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SOME WAVE PROPAGATION PROBLEMS IN

PLASTIC-VISCOPLASTIC MATERTALS

1. Introduction:

Virtually all problems involving wave propagation in metals are
analysed on the basis of one of two hypotheses: (1) the rate-independent"
hypothesis proposed independently by Karman [30], Taylor [28] and
Rakhmatulin [2L], according to which the stress-strain curve of the material
is independent of the rate of deformation or loading, as in the usual theory
of plasticity; and (2) the "rate-dependent" hypothesis due to Sokolovsky [27]
and Malvern [21], according to which the material is viscoplastic.

It was shown later by Simmons, Hauser and Dorn [26] that a uniaxial

constitutive equation of the form
e = flo,e)o + glo,e) (1.1)

includes as special cases, both of the above hypotheses, the first corres-

-1 (E being the elas-

ponding to glo,e) = 0 , and the second to f(o,e) = E
tic modulus) with g(o,e) = 0 being the equation of the static stress-
strain curve. Similar results were obtained independently by Cristescu [9]
and Lubliner [19].

In accordance with nomenclature proposed recently by Cristescu [9], a
material described by a constitutive equation (l.l) will be referred to as
"plastic-viscoplastic' with "plastic' and "viscoplastic" referring to the
respective special types. (It is implied that such materials also possess
an elastic range, so that terms such as "elastic-plastic-viscoplastic" may
be dispensed with.)

Since most experimental studies have shown that real materials do not

behave exactly according to either hypothesis (while the discrepancies have



generally been attributed by the proponents of both approaches to the
effects of lateral inertia, the recent results of Baker and Yew [3] using
torsional impact, are open to no such interpretation), Lubliner [19] sug-
gested that the more general constitutive equation (1.1) be used in the
numerical solution of wave-propagation problems, and that the results
approximating those of either hypothesis may be obtained in extreme cases.
He further showed [20] on the basis of an extremely simple, piece-wise
linear, model of plastic-viscoplastic behavior, that results approaching the
viscoplastic hypothesis will be obtained under one or more of the following
circumstances: (1) weak impact, (2) long bar, (3) short "relaxation" time
(or natural time of the material); that converse conditions will lead to
results approaching the plastic hypothesis; and that intermediate conditions
require the use of the general constitutive equation.

The purpose of the present study is to test further the validity of
Lubliner's suggestions by means of numerical solutions of representative
wave-propagation problems in bars whose mechanical behavior is described by
equation (1.1) (slightly modified to account for loading-unloading behavior)
with the functions f(o,e) and g(o,e) so chosen as to fit the observed
behavior of some actual materials.

The chief benefit of equation (1.1) is that it accounts for the exis-
tence of distinct static and dynamic plastic stress-strain relations, the

former being given by g(0,e) = 0 and the latter by a solution of the

differential equation

de
el f(o,e)
subject to the initial condition 0 = 0 when € = 0 ., Theoretically, then,

a "dynamic'" stress-strain curve corresponds to infinite rates of strain and

stress. Practically, the strain rates attained in impact tests on bars are



of the order of lO2 - 103 sec._l {strain rates of order th sec,,_l have

been obtained only by using the split Hopkinson bar, and the simplifying
assumptions used in analysing the results must be corrected. )¥* Materials
whose stress-strain curves are still rate-sensitive at these rates (e.g.
mild steel, annealed pure aluminum [13, 17]) may therefore be treated on
the basis of viscoplastic behavior, that is, we may set f(o,e) = gt ,
with the knowledge that this may need to be modified if higher strain
rates become practicable. On the other hand, some materials (e.g. age-
hardened aluminum alloys) show almost no rate sensitivity at these strain
rates, at least at room temperature, so that we may set g(o,e) = 0

A direct measurement of the effect of changing the strain rate dur-
ing a compression test at room temperature was performed by Holt et al.
[13] on a series of commercial alloys in both the o and T6 tempers.
From their test results, 1t can be seen that even at the comparatively
small strain-rate change, the assumption of gtrain-rate independence holds
only for age-hardened alloys, as pointed out previously. Further it can
be seen that the stress-strain curves, for higher strain-rates of 102 sec,
to lO3 secn—l, all coincide. This means that for understanding the
behavior of that particular material under high strain-rate deformation,
the existence of dynamic stress-strain curve can be assumed.

The purpose of this study is not a comparison of results obtained by
applying the present theory with experimental data, but rather the deriva-
tion of a quantitative criterion for determining when strain-rate effects

become significant, since it has been shown qualitatively [19] that under

given circumstances either the "viscoplastic" theory due to Sokolovsky [27]

and Malvern [21] or the older, "rate-independent'" theory of Karman [30],

Taylor [28] and Rakhmatulin [2L], may provide a valid approximation.

%
J. Klepaczko, private communication.
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2. Examination and Assumptions of Constitutive Equation:

The constitutive equation (1.1) must now be examined in the light of
its implications. This will entail a modification of its form which will
reasonably well represent the physical situation observed experimentally by
various authors in their investigations [11,13,15,17], before one can pro-
ceed to a formulation of the wave propagation problem. (In the ensuing dis-
cussion, positive changes in stress will represent loading, whether compressive
or tensile; the direction of the velocity must be defined accordingly.) (i)

The equation
glo,e) = 0 (2.1)

describes the static stress-strain relation, which may be written in an

explicit form, for example as a stress-strain equation
g = h(e) (2.2)
or as a strain-hardening equation
o=0 +¢ (e ), e >0 (2.3)

where € = € - %— is the plastic deformation (E = Young's modulus), OS

is the static elastic limit and ¢S(€p) is the static strain-hardening

function, having the properties

0) =¢C
6, (0) |
_— (2.ka)
£ ) >0 > 0
@S(cp) - 3 €p
also if the metal has no sharp yield point;
¥
$_(0) = (2.Lp)



It should be remarked that a static strain-hardening law exists only at lower
temperatures, at which there is no steady-state creep. (ii) Under a constant

load, i.e., 0 =0 , we have
e = glo,e) (2.5)

describing in general, transient creep without thermal recovery, though the
creep becomes steady if 0g/d€ vanishes. Clearly, transient creep cannot
take place when the stress is below the static yield level, hence the
function g(o,e) must have the same sign as {0 - h(e)} and must be

replaced in (1.1) by < g(o,e) > , where

(iii) When the stress and strain rates are very high (theoretically infinite),

we have dynamic loading, governed by the differential equation

de

= - f(o,e) (2.6)

The integral curves of (2.6) are dynamic loading curves corresponding to
different initial states characterized by one parameter, for example the
initial plastic deformation 8p . The general solution of (2.6) may thus

be written in the form

If such curves are found experimentally, as in [32], then the value of
f(o,e) is simply the inverse slope of the curve passing through (0,¢)
(iv) The discussion in the preceding subsection applies to loading, i.e.,
& >0 . In an elastic-plastic material unloading takes place elastically.

Consequently, the complete constitutive equation, replacing (1.1) is



11 .
E ) o< 0

Further, the static stress-strain equation o h(e) is interpreted
as a succession of equilibrium states such that flow occurs only when the

flow condition
o > h(e)

is satisfied; otherwise the elastic law applies.

The use of this flow condition implies that if the strain-rate during
the test is finally reduced to zero so that a state of equilibrium under
load is reached, the equilibrium point will lie on the static stress-strain
curve.¥ Hence when the strain-rate is very very low (theoretically zero),
we have static loading.

Based on the assumption that the value of strain-rate equal to

-3 -1

10 sec. is sufficiently low, we can assume the 0 - € curve for
; = 10_3 sec._l to be the static loading curve in our further discussions.
Also, since the maximum strain-rates attained in impact tests on bars
are of the order of lO2 - 103 sec._l, we can assume that this value of
strain-rate is theoretically infinite for the practical purposes of plas-
tic wave-propagation studies, and hence we can consider the 0 - € curve
corresponding to such a value of strain-rate, to be the "dynamic loading
curve'. Following the discussion of subsection 2-(iii), i.e., the equa-
tion (2.7) with zero initial plastic deformation, the function o = hd(e)
is simply the experimentally obtained 0 - € curve for maximum strain-rate;
to be referred to hereafter as the dynamic loading curve.

Since the Ramberg-Osgood equation for describing stress-strain curves

[17] has been found to apply for a number of structural materials, the same

%
This neglects strain-rate history.



equation will be used here also, to describe the dynamic loading curve, It

has the form

€ = conventional total strain (in/in)
0 = applied stress (ksi)

E = elastic modulus (ksi)

K = material parameter

n = material parameter (shape factor)

The modulus E 1s taken directly from stress-strain curves, whereas ¥ and
n are calculated by the method of offsets. The geometric slope of a loga-—
rithmically plotted plastic strain versus stress curve gives n . X is
calculated by rearrangement of the plastic deformation term (K On) of

equation (2.9):
K = ep/cn (2.10)

where Ep = plastic deformation (in/in).
Hence equation (2.9) represents the (assumed) dynamic loading curve.

Differentiation of equation (2.9) yields

de 1 n-1
_— — + .
o [E Kn o ] (2.11)
Hence from eguations (2.6) and (2.11) we have

+ Kn "7t (2.12)

b

flo,e) =

On the other hand, from the basic concepts of irreversible thermo-
dynamics, we know that the total strain-rate can be separated into reversible

and irreversible parts. The irreversible strain rate is a function of stress,



strain and temperature, i.e.,

2? = w<g9§?,T) (2.13)

where the superscript 'i' refers to the irreversible part; T is the

temperature. In the case of uniaxial stress,

el = wio,elm) (2.14)

As for Y(o,e",T) , though many forms have been assumed, in particular,

€ = A (ei) exp(Ba) (2.15a)

is employed most frequently in the literature. Consequently, to account for

the high flow stress, the form

el = 4 (eY)  sinn(Bo) (2.15b)

may be assumed as an appropriate one. It is assumed that A2 , o and B
depend on temperature also.

Further examination of equation (2.15b) reveals that as a consequence of
the results of subsection 2-(ii), an admissible form of g{o,e) for the high

flow stress and room temperature, is

2(c,e) = a(e + )72 sinh{g—zghigl} (2.16)

where A , C and B are constants to be determined empirically from test
data.

It is to be noted that, in order to determine the constants A , C and
B in equation (2.16), we need data for at least one intermediate strain rate,

besides the (assumed) static and dynamic loading curves.



3. The Impact Problem:

The distinguishing feature of impulsive loading arises from the fact
that the action of a suddenly applied load is not simultaneously transmitted
to all parts of the body, parts of the body remote from the point of appli-
cation of the load remain undisturbed until the localized stresses in
reaction to the load are propagated to those parts; the finite velocity of
propagation of such '"waves" depends upon inertial effects and upon the
mechanical behavior of the material comprising the body. In this section,
the governing differential equations appropriate for stress-wave propagation
based on a minimal assumption sufficient for the mathematical establishment
of wave propagation, will be developed.

The eguations governing the propagation of stress waves can be developed
by means of either the Eulerian or the Lagrangian co-ordinate system. But
Lagrangian co-ordinates exhibit one significant advantage over Eulerian
co-ordinates, in that they provide a very simple expression for the law of
conservation of mass. In order to take the advantage of this simplicity,
Lagrangian co-ordinates will be adopted throughout the following discussion.

As a result of the substantial difficulties that are encountered, no
satisfactory description of plastic deformation in three dimensions has yet
been formulated. For that reason, it will be necessary to limit the present
discussion to the simple linear case of waves moving along the axis of a
uniform rod. Also it must be remembered that the deformation of rods under
a longitudinal impact is three-dimensional in nature. Obviously much addi-
tional theoretical development will be necessary before the theory can be
applied with confidence to practical problems of impact forming of metals
where three-dimensional analyses will be required and where unruly boundary

conditions are encountered.



It is well known, for the purely elastic case, that the results obtained
by the approximation of uniaxial stress are fairly accurate only when the
rate of change of stress and strain are small. One would expect that the
same argument would hold to some degree when plastic deformation is allowed.
However, 1in most experiments concerned with longitudinal elastic-plastic
pulse propagation along bars, the end condition is either a normal velocity
or a normal stress whose time dependence is that of a step function. This
indicates that the effect of lateral inertia could be considerable. The one-
dimensional approximate equations are modified in references [10] and [15]
to include the effect of lateral inertia. These equations are then modified
in references [10] to allow for plastic deformation and hysteresis in
addition to the lateral inertia effect. It was concluded [10] that some
observations set forth as proof of the existence of a strain-rate effect
might equally be explained, at least qualitatively, on the basis of lat-
eral inertia effects.

A torsional impact, wherein no radial motion of the specimen is
produced, eliminates in the most direct manner the dimensional discrepancy
between the mathematical model and experimental investigation which exists
in longitudinal impact studies.

To formulate the impact problem for an initially uniform bar, whose
behavior is given by the constitutive equation (1.1), we must adduce the
equations of motion and of continuity, and specify initial and boundary
conditions. ©Since the Lagrangian co-ordinate system is more convenient,
the "engineering' definition of stress and strain will be used; further-
more, these will be counted as positive in compression. If x denotes the
initial distance of a section of the bar from the left end and v its

velocity, we have



d
iR (5.2)
9E _ _ v

and E (5.2)

where o , € , p , t denote stress, strain, initial density, and time
respectively.

It can be seen that the system of equations (1.1), (3.1) and (3.2) are
hyperbolic and therefore are soluble by graphical integration along charac-—
teristics in the (x,t) plane, even when closed analytical solutions are not
obtainable. This method, as it applies to plastic wave-propagation, has
been described in detail in numerous publications [T7,14,18,26]. Consequent-
ly, the characteristics and characteristic relations are

30

+ c ; < 0
ax_ )0 (5.3)
dt 3G :
+ C(O,E) §> 0
and
dx = 0
1 do
E__ET'__(a)
dv = g(o,e)dax * ©
T __(v)
\c p
¢l (3.4)
T do --(a)
de = g(o,e)dt +
|f do -—(b)
where
1
c(0,e) pf(o,€)
>
s (3.5)
E
C = —
¢]



The solution of the problem of wave-propagation is complete when the
network of characteristics is determined in the (x,t) plane; and when the
field variables 0 , € and v have been determined throughout the plane.

Because of the strain-rate effect, a loading characteristic cannot be
a locus of constant state, hence the characteristics in the loading region
are curved. In a numerical computation the curves must, of course, be
replaced by broken lines.

If unloading takes place, an unloading wave similar to that studied by
Rakhmatulin [24] must be propagated. This is an acceleration wave, i.e., on
it the field variables o0 , € , v are continuous; but their first deriva-

tives with respect to x and t are not; in particular

g > 0 ahead of the wave

9t < 0 behind the wave

A point (x,t) through which the locus of the unloading wave passes
lies on both a loading and an unloading characteristic of the same sign;
the state at (x,t) is determined along the loading characteristics, and
an additional equation connects it with a neighboring point on the unload-
ing characteristic, where the state is likewise determined. In general a
trial-and-error procedure is necessary to construct the unloading curve;
and the aforementioned additional equation serves to determine whether or
not an assumed point lies on the curve; this is as long as the slope satis-

fies

clo,e) < || < e (3.6)

where o0 = o(x,t) ; € = e(x,t) . Otherwise the unloading curve is not the

locus of the acceleration wave, but simply of %%—= 0



In constant-velocity impact, if VO , the magnitude of the impact velo-
city, is greater than Os/pco where US is the static yield stress, then
the initial development of the solution is that of the KTR¥ theory:
characteristics fan out from the origin with initial slopes c(o,c)

corresponding to states (o , € , v) , where

g = hd(e) , the dynamic stressg-strain relation (3.7)
£

v = ,[' clo,e) ae (3.8)
0

The stress along the characteristics relaxes and they become curved.
Furthermore, stress relaxation begins immediately at the impact end, so that
the unloading-wave locus goes out from the origin, coinciding initially with

the steepest loading characteristic.

%
Strain-rate independent theory due to Karman [30], Taylor [28], and

Raktmatulin [24].



4. Wave-Propagation in a Finite Bar:

In this section, we shall consider the propagation of plastic waves
in a finite bar of length £ , with a fixed end at x = £ . We shall
assume that the magnitude, VO » of a sudden, constant velocity applied at
t =03 x =0 1is large enough to send plastic waves down the bar. The

first quadrant of the (x,t) plane may be divided into the following regions.

Region I: cot <x < 2, (See Fig. 1)
Here 0o=¢e¢=v =20

Region IT: F(t) < x < cot < £ , where x = F(t) is the locus of
unloading wave; here ¢ > Os and %%—> 0 , so that the
characteristic slopes are # c(o,e) . Finally as a result
of stress relaxation at the impact end, there is an
unloading region.

Region III: 0 < x < F(t) : here §9_< 0 , so the characteristic slopes

at

are * c
0

It should be noted that the stress relaxation at the impact end begins

immediately; so that F(0) = 0 ; furthermore it has been shown [16] that
clo,e) < |F (£)| <ec (4.1)

The end of the bar at x = £ is presumed to be fixed in such a way that
the particle velocity, v , at that end must always be zero. Under these con-
ditions, the particle velocities associated with a wave drop suddenly to zero
at x = & when the oncoming wave strikes this point. This shock jump in v
results in shocks in stress and strain that induce new waves to travel back
up the bar.

If the magnitude VO of the impact velocity is high enough, i.e., if



[
\N

VO > Od/pco where O is the dynamic elastic limit, then the line x =c¢ ¢t

d o o
is the locus of the stress discontinuity, which is initially Od s, but which
relaxes (as in the SM¥¥* theory) according to

a
d
2 at
XxX=c t= L.2
o pcof g(1,T/E) ( )
o]

Furthermore, when this wave reflects from the fixed end of a bar, the stress
initially jumps. Because each plastic wave travels at a speed corresponding
to the strain, the would-be shock is disseminated at different speeds back
into the body. Therefore the shock conditions cannot be applied at x = £

Instead, the conditions along the characteristics will be used.

% %
Region IV: F(t) < x < F (t) where x =F (t) is the locus of the

*
unloading wave with F (gLJ = 2 and
o

*

clo,e) < |[F (£)] < e, (4.3)

o0

Here o0 < Os 5 SE-> 0 ; so that characteristic slopes are

given by c(o,e) . Finally as a result of stress relaxa-

tion at the point (Q,E&ﬁ
o)

, there is an unloading region.

*

Region V: F (%) <x < % : here %%—< 0 ; the characteristic slopes

are again £ co . The stress relaxation begins immediate-

%
ly at the fixed end of the bar so that F (l/co) =9

**
Viscoplastic theory of Sokolovsky [27] and Malvern [21].
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5, Effect of Absorption Distance (Fig. 2)

On the basis of the preceding observations, it can be said that the
distance Xa , at which the unloading wave x = F(t) is absorbed, is a
critical guantity for describing the significance of the strain-rate on
plastic-wave-propagation; if this distance is short, then the strain-rate
effect is insignificant and vice-versa. For a bar of finite length & ,

a particularly telling comparison would be that of X with the distance
X5 s at which the unloading wave x = F(t) intersects the reflected plastic
wave. If X, < Xi the unloading wave x = F(t) 1is absorbed before inter-
section, so that the further development of the wave pattern is in accord-
ance with the '"rate-independent theory", while if X, > X, intersection
takes place so that the further development is in accordance with the
"viscoplastic theory'". The limiting case is therefore X_ = X5 in which
case the development is in accordance with the '"plastic-viscoplastic
theory'.

On the basis of the observations of Lubliner [20] for the case of an
extremely simple model, and the preceding observations, it may be said that
the case of X, > Xe s i.e., the unloading wave x = F(t) proceeds further

without getting absorbed, may come about as a result of one or more of the

following circumstances:

(i) weak impact
(ii) 1long bar

(iii) short relaxation time

Then the strain-rate effect is highly significant, and, presumably, the vis-

coplastic theory gives a good approximation.

The converse conditions will, of course, apply if X, < X: s i.e., the



1T

unloading wave x = F(t) 1is absorbed before intersection. Then the strain-
rate effect is insignificant and, presumably, the theory of Karman [30],
Taylor [28], and Rakhmatulin [24] can give a good approximation. If, lastly,
X, is nearly equal to X, then, in order to obtain results which will
reasonably well represent the physical situation, the plastic-viscoplastic

theory of Lubliner [19] must be resorted to.
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6. Computational Procedure

Since the solution in closed analytic form are seldom known for quasi-
linear systems, some other method of solution must be found. To resolve this
problem, we now turn to finite difference methods which may be used in many
different ways to obtain numerical solutions to such problems. Existence,
uniqueness and stability of the solution of the initial value problem for

'n' quasi-linear first-order partial differential

the hyperbolic system of
equations have been established by various authors [T7,8].

It is the direct replacement of the derivative along the characteris-
tics that forms the basis of the finite difference method. Thus we are now
led to the following procedure for computing the solution of the initial
value problem for equation (3.4).

Let us examine the representative points in the (x,t) net illustrated
in Figure 3.. Initially, only the conditions along uo are known. This
characteristic has a slope of c, The solution for the characteristics
and the field variables can then be made by approximation from time t to
time t + At . For example, we shall sketch the procedure for finding the
values of 0 , € and v and therefore the slopes of the o and R char-
acteristics along the line CD , once the variables on the line AB are
known. We can use these slopes to draw straight-line approximations to the
characteristics throughout the region ABCD. Through each of the points
P Pn on CD , the characteristics are drawn by means of the
slopes along AB . For determining the field wvariables along CD ; from the

known values along AB , the following relations, derived from equation

(3.4b) will be used:
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ep = g - fQ(OT - OQ) = gQ(tT - tQ)
1
(vT - vs) + EE;-(OT - OS) = - gscs(tT - ts) (6.1)
l —
- (VT - VR) + E)C—R (OT - OR) = - gRCR(tT - tR)

The computed values of 0 , € and v along AB , together with equations

(6.1) enable us to find the values of ¢ , € and v at P , P, , ..., P

o 1 n

By linear interpolation, the values of 0 , € and v along CD can then
be found. BSuccessive applications of the scheme will enable the solution to

be advanced further in time.
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7. General Solution

We shall now be concerned with the construction of general solution to

the problem for the following initial and boundary conditions.

Problem A: Semi-infinite bar:

Let us consider now the case where the velocity applied to the end of
the bar is first monotone increasing from zero and then decreasing (Fig. [L]).

The boundary and initial conditions are:

0<+t <T v o= 4y £(T - ¢)
@]
x =0,
T < t v =0 (7.1)
X > @ v=0=¢€=20
t=03;x>0:0=¢€=v-=0 (7.2)

The image of the solution in the (x,t) plane will be assumed to be such
as is shown in Fig. [U4].

The Region I is a region of : ¢ =€ =v =0 . The Region IT is a region
of elastic strain with Riemann waves propagating in it. If the velocity act-
ing on the end of the bar reaches the yield value vy = (Us/pco) , Where OS
is the yield stress, a plastic wave starts propagating. The solution in the

entire Region III proceeds on the basis of the relations (6.1) along the

characteristics. If the stress developed on the end of the bar reaches a
maximum value, i.e., when %%— at x = 0 , changes sign, an unloading wave

starts propagating. The determination of this unloading wave x = F(t) will
be performed simultaneously with the solution in the entire Region IV, on the
basis of the relations (3.4) on the linear characteristics and the boundary
condition first of (7.1). For the unloading wave x = F(t) , the following

condition should be satisfied.
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ax
< = <
c(o,e) < |dt < e
Thus the problem is sclved in a complete manner,.

Problem B: TIinite bar:

We shall nOW be concerned with the construction of general solution of
the problem of wave reflection by a rigid wall, for a constant velocity

impact case. The boundary and initial conditions are:

x=0;1t>0:v = v (constant)

(7.3)

t=0;0<x<g:v=0=¢€¢=0 (7.4)

We shall consider the solution in terms of the characteristic net in
the (x,t) plane and for convenience we replace the time co-ordinate by
T =c t/% and x by & = x/% , where £ is the length of the bar. The
linear characteristics and the characteristic relations in the unloaded

region are then

otd
—_ =+
at 1
idv+—l—do+gc Q—deo (7.5)
pc oc
o} o
1 9
de - T do - g e dt = O
and in the loading region
ag _ , !
at = = €
tav + iAo + g e iar =0 (7.6)
pc <,
3
de - £ do - g E—'dT =0
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where c¢' = c¢/c
o
The boundary and initial conditions are (Fig. 5)

E=0;1T>0:v = Vo (constant)
(7.7)

T=0;0<EE<1,0:v=0=¢=0 (7.8)
Let us describe now the method of constructing solution in each region.

Region I: & > T 3 0 = € =v =0 and along the leading wave front
£ = 1 , the field variables ¢ , € and v will be calculated from the
equation (L4.2).

The solution in the Region IT will be obtained numerically be means of
the method of nets of characteristics as explained in Section 6, knowing the
relations (7.6) on the characteristics. The determination of the unloading
wave & = T(t) will be performed simultaneously with the solution of the
entire Region IITI. The solution in the Region IIT is obtained numerically by
the method of nets with the relations (7.5) on the linear characteristics and
the boundary condition first of (7.7). For the unloading wave §& = I'(1) ;

the following condition should be satisfied.

1

c (o,e) < |%%¢ <1 ;T1(0)=0 (1.9)

The solution in the Region IV with the simultaneous determination of the
*

unloading wave & = T' (1) , is similar to that in the Region III with the

boundary condition for £ =1 : v(l1,7) =0

For the unloading wave & = T (1) , the following conditions should be

satisfied.

c'(g,e) < |+E| <1, r(1) =1 (7.10)
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In the Regions IIT and IV, i1f at any section the solution of the equa-
tions for unloaded region, determines a stress equal to the previous maximum
stress to which the section has been subjected, plastic flow can occur again
there; and a new region in which visco-plastic wave equations must be solved
is initiated. The determination of the boundaries of such a region is as

discussed by Lee [16] and Clifton and Bodner [6].
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8. DNumerical FExamples

Let us consider some numerical examples illustrating the theoretical
solutions of the previous section. The manner of determining the functions
f(o,e) and g(o,e) , describing the mechanical behaviour of the material,
has been given in Section 2. Here in this section, the actual deter-
mination of the functions f(o,e) and gl(o,e) is done on the basis of the
experimental results obtained by McLellan [17] and Holt et al [13].

In the numerical examples below, we shall confine ourselves to the case

of strain rates of ZLO—3 sec -1 < g < lO3 sec_:L

The following data are assumed:

Properties Heat treated Heat treated

Ioperaes 4130 steel Ti - 6A1-4V
Young's modulus (ksi) 29 x 103 17.5 x 103
Density (lbs/inu/secg) 6.75 x ZLO_T 3.0 x ZLO_T
vield stress (ksi) 1hs 175
Yield strain (in/in) .005 .01

For the constants K , n , A , B and C which appear in equations

(2.12) and (2.16), the values obtained from the experimental curves are:

o tant Heat treated Heat treated
=OnSbal: 1130 steel Ti - 6A1-Lv
K 2,405 x 10'129 2.480 x 10'55
n s5h,6 22
A 1.453 x 10‘3 3.226 x 1077
B 2,025 0.867
¢ -0.,06hs 0.01

Complete computations for each particular region of the (x,t) plane

will not be given. We shall show by means of diagrams, the variability of
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results at the most interesting instants only.

a) Semi-infinite bar: (parabolic velocity impact)

Figures 6 and 8 show the various regions of the (x,t) plane. There
are, however, two features of the unloading-wave locus which should be
especially noted. These are:

(1) Although the velocity at the impact end continues to increase,
the stress has started decreasing at the impact end, even
before the maximum velocity has been reached, so that the
unloading-wave locus begins as soon as the stress at the
impact end started decreasing.

(2) In the case of the titanium alloy, the time lag for the two
instants at which the velocity and the stress at the impact end
reach their maximum values respectively is very small when
compared to the rise time of the velocity, whereas in the case
of steel, the time lag for the two instants is gquite consider-
able when compared to the rise time of the velocity. Attention
is called to this point because one of the distinguishing fea-
tures pointed out between the '"rate dependent"” theory and '"rate-
independent' theory has been the relaxation time effect.

Also, it has been observed that the maximum value of the stress at the
impact end, as predicted by the plastic-viscoplastic theory is less than
that in the case of rate independent theory. However, for both steel and
titanium alloy, the difference in the maximum values predicted by both the
theories is less than about 5% and 2% respectively.

b) Finite bar: (constant velocity impact)
Figs. 10 and 11 show various regions of the (x,t) plane for different

values of & , the length of the bar and VO , the constant velocity impact.
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There are, however, two distinct limiting features of the solution which
should be especially noted. These are:

In the limiting case, there is every possibility of

(1) the area of the unloading Region IITI (0 < & < T'(1))

becoming the minimum possible and
(2) +the area of the loading Region II (T(1) < £ < T < 1) and
T(t) < £ < F*(T)) becoming the minimum possible.

When the above-mentioned two limiting features are examined as special
cases of the "plastic-viscoplastic theory" proposed in this study, it
becomes apparent that there are conditions under which one or other may be
valid.

For example, the first limiting case may come about as a result of the
initial slope of the unloading locus being the maximum, which may well be
the case if the velocity of impact is much higher than that corresponding
to the dynamic yield value. Also, it can be observed from Fig. 10 that the
unloading Region IITI is becoming smaller as the absorption distance Ea is
getting less, which may well be the case if the bar is short.

On the other hand, the possibility of area of the loading Region IT
becoming the minimum may come about as a result of weaker impact, as has

been shown in Fig. 11 for heat treated steel.
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9., Conclusions

The procedure proposed and demonstrated for determining the specific
nature of an adequate mechanical behavior equation is tedious and difficult.
If carried through, it will eventually furnish a quantitative criterion for
the significance of the strain rate effect.

It was found that the simple rate independent theory of plastic wave
propagation may provide a valid approximation under one or more of the

following circumstances:

(i) short bar
(ii) strong impact

(iii) long relaxation time

On the other hand, for the converse considerations, the simpler strain rate
dependent theory, i.e., viscoplastic theory may well represent the physical
situation.

For convenience in making comparisons, the variation of stress with
distance at various instants are plotted in Figures 12, 13, 15 and 16. It
might be noted that the rate dependent constitutive relation considered in
this study leads to a constant or essentially constant stress region begin-
ning at the impact end of the bar and progressing farther along the bar
as time increases. Thus, the stress plateau cannot be regarded as a dis-
tinguishing feature of the rate-independent propagation theory when the
velocity applied to the bar is a step function in wvelocity.

The most important feature of the results as seen in Figures 12 and
15, is that they show a smooth transition in behavior from that predicted
by rate-independent plastic theory near the wave front to that predicted

by viscoplastic theory at points sufficiently far behind the wave front.
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Depending upon the parameters of the problem, the behavior may be almost
entirely quasi-plastic or almost entirely quasi-viscoplastic; this is

consistent with the theory presented here,

It would be of interest to see whether or not experiments using the

various techniques would show similar effects.
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