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terior mean of ĝ11(t, ω) (left), posterior mean of ĝ22(t, ω) (middle),
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Abstract

Efficient Analysis of Multiple and Multivariate Non-stationary Time Series in

the Partial Autocorrelation Domain

by

Wenjie Zhao

Recent advances in information technology have made high-dimensional non-

stationary signals increasingly common in many areas. We develop a suite of

models and computationally fast methods for analysis and forecasting of multi-

ple and multivariate non-stationary time series. These approaches are based on

dynamic model representations in the partial autocorrelation domain.

Chapter 1 introduces some background and discusses the limitations of cur-

rent models and methods for analyzing high-dimensional non-stationary time se-

ries. In order to obtain fast and accurate modeling and inference such high-

dimensional dynamic settings, a system of Bayesian lattice filtering and smoothing

approaches in the PARCOR domain are proposed in this thesis. This PARCOR

framework leads to lower dimensional representations, and consequently compu-

tationally faster inference, than those required by models in the time and/or

frequency domains, such as state-space representations of time-varying autore-

gressive and vector autoregressive models, which are commonly used in practice.

Chapter 2 proposes an efficient hierarchical dynamic PARCOR model to de-

scribe the time-varying behavior of multiple time series, and develops procedures

to infer the latent structure underlying multiple non-stationary time series. The

performance of the proposed models and methods is tested in the context of ana-

lyzing multiple brain signals recorded simultaneously during specific experimental

settings or clinical studies. The proposed approach improves the efficiency in ob-

xv



taining posterior summaries of the time-frequency characteristics of the multiple

time series, as well as those summarizing their common underlying structure.

Chapter 3 proposes a set of multivariate dynamic linear models (MDLMs) on

the forward and backward predictions errors in the PARCOR domain along with

computationally efficient methods for filtering and smoothing methods within this

modeling class. The proposed framework allows us to obtain posterior estimates

of the time-varying spectral densities of individual time series components, as

well as posterior measurements of the time-frequency relationships across multi-

ple components such as time-varying coherence and partial coherence. Compu-

tationally expensive schemes for posterior inference on the multivariate dynamic

PARCOR model are avoided using approximate inference. The performance of

the TV-VPARCOR methods is illustrated in simulation studies and in the anal-

ysis of multivariate non-stationary temporal data arising in neuroscience and in

environmental applications. Model performance is evaluated using goodness-of-fit

measurements in the time-frequency domain and also by assessing the quality of

short-term forecasting.

Chapter 4 extends the models and methods of Chapter 3 by considering

shrinkage priors on the TV-VPARCOR parameters in order to reduce overfitting.

Such priors allow shrinkage of time-varying parameters to static ones, as well

as shrinkage to zero for those parameters that are not statistically significant.

A Markov chain Monte Carlo (MCMC) algorithm for full posterior inference is

proposed. In addition, an importance sampling variational Bayes (ISVB) approach

is also developed and implemented for fast and reliable approximate inference,

making the dynamic TV-VPARCOR modeling and inference framework feasible

for analysis of large-dimensional time series. The performance of the proposed

models and methods is examined in extensive simulation studies and also in a

xvi



case study involving the analysis of wind component data from several locations

in Northern California.

Chapter 5 summarizes this thesis and provides some ideas for possible future

work.
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Chapter 1

Introduction and Background

Recent advances in information technology have made high-dimensional non-

stationary signals increasingly common in many areas. For example, multi-channel

electroencephalography (EEG) recordings from a number of locations over a sub-

ject’s scalp result in high-dimensional time series (see e.g., Prado et al., 2001,

Peterson and Ferris, 2019). These recordings are also non-stationary due to the

significant changes observed over time in their frequency and amplitude structure.

Another area where multi-dimensional non-stationary time series arise is in en-

vironmental sciences. For example, in this thesis we show the analysis of wind

component data recorded in different locations over a period of time.

In some applied settings we may be interested in analyzing multiple time se-

ries to better understand their underlying structure. For example, simultaneous

brain signals such as EEG, can be recorded in subjects undergoing a treatment

during repeated trials under the same experimental conditions. A typical goal

in such settings is not only to infer the time-frequency features of each individ-

ual time series, but also the underlying structure common to the multiple time

series. Hierarchical time-domain models such as autoregressions (ARs) and vec-

tor autoregressions (VARs) –as well as versions of these models that allow for
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changes in the parameters over time to capture non-stationary behavior, such as

time-varying ARs (TVARs) and time-varying VARs (TV-VARs)– have been used

to infer latent structure from multiple brain signals (e.g., Gorrostieta et al., 2013,

Hu et al., 2020, Nakajima and West, 2013, 2017, Prado and West, 1997, Prado

et al., 2001). Some of these approaches consider a hierarchical structure in the AR

or VAR coefficients, while others consider latent factor models within a Bayesian

framework coupled with sophisticated and flexible prior structures. Other mod-

eling frameworks such as those based on factor models, focus on discovering the

latent structure underlying multiple time series (e.g., Nakajima and West, 2017,

Prado et al., 2001). Alternative frequency domain and time-frequency domain

hierarchical approaches are also available to analyze multiple time series. For

example, Cadonna et al. (2019) proposed using a structured mixture of Normal

distributions under the Whittle likelihood approximation for analysis of multiple

time series. Krafty et al. (2017) proposed a Bayesian tensor-product spline model

of the Cholesky components of outcome-dependent power spectra of multiple time

series. The sophisticated modeling approaches mentioned above are powerful and

have been successfully used in practice to model multiple time series. However,

they are usually very computationally expensive, often requiring simulation-based

methods, e.g., Markov chain Monte Carlo (MCMC), for inference, which limits

their use in practical settings that involve simultaneous modeling of a large num-

ber of time series.

In other applied settings, we want to infer the temporal and mutual de-

pendence structure among different time series components. For example, under-

standing the interplay across temporal components derived from multi-channel/multi-

location brain signals and brain imaging data is a key feature in brain connectivity

studies (e.g., Astolfi et al., 2008, Cheung et al., 2010, Chiang et al., 2017, Milde
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et al., 2009, Omidvarnia et al., 2014, Schmidt et al., 2016, Ting et al., 2017, Yu

et al., 2016, among others). Multivariate time series analysis is also important for

filtering, smoothing and prediction in environmental studies and finance where

many variables are simultaneously measured over time (e.g., Tsay, 2013, Zhang,

2017). Several time-domain, frequency-domain and time-frequency approaches

are available for modeling and inferring spectral characteristics of univariate non-

stationary time series. However, a much more limited number of approaches are

available for computationally efficient and scientifically interpretable analysis of

multivariate non-stationary time series. Furthermore, currently available statisti-

cal tools have important practical limitations. For instance, VARs are often used

in the analysis of multi-channel EEG data and estimation of cortical connectivity,

(see e.g., Cheung et al., 2010, Chiang et al., 2017), however, these models cannot

capture the time-varying characteristics of these data. Other approaches based

on time-varying VARs are able to adapt to the non-stationary features of multi-

channel EEG data, but in order to allow scalability only lead to point estimates of

the spectral characteristics of the data and are highly dependent on a set of tuning

parameters that are hard to elicit in practice. Alternative modeling frameworks

that allow for full posterior inference while incorporating flexible and realistic dy-

namic structures (e.g., Nakajima and West, 2017, Prado et al., 2001, West et al.,

1999), are either not available for multivariate time series, or they are highly com-

putationally intensive, requiring MCMC sampling for posterior inference. In the

time-frequency domain, Li and Krafty (2018) and Bruce et al. (2018) apply adap-

tive Bayesian analysis with splines for estimating the time-varying spectrum of a

multivariate time series. However, these methods are computationally unfeasible

to jointly analyze more than a relative small number of multivariate time series

components. Furthermore, they cannot be used for forecasting purposes.
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Yang et al. (2016) proposed a computationally efficient and fully Bayesian

time-varying autoregressive (TVAR) framework for univariate time series analy-

sis by using a dynamic linear model representation in the partial autocorrelation

(PARCOR) domain that assumes random walk evolutions on PARCOR coeffi-

cients. Compared to the standard dynamic linear model (DLM) representation of

a TVAR model in the time-domain, the lattice structure on the PARCOR domain

is more flexible and computationally appealing.

This thesis extends the approach of Yang et al. (2016) in different directions.

First, we consider hierarchical extensions that allow us to jointly model multi-

ple, rather than multivariate, non-stationary time series. These developments are

presented and illustrated in Chapter 2. Then, the approach is extended to the

multivariate case, allowing us to jointly analyze several non-stationary time se-

ries jointly, and consequently explore their individual spectral characteristics over

time and also the time-frequency relationship across several components as shown

in Chapter 3. Finally, we consider model extensions that deal with challenges re-

lated to overfitting by considering shrinkage priors on the time-varying PARCOR

coefficients. This is presented in Chapter 4.

Since all the models proposed in this thesis are developed in the PARCOR

domain, we introduce some notation and concepts and present a summary of the

univariate dynamic PARCOR model of Yang et al. (2016).
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1.1 Time-Varying Autoregressions, Their State-

Space and Time-Frequency Representations

A time varying autoregressive (TVAR) model of order P for a non-stationary

univariate time series xt, t = 1, . . . , T, can be expressed as

xt =
P∑

m=1
a

(P )
m,txt−m + ϵt, (1.1)

where a
(P )
m,t denotes the TVAR coefficient associated with time lag m, and ϵt is the

innovation at time t, respectively. Typically, the innovations are assumed to be

uncorrelated mean-zero Gaussian random variables with variance σ2
t . Therefore,

the TVAR model corresponds to a non-stationary AR model with AR coefficients

and variances evolving through time.

Assuming that σ2
t is known, an additional equation is needed to model the

evolution of the AR coefficients over time. Often, the vector of coefficients a(P )
t =

(a(P )
1,t , . . . , a

(P )
P,t )′ is assumed to follow a random walk evolution given by

a(P )
t = a(P )

t−1 + ωt, ωt ∼ N (0, Wt). (1.2)

Combining equations (1.1) and (1.2) leads to a dynamic linear model (DLM) or

state-space model with state-parameter vector of dimension P . Posterior inference

can be obtained in this model setting assuming a particular prior structures on

the model parameters as discussed in West and Harrison (1997) and Prado et al.

(2021). In particular, under a conjugate prior structure filtering and smoothing

can be achieved in closed form and requires operations with matrices of dimension

P ×P at each time t, given σ2
t . Approaches for obtaining inference under conjugate

prior distributions in cases where σ2
t = σ2 for all t and also in cases in which σ2

t is
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specified via discount factors are discussed and illustrated in West and Harrison

(1997) and Prado et al. (2021).

Similarly, a time-varying vector autoregressive model of order P for a K-

dimensional time series xt, referred to as TV-VAR(P ), is given by

xt = A
(P )
1,t xt−1 + · · · + A

(P )
P,t xt−P + ϵt, ϵt ∼ N (0, Ωt), (1.3)

with ϵt assumed independent over time. Note that in this case the Aj,t contain

the matrices of VAR coefficients at each time t.

Similar to the evolution specified in equation (1.2) for the TVAR coefficients,

the TV-VAR coefficients At = (A(P )
1,t , . . . , A

(P )
P,t ) are assumed to follow a random

walk process given by

vec(At) = vec(At−1) + ωA
t , ωA

t ∼ N (0, W A
t ), (1.4)

where vec(·) denotes the column stacking operator of a portion of a matrix. The

dimension of state parameter At is K2P . Conditional on Ωt, filtering and smooth-

ing can be achieved in closed form under a conjugate prior structure, requiring

operations with matrices of dimension K2P × K2P at each time t, given variance

matrices Ωt.

1.1.1 TVAR and TV-VAR Time-Frequency Representa-

tions

For t = 1 : T, the time-frequency representation associated with a TVAR(P )

model can be obtained in terms of the spectral density at time t and frequency ω
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given by the following equation

g(t, ω) = σ2
t

|1 −∑P
m=1 a

(P )
m,t exp{−2πimω}|2

, 0 ≤ ω ≤ 1/2, (1.5)

where i =
√

−1 (see, e.g. Kitagawa and Gersch, 1996).

Similarly, the time-varying spectral density matrix associated with a TV-

VAR(P ) model is given by:

g(t, ω) = Φ−1(t, ω) × Ωt × Φ∗(t, ω)−1, 0 ≤ ω ≤ 1/2, (1.6)

where Φ(t, ω) = IK−∑P
m=1 A

(P )
m,t exp{−2πimω}, with i =

√
−1 (see e.g., Shumway

and Stoffer, 2017, Chapter 4). Note that the spectral density matrix g(t, ω) con-

sists of individual spectra gj,j(t, ω) for each component j = 1, . . . , K of xt, and

the cross-spectra gi,j(t, ω) between components i and j. From these the squared

coherence between components i and j can be defined as follows:

ρ2
i,j(t, ω) = |gi,j(t, ω)|2/{gi,i(t, ω)gj,j(t, ω)},

for all i ̸= j. This measure is used to estimate the power transfer between two

components of the time series.

The squared partial coherence between two time series components can also

be obtained. Let c(t, ω) = g−1(t, ω) be the inverse of the spectral density matrix

with elements ci,j(t, ω) for i, j = 1, . . . , K. Then, the squared partial coherence

between components i and j is given by:

γ2
i,j(t, ω) = |ci,j(t, ω)|2/{ci,i(t, ω)cj,j(t, ω)}.

The squared partial coherence is essentially the frequency domain squared cor-
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relation coefficient between components i and j after the removal of the linear

effects of all the remaining components of xt.

Directional measures such as the partial directed coherence (PDC) and the

direct tranfer function (DTF) can also be computed (see e.g., Astolfi et al., 2008,

Baccalá and Sameshima, 2001, Blinowska, 2011, Kuś et al., 2004, Milde et al.,

2009, Omidvarnia et al., 2014). Such measures provide information of direction-

ality in the interactions between signals in a Granger causality sense. The PDC

from signal j to signal i at time t and frequency ω is given by

PDCi,j(t, ω) = Φi,j(t, ω)√
Φ∗

·,j(t, ω)Φ·,j(t, ω)
,

with Φ·,j the jth column of the matrix Φ(t, ω). Similarly, the DTF from signal j

to signal i at time t and frequency ω is given by

DTF i,j(t, ω) =
Φ−1
i,j (t, ω)√

[Φ−1
i,· (t, ω)]∗Φ−1

i,· (t, ω)
,

where Φ−1
i,j (t, ω) is the (i, j)th element of the matrix Φ−1(t, ω) and Φ−1

i,· (t, ω) is

the ith row of Φ−1(t, ω), with A∗ denoting the Hermitian matrix of A. The DTF

shows all direct and so called “cascade flows”, e.g., in the case of 3 signals, all

propagations of the form 1 → 2 → 3 and 1 → 3 would be reflected in the DTF

between signals 1 and 3. On the other hand, PDC shows only direct flows between

signals, i.e., indirect propagations like 1 → 2 → 3 are not included.
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1.2 Dynamic PARCOR models for Analysis of

Univariate Non-stationary Time Series

In this section we review the dynamic PARCOR approach of Yang et al.

(2016) for univariate analysis of non-stationary time series. As mentioned before

we extend this approach for analysis of multiple (Chapter 2) and multivariate

(Chapters 3 and 4) non-stationary time series. More specifically, Yang et al.

(2016) proposes an approach to obtain posterior inference in a TVAR model on

the PARCOR domain as follows. Let f
(P )
t and b

(P )
t denote the prediction error at

time t for the forward and backward TVAR(P ) model, respectively, where

f
(P )
t = xt −

P∑
m=1

a
(P )
m,txt−m, and b

(P )
t = xt −

P∑
m=1

d
(P )
m,txt+m.

Then, the m-th stage of the lattice filter for a TVAR(P ) (Hayes, 1996) can

be characterized by the pair of input-output relations between the forward and

backward prediction errors as follows:

f
(m−1)
t = α

(m)
m,t b

(m−1)
t−m + f

(m)
t , (1.7)

b
(m−1)
t = β

(m)
m,t f

(m−1)
t+m + b

(m)
t , m = 1, 2, . . . , P, (1.8)

with initial conditions f
(0)
t = b

(0)
t = xt, and where α

(m)
m,t and β

(m)
m,t are the lag

m forward and backward PARCOR coefficients, respectively. In addition, it is

assumed that f
(m)
t

iid∼ N (0, σ2
f,m,t), and b

(m)
t

iid∼ N (0, σ2
b,m,t). When the true process

is a TVAR(P), the variance σ2
f,P,t = σ2

t .

The main advantage of using the above dynamic PARCOR lattice filter rep-

resentation instead of the DLM TVAR representation discussed in equation (1.1)

in Section 1.1, is that the former avoids the inversion of P × P matrices required
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in the TVAR DLM filtering and smoothing equations. Instead, the PARCOR

approach considers 2P dynamic linear models with univariate state parameters

(e.g., P DLMs with univariate state parameters for the forward coefficients and P

DLMs with univariate state parameters for the backward coefficients), completely

avoiding matrix inversions. This is important for computational efficiency when

considering models with P > 2 and large T . The PARCOR approach also offers

additional modeling advantages due to the fact that considering 2P DLMs with

univariate state parameters generally provides more flexibility than using a single

DLM TVAR with P -dimensional state parameters.

1.2.1 Model Specification and Bayesian Inference

Yang et al. (2016) complete the model specification described in Section 1.2

by using an additive random walk model for the evolution of the forward and

backward PARCOR coefficients, and a multiplicative random walk model for the

variances of the innovations for the forward and backward PARCOR coefficients,

i.e.,

α
(m)
m,t = α

(m)
m,t−1 + ωf,m,t, ωf,m,t ∼ N (0, Wf,m,t), (1.9)

β
(m)
m,t = β

(m)
m,t−1 + ωb,m,t, ωb,m,t ∼ N (0, Wb,m,t), (1.10)

σ2
f,m,t = σ2

f,m,t−1(δf,m/ηf,m,t), ηf,m,t ∼ B(gf,m,t, hf,m,t), (1.11)

σ2
b,m,t = σ2

b,m,t−1(δb,m/ηb,m,t), ηb,m,t ∼ B(gb,m,t, hb,m,t), (1.12)

where observational variances σ2
f,m,t and σ2

b,m,t are specified via discount factors

δf,m and δb,m, and system variances ωf,m,t and ωb,m,t are controlled by the differ-

ent discount factors γf,m and γb,m, respectively. The all discount factors δ·,m and

ω·,m are in (0, 1]. The series of stochastic error terms ω·,m,t and η·,m,t are assumed
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mutually independent, and also independent of the forward and backward inno-

vations, f
(m)
t and b

(m)
t of equations (1.7) and (1.8). The conjugate initial priors

for α
(m)
m,0, β

(m)
m,0 , σ2

f,m,0, and σ2
b,m,0 at each stage m are specified as follows

α
(m)
m,0|Df,m,0, σ2

f,m,0 ∼ N (mf,m,0, cf,m,0), β
(m)
m,0 |Db,m,0, σ2

b,m,0 ∼ N (mf,m,0, cf,m,0),

σ2
f,m,0|Df,m,0 ∼ IG(νf,m,0/2, κf,m,0/2), σ2

b,m,0|Db,m,0 ∼ IG(νb,m,0/2, κb,m,0/2),

where D·,m,0 denote the information sets at the initial time t = 0 for the forward

and backward cases.

Following West and Harrison (1997) and West et al. (1999), the joint pos-

terior forward filtering distributions of α
(m)
m,t , σ2

f,m,t|Df,m,t over t = 1 : T can be

sequentially updated, where Df,m,t = {Df,m,t−1, xt}. Because of using the conju-

gate Normal-Inverse Gamma form, the posterior distribution of α
(m)
m,t , σ2

f,m,t|Df,m,t

also has a Normal-Inverse Gamma form. Then, the marginal posterior distribution

of α
(m)
m,t is a student T-distribution, i.e., α

(m)
m,t |Df,m,t ∼ Tνf,m,t

(mf,m,t, cf,m,t), with

degrees of freedom νf,m,t, location parameter mf,m,t, and scale parameter cf,m,t.

The marginal posterior distribution of σ2
f,m,t|Df,m,t is an Inverse Gamma distri-

bution, i.e. σ2
f,m,t|Df,m,t ∼ IG(νf,m,t/2, κf,m,t/2), with shape parameter νf,m,t/2

and rate parameter κf,m,t/2. After the sequential updating process, a retrospec-

tive approach can be applied to specify the forward smoothing distribution of

α
(m)
m,t |Df,m,T , which is approximately a student T-distribution with the degrees of

freedom νf,m,t|T , location parameter mf,m,t|T , and scale parameter cf,m,t|T . In ad-

dition, σ2
f,m,t|Df,m,T follows approximately an Inverse Gamma distribution with

shape parameter νf,m,t|T/2 and rate parameter κfm,t|T/2. Details on the posterior

filtering and smoothing equations for the forward model are provided in Yang

et al. (2016). In addition, the posterior filtering and smoothing equations can

be similarly obtained for the backward time-varying PARCOR model and their
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corresponding variances.

1.2.2 Model Selection

Yang et al. (2016) select the model order and discount factor values

{P, γm, δm; m = 1, . . . , P} as follows. First, they specify a potential maximum

value of P and a set of grid values for {γm, δm} for each stage m. Given P , they

search for the combination of {γ1, δ1} maximizing the log likelihood derived from

lattice filters equation (1.7) at stage m = 1. Then, they use the selected γ1 and

δ1 to obtain the corresponding series {f
(2)
t } and {b

(2)
t }, for t = 1, . . . , T, and the

corresponding log maximum likelihood L1. They repeat above procedure until the

set of {γm, δm, Lm}, m = 1, . . . , P, has been obtained.

Yang et al. (2016) suggest to select the model order visually by plotting

Lf,m against the order m. The idea is that, when the observed time series truly

follows a model of order P , the values of Lf,m will stop increasing after m = P,

appropriately indicating the model order. They also provide a numerical approach

of order selection based on calculating the relative change from Lm−1 to Lm with

respect to m,

|(Lm − Lm−1)/Lm−1| × 100 < τ.

They suggest to choose τ = 0.5, which provides an effective cutoff to choose the

order.

1.2.3 Durbin-Levinson Algorithm

The Durbin-Levinson Algorithm provides an unique correspondence be-

tween the PARCOR coefficients and AR coefficients (Brockwell and Davis, 1991,

Shumway and Stoffer, 2017). The forward and backward TVAR coefficients a
(m)
m,t
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and d
(m)
m,t can be transformed by the PARCOR coefficients, α

(m)
m,t and β

(m)
m,t as follows

a
(m)
j,t = a

(m−1)
j,t − a

(m)
m,td

(m−1)
m−j,t , (1.13)

d
(m)
j,t = d

(m−1)
j,t − d

(m)
m,ta

(m−1)
m−j,t , j = 1, . . . , m − 1, (1.14)

where a
(m)
m,t = α

(m)
m,t and d

(m)
m,t = β

(m)
m,t .

The idea of Yang et al. (2016) is to obtain posterior estimation on the forward

and backward time-varying PARCOR coefficients using a computationally efficient

lattice filter representation. Once dynamic PARCOR estimation is obtained, esti-

mates of the TVAR coefficients can be derived using the Durbin-Levinson recur-

sion.

In addition, posterior summaries in the time-frequency domain can be ob-

tained using the relationship between the TVAR coefficients and the spectral

density given by equation (1.5).

1.3 Outline of the thesis: PARCOR Framework

in Multiple and Multivariate Scenarios

In this thesis we extend the dynamic lattice filter PARCOR approach of Yang

et al. (2016) to the case of multiple time series, by using the hierarchical dynamic

linear structure of Gamerman and Migon (1993). The proposed hierarchical ap-

proach described in Chapter 2, once again describes the time-varying behavior of

multiple time series in the partial autocorrelation domain, which results in lower

dimensional representations, and consequently computationally faster inference,

than those required by models in the time and/or frequency domains, such as

hierarchical TVAR models, which are commonly used in practice. We illustrate
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the performance of the hierarchical TV-PARCOR models and the corresponding

Bayesian inferential procedures in the context of analyzing multiple brain signals

recorded simultaneously during specific experimental settings or clinical studies.

The proposed approach allows us to efficiently obtain posterior summaries of the

time-frequency characteristics of the multiple time series, as well as those sum-

marizing their common underlying structure.

We then develop and implement a dynamic multivariate PARCOR model

with a multivariate DLM structure (West and Harrison, 1997) in Chapter 3. This

approach offers computational feasibility and interpretable time-frequency anal-

ysis in the multivariate context. Our framework allows us to obtain posterior

estimates of the time-varying spectral densities of individual time series compo-

nents, as well as posterior measurements of the time-frequency relationships across

multiple components, such as time-varying coherence and partial coherence. The

proposed formulation considers multivariate DLMs on the forward and backward

time-varying vector partial autocorrelation coefficients (TV-VPARCOR). Compu-

tationally expensive schemes for posterior inference on this multivariate dynamic

PARCOR model are avoided using approximations for filtering and smoothing,

which leads to approximate inference on the corresponding TV-VAR coefficients

obtained via Whittle’s algorithm (Zhou, 1992). A key aspect of the proposed

TV-VPARCOR representations is that they are of lower dimension, and therefore

more efficient, than TV-VAR representations.

The representations offered by the TV-VPARCOR models have a huge ad-

vantage in terms of flexibility in modeling gradual temporal changes, however in

spite of being more parsimonious than state-space representations of TV-VAR, still

present challenges related to overfitting that increases with the growing number of

coefficients. In Chapter 3, we developed a DIC-based model selection criterion to
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determine the model order P as a way to limit the negative effects of overfitting.

However, in some large data sets scenarios, lower order models may be incorrectly

chosen by the DIC because of an over-penalization on the number of parame-

ters. Moreover, the assumption that all the model parameters are time-varying

through entire time period may not be realistic and needed. It is reasonable to

expect some parameters to remain unchanged over time. Therefore, considering

shrinkage priors on the PARCOR coefficients is a good option to overcome the

overfitting issues. Such priors may induce shrinkage towards zero in PARCOR co-

efficients with relatively small effects and can also shrink time-varying coefficients

to static ones when needed.

There are many approaches in the time series literature designed to overcome

the challenge of over-parameterization in time-varying parameter models using

Bayesian methods. Nakajima and West (2015) propose a latent threshold model

that regularizes all parameters within a certain threshold to zero. Rockova and

McAlinn (2021) develop dynamic spike-and-slab priors which extend stochastic

search variable selection (SSVS) priors. Frühwirth-Schnatter and Wagner (2010)

propose a non-centered parameterization of the state-space model to deal with

variable selection. Many shrinkage priors can be applied on this model struc-

ture, e.g., the Bayesian lasso prior (Park and Casella, 2008), the Normal-Gamma

prior (Bitto and Frühwirth-Schnatter, 2019, Griffin and Brown, 2010), the Horse-

shoe prior (Carvalho et al., 2010), the Dirichlet-Laplace prior (Bhattacharya et al.,

2015) and the Normal-mixture of inverse Gamma prior (Ishwaran and Rao, 2005).

In Chapter 4, the non-centered parameterization of regression state-space models

(Bitto and Frühwirth-Schnatter, 2019, Frühwirth-Schnatter and Wagner, 2010) is

incorporated into the dynamic multivariate PARCOR framework. The Bayesian

Lasso priors (Belmonte et al., 2014) and Normal-Gamma priors (Griffin and
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Brown, 2010) are imposed on the model parameters in order to shrink time-varying

PARCOR coefficients to static ones (including zero), when the model is overfit-

ting. A MCMC algorithm is proposed for full posterior inference in this setting. In

addition, an importance sampling variational Bayes (ISVB) approach is developed

for fast and reliable approximate inference, which makes the dynamic PARCOR

modeling and inference framework feasible for analysis of large-dimensional time

series. We compare the results between TV-VPARCOR model with conjugate

priors but no shrinkage developed in Chapter 3 and the TV-VPARCOR model

with shrinkage priors in extensive simulation studies and a case study involving

the analysis of wind component data from several locations in northern California.

Finally, Chapter 5 summarizes the results of this thesis and discusses some

future directions.
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Chapter 2

Hierarchical Dynamic PARCOR

Models

We extend the univariate dynamic PARCOR model (Yang et al., 2016) to a

hierarchical time-varying PARCOR model for analysis of multiple non-stationary

time series. In particular, we develop a fast algorithm for posterior inference in

this hierarchical PARCOR setting. A simulation study illustrates the advantages

of the hierarchical dynamic PARCOR model over the standard TVAR models in

terms of computational efficiency and functionality. We also show the performance

of our proposed model in the analysis of two datasets: a dataset corresponding to

multiple brain signals recorded simultaneously on an individual under a particular

experimental condition, and a clinical multi-channel EEG dataset.

2.1 Introduction

In neuroscience studies a given subject may undergo repeated trials under

a given experimental condition, resulting in multiple brain recordings. In such

cases, researchers may need to summarize the information provided by the subject-
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specific repeated measurements, taken under a given experimental condition, for

comparison with results for other subjects who were on the same experimental

condition. Often the brain signals are averaged over trials for a given subject and

a given condition, which is typically problematic, as this results in over-smoothing

and information loss in the time-frequency domain.

Here we extend the univariate dynamic partial autocorrelation (PARCOR)

model of (Yang et al., 2016) explained in Section 1.2 of Chapter 1 to obtain

a hierarchical dynamic PARCOR model that is able to simultaneously describe

the time-frequency behavior of multiple related time series and characterize their

common underlying features, while also having the advantages of the PARCOR

representation in terms of dimension reduction and computational efficiency, par-

ticularly when compared to other time or frequency-domain hierarchical models

used in practice, such as those based on AR, TVAR, VAR, and TV-VAR represen-

tations. Our approach allows us to jointly analyze multiple brain signals recorded

on a subject using a single model that is able to infer the common time-frequency

characteristics underlying signals (Section 2.4.1 illustrates this in a non-clinical

EEG study). The proposed hierarchical PARCOR approach can also be used to

efficiently infer the latent structure underlying multiple signals recorded at differ-

ent locations on a subject during a single trial (Section 2.4.2 illustrates this with

data from a clinical EEG study).

2.2 Hierarchical PARCOR models

Assume we observe a set of n time series {xit} for i = 1, . . . , n, and t =

1, . . . , T, where i is the index of the time series. A TVAR model of order P
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(Section 1.1 of Chapter 1) for time series i is given by

xit =
P∑
j=1

a
(P )
i,j,txi,t−j + ϵit,

where a
(P )
i,j,t denotes the ith series-specific TVAR coefficient associated with lag j

at time t, and ϵit is the corresponding innovation. Typically, the innovations are

assumed to be independent mean-zero Gaussian random variables.

As mentioned in Section 1.2 of Chapter 1, the univariate PARCOR repre-

sentation of TVARs leads to lower dimensional models. This advantage of the

PARCOR representations is increased in multiple time series analysis. For in-

stance, in the case of a hierarchical TVAR DLM for joint modeling of n time

series, inversion of nP × nP matrices is required at each step of the filtering and

smoothing algorithms. Instead, the dynamic hierarchical PARCOR model pro-

posed here requires the inversion of n × n matrices of the filtering and smoothing

algorithms for P stages for the forward and backward coefficients, which results

in a significant reduction in computation time, particularly when P is moderate

or relatively large. In order to proceed with the hierarchical dynamic PARCOR

model specification, let f
(P )
it and b

(P )
it be the prediction error of the ith time series

at time t for the forward and backward TVAR(P ) model respectively, where,

f
(P )
it = xit −

P∑
j=1

a
(P )
i,j,txi,t−j, (2.1)

b
(P )
it = xit −

P∑
j=1

d
(P )
i,j,txi,t+j. (2.2)

a
(P )
i,j,t and d

(P )
i,j,t denote, respectively, the time-varying forward and backward TVAR

coefficients for jth lag, where j = 1, . . . , P and i = 1, . . . , n. Similarly, a
(m)
i,j,t and

d
(m)
i,j,t denote the time-varying forward and backward TVAR(m) coefficients for
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j = 1, . . . , m. Then, the m-stage of the PARCOR lattice filter can be written in

terms of the pair of input-output relations between the forward and backward

prediction errors, as follows,

f
(m−1)
it = α

(m)
i,m,tb

(m−1)
i,t−m + f

(m)
it , f

(m−1)
it ∼ N (0, σ2

f,i,m,t), (2.3)

b
(m−1)
it = β

(m)
i,m,tf

(m−1)
i,t+m + b

(m)
it , b

(m−1)
it ∼ N (0, σ2

b,i,m,t), (2.4)

where α
(m)
i,m,t and β

(m)
i,m,t are, respectively, time-varying forward and backward PAR-

COR coefficients at stage m, with m = 1, . . . , P. Note that for stationary AR(P )

models, the forward and backward PARCOR coefficients are constant over time

and equal, that is α
(m)
i,m = β

(m)
i,m for all m.

Then, at each stage m of the lattice structure above, we can obtain the

forward and backward TVAR coefficients of each time series i, a
(m)
i,j,t and d

(m)
i,j,t,

from the PARCOR coefficients, α
(m)
i,m,t and β

(m)
i,m,t using Durbin-Levinson algorithm

illustrated in Section 1.2.3 of Chapter 1, applied separately to obtain the TVAR

coefficients for each time series i.

2.2.1 Model Specification and Inference

The first level of our proposed hierarchical model specification uses equations

(2.3) and (2.4) as observational level equations of univariate DLMs (Prado et al.,

2021, West and Harrison, 1997) on the forward and backward PARCOR time-

varying coefficients.

The next level of the hierarchical model requires specifying the structural

equations (Gamerman and Migon, 1993). For this level we assume that the for-

ward and backward PARCOR coefficients at lag m and time t for each series i are
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decomposed as follows

α
(m)
i,m,t = µ

(m)
f,m,t + γ

(m)
f,i,m,t + νf,i,m,t, (2.5)

β
(m)
i,m,t = µ

(m)
b,m,t + γ

(m)
b,i,m,t + νb,i,m,t, (2.6)

where the structural innovations νf,i,m,t and νb,i,m,t follow zero-mean normal dis-

tributions. Further assumptions regarding these distributions are provided below.

µ
(m)
f,m,t and µ

(m)
b,m,t denote the common underlying forward and backward effects

across all the time series, respectively. In addition, γ
(m)
f,i,m,t and γ

(m)
b,i,m,t respectively

denote forward and backward effects that are specific to time series i. To avoid

identifiability issues, we add restrictions on these parameters for both, forward

and backward coefficients, i.e., we assume ∑n
i=1 γ

(m)
·,i,m,t = 0 for all t and m.

The final level of the hierarchical model requires specification of the system

equations that describe the variation of the parameters over time. We specify

random walk system equations for both forward and backward common effects

µ
(m)
·,m,t and also for the series-specific effects γ

(m)
·,i,m,t as follows,

µ
(m)
f,m,t = µ

(m)
f,m,t−1 + wµ,f,m,t, (2.7)

µ
(m)
b,m,t = µ

(m)
b,m,t−1 + wµ,b,m,t, (2.8)

γ
(m)
f,i,m,t = γ

(m)
f,i,m,t−1 + wγ,f,i,m,t, i = 1, . . . , n − 1, (2.9)

γ
(m)
b,i,m,t = γ

(m)
b,i,m,t−1 + wγ,b,i,m,t, i = 1, . . . , n − 1, (2.10)

where the forward and backward system innovations wµ,·,m,t and wγ,·,i,m,t follow

normal zero-mean distributions. In addition, conjugate normal priors are assumed

for µ
(m)
f,m,0, µ

(m)
b,m,0, γ

(m)
f,i,m,0 and γ

(m)
b,i,m,0 for all m and i. We further discuss these

distributions below when we summarize the model in matrix form.

In the case of a normal DLM, posterior inference is available in closed form via
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the DLM filtering and smoothing equations (West and Harrison, 1997), however,

this is not the case in hierarchical DLMs when the observational, structural and

system variance are unknown. A conjugate model structure is available Gamer-

man and Migon (1993), West and Harrison (1997), if the observational, structural

and system variances are scaled by a single observational variance, and the scaling

factors are assumed to be known. In our model we assume that the forward pre-

diction errors of the time series at each stage m in equation (2.3) independently

follow normal distributions with the observational innovation variance scaled by

the parameter σ2
f,m at the different stage m. Similarly, the backward prediction

errors of all time series (2.4) are assumed to independently follow normal distribu-

tions with the observational innovation variances scaled by σ2
b,m. In other words

we set σ2
f,i,m,t = σ2

f,m and σ2
b,i,m,t = σ2

b,m for each stage m and all t, and further

assume conjugate prior distributions of σ2
f,m and σ2

b,m as follows:

σ2
f,m|Df,m,0 ∼ IG

(
nf,0
2 ,

hf,0
2

)
, (2.11)

σ2
b,m|Db,m,0 ∼ IG

(
nb,0
2 ,

hb,0
2

)
. (2.12)

Here Df,m,t and Db,m,t denote, respectively, all the information available for the

forward and backward models at stage m and time t.

We can then rewrite the hierarchical forward and backward PARCOR models

above in matrix form as below.

• Observation equations:

f
(m−1)
t = F

(m−1)
1,f,m,tθ

(m)
1,f,m,t + f

(m)
t , f

(m)
t ∼ N

(
0, σ2

f,mIn
)

, (2.13)

b
(m−1)
t = F

(m−1)
1,b,m,tθ

(m)
1,b,m,t + b

(m)
t , b

(m)
t ∼ N

(
0, σ2

b,mIn
)

, (2.14)
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where f
(m−1)
t = (f (m−1)

1,t , . . . , f
(m−1)
n,t )′, F

(m−1)
1,f,m,t = diag(b(m−1)

1,t−m , . . . , b
(m−1)
n,t−m),

θ
(m)
1,f,m,t = (α(m)

1,m,t, . . . , α
(m)
n,m,t)′, b

(m−1)
t = (b(m−1)

1,t , . . . , b
(m−1)
n,t )′,

F
(m−1)
1,b,m,t = diag(f (m−1)

1,t+m , . . . , f
(m−1)
n,t+m ), θ

(m)
1,b,m,t = (β(m)

1,m,t, . . . , β
(m)
n,m,t)′.

• Structural equations:

θ
(m)
1,f,m,t = F2θ

(m)
2,f,m,t + ν

(m)
f,m,t, νf,m,t ∼ N (0, V2,f,m,t) , (2.15)

θ
(m−1)
1,b,m,t = F2θ

(m)
2,b,m,t + ν

(m)
b,m,t, νb,m,t ∼ N (0, V2,b,m,t) , (2.16)

where

F2 =



1 1 0 . . . 0

1 0 1 . . . 0
... ... ... . . . ...

1 0 0 . . . 1

1 −1 −1 . . . −1


,

θ
(m)
2,·,m,t = (µ(m)

·,m,t, γ
(m)
·,1,m,t, . . . , γ

(m)
·,n−1,m,t)′, ν

(m)
·,m,t = (ν·,1,m,t, . . . , ν·,n,m,t)′,

V2,·,m,t = σ2
·,mV ∗

2,·,m,t. The scale-free structural innovation variance-

covariance matrices V ∗
2,·,m,t are controlled by structural discount factors δ1,·,m

for each stage m. Discount factors are widely used in practice to spec-

ify variance-covariance matrix West and Harrison (1997). Note that here

we imposed the restriction ∑n
i=1 γ

(m)
·,i,m,t = 0 so that we have the matrix F2

above that appears in equations (2.15) and (2.16).

• System equations:

θ
(m)
2,f,m,t = θ

(m)
2,f,m,t−1 + wf,m,t, wf,m,t ∼ N (0, Wf,m,t) , (2.17)

θ
(m)
2,b,m,t = θ

(m)
2,b,m,t−1 + wb,m,t, wb,m,t ∼ N (0, Wb,m,t) , (2.18)
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where w·,m,t = (wµ,·,m,t, wγ,·,1,m,t, . . . , wγ,·,n−1,m,t)′, W·,m,t = σ2
·,mW ∗

·,m,t. The

scale-free system innovation variance-covariance matrices W ∗
·,m,t are con-

trolled by system discount factors δ2,·,m for each stage m.

• Finally, in addition to the priors (2.11) and (2.12) on the innovation vari-

ances, we also assume

θ
(m)
2,f,m,0|Df,m,0 ∼ N

(
mf,m,0, σ2

f,mC∗
f,m,0

)
,

θ
(m)
2,b,m,0|Db,m,0 ∼ N

(
mb,m,0, σ2

b,mC∗
b,m,0

)
.

Given the model structure above we obtain the filtering equations below for

closed-form inference in the hierarchical TV-PARCOR model as follows.

• Prior distributions conditional on σ2
·,m at time t,

θ
(m)
k,·,m,t|D·,m,t−1, σ2

·,m ∼ N
(
ak,·,m,t, σ2

·,mR∗
k,·,m,t

)
, k = 1, 2,

where

a2,·,m,t = m2,·,m,t−1,

R∗
2,·,m,t = C∗

2,·,m,t−1 + W ∗
·,m,t,

W ∗
·,m,t = 1 − δ2,·,m

δ2,·,m
C∗

2,·,m,t−1,

a1,·,m,t = F2a2,·,m,t,

R∗
1,·,m,t = F2R

∗
2,·,m,tF

′
2 + V ∗

2,·,m,t,

V ∗
2,·,m,t = 1 − δ1,·,m

δ1,·,m
F2R

∗
2,·,m,tF

′
2.

The values of forward and backward structural discount factors, δ1,·,m,

and the system discount factors, δ2,·,m, are determined by maximizing log-
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likelihoods resulting from equations (2.13) and (2.14). Details about the

selection of discount factors are discussed in Section 2.2.2.

• One-step ahead predictive distributions conditional on σ2
·,m

f
(m−1)
t |Df,m,t−1, σ2

f,m ∼ N
(
gf,m,t, σ2

f,mQ∗
f,m,t

)
,

b
(m−1)
t |Db,m,t−1, σ2

b,m ∼ N
(
gb,m,t, σ2

b,mQ∗
b,m,t

)
,

where

g·,m,t = F
(m−1)
1,·,m,t a1,·,m,t,

Q∗
·,m,t = In + F

(m−1)
1,·,m,t R∗

1,·,m,tF
(m−1)
1,·,m,t .

• Posterior distributions conditional on σ2
·,m at time t for k = 1, 2,

θ
(m)
k,·,m,t|D·,m,t, σ2

·,m ∼ N
(
mk,·,m,t, σ2

·,mC∗
k,·,m,t

)
,

where

m2,f,m,t = a2,f,m,t + S2,f,m,tQ
∗,−1
f,m,t

(
f

(m−1)
t − gf,m,t

)
,

m2,b,m,t = a2,b,m,t + S2,b,m,tQ
∗,−1
b,m,t

(
b

(m−1)
t − gb,m,t

)
,

C∗
2,·,m,t = R∗

2,·,m,t − S2,·,m,tQ
∗,−1
·,m,tS2,·,m,t,

S2,·,m,t = R∗
2,·,m,t(F

(m−1)
1,·,m,t F2)′,

m1,f,m,t = a1,f,m,t + S1,f,m,tQ
∗,−1
f,m,t

(
f

(m−1)
t − gf,m,t

)
,

m1,b,m,t = a1,b,m,t + S1,b,m,tQ
∗,−1
b,m,t

(
b

(m−1)
t − gb,m,t

)
,

C∗
1,·,m,t = R∗

1,·,m,t − S1,·,m,tQ
∗,−1
·,m,tS1,·,m,t,

S1,·,m,t = R∗
1,·,m,t

(
F

(m−1)
1,·,m,t

)′
.
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• Innovation variances σ2
·,m :

σ2
·,m|D·,m,t−1 ∼ IG

(
n·,t−1

2 ,
h·,t−1

2

)
,

σ2
·,m|D·,m,t ∼ IG

(
n·,t

2 ,
h·,t

2

)
,

where nt = nt−1 + n, hf,t = hf,t−1 + (f (m−1)
t − gf,m,t)′Q−1,∗

f,m,t(f
(m−1)
t − gf,m,t)

and hb,t = hb,t−1 + (b(m−1)
t − gb,m,t)′Q−1,∗

b,m,t(b
(m−1)
t − gb,m,t).

• Unconditional on σ2
·,m we obtain Student-t distributions for θ

(m)
k,·,m,t|D·,m,t,

f
(m−1)
t |Df,m,t−1, and b

(m−1)
t |Db,m,t−1.

After computing the filtering equations up to time T , it is possible to obtain

the closed-form smoothing distributions for the forward and backward models as

follows:

θ
(m)
k,·,m,t|D·,m,T ∼ TnT

(
mk,·,m,t|T , Ck,·,m,t|T

)
, k = 1, 2,

where

mk,·,m,t|T = mk,·,m,t + Bk,·,m,t
(
mk,·,m,t|T − ak,·,m,t

)
,

Ck,·,m,t|T = dTnt
nTdt

(Ck,·,m,t − Ek,·,m,t) ,

Ek,·,m,t = Bk,·,m,t

(
Rk,·,m,t+1 −

dtnTCk,·,m,t+1|T

ntdT

)
B′
k,·,m,t,

Bk,·,m,t = A′
k,·,m,tR

−1
k,·,m,t+1,

A2,·,m,t = C2,·,m,t, A1,·,m,t = F2C2,·,m,tG·,m,t,

G·,m,t =
{(

In − V2,·,m,tF
′
1,·,m,tV

∆,−1
2,·,m,tF1,·,m,t

)
F2
}′

,

V ∆
2,·,m,t = In + F1,·,m,tV

∗
2,·,m,tF

′
1,·,m,t,
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and initialized at t = T with mk,·,m,t|T = mk,·,m,t and Ck,·,m,t|T = Ck,·,m,t. Finally,

the algorithm for posterior estimation is as follows.

Algorithm

1. Given hyperparameters {P, δk,f,m, δk,b,m} for m = 1, . . . , P, k = 1, 2, set

f
(0)
t = b

(0)
t = (x1t, . . . , xnt)′, for t = 1, . . . , T.

2. Use {f
(0)
t } and {b

(0)
t } as vectors of responses in the observational level equa-

tions (2.13) and (2.14), respectively, which, combined with structural equa-

tions (2.15) and (2.16), the random walk system equations (2.17) and (2.18)

and the priors, define the PARCOR forward and backward hierarchical mod-

els. Then, use the sequential filtering equations along with the smoothing

equations to obtain a series of estimated parameters {θ̂
(1)
k,f,1,t}, {θ̂

(1)
k,b,1,t} for

t = 1 : T . In addition, use the sequential filtering equations to obtain es-

timated σ̂2
·,1. These estimated parameters are set at the posterior means of

the smoothing distributions.

3. Use the observational equations (2.13) and (2.14) to obtain the new series of

forward and backward prediction errors, {f
(1)
t } and {b

(1)
t }, for t = 1, . . . , T.

4. Repeat steps 2-3 above until {θ̂
(m)
k,f,m,t}, {θ̂

(m)
k,b,m,t}, {σ̂2

f,m} and {σ̂2
b,m} have

been obtained for all m = 1, . . . , P.

5. Finally, use {θ̂
(m)
1,f,m,t} and {θ̂

(m)
1,b,m,t}, for m = 1, . . . , P, as well as equations

(1.13) and (1.14) in Chapter 1 Section 1.2.3 to obtain estimates of the for-

ward and backward TVAR coefficients {â
(m)
i,j,t} and {d̂

(m)
i,j,t}, for i = 1, . . . , n,

j = 1, . . . , m − 1, and t = 1, . . . , T via the Durbin-Levinson algorithm (Sec-

tion 1.2.3 of Chapter 1).

6. (Optional) Use the estimated µ̂
(m)
f,m,t and µ̂

(m)
b,m,t, for m = 1, . . . , P, t = 1, . . . , T,

and equations (1.13) and (1.14) in Chapter 1 Section 1.2.3 to obtain the
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forward and backward baseline TVAR coefficients {ā
(P )
j,t } and {d̄

(P )
j,t }, for

j = 1, . . . , P, and t = 1, . . . , T using the Durbin-Levinson algorithm (Section

1.2.3 of Chapter 1).

2.2.2 Model Selection

We develop an approach to select discount factors by maximizing log-

likelihood functions derived from the one-step ahead predictive density functions

for hiearchical PARCOR models. We start with a potential maximum value of

P , say Pmax, for the model order. At level m we search for the optimal values of

the forward discount factors δk,f,m and the backward discount factors δk,b,m, for

k = 1, 2. At level m = 1 we search for the combination of values of δ1,f,1 and δ2,f,1

maximizing the log-likelihood resulting from (2.13) with m = 1. Similarly, we

can obtain the optimal combination of values of δ1,b,1 and δ2,b,1 by maximizing the

log-likelihood resulting from (2.14). Using the selected optimal δk,f,1 and δk,b,1, we

can obtain the corresponding series {f
(2)
t } and {b

(2)
t }, for t = 1, . . . , T, as well as

the maximum log-likelihood value of the one-step ahead predictive density func-

tion for the forward model, which we denote as Lf,1. Then, we repeat the above

search procedure for stage two, that is, m = 2, using the output {f
(2)
t } and {b

(2)
t }

obtained from implementing the filtering and smoothing equations with previ-

ously selected hyperparameters δk,f,1 and δk,b,1. We obtain optimal δk,f,2, δk,b,2,

as well as {f
(3)
t } and {b

(3)
t }, for t = 1, . . . , T. We also obtain the value of the

corresponding maximum log-likelihood Lf,2. We repeat the procedure until the

set {δk,f,m, δk,b,m, Lf,m}, m = 1, . . . , Pmax, has been selected. We then consider

methods for selecting the optimal model order as described below. Note that one

can also obtain the optimal likelihood values from the backward model, Lb,m, for

m = 1, . . . , Pmax.
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Method 1: Scree plots. Yang et al. (2016) suggest to select the model order

visually or numerically based on the values of Lf,m (Section 1.2.2 of Chapter 1).

However, these methods do not work well in hierarchical settings, since they do

not include a penalization for the number of model parameters.

Method 2: DIC model selection criterion. We consider an approach based

on the deviance information criterion (DIC) to choose the model order (see Spiegel-

halter et al., 2002, and references therein). In general, the deviance of a model

given parameters θ is defined as D(θ) = −2 log p(y|θ), where y denotes the data.

DIC is computed as DIC = D(θ̂Bayes) + 2pDIC , where θ̂Bayes is the Bayes estima-

tor of θ and pDIC is the effective number of parameters. The effective number of

parameters is given by pDIC = Epost (D (θ)) − D(θ̂Bayes), where the expectation

in the first term is an average of θ over its posterior distribution. The expression

above is typically estimated using samples θs, s = 1, . . . , S, from the posterior

distribution as

p̂DIC = 1
S

S∑
s=1

D (θs) − D(θ̂Bayes).

In DLM settings, it is computationally intensive to compute the conventional

deviance directly. Therefore, following Millar and McKechnie (2014), we compute

the one-step-ahead DIC, which uses a pseudo deviance that conditions on the

state at the previous time point, i.e.,

D∗ (θ) = −2 log
T∏
t=1

p (yt|θt−1) .

For a given model order m we compute the one-step ahead pseudo deviance

using the forward filtering distributions as explained below. Also, note that, fitting

a PARCOR model at stage m requires fitting all the models of the previous m−1
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stages. Therefore, the effective number of parameters at stage m is computed by

adding the estimated effective number of parameters of stage m plus the estimated

effective number of parameters for all previous m − 1 stages. In other words, for

each stage m :

- Compute the estimated implied log-likelihood from equation (2.13) for t =

1, . . . , T, using θ̂
(m)
1,f,m,t and σ̂2

f,m. In this way we obtain estimated D∗(θ̂Bayes)

for model order m.

- Obtain samples, θ
(m)
2,f,m,t,s, for s = 1, . . . , S, from the sequential filtering equa-

tions with distributions and use these samples to compute the estimated

number of parameters related only to stage m which we denote as p̂mDIC,m.

Note that, as mentioned above, stage m requires fitting all the PARCOR

models for the previous (m − 1) stages and so, in the final DIC calculation

at stage m the total estimated effective number of parameters is computed

as

p̂mDIC =
m∑
l=1

p̂lDIC,l.

We denote the final estimated DIC for model order m as D̂ICm.

2.2.3 Posterior Summaries

Time-frequency representations summarized by estimates of the spectral den-

sities can be obtained as follows. For each time series l and time t, the spectral

density gl(t, ω) can be estimated by plugging estimates â
(P )
l,j,t and σ̂2

f,P into equa-

tion (1.5) in Section 1.1.1. Note that we can also compute the underlying baseline

spectral density, which we denote by ḡ(t, ω), using estimates ā
(P )
j,t , j = 1, . . . , P

and σ̂2
f,P , benefiting from the hierarchical model structure.

Uncertainty measures for the estimates of the spectral density of each time
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series can be obtained by sampling from the filtering and smoothing posterior dis-

tributions of the forward and backward hierarchical PARCOR models. Each pos-

terior sample of the model parameters is transformed via equation (1.5), leading

to a posterior sample of the spectral density for time series l at time t. Uncertainty

measures for these functions are then computed based on the samples.

2.3 Simulation Study

We illustrate our proposed approach in the analysis of simulated data. More

specifically, we simulated 51 data sets, each with 5 time series of length T = 1024

from the following TVAR(2) model:

yit = ϕi,1,tyi,t−1 + ϕi,2,tyi,t−2 + ϵit, ϵit ∼ N (0, 0.64),

ϕi,1,t = 2rt cos
(2π

λit

)
, ϕi,2,t = −r2

t , r2
t = 0.9 for all t,

λit = λt + γi + ηit, ηit ∼ N (0, 0.01), λt = 15t

T
+ 5,

where γ1 = γ2 = γ3 = 0, γ4 = 1, γ5 = 5.

We fit hierarchical TV-PARCOR models to each of the 51 simulated data

sets. We set a maximum model order Pmax = 5. The discount factors δi,f,m and

δi,b,m, for i = 1, 2 are chosen from a grid of values in (0.99, 0.999). We set the

prior hyperparameters to be nf,0 = nb,0 = 1, hf,0 = hb,0 = 10, mf,m,0 = mb,m,0 =

(0, 0, 0, 0, 0)′ and C∗
f,m,0 = C∗

b,m,0 = 10I5. The left column of Figure 2.3 shows the

true log spectral densities for 3 of the series, namely, f1(t, ω), f4(t, ω) and f5(t, ω).

Figure 2.1 shows the BLF-scree plots obtained from the hierarchical PARCOR

approach for each of the 51 data sets for model orders m = 1, . . . , 5. We can see

that model order 2 is adequately chosen as the optimal model order, as after

model order 2 the relative change of Lf,m is quite small. We also computed the
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Figure 2.1: BLF-scree plots of the 51 realizations of simulation

DIC as explained in the previous section for each model order m = 1, . . . , 5. DIC

computations (not shown) also adequately identify 2 as the optimal model order.

To illustrate the performance of the hierarchical TV-PARCOR model, we

also fit TVAR(2) models to each univariate time series in each data set to obtain

some benchmark results. We computed the mean and stardard deviations of the

average squared error (ASE) for each of the models and each of the five time

series averaging over the 51 data sets. The ASE for each time series l is defined

as follows (Ombao et al., 2001)

ASEl = (TK)−1
T∑
t=1

K∑
k=1

(log ĝl,k(t, ω) − log gl,k(t, ω))2 , (2.19)

where ω ∈ [0, 0.5]. Note that we have K = 51 data sets.

Table 2.1 summarizes the mean and standard deivations of the ASE based

on ASEl for each simulated time series. Our proposed model outperforms TVAR
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Table 2.1: Mean ASE values and corresponding standard deviations (in paren-
theses) for the log-spectral densities obtained from TV-VPARCOR and TVAR
models of order 2 for the TVAR(2) simulated data for t = 1 : 1024.

Model
Time Series (l) TV-HPARCOR TVAR

1 0.0857(0.0135) 0.1217(0.0279)
2 0.0882(0.0124) 0.1209(0.0293)
3 0.0899(0.0135) 0.1135(0.0304)
4 0.0779(0.0110) 0.1163(0.0319)
5 0.0649(0.0101) 0.1067(0.0395)

models for estimating log spectral densities.

Figure 2.3 summarizes posterior inference obtained from the hierarchical TV-

PARCOR approach using model order of 2. Estimated spectral densities were

obtained from the posterior means of the smoothing distributions of the forward

and backward PARCOR coefficients over time. The estimated log-spectral den-

sities displayed in the figures correspond to those that led to the median ASE.

The hierarchical TV-PARCOR model clearly captures the structure of the indi-

vidual spectral densities. In addition, a key feature of the hierarchical model is

that it allows us to infer the latent/baseline log spectral density for all time series

and compare it to the true baseline process used to generate the data sets. In

this case the true baseline TVAR process has coefficients ϕ̄1,t = 2rt cos
(

2π
λt

)
and

ϕ̄2,t = −r2
t , r2

t = 0.9 for all t. We can also obtain measures that quantify the

uncertainty around the model estimates. Figure 2.2 shows the posterior inference

obtained from the hierarchical TV-PARCOR model using the common underlying

forward and backward effects across all the time series from a single data set. Once

again, we see that the model adequately captures the baseline structure underly-

ing the five simulated time series. Figure 2.4 shows the estimated 95% posterior

interval of the log-spectral density of the first time series. The main structure of
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Figure 2.2: Left: True baseline of log-spectral density ḡ(t, ω). Right: Estimated
baseline of log-spectral density ˆ̄g(t, ω).

the individual spectral density can be captured in the lower and upper bound.

There is more uncertainty at the beginning of process.

2.4 Case Studies

2.4.1 Analysis of Group-level EEG Data

A key feature of the proposed hierarchical PARCOR model is that it can be

used to detect a common underlying structure of multiple times series recorded

in a setting that involves repeated trials. Here we analyze multiple EEG data

recorded from subjects walking at or standing on a wide balance beam mounted

to a treadmill. During the experiment, subjects were perturbed physically or

visually. There were 30 healthy, young adults (15 females and 15 males, age

22.5±4.8 years) performing this experiment. Details regarding the data collection

methodology and analysis via autoregressive models are available in Peterson and

Ferris (2019). The data set used here is also publicly available (see references in

Peterson and Ferris, 2019).
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Figure 2.3: Left: True log-spectral densities g1(t, ω), (top) g4(t, ω) (middle) and
g5(t, ω) (bottom). Right: estimated log-spectral densities ĝ1(t, ω), (top) ĝ4(t, ω),
(middle) and ĝ5(t, ω) (bottom).
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Figure 2.4: Left: Lower bound of a 95% posterior interval of the log-spectral den-
sities g1(t, ω). Middle: Estimated mean of the log-spectral densities g1(t, ω). Right:
Upper bound of a 95% posterior interval of the log-spectral densities g1(t, ω),

The data contains 136-channel EEG recordings per subject with a sample

rate of 512 Hz. After data pre-processing and independent component analysis,

the information provided by the 136-channel EEG was summarized in terms of 8

cortical clusters. For each subject, each of the cortical regions, each experimental

condition, and each trial within such condition, the data set contains time series

that correspond to epochs going from −1s to 2s, centered around perturbation

onset, leading to an average of 146 ± 1 epochs for stand pull, 145 ± 5 epochs for

walk pull, 144 ± 9 epochs for stand rotate, and 146 ± 1 epochs for walk rotate

(mean ± SD) for each subject.

We use the hierarchical PARCOR model to analyze data from Subject 25 that

has the complete 8 cortical clusters and 146 epochs for each type of perturbation.

We fit our hierarchical model on each cortical cluster under the physical stand pull

perturbation. For each case, we considered a maximum model order Pmax = 10

and discount factor values on a range of (0.9, 0.99) (with equal spacing of 0.01)

for structure and system levels. The initial parameters nf,0 and nb,0 are set to be

1 and hf,0 and hb,0 are set to be 10 for all m. In addition, we set the initial prior

parameters as mf,m,0 = mb,m,0 = 0 and C∗
f,m,0 = C∗

b,m,0 = 10I146 for all m. The
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model orders selected by DIC are 6 ± 1 (mean ± SD) for different cortical clusters

and perturbation types. The discount factors are mostly selected at 0.99, which

suggests the time-varying coefficients change slowly over time.

Figure 2.5 shows the estimated relative change of the log power of spectral

density (PSD) over time during the standing pull condition with respect to the

estimated log power spectral density at time −0.5s for the same condition. In

other words, we fit the hierarchical model to all the epochs for each cluster for the

entire time period and summarize the results obtained in terms of the baseline

estimated effects for each cluster. Instead of presenting the summaries in terms

of the estimated log PSD at each time, we compute estimated log PSD at time

−0.5s before perturbation onset then subtracted its value from the estimated log

PSD at each of the remaining times to obtain estimates of the relative changes.

Positive values (red) in the figure indicate increased spectral power compared to

the baseline, while negative values (blue) indicate decreased spectral power with

respect to the baseline. The vertical dashed lines show that the pull perturbation

begins at 0 second and ends at 1 second. We present results for only three clusters,

namely, supplementary motor, left sensorimotor and right sensorimotor. For the

supplementary motor cluster, we observe increased spectral power at frequencies

in the range of 4 − 8 Hz after the pull perturbation onset. The spectral power

returns to the baseline level after the perturbation offset at 1 second. For the

left and right sensorimotor clusters, there is decreased spectral power occurring

between 10 and 15 Hz after the pull perturbation onset. Similar cortical spectral

fluctuation patterns can be found in Peterson and Ferris (2019). Our model

found no clear activity patterns at low gamma power (30 − 50 Hz), either. We

provide estimated mean and uncertainty measures of relative change of the log

PSD of cluster supplementary motor in Figure 2.6. The increased spectral power
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Figure 2.5: Cortical event-related spectral perturbations (ERSPs) to physical
pulls.

at frequencies in the range of 4-8 Hz after the pull perturbation onset is also

observed in the lower and upper uncertainty bands.

A key advantage of using the proposed hierarchical PARCOR model is that

it jointly models all the 146 epochs corresponding to different trials for Subject

25, and is able to infer their latent time-frequency structure without having to

average these signals over the different trials, and also without fitting different

models individually to each of the series and then averaging the results from

those models. We also note that posterior computations in the proposed PARCOR

hierarchical approach are very fast, allowing us to jointly model 146 time series.

2.4.2 Analysis of Multi-Channel EEG Data

The hierarchical PARCOR model can also be used to capture common un-

derlying features across different EEG channels recorded simultaneously on the

same subject. We analyze multi-channel EEG data recorded on a patient that

received electroconvulsive therapy (ECT) as a treatment for major depression.

These data are part of a larger data set, code named Ictal19, analyzed in West

et al. (1999) using univariate TVARs and in Prado et al. (2001) and using dynamic
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Figure 2.6: Left: Lower bound of a 95% posterior interval of the log-spectral
density of supplementary motor cluster. Middle: Estimated mean of the log-
spectral density of supplementary motor cluster. Right: Upper bound of a 95%
posterior interval of the log-spectral density of supplementary motor cluster.

regression models. Nakajima and West (2017) presents an analysis of these data

latent threshold TV-VAR models.

As an illustration, we use the hierarchical PARCOR model to analyze 9 chan-

nels, specifically channels F3, Fz, F4, C3, Cz, C4, P3, Pz and P4. shown in Figure

2.7. We chose these channels because they are closely located and because based on

previous analyses we expect strong underlying similarities in their temporal struc-

ture over time. The original recordings of about 26, 000 observations per channel

were sub-sampled every sixth observation from the highest amplitude portion of

the seizure, leading to a set of time series of 3, 600 observations (corresponding to

84.375s) per channel (Prado et al., 2001).

We analyzed the K = 9 series listed above jointly using a hierarchical PAR-

COR model. We considered a maximum model order Pmax = 15 and discount

factor values on a grid in the (0.99, 0.999) range (with equal spacing of 0.001).

We set nf,0 = nb,0 = 1 and hf,0 = hb,0 = 10 for all m. In addition, we set the

same initial prior parameters mf,m,0 = mb,m,0 = 0 and C∗
f,m,0 = C∗

b,m,0 = 10I9.

The optimal model order was found to be 11. The results shown in this section
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Figure 2.7: Representation of the lctal19 electrode placement. Here we focus
on the nine channels in the region highlighted.

correspond to a hierarchical PARCOR model with this model order. Higher-order

models were also fitted leading to similar but slightly smoother results in terms

of the estimated spectral densities.

Figure 2.8 displays estimated log spectral densities of channels Cz, Pz, and F4.

We note that the multi-channel EEG data are dominated by frequency components

in the lower frequency band (below 15 Hz). Each EEG channel shows a decrease

in the dominant frequency over time, starting around 5 Hz and ending around

approximate 3 Hz. This decrease in the dominant frequency was also found in

West et al. (1999). Channels Cz and Pz are more similar to each other than to

channel F4 in terms of their log spectral densities. The three channels show

the largest power around the same frequencies; however, channel F4 displays

smaller values in the power log-spectra than those for channels Cz and Pz. In

addition, the hierarchical PARCOR model allows us to obtain an estimate of the

baseline spectral density underlying the 9 EEG channels. The estimated mean

and 95% posterior interval of the baseline log-spectral density is shown in Figure

2.9 and provides a time-frequency summary of the features underlying the EEG

time series.
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Figure 2.8: Estimated log-spectral densities for channels Cz, Pz and F4.

Figure 2.9: Left: Lower bound of a 95% posterior interval of the baseline
log-spectral density. Middle: Estimated mean of baseline log-spectral densities.
Right: Upper bound of a 95% posterior interval of the baseline log-spectral den-
sity.
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2.5 Discussion

In this chapter, we present a dynamic hierarchical approach to model multiple

times series in the PARCOR domain. This PARCOR model is more parsimonious

than alternative time and frequency domain approaches often used in practice

for the analysis of multiple time series, particularly for cases that involve model-

ing a relatively large number of time series with non-stationary time-dependency

structure. We develop and implement algorithms for posterior inference in the hi-

erarchical PARCOR setting that are computationally efficient and do not require

the use of time consuming simulation-based approaches such as MCMC. We illus-

trate the performance of the proposed model and posterior inference algorithms

in a simulation study and highlight its advantages in the analysis of two data sets

consisting of multiple brain signals recorded under specific clinical/experimental

conditions. The dynamic hierarchical structure in the PARCOR model allows us

to infer the time-frequency characteristics of the individual time series, as well

as those of their common underlying structure, which is of significant practical

relevance in many practical settings, as illustrated in Section 2.4.

The proposed hierarchical PARCOR approach is computationally efficient

and parismonious compared to state-space representations such as TV-VAR mod-

els. However, the proposed hierarchical PARCOR model cannot infer time-

frequency relationships across multiple time series over time, such as time-varying

coherence and partial coherence. In addition, a limited number of approaches

are available for computationally efficient and scientifically interpretable analy-

sis of multivariate non-stationary time series. In the next chapter, we consider

extensions of the PARCOR framework for multivariate time series settings.
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Chapter 3

Efficient Bayesian PARCOR

Approaches for Dynamic

Modeling of Multivariate Time

Series

We develop a fast and accurate Bayesian lattice filtering and smoothing ap-

proach for multivariate non-stationary time series. The performance of the pro-

posed time-varying vector PARCOR (or TV-VPARCOR) models is illustrated in

simulation studies and in the analysis of multivariate non-stationary temporal

data arising in neuroscience and environmental applications.

3.1 Introduction

In this chapter we extend the Bayesian lattice filter approach of Yang et al.

(2016) explained in Section 1.2 of Chapter 1 to the multivariate case. Our pro-

posed models offer several advantages over currently available multivariate ap-
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proaches for non-stationary time series including computational feasibility for

joint analysis of relatively large-dimensional multivariate time series, and inter-

pretable time-frequency analysis in the multivariate context. In particular, the

proposed framework leads to posterior estimates of the time-varying spectral den-

sities of each individual time series, as well as posterior measurements of the

time-frequency relationships across multiple time series over time, such as time-

varying coherence and partial coherence. We note that extending the approach

Yang et al. (2016) to the multivariate case is non-trivial, as the closed-form infer-

ence used in the univariate DLM formulation of the lattice filter is not available

for the multivariate case considered here. Multivariate DLM theory (Prado et al.,

2021, West and Harrison, 1997) allows for full posterior inference in closed-form

only when the covariance matrices of the innovations at the observation level and

those at the system level are known, which is rarely the case in practice. Full pos-

terior inference via MCMC can be obtained for more general multivariate DLM

settings, but such posterior sampling schemes are very computationally expen-

sive, making them only feasible when dealing with a small number of time series

of small/moderate time lengths, and low-order TV-VAR models. We address

these challenges by approximating the covariance matrices of the innovations at

the observational level for the multivariate dynamic forward and backward PAR-

COR models using the approach of Triantafyllopoulos (2007). In addition, we use

discount factors to specify the structure of the covariance matrices at the system

levels. Our framework casts the time-varying multivariate representation of the

input-output relations between the vectorial forward and backward predictions of

a multivariate time series process –and their corresponding forward and backward

matrices of PARCOR coefficients– as a Bayesian multivariate state-space model.

Once approximate posterior inference is obtained for the multivariate time-varying

44



PARCOR coefficients, posterior estimates for the implied time-varying vector au-

toregressive (TV-VAR) coefficient matrices and innovations covariance matrices

can be obtained via Whittle’s algorithm (Zhou, 1992). Similarly, posterior es-

timates for any function of such matrices, such as the multivariate spectra and

functions of the spectra, can also be obtained. A key feature of the proposed

TV-VPARCOR representation is that it is more parsimonious and flexible than

directly working with the TV-VAR state-space representation. We illustrate this

in the analyses of simulated and real data presented in Sections 3.3 and 3.4. We

also propose a method for selecting the number of stages in the TV-VPARCOR

setting based on an approximate calculation of the Deviance Information Criterion

(DIC).

3.2 Models and Methods for Posterior Inference

3.2.1 TV-VAR Models and Lattice Structure

Let xt be a K×1 vector time series for t = 1, . . . , T. As discussed in Chapter 1,

a time-varying vector autoregressive model of order P, referred to as TV-VAR(P ),

is given by

xt = A
(P )
1,t xt−1 + · · · + A

(P )
P,t xt−P + ϵt, ϵt ∼ N (0, Ωt),

where A
(P )
j,t is the K ×K matrix of time-varying coefficients at lag j, j = 1, . . . , P,

and Ωt is the K × K innovations variance-covariance matrix at time t. The ϵts

are assumed to be independent over time.

Let f
(P )
t and b

(P )
t be the K-dimensional prediction error vectors at time t for
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the forward and backward TV-VAR(P ) model, respectively, where,

f
(P )
t = xt −

P∑
j=1

A
(P )
j,t xt−j, and b

(P )
t = xt −

P∑
j=1

D
(P )
j,t xt+j.

A
(P )
j,t and D

(P )
j,t denote, respectively, the K × K time-varying matrices of forward

and backward TV-VAR(P ) coefficients for j = 1, . . . , P. Similarly, A
(m)
j,t and D

(m)
j,t

denote the time-varying matrices of forward and backward TV-VAR(m) coeffi-

cients for j = 1, . . . , m.

Then, we write the m-stage of the lattice filter in terms of the pair of input-

output relations between the forward and backward K-dimensional vector predic-

tions, as follows,

f
(m−1)
t = β

(m)
f,m,tb

(m−1)
t−m + f

(m)
t , f

(m)
t ∼ N (0, Ωf,m,t), (3.1)

b
(m−1)
t = β

(m)
b,m,tf

(m−1)
t+m + b

(m)
t , b

(m)
t ∼ N (0, Ωb,m,t), (3.2)

where β
(m)
f,m,t and β

(m)
b,m,t are, respectively, the K × K matrices of time-varying

forward and backward PARCOR coefficients for m = 1, . . . , P. Note that for

stationary AR(P ), i.e., models with K = 1 and static AR coefficients in the

stationary region, the forward and backward PARCOR coefficients are equal, i.e.,

λ(m)
m = θ(m)

m for all m. For general K and non-stationary processes the forward

and backward PARCOR coefficients are not the same.

As mentioned in Section 1.2 of Chapter 1, the DLM formulation for univariate

time series in the PARCOR domain fully avoids matrix computations, significantly

improving computational efficiency, especially when the model order is relatively

large. In the multivariate cases, the TV-VPARCOR approach requires matrix

computations in the filtering and smoothing steps, however, it still offers signifi-

cant computational savings when compared to using TV-VAR representations in
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the time domain. More specifically, the TV-VPARCOR approach results in DLM

representations with state vectors of dimension K2, with K the number of time

series, leading to operations with matrices of dimension K2 × K2. In contrast, a

time-domain representation of a TV-VAR model requires state vectors of dimen-

sion K2P, leading to operations with matrices of dimension K2P × K2P, which

results in much larger matrices when P ≥ 2, discussed in Chapter 1 Section 1.1.

For instance, for K = 10 and P = 10, the TV-VPARCOR approach requires oper-

ations with matrices of dimension 100 × 100 at each time step of the filtering and

smoothing process, while the time-domain TV-VAR approach requires operations

with matrices of dimension 1000 × 1000. Therefore, the TV-VPARCOR approach

leads to significantly reduction computational time in many practical settings.

3.2.2 Whittle Algorithm

In the multivariate scenarios, the Whittle algorithm (Zhou, 1992) connects

between TV-VAR coefficient matrices and TV-VPARCOR coefficient matrices

similar as Durbin-Levinson algorithm (see Section 1.2.3). For each stage m of the

lattice structure above, we obtain the forward and backward TV-VAR coefficient

matrices, A
(P )
m,t and D

(P )
m,t, from the time-varying forward and backward PARCOR

coefficient matrices, β
(m)
f,m,t and β

(m)
b,m,t as follows,

A
(m)
j,t = A

(m−1)
j,t − A

(m)
m,tD

(m−1)
m−j,t , (3.3)

D
(m)
j,t = D

(m−1)
j,t − D

(m)
m,tA

(m−1)
m−j,t , j = 1, . . . , m − 1, (3.4)

with A
(m)
m,t = β

(m)
f,m,t and D

(m)
m,t = β

(m)
b,m,t, for m = 1, . . . , P.
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3.2.3 Model Specification and Inference

Our proposed model specification uses equations (3.1) and (3.2) as observa-

tional level equations of multivariate DLMs (Prado et al., 2021, West and Har-

rison, 1997) on the forward and backward PARCOR time-varying coefficients.

These multivariate DLMs are specified as follows. For each t, let vec(β(m)
f,m,t) and

vec(β(m)
b,m,t) be the vectorized forward and backward PARCOR coefficients, i.e.,

these are K2 vectors obtained by stacking the forward and backward PARCOR

coefficient matrices at time t, β
(m)
f,m,t and β

(m)
b,m,t, by columns, respectively. In addi-

tion, define the forward and backward K×K2 matrices F
(m−1)
t+m = (f (m−1)

t+m )⊗IK×K

and B
(m−1)
t−m = (b(m−1)

t−m ) ⊗ IK×K , where IK×K denotes the K × K identity matrix

and ⊗ denotes the Kronecker product. Then, equations (3.1) and (3.2) can be

rewritten as

f
(m−1)
t = B

(m−1)
t−m vec(β(m)

f,m,t) + f
(m)
t , f

(m)
t ∼ N (0, Ωf,m,t), (3.5)

b
(m−1)
t = F

(m−1)
t+m vec(β(m)

b,m,t) + b
(m)
t , b

(m)
t ∼ N (0, Ωb,m,t), (3.6)

which correspond to the observational equations of two multivariate dynamic lin-

ear regressions on f
(m−1)
t and b

(m−1)
t , with dynamic coefficients vec(β(m)

f,m,t) and

vec(β(m)
b,m,t), respectively. In order to complete the MDLM structure we specify

random walk evolution equations for vec(β(m)
f,m,t) and vec(β(m)

b,m,t) as follows,

vec(β(m)
f,m,t) = vec(β(m)

f,m,t−1) + ϵf,m,t, ϵf,m,t ∼ N (0, W f,m,t), (3.7)

vec(β(m)
b,m,t) = vec(β(m)

b,m,t−1) + ϵb,m,t, ϵb,m,t ∼ N (0, W b,m,t), (3.8)

where W f,m,t and Wb,m,t are time dependent system covariance matrices. Finally,

we specify prior distributions for vec(β(m)
f,m,0) and vec(β(m)

b,m,0) and all m. We use
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conjugate normal priors for these parameters, i.e., we assume

vec(β(m)
f,m,0)|Df,m,0 ∼ N (mf,m,0, Cf,m,0), (3.9)

vec(β(m)
b,m,0)|Db,m,0 ∼ N (mb,m,0, Cb,m,0), (3.10)

where Df,m,0 and Db,m,0 denote the information available at time t = 0 for the

forward and backward state parameter vectors, respectively.

Given Ωf,m,t, and W f,m,t for all t = 1, . . . , T, and all m = 1, . . . , P, equations

(3.5), (3.7) and (3.9) define a normal MDLM (see, e.g., Prado et al., 2021, Chapter

10) for the forward time-varying PARCOR. Similarly, given Ωb,m,t and W b,m,t for

all t and all m, equations (3.6), (3.8) and (3.10) define a normal MDLM for the

backward time-varying PARCOR.

Note that posterior inference in the case of univariate models with K = 1

is available in closed form via the DLM filtering and smoothing equations. This

is used in Yang et al. (2016) to obtain posterior inference in this univariate case.

However, posterior inference in the general multivariate setting proposed here

is not available in closed form when the observational and system covariance

matrices are unknown, which is typically the case in practical settings. Therefore,

as explained below, we use discount factors to specify W f,m,t, and W b,m,t. We

also assume Ωf,m,t = Ωf,m and Ωb,m,t = Ωb,m for all t, and use the approach of

Triantafyllopoulos (2007) to obtain estimates of Ωf,m and Ωb,m, which allows us

to get approximate posterior inference in the multivariate case.

We follow Ameen and Harrison (1985), and first define the K2 × K2 system

covariance matrices using discount factors by setting

∆f,m = diag(δ−1/2
f,m,1, . . . , δ

−1/2
f,m,K), and ∆b,m = diag(δ−1/2

b,m,1, . . . , δ
−1/2
b,m,K),
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where each component, δ.,m,i, is a K-dimensional vector that contains the discount

factors for each of the K components at stage m. Although we can assume

different discount factors for different elements of δ·,m,k and also across different

ks, in practice we usually set all the elements of δf,m,k equal to δf,m and all the

elements of δb,m,k equal to δb,m for all k = 1, . . . , K, and then choose δf,m and

δb,m optimally according to some criterion for each stage m (this is discussed in

Section 3.2.4). This structure for ∆f,m and ∆b,m allows us to obtain closed form

expressions for W f,m,t and W b,m,t sequentially over time.

We now describe the full algorithm for approximate posterior inference in

the forward TV-VPARCOR model. The algorithm for the backward model

is similar. Let Df,m,t denote all the information available up to time t at

stage m for the forward model, with Df,m,t = {Df,m,t−1, f
(m−1)
t }. Consider the

posterior expectation of Ωf,m up to time t, i.e., E(Ωf,m|Df,m,t), and assume

that limt→∞ E(Ωf,m|Df,m,t) = Ωf,m. Let nf,m,0 be a positive scalar and Sf,m,0

be the prior expectation of Ωf,m. Assume that at time t − 1, we have that

vec(β(m)
f,m,t−1)|Df,m,t−1 is approximately distributed as N(mf,m,t−1, Cf,m,t−1), and

so, E(f (m−1)
t |Df,m,t−1) is approximated by B

(m−1)
t−m mf,m,t−1 and V (f (m−1)

t |Df,m,t−1)

is approximated by Qf,m,t−1 = B
(m−1)
t−m Rf,m,t(B(m−1)

t−m )′ + Sf,m,t−1, with Rf,m,t =

Cf,m,t−1 + W f,m,t, for some Sf,m,t−1. Then, following Theorem 1 of Triantafyl-

lopoulos (2007) we have that, if Ωf,m is bounded, Sf,m,t will approximate Ωf,m

for t large, with

Sf,m,t = 1
(nf,m,0 + t)

(
nf,m,0Sf,m,0 +

t∑
i=1

S
1/2
f,m,i−1Q

−1/2
f,m,ief,m,ie

′
f,m,iQ

−1/2
f,m,iS

1/2
f,m,i−1

)
,

where in our case ef,m,t = f
(m−1)
t − B

(m−1)
t−m mf,m,t−1, and S

1/2
f,m,i−1, Q

−1/2
f,m,i are sym-

metric square roots of the matrices Sf,m,i−1 and Q−1
f,m,i, respectively, based on the

spectral decomposition factorization of symmetric positive definite matrices for
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all i = 1, . . . , t.

In addition to showing that Sf,m,t converges to Ωf,m as t goes to infinity,

Triantafyllopoulos (2007), presents empirical results that that aim to assess the

quality of the approximation. In particular, a simulation study in Triantafyl-

lopoulos (2007) generates 1000 time series with length 500 under three different

scenarios and compares the approximation of Ωf,m given by Sf,m,t with estimates

of Ωf,m obtained using a MCMC estimation procedure based on a blocked Gibbs

sampler for state space models (Gamerman and Lopes, 2006) as a gold standard.

The proposed covariance estimator has good performance, empirically converging

to the true values of the unknown observation covariance matrix. Additional ex-

amples with TV-VAR processes are also considered. Our simulation studies also

show that Sf,m,t closely approximates the true Ωf,m.

Using the approximation above we obtain the filtering equations below for

approximate inference in the forward TV-VPARCOR model.

- The one-step ahead forecast mean and covariance at time t are given by:

E(f (m−1)
t |Df,m,t−1) ≈ B

(m−1)
t−m mf,m,t−1.

and

V (f (m−1)
t |Df,m,t−1) ≈ Qf,m,t = B

(m−1)
t−m Rf,m,t(B(m−1)

t−m )′ + Sf,m,t−1,

where Rf,m,t = Cf,m,t−1 + W f,m,t and W f,m,t = ∆f,mCf,m,t−1∆f,m −

Cf,m,t−1.

- The one-step forecast error vector is given by ef,m,t = f
(m−1)
t −

B
(m−1)
t−m mf,m,t−1.
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- Using Bayes’ theorem and the equations above we can obtain the

approximate posterior distribution at time t as vec(β(m)
f,m,t)|Df,m,t ≈

N (mf,m,t, Cf,m,t), where

mf,m,t = mf,m,t−1 + U f,m,tef,m,t, (3.11)

Cf,m,t = ∆f,mCf,m,t−1∆f,m + Uf,m,tQf,m,tU
′
f,m,t, (3.12)

Uf,m,t = ∆f,mCf,m,t−1∆f,mB
(m−1)
t−m Q−1

f,m,t. (3.13)

Approximate filtering and predictive distributions for vec(β(m)
f,m,t)|Df,m,t,

f
(m−1)
t |Df,m,t and f

(m−1)
t+h |Df,m,t for a positive integer h > 0 can also be obtained

by taking Ωf,m = Sf,m,t.

After applying the filtering equations up to time T , it is possible to compute

approximate smoothing distributions for the forward PARCOR model by setting

Ωf,m = Sf,m,T . This leads to approximate smoothing distributions

vec(β(m)
f,m,t)|DT ≈ N (af,m,T (t − T ), Rf,m,T (t − T )),

where the mean and covariance are computed recursively via

af,m,T (t − T ) = mf,m,t − Jf,m,t(af,m,t+1 − af,m,T (t − T + 1)), (3.14)

Rf,m,T (t − T ) = Cf,m,t − Jf,m,t(Rf,m,t+1 − Rf,m,T (t − T + 1)), (3.15)

for t = (T −1), . . . , 1, with Jf,m,t = Cf,m,tR
−1
f,m,t+1, and starting values af,m,T (0) =

mf,m,T and Rf,m,T (0) = Cf,m,T . Filtering and smoothing equations can be ob-

tained for the backward PARCOR model in a similar manner. Finally, the algo-

rithm for approximate posterior estimation is as follows.

Algorithm
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1. Given hyperparameters {P, ∆f,m, ∆b,m; m = 1, . . . , P}, set f
(0)
t = b

(0)
t =

xt, for t = 1, . . . , T.

2. Use {f
(0)
t } and {b

(0)
t } as vectors of responses in the observational level equa-

tions (3.1) and (3.2), respectively, which, combined with the random walk

evolution equations (3.7) and (3.8), and the priors (3.9) and (3.10), define

the multivariate PARCOR forward and backward models. Then, use the se-

quential filtering equations (3.11) to (3.13) to obtain the estimated {Sf,1,T}

and {Sb,1,T}. Use the sequential filtering equations (3.11) to (3.13) along

with the smoothing equations (3.14) and (3.15) to obtain a series of esti-

mated parameters {vec(β̂(1)
f,1,t)}, {vec(β̂(1)

b,1,t)} for t = 1 : T . These estimated

parameters are set at the posterior means of the smoothing distributions,

i.e., the values in equation (3.14) for the forward case and a similar equation

in the backward case.

3. Use the observational equations (3.1) and (3.2) to obtain the new series of

forward and backward prediction errors, {f
(1)
t } and {b

(1)
t }, for t = 1, . . . , T.

4. Repeat steps 2 − 3 above until {vec(β̂(m)
f,m,t)}, {vec(β̂(m)

b,m,t)}, {Sf,m,T} and

{Sb,m,T} have been obtained for all m = 1, . . . , P.

5. Finally, use {vec(β̂(m)
f,m,t)} and {vec(β̂(m)

b,m,t)}, for m = 1, . . . , P, and equations

(3.3) and (3.4) to obtain the forward and backward TV-VAR coefficient

matrices via Whittle’s algorithm (Section 3.2.2).

3.2.4 Model Selection

In order to select the optimal model order and discount factors, we begin by

specifying a potential maximum value of P, say Pmax, for the model order. At

level m we search for the optimal values of ∆f,m and ∆b,m. In other words, at
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level m = 1 we search for the combination of values of ∆f,1 and ∆b,1 maximizing

the log-likelihood resulting from equation (3.1) with m = 1. Using the selected

optimal ∆f,1 and ∆b,1, we can obtain the corresponding series {f
(2)
t } and {b

(2)
t },

for t = 1, . . . , T , as well as the maximum log-likelihood value Lf,1. Then, we repeat

the above search procedure for stage two, i.e., m = 2, using the output {f
(2)
t }

and {b
(2)
t } obtained from implementing the filtering and smoothing equations

with the previously selected hyperparameters ∆f,1 and ∆b,1. We obtain optimal

∆f,2, ∆b,2 as well as {f
(3)
t } and {b

(3)
t }, for t = 1, . . . , T. We also obtain the

value of the corresponding maximum log-likelihood Lf,2. We repeat the procedure

until the set {∆f,m, ∆b,m, Lf,m}, m = 1, . . . , Pmax, has been selected. We then

consider two different methods for selecting the optimal model order as described

below. Note that one can also obtain the optimal likelihood values from the

backward model, Lb,m, for m = 1, . . . , Pmax. For all the examples and real data

analyses presented below we choose the optimal model orders based on the optimal

likelihood values for the forward model. Similar results were obtained based on

the optimal likelihood values for the backward models.

Method 1: Scree plots. This method was used by Yang et al. (2016) to select

the model order visually by plotting Lf,m against the order m. The idea is that,

when the observed vector of time series truly follows a TV-VAR model, the values

of Lf,m will stop increasing after a specific lag and this lag is then chosen to be

the model order. A numerical version of this method can also be implemented

by computing the percent of change in the likelihood going from Lf,m−1 to Lf,m,

however, here we use scree plots as a visualization tool and use the model selection

criterion below to numerically find an optimal model order.

Method 2: DIC model selection criterion. We consider an approach based

on the deviance information criterion (DIC) to choose the model order (see Gelman
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et al., 2014, and references therein). In general, for a model with parameters

denoted as θ, the DIC is defined as

DIC = −2 log p(y|θ̂Bayes) + 2pDIC ,

where y denotes the data, θ̂Bayes is the Bayes estimator of θ and pDIC is the

effective number of parameters. The effective number of parameters is given by

pDIC = 2
[
log p(y|θ̂Bayes) − Epost (log p(y|θ))

]
,

where the expectation in the second term is an average of θ over its posterior

distribution. The expression above is typically estimated using samples θs, s =

1, . . . , S, from the posterior distribution as

p̂DIC = 2
[
log p(y|θ̂Bayes) − 1

S

S∑
s=1

log p(y|θs)
]

.

Note, however, that in our case we do not have samples from the exact posterior

distribution of the parameters since we are using approximate inference to avoid

computationally costly exact inference via MCMC. Therefore, for a given model

order m we compute the likelihood term in the DIC calculation approximately

using the forward filtering distributions as explained below. Also, note that, fitting

a PARCOR model at stage m requires fitting all the models of the previous m−1

stages. Therefore, the effective number of parameters at stage m is computed by

adding the estimated effective number of parameters of stage m plus the estimated

effective number of parameters for the previous m − 1 stages. In other words, for

each stage m :

- Compute the estimated implied log-likelihood from equation (3.5) for t =
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1, . . . , T, using vec(β̂(m)
f,m,t) and Sf,m,T . In this way we obtain the first term

in the calculation of the DIC for model order m.

- Obtain samples, vec(β(m)
f,m,t,s), for s = 1, . . . , S, from the approximate sequen-

tial filtering equations with distributions N (mf,m,t, Cf,m,t), and use these

samples to compute the estimated number of parameters related only to

stage m which we denote as p̂mDIC,m. Note that, as mentioned above, stage

m requires fitting all the PARCOR models for the previous (m − 1) stages

and so, in the final DIC calculation at stage m the total estimated effective

number of parameters is computed as

p̂mDIC =
m∑
l=1

p̂lDIC,l.

We denote the final estimated DIC for model order m as D̂ICm.

3.2.5 Posterior Summaries

Once an optimal TV-VPARCOR model is chosen we can obtain posterior

summaries of any quantities associated to such model. For instance, we can obtain

posterior summaries of the TV-VPARCOR coefficients over time at each stage,

and consequently summaries of the corresponding TV-VAR coefficients over time.

The estimated spectral density matrix ĝ(t, ω) can be computed by plugging the

estimated TV-VAR coefficients Â
(P )
m,t and estimated covariance matrix Sf,P,T in

equation (1.6) in Chapter 1 Section 1.1.1.

In addition, uncertainty measures for the spectral density matrix, and any

functions of this matrix, can be obtained from the approximate filtering and

smoothing posterior distributions of the forward and backward TV-VPARCOR

models. This is done by sampling from the approximate posterior distributions of
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the TV-VPARCOR parameters described in Section 3.2.3. Then, each posterior

sample of the model parameters is transformed into the corresponding spectral

density matrix, or any other function of this matrix, allowing us to obtain a

posterior sample of such function. Uncertainty measures for these functions are

computed based on the samples. This is illustrated in Section 3.4.2.

3.2.6 Forecasting

In this section, we show how to obtain h-steps ahead forecasts. In order

to have a non-explosive behavior in the forecasts, we assume the series is lo-

cally stationary in the future, i.e, β
(m)
f,m,t = β

(m)
b,m,t at time t = T + 1, . . . , T + h.

Then, the approximate h-steps ahead forecast posterior distribution of the

PARCOR coefficients, with h > 0, is approximated as (β(m)
f,m,T+h|Df,m,T ) ≈

N (mf,m,T (h), Cf,m,T (h)), where

mf,m,T (h) = mf,m,T ; Cf,m,T (h) = Cf,m,T + h · Wf,m,T+1,

with Wf,m,T+1 = ∆f,mCf,m,T∆f,m − Cf,m,T , for m = 1, . . . , P. Then, we ap-

ply Whittle’s algorithm (Section 3.2.2) to transform the PARCOR coefficients,

β
(P )
f,P,T+h, into TV-VAR coefficients A

(P )
j,T+h and D

(P )
j,T+h, for j = 1, . . . , P. Finally,

we obtain the h-steps ahead forecasts using

x̂T+h =
P∑
i=1

Â
(P )
i,T+hx̂T+h−i + ϵ̂

(P )
T+h, ϵ̂

(P )
T+h ∼ N (0, Sf,P,T ).
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3.3 Simulation Studies

In this section we illustrate our proposed approach in the analysis of simulated

data. The relative performances of the models considered here, including that of

the proposed TV-VPARCOR, were assessed by computing the average squared

error (ASE) between the estimated spectral density matrix and the true spectral

density matrix.

3.3.1 Bivariate TV-VAR(2) Processes

We simulated 50 bivariate time series of length T = 1034 from the following

TV-VAR(2) model:

xt = Φ1,txt−1 + Φ2,txt−2 + ϵt, ϵt ∼ N (0, I2),

with

Φ1,t =

r1,t cos( 2π
λ1,t

) ϕ1,1,2,t

0 r2,t cos( 2π
λ2,t

)

 and Φ2,t =

−r2
1,t ϕ2,1,2,t

0 −r2
2,t

 ,

where r1,t = 0.1
T

t + 0.85, r2,t = −0.1
T

t + 0.95, r3,t = 0.2
T

− 0.9, r4,t = 0.2
T

+ 0.7,

λ1,t = 15
T

t + 5, and λ2,t = −10
T

t + 15. We also considered three different scenarios

for the values of ϕ1,1,2,t, and ϕ2,1,2,t, namely (i) ϕ1,1,2,t = ϕ2,1,2,t = 0 for all t; (ii)

ϕ1,1,2,t = −0.8 and ϕ2,1,2,t = 0 for all t; and (iii) ϕ1,1,2,t = r3,t and ϕ2,1,2,t = r4,t.

Note that when ϕ1,1,2,t = 0 and ϕ2,1,2,t = 0 for all t (scenario (i)), the two

processes are uncorrelated and the true squared coherence between the first and

second component ρ2
12(t, ω) = 0 for all t and ω. Figure 3.1 shows the true log

spectral densities g11(t, ω) and g22(t, ω) in this scenario. The true log spectral

densities and square coherences for scenarios (ii) and (iii) are shown, respectively,
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in the top row plots of Figures 3.4 and 3.5.

Figure 3.1: Case ϕ1,1,2 = 0. Left: True log spectral density g11(t, ω). Right: True
log spectral density g22(t, ω).

We fit bivariate TV-VPARCOR models to each of the 50 simulated bivariate

time series for t = 1 : 1024 under cases (i), (ii) and (iii). We assess the forecasting

performance of the model in all cases using the last 10 observations not included in

the fit, i.e., t = 1025 : 1034. We set a maximum of order Pmax = 5. The elements of

the diagonal component of discount factor matrices ∆f,m and ∆b,m, δf,m and δb,m

respectively, were chosen from a grid of values in (0.995, 1). We set the hyperpa-

rameters nf,m,0 = nb,m,0 = 1, Sf,m,0 = Sb,m,0 = I2, mf,m,0 = mb,m,0 = (0, 0, 0, 0)′

and Cf,m,0 = Cb,m,0 = I4. For comparison, we also fit TV-VAR models to the

simulated bivariate data with model orders ranging from 1 to 5. Multivariate

DLM representations of bivariate TV-VAR(m) processes were considered for each

m = 1, . . . , 5. Each TV-VAR representation has an 4m-dimensional state param-

eter vector. For each model order a single optimal discount factor, δm was chosen

from a grid of values in (0.995, 1). Furthermore, in order to provide a similar model

setting to the one we used in our TV-VPARCOR approach, the covariance matrix

at the observational level in the DLM formulation for each TV-VAR(m) was also

specified following the approach of Triantafyllopoulos (2007).
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Figure 3.2: Top: BLF-scree plots of the 50 realizations of the for scenarios (i)
and (ii). Bottom: BLF-scree plot for scenario (iii) and optimal model orders for
scenario (ii).

Figure 3.2 shows the BLF-scree plots obtained from the PARCOR approach

for each of the 50 datasets under the three scenarios for model orders m = 1, . . . , 5.

We see that in all scenarios the BLF-scree plots indicate that the optimal model

order is P = 2. We also computed the DIC as explained in the previous section

for each model order m = 1, . . . , 5 and each dataset under the three scenarios.

The bottom right plot in Figure 3.2 shows the distributions of the optimal model

orders chosen by the TV-VPARCOR and TV-VAR approaches for scenario (ii).

We see that the TV-VPARCOR and TV-VAR approaches lead to very similar

results and model order 2 is adequately chosen as the optimal model order in this

scenario for most of the 50 datasets. Similar results were obtained for scenarios
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(i) and (iii).

Figures 3.3, 3.4 and 3.5, summarize posterior inference obtained from the

TV-VPARCOR approach using a model order of 2 for the three scenarios. Esti-

mated spectral densities were obtained from the posterior means of the approxi-

mate smoothing distributions of the forward and backward PARCOR coefficient

matrices over time. The estimated log spectral densities displayed in the figures

were obtained by averaging over the 50 simulated datasets. The bivariate TV-

VPARCOR model is able to adequately capture the structure of the individual

spectral densities and also that of the squared coherences. From these figures

we also see that in scenarios (ii) and (iii) the second series has stronger impact

on the first one and therefore their coherence is stronger. The TV-VPARCOR

model is able to adapt and adequately capture this feature in the case in which

the off-diagonal coefficients in the VAR process are non-zero and constant over

time (scenario (ii)), and also when these coefficients are non-zero and time-varying

(scenario (iii)).

Figure 3.3: Case with ϕ1,1,2,t = ϕ2,1,2,t = 0. Left: Estimated average log spectral
density of the first component. Middle: Estimated average log spectral density of
the second component. Right: Estimated average squared coherence.

In order to compare the performance of the TV-VPARCOR and TV-VAR

models in estimating the various time-frequency representations, we computed

the mean and standard deviations of the average squared error (ASE) for each of
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Figure 3.4: Case with ϕ1,1,2,t = −0.8 and ϕ2,1,2,t = 0 for all t. Top: True log
spectral density g1,1(t, ω) (left), true log spectral density g2,2(t, ω) (middle), true
squared coherence ρ2

1,2(t, ω) (right). Bottom: Estimated ĝ1,1(t, ω) (left), estimated
ĝ2,2(t, ω) (middle), estimated ρ̂2

1,2(t, ω) (right).

the models in each of the three simulation scenarios. Similar to equation (2.19)

in Chapter 2 Section 2.3, the ASE of spectral density matrix is defined as follows

(Ombao et al., 2001)

ASEn = (TL)−1
T∑
t=1

L∑
l=1

(log ĝ(t, ωl) − log g(t, ωl))2 , (3.16)

where ωl = 0, 0.001, 0.011, . . . , 0.5. Note that we have n = 50 simulated data sets

for each of the three scenarios. Table 3.1 summarizes the mean and standard

deviations of the ASE based on ASEn for the three scenarios. Note that the simu-

lated data are actually generated from TV-VAR models, not from TV-VPARCOR

models, so we expect TV-VAR models to do better in terms of ASE for this spe-

cific simulation study. Nevertheless the proposed TV-VPARCOR approach has
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Figure 3.5: Case with ϕ1,1,2,t = r3,t and ϕ2,1,2,t = r4,t. Top: True log spectral den-
sity g1,1(t, ω) (left), true log spectral density g2,2(t, ω) (middle), true squared co-
herence ρ2

1,2(t, ω) (right). Bottom: Estimated ĝ1,1(t, ω) (left), estimated ĝ2,2(t, ω)
(middle), estimated ρ̂2

1,2(t, ω) (right).
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comparable performance in terms of estimating the time-frequency characteristics

of the original process while being computationally more efficient. In fact, Table

Case (i): ϕ1,1,2,t = ϕ2,1,2,t = 0
Model g11 g22 ρ2

12
TV-VPARCOR 0.0246(0.0183) 0.0255(0.0147) 0.0008(0.0006)

TV-VAR 0.0171(0.0068) 0.0186(0.0080) 0.0009(0.0005)
Case (ii): ϕ1,1,2,t = −0.8, ϕ2,1,2,t = 0

Model g11 g22 ρ2
12

TV-VPARCOR 0.0284(0.0118) 0.0238(0.0086) 0.0027(0.0023)
TV-VAR 0.0254(0.0073) 0.0253(0.0081) 0.0023(0.0011)

Case (iii): ϕ1,1,2,t = r3,t, ϕ2,1,2,t = r4,t
Model g11 g22 ρ2

12
TV-VPARCOR 0.1227 (0.0418) 0.3289 (0.0732) 0.0281 (0.0189)

TV-VAR 0.1001 (0.0258) 0.3747 (0.0729) 0.0188 (0.0062)

Table 3.1: Mean ASE values and corresponding standard deviations (in paren-
theses) for the log-spectral densities and log squared coherences obtained from
TV-VPARCOR and TV-VAR models of order 2 for the TV-VAR(2) simulated
data for t = 1 : 1024.

3.2 presents the computation times for both models averaging over the 50 realiza-

tions in each case. We see that even for this example with only two time series

components and a model order of 2, the TV-VPARCOR models require almost a

quarter of the computation time required by the TV-VAR models. As the model

order and the number of time series components increase, differences in computa-

tional time will be more pronounced, making the TV-VPARCOR approach more

efficient for modeling large temporal datasets.

Finally, Table 3.3 shows the MSE values for the 10-steps ahead forecasts

(t = 1025 : 1034) and corresponding standard deviations for the TV-VPARCOR

and the TV-VAR models for the 3 scenarios. The MSE values for both models are

comparable, with the TV-VPARCOR MSE being smaller than that for the TV-

VAR in case (iii), which corresponds to the case in which some of the off-diagonal
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Model Case (i) Case (ii) Case (iii)
TV-VPARCOR 2.54s 2.48s 2.71s

TV-VAR 8.98s 8.95s 8.36s

Table 3.2: Computation times (in seconds) for TV-VPARCOR and TV-VAR
models.

parameters are non-zero and varying over time.

Model Case (i) Case (ii) Case (iii)
TV-VPARCOR 2.556 5.624 6.378

TV-VAR 2.548 5.408 6.594

Table 3.3: MSE values for the 10-steps ahead forecast (t = 1025 : 1034) and
corresponding standard deviations (in parentheses) obtained from TV-VPARCOR
and TV-VAR models for the TV-VAR(2) simulated data.

3.3.2 20-dimensional TV-VAR(1)

We analyze data simulated from a 20-dimensional non-stationary TV-VAR(1)

process with T = 300 in which the (i, j) elements of the matrix of VAR coefficients

at time t, Φt, are given as follows:

Φt(i, j) =



0.7 + 0.2
299 × t for all i = j, i = 1, . . . , 10,

−0.95 + 0.2
299 × t for all i = j, i = 11, . . . , 20,

0.9 for (i, j) ∈ {(1, 5), (2, 15)},

−0.9 for (i, j) ∈ {(6, 12), (15, 20)},

0 otherwise.

for t = 1, . . . , 300. In addition, we assume Ω = 0.1I20.

We fit TV-VPARCOR models considering Pmax = 3. Note that the PARCOR

approach with Pmax = 3 requires fitting 6 multivariate DLMs with state-space
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parameter vectors of dimension 400. Alternatively, working directly with TV-

VAR representations with Pmax = 3 requires fitting 3 multivariate DLMs with

state-space parameter vectors of dimension 400 for model order 1, 800 for model

order 2, and 1200 for model order 3. The TV-VAR model representation leads to

a rapid increase of the dimension of the state-space vector with the model order,

which significantly reduces the computational efficiency, particularly for large and

even moderate T. The TV-VPARCOR approach requires fitting more multivariate

DLMs, but the dimensionality of the state-space vectors remains constant with the

model order. This is an important advantage of the TV-VPARCOR approach. In

fact, the TV-VPARCOR model required 585s of computation time for Pmax = 3,

while the TV-VAR model required 3379s with the same Pmax = 3 value. Posterior

computations were completed in both cases using a MacBookPro13 with Intel

Core i5, with 2 GHz (1 Processor). Note also that, for a given model order the

PARCOR approach can be further optimized in terms of computational efficiency,

as the forward and backward DLMs can run in parallel.

We assumed prior hyperparameters m0,·,m = 0 and C0,·,m = I400 for the

forward and backward PARCOR models. The elements of the diagonal component

of discount factor matrices, δf,m and δb,m, were chosen from a grid of values in

(0.99, 1). As mentioned above we also fit TV-VAR models with model orders

going from 1 to 3 using similar prior hyperparameters and discount factors. For

both types of models the DIC picked model order 1 as the optimal model order,

which is the corresponding true model order in this case. Both types of models

led to similar posterior inference of the time-frequency spectra.

Here we only show the results from the TV-VPARCOR approach. Figure 3.6

shows the true and estimated log spectral densities from the TV-VPARCOR model

for 4 components of the 20-dimensional time series, namely, components 1, 2, 8
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Figure 3.6: Top: True log spectral densities of time series components 1, 2, 8 and
15. Bottom: estimated log spectral densities of the same components obtained
from the PARCOR approach with model order 1.

Figure 3.7: Top: True coherence between components 1 and 5, 2 and 15, 5 and
12, and 15 and 20. Bottom: Corresponding estimated coherences obtained from
the PARCOR model.
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and 15. Figure 3.7 shows the true and estimated coherences between components

1 and 5, components 2 and 15, components 5 and 12, and components 15 and 20.

Overall we see that the TV-VPARCOR approach adequately captures the space-

time characteristics of the original multivariate non-stationary time series process.

Furthermore, the TV-VPARCOR approach led to similar posterior estimates of

the VAR coefficients over time to those obtained from using a DLM representation

of a TV-VAR (see Figure A.1 in the Supplementary Material).

3.3.3 Additional Simulation Studies

Here we consider two additional simulation studies with higher model orders

to highlight the performance of the TV-VPARCOR in multivariate cases that

require a much larger number of parameters.

We first evaluate the impact on model performance in terms of the num-

ber of time series for models with model order P = 10. We simulated data from

multivariate non-stationary TV-VAR(10) models with a number of series increas-

ing from 2 to 5. We simulated the 2-dimensional time series as follows. We

took 2 of the EEG channels analyzed in Section 3.4.1 and fitted a 2-dimensional

TV-VAR(10) to such series. We then simulated a 2-dimensional dataset using

the estimated TV-VAR(10) parameters for these EEG series. Similarly, we then

generated a 3-dimensional time series dataset by using the estimated parameters

obtained from fitting a TV-VAR(10) to 3 EEG channels (including the previous 2

channels). We repeated this procedure to obtain 4-dimensional and 5-dimensional

datasets, adding one EEG time series at the time. We then fit TV-VAR(10) and

TV-VPARCOR(10) to the 4 simulated datasets of dimensions 2, 3, 4 and 5. Fig-

ure 3.8 compares the performance of the two approaches in terms of the running

time and the ASE as the number of time series increases. We see that in both
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cases the TV-VPARCOR approach leads to much smaller running times and also

smaller ASE values as the number of time series increases. Figure 3.9 shows the

true and estimated spectral density estimates obtained from the TV-VAR(10)

and TV-VPARCOR(10) for the first time series component obtained from the 5-

dimensional models that considered 5 channels. We see that the TV-VPARCOR

leads to more accurate estimates of the spectral density.

Figure 3.8: Left plot: Running time against number of time series. Right plot:
estimated ASE against number of time series.

Figure 3.9: Left: True spectral density of the first time series in the first simula-
tion. Middle: PARCOR estimated spectral density of the first time series. Right:
TV-VAR estimated spectral density of the first time series.

We then consider another simulated scenario to evaluate the performance of

the TV-VPARCOR approach in terms of the model order. For this we simulated
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data from 6-dimensional TV-VAR models with model orders ranging from 1 to

10. Again we used the EEG data to simulate these data by first fitting TV-

VAR models of orders 1 to 10 to the EEG data and then using the estimated

parameters from these models to simulate the data. Figure 3.10 shows a graph of

the ASE values obtained from fitting TV-VAR and TV-VPARCOR models to the

different datasets simulated under different models orders. The plot shows that

the TV-VPARCOR approach leads to lower ASE values, or comparable values,

to those obtained from the TV-VAR models for all the model orders. Note that

ASE values for different model orders are not comparable, as they are based on

different datasets.

Figure 3.10: ASE values against model order.

Finally, we also considered a study in which the data was simulated from a

piecewise time series process. Once again the proposed TV-VPARCOR approach

outperformed the TV-VAR approach. The results of this study are included in

the Section A.2 of Supplementary Material.
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3.4 Case Studies

3.4.1 Analysis of multi-channel EEG data

In this section, we jointly analyzed the same K = 9 of the EEG channels

as Section 2.4.2 of Chapter 2 by using a multivariate TV-VPARCOR model. We

considered a maximum model order of Pmax = 20 and discount factor values on

a grid in the (0.99, 1] range (with equal spacing of 0.001). We further assumed

that the discount factor values were the same across channels. This assumption

was based on previous analyses of the individual channels using univariate TVAR

models that showed similar optimal discount values for the different channels. We

set nf,m,0 = nb,m,0 = 1, and Sf,m,0 = Sb,m,0 = 2000I9 for all m. In addition, we

set the same initial prior parameters mf,m,0 = mb,m,0 = 0 and Cf,m,0 = Cb,m,0 =

1000I81. The computation time to run the search for the optimal model with

Pmax = 20 in this data set was 1,142 seconds in an Inter(R) Xeon(R) server with

CPU E5-4650 with 2 cores and 2.70GHz. The optimal model order was found to

be 5 (see Figure A.4 in the Supplementary Material) and so, the results presented

here correspond to a TV-VPARCOR model with this order. Higher order models

were also fitted leading to similar but slightly smoother results in terms of the

estimated spectral density, coherence and partial coherence.

Figure 3.11 displays estimated log spectral densities of channels Cz, Pz and

F4. We note that the multi-channel EEG data are dominated by frequency compo-

nents in the lower frequency band (below 18Hz). Furthermore, each EEG channel

shows a decrease in the dominant frequency over time, starting around 5Hz and

ending around approximately 3Hz. This decrease in the dominant frequency was

also found in West et al. (1999). Channels Cz and Pz are more similar to each

other than to channel F4 in terms of their log-spectral densities. The three chan-
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Figure 3.11: Estimated log-spectral densities for channels Cz, Pz and F4.

nels show the largest power around the same frequencies, however, channel F4

displays smaller values in the power log-spectra than those for channels Cz and

Pz. The remaining channels also show similarities in their spectral content (not

shown).

Figure 3.12 shows estimated squared coherences (top) and estimated squared

partial coherences (bottom) between channels Pz and Cz, F4 and Cz, and F4

and Pz. Channels Pz and Cz show a very strong coherence over time across

almost all the frequency bands under 35Hz. On the other hand, channel F4 shows

strong coherence with channels Pz and Cz across frequencies below 15-18 Hz at

the beginning of the seizure. After the initial 10-15s, and approximately until

about 50s, there is a strong coherence between F4 and Pz and Cz only at the

dominant frequency of 3-5Hz that dissipates towards the end of the seizure. The

partial coherence across pairs of channels is the frequency domain version of the

squared correlation coefficient between relationship between pairs of components

after the removal of the effects of all the other components. Figure 3.12 shows

that the estimated squared partial coherences between Pz and Cz, F4 and Cz and

F4 and Pz are essentially negligible for most frequency bands over the seizure

course. This makes sense due to the fact that most of the 9 EEG channels are

so strongly coherent across different frequency bands over the entire period of
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recording. The estimated squared partial coherence between channels Pz and Cz

is large for frequencies below 5Hz only at the very beginning of the seizure. These

findings are consistent with results from the analysis of these data in West et al.

(1999) and Prado et al. (2001).

Figure 3.12: Top plots: Squared coherence between Pz and Cz, F4 and Cz, and
F4 and Pz, respectively. Bottom plots: Squared partial coherence between Pz and
Cz, F4 and Cz, and F4 and Pz.

Finally, we also estimated direct transfer functions and partial directed co-

herence between channels as explained in Chapter 1 Section 1.1.1. Figure 3.13

shows the estimated time-varying PDC among channels Pz, Cz, and F4. Channel

Pz is located in the parietal region, channel Cz is a central channel and F4 is a

frontal right channel. From the PDC and DTF (not shown) results we see that

channel Pz has the largest directed and cascade flow towards channels Cz and F4.

There is also some PDC activity flow between channels Cz and Pz.
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Figure 3.13: Estimated partial directed coherence among the three channels Pz,
Cz and F4.

3.4.2 Analysis of Multi-Location Wind Data

We analyze wind component data derived from median wind speed and di-

rection measurements taken every 4 hours from June 1st 2010 to August 15th in 3

stations in Northern California. These data were obtained from the Iowa Environ-

mental Mesonet (IEM) Automated Surface Observing System (ASOS) Network,

a publicly available database (see http://mesonet.agron.iastate.edu/ASOS/).

ASOS stations are located at airports and take observations and basic reports

from the National Weather Service (NWS), the Federal Aviation Administration

(FAA), and the Department of Defense (DOD). For additional information about

the ASOS measurements see NOA (1998). Here we analyze time series data from

Monterey, Salinas and Watsonville, 3 stations located near the Monterey Bay.

We use the TV-VPARCOR approach for joint analysis of the six-dimensional

time series corresponding to the wind time series components for the 3 stations.
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We set Pmax = 10 and consider discount factor values on a grid in the (0.9, 1] range.

We assume that discount factor values were the same across components for the

3 stations. We set the prior hyperparameters as follows: nf,m,0 = nb,m,0 = 1, and

Sf,m,0 = Sb,m,0 = 5I6, mf,m,0 = mb,m,0 = 0 and Cf,m,0 = Cb,m,0 = 10I36 for all m.

The computation time to run the search for the optimal model with Pmax = 10 in

this data set was 35.72 seconds in an Inter(R) Xeon(R) server with CPU E5-4650

with 2 cores and 2.70GHz. The optimal model order chosen by the approximate

DIC calculation is P = 3 (see Figure A.5 in the Supplementary Material). For

this model order we found that the optimal discount factors were 0.97, 0.97 and

0.99, respectively, for each of the 3 levels of the forward PARCOR model, and

0.98, 0.98 and 0.99 for each of the 3 levels of the backward PARCOR model.

Figure 3.14 shows the estimated log spectral densities of the East-West com-

ponent (X component) and the North-South component (Y component) for each

location. We can observe that there is a dominant quasi-periodic behavior around

the 24 hour period for the East-West (X) components in Monterey and Salinas,

as well as the North-South (Y) component in Watsonville. This quasi-periodic

behavior is also present, although is less persistent over time, in the East-West

component in Watsonville and the North-South components in Monterey and Sali-

nas. The observed quasi-periodic pattern observed in the estimated log-spectral

for these three locations is consistent with the fact that stronger winds are usually

observed in the afternoons/evenings during the summer in these locations, while

calmer winds are observed during the rest of the day. Note also that the quasi-

periodic daily behavior is more persistent over the entire set of summer months

for the North-South component than the East-West component in Watsonville,

while the quasi-periodic behavior is more persistent in the East-West component

than in the North-South component in Monterey and Salinas.
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Figure 3.14: Top row: Estimated log-spectral densities of the East-West (X)
components for Monterey, Salinas and Watsonville. Middle row: Estimated log-
spectral densities of the North-South (Y) components for Monterey, Salinas and
Watsonville.
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Figure 3.15: Left: Lower bound of a 95% posterior interval of the log-spectral
density of the North-South (Y) component in Watsonville. Middle: Estimated
mean log-spectral density of the North-South (Y) component in Watsonville.
Right: Upper bound of 95% posterior interval of the log-spectral density of the
North-South (Y) component in Watsonville.

Approximate uncertainty quantification for the spectral density matrix esti-

mates, or any functions of this matrix, can also be obtained by sampling from the

approximate posterior distributions of the TV-VPARCOR model parameters as

illustrated in Figure 3.15. The figure provides approximate 95% posterior bounds

for the log-spectral density of the North-South wind component in Watsonville.

The dominant quasi-periodic behavior around the 24 period also appears in the

lower and upper uncertainty bands, indicating that there is less uncertainty around

this frequency band than around, say, higher periods (low-frequency) bands that

display a much larger uncertainty. There is also very low power estimated at rela-

tively low periods (higher frequencies) of 14 hours and below and these estimates

also show very low uncertainty.

Figure 3.16 shows the estimated squared coherences between each pair of wind

components across the three locations. There is a very strong coherence between

Monterey and Salinas in the East-West (X) components for periods above 15

hours, with the strongest relationship observed around 24 hours. We also observe

that in general, there is a strong coherence between all the components around the

24 hours period. This coherence relationship tends to be more marked across some
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locations during the month of June (e.g., between the North-South components of

Monterey and Salinas). Furthermore, the estimated squared partial coherence (see

Figure A.6 in the Supplementary Material) between the East-West components of

Monterey and Salinas also shows that there is a relatively large linear relationship

between these components for periods above 13 hours even after removing of the

effect of all the other components for these locations and also after removing the

effect of the wind components in Watsonville.

The TV-VPARCOR model can also be used for forecasting as described

in Section 3.2.6. Figure 3.17 shows 48 hours forecasts obtained from the TV-

VPARCOR model for the North-South wind component in Monterey. We see

that the model adequately captures the general future behavior of this time series

component.

3.5 Discussion

In this chapter, we present a computationally efficient approach for analysis

and forecasting of non-stationary multivariate time series. We propose a multivari-

ate dynamic linear modeling framework to describe the evolution of the PARCOR

coefficients of a multivariate time series process over time. We use approximations

in this multivariate TV-VPARCOR setting to obtain computationally efficient and

stable inference and forecasting in the time and time-frequency domains. The ap-

proximate posterior distributions derived from our approach are all of standard

form. We also provide a method to choose the optimal number of stages in the

TV-VPARCOR model based on an approximate DIC calculation. In addition,

our model can provide reliable short term forecasting.

The proposed framework provides computational efficiency and excellent per-

formance in terms of the average squared error between the true and estimated
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Figure 3.16: Top row: Estimated squared coherences between the East-West
(X) component and North-South (Y) component in Monterey, Salinas and Wat-
sonville. Middle row: Estimated squared coherences between the East-West (X)
components of Monterey and Salinas, Monterey and Watsonville, and Salinas and
Watsonville. Bottom row: Estimated squared coherences between the North-
South components in Monterey and Salinas, Monterey and Watsonville, and Sali-
nas and Watsonville.
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Figure 3.17: Observed Monterey North-South (Y component) Wind Component
(dots), smoothed estimates obtained from the posterior mean values (solid blue
line) and corresponding 90% bands (gray shade), 48 hours forecast (dotted red
line) and corresponding 90% bands (gray shade).

time-varying spectral densities as shown in extensive simulation studies and in

the analysis of two multivariate time series data sets. The TV-VPARCOR model

representations also lead to very significant reduction in computational time when

compared to TV-VAR model representations, particularly for cases in which we

have model orders larger than 2-3 and more than a handful of time series compo-

nents.

In addition to simulation studies we have shown that the TV-VPARCOR

approach can be successfully used to analyze real multivariate non-stationary time

series data. We presented the analysis of non-stationary multi-channel EEG data

and also the analysis and forecasting of multi-location wind data. In the EEG case,

our model was able to adequately detect the main time-frequency characteristics

of individual EEG channels as well as the relationships across multiple channels

over time. For the multi-location wind component data, our model detected a

quasi-periodic pattern through the estimated spectral densities of each time series
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component which is consistent with the expected behavior of these components

during the summer for locations near the Monterey Bay area. The model was also

able to describe the time-varying relationships across multiple components and

locations and led to reasonable short term forecasting.

We note that the proposed hierarchical time-varying PARCOR and the TV-

VPARCOR approaches developed in Chapters 2 and 3, respectively, are compu-

tationally efficient compared to standard state-space representations of TV-VAR

models. However, they still present issues of overfitting, as in many practical set-

tings we may expect sparsity in the model parameters or have situations in which

some of parameters should remain constant over the entire observation period. In

addition, in some large-dimensional settings, the proposed DIC under PARCOR

framework (Section 3.2.4) may tend to select lower model order because of the

over-penalization on the number of parameters. In order to solve these issues, we

consider model extensions that place shrinkage priors on the time-varying PAR-

COR coefficients allowing for automatical selection of the model order, inducing

shrinkage on the time-varying paramters towards zero or some other constant

value over time. In Chapter 4 we develop and evaluate a new class of shrinkage

TV-VPARCOR models.
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Chapter 4

Multivariate Time Series Analysis

and Forecasting via Time-Varying

PARCOR Shrinkage Models

In this chapter, we induce a shrinkage structure in the TV-VPARCOR frame-

work to address the overfitting issues mentioned in Section 3.5. After fully speci-

fying the model structure we present the details of MCMC and ISVB algorithms

for exact and approximate posterior inference, respectively. The performance of

the proposed shrinkage TV-VPARCOR model is illustrated in simulation studies

and in the analysis of multi-location wind component data.

4.1 Introduction

We propose a flexible and computationally efficient approach for analysis and

forecasting of multi-dimensional time series that has the following features. First,

following Chapter 3, we use a modeling framework in the partial autocorrelation

(PARCOR) domain rather than a time-domain approach. This results in more
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parsimonious and flexible representations that greatly reduce computational time

while simultaneously achieving accuracy in model fitting and prediction. Sec-

ond, following Bitto and Frühwirth-Schnatter (2019), we use a prior structure

that induces shrinkage and allows the model parameters to be time-varying or

static as needed, providing greater flexibility and significantly reducing overfit-

ting. Rather than using this prior structure in time-domain models as done in

Bitto and Frühwirth-Schnatter (2019), we place the prior on the PARCOR model

parameters. Third, we provide two algorithms for achieving posterior inference.

One algorithm uses Markov chain Monte Carlo (MCMC) methods to obtain full

posterior inference. An alternative algorithm develops a computationally effi-

cient and accurate importance sampling variational Bayes (ISVB) approach for

approximate posterior inference. The ISVB algorithm is one of the main contri-

butions of this chapter as it allows users to obtain reliable approximate inference

in large-dimensional settings in this flexible multivariate model that also incorpo-

rates shrinkage priors. Once full or approximate posterior inference is obtained

for the multivariate time-varying PARCOR coefficients, posterior estimates for

the implied TV-VAR coefficient matrices and innovations covariance matrices can

be obtained via the Whittle’s algorithm discussed in Section 3.2.2. Posterior es-

timates (Section 3.2.5 of Chapter 3) for any function of such matrices, such as

the multivariate spectra and functions of the spectra, can also be obtained, via

the equation (1.6) in Chapter 1 Section 1.1.1. The performance of shrinkage TV-

VPARCOR model is illustrated in simulation studies (Section 4.4) and in the

analysis of wind component data (Section 4.5).
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4.2 The TV-VPARCOR shrinkage model

4.2.1 Time-varying variance-covariance matrices

We follow the PARCOR lattice representation of the TV-VAR model devel-

oped in Section 3.2.1 of Chapter 3. In order to model the time-varying forward

and backward variances Ωf,m,t and Ωb,m,t in equations (3.1) and (3.2), we consider

triangular reductions as proposed in Lopes et al. (2016). Here we detail this for-

mulation only for Ωf,m,t. A similar approach is used for Ωb,m,t. More specifically,

we take

Φf,m,tΩf,m,tΦ′
f,m,t = Σf,m,t, (4.1)

where Σf,m,t is a diagonal matrix with diagonal elements σ2
i,f,m,t for i = 1, . . . , K,

and Φf,m,t is a lower triangular matrix with ones on the main diagonal. We rewrite

Φf,m,t = IK + Φ∗
f,m,t, where IK is the K × K identity matrix and Φ∗

f,m,t is a lower

triangular matrix with zeros on the main diagonal. We can rewrite the forward

lattice structure (3.1) by considering the transformation f̃
(m)
t = Φf,m,tf

(m)
t , such

that

f
(m−1)
t = β

(m)
f,m,tb

(m−1)
t−m + Φ−1

f,m,tf̃
(m)
t , f̃

(m)
t ∼ N (0, Σf,m,t). (4.2)

Further arrangements lead to

f
(m−1)
t = Γ(m)

f,m,tb
(m−1)
t−m + Φ∗

f,m,t

(
−f

(m−1)
t

)
+ f̃

(m)
t , f̃

(m)
t ∼ N (0, Σf,m,t), (4.3)

where Γ(m)
f,m,t = Φf,m,tβ

(m)
f,m,t. Now, the transformed forward prediction errors f̃

(m)
it

for i = 1, . . . K, are all independent and follow normal distributions N (0, σ2
i,f,m,t).
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Finally, the model can be recast as a multivariate dynamic regression, i.e.,

f
(m−1)
t = Λf,m,tx

(m−1)
f,t + f̃

(m)
t , f̃

(m)
t ∼ N (0, Σf,m,t), (4.4)

where Λf,m,t = (Γ(m)
f,m,t, Φ∗

f,m,t) is the K ×2K matrix with time-varying coefficients

λij,f,m,t in row i and column j. Note that λij,f,m,t = 0 for j > K +i−1. In addition,

x
(m−1)
f,t = ((b(m−1)

t−m )′, (−f
(m−1)
t )′)′ is a 2K-dimensional column vector.

4.2.2 Additional model structure and prior specifications

We begin by specificying the structure of the time-varying parameters λij,f,m,t

in (4.4). These parameters are assumed to follow independent random walks:

λij,f,m,t = λij,f,m,t−1 + wij,f,m,t, wij,f,m,t ∼ N (0, θij,f,m), (4.5)

with initial distribution λij,f,m,0 ∼ N (λij,f,m, θij,f,mpij,f,m,0). We implement a con-

jugate prior on pij,f,m,0 as proposed in Bitto and Frühwirth-Schnatter (2019), that

is, we assume pij,f,m,0 ∼ G−1(νp, (νp − 1)cp) with hyperparameters cp = 1 and

νp = 20. Priors for λij,f,m and θij,f,m are detailed below. Furthermore, and again

following an approach similar to that in (Bitto and Frühwirth-Schnatter, 2019),

we implement a non-centered parametrization of the DLM model (Frühwirth-

Schnatter and Wagner, 2010) by applying a standardized transformation on

λij,f,m,t as follows:

λij,f,m,t = λij,f,m +
√

θij,f,mλ̃ij,f,m,t, t = 0, . . . , T. (4.6)

Here,
√

θij,f,m denotes the standard deviation of the error in the random walk

state equation for the jth coefficient in the ith equation (4.5). Thus, using (4.6),
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the ith (i = 1, . . . , K) component of the forward PARCOR lattice equation (4.4)

is given by

f
(m−1)
it = λi,f,mx

(m−1)
f,t + λ̃i,f,m,t

√
Θi,f,mx

(m−1)
f,t + f̃

(m)
it , f̃

(m)
it ∼ N (0, σ2

i,f,m,t),

(4.7)

where λi,f,m = (λi,1,f,m, . . . , λi,K+i−1,f,m, 0, . . . , 0), is a 2K-dimensional row vector,

λ̃i,f,m,t = (λ̃i,1,f,m,t, . . . , λ̃i,K+i−1,f,m,t, 0, . . . , 0), is also a 2K-dimensional row vec-

tor, and finally,
√

Θi,f,m = diag(
√

θi,1,f,m, . . . ,
√

θi,K+i−1,f,m, 0, . . . , 0) is a 2K ×2K

diagonal matrix.

Then the evolution process in (4.5) now becomes a random walk with stan-

dard normal independent increments, i.e.,

λ̃ij,f,m,t = λ̃ij,f,m,t−1 + w̃ij,f,m,t, w̃ij,f,m,t ∼ N (0, 1), (4.8)

and initial value λ̃ij,f,m,0 ∼ N (0, pij,f,m,0).

We impose a normal-gamma shrinkage prior (Griffin and Brown, 2010) on

the static components λij,f,m and
√

θij,f,m. Other shrinkage priors can be con-

sidered, but normal-gamma shrinkage priors facilitate the implementation of the

importance sampling variational Bayes algorithm for approximate inference while

showing comparable or improved performance than other shrinkage priors in our

simulation studies.

Due to the flexibility of the lattice structure, we can induce the shrinkage

priors starting at stage m = 1 or only consider shrinkage after some certain

stage m0. Once again, our extensive simulation studies have shown that imposing

shrinkage priors for stages m = 2, . . . , P leads to more stable results than using

shrinkage priors for all stages m = 1, . . . , P, when there is evidence that the
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model order is above 1. For stage m = 1 we propose using the PARCOR prior

specification defined in Section 3.2.3, and for m > 1 we use a hierarchical normal-

gamma prior for
√

θij,f,m for i = 1 : K and j = 1 : K + i − 1, i.e.,

√
θij,f,m|ξ2

ij,f,m ∼ N
(
0, ξ2

ij,f,m

)
, ξ2

ij,f,m|aξi,f , κ2
i,f ∼ G

(
aξi,f , aξi,fκ

2
i,f/2

)
(4.9)

κ2
i,f ∼ G(d1, d2), aξi,f ∼ E(bξ), (4.10)

The prior variance ξ2
ij,f,m controls the local shrinkage. The global shrinkage is

controlled by κ2
i,f which is specific for each time series, but shared across j and

m. We assume κ2
i,f follows a gamma distribution with fixed hyperparameters d1

and d2. The parameter aξi,f controls the tail behavior of the prior. A smaller

value of aξi,f will lead to a distribution p(
√

θij,f,m|ξ2
ij,f,m) with heavier tails and will

place more mass at zero. We assume that aξi,f follows an exponential distribution

with a fixed hyperparameter bξ ≥ 1 as in Griffin and Brown (2010) and Bitto and

Frühwirth-Schnatter (2019). Setting aξi,f = 1 leads to the Bayesian Lasso prior

(Belmonte et al., 2014).

Similarly, we consider the following prior on λij,f,m for i = 1 : K and j = 1 :

K + i − 1:

λij,f,m|τ 2
ij,f,m ∼ N (0, τ 2

ij,f,m), τ 2
ij,f,m|aτi,f , ν2

i,f ∼ G(aτi,f , aτi,fν
2
i,f/2), (4.11)

ν2
i,f ∼ G(e1, e2), aτi,f ∼ E(bτ ). (4.12)

For the prior specification of σ2
i,f,m,t, for i = 1, . . . , K and m = 1, . . . , P, we

consider two cases: the homoscedastic case with σ2
i,f,m,t = σ2

i,f,m for all t, and

the heteroscedastic case with σ2
i,f,m,t time-dependent. In the homoscedastic case,

we follow Bitto and Frühwirth-Schnatter (2019) and use a hierarchical conjugate
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prior distribution as follows,

σ2
i,f,m|ni,f,m,0, si,f,m,0 ∼ G−1

(
ni,f,m,0

2 ,
ni,f,m,0si,f,m,0

2

)
,

si,f,m,0 ∼ G(gi,f,m,0, ni,f,m,0Gi,f,m,0),

with hyperparameters ni,f,m,0, gi,f,m,0 such that Gi,f,m,0 =

gi,f,m,0/[E(σ2
i,f,m)(n2

i,f,m,0 − ni,f,m,0)], with ni,f,m,0 = 2.5 and gi,f,m,0 = 5,

where E(σ2
i,f,m) is a prior estimate of σ2

i,f,m.

For heteroscedasticity, we implement a stochastic volatility (SV) specification

as in Jacquier et al. (2002), where σ2
i,f,m,t = exp{hi,f,m,t} and the log volatility

hi,f,m,t follows an AR(1) process:

hi,f,m,t|hi,f,m,t−1, µhi,f,m, ϕhi,f,m, (σhh,i,f,m)2 ∼ N
(
M, (σhi,f,m)2

)
,

where M = µhi,f,m + ϕhi,f,m(hi,f,m,t−1 − µhi,f,m). The initial state hi,f,m,0 is assumed

to follow the stationary distribution of the AR(1) process, i.e.

hi,f,m,0|µhi,f,m, ϕhi,f,m, (σhi,f,m)2 ∼ N
(
µhi,f,m, (σhi,f,m)2/(1 − (ϕhi,f,m)2

)
.

As in Kastner and Frühwirth-Schnatter (2014) we consider independent priors,

i.e.,

p
(
µhi,f,m, ϕhi,f,m, (σhi,f,m)2

)
= p(µhi,f,m)p(ϕhi,f,m)p

(
(σhi,f,m)2

)
,

where µhi,f,m ∼ N (bµ, Bµ), (ϕhi,f,m + 1)/2 ∼ B(aϕ, bϕ), and (σhi,f,m)2 ∼

G(1/2, 1/ (2Bσ)) , with hyperparameters bµ = 0, Bµ = 100, aϕ = 20, bϕ = 1.5,

and Bσ = 1.

The equations above complete the model structure for the forward lattice

equations. The backward lattice structure has a similar form with different re-

88



gressors x
(m−1)
b,t = ((f (m−1)

t+m )′, −(b(m−1)
t )′)′ and their corresponding time-varying

coefficients, that is,

b
(m−1)
t = Λb,m,tx

(m−1)
b,t + b̃

(m)
t , b̃

(m)
t ∼ N (0, Σb,m,t), (4.13)

which, if triangular reduction and the non-centered parameterization are applied,

results on the following equation for the ith component:

b
(m−1)
it = λi,b,mx

(m−1)
b,t + λ̃i,b,m,t

√
Θi,b,mx

(m−1)
b,t + b̃

(m)
it , b̃

(m)
it ∼ N (0, σ2

i,b,m,t), (4.14)

where λi,b,m = (λi,1,b,m, . . . , λi,K+i−1,b,m, 0, . . . , 0), is a 2K-dimensional row vector,

λ̃i,b,m,t = (λ̃i,1,b,m,t, . . . , λ̃i,K+i−1,b,m,t, 0, . . . , 0), is also a 2K-dimensional row vector,

and,
√

Θi,b,m = diag(
√

θi,1,b,m, . . . ,
√

θi,K+i−1,b,m, 0, . . . , 0) is a 2K × 2K diagonal

matrix. The shrinkage prior structure on the static model parameters and the

prior structure on σ2
i,b,m,t have the same form as those specified above for the

forward model. A random walk evolution is assumed on the λ̃i,·,b,m,t. We omit the

details due to space limitations.

4.3 Full and approximate posterior inference

In this section we discuss two algorithms for posterior inference. The first

algorithm uses a simulation-based Markov Chain Monte Carlo approach to obtain

full posterior inference. The second algorithm uses an importance sampling vari-

ational Bayes (ISVB) approach to obtain fast approximate posterior estimation.

This second algorithm is one of the key contributions of this paper as it allows

user to obtain fast and reliable approximate posterior estimation of the proposed

models for relatively large-dimensional multivariate settings.
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4.3.1 General MCMC algorithm for the forward PARCOR

shrinkage model

Our proposed MCMC algorithm is detailed below. Before starting the algo-

rithm, we fix the potential model order P and set all the prior hyperparameters,

i.e., we set νp, cp, d1, d2, bξ, e1, e2, bτ , and the variance hyperparameters ni,·,m,0,

gi,·,m,0 for the homoscedastic case or bµ, Bµ, aϕ, bϕ and Bσ in the time-varying

case. Therefore, at each stage m, m = 1 : P, the list of forward parameters that

are sampled is given by {λ̃f,m,0:T , λf,m, θf,m, σ2
f,m, ξ2

f,m, τ 2
f,m, aξf , aτf , pf,m,0, sf,m,0},

for the homoscedastic case. The list will also include hf,m,0:T , µh
f,m, ϕh

f,m and σ2
f,m

for the heteroscedastic case. There is a similar set of parameters for backward

PARCOR model.

MCMC algorithm

1. Set the initial values for the forward and backward prediction errors as

f
(0)
t = b

(0)
t = yt, for t = 1 : T. For all m = 1 : P , set initial values for

pij,f,m,0 as well as initial values for the set of forward and backward fixed

parameters Ψi,f,m = (λi,f,m,
√

θi,f,m) and Ψi,b,m = (λi,b,m,
√

θi,b,m), with
√

θi,·,m = (
√

θi,1,·,m, . . . ,
√

θi,K+i−1,·,m)′ and also set initial values for σ2
i,·,m

(or σ2
i,·,m,t in the heterocedastic case), for i = 1, . . . , K.

2. Use {f
(0)
t } and {b

(0)
t } as vectors of responses in the observational level equa-

tions (4.7) and (4.14), respectively. Combine these equations with the corre-

sponding evolution equations and use the forward filtering Backward Sam-

pling (FFBS) algorithm (Carter and R.Kohn, 1994, Frühwirth-Schnatter,

1994) to sample the forward and backward latent states λ̃i,f,m,0:T and

λ̃i,b,m,0:T , for m = 1 conditional on all rest of parameters, for i = 1, . . . , K.
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3. For m = 1, sample the scale parameters of the initial distribution pij,f,m,0

for each i = 1, . . . , K, and j = 1 : K + i − 1, from

pij,f,m,0|λ̃j,f,m,0 ∼ G−1
(

νp + 1
2 , (νp − 1)cp + 1

2λ̃2
j,f,m,0

)
.

4. For i = 1 : K, jointly sample the forward static components Ψi,f,m

for m = 1 from a multivariate Gaussian distribution denoted as

p(Ψi,f,1|λ̃i,f,1,t, τ 2
i,f,1, ξ2

i,f,1, f
(0)
it ). Here τ 2

i,f,m collects the τ 2
ij,f,m and ξ2

i,f,m

collects the ξ2
ij,f,m for all j for a given i and m. Similarly, jointly sample the

backward static component Ψi,b,1 from a multivariate Gaussian distribution.

The computation details can be found in Section B.1.2 of the Supplemen-

tary Material. We also implement the ancillarity-sufficiency interweaving

strategy (ASIS) introduced by Yu and Meng (2011) that for this particular

case redraws the forward and backward static components Ψi,f,m and Ψi,b,m

in order to improve the mixing performance. Again, details can be found in

Section B.1.3 of the Supplementary Material.

5. Sample ξ2
ij,f,1 and τ 2

ij,f,1, for i = 1 : K and j = 1 : K + i − 1, from condition-

ally independent generalized inverse Gaussian distributions given in Section

B.1.4 of the Supplementary Material. Sample ξ2
i,b,1 and τ 2

ij,f,1 in a similar

way.

6a. For the homoscedastic case, sample σ2
i,f,m for m = 1 given the rest of pa-

rameters from conditionally independent inverted gamma distributions, i.e.,

σ2
i,f,m|... ∼ G−1

(
ni,f,m,0 + T

2 ,
1
2

(
ni,f,m,0si,f,m,0 +

T∑
t=1

(
f

(m−1)
it − Zi,f,m,tΨi,f,m

)2
))

,

where Zi,f,m,t is defined in Section B.1.2 of the Supplementary Material.
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Then sample si,f,m,0 from a Gamma distribution as follows

si,f,m,0|σ2
i,f,m,t ∼ G

(
gi,f,m,0 + ni,f,m,0

2 , ni,f,m,0

(
Gi,f,m,0 + 1

2σ2
i,f,m

))
.

6b. For the heteroscedastic case, we implement an interweaving strategy

for boosting MCMC estimation of SV models (Kastner and Frühwirth-

Schnatter, 2014) to sample hi,f,m,0:T , as well as µhi,f,m, ϕhi,f,m, and (σhi,f,m)2

for m = 1.

7. Use the observational equations (4.7) and (4.14) to obtain the new series of

forward and backward prediction errors {f̃
(1)
t } and {b̃

(1)
t }, for t = 1 : T, at

stage m = 1. Using f
(m)
t = Φ−1

f,m,tf̃
(m)
t and b

(m)
t = Φ−1

b,m,tb̃
(m)
t , we obtain f

(1)
t

and b
(1)
t .

8. Repeat steps 2 − 7 above for m = 2 : P until all the forward and backward

PARCOR coefficients Γ(m)
f,m,t, Γ(m)

b,m,t, Φ∗
f,m,t and Φ∗

b,m,t have been sampled for

all m = 1, . . . , P. Then, samples of Ωf,m,t can be obtained using (4.1) with

the sampled Φ∗
f,m,t and the sampled Σf,m,t obtained from steps above.

9. Sample (κ2
i,f |a

ξ
i,f , ξ2

i,f ) and (κ2
i,b|a

ξ
i,b, ξ2

i,b), as well as (ν2
i,f |aτi,f , τ 2

i,f ) and

(ν2
i,b|aτi,b, τ 2

i,b) for i = 1 : K from the gamma distributions given in Section

B.1.5 of the Supplementary Material.

10. Sample aξi,f and aτi,f as well as aξi,b and aτi,b, for i = 1 : K, by using a random

walk Metropolis-Hasting (MH) step with proposal distribution log aξ,new
i,· ∼

N (log aξi,·, c2
ξ) and log aτ,new

i,· ∼ N (log aτi,·, c2
τ ). Details can be found in Section

B.1.6 and B.1.7 of the Supplementary Material.

11. Transform the sampled Γ(m)
f,m,t, Γ(m)

b,m,t to obtain samples of the forward and

backward PARCOR coefficients β
(m)
f,m,t and β

(m)
b,m,t, for m = 1 : P.
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12. Finally, use the sampled β
(m)
f,m,t and β

(m)
b,m,t, for m = 1 : P, and Whittle’s

algorithm to obtain the sampled forward and backward TV-VAR coefficients

A
(P )
m,t and D

(P )
m,t for m = 1 : P and all t.

4.3.2 Importance Sampling Variational Bayes algorithm

for approximate inference

In this section we develop an Importance Sampling Variational Bayes (ISBV)

algorithm for fast approximate posterior inference in the multivariate TV-

VPARCOR shrinkage model. Variational Bayes (VB) is an optimization method

for fast, approximate posterior inference that can also be implemented for settings

that deal with state-space models (Ostwald et al., 2014).

In order to improve the computational efficiency, we consider only the ho-

moscedastic case and assume that σ2
i,f,m,t = σ2

i,f,m for all t. Users only need to

specify positive scalars ni,f,m,0 and ni,b,m,0 that correspond to prior degrees of free-

dom as well as si,f,m,0 and si,b,m,0 which are prior estimates of σ2
i,f,m and σ2

i,b,m,

respectively. In addition, we also fix pij,f,m,0 = 1 for all i, j and m.

Let Πf,m =
{
λ̃f,m,1:T , σ2

f,m, λf,m, Θf,m, ξ2
f,m, τ 2

f,m, aξf , κ2
f , aτf , ν2

f

}
for m = 1 :

P, denote the set of all the parameters in the forward multivariate PARCOR

model. Variational Bayes (VB) is an optimization method for fast, approximate

posterior inference that can also be implemented for settings that deal with state-

space models (Ostwald et al., 2014). Within the VB framework, we approximate

the posterior distribution p(Πf,m|f (m)
1:T ) with an arbitrary variational distribution

r(Πf,m) which minimizes the Kullback-Leibler (KL) divergence between these

distributions (Kullback and Leibler, 1951). Such optimal variational distribution

maximizes their corresponding evidence lower bound (ELBO), therefore, in order

to find this distribution we optimize the ELBO.
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A common choice for the family of variational distributions over which we op-

timize the ELBO assumes a factorization over different sets of variables known as

a mean-field approximation (Beal, 2003). Here we use the following factorization

r(Πf,m) = r(λ̃f,m,1:T , σ2
f,m)r(λf,m)r(Θf,m)r(τ 2

f,m)r(ξ2
f,m)r(κ2

f )r(ν2
f )r(aξf )r(aτf ).

(4.15)

This factorization makes an assumption of stochastic independence between some

sets of variables. It has been shown that for each component of the factorization,

the ELBO is maximized by r(Πf,m,c) such that

r(Πf,m,c) ∝ exp
{∫

log p(f (m−1)
1:T , Πf,m)r(Πf,m,−c)dΠf,m,−c

}
, (4.16)

where Πf,m,c denotes the set of variables in the component being maximized and

Πf,m,−c denotes the variables not in that component of the partition. We will also

use the notation < g(Πf,m,c) > defined as:

< g(Πf,m,c) >=
∫

log g(Πf,m)r(Πf,m,−c)dΠf,m,−c. (4.17)

The general variational algorithm is described below.

1. Fix the potential model order P . Set all the hyperparameters, i.e.,

e·,1, e·,2, bτ , d·,1, d·,2, bξ, pij,f,m,0, ni,·,m,0 and si,·,m,0 for i = 1 : K, and

m = 1 : P. Set the initial values for the forward and backward predic-

tion errors as f
(0)
t = b

(0)
t = yt, for t = 1, . . . , T . Set l = 0 and initialize

< λ̃i,·,m,t >{l}, < λi,·,m >{l}, <
√

Θi,·,m >{l} for all i, t and m.

2. For each i = 1 : K use the components of {f
(0)
t } and {b

(0)
t } as the responses
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in the observational level equations (4.7) and (4.14), respectively, and also

substitute λi,f,m by < λi,f,m >{l} and λi,b,m by < λi,b,m >{l} in these equa-

tions. Then, use the forward filtering backward smoothing algorithm (West

and Harrison, 1997) to update the forward and backward variational approx-

imations < λ̃i,f,m,0:T >{l+1}, < λ̃i,b,m,0:T >{l+1}, as well as < σ2
i,f,1 >{l+1} and

< σ2
i,b,1 >{l+1} which can be obtained by the sequential filtering equations in

Supplementary Material Section B.2.1.

3. For i = 1, . . . , K, and j = 1, . . . , K + i − 1, update < λij,f,1 >{l+1}

with the approximate distributions for the forward static components as

r{l+1}(λij,f,1) = N
(
µ

{l+1}
λij,f,1

, Σ{l+1}
λij,f,1

)
. Details appear in Supplementary Mate-

rial Section B.2.2. A similar update is used to obtain < λij,b,1 >{l+1} and

the approximate distribution of the backward static component r{l+1}(λij,b,1)

with the corresponding Gaussian distribution.

4. For i = 1, . . . , K, and j = 1, . . . , K + i−1, update <
√

θij,f,1 >{l+1} with the

approximate distribution of the forward standard deviation of the latent pro-

cess via r{l+1}(
√

θij,f,1) = N
(

µ
{l+1}√
θij,f,1

, Σ{l+1}√
θij,f,1

)
. The details are in Section

B.2.3 of the Supplementary Material. Similarly, update <
√

θij,b,1 >{l+1}>

and the approximate distribution r{l+1}(
√

θij,b,1) using the corresponding

Gaussian distribution.

5. For i = 1, . . . , K, and j = 1, . . . , K + i − 1, update < τ 2
ij,f,1 >{l+1} with

variational distribution

r{l+1}(τ 2
ij,f,1) = GIG

(1
2 ,

1
2 < ν2

i,f >{l}, < λ2
ij,f,1 >{l+1}

)
.

6. For i = 1, . . . , K, and j = 1, . . . , K + i − 1, update < ξ2
ij,f,1 >{l+1} with
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variational distribution

r{l+1}(ξ2
ij,f,1) = GIG

(1
2 ,

1
2 < κ2

i,f >{l}, < θij,f,1 >{l+1}
)

7. Use observational equations (4.7) and (4.14) to obtain the new series of

forward and backward prediction errors, {< f̃
(m)
t >{l+1}} and {< b̃

(m)
t >{l+1}

}, for t = 1, . . . , T, at stage m = 1. Using

< f
(m)
t >{l+1} =< Φ−1

f,m,t >{l+1}< f̃
(m)
t >{l+1},

< b
(m)
t >{l+1} =< Φ−1

b,m,t >{l+1}< b̃
(m)
t >{l+1},

we obtain {< f
(1)
t >{l+1}} and {< b

(1)
t >{l+1}}.

8. Repeat steps 2 − 7 above until all the forward and backward estimates

< λ̃·,m,1:T >{l+1}, < σ2
·,m >{l+1}, < λ·,m >{l+1}, < Θ·,m >{l+1}, < τ 2

·,m >{l+1},

< ξ2
·,m >{l+1} have been updated for m = 1, . . . , P.

9. Transform all the estimated forward and backward regression coefficients

back to obtain estimated forward and backward PARCOR coefficients

< β
(m)
f,m,0:T >{l+1} and < β

(m)
b,m,0:T >{l+1}, for m = 1, . . . , P. The estimated

< Ωf,m >{l+1} can be obtained using decomposition (4.1).

10. For i = 1, . . . , K, update < ν2
i,f >{l+1} with variational distribution

r{l+1}(ν2
i,f ) = G (e1 + A, e2 + B) ,
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where

A = (K + i − 1)P < aτi,f >{l},

B =
< τ̄ 2

i,f >{l+1}

2 < aτi,f >{l} (K + i − 1)P,

< τ̄ 2
i,f >{l+1} = 1

(K + i − 1)P

K+i−1∑
j=1

P∑
m=1

< τ 2
ij,f,m >{l+1}

 .

11. For i = 1, . . . , K, update < κ2
i,f >{l+1} with variational distribution

r{l+1}(κ2
i,f ) = G (d1 + C, d2 + D) ,

where

C = (K + i − 1)P < aξi,f >{l},

D =
< ξ̄2

i,f >{l+1}

2 < aξi,f >{l} (K + i − 1)P,

< ξ̄2
i,f >{l+1} = 1

(K + i − 1)P

K+i−1∑
j=1

P∑
m=1

< ξ2
ij,f,m >{l+1}

 .

12. For i = 1, . . . , K, update r{l+1}(aξi,f ) and r{l+1}(aτi,f ) using importance sam-

pling (IS) based on log-normal proposal distributions for each case. Further

details of this IS step can be found in the Supplemental Material Section

B.2.5 and B.2.4.

13. Calculate the change of L2-norm of < Π·,1:P >{l+1}. If the change is smaller

than some ϵ, ϵ = 10−5 for example, then all parameters < Π·,1:P >{l+1} have

converged. If not, set l = l + 1, and repeat steps 2 − 12.

14. Once all parameters r(Π·,1:P ) have converged, use estimated β
(m)
f,m,t and

β
(m)
b,m,t, for m = 1, . . . , P, and the Whittle algorithm (Section 3.2.2 of Chapter
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3) to obtain the forward and backward TV-VAR coefficient A
(P )
m,t and D

(P )
m,t

for m = 1, . . . , P .

4.4 Simulation Studies

We illustrate our proposed approach in the analysis of simulated data. We

use the ASE (see equation (3.16) in Section 3.3.1) between the estimated spectral

density matrix and the true spectral density matrix as a performance criterion.

We consider the TV-VPARCOR proposed in Chapter 3 as a benchmark model

for comparison.

4.4.1 Bivariate TV-VAR(2) processes

We simulated 100 bivariate time series of length T = 1024 from the following

TV-VAR(2) model defined in Section 3.3.1 of Chapter 3. In scenario (i) the true

square coherence ρ2
1,2(t, ω) is 0 for all t and ω, since the off-diagonal elements

a1,1,2,t = a2,1,2,t = 0 for all t. Figure 4.1 shows the true spectral densities g11(t, ω)

and g22(t, ω) in this scenario. The true log spectral densities and square coherences

for scenario (ii) are shown in Figure 4.2. Scenario (iii) is not displayed due to space

limitations. We fit the proposed TV-VPARCOR models with Bayesian Lasso

and Normal-Gamma priors to each of the 100 simulated bivariate time series for

t = 1 : 1024 under cases (i), (ii) and (iii). Full and approximate posterior inference

of the models under these two shrinkage priors are obtained via MCMC and the

ISVB algorithm, respectively. We set a maximum of model order Pmax = 5, and set

the hyperparameters of the priors as df,i = db,i = ef,i = eb,i = 0.001, for i = 1, 2.

For the Normal-Gamma shrinkage prior, we set the additional hyperparameters

bξ = bτ = 10. We also set the variances hyperparameters to bµ = 0, Bµ = 100, aϕ =
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Figure 4.1: Simulation scenario (i) with a1,1,2,t = a2,1,2,t = 0. Top row: True log
spectral density g11(t, ω) (left); true log spectral density g22(t, ω) (center); true
squared coherence (right). Bottom row: Corresponding estimated log spectral
densities (left and center) and estimated squared coherence.

20, bϕ = 1.5, and Bσ = 1. In MCMC algorithm, and we set ni,m,0 = 1 and

si,·,m,0 = 2 for m = 1 : P . In order to obtain more numerical stable results,

the shrinkage prior is only considered for m > 1. For stage m = 1 we use the

conjugate prior structure defined in Section 3.2.3. For each of the 100 simulated

time series in all three scenarios, we draw 2, 000 MCMC samples after a burn-in of

length 13, 000. We implemented the variational Bayes algorithm with a maximum

number of 15, 000 iterations. The algorithm stops when the change of L2-norm of

parameters is smaller than 10−5. For comparison, we also fit the TV-VPARCOR

with non-shrinkage conjugate priors developed in Chapter 3 to the simulated

bivariate data with fixed model order 5.

Figures 4.1 and 4.2 summarize the posterior inference obtained from the

shrinkage TV-VPARCOR approach with Normal-Gamma priors for scenarios (i)
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Figure 4.2: Case with a1,1,2,t = −0.8 and a2,1,2,t = 0 for all t. Top: True log
spectral density g11(t, ω) (left), true log spectral density g22(t, ω) (middle), true
squared coherence ρ2

1,2,(t, ω) (right). Bottom: Posterior mean of ĝ11(t, ω) (left),
posterior mean of ĝ22(t, ω) (middle), posterior mean of ρ2

1,2(t, ω) (right)

and (ii). Estimates shown were obtained with the MCMC algorithm. The pos-

terior means of the log spectral densities displayed in the figures are obtained

by averaging over the 100 simulated data sets. The bivariate shrinkage TV-

VPARCOR model not only is able to adequately capture the structure of the

individual spectral densities and that of the squared coherences, but also shrinks

those autoregressive coefficients to zero after lag 2 (Figure B.1, B.3 and B.5 in the

Supplementary Material). We also show the results obtained with the variational

Bayes algorithm in the Supplementary Material Section B.3.

To compare the performance of the shrinkage TV-VPARCOR and TV-

VPARCOR models in estimating the various time-frequency representations, we

computed the mean and standard deviations of the ASE for each of the mod-

els in each of the three simulation scenarios. Table 4.1 summarizes the mean
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and standard deviations of the ASE based on ASEn for the three scenarios. The

shrinkage TV-VPARCOR(5) model with the MCMC and variational Bayes al-

gorithms outperform TV-VPARCOR(5) in all scenarios. Especially, for case (i),

shrinkage priors shrink all the cross-elements in the PARCOR coefficients to zero

so that the estimated average squared coherence shown in Figure 4.1 is shrinked to

zero. Table 4.2 presents the computation times for the TV-VPARCOR with non-

shrinkage priors, as well as the TV-VPARCOR with Bayessian Lasso and Double

Gamma TV-VPARCOR(5) priors obtained with the MCMC and variational Bayes

algorithms averaging over the 100 realizations in each case. Note that the ISVB

algorithm converges quickly before the maximum iterations. The models were run

on a system with CPU Inter(R) i7-9750H with 6 cores and 2.60GHz.

4.4.2 20-Dimensional TV-VAR(1)

We show the performance of our shrinkage TV-VPARCOR models with

sparse synthetic data. We simulate synthetic data from the 20-dimensional non-

stationary TV-VAR(1) process with T = 300 used in Section 3.3.2 of Chapter

3. The (i, j) elements of the matrix of VAR coefficients at time t, are given as

follows:

A
(1)
t,i,j =



0.7 + 0.2
299 × t for all i = j, i = 1, . . . , 10,

−0.95 + 0.2
299 × t for all i = j, i = 11, . . . , 20,

0.9 for (i, j) ∈ {(1, 5), (2, 15)},

−0.9 for (i, j) ∈ {(6, 12), (15, 20)},

0 otherwise.

for t = 1, . . . , 300. In addition, we assume Ω = 0.1I20.

Note that in Section 3.3.2 of Chapter 3, the optimal order for the TV-
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Table 4.1: Mean ASE values and corresponding standard deviations (in paren-
theses) for the log-spectral densities and squared coherences obtained from shrink-
age TV-VPARCOR models with the MCMC and variational Bayes algorithms,
and for TV-VPARCOR models with no shrinkage (top row for each case). All
models assumed P = 5.

Case (i): a1,1,2,t = a2,1,2,t = 0
Model g11 g22 ρ2

12
Non-shrinkage conjugate 0.0363(0.0178) 0.0468(0.0246) 0.0031(0.0042)
Bayesian Lasso (MCMC) 0.0317(0.0118) 0.0390(0.0144) 0.00078(0.00077)

Bayesian Lasso (VI) 0.0307(0.0128) 0.0390(0.0141) 0.00057(0.0007)
Double Gamma (MCMC) 0.0308(0.0143) 0.0387(0.0155) 0.00035(0.00066)

Double Gamma (VI) 0.0324(0.0138) 0.0402(0.0149) 0.00049(0.0007)
Case (ii): a1,1,2,t = −0.8, a2,1,2,t = 0

Model g11 g22 ρ2
12

Non-shrinkage conjugate 0.0645(0.0331) 0.0506(0.0175) 0.0097(0.0127)
Bayesian Lasso (MCMC) 0.0448(0.0138) 0.0436(0.0129) 0.0048(0.0021)

Bayesian Lasso (VI) 0.0399(0.0118) 0.0421(0.0119) 0.0042(0.0020)
Double Gamma (MCMC) 0.0389(0.0148) 0.0406(0.0158) 0.0039(0.0024)

Double Gamma (VI) 0.0388(0.0111) 0.0426(0.0117) 0.0038(0.0019)
Case (iii): a1,1,2,t = r3,t, a2,1,2,t = r4,t

Model g11 g22 ρ2
12

Non-shrinkage conjugate 0.1006(0.2338) 0.0809(0.1493) 0.0099(0.0110)
Bayesian Lasso (MCMC) 0.0794(0.0409) 0.0694(0.0261) 0.0054(0.0033)

Bayesian Lasso (VI) 0.0439(0.0210) 0.0457(0.0138) 0.0041(0.0028)
Double Gamma (MCMC) 0.0527(0.0368) 0.0504(0.0231) 0.0041(0.0040)

Double Gamma (VI) 0.0430(0.0219) 0.0479(0.0132) 0.0040(0.0027)

VPARCOR analysis was P = 1 according to their DIC criterion. Therefore,

we fit shrinkage TV-VPARCOR models considering P = 1, to make a fair com-

parison across the different models. We implement the Bayesian Lasso and the

Normal-Gamma priors. Here we present approximate inference results obtained

with the variational Bayes algorithm. For both prior distributions, we assumed

prior hyperparameters df,i = db,i = ef,i = ef,i = 0.001, for i = 1, 2. In addition,

nf,m,0 = nb,m,0 = 1 and si,f,m,0 = si,b,m,0 = 2. We run the variational Bayes algo-

rithm with a maximum number of 30, 000 iterations. The algorithm stops when
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Table 4.2: Average computation times (in seconds) for TV-VPARCOR, TV-
VPARCOR with Bayesian Lasso and Double Gamma priors

Model Case (i) Case (ii) Case (iii)
TV-VPARCOR(5) 2.56 5.62 6.38

Bayesian Lasso (MCMC) 560.95 555.95 564.4
Bayesian Lasso (VI) 49.64 46.17 46.56

Double Gamma (MCMC) 568.09 563.67 564.44
Double Gamma (VI) 47.47 46.41 47.2

the change in the L2-norm of the model parameters is smaller than 10−3.

Figure 4.3 shows the true and estimated log spectral densities from the shrink-

age TV-VPARCOR model for 4 components of the 20-dimensional time series,

namely, components 1, 2, 8, and 15. Figure 4.4 shows the true and estimated

squared coherences between components 1 and 5, components 2 and 15, com-

ponents 5 and 12, and components 15 and 20. The time-frequency characteristics

of the original multivariate non-stationary time series process can be captured by

the shrinkage TV-VPARCOR models. The estimated squared coherence is shrunk

to zero by TV-VPARCOR models. Moreover, the shrinkage TV-VPARCOR can

detect the slowly time-varying of spectral density, like the second component of

time series.

To evaluate the shrinkage effects of shrinkage PARCOR model, we com-

pute the mean squared error on the TV-VAR coefficients obtained from the TV-

VPARCOR models with the Bayesian Lasso and the Normal Gamma priors, as

well as for the non-shrinkage conjugate priors. Table 4.3 shows that both shrinkage

PARCOR models outperform the original TV-VPARCOR model with conjugate

non-shrinkage priors because of the shrinkage effects.
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Figure 4.3: Top: True log spectral densities of time series components 1, 2, 8 and
15. Bottom: estimated log spectral densities of the same components obtained
from the shrinkage TV-VPARCOR approach with model order 1.

Figure 4.4: Top: True squared coherence between components 1 and 5, 2 and 15,
5 and 12, and 15 and 20. Bottom: Corresponding estimated squared coherences
obtained from the shrinkage TV-VPARCOR model.
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Table 4.3: The MSE on TVAR coefficients

Model MSE
Bayesian Lasso 0.002734
Normal Gamma 0.0009651
TV-VPARCOR 0.014

4.5 Analysis of Multi-Location Wind Data

In Section 3.4.2 of Chapter 3, we analyze median wind speed and direction

measurements taken every 4 hours from 1 June 2010 to 12 August in 3 stations

in the Northern California, namely: Monterey (MRY), Salinas (SNS) and Wat-

sonville (WVI). Therefore, the total number of series in this data set was 6, since

each location has measurements for two wind components. Here we illustrate

the performance of the shrinkage TV-VPARCOR models and the efficient vari-

ational inference by considering a larger data set with 10 locations resulting in

a 20-dimensional time series data set. In particular, we consider the 3 locations

above, i.e., Monterey (MRY), Salinas (SNS) and Watsonville (WVI) and add 7

more locations: Fairfield (SUU), Vacaville (VCB) and Napa County (APC) near

the San Francisco Bay area, and Sacramento (SAC), West Sacramento (SMF),

Fresno (FCH) and Merced (MCE), near the Central Valley area. The station lo-

cations are shown in Figure 4.5. For each station we have measurements of the

wind direction and wind speed which we transform into the East-West component

(X component) and the North-South component (Y component).

We apply the shrinkage TV-VPARCOR model with the Normal-Gamma prior

for joint analysis of the 20−dimensional time series corresponding to the wind time

series components for the 10 stations. As suggested in Section 3.4.2 of Chapter

3, the optimal model order chosen by the approximate DIC calculation is P = 3.

The posterior inference is obtained by the variational Bayes algorithm. We set
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Figure 4.5: The 10 locations of stations in northern and central California.

the prior hyperparameters as follows: nf,m,0 = nb,m,0 = 1, si,f,m,0 = si,b,m,0 = 5 for

all m, df,i = db,i = ef,i = eb,i = 10−4 for i = 1, 2. We set up the maximum number

of iterations to 10, 000. The algorithm stops when the change of L2-norm of all

parameters is smaller than 10−5.

Figure 4.6 shows the estimated log spectral densities of the East-West com-

ponent (X component) and the North-South component (Y component) for Mon-

terey, Salinas, Watsonville, Fairfield, Vacaville and Napa County. There is a strong

quasi-periodic behavior around the 24-hour period for the East-West (X) compo-

nents in Monterey and Salinas, as well as the North-South (Y) component in

Watsonville, which is consistent with results obtained in Chapter 3 Section 3.4.2.

This dominant quasi-periodic behavior around 24 hours also appears after the be-

ginning of July in the north-south component in Napa County. A less consistent

quasi-periodic daily behavior can be also found in the East-West component of

Vacaville and the North-South component of Fairfield and Vacaville after mid of

July. Due to the shrinkage priors the estimated power of the log spectral den-
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Figure 4.6: Estimated log spectral densities of the East-West (X) components
(rows 1 and 3) and North-South (Y) components (rows 2 and 4) for 6 stations,
such as Monterey, Salinas, Watsonville, Fairfield, Vacaville and Napa County.
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Figure 4.7: Top row: Estimated log-spectral densities of the East-West (X)
and North-South (Y) components for Sacramento and West Sacramento. Bottom
row: Estimated log-spectral densities of the East-West (X) and North-South (Y)
components for Fresno and Merced.

sities is smaller than the estimated power from TV-VPARCOR models without

shrinkage priors.

Figure 4.7 shows the log spectral densities of the East-West component and

North-South component for Sacramento, West Sacramento, Fresno and Merced.

The quasi-periodic daily pattern can be detected in East-West component for

Sacramento, West Sacramento and Fresno, as well as North-South component for

West Sacramento, Fresno and Merced.

We are particularly interested in the period between 22 hours and 26 hours.

The proposed shrinkage TV-VPARCOR model provides a method to conduct

inference on period-collapsed functionals. For example, the time-varying period-

collapsed spectral matrices are given by

g[22,26](t) =
∫ 4

22

4
26

g(t, ω)dω,
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where g(t, ω) is defined in Chapter 1 Section 1.1.1. Similarly, the time-varying

period-collapsed squared coherences between time series j and k is defined as

ρ̃2
jk(ω) =

∣∣∣∣∣
∫ 4

22

4
26

gjk(t, ω)dω

∣∣∣∣∣
2

/
{
g

[22,26]
jj (t)g[22,26]

kk (t)
}

,

where g
[22,26]
jj (t) =

∫ 4
22
4

26
gjj(t, ω)dω is the time-varying period-collapsed power of

time series j.

We can explore the behavior of the time-varying period collapsed squared

coherences across wind components for different locations. Figure 4.8 shows the

time-varying 22-26 hours period-collapsed squared coherence of the East-West (X)

components (left plot) between Salinas and the rest of the 9 locations. Similarly,

the right plot in Figure 4.8 shows the 22 − 26 hours period-collapsed squared

coherence of the North-South (Y) components between Salinas and rest of the 9

locations. Figure 4.9 shows similar plots of the time-varying 22-26 hours period-

collapsed squared coherence between Sacramento and rest of locations. For the

East-West (X) component, West Sacramento, Sacramento and Monterey, are

highly correlated with Salinas at period band between 22 hours and 26 hours

for the entire time period. Sacramento and West Sacramento are highly corre-

lated throughout the entire period and they also happen be very close locations.

The squared coherence between Salinas and Napa is strong at the beginning of

June, and then is decreasing over time. The period-collapsed squared coherences

of the North-South components between Salinas and rest of locations are increas-

ing after the mid of June. In addition, there are also increasing period-collapsed

squared coherences of the North-South component between Sacramento and rest

of locations after mid of June.

In order to evaluate the goodness of fit, we compute the mean square er-

ror (MSE) on the fitted residuals over the 20 time series components. The MSE
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Figure 4.8: The time-varying period-collapsed (period between 22 hours and 26
hours) squared coherence of East-West (X) component (left plot) and North-South
(Y) component (right plot) between Salinas and rest of 9 locations. The solid lines
represent Monterey Bay Area. The dashed lines represent Bay Area. The dotted
line represents Sacramento Valley. The dotdash line represents Central Valley.

was computed using the posterior mean of the TV-VPARCOR model parameters

under the three different prior settings, i.e., under the Bayesian lasso prior, the

Normal Gamma prior, and the non-shrinkage conjugate prior (Chapter 3). Once

again we assume the same model order P = 3 for the three different prior set-

tings. Table 4.4 shows that both shrinkage priors have the smaller MSE values

than those obtained under the non-shrinkage conjugate prior, which suggests that

the regularizing effect of the shrinkage priors on the TV-VPARCOR parameters

improves the fit.

Table 4.4: MSE of the smoothed time series

Model MSE
Bayesian Lasso 3.96
Normal Gamma 3.98
TV-VPARCOR 4.14
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Figure 4.9: The time-varying period-collapsed (period between 22 hours and
26 hours) squared coherence of East-West (X) component (left plot) and North-
South (Y) component (right plot) between Sacramento and rest of 9 locations.
The solid lines represent Monterey Bay Area. The dashed lines represent Bay
Area. The dotted line represents Sacramento Valley. The dotdash line represents
Central Valley.

4.6 Discussions

In this chapter, we propose a Bayesian shrinkage time-varying PARCOR

framework for multivariate time series. The shrinkage prior setting allows us to

automatically reduce time-varying PARCOR coefficients to static ones. We con-

sider the normal-gamma prior (Griffin and Brown, 2010) and Bayesian Lasso prior

(Belmonte et al., 2014) and use the non-centered parameterization (Frühwirth-

Schnatter and Wagner, 2010) on the dynamic multivariate PARCOR domain. An

MCMC algorithm for full posterior inference is developed. In addition, an ISVB

algorithm is also developed for fast approximate posterior inference. We illustrate

the performance of the proposed model by comparing the accuracy of the pro-

posed TV-VPARCOR shrinkage model with that of TV-VPARCOR model (Chap-

ter 3) in two simulation studies. In addition, we show that the TV-VPARCOR
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model with shrinkage priors can be successfully used to analyze multivariate non-

stationary wind component time series data, as illustrated in Section 4.5.
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Chapter 5

Conclusion

In this thesis, we develop a series of new flexible and computational efficient

methods for analysis and forecasting of multivariate and multiple non-stationary

time series in the PARCOR domain. First, we extend the univariate PARCOR

model (Yang et al., 2016) to the multivariate case. This approach showcases the

advantages of Bayesian lattice filter structure in terms of computational efficiency

for high-dimensional time series analysis. We develop a fast and accurate approx-

imate posterior inference scheme on the TV-VPARCOR coefficients by adapting

the approach of Triantafyllopoulos (2007) for estimating the covariance-variance

matrices at the observational level for the DLM PARCOR representations at each

stage of the lattice filter. We also specify the innovations at system levels using

discount factors. A couple of quantitative and qualitative model selection criteria

(e.g., DIC) are developed under the PARCOR framework. We use our model for

analysis and prediction of multi-location wind components time series data over a

period of time. These models allow us to detect quasi-periodic patterns through

the estimated spectral densities of each of the wind time series components, and

are useful for short-term forecasting. We also use our model to infer the time-

frequency characteristic of multi-channel EEG data from patients who received
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ECT. Second, we extend univariate PARCOR model to the case in which the

data analysis involves multiple, rather than multivariate, time series. A hierarchi-

cal PARCOR model is developed, which is more parsimonious and computational

efficient than the standard hierarchical state-space TVAR representations. We

analyze multiple EEG signals recorded from repeated trials to detect the common

underlying features without losing information. We illustrate these models in the

analysis of multi-trial brain signals. Finally, we propose a TV-VPARCOR frame-

work with Bayesian Lasso priors Park and Casella (2008) and Normal Gamma

priors Griffin and Brown (2010). We consider the non-centered parameterization

(Frühwirth-Schnatter and Wagner, 2010) on the TV-VPARCOR state-space rep-

resentation. These shrinkage priors allow us to shrink time-varying parameters

to static ones when the model is overfitting. We illustrate the performance of

the shrinkage TV-VPARCOR models in the analysis of multi-location wind com-

ponent temporal data from Northern California. The code used in this thesis is

available at https://github.com/Jayzhaowj/PARCOR.

Future research on PARCOR domain is promising. First, the multivariate

PARCOR model can be extended by adding latent structural level. For example,

in the analysis of group-level EEG data presented in Chapter 2, the hierarchi-

cal PARCOR model allows us to extract the common underlying time-frequency

features from the multiple recorded brain signals for each cortical cluster. How-

ever, it is impossible for this model to also capture the relationships between

cortical clusters. A possible approach to address this problem can be to consider

matrix-variate hierarchical dynamic models (MHDM) proposed by Landim and

Gamerman (2000). The observation level of MHDM can be modeled by the mul-

tivariate Bayesian lattice filters. The TV-VPARCOR coefficients in the structural

level can be decomposed into group-level effects and series-specific effects easily
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thanks to the parsimonious PARCOR representations. At the evolution level, the

random walk process can be implemented on the corresponding parameters. We

will also consider regularized TV-VPARCOR models by extending the approach

of Proietti and Giovannelli (2018), which proposes a regularized Durbin-Levinson

algorithm that imposes penalty weights controlled by trapezoidal kernels on the

PARCOR coefficients, to the multivariate case. Finally, we will consider spatio-

temporal extensions of the lattice filter approach to more adequately deal with

spatio-temporal data such as the multi-location wind component data.
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Appendix A

Supplementary Materials

A.1 Supplementary figures for the 20-

dimensional TV-VAR(1) example
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Figure A.1: True and estimate traces of the TV-VAR coefficients ϕ1,1,t, ϕ1,5,t,
ϕ6,12,t and ϕ5,12,t obtained from the TV-VPARCOR and TV-VAR approaches.

A.2 Simulation study: Piecewise time series

process

We simulated T = 1024 observations from the following piecewise TV-VAR

process:

xt =


Φ1,txt−1 + ϵt, 1 ≤ t ≤ 512,

Φ2,txt−1 + Φ3,txt−2 + ϵt, 513 ≤ t ≤ 1024,

with

Φ1,t =

0.35 −0.85

0 0.5

 , Φ2,t =

−0.45 −0.4

0 −0.32

 , Φ3,t =

−0.35 0

0.85 −0.21

 ,
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where ϵt ∼ N (0, I2).

Table A.1 shows a comparison between the mean ASE values for a TV-

VPARCOR model of order 2 and a TV-VAR model of order 2 for these simulated

data. We see that the TV-VPARCOR model has a much better performance than

the TV-VAR and is able to better adapt to the abrupt changes in the simulated

data.

Table A.1: Mean ASE values and corresponding standard deviations (in paren-
theses) obtained from TV-VPARCOR and TV-VAR models of order 2 for the
piecewise TV-VAR simulated data.

Piece-wise AR process
Model g11 g22 ρ2

12
TV-VPARCOR 0.180(0.057) 0.055(0.026) 0.005(0.003)

TV-VAR 0.985(0.154) 0.482(0.241) 0.097(0.054)

Figure A.2 shows the true and estimated TV-VPARCOR log-spectral density

and squared coherence. Uncertainty measures can also be obtained for any of these

quantities. For instance, Figure A.3 shows 95% posterior intervals for the squared

coherence. Once again, these plots show that the TV-VPARCOR model is able

to detect regime changes at unknown time points.

A.3 Supplementary figures for the multi-

channel EEG analysis
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Figure A.2: Case: Piecewise Stationary VAR Process. Top: True log spec-
tral density g1,1(t, ω) (left), true log spectral density g2,2(t, ω) (middle), true
squared coherence ρ2

1,2(t, ω) (right). Bottom: Estimated ĝ1,1(t, ω) (left), estimated
ĝ2,2(t, ω) (middle), estimated ρ̂2

1,2(t, ω) (right).

Figure A.3: Case: Piecewise VAR Process. Left: Lower 95% posterior band for
the squared coherence between two time series. Middle: Posterior mean of the
squared coherence. Right: Upper 95% posterior band for the squared coherence
between two time series.
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Figure A.4: Multi-channel EEG data: DIC values.

A.4 Supplementary figures for the multi-

location wind component data

Figure A.5: Multi-location wind components: DIC values.

120



Figure A.6: Top row: The partial coherences between East-West (X) Compo-
nents and North-South (Y) Components in Monterey, Salinas and Watsonville.
Middle row: The partial coherences between Monterey and Salinas, Monterey
and Watsonville, as well as Salinas and Watsonville in terms of East-West (X)
components. Bottom row: The partial coherences between Monterey and Salinas,
Monterey and Watsonville, as well as Salinas and Watsonville in terms of North-
South (Y) components.
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Appendix B

Algorithm details

B.1 MCMC Algorithm Details

B.1.1 MCMC Forward Filtering Backwards Sampling

Let illustrate the detail of sampling the forward latent states λ̃i,f,m,t for

i = 1, . . . , K by Forward Filtering Backward Sampling (FFBS) (see e.g. Carter

and R.Kohn, 1994, Frühwirth-Schnatter, 1994). The procedure of sampling the

backward latent states λ̃i,b,m,t. The algorithm is implemented for a slight modifi-

cation of the non-centered TVP model (4.7) and (4.5), given by:

f̄
(m−1)
it = λ̃i,f,m,tFi,f,m,t + f̃

(m)
it , f̃

(m)
it ∼ N (0, σ2

i,f,m,t), (B.1)

λ̃′
i,f,m,t = λ̃′

i,f,m,t−1 + w̃i,f,m,t, w̃i,f,m,t ∼ N (0, IK+i−1), (B.2)

with transformed response f̄
(m−1)
it = f

(m−1)
it − λi,f,mx

(m−1)
f,t , and the regressor

Fi,f,m,t =
√

Θi,f,mx
(m−1)
f,t . Let Di,f,m,t denote all the information available up to

time t at stage m for the ith equation of the forward model, with Di,f,m,t =

{Di,f,m,t−1, f
(m−1)
it }.
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• For t = 1, . . . , T, and i = 1, . . . , K, forward filtering:

- Posterior at t − 1 : p(λ̃i,f,m,t−1|Di,f,m,t−1) is approximately distributed

as

N (mi,f,m,t−1, Ci,f,m,t−1),

- The one-step ahead forecast mean and variance at time t are given by:

E(f̄ (m−1)
it |Di,f,m,t−1) ≈ F T

i,f,m,tmi,f,m,t−1,

and

V (f̄ (m−1)
it |Di,f,m,t−1) ≈ Qi,f,m,t = F T

i,f,m,tRi,f,m,tFi,f,m,t + σ2
i,f,m,t−1,

where Ri,f,m,t = Ci,f,m,t−1 + IK .

- Apply Bayes’ theorem and the above equations, we can obtain the

approximate posterior filtered distribution at time t as λ̃i,f,m,t|Di,f,m,t ≈

N (mi,f,m,t, Ci,f,m,t),

mi,f,m,t = mi,f,m,t−1 + Ui,f,m,tei,f,m,t,

Ci,f,m,t = Ri,f,m,t − Ui,f,m,tU
′
i,f,m,tQi,f,m,t,

Ui,f,m,t = Ri,f,m,tFi,f,m,tQ
−1
i,f,m,t.

• For i = 1, . . . , K, backward sampling p(λ̃i,f,m,t|Di,f,m,t|T ) :

- For t = T , sample λ̃i,f,m,t|Di,f,m,T ∼ N (mi,f,m,t, Ci,f,m,t).

- For t = T − 1, . . . , 1, sample λ̃i,f,m,t|Di,f,m,T ∼ N (mi,f,m,t|T , Ci,f,m,t|T ),

123



where

mi,f,m,t|T = mi,f,m,t + Ci,f,m,tR
−1
i,f,m,t+1(λ̃i,f,m,t+1 − mi,f,m,t),

Ci,f,m,t|T = Ci,f,m,t − Ci,f,m,tR
−1
i,f,m,t+1Ci,f,m,t.

B.1.2 Sample the static parameters

Conditional on the state process λ̃i,f,m,t, the observation equation (4.7) of the

non-centered state space model defines an expanded regression model:

f
(m−1)
it = Zi,f,m,tΨi,f,m + ϵi,f,m,t, ϵi,f,m,t ∼ N

(
0, σ2

f,m

)
, (B.3)

with regression coefficient Ψi,f,m = (λi,f,m,
√

Θi,f,m)′ and

Zi,f,m,t =
(
(x(m−1)

f,t )′, λ̃i,f,m,t ◦ (x(m−1)
f,t )′

)
is a 1 × 2K regressor ith row vector.

Where notation ◦ represents the element wise multiplication. Under the conjugate

prior Ψi,f,m ∼ N (Ψi,0, Σψ
i,f,m,0), where Ψi,0 = 0 and Σψ

i,f,m,0 = Diag
(
τ 2
i,f,m, ξ2

i,f,m

)
,

it follows that the conditional posterior distribution p(Ψi,f,m|·) is a multivariate

Gaussian distribution,

Ψi,f,m|Γ̃i,f,m,1:T , τ 2
i,f,m, σ2

i,f,m, f
(m−1)
i,1:T ∼ N2(K+i−1)

(
Ψi,T,f,m, Σψ

i,T,f,m

)
,

with

Ψi,T,f,m = Σψ
i,T,f,m

(
T∑
t=1

σ−2
i,f,mf

(m−1)
it Z ′

i,f,m,t

)
,

Σϕ
i,T,f,m =

(
T∑
t=1

σ−2
i,f,mZ ′

i,f,m,tZi,f,m,t + Σ−1,ψ
i,f,0

)−1

.
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B.1.3 Ancillarity-Sufficiency Interweaving Strategy

For each i = 1, . . . , K, j = 1, . . . , K, redraw the constant aij,f,m and the

square root of the process variance
√

θij,f,m through interweaving into the state

equation of the centered parameterization:

3.a Use the transformation λ
(m)
ij,f,m,t = λij,f,m+λ̃ij,f,m,t

√
θij,f,m to match the draws

of the latent process λ̃ij,f,m,0, . . . , λ̃ij,f,m,T in the non-centered to the latent

process λ
(m)
ij,f,m,0, . . . , λ

(m)
ij,f,m,T in the centered parameterization and store the

sign of
√

θij,f,m.

3.b Update λij,f,m and θij,f,m in the centered paramterization by sampling θnewij,f,m

from generalized inverse Gaussian posterior

θij,f,m| · · · ∼ GIG
(

T

2 ,
1

ξ2
ij,f,m

,
T∑
t=1

(λ(m)
ij,f,m,t − λ

(m)
ij,f,m,t−1)2 + (λ(m)

ij,f,m,0 − λij,f,m)2
)

,

and λnewij,f,m from the Gaussian posterior

λij,f,m| · · · ∼ N
(

λij,f,0τ
2
ij,f,m

τ 2
ij,f,m + θij,f,m

,
τ 2
ij,f,mθij,f,m

τ 2
ij,f,m + θij,f,m

)
.

B.1.4 Sample hyperparameters ξ2
ij,f,m and τ 2

ij,f,m

Sample the prior variance ξ2
ij,f,m and τ 2

ij,f,m for i = 1, . . . , K, j = 1, f, K +

i − 1. from conditionally independent generalized inverse Gaussian distributions

as follows:

ξ2
ij,f,m|

√
θij,f,m, aξi,f , κ2

i,f ∼ GIG
(
aξi,f − 1/2, aξi,fκ

2
i,f , θij,f,m

)
, (B.4)

τ 2
ij,f,m|λ2

ij,f,m, aτi,f , ν2
i,f ∼ GIG

(
aτi,f − 1/2, aτi,fλ

2
i,f , a2

ij,f,m

)
. (B.5)
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B.1.5 Sample the hyperparameters ν2
i,f and κ2

i,f

Sample the hyperparameters ν2
i,f |aτi,f , e1, e2, τ 2

i,f,m and κ2
i,f |a

ξ
i,f , d1, d2, ξ2

i,f,m

from the corresponding conditional posteriors:

ν2
i,f |aτi,f , ef,1, ef,2, τ 2

i,f,m ∼ G
(

ef,1 + aτi,fK, ef,2 +
τ̄ 2
i,f

2 aτi,fK

)
, (B.6)

κ2
i,f |a

ξ
i,f , df,1, df,2, ξ2

i,f,m ∼ G
(

df,1 + aξi,fK, df,2 +
ξ̄2
i,f

2 aξi,fK

)
, (B.7)

where τ̄ 2
i,f and ξ̄2

i,f are the averages of the variances in the shrinkage priors:

τ̄ 2
i,f = 1

(K + i − 1)P

K+i−1∑
j=1

P∑
m=1

τ 2
ij,f,m, ξ̄2

i,f = 1
(K + i − 1)P

K+1−i∑
j=1

P∑
m=1

ξ2
ij,f,m.

B.1.6 Sample hyperparameter aτ
i,f

Sample from aτi,f |λi,f,1, . . . , λi,f,P , ν2
i,f using a random walk Metropolis Hast-

ings (MH) step based on proposing log aτ,new
i,f ∼ N (log aτi,f , c2

τ ). The accept proba-

bility for aτ,new
i,f is:

min

1,
p(aτ,new

i,f )aτ,new
i,f

p(aτi,f )aτi,f

(K+i−1)∏
j=1

P∏
m=1

p(λij,f,m|aτ,new
i,f , ν2

i,f )
p(λij,f,m|aτi,f , ν2

i,f )

 .

B.1.7 Sample hyperparameter aξ
i,f

Sample from aξi,f |
√

Θi,f,1, . . . ,
√

Θi,f,P , κ2
i,f using a random walk Metropolis

Hastings (MH) step based on proposing log aξ,new
i,f ∼ N (log aξi,f , c2

ξ). The accept

probability for aξ,new
i,f is:

min

1,
p(aξ,new

i,f )aξ,new
i,f

p(aξi,f )a
ξ
i,f

(K+i−1)∏
j=1

P∏
m=1

p(
√

θij,f,m|aξ,new
i,f , κ2

i,f )
p(

√
θij,f,m|aξi,f , κ2

i,f )

 .
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B.2 VB Algorithm Details

B.2.1 VB Forward Filtering Backward Smoothing

The non-centered TVP model is similar as (B.1) and (B.2). However, the

transformed response becomes f̄
(m−1)
it = f

(m−1)
it − ⟨λi,f,m⟩{l} x

(m−1)
f,t , and the re-

gressor is Fi,f,m,t =
〈√

Θi,f,m

〉{l}
x

(m−1)
f,t . For t = 1, . . . , T, we can update

r{l+1}(λ̃f,m,t) ≈ Tni,f,m,t
(mi,f,m,t, Ci,f,m,t).

• Forward filter computation is similar as forward filter illustrated in Section

B.1.1.

- Posterior at t − 1 : p(λ̃i,f,m,t−1|Di,f,m,t−1) is approximately distributed

as

Tni,f,m,t−1(mi,f,m,t−1, Ci,f,m,t−1),

- The one-step ahead forecast mean and variance at time t are given by:

E(f̄ (m−1)
it |Di,f,m,t−1) ≈ F T

i,f,m,tmi,f,m,t−1,

and

V (f̄ (m−1)
it |Di,f,m,t−1) ≈ Qi,f,m,t = F T

i,f,m,tRi,f,m,tFi,f,m,t + si,f,m,t−1,

where Ri,f,m,t = Ci,f,m,t−1 + IK , and let ei,f,m,t = f̄
(m−1)
it −

F T
i,f,m,tmi,f,m,t−1.

- Apply Bayes’ theorem and the above equations, we can obtain the

approximate posterior filtered distribution at time t as

λ̃i,f,m,t|Di,f,m,t ≈ Tni,f,m,t
(mi,f,m,t, Ci,f,m,t),
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where

ni,f,m,t = ni,f,m,t−1 + 1,

si,f,m,t = si,f,m,t−1 + si,f,m,t−1

ni,f,m,t

(
e2
i,f,m,t

Qi,f,m,t

− 1
)

,

Ui,f,m,t = Ri,f,m,tFi,f,m,tQ
−1
i,f,m,t,

mi,f,m,t = mi,f,m,t−1 + Ui,f,m,tei,f,m,t,

Ci,f,m,t = si,f,m,t
si,f,m,t−1

(
Ri,f,m,t − Ui,f,m,tU

′
i,f,m,tQi,f,m,t

)
.

• Backward Smoother for i = 1, . . . , K :

- For t = T, r{l+1}(λ̃i,f,m,t) = Tni,f,m,T
(mi,f,m,T , Ci,f,m,T ).

- For t = T − 1, . . . , 1,

r{l+1}(λ̃i,f,m,t) = Tni,f,m,T
(mi,f,m,t|T ,

si,f,m,T
si,f,m,t

Ci,f,m,t|T ),

where

mi,f,m,t|T = mi,f,m,t + Ci,f,m,tR
−1
i,f,m,t+1(mi,f,m,t+1|T − mi,f,m,t),

Ci,f,m,t|T = Ci,f,m,t + Ci,f,m,tR
−1
i,f,m,t+1

(
Ci,f,m,t+1|T − Ri,f,m,t+1

)
R−1
i,f,m,t+1Ci,f,m,t.
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B.2.2 Update the fixed regressor r{l+1}(λij,f,m)

For i = 1, . . . , K and j = 1, . . . , K + i − 1, update the fixed latent regressor

r{l+1}(λij,f,m) = N (µ{l+1}
λij,f,m

, Σ{l+1}
λij,f,m

), where

Σ{l+1}
λij,f,m

=
〈 1

σ2
i,f,m

〉{l+1} T∑
t=1

x
(m−1)
j,f,t +

〈
1

τ 2
ij,f,m

〉{l}
−1

,

µ
{l+1}
λij,f,m

= Σ{l+1}
λij,f,m

·

〈 1
σ2
i,f,m

〉{l+1} T∑
t=1

(
< Bt > x

(m−1)
j,f,t

) ,

< Bt > = f
(m)
j,t −

〈
λ̃i,f,m,t

〉{l+1}
diag

(〈√
Θi,f,m

〉{l}
)

x
(m−1)
t −

∑
k ̸=j

x
(m−1)
k,f,t < λik,f,m >{l},

B.2.3 Update the variance of process r{l+1}(
√

θij,f,m)

For i = 1, . . . , K, and j = 1, . . . , K + i − 1, update the variance of process

r{l+1}(
√

θij,f,m) = N (µ{l+1}√
θij,f,m

, Σ{l+1}√
θij,f,m

), where

Σ{l+1}√
θij,f,m

=
〈 1

σ2
i,f,m

〉{l+1} T∑
t=1

x
(m−1)
j,f,t

〈
λ̃2
ij,f,m,t

〉{l+1}
+
〈

1
ξ2
ij,f,m

〉{l}
−1

,

µ
{l+1}√
θij,f,m

= Σ{l+1}√
θij,f,m

(
T∑
t=1

(〈
λ̃ij,f,m,t

〉{l+1}
x

(m−1)
j,f,t + < Ct >

))
,

< Ct > = f
(m−1)
jt − ⟨λi,f,m⟩{l+1} x

(m−1)
f,t −

∑
k ̸=j

x
(m−1)
k,t

〈
λ̃ik,f,m,t

〉{l+1} 〈√
θik,f,m

〉{l}
.

B.2.4 Update hyperparameter r{l+1}(aτ
i,f)

For i = 1, . . . , K, the variational distribution r{l+1}(aτi,f ) can be computed up

to a proportionality constant,

r{l+1}(aτi,f ) ∝ exp
{
(K + i − 1)P

(
A × aτi,f − log Γ(aτi,f )

)}
,
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where

A = log(aτi,f ) +
〈
log ν2

i,f

〉{l+1}
− log 2+ < log τ 2

i,f >{l+1}

− 1
2
〈
ν2
i,f

〉{l+1}
< τ̄ 2

i,f >{l+1} − bτ

(K + i − 1)P ,

< log τ 2
i,f >{l+1} = 1

(K + i − 1)P

K+i−1∑
j=1

P∑
m=1

〈
log τ 2

ij,f,m

〉{l+1}
.

We can update r{l+1}(aτi,f ) with importance sampling as follows:

• For n in 1, . . . , N, sample aτ,ni,f from proposal distribution q(·).

• Compute the weights

w(aτ,ni,f ) =
r{l+1}(aτ,ni,f )

q(aτ,ni,f ) .

• The variational distribution r{l+1}(aτi,f ) can be approximated by

r{l+1}(aτi,f ) ≈
∑N
n=1 w(aτ,ni,f )δaτ

i,f
(aτi,f )∑N

n=1 w(aτ,ni,f )
.

• For any function h(aτi,f ),

E[h(aτi,f )] =
∑N
n=1 w(aτ,ni,f )h(aτ,ni,f )∑N

n=1 w(aτ,ni,f )
.

B.2.5 Update hyperparameter r{l+1}(aξ
i,f)

For i = 1, . . . , K, the variational distribution r{l+1}(aξi,f ) can be computed up

to a proportionality constant,

r{l+1}(aξi,f ) ∝ exp
{
(K + i − 1)P

(
A × aξi,f − log Γ(aξi,f )

)}
,
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where

A = log(aξi,f ) +
〈
log κ2

i,f

〉{l+1}
− log 2+ < log ξ2

i,f >{l+1}

− 1
2
〈
κ2
i,f

〉{l+1}
< ξ̄2

i,f >{l+1} − bξ

(K + i − 1)P ,

< log ξ2
i,f >{l+1} = 1

(K + i − 1)P

K+i−1∑
j=1

P∑
m=1

〈
log ξ2

ij,f,m

〉{l+1}
.

We can update r{l+1}(aξi,f ) with importance sampling. The scheme of importance

sampling which is similar as updating aτi,f in the previous section.

B.3 Simulation

B.3.1 Simulation (i)

In this section, Figure B.1 shows the plots of true and estimated AR coef-

ficients after lag 2. Figure B.2 shows posterior mean of the log spectral density

and squared coherence estimated by Normal Gamma TV-VPARCOR model with

variational inference algorithm.
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Figure B.1: Simulation scenario (i): The plots of AR coefficients after lag 2.
The red lines are the true AR coefficients. The black lines are the estimated AR
coefficients.
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Figure B.2: Simulation scenario (i): Top row: True log spectral density g11(t, ω)
(left); true log spectral density g22(t, ω) (center); true squared coherence (right).
Bottom row: Corresponding estimated log spectral densities (left and center) and
estimated squared coherence.

133



B.3.2 Simulation (ii)

In this section, Figure B.3 shows the plots of true and estimated AR coef-

ficients after lag 2. Figure B.4 shows posterior mean of the log spectral density

and squared coherence estimated by Normal Gamma TV-VPARCOR model with

variational inference algorithm.

Figure B.3: Simulation scenario (ii): The plots of AR coefficients after lag 2.
The red lines are the true AR coefficients. The black lines are the estimated AR
coefficients.

B.3.3 Simulation (iii)

In this section, Figure B.5 shows the plots of true and estimated AR coef-

ficients after lag 2. Figure B.6 shows posterior mean of the log spectral density
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Figure B.4: Simulation scenario (ii): Top row: True log spectral density g11(t, ω)
(left); true log spectral density g22(t, ω) (center); true squared coherence (right).
Bottom row: Corresponding estimated log spectral densities (left and center) and
estimated squared coherence.
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and squared coherence estimated by Normal Gamma TV-VPARCOR model with

variational inference algorithm.

Figure B.5: Simulation scenario (iii): The plots of AR coefficients after lag
2. The red line is the true AR coefficients. The black line is the estimated AR
coefficients.
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Figure B.6: Simulation scenario (iii): Top row: True log spectral density g11(t, ω)
(left); true log spectral density g22(t, ω) (center); true squared coherence (right).
Bottom row: Corresponding estimated log spectral densities (left and center) and
estimated squared coherence.
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