
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
The Development and Implementation of a Low-Cost, Ball-Catching Robot

Permalink
https://escholarship.org/uc/item/3pn9k30d

Author
Feigum, Kaylee

Publication Date
2017

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3pn9k30d
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

The Development and Implementation of a Low-Cost, Ball-Catching Robot

A Thesis submitted in partial satisfaction of the
requirements for the degree

Master of Science

in

Engineering Sciences (Mechanical Engineering)

by

Kaylee Feigum

Committee in charge:

Thomas Bewley, Chair
Mark Anderson
Mauricio de Oliveira

2017

Copyright

Kaylee Feigum, 2017

All rights reserved.

The Thesis of Kaylee Feigum is approved, and it is accept-

able in quality and form for publication on microfilm and

electronically:

Chair

University of California, San Diego

2017

iii

TABLE OF CONTENTS

Signature Page . iii

Table of Contents . iv

List of Figures . vi

List of Tables . vii

Acknowledgements . viii

Abstract of the Thesis . ix

Chapter 1 Introduction . 1

Chapter 2 Robotic Platform . 3
2.1 Introduction . 3
2.2 Hardware . 3
2.3 Modeling . 6

Chapter 3 Ball Trajectory Measurement and Prediction 11
3.1 Introduction . 11
3.2 Cameras . 12

3.2.1 Camera Selection . 12
3.2.2 Calibrating the Cameras 14

3.3 Ball Position Using Stereo Vision 18
3.3.1 Linear Regression to Calculate Ball Position Between

Frames . 19
3.3.2 Predicting the Impact Point of the Ball 22

Chapter 4 Control and Path Planning . 25
4.1 Introduction . 25
4.2 NMPC Path Calculation . 26
4.3 Comparison of Driving Strategies 29

Chapter 5 Testing the Prototype . 37
5.1 Introduction . 37
5.2 Outline of the Code . 37
5.3 Results . 39

Chapter 6 Conclusions and Further Work . 43

iv

Appendix A Equations and Values . 46

Bibliography . 54

v

LIST OF FIGURES

Figure 2.1: The completed protoype . 4
Figure 2.2: The coordinate system used to model the dynamics of the robot 7

Figure 3.1: One of the Pixy cameras used in the prototype 13
Figure 3.2: An example picture taken with the Pixy using the PixyMon software

showing the detection of the red ball 14
Figure 3.3: The area that is viewable by each camera 15
Figure 3.4: The coordinate system of a picture taken with a Pixy camera 16
Figure 3.5: A distorted image and the same image after correcting for distortion . . 17
Figure 3.6: The u coordinates of each camera plotted against time for a sample throw 20
Figure 3.7: The v coordinates of each camera plotted against time for a sample throw 21
Figure 3.8: Linear regression of u versus time for both cameras 22
Figure 3.9: Measured trajectory using linear regression to estimate location between

frames . 23
Figure 3.10: The ball trajectory predicted using the first five data points and the

measured trajectory . 24

Figure 4.1: Results from the NMPC algorithm . 32
Figure 4.2: The approximate area in which the robot can move within one second . 33
Figure 4.3: The path taken and heading angle using the simple heading driving

strategy . 34
Figure 4.4: The path taken and heading angle using the updated heading driving

strategy . 35
Figure 4.5: The path taken and heading angle using the NMPC driving strategy . . 36

Figure 5.1: The robot successfully catching a thrown ball 40
Figure 5.2: An unsuccessful attempt at catching a ball thrown to the right of the robot 41
Figure 5.3: Distance traveled by robot after a step input to wheel angle 41
Figure 5.4: Body angle of robot after a step input to wheel angle 42

vi

LIST OF TABLES

Table 2.1: Physical parameters of robot platform 5
Table 2.2: Motor parameters . 5

vii

ACKNOWLEDGEMENTS

I would like to acknowledge my advisor, Dr. Bewley, for the project idea and

guidance. I would also like to acknowledge my lab-mates in the Coordinated Controls Lab

for their advice and suggestions.

viii

ABSTRACT OF THE THESIS

The Development and Implementation of a Low-Cost, Ball-Catching Robot

by

Kaylee Feigum

Master of Science in Engineering Sciences (Mechanical Engineering)

University of California, San Diego, 2017

Thomas Bewley, Chair

As the number of robotic toys on the market increases, so does the difficulty of

differentiating a product from the competition. One approach to this problem is to develop

robots that can interact with the user in novel ways. To this end, a relatively small, ball-

catching robot was developed with a focus on low-cost components. The two main features

that keep the cost low are a mobile inverted pendulum robot design, and low-cost cameras.

The focus of this paper is overcoming the challenges that these two features add the the ball-

catching task. Linear regression was used for estimating and predicting the ball trajectory

using low-cost cameras. Three strategies for intercepting the ball with a non-holonomic

ix

robot were compared. The best strategy for the application used nonlinear model predictive

control to calculate paths for the robot. A prototype was built and it successfully caught a

thrown ball, but only within a limited area. Finally, improvements are suggested to increase

the ball catching area of the robot, and to improve catching accuracy.

x

Chapter 1

Introduction

With the increasing number of robotic toys on the market, to remain competitive

a designer must come up with new ways of engaging the consumer, which may include

developing new ways for the robot to interact with the user. One interaction that has not been

explored much in the commercial market is the game of catch, although many different ball

catching systems have been developed for non-commercial purposes. Often, the systems

with the most impressive results are those which use an industrial arm and cameras that are

located off of the robot such as seen in [1] which is able to catch a ball thrown by a human

and bounce it on a paddle repeatedly. Another example can be seen in [2] which is able to

catch softballs thrown by many different people in a net on the end of the arm with about

a %66 catch rate. In [3] a basketball was caught on a plate at the end of the arm. While

these results are compelling, having the cameras off of the robot adds a large amount of

complexity in processing and sending results to the robot. In [4] and [5], an industrial arm is

used with only a monocular camera in the hand of the robot. Both of these examples actuate

the arm to keep the ball in view of the camera.

While industrial arms allow complex strategies to be designed and tested, they are

1

2

extremely expensive and are very far from the consumer toy level. A mobile robot is

presented in [6], but this one intercepts balls that are on the ground and not in the air. The

project that is most similar to the goal of this paper is [7] in which a monocular vision

system on a mobile robot is used to catch balls. This paper does not have low-cost as a goal,

although it was most likely cheaper than an industrial arm. While mobile prototypes are

cheaper than the industrial arms, there are not as many of this type, and most development

seems focused on the more expensive arms. The high cost of these current prototypes might

explain the lack of a commercially available ball-catching robotic toy. To get closer to a

commercially viable catch-playing robot, a ball-catching prototype was developed, with a

focus on keeping costs low.

Designing a low-cost prototype presents extra challenges not present in a more

expensive build. Most low-cost cameras have a frame rate that is too slow to capture the fast

motion of a thrown ball. They also generally have significant image distortion, making it

difficult to locate the ball precisely. To keep costs low, one must also use a low-cost computer

or micro-controller to control the robot and process the data, limiting the computations that

can be done in real time.

In this paper, the physical prototype is described, as well as the equations of motion

governing the system. A method for calculating the ball location between camera frames is

detailed. Then, a strategy for determining an optimal ball-interception path is presented and

compared to two different interception strategies. Finally, the conclusions drawn from the

experiment are presented, as well as suggestions for improvement upon the design.

Chapter 2

Robotic Platform

2.1 Introduction

For the prototype catching robot, a mobile inverted pendulum (MIP) design was

chosen for the robot. A MIP generally consists of a body and two wheels. The robot is

inherently unstable, and must be actively stabilized by the wheels, which both control the

angle of the body and drive the robot. The MIP design eliminates the need for an actuated

catching arm, reducing complexity and cost; the arm is rigidly attached to the body allowing

it to pivot with the rest of the body. This will allow the robot to change the arm angle to

catch the ball as well allowing future iterations to throw the ball back to the user [8], creating

a more convincing game of catch.

2.2 Hardware

The body of the robot was based off of a previous design developed in the Coordi-

nated Robotics Lab called iFling [8]. All parts besides electronics, wheel treads, and motor

3

4

Figure 2.1: The completed protoype

hubs are 3D printed with polylactic acid (PLA) plastic. The lower body is modified from the

previous iFling project, but is updated to hold new motors and a new controller. The arm on

top of the robot has been redesigned to optimize for catching instead of throwing: a cage has

been added to trap the ball in the lower arm section, as well as to provide a larger catching

area in the top section. A mount for two small cameras has also been added to the front

of the robot. The robot is controlled by a BeagleBone Black (BBB) with a Robotics Cape

produced by Strawson Design. The motors are ServoCity 624 RPM Premium Planetary

5

Gear Motors. The physical parameters of the robot used for modeling the dynamics can be

found in Table 2.1, and the motor properties are located in Table 2.2.

Table 2.1: Physical parameters of robot platform

Property Variable Name Value
Mass of body mb 0.9kg
Mass of wheel mw 67g
Wheel radius r 73mm

Length to center of mass from motor axis Lb 16mm
Length between wheels Lw 74mm

Moment of inertia of body about the x axis I1 3g∗m2

Moment of inertia of body about the y axis I2 6g∗m2

Moment of inertia of body about the z axis I2 6g∗m2

Moment of inertia of wheel about the x axis Iw1 8.93e−5kg∗m2

Moment of inertia of wheel about the y axis Iw2 1.79e−4kg∗m2

Table 2.2: Motor parameters

Property Variable Value
Nominal Voltage V 12V
Motor Resistance Ω 3.4Ω

Torque Constant k 0.014N ∗m/A
Motor Inertia J 4.6e-5 kg∗m2

Gear Ratio Γ 19 : 1
Stall Torque s 2.9kg∗m

No Load Current i0 0.19A

6

2.3 Modeling

To develop a control system and path planner for this platform, a model of the system

must first be developed. Lagrange’s equation is used to do this

d
dt
(
∂L

∂ q̇i
)− ∂L

∂qi
= Qi, i = 1,2, ...,n (2.1)

where L = K −U , U is the potential energy of the system, K is the kinetic energy of

the system, Qi are the external forces applied to the system, and qi are the generalized

coordinates:

q =


θ(t)

φ1(t)

φ2(t)

 (2.2)

where φ1 and φ2 are the angle of the left and right wheel about the y-axis measured from

the z-axis and θ is the angle of the body about the y-axis as measured from the z-axis. The

energy of the system can be separated into the energy contribution of the body and the

energy contribution of each wheel. The coordinate system used for this model can be seen

in Figure 2.2.

The kinetic energy of each component can be calculated from its linear and angular

velocity. The linear velocity of the body is

vb =


vb1

vb2

−Lb sin(θ(t))θ ′(t)

 (2.3)

7

Figure 2.2: The coordinate system used to model the dynamics of the robot

vb1 = cos(
r(φ1(t)−φ2(t))

Lw
)(

1
2

R(φ ′1(t)+φ
′
2(t))+Lb cos(θ(t))θ ′(t))

−
LbRsin(θ(t))sin(r(φ1(t)−φ2(t))

Lw
)(φ ′1(t)−φ ′2(t))

Lw
(2.4)

vb2 = sin(
r(φ1(t)−φ2(t))

Lw
)(

1
2

R(φ ′1(t)+φ
′
2(t))+Lb cos(θ(t))θ ′(t))

−
LbRsin(θ(t))cos(r(φ1(t)−φ2(t))

Lw
)(φ ′1(t)−φ ′2(t))

Lw
(2.5)

8

The angular velocity of the body is

ωb =


−sin(r(φ1(t)−φ2(t))

Lw
)θ ′(t)

−cos(r(φ1(t)−φ2(t))
Lw

)θ ′(t)

r(φ ′1(t)−φ ′2(t))
Lw

 (2.6)

The kinetic energy from each wheel is

vw1 =


r cos(r(φ1(t)−φ2(t))

Lw
)φ ′1(t)

r sin(r(φ1(t)−φ2(t))
Lw

)φ ′1(t)

0

 (2.7)

vw2 =


r cos(r(φ1(t)−φ2(t))

Lw
)φ ′2(t)

r sin(r(φ1(t)−φ2(t))
Lw

)φ ′2(t)

0

 (2.8)

and the angular velocity of each wheel is

ωw1 =


−sin(r(φ1(t)−φ2(t))

Lw
)φ ′1(t)

cos(r(φ1(t)−φ2(t))
Lw

)φ ′1(t)

r(φ ′1(t)−φ ′2(t))
Lw

 (2.9)

ωw2 =


−sin(r(φ1(t)−φ2(t))

Lw
)φ ′2(t)

cos(r(φ1(t)−φ2(t))
Lw

)φ ′2(t)

r(φ ′1(t)−φ ′2(t))
Lw

 (2.10)

9

The potential energy of each wheel is zero, and the potential energy of the body is,

Ub =


0

0

gLbmb cos(θ(t))

 (2.11)

where g is the acceleration due to gravity. The external forces, Q, for this system are the

torque from each motor.

Q =


−τ1− τ2

τ1

τ2

 (2.12)

τ1 =
V
Ωk

u1 +
1

Ωk2 (θ
′(t)−φ

′
1(t)) (2.13)

τ2 =
V
Ωk

u2 +
1

Ωk2 (θ
′(t)−φ

′
2(t)) (2.14)

Using these equations and the equation for kinetic energy, K = 1
2 ∑

n
i=1 miv2

i where

mi is the mass of each energy component and vi is the velocity of each energy component,

the Lagrangian L can be calculated, and is located in appendix A as A.1. The Lagrangian is

next used in equation 2.1 to calculate the equations of motion, which are then rearranged to

fit the form,

E
dX
dt

= N(X,u) (2.15)

10

X is the state vector and has been chosen to be,

X =



θ(t)

φ1(t)

φ2(t)

θ ′(t)

φ ′1(t)

φ ′2(t)

x(t)

y(t)

γ(t)



(2.16)

x(t) and y(t) are the robot’s position along the x- and y-axis respectively. γ(t) is the robot’s

heading as measured from the x-axis. The equations that define these variables are as follows

x′(t) =
R
2

cos(γ(t))(φ ′1(t)+φ
′
2(t)) (2.17)

y′(t) =
R
2

sin(γ(t))(φ ′1(t)+φ
′
2(t)) (2.18)

γ
′(t) =

R
2Lw

(φ ′1(t)−φ
′
2(t)) (2.19)

N and E are given in Appendix A as Equations A.17 and A.6 respectively.

Chapter 3

Ball Trajectory Measurement and

Prediction

3.1 Introduction

To measure the position of the ball relative to the robot while the ball is in the air, a

pair of cameras is used. The desire to minimize the price of the prototype drove the camera

selection, but using a cheaper camera brought many extra challenges not present when using

more expensive cameras. The cameras needed to be calibrated to reduce distortion, and

the lack of a controllable shutter on the cameras meant that the measurements from the

two cameras are not synchronized. To get around this problem, a method was devised for

estimating measurements between camera frames.

Because the cameras are rigidly attached to the robot body, when the robot changes

pose, the scene the cameras are able to capture also changes. While it could be possible to

adjust the position and angle of the robot to keep the ball in frame, that is not possible in this

application because the angle of the body of the robot also controls the speed of the robot,

11

12

and the speed needs to be the maximum possible to catch the ball before it hits the ground.

Therefore, the location of the ball must be predicted using only the initial measurements of

the cameras before the robot needs to start moving. This prediction process is done by using

the equations of motion for the ball to calculate its future trajectory.

3.2 Cameras

3.2.1 Camera Selection

The choice of cameras was limited by three factors: the size of the robot, the cost

of the cameras, and the speed of the ball. As the robot is designed to be low-cost it is

necessarily small, meaning that the cameras must also be similarly small, which eliminates

many popular off-the-shelf vision solutions for robots. The goal of reducing costs also

excludes small high-end cameras specifically designed for computer vision. Because the

ball quickly flies through the air when it is thrown and the robot must intercept it before it

lands, the camera must capture multiple frames and send them back to the computer well

before the ball hits the ground. A low frame rate will also cause significant blur in the image

of the ball if a typical rolling shutter is used in the camera. This makes it impossible to

determine the exact location in the ball in the frame, because its image will be blurred over

a large area of its motion.

The camera selected to fit these three criteria is the Pixy (CMUcam5) created by

Carnegie Mellon Robotics Institute and Charmed Labs [9]. The camera board is about 51mm

tall and 50mm long, allowing it to easily fit on the robot. The camera operates at a maximum

of 50 frames per second. It costs around $70, making it much cheaper than other cameras

that have a similar frame rate. Because it can send data over serial interfaces, the timing of

13

the frames can be accurately measured, and two cameras can be used to get a measurement

in 3 dimensions. The Pixy camera differs from typical cameras used in computer vision

tasks. The camera does not send an image back to the computer, instead the unit has an

on-board processor that performs the necessary calculations and only sends the location and

size of the desired object back to the computer. This capability eliminates the need to use

computer vision algorithms on the computer controlling the robot, significantly reducing the

amount of processing power that the computer requires, which allows a cheaper and smaller

board to be used to control the robot.

Figure 3.1: One of the Pixy cameras used in the prototype

For this prototype, two Pixys were mounted to the front of the robot spaced 70mm

apart using a 3D printed mount. The two cameras communicate with the BeagleBone Black

using the I2C interface. To use the I2C interface, the address of each camera was set using

the PixyMon software. The color of the ball to be caught was selected and adjusted using

the same software. When moving to new lighting situations, the color parameters often need

to be readjusted before the ball will be correctly recognized. An example of the typical

results from the Pixy in mediocre lighting conditions can be seen in Figure 3.2. As can be

14

seen, the entire ball is not recognized as the lighting quality causes dark shadows on the

bottom side of the ball which cause the color to no longer register as red. The ball is reliably

distinguished from the background and surrounding objects even in less than ideal lighting

conditions, so it is deemed adequate for the goals of this prototype.

Figure 3.2: An example picture taken with the Pixy using the PixyMon software
showing the detection of the red ball

The Pixy camera has a resolution of 320x200 pixels and a 75◦ view angle. The ball

being used for the experiments is 40mm is diameter. If the smallest area to be detected is 8

pixels across, this result leads to a range of 1.0m from the front of the camera to detect the

ball in ideal light conditions. In less than perfect lighting conditions, often part of the ball is

not detected, leading to a effective range of about 0.8m. With the cameras mounted 70mm

apart, the closest that an object can be detected by both cameras is 0.05m. The area over

which the view of the cameras overlaps can be seen in Figure 3.3. By placing the cameras

close together, most of the viewing area of each camera is visible to the other camera as

well.

3.2.2 Calibrating the Cameras

As with many low-cost cameras, the Pixy exhibits significant radial and tangential

distortion in the image that it captures. Radial distortion causes straight lines of images to

15

Figure 3.3: The area that is viewable by each camera

bow outward because the light rays bend more near the edges of the lens than the center.

This distortion is described by the following equation [10],

ũdistorted

ṽdistorted

=

ũ(k1r2 + k2r4 + k3r6)

ṽ(k1r2 + k2r4 + k3r6)

 (3.1)

where r = ũ2 + ṽ2, (ũ, ṽ) are the coordinates of the undistorted image in normalized image

coordinates, (ũdistorted, ṽdistorted) are the coordinates of the distorted image in normalized

image coordinates, k1,k2, and k3 are the radial distortion coefficients. The normalized image

16

coordinates are related to the image coordinates in pixels by the equation

ũ

ṽ

=

u−u0
fu

v−v0
fv

 (3.2)

where (u,v) are the coordinates of the undistorted image in pixels, (u0,v0) are the coordinates

of the optical center in pixels, fu and fv are the focal lengths in pixels in the u and v directions

respectively. The coordinate system of an image taken from a Pixy can be seen in Figure 3.4

Figure 3.4: The coordinate system of a picture taken with a Pixy camera

Tangential distortion is caused when the camera sensor and lens are not parallel, and

is represented by the following equation [10],

ũdistorted

ṽdistorted

=

ũ+2p1ũṽ+ p2(r2 +2ũ2)

ṽ+ p1(r2 +2ṽ2)+ p2ũṽ

 (3.3)

where p1and p2 are the tangential distortion coefficients.

If the distortion is not accounted for, the measurement of the ball location will be

inaccurate. To obtain the distortion parameters, OpenCV’s calibration routine was used for

both cameras [11]. This process returned the distortion coefficients as well as the intrinsic

parameters of the cameras in the form

17

d =



k1

k2

p1

p2

k3


(3.4)

C =


fu 0 u0

0 fv v0

0 0 1

 (3.5)

These values are included in Appendix A as A.2-A.5. Using these parameters, an undistorted

image can be produced as seen in Figure 3.5. The correction fixes the curved lines near the

edges of the image, producing a more accurate image.

(a) The original image (b) The undistorted image

Figure 3.5: A distorted image and the same image after correcting for distortion

Generally, to produce an undistorted image, one first chooses a pixel location in

the desired undistorted image, then using equations 3.1-3.3, one calculates which pixel

from the distorted image corresponds to the new pixel. In this way, the undistorted image

is gradually built up pixel by pixel. Because the Pixy only returns one pixel location, to

determine its undistorted location, one would have to select a group of pixels where the

18

undistorted pixel might end up, then test each pixel in the group until the desired one is

located. While intelligent group selection would reduce the number of calculations needed

for this approach, this process is time consuming, and to guarantee a match a relatively

large group would have to be selected. Instead, for this prototype it makes more sense to

use a root-finding algorithm to find the undistorted location using equations 3.1-3.3. The

Newton-Raphson method was used, which can be represented as

Un+1 =Un− J−1(Un)F(Un) (3.6)

where U is the image location (ũ, ṽ), F(Un) is the equation

ũdistorted

ṽdistorted

=

ũ+2p1ũṽ+ p2(r2 +2ũ2)+ ũ(k1r2 + k2r4 + k3r6)

ṽ+ p1(r2 +2ṽ2)+ p2ũṽ+ ṽ(k1r2 + k2r4 + k3r6)

 (3.7)

and J(Un) is the Jacobian matrix of F(Un). Equation 3.6 was used to find the undistorted

pixel location by iterating until convergence. By selecting the distorted location as the initial

guess for the solution, convergence generally happens in 2 or 3 steps because the undistorted

location is never very far from the distorted location.

3.3 Ball Position Using Stereo Vision

After the calibrated location of the ball in the image of each camera is obtained,

the measurements from the two cameras must be combined to get the ball’s location in 3

dimensional space. Usually to accomplish this, two cameras are placed in the same plane

and they take an image at the same instant. Then, the depth of the object from the camera

19

can be measured using the equation

x =
fub

u2−u1
(3.8)

where b is the distance between the two cameras, u1 and u2 are the undistorted pixel locations

of each camera, and x is the distance in the x-direction using the coordinate system shown

in figure 2.2. The following equations can then be used to obtain measurements in the y and

z direction.

y =
−u1x

fu
(3.9)

z =
v1x
fv

(3.10)

Unfortunately, this procedure cannot be used with the Pixy cameras because they do

not include a way to control the operation of the shutter. This means that the two cameras

cannot be guaranteed to capture an image at the same instant. Instead, the two cameras

operate independently, with a timing difference up to 10ms. To use this data for measuring

depth, the ball location must be estimated between frames. To do this, a linear regression

model is be used.

3.3.1 Linear Regression to Calculate Ball Position Between Frames

When the trajectory of the ball is captured by the cameras, the three-dimensional

parabolic trajectory of the ball projected onto the camera image planes results in two

parabolic paths. When only the u and v components of the trajectory are plotted versus

capture time, the result is a parabola in the v coordinates and a roughly straight line in the

u coordinates as seen in Figures 3.6 and 3.7. If the cameras are physically located on the

same plane at the same height, the measured v coordinates of a fixed object should be the

20

same for the two cameras. Therefore, nothing needs to be done to estimate the position of

the ball along the v axis between each camera frame, as the position from the other camera

can be used. The position of the ball along the u axis is not the same between cameras, as is

expected, and the u position must be estimated between each camera frame to get a correct

depth estimate.

Figure 3.6: The u coordinates of each camera plotted against time for a sample
throw

Because the plot of u position versus time is approximately linear, a simple linear

regression model can be used. The equations to estimate the new u location in pixels uest are

uest = mt +b (3.11)

m =
∑

n
i=1(ti− t̄)(ui− ū)

∑
n
i=1(ti− t̄)2 (3.12)

21

Figure 3.7: The v coordinates of each camera plotted against time for a sample
throw

b = ū−mt̄ (3.13)

where t is the time of the measurement, ū and t̄ are the average of u and t respectively. The

lines resulting from using these equations on one set of data are shown in figure 3.8 For this

set of data, both lines had a correlation coefficient of 0.999, showing that the equations can

be used to accurately estimate the location of the ball in the u direction between frames for

each camera.

Using the estimated u location values uest , equations 3.8-3.10 can be used to recon-

struct the trajectory of the ball. An example trajectory using the data from Figures 3.6 and

3.7 can be seen in Figure 3.9. The trajectory matches the expected parabolic trajectory,

although it is not perfectly smooth. This roughness can be explained by the slight errors in

22

Figure 3.8: Linear regression of u versus time for both cameras

the measurement of the v location of the ball. Although the exact time-varying trajectory

was not measured, the accuracy of the location estimates for a static object were measured,

and proved to be good within one meter of the robot, with accuracy reducing after that.

Because the trajectory looks as is expected and the measured locations of static objects is

accurate, the measured trajectory using the linear regression model is assumed to be accurate

enough for this application.

3.3.2 Predicting the Impact Point of the Ball

After getting a measurement of the ball’s trajectory, the location where the ball will

impact the robot needs to be calculated because the cameras will not detect the ball once the

robot starts moving. To do this, the equations of motion of the ball must be used.

23

Figure 3.9: Measured trajectory using linear regression to estimate location be-
tween frames

The ball used is a red squash ball, with a diameter of 39mm and a mass of 13g

(which is less than the typical squash ball, but the equations also hold for balls of typical

weight). The ball follows a ballistic trajectory, and for throws of 5m
s , the ball has a Reynolds

number of approximately 1e4. With this Reynolds number, the drag force is proportional to

the squared velocity [2] resulting in the following equations of motion

v̇ = g−α|v|v (3.14)

ẋ= v (3.15)

where x is the position of the ball in space, v is the velocity of the ball, g is the acceleration

due to gravity, the ballistic coefficient α = CdAρ

2m , the drag coefficient Cd = 0.45 for a sphere,

24

the air density at sea level ρ = 1.29 kg
m3 . For the chosen ball, α = 0.11so the drag force can

therefore be ignored without much loss in accuracy for this purpose.

Using these equations, the ball location can be calculated using the last measurement

for the beginning location and velocity. An example calculated using the first five measure-

ments of the previous data is shown in figure 3.10. As can be seen, there is some error in

the final predicted location. There is very little error in the angle of the trajectory, but the

distance has an error of about 50mm, which is caused by errors in estimating the initial ball

velocity. Although this is a significant error, it is less than half of the width or height of the

catching arm and the robot should still be close enough to the actual ball location to catch

the ball if the robot reaches the calculated location in time.

Figure 3.10: The ball trajectory predicted using the first five data points and the
measured trajectory

Chapter 4

Control and Path Planning

4.1 Introduction

Once the location at which the ball will impact the robot is predicted, the robot must

quickly drive to that spot to intercept the ball. Because of the choice to use a MIP platform,

the robot cannot simply move directly to the desired spot while maintaining its heading if

the ball is not directly in front of or behind the robot. Instead, the robot must turn towards

the direction of the location, drive over, and turn back to face the ball. To get to the desired

location and heading quickly, three different methods were tested: 1) using the desired end

point to determine the heading angle of the robot and maintaining this angle until the end

point is reached, 2) using the desired end point to determine the heading angle and updating

the heading angle based on the distance of the robot to the the position, and 3) calculating a

path to drive along using nonlinear model predictive control (NMPC). The first two methods

are simple to implement, but the NMPC method requires some initial calculations.

25

26

4.2 NMPC Path Calculation

In nonlinear model predictive control, a nonlinear model of the system is used to

simulate the behavior of the system in response to a given input uk on the time period of

interest, t ∈ [0,T]. A cost function J(u) is used to penalize deviations of the system from

the desired behavior. The gradient of the cost function,∇J(u), is calculated using the adjoint,

and is then used to find a new value of uk. By iterating, a value of uk can be found that

minimizes the cost function J(u). The general structure of the NMPC algorithm is as follows

[12]:

1. Give an initial condition, and guess an initial control input uk(t) on t ∈ [0, t]

2. March the state equation forward until final time t = T

3. March the adjoint equation backward in time until initial time t = 0

4. Compute the gradient

5. Use the conjugate gradient method to update the control input

6. Repeat from step two until convergence

The state equation used is given by equation 2.15. The cost function chosen is

J(u) =
1
2

∫ T

0
(XHQX+uHRu)dt +

1
2
X(T)HEHQT EX(T) (4.1)

where Q, R, and QT are matrices chosen to produce the desired behavior. Q is used to

penalize the trajectory of the system on the interval t ∈ [0,T], and is used to keep the

robot close to upright during simulation. R penalizes the control effort, and QT penalizes

27

deviations from the desired final state. The values of these matrices for this prototype are

given in Appendix A. The adjoint is defined by

−E
dr
dt

= AHr+QX (4.2)

where E and A are defined by the tangent linear equation.

The tangent linear equation describes what happens to the system when small

perturbations of the inputs, ũ(t) are applied to the system, resulting in small perturbations

of the state X̃(t). It is found by linearizing the state equations about a trajectory X(u).

This is done by taking X = X̄+X̃ and u= ū+ ũ in equation 2.15. Then, a small angle

approximation is performed, and only the terms that are linear in the perturbed quantities

are kept. This results in an equation of the form

E
dX̃
dt

= AX̃+Bũ (4.3)

The values for A, and B are given in Appendix A. E has the same value as it does is equation

2.15

Using these equations, paths can be generated using the NMPC algorithm. A time

of one second was chosen for the time interval. The initial values of X(t) were set equal to

zero for all states, except for the position along the x and y axis. The position along the x

and y axis can be chosen to be equal to the desired final location of the robot by shifting the

coordinate system such that the final ball position is at the origin of the coordinate system.

A sample generated path can be seen in Figure 4.1. The path has an initial backwards

movement because the MIP requires that the robot move backwards initially before it is able

to move forward stably. The path has an "s" shape, which matches what would be intuitively

28

expected for a non-holonomic platform such as the MIP.

Because NMPC is an iterative process, it can be time consuming to converge to

a path; by the time a solution is found, the ball will have already landed. To get around

this problem, a set of paths should be calculated offline, and stored on the robot for quick

access. Before choosing the group of ball locations for which to calculate an store paths, the

maximum area over which the robot can move needs to be calculated. The distance the robot

moves in a straight line over the selected time period could be used, but this would produce

a greater area than is physically possible, especially as the ball moves more to the side of the

robot, resulting in a waste of time calculating impossible trajectories. Instead, the NMPC

algorithm is used. First, a circle of points is generated that are guaranteed to be outside of

the robots catching area. Next the NMPC algorithm is ran using each of these points in the

initial state, then the distance the robot was actually able to travel was calculated for each

of these points. This process resulted in Figure 4.2. With this area now defined, a grid of

points is defined within the area, the NMPC algorithm is run using each of these points as

an input, and the resulting trajectory of the robot is recorded.

Running the NMPC algorithm generates a set of motor inputs, which will theoreti-

cally move the robot along the exact calculated trajectory. In practice, it is quite difficult to

model the system to the level of precision needed for this to work. A controller would also

need to account for small imperfections in the model, as well as any small perturbations that

take the robot off of its desired trajectory. Because of this limitation, instead of using the

input calculated with the NMPC algorithm, a linear controller was designed to balance and

drive the robot. This controller was used for all three driving strategies tested. The path that

resulted from the NMPC algorithm was then used as a set of way-points for navigating the

path.

29

4.3 Comparison of Driving Strategies

A successive loop closure approach was used for the balancing and driving of the

robot. The inner loop controls the angle of the body, and the outer loop controls the position

of the wheels. A lead-lag controller was used for both the inner and outer loops of the

controller. The heading of the robot is governed by a PD controller that takes the output of

the position controller and changes the relative movement of the two wheels to achieve the

desired heading. The parameter values for these three controllers can be found in Appendix

A as A.31 - A.34.

To compare the three driving strategies mentioned in section 4.1, the robot was placed

on a clean wood floor. It balanced for five seconds, and then the a ramp signal of 9.8 rad
s was

used as input for the position controller which resulted in a gradual acceleration to 5.6 rad
s

over 2 seconds. After the position command was given, the heading input was determined

by the driving strategy being tested to reach the desired end location of (169mm,204mm).

For the first strategy, called the basic heading strategy, the angle between the robot’s

current position and the desired end position was calculated from the robot’s initial location,

and this angle was used as the heading command for the entire test. The results from this

test can be seen in Figure 4.3. The closest point the robot achieved to the desired location

was off by 50.0mm. The final heading angle was 0.72rad, and this took path 2.37s.

For the second strategy, called the updated heading strategy, the angle between the

robot’s current position and the desired end position was calculated from the robot’s initial

location. While the robot was driving, its position was calculated using equations 2.17 - 2.19.

This position was used to find the actual angle between the robot and the desired end point,

which was used to update the heading command at a rate of 200Hz. The results from this

test can be seen in Figure 4.4. The closest point the robot achieved to the desired location

30

was off by 9.7mm. The final heading angle was 0.99rad, and this path took 2.36s.

The third strategy, called the NMPC strategy, a path was calculated to the desired

end point using the NMPC algorithm detailed in section 4.2. The algorithm generates a large

number of points, but it is unnecessary to use all of these points as way-points. Instead, a

smaller subset should be taken. This size of this subset will depend on the robotic platform.

Because the paths being taken are so short in comparison to the size of the robot, only

four coordinates were used to get a good approximation of the path. With this method,

the robot will not follow the exact path calculated by the NMPC algorithm and the path

will therefore not be optimal. Figure 4.5 shows the path taken by the robot compared with

the path calculated using the NMPC algorithm. There is some deviation from the desired

path, but the robot still follows the s-shape of the NMPC path. The closest point the robot

achieved to the desired location was off by 2.7mm. The final heading angle was 0.47rad,

and this took 2.51s.

The NMPC strategy came in as the slowest of the three strategies. It was about nine

percent slower than the other two strategies, but it was the most accurate in final location. All

three strategies were slow to achieve the commanded heading as can be seen in Figure 4.3.

It takes the robot about one second to turn one radian. This explains the large final position

error of the basic heading strategy. Because this strategy does not update the heading angle,

it will necessarily be inaccurate if the robot does not turn before starting to drive, and is

greatly affected by the speed at which the robot can turn. The updated heading strategy also

has its accuracy reduced by the slow turning response of the robot. The heading controller

of the robot could be tuned more aggressively, but this would likely result in undesirable

overshoot and oscillations, which would decrease the accuracy of the first strategy. The

NMPC strategy ended with a heading angle closest to the desired heading of 0rad, and in

31

general has a greater ability to adjust the final heading of the robot without decreasing speed

greatly. To end at a similar heading angle to the NMPC strategy, both the first and second

strategies would require the robot to stop at the end location and turn around, which could

take one second or more just to turn to the desired heading. Because the catching arm is

rigidly mounted to the robot body, it is essential that the robot end up at an appropriate angle,

or the ball will bounce off of the side of the arm instead of being caught.

Even though the NMPC strategy was a bit slower in this test, it is the best strategy

for this prototype because it results in the robot being closest to the desired final heading.

Because the NMPC strategy often results in a correct final heading, the robot is able to

keep driving past the desired location, thus reducing the total time taking over the other two

strategies, which would need to stop and correct heading. Driving past the desired location

also allows the robot to maintain the correct body angle for the ball to be caught in the arm

if the robot does not have time to stop at the location and then adjust its body angle.

32

(a) An example path generated by the NMPC algorithm

(b) Motor commands generated by the NMPC algorithm

Figure 4.1: Results from the NMPC algorithm

33

Figure 4.2: The approximate area in which the robot can move within one second

34

(a) The path driven by the robot when testing the simple heading driving strategy

(b) The heading angle of the robot during the basic heading

Figure 4.3: The path taken and heading angle using the simple heading driving
strategy

35

(a) The path driven by the robot when testing the updated heading driving strategy

(b) The heading angle of the robot during the updated heading test

Figure 4.4: The path taken and heading angle using the updated heading driving
strategy

36

(a) The path driven by the robot when testing the NMPC driving strategy

(b) The heading angle of the robot during the NMPC test

Figure 4.5: The path taken and heading angle using the NMPC driving strategy

Chapter 5

Testing the Prototype

5.1 Introduction

With the ball trajectory calculations written and the driving paths calculated, the last

thing to be done before the prototype can be tested is to develop software to integrate all of

the necessary functions. As mentioned in 2.2, the robot is controlled by a BeagleBone Black

(BBB) with a robotics cape. Because there are libraries written for the BBB, which handle

all of the low-level functions such as commanding motors and reading sensors, only the

high-level functions to perform the desired task must be written. Once this task is completed,

the catching performance of the robot can be tested.

5.2 Outline of the Code

The code was written to interface with James Strawson’s balancing code for the

Beagle Bone Black [13]. This existing code is a multi-threaded program written in C that

handles all of the sensor fusion, state estimation, and balancing of the robot using the

37

38

controller from section 4.3. Interfacing with this code is as simple as adding more threads

to the program. All of the camera calculations and measurements can be performed in one

thread, while the path driving can be performed in another.

To make sure that the camera data is recorded as soon as it is taken, both cameras are

checked every millisecond. Once a reading is received from one camera, the code checks

for a reading from the other camera. If no reading is received within twenty milliseconds,

then the second camera has not seen the object and the code goes back to checking both

cameras. If a reading from the other camera is received before twenty milliseconds have

elapsed, then each measurement is calibrated as outlined in 3.2.2. Next the code checks for

new measurements from the cameras and then calibrates each as it is read. This process

lasts until four measurements from one camera have been taken or no measurements have

happened in twenty milliseconds, whichever happens first. If the ball moves out of the

frame before each camera has taken at least two measurements, and one has taken at least

three, then the code restarts because this is not enough data to make a prediction. If enough

measurements have been gathered, then the two linear regressions are calculated using the

calibrated measurements as outlined in 3.3.1. From this, the equations of 3.3.2 can be used

to predict the ball’s future location. If the ball will not travel high enough to reach the

catching arm, then the code restarts. If the ball will reach the necessary height, then the

location of the ball is predicted until it passes through the apex of its trajectory and then

until it reaches the same height as the catching arm.

Once the impact location of the ball is calculated, the information is passed to the

thread that handles path driving. First, the code checks whether the predicted location of

the ball is within the catching area of the robot. If not, the camera thread restarts and the

robot does not move. If the ball is catchable, the code checks which pre-calculated path

39

ends closest to the ball location using a lookup table. Then, the speed of the robot is set to

the maximum speed, and the heading is calculated using the first path point. While driving,

the location of the robot is calculated using the Euler method. When the robot’s location

is within twenty millimeters of the first path point, the next point is used to determine the

heading. When the second to last path point is reached, the location of the ball is used

instead of the last path point. Once the robot reaches the last point, it reverses its driving

direction. It does not wait at the last point, because it cannot catch a ball while the robot

is upright. It then heads back towards the starting location to make setting up for multiple

catches easier. Finally, it restarts the camera reading code and waits for another ball to be

thrown.

5.3 Results

This code was combined with the Strawson’s balancing code and compiled on the

BBB. To test the prototype, the robot was placed on a clean table, in a well lit room with

no red objects in the background. The ball throws used to test the robot were started below

the line on the table, and between 0.2 and 1 meter in front of the robot. Only throws that

land behind the robot were tested, as the robot naturally tilts to the correct catching angle

when moving backward. Multiple trials were conducted to test the catching ability of the

robot. Typical results can be seen in Figures 5.1 and 5.2. The robot was unable to catch balls

that had an impact location greater than 0.15m away from the robot, or with angles greater

than about 0.17rad. While the ball did land in the catching arm occasionally, it would often

bounce off of the top or sides of the arm. To reduce this issue, foam tape was added inside

of the arm.

The catching area is much smaller than was predicted by the NMPC algorithm. This

40

discrepancy is most likely caused by inaccuracies in modeling the physical parameters of

the robot, most likely the motor parameters. As can be seen in Figure 5.2 the robot was

able to correctly measure the angle of the ball in relation to itself, showing that the camera

calculations outlined in Chapter 3 were accurate enough for the task. Te poor performance

must be caused by the robotic platform, which was slow to accelerate and unable to achieve

its maximum speed while the ball was still in the air.

Figure 5.1: The robot successfully catching a thrown ball

To measure the maximum speed and the acceleration of the robot, a step input

was used in the position controller The results of this test can be seen in Figure 5.3. The

maximum speed of the robot was about 3m/s, which it achieved after about 1.7s. The angle

of the body during this test can be seen in figure 5.4. The initial negative angle is necessary

for the robot to move backwards because of the MIP design, but causes a 0.2s delay in

achieving the maximum speed.

41

Figure 5.2: An unsuccessful attempt at catching a ball thrown to the right of the
robot

Figure 5.3: Distance traveled by robot after a step input to wheel angle

42

Figure 5.4: Body angle of robot after a step input to wheel angle

Chapter 6

Conclusions and Further Work

The goal of catching a ball with a low-cost robot prototype was accomplished. The

robot was able to catch balls thrown from a distance of up to one meter that would have

landed 0.15 meters or less directly behind the robot. The robot was also able to catch balls

that did not land directly behind it, at a distance of 0.08 meters and less than ten degrees, as

measured from the x-axis of the robot. While the primary goal was accomplished, the results

were not as compelling as desired or predicted. To make the catching function interesting to

a consumer, the robot would need to catch the ball in a larger area than it currently does.

The small catching area is mostly caused by the speed at which the robot drives to a given

location. The current robot design does have a fast maximum speed of 3m
s , but to accelerate

to this speed takes almost two seconds, which severely reduces the catching area of the

robot. The discrepancy between the predicted catching area and the achieved catching area

is most likely caused by inaccuracies in modeling the motors of the platform.

The catching area should be increased in future iterations of the robot. This objective

could be accomplished by changing the parameters of the robot such that it has a faster

acceleration rate. This change would require examining the motor choice and body size, and

43

44

finding the best placement of the center of mass of the robot.

Different driving strategies should also be explored in future iterations. Propor-

tional navigation as shown in [14] is one such strategy. Other strategies that allow new

measurements taken with the cameras to be incorporated into the path driving should also

be investigated.

Because the ball often bounced out of the catching arm, the arm could be modified in

future iterations to decrease the amount the ball bounces. One interesting strategy would be

to experiment with different materials, such thermoplastic polyurethane which is more elastic

than PLA and might absorb the energy of the ball better, reducing the amount of bounce.

Another strategy that was not examined was a more sophisticated catching maneuver, such

as swinging the arm forward after ball impact to better capture the ball inside the arm. This

technique was not explored for this prototype because of the inability to move to the desired

position in time, leaving no time for extra maneuvers.

The catching area could also be increased if the ball could be thrown from farther

away, giving the robot more time to react. The low resolution of the Pixy camera combined

with a small ball only allowed detection up to about 0.8m away from the cameras. To

increase the range the smallest detected color area could be lowered, which would provide a

larger range, but this could lead to false identifications if there are nearby items that have

a similar color to the ball. The size of the ball could also be increased, but this would

necessitate building a larger robot which would most likely decrease the maneuverability of

the robot. The most likely solution to this problem is to change the type of camera used. At

time of designing this prototype, there were no better cameras in the desired price range.

One solution would be to design a camera similar to the Pixy that would be optimized for

this project, including the capability to trigger both camera shutters at the same time. It is

45

also possible that better cameras in the same price range will come out in the future, making

this project more feasible.

Appendix A

Equations and Values

L =−gLbmb cos(θ(t))+
1

2L2
w
((L2

w(Iw2 +mwR2)+ Iw1R2 cos(φ1(t))2+

Iw1R2 sin(φ1(t))2)φ ′1(t)
2−R2(2Iw1 +R2(Iw1(cos(φ1(t))2 + sin(φ1(t))2))φ ′2(t)

2)+

1
2L2

w
(R2(Iw1 cos(φ2(t))2 + Iw1 sin(φ2(t))2)φ ′1(t)

2−

R2(2Iw1 +(L2
w(Iw2 +mwR2)+ Iw1R2 cos(φ2(t))2 + Iw1R2 sin(φ2(t))2)φ ′2(t)

2)+

1
2
(I2θ

′(t)2 +
I3R2 cos(θ(t))2(φ ′1(t)−φ ′2(t))

2

L2
w

+
I1R2 sin(θ(t))2(φ ′1(t)−φ ′2(t))

2

L2
w

+

mb(L2
b sin(θ(t))2

θ
′(t)2 +(Lb cos(θ(t))cos(

R(φ1(t)−φ2(t))
Lw

θ
′(t)−

(LbRsin(θ(t))sin((R(φ1(t)−φ2(t)))/Lw)(φ
′
1(t)−φ

′
2(t)))/Lw+

R
2

cos((R(φ1(t)−φ2(t)))/Lw)(φ
′
1(t)+φ

′
2(t)))

2+

(Lb cos(θ(t))sin((R(φ1(t)−φ2(t)))/Lw)θ
′(t)+

(LbRcos((R(φ1(t)−φ2(t)))/Lw)sin(θ(t))(φ ′1(t)−φ
′
2(t)))/Lw+

R
2

sin((R(φ1(t)−φ2(t)))/Lw)(φ
′
1(t)+φ

′
2(t)))

2)) (A.1)

46

47

C1 =


2.48146208408e+02 0 1.42787261028e+02

0 2.48183441649e+02 1.01498200795e+02

0 0 1

 (A.2)

d1 =



−4.4928089109319530e−01

2.5788853463591183e−01

1.2640764884591432e−03

−2.1476066530935907e−04

−8.5764088284348422e−02


(A.3)

C2 =


2.46231309794e+02 0 1.47631903408e+02

0 2.46335102625e+02 1.03762459983e+02

0 0 1

 (A.4)

d2 =



−4.4942525129197014e−01

2.5203419101027347e−01

1.7529221950900113e−03

−3.4494025486728609e−04

−8.0849238090097086e−02


(A.5)

E =

 E1,1 0

0 I

 (A.6)

48

E1,1 =

 I 0

0 M

 (A.7)

M1,1 = I2 +L2
bmb (A.8)

M1,2 =
1
2

LbmbRcos(θ(t)) (A.9)

M1,3 =
1
2

LbmbRcos(θ(t)) (A.10)

M2,1 =
1
2

LbmbRcos(θ(t)) (A.11)

M2,2 =
4Iw2L2

w +(4I1 +8Iw1 +L2
wmb +2L2

bmb +4L2
wmw)R2−2L2

bmbR2cos(2θ(t))
4L2

w

(A.12)

M2,3 =
R2(−4I1−8Iw1 +L2

wmb−2L2
bmb +2L2

bmbcos(2θ(t)))
4L2

w
(A.13)

M3,1 =
1
2

LbmbRcos(θ(t)) (A.14)

M3,2 =
R2(−4I1−8Iw1 +L2

wmb−2L2
bmb +2L2

bmbcos(2θ(t)))
4L2

w
(A.15)

M3,3 =
4Iw2L2

w +(4I1 +8Iw1 +L2
wmb +2L2

bmb +4L2
wmw)R2−2L2

bmbR2cos(2θ(t))
4L2

w

(A.16)

49

N =



θ ′(t)

φ ′t (t)

φ ′2(t)

N4

N5

N6

R
2 cos(γ(t))(φ ′1(t)+φ ′2(t))

R
2 sin(γ(t))(φ ′1(t)+φ ′2(t))

R
Lw
(φ ′1(t)−φ ′2(t))



(A.17)

N4 =−gLbmb sin(θ(t))−
(I1− I3 +L2

bmb)R2 sin(2θ(t))(φ ′1(t)−φ ′2(2))
2

2L2
w

−

V
Ωk

(u1(t)+u2(t))−
1

Ωk2 (2θ
′(t)−φ

′
1(t)−φ

′
2(t)) (A.18)

N5 =−
1
2

LbmbRsin(θ(t))θ ′(t)2 +
(I1− I3 +L2

bmb)R2 sin(2θ(t))θ ′(t)(φ ′1(t)−φ ′2(t))
L2

w
+

V
Ωk

u1 +
1

Ωk2 (θ
′(t)−φ

′
1(t)) (A.19)

N6 =−
1
2

LbmbRsin(θ(t))θ ′(t)2−
(I1− I3 +L2

bmb)R2 sin(2θ(t))θ ′(t)(φ ′1(t)−φ ′2(t))
L2

w
+

V
Ωk

u2 +
1

Ωk2 (θ
′(t)−φ

′
2(t)) (A.20)

50

A =

 A1,1 0

0 A2,2

 (A.21)

A1,1 =


AT

a

AT
b

AT
c

 (A.22)

Aa =



Aa1

0

0

−2
Ωk2

− ((I1−I3+L2
bmb)R2 sin[2θb(t)](φ ′1(t)−φ ′2(t)))

L2
w

+ 1
Ωk2

((I1−I3+L2
bmb)R2 sin[2θb(t)](φ ′1(t)−φ ′2(t)))

L2
w

+ 1
Ωk2


(A.23)

Aa1 =
1

2L2
w
(2(I1− I3 +L2

bmb)R2 cos(2θb(t))(φ ′1b(t)−φ
′
2b(t))

2 +L2
wLbmb(2gcos(θb(t))+

Rsin()θb(t))φ ′′1b(t)+Rsin(θb(t))φ ′′2b(t))) (A.24)

51

Ab =



Ab1

0

0

((I1−I3+L2
bmb)R2 sin(2θb(t))(φ ′1(t)−φ ′2(t)))

L2
w

−LbmbRsin[θb(t)]θ ′b(t)+
1

Ωk2

2(I1−I3+L2
bmb)R2 cos(θb(t))sin(θb(t))θ ′b(t)

L2
w

− 1
Ωk2

−(2(I1−I3+L2
bmb)R2 cos(θb(t))sin()θb(t))θ ′b(t)

L2
w

)


(A.25)

Ab1 =
1

2L2
w
(R(−L2

wLbmb cos(θb(t))θ ′b(t)
2+

4(I1− I3 +L2
bmb)Rcos(2θb(t))θ ′b(t)(φ

′
1b(t)−φ

′
2b(t))+ sin[θb(t)](−L2

wLbmbθ
′′
b (t)+

4(I1− I3 +L2
bmb)Rcos(θb(t))(φ ′′1b(t)−φ

′′
2b(t))))) (A.26)

Ac =



Ac1

0

0

− ((I1−I3+L2
bmb)R2 sin(2θb(t))(φ ′1(t)−φ ′2(t)))

L2
w

−LbmbRsin[θb(t)]θ ′b(t)+
1

Ωk2

−2(I1−I3+L2
bmb)R2 cos(θb(t))sin(θb(t))θ ′b(t)

L2
w

(
2(I1−I3+L2

bmb)R2 cos(θb(t))sin(θb(t))θ ′b(t)
L2

w
)− 1

Ωk2


(A.27)

52

Ac1 =−
1

2L2
w
(R(−L2

wLbmb cos(θb(t))θ ′b(t)
2+

4(I1− I3 +L2
bmb)Rcos(2θb(t))θ ′b(t)(φ

′
1b(t)−φ

′
2b(t))+ sin(θb(t))(L2

wLbmbθ
′′
b (t)+

4(I1− I3 +L2
bmb)Rcos(θb(t))(φ ′′1b(t)−φ

′′
2b(t))))) (A.28)

A2,2 =


0 R

2 cos(γb(t)) R
2 cos(γb(t)) 0 0 −R

2 sin(γb(t))(φ ′1b(t)+φ ′2b(t))

0 R
2 sin(γb(t)) R

2 sin(γb(t)) 0 0 R
2 cos(γb(t))(φ ′1b(t)+φ ′2b(t))

0 R
Lw

−R
Lw

0 0 0

 (A.29)

B =



0 0

0 0

0 0

− V
Ωk −

V
Ωk

V
Ωk 0

0 V
Ωk

0 0

0 0

0 0



(A.30)

Ginner = 7.5
−6.289+11.91z−1−5.634z−2

1.0−1.4z−1 +0.4z−2 (A.31)

Gouter =−0.02
0.887−0.8807z−1

1.0−0.9649z−1 (A.32)

Kp = 0.135 (A.33)

53

Kd = 0.01 (A.34)

Q = 0 (A.35)

R = 0 (A.36)

QT =



0.5 0 0 0 0 0 0 0 0

0 0.04 0 0 0 0 0 0 0

0 0 0.04 0 0 0 0 0 0

0 0 0 1.5 0 0 0 0 0

0 0 0 0 0.001 0 0 0 0

0 0 0 0 0 0.001 0 0 0

0 0 0 0 0 0 30 0 0

0 0 0 0 0 0 0 30 0

0 0 0 0 0 0 0 0 1



(A.37)

Bibliography

[1] H. H. Rapp, “A ping-pong ball catching and juggling robot: a real-time framework
for vision guided acting of an industrial robot arm,” in Automation, Robotics and
Applications (ICARA), 2011 5th International Conference on. IEEE, 2011, pp.
430–435.

[2] U. Frese, B. Bauml, S. Haidacher, G. Schreiber, I. Schäfer, M. Hahnle, and G. Hirzinger,
“Off-the-shelf vision for a robotic ball catcher,” in Intelligent Robots and Systems, 2001.
Proceedings. 2001 IEEE/RSJ International Conference on, vol. 3. IEEE, 2001, pp.
1623–1629.

[3] G. Bätz, A. Yaqub, H. Wu, K. Kühnlenz, D. Wollherr, and M. Buss, “Dynamic
manipulation: Nonprehensile ball catching,” in Control & Automation (MED), 2010
18th Mediterranean Conference on. IEEE, 2010, pp. 365–370.

[4] V. Lippiello and F. Ruggiero, “3d monocular robotic ball catching with an iterative
trajectory estimation refinement,” in Robotics and Automation (ICRA), 2012 IEEE
International Conference on. IEEE, 2012, pp. 3950–3955.

[5] R. Mori, K. Hashimoto, and F. Miyazaki, “Tracking and catching of 3d flying target
based on gag strategy,” in Robotics and Automation, 2004. Proceedings. ICRA’04.
2004 IEEE International Conference on, vol. 5. IEEE, 2004, pp. 5189–5194.

[6] L. Freda and G. Oriolo, “Vision-based interception of a moving target with a nonholo-
nomic mobile robot,” Robotics and Autonomous Systems, vol. 55, no. 6, pp. 419–432,
2007.

[7] F. Miyazaki and R. Mori, “Realization of ball catching task using a mobile robot,” in
Networking, Sensing and Control, 2004 IEEE International Conference on, vol. 1.
IEEE, 2004, pp. 58–63.

[8] P.-T. Chen, “Simulation and optimization of a two-wheeled, ball-flinging robot,” 2010.

[9] “Overview - CMUcam5 Pixy,” http://cmucam.org/projects/cmucam5, accessed: 2017-
05-23.

54

http://cmucam.org/projects/cmucam5

55

[10] W. Faig, “Calibration of close-range photogrammetric systems: Mathematical formu-
lation,” Photogrammetric engineering and remote sensing, vol. 41, no. 12, 1975.

[11] G. Bradski, Dr. Dobb’s Journal of Software Tools, 2000.

[12] T. Bewley, Numerical Renaissance: Simulation, Optimization, and Control. San
Diego, CA: Renaissance Press, 2012.

[13] J. Strawson, “Robotics cape installer,” https://github.com/StrawsonDesign/Robotics_
Cape_Installer, 2017.

[14] N. F. Palumbo, R. A. Blauwkamp, and J. M. Lloyd, “Basic principles of homing
guidance,” Johns Hopkins APL Technical Digest, vol. 29, no. 1, pp. 25–41, 2010.

https://github.com/StrawsonDesign/Robotics_Cape_Installer
https://github.com/StrawsonDesign/Robotics_Cape_Installer

	Signature Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Abstract of the Thesis
	Introduction
	Robotic Platform
	Introduction
	Hardware
	Modeling

	Ball Trajectory Measurement and Prediction
	Introduction
	Cameras
	Camera Selection
	Calibrating the Cameras

	Ball Position Using Stereo Vision
	Linear Regression to Calculate Ball Position Between Frames
	Predicting the Impact Point of the Ball

	Control and Path Planning
	Introduction
	NMPC Path Calculation
	Comparison of Driving Strategies

	Testing the Prototype
	Introduction
	Outline of the Code
	Results

	Conclusions and Further Work
	Equations and Values
	Bibliography

