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ABSTRACT OF THE DISSERTATION

Data-Driven Modeling for Minimizing the Side-Channel Information Leakage in Additive
Manufacturing

By

Sina Faezi

Master of Science in Computer Engineering

University of California, Irvine, 2017

Associate Professor Mohammad Al Faruque , Chair

Cyber-physical additive manufacturing systems consists of tight integration of cyber and

physical domains. This results in new cross-domain vulnerabilities that poses unique secu-

rity challenges. One of the challenges is preventing confidentiality breach due to physical-

to-cyber domain attacks, where attackers can use physical analog emissions to steal the

cyber-domain information. This information theft is based on the idea that an attacker

can accurately estimate the relation between the analog emissions (acoustics, power, elec-

tromagnetic emissions, etc.,) and the cyber-domain data (such as G-code). To obstruct this

estimation process, it is crucial to generate computer aided manufacturing tools, such as slic-

ing and tool-path generation algorithms, that are aware of these information leakage. In this

thesis, we present a novel methodology that uses mutual information as a metric to quan-

tize the information leakage from the side-channels, and demonstrates how various design

variables (such as object orientation, nozzle velocity, etc.,) can be used in an optimization

algorithm to minimize the information leakage. Our methodology integrates this leakage

aware algorithms to the state-of-the-art slicing tools and achieves 24.76% average drop in

the information leakage through acoustic side-channel. To the best of our knowledge, this is

the first work that demonstrates the idea of generating information leakage aware computer

aided manufacturing tools for protecting the confidentiality of the manufacturing system.
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Chapter 1

Introduction

The fundamental enabler of the fourth industrial revolution (Industry 4.0) are the Cyber-

Physical Systems (CPS) [20]. These systems will lay the foundation for the creation of the

Industrial Internet of Things, which is predicted to have value of $15 trillion global GDP

by 2030 [8], and have improvement in production by as much as 30% [8]. However, with

the incorporation of CPS in manufacturing, its inherent security issues will also pose severe

challenges to the industrial revolution. In fact, attackers have already leveraged various

vulnerabilities [26] of the CPS to target the manufacturing industry, making it the second

most-attacked industry in 2015 [2]. Hence, these cyber-physical manufacturing systems will

have to meet the security requirements such as confidentiality, integrity, and availability

amid the new threats.

In manufacturing, confidentiality breach can cause loss of Intellectual Property (IP) worth

large amount to a company. To highlight this issue, in this thesis, cyber-physical Addi-

tive Manufacturing (AM) systems are analyzed for understanding cross-domain attacks that

result in the confidentiality breach. AM has been considered as one of the proponents of

Industry 4.0 [19]. Various companies, and agencies are using it to produce complex, light-
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weight, and free-form 3D objects on demand [13]. The major contribution of AM towards

the next industrial revolution will be customized and decentralized production, which will

drastically reduce the transport distance, stock in hand, and raw materials used. However,

this promising technology has caveats associated with it when it comes to the confidentiality

of the system. It has been estimated that with the proliferation of AM in manufacturing

industries, IP worth $100 billion will be lost globally by the year 2018 [15].

1.1 Related Works

In order to tackle inevitable security issue of confidentiality breach in cyber-physical AM,

researchers have focused on various security solutions.[27] have provided a new outsourcing

model, described the requirements for secured outsourcing, and also proposed various future

works for achieving these requirements. Some of the solutions involved are encryption and

decryption of the cyber-data being sent to the manufacturer, watermarking of the 3D object

and the manufacturing process, etc. Watermarking has been extensively studied for 3D

printing, whereby unique keys are covertly embedded in the 3D objects. [14] have presented

a method of encoding a unique key in the geometrical structure of the 3D object by altering

the vertices. In [21], researchers have used the geometry of the object to encode the unique

key into an object. Even companies have developed technologies to authenticate the 3D

object, either by using infinitesimal natural surface faults of the 3D object, or by depositing

nano particles on the object’s surface [12].

In summary, most of the research work is focused on protecting the IP of the product after

it has been built. However, there is presence of persistent threat to the confidentiality of the

system during the manufacturing process as well [15]. Maintaining confidentiality during

the manufacturing process might be more crucial due to the fact that these AM systems are

extensively used for rapid-prototyping, and information leaked during this stage can cause
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the company to permanently lose its IP [5]. In addition, researchers have recently shown

that emissions from a AM system such as 3D printers reveal the various design parameters

of the 3D objects [4, 23, 11, 7].Therefore, it is imperative to analyze various analog emissions

from different side-channels (such as acoustics, power, electromagnetic, etc.), and protect

the system from physical-to-cyber-domain attacks during the manufacturing process.

1.2 Motivation for Leakage Aware Security Solution

It has been well established that in CPS, various physical components divulge the information

due to the observability of their physical actions [3]. Moreover, these physical actions have the

tendency to unintentionally leak information about the cyber-domain from the side-channels.

Side-channels have been previously used in cryptanalysis to determine the secret key by

utilizing the analog emissions leaked from the physical implementation of a cryptosystem

rather than using the brute force or theoretical weakness of the algorithms [25]. The digital

process chain of additive manufacturing consists of Computer Aided Design (CAD) tools for

modeling 3D objects, and Computer Aided Manufacturing (CAM) tools for converting 3D

models to slices of 2D polygons [16], and then generating tool-path (G/M-codes) based on

those 2D polygons [17]. These G/M-codes (cyber-data) are eventually converted to control

signals that actuate the physical components. During actuation, mechanical and electrical

energies flows through the system, and may leak the information about the G/M-codes(cyber-

data). In order to avoid these leakages, one may simply employ physical-domain security

solutions such as putting the 3D printer inside a secured box. Although those solutions may

look effective, they are only practical if the other physical properties of the 3D printer is not

changed and the additional cost is moderate. However, if we can provide a feedback to the

cyber-domain about the presence of leakages, we can incorporate optimization algorithms in

the CAM software to minimize such leakages in advance.
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1.3 Problem and Research Challenges

Designing a methodology to minimize information leakage in the physical domain through

incorporation of security aware solutions in the cyber-domain of the cyber-physical additive

manufacturing system poses the following key challenges:

1. Understanding physical (mechanical and electrical) models of the system to understand

and quantify the information leakage.

2. Determining design variables in cyber-domain that can be optimized to minimize the

information leakage.

3. Formulating an optimization problem that can be placed in the digital process chain,

which can be generalized for all side-channels, and can balance the trade-off between

the design variables and the associated costs (leakage amount, printing time, power

consumption, etc.).

1.4 Our Novel Contributions

To address the above mentioned challenges, we propose a novel methodology capable of

generating information leakage aware secured cyber-physical additive manufacturing tools

that employs:

1. Leakage Modeling of the Additive Manufacturing System, which incorporates

physics-based leakage model (Section 2.1) to understand the mechanical and electri-

cal source of information leakage, estimates data-driven leakage model (Section 2.2)

to ease the leakage modeling, and performs information quantification using mutual

information.
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2. Formulation of an Optimization Problem, (Section 3) that describes various

design variables (orientation θ and travel feed-rate v) to optimize, and provides it as

an input to the slicing algorithm and the tool-path generation algorithm in the digital

process chain.
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Chapter 2

System Modeling

The methodology proposed for security aware computer aided manufacturing tool is gen-

eral, however, the solution provided by the optimization problem depends on the leakage

model, and is machine specific. This is due to the fact that the side-channel leakage rely on

physical implementation of the system, and there are various types of cyber-physical man-

ufacturing machines [13]. In our methodology, we first start with the physics-based leakage

modeling of the system, to understand the relation between the G/M-code and the analog

emissions introduced in the side-channel. This understanding will allow us in determining

the design variables to optimize for the specific side-channel. The leakage model is then

used to quantify the information leakage, and provide it as a feedback to the optimization

algorithm. However, physics-based models become complicated for complex manufacturing

systems. Hence, we also perform data-driven leakage modeling to efficiently estimate the

leakage model. In this paper, we use our methodology in Fused-Deposition Modeling (FDM)

based additive manufacturing systems also known as 3D printers, consider acoustic side-

channel to determine the design variables for the optimization problem, and demonstrate

the efficiency of optimization algorithm in reducing the mutual information, and hence the

information leakage from the acoustic side-channel.
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2.1 Physics-based Leakage Model

A 3D printer may be considered as a cartesian robot [18]. The physical modeling of the

kinematics of the cartesian robot have been extensively explored in [18]. Based on these

modeling, the dynamic response of the 3D printer may be calculated. Besides, apart from

the vibration from the dynamic response of the 3D printer, the stepper motors present in

the 3D printer itself vibrate based on the current supplied to its winding. Hence, we will

also present the electro-mechanical leakage model of the 3D printer.

2.1.1 Dynamic Model of the 3D Printer

X

Y

Z

Extruder

Base Plate
Lead 

Screw

Figure 2.1: Simplified Mechanical Structure of a 3D Printer.

Simplified diagram of the state-of-the-art desktop 3D printer is shown in Figure 2.1. It has

three Degrees Of Freedom (DOF) for the extruder. There are three stepper motors that

move the nozzle in the corresponding axis. The extruder consists of a stepper motor that

pushes the thermo-plastic through the heating filament present in the nozzle. 3D printers

realize the three DoF in various ways. Considering the nozzle as the end-effector, and the
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base plate as a point of reference, the 3D printer consists of three kinematic chains, each

consisting of a prismatic actuator (stepper motors). We can define the generalized position

of the end-effector as q = [qx, qy, qz], where q ∈ Rn×1, and qx, qy, and qz are the joint position

of each of the joints (x, y and z axis). Since the joint is prismatic, qi∈(x,y,z) = di, where di

corresponds to displacement of the joint in each axis. The end-effector cartesian coordinate

(x, y, z) is function of the generalized position q. Now, we can define the Lagragian L(q, q̇)

as the difference between the kinetic and the potential energy of the system. Thus,

L(q, q̇) = T (q, q̇)− V (q) (2.1)

where T is the kinetic energy and V is the potential energy of the system. Then the dynamic

equation of the 3D printer can be given as follows:

d

dt

[
∂L(q, q̇)

∂q̇

]
− ∂L(q, q̇)

∂q
= Υ (2.2)

where Υ is the external force given as follows:

Υ = τ − f(τ, q̇) (2.3)

where τ ∈ Rn×1 is the torque produced by each of the stepper motors in the joints, and

f(τ, q̇) ∈ Rn×1 is the friction vector. The general dynamics equation of the 3D printer can

also be written as follows [24]:

M(q)q̈ + C(q, q̇)q̇ + g(q) + f(τ, q̇) = τ (2.4)

where, M(q) ∈ Rn×1 is an inertial matrix, C(q, q̇) ∈ Rn×n is the torque matrix, and g(q) ∈

Rn×1 is the vector gravity torque. To produce these torques, the current is supplied in the

coils of the stepper motors. Considering two phase hybrid stepper motors, the total torque
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produced by the motor due to the current iA and iB passing in the two phases can be

calculated as follows:

τ = −pΨmiAsin(pθ)− pΨmiBsin(p(θ − λ)) (2.5)

where Ψm is the maximum stator flux linkage, p is the number of rotor pole pairs, λ is

the angle between the two stator windings, and θ is the mechanical rotational angle. By

accurately measuring the all the coefficients in Equation 2.4, we may be able to measure the

frequency response and the corresponding vibration of the 3D printer system. However, this

is non-trivial and also lacks consideration of mechanical degradation due to aging effect.

2.1.2 Electro-mechanical Model of the 3D Printer

In the dynamic model of the 3D printer, the frequency response of the 3D printer due to the

applied torque and the corresponding frequency present in each joint is explained. However,

apart from this, the stator of the stepper motor in each of the axis also vibrates due to

the fluctuating radial electromagnetic force on the stator. From Maxwell stress tensor, we

can calculate the magnitude of the radial force per unit area at any point of the air gap as

follows:

σ =
b2n − b2t

2µo
(2.6)

where bt is the tangential air-gap flux density, bn is radial air-gap flux density, and µo is the

permeability of the free space. The magnetic flux density is the function of current flowing

through the stator, number of windings turns in each stator core, magnetic flux path length,

etc. This radial forces per unit area can be abstracted and expressed as follows:

pr(α, t) = Prcos(rα− ωrt) (2.7)
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where r is the order of the force wave, ωr is the angular frequency of the force of the rth

order, α is the angular distance from the given axis, and Pr is the amplitude of the radial

force pressure in N/m2. Each of the stepper motors used in the 3D printer is a source of

vibration with its own stator natural frequency expressed as follows [10]:

fr ≈
1

2π

√
Kr +Kf

r +Kw
r

M +Mf +Mw

(2.8)

whereKr, K
w
r , andKf

r is the lumped stiffness of the stator, tooth-slot zone including winding,

and frame where stepper motor is connected, respectively. M , Mw, and Mf are the mass

of the stator core, winding, and frame, respectively. Next assuming, the transfer path for

various components of the 3D printer to be linear, we can use the transfer path analysis

method to determine the sound pressure spectrum at point i due to a force acting upon

point j, in direction k as follows:

pijk(ω) = Hijk.Fjk(ω) (2.9)

where Hijk is the frequency response function between point i and j, Fjk is the force spectrum

at point j. Then the sound pressure, only considering the prismatic DOF, at point i is

obtained as follows [22]:

pi(ω) =
N∑
j=1

3∑
k=1

Hijk.Fjk(ω) (2.10)

Equation 2.10 becomes complex when we consider revolute DOFs. Moreover, calculation of

the frequency response function and the fluctuating force itself is non-trivial. This fact points

out that, it is less strenuous to use data-driven model to estimate the sound production.

10



2.2 Data-driven Leakage and Adversary Model

In the adversary model, we assume that there are M side-channels from which an attacker

can acquire the leakage information. The G-code is the sensitive variable, that an attacker

seeks to extract from the 3D printer. Let G represent the sensitive discrete random variable,

with probability distribution function p(g), where g1, g2, . . . , gk represents the possible G-

code instructions. Then the leakage from each channel can be written as follows:

Li = δi(G) +Ni i = 1, 2, . . . ,M (2.11)

where Ni denotes an independent noise (independent from the variable G) in the ith channel,

δ(.) represents the deterministic function, and Li is the leakage in the ith channel. Moreover,

for each G-code instruction gk, the corresponding leakage may be given as follows:

l(i,k) = δi(gk) + n(i,k) k = 1, 2, . . . , K (2.12)

where n(i,k) represents the leakage noise value in the ith channel for the kth leakage measure-

ment, and K is the total number of G-code instructions. To breach the confidentiality of the

system, an attacker measures leakages l(i,k) from m side-channels for all the G-code instruc-

tions used to print a 3D object. An attacker will apply a leakage model function f(l(i,k)) to

estimate the G-code instruction ĝk = f(l(1,k), l(2,k), . . . , l(M,k)). There are two phases for an

attacker. The first one is the training phase, where the attacker acquires the leakage signal

from M channels using various sensors and test objects. Then the leakage model function

is estimated f̂(., α), where α is the tuning parameter for the function. Then in the second

phase, leakage for real objects are gathered and the original G-code is extracted using the es-

timated functions. Various statistical tools can be used to model the leakage model function

11



f̂i(., α), such that

i = arg min
1≤i≤N

K∑
k=1

|gk − f̂i(., α)| (2.13)

where N is the total leakage model function the attacker can estimate. The accuracy of

the estimated function depends on the amount of information leaked about G in the side-

channels. We use mutual information as a metric to quantify the information leakage from

each of the channels. Given that we have the joint probability distribution function p(g, li),

and marginal probability distribution p(g) and p(li) for the discrete random variables G and

Li, we can calculate the mutual information between the G-code instruction and the leakage

as follows:

I(G;Li) =
∑
li∈Li

∑
g∈G

p(g, li)log2

(
p(g, li)

p(g)p(li)

)
(2.14)

since we have used base 2 for the logarithm, the unit of the mutual information is bits. Using

Equation 2.14, we can quantify the leakage of information in each side-channel separately.
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Chapter 3

Leakage Aware Optimization

The data-driven leakage modeling for quantifying the information leakage (as shown in Figure

3.1) may be done in two stages:

B
e

n
ch

m
a

rk
 

3
D

 M
o

d
e

ls

Des

Run Time Leakage Quantification

g'k Algorithm 3D 
Models

Generation

Figure 3.1: Leakage Modeling and Security Aware Optimization Algorithm.
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3.1 Design-Time Leakage Quantification

During the design phase, manufacturer can use the data-driven leakage model to measure

the mutual information between the various signals leaked from the side-channels and the

G-code acquired from the benchmark 3D models used for testing the quality of the printer.

This mutual information can then be used to optimize the design variables. This type

of quantification is only done once, and 3D printer users need not perform the leakage

quantification.

3.2 Run-Time Leakage Quantification

The components in the physical domain continuously go through the process of degradation.

These degradation can have both positive or negative impacts on the mutual information. In

scenarios where these degradation increase the mutual information, the design variables have

to be optimized again for minimizing the leakage. Hence, run-time leakage quantification is

necessary to make sure that the environmental condition and aging of the physical system

do not aid in the leakage of the information.

Based on the physics-based leakage model of the 3D printer, we propose two design variables

that can be used to minimize the amount of leakage from the acoustic side-channel.

Preposition 1: Given the nozzle movement in xy-plane during printing a single layer in

additive manufacturing in a straight line, let the nozzle have velocity v with angle θ with the

x-axis, and f(θ) =
∑M

i=1 Ii, be a function that gives the sum of mutual information between

the analog emissions and the G-code for the given angle θ. Then ∃β ∈ R : β = arg minθ f(θ).

Where, 0 ≤ β ≤ 2π.
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Proof. The angle β states if the movement of the nozzle occurs in single or multiple axis.

If β = 0◦, then the nozzle moves parallel to x-axis. The dynamics of the system changes

when there are different axis movements. Due to discretization of signals, environmental

noise, and similarity of load/frame structure, different axis movements will have varying

leakage in the side-channel. Mutual information will be low if these complex axis movements

leakages cannot be distinguished. Hence, there exists a certain angle for which we can obtain

minimum I(G;Li) value.

Remark 1: In 3D printing, there are large number of straight line segments, optimizing

the θ for each segment to minimize leakage can affect the convergence of the optimizing

algorithm. Rather, we use Principal Component Analysis (PCA) to to find the common

orientation angle of all the line segments. In digital process chain, the 3D model is con-

verted to a file with tessellated triangles that describe the geometry. From this file, using

the cross product, a vector, #»u , normal to the plane of the triangular surface is calculated.

Next, PCA is performed on the collection of vectors #»u calculated for all the triangular sur-

faces. We then use the first principal component which has the highest eigenvalue. This

value represent the most common normal vector of all the line segments. We define θ as the

angle of the vector
#»

u′ which is perpendicular to the first principal component of the vector #»u .

Preposition 2: Given the nozzle movement to print a line segment of length l in xy-plane, let

vx and vy be its velocity in x and y-axis respectively. Where travel feed rate is v =
√
v2x + v2y.

Then ∃v′ ∈ R : v′ = arg minv f(v). Where f(v) =
∑M

i=1 Ii, gives the mutual information for

various speed.

Proof. v′ values that will achieve the minimum mutual information in the side-channel lie

in the higher travel feed ranges. Considering the acoustic side-channels, first the higher

frequency excitation due to faster travel feed-rates will cause reduction in the amplitude
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of the vibration as most of the time this excitation force act in opposing direction of the

vibration, and second, the leakage signal will be corrupted quickly by new analog emission

from the next G-code. Due to this, the sample of data collected for the G-codes with

large travel feed-rate, will be less in number, and may be contaminated by other G-code

leakage signal. Hence, due to mixture of the leakage signals for different G-code, the mutual

information extracted will be low.

State-of-the-art CAM Tools: Current slicing algorithms for fused deposition modeling

based desktop 3D printers do not consider the information leakage through the side-channels

and have tool-path generation that are optimized for machining efficiency (time, material

deposition, etc.) and precision of the printing process only.

Optimization Problem Statement: For minimizing the information leakage from acous-

tic side-channel, based on preposition 1 and 2, we propose a new leakage aware algorithm. We

define our design variables as, 0 ≤ θ ≤ 2π, and v =
√
v2x + v2y. Where vx ∈ R , and vy ∈ R.

For the speed in x and y axis, we have two variable bounds such as vxmin ≤ vx ≤ vxmax and

vymin ≤ vy ≤ vymax. Where vxmin and vymin are the minimum machine specific travel feed-

rate in x and y axis respectively, and vxmax and vymax the maximum machine specific travel

feed-rate in x and y axis respectively. We have a simple constraint such that T ≤ kTorginal.

Where Toriginal is the printing time of the state-of-the-art slicing and tool-path generation

algorithm, and k ≥ 1 is the user defined constant. The leakage functions in fact, estimate

the joint probability distribution p(g, li) present in the equation 2.14, and for simplicity we

define an estimation function that give the relation between the design variables and the

analog emissions, f̂θ(., αθ) and f̂v(., αv). Based on these functions we can calculate the mu-

tual information between the G-code and the leakage signal Iθi(G;Li) and Ivi(G;Li). Using

a non-linear polynomial functions fθi(Iθi , θi) and fvi(Ivi , vi) , we can estimate the relation

between the mutual information and the design variables in different side-channels. Then
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our multi-objective optimization function can be given as follows:

(θ, v) = arg min
(θ,v)

(fθ1 , fθ2 , . . . , fθM , fv1 , fv2 , . . . , fvM ) (3.1)

Based on the value given by the optimized design variable, slicing and tool-path generation

will generate new G-code with minimum information leakage.

Algorithm 1: Leakage Aware G-code Generation.

Input: Estimated Functions f̂θ(., αθ), f̂v(., αv), STL File

Output: G-code g′

1 Define step size Mθ, Mv and range minθ,minv and maxθ,maxv
2 for i = 1 : M do
3 for each j ∈ (θ, v) do
4 for k = minj :Mj : maxj do

5 I(ji,k) = Ik(G;Li) // Based on f̂j(., αj)

6 Estimate Nonlinear function fji

7 Optimize arg min(θ,v)(fθ1 , fθ2 , . . . , fθM , fv1 , fv2 , . . . , fvM )

8 g′ =SliceandToolPathGeneration(θ, v, STL File)
9 return g′

In algorithm 1, functions estimated by collecting the leakage and the G-code data while

printing the benchmark 3D models are passed to the algorithm. Then in line 1, first the step

size for estimating the cost function based on the design variables θ, v are defined, along with

their range. Then from line 2 to 6, using the functions f̂θ(., αθ), f̂v(., αv), various mutual

information values are calculated for the varying design variables. In line 6, polynomial func-

tion is used to estimate the relation between the design variables and the mutual information

calculated in line 5. Then based on the description of the problems statement, mixed multi-

objective non linear integer programming is used to optimize the design variables. In line 8,

the modified design variables are passed to the slicing and tool-path generation function to

generate a G-code with minimum leakage, which is finally returned in line 9.
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Chapter 4

Experimental Results

Audio Sensors

Z-axis 

X-axis 

Y-axis 

3D Printer

Figure 4.1: Experimental Setup.

The experimental (as shown in Figure 4.1) setup consists of a fused deposition modeling

based desktop 3D printer [9]. We put three AT2021 cardioid condenser audio sensors [1]

parallel to x, y and z-axis, respectively and treat them as individual channels. Hence, we
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have M = 3. In order to calculate the mutual information, the raw leakage signal with higher

sampling rate may not result in good description of the signal. Hence, we have calculated

the power spectral density of the audio signal and used the three principal components to

represent the mutual information.

4.1 Mutual Information

4.1.1 Design Variable - θ

We varied θ from 0◦ to 90◦ with the step size 4θ = 10◦. Based on the data collected joint

probability function p(θ, li) is estimated and used in calculating the mutual information using

Equation 2.14.

In Figure 4.2, three principal components and the curve representing the estimation of the

mutual information variation corresponding the θ is presented. We can see that for audio

signals placed in z-axis and y-axis the mutual information is lower when the nozzle movement

is not parallel to x or y-axis. However, for x-axis, the mutual information is the least when

the angle is 90◦. This may be due to the fact that when the angle is parallel to y-axis, the

audio signal captured by the audio sensor does not have much variation.

4.1.2 Design Variable - v

We varied the travel feedrate from 700 mm/min to 3300 mm/min with the step size 4v =

200 mm/min. In Figure 4.3, we present the mutual information between the three principal

components of the power spectral density and the varying travel feedrate. As expected, we

can observe that for all the audio signals collected, the mutual information is higher during

slower travel feed-rate and lower for the faster travel feedrate.
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Figure 4.2: Mutual Information between Angle and Leakage, with total Angle Entropy of
3.4594 bits. (a) Principal Component 1, (b) Principal Component 2, (c) Principal Compo-
nent 3.
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Figure 4.3: Mutual Information between Speed and Leakage, with total Speed Entropy of
3.8074 bits. (a) Principal Component 1, (b) Principal Component 2, (c) Principal Compo-
nent 3.
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Table 4.1: Mutual Information Between G-code of and Acoustic Signal.

1.1496 0.9046
Unsecured Secured

X-Axis

0.8315 0.8187
0.6506 0.4674
1.6902 1.2726
1.0236 0.9055
1.3344 0.7839

1.6849 1.5413

Y-Axis

1.3290 1.2014
0.8605 0.7891
2.0038 1.8932
1.8129 1.5461
1.9658 0.9302

1.3600 1.1354

Z-Axis

1.0676 1.0186
0.8156 0.5209
1.9703 1.3002
1.2792 1.1275
1.1737 0.7223

1.3982 1.1937

Average of Axes 

1.0760 1.0129
0.7756 0.5924
1.8881 1.4887
1.3719 1.1930
1.4913 0.8121

Mutual Information (Bits)

Bunny (Low Res.)

Bunny (High Res.)

Mini Wrench

Pokeball

Tensile Specimen

Cuboid

Audio Sensor 
Parallel To Unsecured Secured Unsecured Secured Unsecured Secured

4.2 Test with Benchmark 3D Models

We have selected benchmark models that are easily available and used for testing the 3D

printer’s performance. These models include Stanford bunny in high and low resolution, a

simple cuboid, mini wrench, pokeball, and a tensile test specimen in the shape of a dogbone.

We can see (in Table 4.1) that with the optimized design variable, the mutual information

between the G-code and the acoustic leakage have dropped for all the signals collected by

thee microphones placed parallel to each of the axis. Moreover, we present the average

mutual information across all the audio signals in Figure 4.4.

The models that have smaller line segments (cuboid) and more curves (bunny with high

resolution) have lower mutual information in acoustic side-channel compared to the others.

Moreover, the tensile test specimen which has longer line segments had highest mutual

information reduction of 45.54% when the speed and angle was optimized for it. It can

be seen that compared to the unsecured G-code generated from the slicing and tool-path

generation, our secured approach reduces the mutual information for all the 3D models.

From Figure 4.4, we can see that the average drop in mutual information for the benchmark

models is 24.76%. Furthermore, our secured G-code only increased the average printing

time for all the models by 0.58%.
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Resolution
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Figure 4.4: Mutual Information for Benchmark 3D Models.
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Chapter 5

Conclusion

In this thesis we present a novel methodology that provides security solution to maintain the

confidentiality of the system during the cyber-physical manufacturing process. This solution

is incorporated within the computer aided manufacturing tools such as slicing algorithm and

the tool-path generation which are in the cyber-domain. This effectively mitigates the cross

domain physical-to-cyber domain attacks which can breach the confidentiality of the man-

ufacturing system to leak valuable intellectual properties. In our methodology, we provide

the physics and data-driven leakage models for acoustic side-channel, define various design

variables (orientation and speed), provide an optimization algorithm, and incorporate it in

the digital process chain. For various benchmark 3D models, our solution obtains an average

mutual information reduction of 24.76%. With this work, we highlight the capability of

leakage aware secured computer aided manufacturing tools to maintain one of the funda-

mental security requirement, confidentiality, of the cyber-physical manufacturing systems.
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