
P3 has been shown to be more robust in high risk male than female
offspring (e.g., Polich et al., 1994; Hill et al., 1999). It should also be
noted that P3 differences (between HR and LR subjects) in both
younger and older males is in line with previous studies which
have reported lower P3 amplitude in samples of ‘at risk’ children/ad-
olescents (Begleiter et al., 1984, 1987; Berman et al., 1993) as well as
in young adults (O'Connor et al., 1986, 1987; Ramachandran et al.,
1996; Cohen et al., 1997a; Ramsey and Finn, 1997; Kamarajan et al.,
2005b). A meta-analytic study revealed that P3 reduction was more
robust in younger male subjects with family history of alcoholism
and showed higher effect sizes for younger ages than for older sub-
jects (Polich et al., 1994). There are a host of factors that can affect
the trajectory of gender-specific development including sexual di-
morphism of brain maturation (De Bellis et al., 2001; Lenroot et al.,
2007; Lenroot and Giedd, 2010), which can be influenced by both ge-
netic and environmental factors (Lenroot and Giedd, 2008; Lenroot
et al., 2009a,b).
4.2.2. P3 differences between male and female groups
Comparison between male and female subjects within age groups

and risk groups (Fig. 4, panels B1 and B2) shows that the pattern of
higher P3 amplitudes shown by males during 12–15 years becomes
less prominent in the LR individuals as they aged into 16–25 years
(Fig. 4, panel B1)while the gender difference in younger age (male N fe-
male) switched to the opposite direction in the older age group
(female N male) in the HR offspring (Fig. 4, panel B1). This finding may
suggest that the developmental andmaturational changes in the P3 activ-
ity could be different in LR and HR subjects, although this interpretation
has to be confirmed by further studies with a larger/comparable sample
sizes of LR and HR subjects. Further, it is rather surprising that P3 ampli-
tude between male and female subjects did not differ significantly in the
LR group except in the gain condition in the younger group (Fig. 4, panel
B1), although all comparisons of gender in HR subjects were significant.
Although previous studies have shown that females produced higher
amplitude than males in visual paradigms (Orozco and Ehlers, 1998;
Guillem and Mograss, 2005; Proverbio et al., 2006) including the gam-
bling paradigm (Kamarajan et al., 2009), the age range was not compati-
ble with our current study (i.e., the sample in these studies were adults
with 18–45 years of age, while our study has samples of children/
adolescents and young adults with 12–25 years of age range). However,
except in older females, there is a pattern in the current study that
males produced higher P3 amplitudes than females.



Fig. 7. Comparison of BIS scores between LR and HR subjects across subgroups and all subjects. HR offspring in each subgroup showed increased impulsivity in the BIS subscales and the
total score. Error bars represent 1 standard deviation. Significance level for each comparison is shown by asterisks (*p b 0.05, **p b 0.01, ***p b 0.001).
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These gender differences in P3within age groups can be understood
in the context of brain development. As noted earlier, there is evidence
for sexual dimorphism of brain maturation (De Bellis et al., 2001;
Lenroot et al., 2007; Lenroot and Giedd, 2010). Further, there is a sub-
stantial evidence of gender differences in brain connectivity that may
account for gender-related cognitive differences (for a review, see
Gong et al., 2011). For example, gender related connectivity differences
within prefrontal cortex (PFC) showed that males exhibited stronger
connectivity in the PFC regionswith leftwarddominance,while bilateral
Table 4
Correlations (r) and level of significance (p) between BIS scores and P3 amplitudes are shown

Condition Electrode
Non-planning Motor

r p r

Loss

FZ −0.046 0.0599 −0.029
CZ −0.036 0.1386 −0.023
PZ −0.033 0.1787 −0.016
OZ −0.030 0.2288 −0.023

Gain

FZ −0.051 0.0359⁎ −0.043
CZ −0.043 0.0741 −0.033
PZ −0.025 0.3090 −0.014
OZ −0.012 0.6277 −0.007

⁎ p b 0.05.
⁎⁎ p b 0.01.
dominance was observed in females (Chuang and Sun, 2014). It is pos-
sible that individuals with familial/genetic risk for alcoholismmay have
a different developmental patternswithin each gender than thenormal/
healthy individuals (Bava and Tapert, 2010), although this issue needs
further exploration.

4.2.3. P3 differences between age groups (younger vs. older group)
The P3 differences between age groups (Fig. 4, panels C1 and C2) are

worth elaborating. It was observed that younger (12–15 years) subjects
.

Attentional Total

p r p r p

0.2363 −0.033 0.1859 −0.046 0.0636
0.3603 −0.018 0.4555 −0.033 0.1798
0.5163 −0.020 0.4242 −0.029 0.2334
0.3435 −0.024 0.3242 −0.032 0.1886
0.0748 −0.066 0.0065⁎⁎ −0.066 0.0066⁎⁎

0.1747 −0.071 0.0032⁎⁎ −0.060 0.0129⁎

0.5725 −0.062 0.0103⁎ −0.040 0.0951
0.7688 −0.048 0.0469⁎ −0.026 0.2741
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showed significantly higher P3 amplitudes in the posterior regions
than their older (16–25 years) counterparts. Further, a reverse pat-
tern (i.e., older N younger) was observed in the frontal region, al-
though the posterior differences were more robust than the frontal
differences. The finding of larger P3 in children (compared to adoles-
cents/young adults) is in keeping with well-known developmental
findings of P3 and EEG. For example, the amplitude of visual P3 de-
creased gradually from childhood to adulthood (e.g., Johnson,
1989; Courehesne, 1990), and this amplitude reduction can also be
explained by the findings from other developmental studies which
found a gradual reduction of slower rhythms (which constitute P3
response) in children's EEG during development as they mature
into adolescence/adulthood (Matousek and Petersen, 1973a; John
et al., 1980; Gasser et al., 1988b; Wackermann and Matousek,
1998; Dustman et al., 1999; Clarke et al., 2001; Boord et al., 2007).
In a developmental study of error-related negativity (ERN), a related
component to feedback negativity, Davies et al. (2004) demonstrat-
ed that the amplitude of the ERN increased from 7 to 17 years of age
and the waveforms did not reach optimal level to those of young
adults until mid-teens. Further, similar to our finding, Ladouceur
et al. (2007) found that P3 amplitude during error-processing was
greater in the adolescent group compared to the adult group. These
studies lend support to our finding of P3 differences between age
groups.

Compared to the younger age group, the older subjects showed rel-
atively higher P3 amplitudes at frontal regions, while the younger group
showed relatively higher P3 amplitudes at parietal and occipital re-
gions. The anterior–posterior modulation (“frontalization”) during
brain development has been well-documented in the EEG litera-
ture. Maturational patterns of EEG activity follow gray matter re-
duction during development, as there is a redistribution of
relative EEG power as a function of age with posterior regions ma-
turing earlier than anterior regions (cf. Segalowitz et al., 2010).
During development, theta-alpha maturation occurs first in occipi-
tal regions and then progresses gradually to frontal regions
(Matousek and Petersen, 1973b; Gasser et al., 1988a; Dustman
et al., 1999). Yordanova and Kolev (1996) demonstrated similar
age effects in EROs by demonstrating that adults showed ERO
alpha maxima at mid-central regions in contrast to the parietal maxima
in children, reflecting perhaps a gradual “frontalization”with growth (cf.
Segalowitz et al., 2010). These studies support our finding related to ante-
rior–posterior differences in younger and older groups.

Our finding of increased anterior P3 activity coupled with
decreased posterior activity from adolescence to adulthood corre-
sponds with recent imaging data showing a posterior to frontal
progression of cortical development from childhood through
adolescence and adulthood (Gogtay et al., 2004; Gogtay and
Thompson, 2010). During brain development with advancing age,
the prefrontal activity becomes progressively more focal and spe-
cialized (Tamm et al., 2002; Brown et al., 2005; Durston et al.,
2006). This phenomenon is termed “frontalization” or the matura-
tional process of frontal lobes during development, whereby frontal
lobes gradually take control of higher-order cognitive functions,
such as executive functions and inhibitory control (Rubia et al.,
2000; Yurgelun-Todd and Killgore, 2006; Segalowitz et al., 2010;
Arain et al., 2013). Furthermore, imaging findings showing late
maturation of prefrontal cortex (Fuster, 2002; Gogtay et al., 2004)
may explain the higher P3 activity at frontal regions (and lower P3
activity in the posterior regions) in the older subjects compared to
the younger group.

4.3. P3 amplitude, impulsivity, and externalizing disorders

Two important findings regarding impulsivity have been ob-
served in the current study: (i) increased impulsivity in all subscales
and total score of the BIS in the HR offspring compared to the LR
group in each subgroup of gender and age (Fig. 7); and (ii) significant
negative correlations between P3 amplitudes during gain condition
and impulsivity scores, showing decreased P3 amplitude in individ-
uals with higher impulsivity (Table 4). In light of the established
view that impulsivity is a critical factor in the pathophysiology
and/or risk propensity for alcoholism and related disorders (Petry,
2001; Finn et al., 2002; Moeller et al., 2002; Chen et al., 2007; Dom
et al., 2007; Kamarajan et al., 2007; Rubio et al., 2007, 2008;
Hanson et al., 2008; Verdejo-Garcia et al., 2008; von Diemen et al.,
2008; Crews and Boettiger, 2009; Rogers et al., 2010), our finding
that HR offspring showed increased impulsivity may provide further
evidence for the notion that etiological connections exist between
impulsivity and alcoholism and other SUDs (for reviews, see Sher
and Trull, 1994; Verdejo-Garcia et al., 2008; Dick et al., 2010). In a
review, Kamarajan and Porjesz (2012) have outlined electrophysio-
logical abnormalities in impulsivity spectrum disorders, which in-
clude AUD and other related disorders. Studies have also shown
that psychometrically measured impulsivity, as done in our study,
was associated with externalizing disorders in general and sub-
stance use disorder in particular (Saunders et al., 1973; O'Boyle
and Barratt, 1993; Krueger et al., 2002; Romer et al., 2009). It may
be worth noting that prevalence rates of externalizing disorders
were significantly higher in the HR group than in the LR group, sug-
gesting that the HR group is susceptible not only to alcoholism but
also to other externalizing disorders (see Table 2). Further, our find-
ing of a negative correlation between P3 amplitude and impulsivity
scores suggests that individuals with lower P3 amplitudes have
higher impulsivity, lending further support to the notion that P3
abnormalities are intrinsically related to impulsivity traits (Justus
et al., 2001; McGue et al., 2001; Moeller et al., 2004; Potts et al.,
2006; Chen et al., 2007; Kamarajan et al., 2009) as well as to exter-
nalizing conditions (Justus et al., 2001; McGue et al., 2001; Moeller
et al., 2004; Chen et al., 2007; Kamarajan et al., 2010). It is possible
that P3 deficits and high impulsivity may have common underlying
brain mechanisms. Recent fMRI studies have found differences be-
tween high and low impulsive individuals in terms of engagement
and activation patterns of frontal lobe structures (Sripada et al.,
2011; Davis et al., 2013; Diekhof et al., 2012). Frontal lobe struc-
tures have also been implicated in several disorders involving im-
pulsivity and externalizing traits (Vollm et al., 2004; Lee et al.,
2005; Vollm et al., 2007; Wolf et al., 2011; Costa Dias et al., 2013;
Cyders et al., 2014). Taken together, these findings add support to
the view that P3 amplitude, impulsivity, and externalizing disor-
ders are etiologically related (Iacono et al., 2003; Iacono and
McGue, 2006; Chen et al., 2007; Carlson et al., 2009; Gao and
Raine, 2009; Young et al., 2009; Gilmore et al., 2010a; Lejuez
et al., 2010). It is important to note that BIS score differences be-
tween HR and LR groups varied according to the age group and gen-
der (Fig. 7). Among males, the younger age group showed more
robust differences (p b 0.001) between LR and HR groups in non-
planning, motor, cognitive and total scores, while the older males
displayed a modest level of significance (p b 0.05) only in motor
and total scores. While our finding on age and gender differences
in impulsivity are similar to the findings in the literature
(Steinberg et al., 2008; Stoltenberg et al., 2008), impulsivity as
suchmaymediate the association between gender and risk for alco-
hol problems (Stoltenberg et al., 2008). While there was a correla-
tion between P3 amplitude and BIS scores during the gain
condition, the lack of correlation during the loss condition in our
study may warrant further exploration in similar samples. Interest-
ingly, Bernat et al. (2011) reported that while delta-P3 amplitude
was found to be reduced among individuals high in externalizing
proneness, theta-FRN (N2) response was unrelated to externaliz-
ing. Further studies are needed to establish the relationship be-
tween various facets of impulsivity and neurophysiological
measures, such as the P3.
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4.4. Source activations of P3, reward processing, and risk for alcoholism

In this study, CSD topographic analysis yielded three key findings:
i) loss condition showed bilateral frontal sources while the gain condi-
tion additionally had a prominent midfrontal source; ii) HR offspring
(younger males and females as well as older males) displayed weaker
CSD sources at the frontal regions in comparison their LR counterparts;
and iii) aweaker prefrontal sink activationwas found in youngerHRoff-
spring compared to the LR group during both loss and gain conditions in
males and only during loss condition in females.

During the evaluation of monetary loss and gain, the common
features of the CSD topography observed across groups were the
sources (positivities) in left-frontal, right-frontal andmid-frontal re-
gions (Fig. 6). Our finding that prominent CSD sources were located
at the frontal regions corroborates existing evidence that cognitive
tasks requiring evaluations of reward outcomes recruit the frontal
lobes (Wallis and Miller, 2003; Glascher et al., 2010; Rangel and
Hare, 2010). There is also a strong literature support for themajor in-
volvement of frontal lobes (connecting a network of other subcorti-
cal structures) during reward processing and decision making
(Haber and Knutson, 2010; Rushworth et al., 2011; Economides
et al., 2014; Forbes et al., 2014). Specifically, medial prefrontal cortex
(mPFC) involving ACC has been shown to be involved in the process-
ing of the reward values of the reinforcers (O'Doherty et al., 2001;
Shidara and Richmond, 2002; Knutson et al., 2003; Rogers et al.,
2004; Knutson et al., 2005; Shidara et al., 2005; Taylor et al., 2006;
Sallet et al., 2007; Fujiwara et al., 2009; Xue et al., 2009; Economides
et al., 2014).

HR offspring also showed weaker CSD activations (of the sources
and sinks) in the frontal and prefrontal regions. Specifically, the lower
activations in both P3 amplitude and CSD were found in both younger
and older age groups in males but only in younger age groups in fe-
males. Neuroimaging studies have found pathophysiological alterations
in the brain's reward system (Diekhof et al., 2008; Park et al., 2010;
Tomasi et al., 2010; Muller-Oehring et al., 2013) including altered
white matter integrity in individuals with SUD (Bava et al., 2009;
Jacobus et al., 2009; McQueeny et al., 2009; Bava et al., 2010), and defi-
cient functional connectivity between frontal lobes and other key struc-
tures in subjects who are at high risk for alcoholism (Weiland et al.,
2012, 2013; Wetherill et al., 2012). Forbes et al. (2014) reported that
young adults with family history of alcohol dependence exhibited
lower medial PFC response. Taken together, all these findings support
our hypothesis that suppressed CSD features at the frontal regions dur-
ing reward processing in the HR groupmay represent dysfunctional re-
ward circuitry as well as a ‘hypofrontality’, which may mediate or
predispose toward risk for developing AUD and/or related disorders in
these subjects.

4.5. Genetic factors underlying P3 and risk for alcoholism and related
disorders

The development of alcoholism is influenced by underlying bio-
logical susceptibility factors, environmental factors, and complex in-
teractions among genes and environment (Porjesz et al., 2005; Dick
and Kendler, 2012). There is a large literature indicating that low
P3 amplitude can been considered to be an important genetic marker
for the development of alcoholism (Begleiter et al., 1984; Goldman,
1993; Porjesz et al., 2005; Porjesz and Rangaswamy, 2007) and
other externalizing disorders (Iacono et al., 2002; Iacono and
McGue, 2006). Several genes have been found to be associated with
delta and theta EROs underlying P3 (Jones et al., 2004, 2006; Chen
et al., 2009, 2010; Zlojutro et al., 2011; Kang et al., 2012), and several
of these genes have also been associated with alcoholism (Wang
et al., 2004; Luo et al., 2005; Dick et al., 2007; Chen et al., 2009,
2010) and related externalizing disorders as well (Dick, 2007; Dick
et al., 2008). Quantitative electrophysiological phenotypes, such as
EEG, P3, and related EROs, have served as effective endophenotypes
for gene identification in psychiatric genetics (for recent reviews, see
Porjesz and Rangaswamy, 2007; Rangaswamy and Porjesz, 2008,
2014; Iacono and Malone, 2011; Chen et al., 2012; Euser et al.,
2012; Pandey et al., 2012; Kamarajan and Porjesz, 2015). These
heritable neurophysiological biomarkers (Begleiter and Porjesz,
2006; Anokhin, 2014) have been very successful in identifying sus-
ceptibility genes for alcohol dependence and related disorders
(Rangaswamy and Porjesz, 2008; Chen et al., 2012) as they are di-
rectly associated with human information processing and cognitive
functions (Porjesz and Rangaswamy, 2007). Interestingly, several
of the same genes associated with electrophysiological phenotypes
and alcoholism in adults have been found to be related to precursor
phenotypes in children and adolescents, such as conduct disorder
(Dick et al., 2004), onset of regular drinking (Chorlian et al., 2013),
and trajectories of drunkenness (Dick et al., 2014). While heritability
of the reward-related P3 is yet to be determined, it may be another
promising endophenotype, as both alcoholics (Kamarajan et al.,
2010) and HR offspring (in the current study) manifest lower P3
amplitude.

4.6. Limitations of the present study and suggestions for future studies

The present study has extended our previous research in alcoholics,
in order to confirm whether reward related ERP deficits observed in al-
coholics are also found in children of alcoholics, and has successfully re-
vealed differences in P3 amplitude and CSD across risk groups.
However, there are some limitations in the current study, which could
not be completely eliminated. For example, (i) the sample sizes for the
LR groups are relatively smaller than theHR groups, and hence the find-
ings have to be interpreted with caution; (ii) the trials involving both
bet amounts (10¢ and 50¢) have been combined within loss and gain
conditions respectively, in order to maximize trial numbers and sample
size, while the analysis of each condition may have offered more de-
tailed findings; (iii) the N2 component, which was difficult to measure
and has not been analyzed in the current study, may have yielded addi-
tional information about reward processing deficits in HR offspring; (iv)
although the mean trial numbers across the groups in each condition
[LR = 42.24 and HR = 40.53 for the gain condition; LR = 39.12 and
HR = 36.51 for the loss condition] seems to be sufficient and optimal
for the reward-P3 (in view of the findings from earlier studies), further
assessments regarding the SNR and minimum/optimal number of trials
for component stabilizationmay have confirmed or improved the valid-
ity of current findings; and (v) complex, predictive analytic models,
which have not been done in the current study, may be essential to
assess the degree to which the factors of genetic risk, substance use,
and impulsivity contribute independently as well as relatively contrib-
ute to the P3 deficits and CSD profile. Despite these limitations, the
study has provided important findings that may have considerable
implications for the use of reward related electrophysiological pheno-
types to characterize neurocognitive dysfunction in alcoholism and
risk status.

Future studies, while avoiding the limitations of the present study,
may further consider examining: (i) the oscillations underlying P3 com-
ponent (e.g., delta and theta bands) along with ERP measures, (ii) the
trajectories of reward-related P3 amplitude comparing the LR and HR
subjects; (iii) longitudinal changes associated with P3 and ERO mea-
sures in HR offspring by analyzing the data on multiple assessments
over a period of time, (iv) brain circuitries underlying reward/outcome
processing in high risk individuals by using coherence/synchrony
measures of electrophysiology and by using functional connectivity
measures of neuroimaging, (v) externalizing disorders along with
substance use disorders, (vi) new strategies to statistically or methodo-
logically disentangle the underlying genetic risk (in those at high risk
for alcoholism) from the manifested symptoms or characteristics
(e.g., externalizing disorders) that may influence the phenotype
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(e.g., P3) under study, (vii) the utility of reward related ERP/ERO mea-
sures as endophenotypes in genetic studies, and (viii) amore systematic
studywithmultiplemeasures of impulsivity and externalizingdisorders
in AUD and HR offspring to further elucidate the complex interactions
among these factors.

5. Conclusions

The present study has elucidated reward processing deficits in youn-
ger and older high risk offspring from dense alcoholism families of
COGA. Older male and younger female HR subgroups have shown sig-
nificantly lower P3 amplitude and reduced CSD activation at frontal
sources during reward processing compared to their LR counterparts.
High risk subjects were also found to be more impulsive than LR sub-
jects. Negative correlation between P3 amplitudes and impulsivity
scores suggested that reduced P3 amplitude and increased impulsivity
(asmanifested byHRoffspring)may predispose toward risk for alcohol-
ism and related disorders. Further, gender- and age-specific findings of
the present study may have several implications for future research on
alcoholism and risk. Lastly, it is suggested that using electrophysiologi-
cal endophenotypes, such as P3 and its oscillatory components, to iden-
tify genes involved in risk for alcoholism and related disorders may
serve as sensitive biomarkers that are physiologically closer to gene
functions, that may shed light on novel prevention, diagnosis and treat-
ment options.
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Condition Electrode LR

Male Female

Younger Older Younger Olde

M SD M SD M SD M

Loss F3 9.45 6.38 11.56 5.30 10.62 6.03 11.68
FZ 12.56 6.64 13.40 5.56 12.05 6.96 13.26
F4 11.02 6.53 12.25 5.25 11.29 7.14 11.78
C3 16.98 6.86 17.10 5.99 17.25 7.04 16.82
CZ 19.52 7.82 19.04 6.83 18.45 7.29 18.36
C4 19.51 7.68 18.40 6.49 18.11 7.46 17.68
P3 19.33 6.16 18.05 6.89 19.73 6.61 17.57
PZ 21.79 6.98 19.80 7.26 20.48 7.03 19.42
P4 22.73 7.28 19.55 7.00 20.89 7.08 18.65
O1 19.29 7.42 15.87 7.67 18.87 6.22 15.76
OZ 19.20 7.25 15.59 7.89 18.70 6.13 15.59
O2 19.99 7.65 16.04 8.08 19.39 6.33 15.99

Gain F3 11.43 6.26 12.53 5.42 11.56 6.09 13.72
FZ 13.43 5.90 14.28 6.01 12.65 6.53 15.19
F4 12.53 5.93 13.63 5.81 12.19 6.74 13.99
C3 19.41 7.36 18.78 5.83 18.33 6.57 19.59
CZ 20.80 7.63 20.60 6.99 19.50 7.39 20.99
C4 21.02 7.37 20.29 6.64 19.28 6.87 20.15
P3 21.75 7.54 20.36 6.73 21.15 6.73 20.44
PZ 24.10 7.86 22.17 7.33 21.82 7.09 22.10
P4 24.64 7.57 21.75 7.40 22.15 7.03 21.20
O1 21.41 8.17 18.03 7.77 20.80 7.41 18.19
OZ 21.14 7.85 17.64 7.86 20.36 7.43 17.77
O2 22.47 8.36 17.98 8.05 21.08 7.12 17.95
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Appendix I. Mean (M) and standard deviation (SD) of P3 amplitudes for each subgroup
HR

Male Female

r Younger Older Younger Older

SD M SD M SD M SD M SD

6.19 9.94 6.01 10.90 5.85 10.07 5.99 12.39 5.69
6.80 12.08 6.33 12.61 6.19 11.30 6.48 13.52 6.11
5.86 11.19 6.11 11.63 5.67 10.61 6.16 12.59 5.73
6.68 16.43 6.62 15.52 6.10 15.96 6.58 17.15 6.19
7.14 18.50 7.32 17.36 6.53 17.57 7.13 18.32 6.73
6.57 18.75 6.86 16.80 6.26 17.26 6.80 17.87 6.25
7.25 19.19 6.98 16.47 6.12 18.02 6.60 18.00 6.18
7.54 20.71 7.13 18.01 6.37 19.64 6.84 19.07 6.48
7.04 21.31 7.27 17.76 6.52 19.84 6.86 18.78 6.31
7.45 18.23 7.12 14.07 6.20 17.21 6.62 15.67 6.27
8.18 17.84 7.30 13.99 6.26 17.22 6.62 15.68 6.31
7.74 18.74 7.77 14.44 6.47 17.86 6.69 16.02 6.51
6.66 11.18 6.24 12.57 6.17 11.42 5.96 14.38 6.12
7.46 12.72 6.63 14.11 6.56 12.35 6.71 15.47 6.76
6.53 12.42 6.61 13.46 6.07 12.01 6.70 14.68 6.24
7.09 18.92 6.74 18.30 6.75 17.92 6.31 19.62 6.79
8.18 20.39 7.42 20.11 7.18 19.44 7.17 20.97 7.58
7.26 20.74 6.90 19.66 6.92 19.29 7.03 20.38 6.91
7.10 22.32 7.24 19.85 6.62 20.30 6.77 20.76 6.67
8.09 23.57 7.63 21.70 7.00 21.81 7.05 21.95 7.20
7.40 24.18 7.66 21.16 6.90 21.88 7.04 21.49 6.92
7.32 21.09 7.70 17.28 6.70 19.21 6.84 18.22 6.48
7.81 20.65 7.63 17.21 6.56 19.16 6.85 18.15 6.64
7.59 21.63 8.02 17.53 6.66 19.56 6.86 18.55 6.78
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