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Abstract

We study how an ODE description of schools of fish [1] changes in
the presence of a random acceleration. The model can be reduced to
one ODE for the direction of the velocity of a generic fish and another
one for its speed. These equations contain the mean speed v and a
Kuramoto order parameter for the phases of the fish velocities, r. We
show that their stationary solutions consist of an incoherent unstable
solution with » = v = 0 and a globally stable solution with » = 1 and
a constant © > 0. In the latter solution, all fishes move uniformly in
the same direction with v and the direction of motion determined by
the initial configuration of the school. In the second part, the direc-
tional headings of the particles are perturbed, in two distinct ways,
and the speeds accelerated in order to obtain two distinct classes of
non-stationary, complex solutions. We show that the system has simi-
lar behavior as the unperturbed one, and derive the resulting constant
value of the average speed, verified numerically. Finally, we show that
the system exhibits a similar bifurcation to that in [2|, between phases
of synchronization and disorder. In one case, the variance of the angu-
lar noise, which is Brownian, is varied, and in the other case, varying
the turning rate causes a similar phase transition.

1 Introduction

The dynamics and structure of a school of fish is a fascinating problem with
many applications. The original models for fish interaction were discrete [2]
but in [1] an ODE model was derived that could be analyzed by dynamical



systems methods. Migratory solutions were found in [1] that later became the
basis for successful modeling and simulations of the spawning migrations of
the Icelandic capelin [3]. The simulations are, however, only an approxima-
tion to the motion of the full migrating stock of the capelin that can reach up
to 10 billion individuals, a number that still defies direct simulations. Con-
sequently, it is desirable to develop kinetic and hydrodynamic models for the
motion of the migrating schools that can be simulated as PDEs and compared
with acoustic observations. Interestingly, methods from statistical mechanics
can be used for discrete schools with a large number of individuals to gauge
the complex structure of the school and the solutions found can be a crucial
guide for the development of kinetic and hydrodynamic models. We will use
two types of order parameters, both for angle and speed, to implement the
analysis in this paper.

We will first study the system of ODEs derived in [1] for a large number
of particles, but without perturbations, and show that only two asymptotic
states are possible: a disordered state of stationary solutions and an ordered
state of migratory solutions. The former in unstable and the latter is stable,
in fact it attracts all of phase space except a set of measure zero. This set is
the stable manifold of the stationary solutions.

Then we add two types of perturbations modeling realistic situations.
The first perturbation is angular noise, a derivative of a Brownian noise with
a certain variance. The speed is given a deterministic acceleration in both
cases. The result are solutions similar to the unperturbed case. However, now
the ordered phase depends on the variance of the noise. When the variance
reaches a certain threshold we see a transition to a disordered phase.

The second type of noise are (deterministic) angles randomly chosen from
a Lorentz distribution to model a preferred turning rate. This is a behavior
that is observed in slow moving schools. In this case we also observe a dis-
ordered phase and a partially synchronized phase that is the generalization
of the partially synchronized Kuramoto solution to the perturbation of the
ODE model in [1]. Now the disordered phase depends on the coupling con-
stant that is magnitude of the inertia term of the speeds. When this inertia
is large enough the disordered phase transitions to the partially synchronized
one.



Part 1

2 Original equations

We analyze the model of ordinary differential equations (ODEs) presented
in [1]. We note that the model in [1] did not include noise of any kind
and this will be addressed in the analysis below. However, the influence of
deterministic perturbations on the system in [1] was investigated in [4]. Let
(xk(t),yx(t)) be the Cartesian coordinates of the kth particle at time ¢, and
let vx(t) > 0 and ¢k (t) be the modulus (speed) and phase of its velocity,
respectively, at time t. Let N be the number of particles. We assume that
the coupling is a mean field coupling, or that all the particles can sense each
other. We first describe the model briefly and then derive the equations of
[1] by adding inertia to the system of discrete equations.

The model is related to that in [2]. Let us assume that the position of
the k-th fish at time t + At is given by

z(t + At) ) ( 2 (t) ) < cos(k(t)) )
= + v (t At, 1
(oeran )= (o )+ (oo .
in terms of its position and its velocity vy (t)(cos(px(t)), sin(¢r(t))) at time t.
The unit vector parallel to the fish velocity satisfies the mean-field relation

cos(¢x(t + At)) cos(¢;(t))
( sin(¢g(t + At)) ) N Z ( sin(p;(t)) ) - (2)
As introduced in [5], at each time step the speed of the k-th fish is the

average of the speeds of all the fish in the school calculated at the previous
time step:

| XN
Wt + A1) = ; (3)
Letting At — 0% we obtain the following ODE:
k(1) cos(¢u(t))
( Ui (t) ) N2 ZUJ Z ( sin(¢y(t)) ) ' 4)

In polar coordinates,
2 = e (5)



Z"k = vkei‘z”“, (6)
Equation (4) can be rewritten as
LN N
'k:mZleeld’j. (7)
=1 j=1

Now we assume that the school has some inertia a~'%; which should be added
to the left-hand side of the previous equation, thereby obtaining

N N

. . a i

zk+azk:m E U E e, (8)
=1 j=1

where a > 0 is the turning rate at which the fish respond to the direction
and speed of their neighbors. We now substitute Z, = v,e’® and %, =
(0 + ivkék)ewk into Equation (8), and equate real and imaginary parts. We
then obtain the same equations as in [1] for the velocity and direction angle:

U = Nz Z v; Z cos(¢p; — dr) — auy, 9)

N N
Uk = % Zvi Z sin(dj — ¢r).- (10)
=1 j=1
Differentiating (5) and using 23 = vj,e'®*, we find:
f”k = Vg COS(¢k - Hk), (11>
Tkék = VUL Sil’l(¢)k — Hk) (12)

2.1 Simplified equations in terms of order parameters

With 0 := & sz\il v;, Equations (9) and (10) become:

Z ¢k — QUL (13)

N
vqu'ﬁk = av% ; sin(¢; — o). (14)



These equations can be rewritten in terms of the Kuramoto order param-
eter,

N
) 1 )
re’ = N Z e, (15)
j=1
or equivalently,
;N
r= D cos(6;—¥) (16)
j=1
and
XN
~ > sin(g; — 1) =0, (17)
j=1

where r(t) € [0,1] measures the coherence of the population and ¥(t) €
| — m, 7] is the average phase. Clearly, the order parameter reaches its max-
imum of 1 when all the angles ¢, = 1 are the same.

The following relations for the order parameter are easily obtained:

N
% Z cos(¢; — dx) = rcos(Y — ¢dx) (18)
j=1

and a corresponding one for sine instead of cosine, which combined with
Equations (13) and (14) give
U = aor cos(y) — @) — avg (19)

Ve = avrsin(y — ¢y,), (20)

where the mean-field behavior of the model is apparent. From these equa-
tions, we obtain a simple description of the average velocity,

N
. 1 .
[T ip
Re' = N 321 ve' k. (21)

In fact, substituting (19) and (20) in the result of time-differentiating (21),
we get

N
Z(vk + ivkéﬁk)ei‘f’k = aore'™* — qRe™.
k=1

(R + iR[L) et = %



Dividing by e and separating real and imaginary parts, we get
R = avrcos(v — p) —aR (22)

and
Rii = avrsin(y — p). (23)

3 Dynamics of the order parameters

3.1 The Kuramoto order parameter

We now discuss the dynamics of the order parameters r» and . We let
Too = limy_,oo 7(t) and ¥ = lim;_,o 1(t) denote equilibrium values of the
order parameters, whenever the limits exist. By differentiating Equation
(15) and multiplying the result by e~ we obtain:

N
. 1 .
iy = > igpe! @) (24)
k=1

Assuming now that all fish are moving, vy > 0 for all k£, we can obtain qbk
from Equation (20) and insert it into Equation (24), which then becomes:

N

7+ i = N Z ioor— sin(y) — ¢y, )@Y, (25)

v
k=1 k

Equating real parts we obtain the following equation for the dynamics of r:

1 L1
= @sz—m (Y — on) (26)
k=1
and for 1:
S .
P = avr 3 sin(w - ) cos( — ) 27)

B
Il

1
which can be simplified to

a0y D gy e = ) (28)

ZIH
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if r #0.

Now, from Equation (26) we see that 7 > 0; with » = 0 only if r = 0
(randomly oriented fish velocities), or r = 1 and ¢y = ¥, for all k (completely
ordered fish velocities). A fish school with randomly oriented velocities, r =
0, is an unstable state, as r increases with any small deviation with r» > 0.
The fish school should eventually end up in the state of completely ordered
velocities 7o = 1 and ¢y = 1, for all k.

3.2 Long term behavior of the average velocity and the
directional angles

Now, summing Equation (19) over k, dividing by N, and using Equation (16)
we obtain an equation for the derivative of u:

U= av <r% Zcos(@b — p) — 1)
= av(r’ —1). (29)

Similarly, Equation (20) turns into

1L
— N wdy = 0. (30)
N; EPk

Equation (29) shows that the average speed goes to zero unless » = 1 which
would mean that the fish velocities are all directed along the same vector. In
the latter case, the average speed may take on an arbitrary real value.

We therefore see that the system has two characteristic behaviors; on one
hand, if there is perfect disorder in the distribution of directional angles the
system slows down, approaching the stationary solution v, = 0 for all k£, and
on the other hand we reach perfect alignment with r., = 1, and Equation
(19) turns into

’[Jk = Oé(’(_J - ’Uk), (31)

and thus the system eventually moves at constant speed with v = 0. As we
showed in the previous subsection, the perfectly disordered solution r = 0 is
unstable and the system eventually reaches a consensus, as shown in Figure
1. This means that, unless the system is perfectly disordered, all the speeds
evolve towards a common positive constant v,,. Its value depends on a and
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on the initial distribution of velocities (speeds and directional angles). If the
initial distribution of the direction angles ¢y is perfectly disordered, the sums
in Equations (13) and(14) are zero. Then 7, = —awy, the speeds all decay
to zero, and qﬁk is zero for all ¢ (the phases remain in their initial random
configuration). For any other initial state, we have shown before that the
system reaches a consensus with 7., = 1 and v, > 0.

The behavior of the average velocity (21) follows from Equations (22)
and (23). The average phase of the velocity distribution, p tends towards
the average phase ¢ according to (23). In turn, Equation (22) implies that

R evolves towards a stationary state R., with R = 0:
R = 0ro cos(t) — p). (32)

Since p becomes v, we find R,, = vr. Now the stationary values of r are
either the unstable state » = 0 (random velocity orientations with zero av-
erage speed) or the stable state r = 1 (completely aligned velocities with
Us > 0). In the latter case, we obtain R., = ¥, which is consistent with
the definitions of the Kuramoto and average velocity order parameters. This
behavior is shown in Figure 1.

Equation (20) divided by v (assuming that v, > 0) is the governing
equation of Kuramoto’s model for phase oscillators [6] with zero natural
frequencies and coupling constant av/vg. For this simple Kuramoto model,
we have shown that the long term behavior of the system has two stationary
states, (i) » = 0, © = 0 and randomly oriented initial velocity phases, and
(ii) » = 1, v > 0 and equal velocity phases. According to Equations (11) and
(12) for the positions, state (i) is stationary in space and is unstable, whereas
state (ii) is stable, it is stationary in the direction angles (6y = ¢ = ) and
the fish move uniformly with speed ©. The basin of attraction of state (ii)
has full measure so it attracts almost every point in phase space. These
results are indeed the same as those of [7]. The model in that reference is
very similar to that in [2] and the corresponding synchronized state is also
an absorbing state.
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Figure 1: Evolution of the average speed (I) and of the order parameter r
(IT) according to Equations (9) and (10). In all cases the inertia is a = 0.5,
and the number of particles is N = 2000. The plots differ only in the initial
distribution of the directional angles: (a) roots of unity, giving v,, = 0 and
Too = 0, (b) uniformly randomized, giving 0, ~ 0.05 and r, = 1 (¢) uniform
of width 7, giving v, ~ 2.96 and r,, = 1.



Part 11

4 Influence of disordered and noisy accelera-
tions

The fish school described by the equations in Part I had two possible long
term behaviors; random orientations of fish velocities and zero average speed,
and constant average speed and the same direction for the fish velocities.
These simple states are similar to the incoherent and totally synchronized
states in the Kuramoto model. In this part, we will see how angular noise
and accelerated speeds modify these simple behaviors and find a partially
synchronized non-stationary state.

4.1 Perturbed equation for gbk

We note that from Equation (20) it is clear that all the direction angles are
driven towards the average phase 1. The long term behavior of the Equations
(9) and (10) is therefore a completely aligned school of particles traveling at
constant speed. This solution can be viewed as a migratory solution for a
school of fish. However, it is quite unlikely that the fish within a school are
perfectly aligned. Multiple factors can introduce random elements; such as
currents (turbulent or not), physical structure of the fish (fins, tails etc.),
influence of food or some environmental factor and so on.

We therefore want to introduce two types of noise to the system of equa-
tions. The first type will be a quenched deterministic noise, which will cor-
respond to the disorder in the natural frequencies of the phase oscillators in
Kuramoto’s well known paper [6]. A possible biological interpretation could
be that there is an intrinsic disorder in the rates at which the fish reori-
ent their velocities to follow the average values marked by the school. This
would indicate the imperfect ability of the fish to determine the orientation
angle. Another possibility is that changing environmental factors alter in-
stantaneously the fish’s ability to find the orientation angle. We model this
inability by adding a white noise to the right hand side of Equation (20).
Below, we investigate the system’s behavior when modified by both types of
noise.
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4.2 Driven speeds

One long term behavior of the system in Equations (9) and (10) is a com-
pletely disordered school, which slows down such that the average speed
decreases exponentially. We know that such a solution is unstable, as men-
tioned in the first part of this paper. However, adding any kinds of noise to
the directional headings will effectively decrease the coherence of the school
of particles, thus decreasing the order parameter r from Equation (15). From
Equation (29) we see that a lower value of r will result in the school of par-
ticles slowing down at a faster rate. We therefore require the speed to be
driven in order for the system to have some interesting dynamics and the
schools to move. For now, we assume that the acceleration is a constant
v > 0, so that Equation (19) becomes

U = aor cos() — @) — avg + V. (33)

It is furthermore clear that if the system is completely disordered (giving
r = 0), we find that the average speed tends towards v, = v/a. This limiting
value could be achieved in the absence of noise, but the solution with » =0
is unstable. We therefore see that with noise, the order parameter r tends
away from zero and reaches a non-zero limiting value r,, < 1.

If, on the other hand, we have 0 < r,, < 1 induced by noise, the equilib-

rium velocity will become
1
T = 2o (34)

——,
al—rz

which simulations confirm.

4.2.1 Deterministic noise in ¢,

We now add random frequencies wy to the right hand side of Equation (20)
divided by v (we assume that all vy > 0). The wy, are random i.i.d. variables
whose probability density is a zero-mean Lorentzian distribution of width
v = 0.5. Related results can be found in the review [8] and in [9]. The
resulting equation for the phase of the fish velocity is

b = aLrsin(e — é) + wi, (35)
Vg

which is very similar to Kuramoto’s model for coupled oscillators, with an
effective coupling constant a%. We note that the effective coupling constant

11
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Figure 2: Value of 7, as a function of o see Equations (35) and (33). The w’s
were drawn from a Lorentzian distribution of width v = 0.5. Here, v = 0.2
and the number of particles is N = 2000.

varies until the speeds reach an equilibrium, which the system achieves for
both types of angular noise below.

As in Kuramoto’s model, in the limit of infinitely many fish we obtain a
bifurcation of the equilibrium value of the order parameter r.,, as the value
of v is varied beyond a certain threshold, as shown in Figure 2. For finitely
many fish, the transition is not sharp but adding more fish in our simulations
we approach the sharp phase transition.

As for the stability of the system, we expect it to show richness in behav-
ior, similar to the Kuramoto model. In [10], it was shown that the incoherent
state of the Kuramoto model is unstable above threshold, but neutrally sta-
ble below the threshold. This means that the decay of modes to incoherence
is similar to Landau damping in plasmas [11] and that there might be rich
dynamics with » = 0. See [8] and references cited therein. The partially syn-
chronized state in the Kuramoto model is also known to be neutrally stable
[9]. We should expect to see a similar behavior in the system above.

Below, we discuss the distribution of the directional angles in the partially
synchronized state, and compare to that of the Kuramoto model, shown in
Figure 5.
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4.2.2 Brownian noise in ¢,

Now, assuming that vy # 0 we divide through Equation (20) and add N-
dimensional Brownian noise, B;:

O = OKUET sin(¢) — ¢x) + B, (36)
k
which we rewrite as
v (k)
doy = (a—r sin(y) — gbk)) dt + dB;". (37)
(%3

We use methods from [12] to solve Equation (37).

We note that we expect the behavior of the order parameter to be deter-
mined by the variance of the noise, 02, similar to the model in [2]. Further-
more, we expect the system to reach a statistically stationary state, where
Tso and U4 can be defined. This is indeed the case, which is shown in Figure
3. By varying o, we obtain a a bifurcation in the order parameter r.,, which
can be seen in Figure 4. This is discussed in more detail below.

4.3 Behavior of the perturbed system

When we add noise to the directional angles as in Equation (36), the dy-
namics of the order parameter r in Equation (26) can be shown to change
according to

N N
r= avr% kz:; vik sin’ (¢ — ép) + — ! ;Bt(k sin(¢ — @), (38)
and Equation (27) becomes
. 1N 11, =
r = avr— ; org i (20 = o)) kz Yeos( = dn).  (39)

We do not expect the dynamics of the order parameter r of the perturbed
system to differ drastically from that of the unperturbed one. Indeed, it turns
out that the system reaches a statistically stable state, where r, is defined.
From the above equations it is clear that o is the determining factor for
the value of r,,. We therefore compute that value for a range of values for

13



o, shown in Figure 4. Similar to 2], we obtain a bifurcation of the order
parameter when the variance of the noise exceeds a certain threshold. We
see that the value of r,, reaches 1 when ¢ — 0. At high variance, we expect
the system to not be able to synchronize, as is the case, with r fluctuating
close to zero. However, below a certain threshold o., the system is able
to synchronize, and the transition is very sharp, exhibiting a bifurcation
between phases of the system. With 0 < 0 < 0, we have 0 < r,, < 1 and so
the system is partially synchronized.

It is worth pointing out that the it is not completely clear whether the
bifurcation in Figure 4 is continuous or not, i.e. whether the bifurcation is
supercritical or subcritical. The transition does seem to be supercritical, but
theoretical analysis is required to fully determine the nature of the bifurca-
tion. It is quite possible that the nature of the bifurcation depends on the
distribution of the natural frequencies [13]. However, for the Czirok-Viksek
model |2, 14| it has been speculated that the nature of the phase transition
is determined by how the noise is entered into the angular velocities. In
our case, we add a so called "angular noise", which perturbs a perfectly cal-
culated average direction, resulting in a seemingly continuous transition, in
accordance with the Czirok-Vicsek model. On the other hand, in [15, 16],
it is argued that adding "vectorial noise" to the angular velocities, i.e. by
adding noise terms to each of the interactions, results in a subcritical onset
of collective motion. But it is important to note that vectorial noise is very
different from the original Czirok-Vicsek model, and it is not surprising that
the system turns out to be more sensitive to the amplitude of the noise.
Indeed, the results of [2] were confirmed in [17].

Finally, we note the difference between the distribution of the directional
angles at equilibrium, see Figure 5, with noise added as in Equation (35),
and as in Equation (36), even though the value of the order parameter r, is
similar. In the latter, the histogram resembles that of a Gaussian distribu-
tion. In the former, we obtain a more heavy tail of the distribution, which is
a result of the Lorentzian noise. However, it is interesting to note that the
former case differs from that of the Kuramoto model (Figure 5(c)), although
they should be very similar at equilibrium. Further research will hopefully
shed light on this discrepancy. The distributions in Figure 5 were obtained
with N = 32000 in order to obtain smoother distributions, but the resulting
values of the order parameters do not depend on the value of V.

14
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Figure 3: Evolution of the average speed (I) and of the order parameter r
(IT) according to Equations (36) and (33). In all cases the inertia is v = 0.5,
acceleration is ¥ = 0.2, and the number of particles is N = 2000. The initial
distribution of the directional angles was uniform in all cases. The plots differ
only in the value of o: (a) 0 = 0.40, (b) 0 = 0.68, (c) ¢ = 0.82. In all cases
we see that r., is defined, and r fluctuates around that value. A bifurcation
in ., occurs as the value of ¢ is varied, see Figure 4.
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Figure 4: Value of ro, as a function of o, where ¢ is the variance of the noise
in the directional angles, see Equations (36) and (33). In all cases we have
a = 0.5, v = 0.2 and number of particles N = 2000. We obtain a bifurcation
at o, ~ 0.72.

(a) (b) (c)

Figure 5: Histogram of the directional angles {¢;}&_, at equilibrium after
a long initial transient, averaged over the last 5000 iterations. The figures
correspond to (a) Equation (36) with a = 0.5, v = 0.2, and ¢ = 0.7, (b)
Equation (35) with @ = 1.5, ¥ = 0.2 and (c) the Kuramoto model [6] with
K = 1.5. In cases (b) and (c), the intrinsic turning rates {wy}iy_, were
drawn from a Cauchy distribution with v = 0.5. In all cases the number of
particles is N = 32000. The resulting order parameters were (a) ro, ~ 0.58

and U, =~ 0.60, (b) re ~ 0.59 and 0 ~ 0.21, and (c) re >~ 0.58.

16




5 Discussion

We have shown that the system in [1| tends towards a stable traveling so-
lution (U4 constant) with perfect synchronization r., = 1. Perhaps more
biologically accurate, we perturb the directional angles, and note that for
the system not to come to a halt we have to accelerate the particles. We
find that the system reaches an equilibrium and derived the resulting aver-
age speed as a function of the model parameters and the order parameters,
see Equation (34).

By inspecting Equation (38) we expect the value of o, to depend on «a, and
possibly also v. We would like to conduct a full investigation of the parameter
space, and obtain a relationship between o. and o. We speculated that the
nature of the bifurcation was supercritical, but require further analysis to
determine the true nature.

5.1 Synchronized stationary solutions

We plan to investigate the possible structure of the disordered state in the
case of the deterministic perturbation above. It is possible that there ex-
ists a sequence of partially synchronized schools of particles, reminiscent of
Kuramoto’s partially synchronized solutions based on the symmetries of the
stationary solutions in [1]. The complexity of these solutions can be stud-
ied using order parameters for both the direction headings and the speeds.
Analogous to the perturbations of the stationary solutions of a finite number
of particles, in [4], the infinite sequence of Kuramoto stationary solutions,
if it exists, could perturb to metastable solutions, consisting of complex cir-
cling schools. Eventually, all of these schools would tend to the migratory
Kuromoto solution consisting of one complex partially synchronized school.
It is not clear if this complex sequence survives the perturbations.

5.2 Local interactions

Finally, we note that it would be interesting to explore the behavior of the
same model equations, but with local interactions. A broad literature is
available on such models, and it is certainly biologically more accurate to
limit the visual and sensual range of the particles [18, 19, 20, 21, 22]. We
might start with only the zone of orientation. However, we would also be
interested in investigating the behavior of the system with other zones of

17



interaction implemented, e.g. a zone of repulsion. We would like to introduce
the zone of repulsion in order to obtain a model which was investigated in [4].
The spatial structure of the models mentioned above has not been dealt with,
and it would be very interesting to see whether we can obtain the solutions
from [4], and investigate their stability.
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