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Abstract

Two models of default from finance and a model of invasion from ecology

by

Alexandru Hening

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Steven N. Evans, Chair

My thesis consists of three different projects.

1) Investors are exposed to credit risk due to the possibility that one or more counterpar-
ties in a financial agreement will default; that is, not honor their obligations to make
certain payments. It is usually not enough to consider the default of a single firm
because of the effect of contagion - the default of one firm is dependent of the other
firms in the economy.

This project considers static models of default that have appeared in the mathematical
finance literature. These models are constructed from an underlying graph with a set
of nodes V representing firms. They give a probability distribution on {0, 1}V , where
a 1 in the kth coordinate indicates that the kth firm has defaulted at the end of a
particular time period. The drawback of these models is that they are static - they do
not try to say anything about the distribution of the default times of a group of firms.
It is therefore of interest to try to give these models Markovian dynamics. In Chapter
1, much of which has appeared in [EH11], we show in several natural cases that this is
not possible.

2) In ecology, the extinction of a population can be described as the first passage through
some threshold value for the diffusion process which represents the number of individ-
uals. Similarly, in finance, the default time of a counterparty is sometimes modeled as
the first passage time of a credit index process below a barrier. It is therefore relevant
to consider the following question: If we know the distribution of the default time can
we find a unique barrier which gives this distribution? This is known as the Inverse
First Passage Time (IFPT) problem in the literature. We consider a more general
‘smoothed’ version of the inverse first passage time problem in which the first passage
time is replaced by the first instant that the time spent below the barrier exceeds an in-
dependent exponential random variable. In Chapter 2, which is based on [EEH12], we
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show that any smooth distribution results from some unique continuously differentiable
barrier.

3) A fundamental problem in ecology is to understand when it is possible for one species to
invade the range of another, established species. Mathematical models for invasibility
have contributed significantly to the understanding of the epidemiology of infectious
disease outbreaks ([CLSJG05]) and ecological processes ([LM96], [Cas01]).

There is widespread empirical evidence that invasions can occur when there is sig-
nificant heterogeneity in space and time in the range of the resident species. This
heterogeneity can arise due to variability in abiotic factors (e.g. precipitation, temper-
ature or sunlight) or biotic factors (presence of other competitors or predators). There
have only been a a few studies that try to explain how spatio-temporal heterogeneity
facilitates invasibility (see, for example, [SLS09]).

Using ideas from [ERSS], we propose in Chapter 3, which is an expansion of [EHS],
a general model of the invasion process with a view to understanding what factors
make invasion possible. We consider a stochastic differential equation (SDE) model of
a resident population that is living in an environment consisting of n patches and is
subject to an attempted invasion by another species.



i

To my family



ii

Contents

1 Non-existence of Markovian time dynamics for graphical models of corre-
lated default 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Model I: complete symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Model II: Two classes with common individual propensity to default . . . . . 10
1.5 Two classes with different individual propensity to default . . . . . . . . . . 15

2 The Inverse First Passage Time Problem 20
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 The FPT and IFPT problems . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Global Existence and Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4 Local Existence and Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5 Discontinuous killing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.6 Pricing Claims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.7 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.8 Calibrating the default distribution using CDS rates . . . . . . . . . . . . . . 52
2.9 Duhamel’s formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3 Invasibility in spatio-temporally heterogeneous environments 54
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3 Conditions for invasibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4 A maximization problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.5 The two patch (n = 2) case . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



iii

Acknowledgments

I would like to thank my advisor, Steven N. Evans, for his guidance and support. This work
would not have been possible without him. I would also like to thank Sebastian Schreiber
for useful comments related to the mathematical ecology part of my thesis. In addition, I
am grateful to Boris Ettinger for many discussions about partial differential equations.

Lastly, I would like to thank my family and friends for their encouragement and assistance
throughout the years.



1

Chapter 1

Non-existence of Markovian time
dynamics for graphical models of
correlated default

1.1 Introduction

Investors are exposed to credit risk due to the possibility that one or more counterparties
in a financial agreement will default; that is, not honor their obligations to make certain
payments. Some examples of default are a consumer or business not making a due payment
on a loan, a manufacturer or retailer not paying for goods already received from a supplier,
a bond issuer not making coupon or principal payments, or an insolvent financial institution
not returning deposited funds to its customers upon demand.

Some credit risk is present in virtually any financial agreement, and a key ingredient
in its satisfactory management is a model that produces a sufficiently accurate probability
for a given default event. Consequently, there is a large theoretical and applied literature
on this topic [BR02,BOW02,DS03,dSR04,Gie04b,Sch04,ZP07,Wag08]. Roughly speaking,
models of default lie on a spectrum between the structural and reduced form ones. For the
example of a firm defaulting on its debt obligations, a structural model might include explicit
descriptions of the dynamics of the firm’s assets, capital holdings and debt structure, whereas
a reduced form model would not seek to incorporate the details of the actual mechanism
by which the firm is led to default but rather it might typically be something of a “black
box” that treats the time of default as a random time with an associated exogenous intensity
process having a rather simple structure characterized by a small number of parameters which
may have little direct economic interpretation. Although structural models are perhaps
theoretically more satisfying because in principle they provide a means of testing how well
the factors that cause default are understood, they are often perceived as being too complex
and parameter-rich for them to be fitted adequately: defaults are uncommon and even firms
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within the same sector of the economy can be quite heterogeneous, so there can be insufficient
“independent replication” upon which to base statistically sound parameter estimates.

The difficulty of modeling default probabilities is compounded for complex financial in-
struments such as collateralized debt obligations (CDOs) and other structured asset-backed
securities that are constructed by, in essence, bundling together a group of borrowers. It is
then no longer sufficient to determine the default probability for a single “firm” – rather,
it becomes necessary to model the joint probabilities that various subsets of firms in the
basket will default, and it is usually not appropriate to treat the defaults of different firms
as statistically independent events. The most obvious reason for this absence of indepen-
dence is that firms are subject to the same background economic environment. Moreover,
situations such as the interconnectedness between manufacturers, their parts suppliers and
the retailers who sell their products can cause problems for one firm in such a network to
spread to others via a process that is usually described as contagion. A small sampling
of the substantial empirical and modeling work on this phenomenon of correlated default
is [DL01b,DL01a, HW01, SS01, Zho01, FM03,Gie03, LG03,Gie04a,GW04,GW06,DDKS07,
EGG07,JZ07,Yu07,ES09,GGD09,CDGH10].

In this chapter we investigate a particularly appealing class of models for correlated
default in [FGMS08] (see also [MV05,KMH06], where special cases of this model were in-
troduced). The basic model in [FGMS08] does not attempt to describe the time course of
defaults for some group of firms. Rather, it is a one period model that gives the probability
any given subset of the firms will have defaulted at some time during a prescribed time
interval.

The ingredients of the model in [FGMS08] are a finite (undirected, simple) graph G
with vertex set V and edge set E and two vectors of parameters α = (αv)v∈V ∈ RV and
β = (βe)e∈E ∈ RE. Each vertex v ∈ V represents a firm and the graph structure provided by
the edges is intended to capture the network of interdependencies between the firms. Write
Iv, v ∈ V , for the indicator random variable of the event that firm v defaults; that is, Iv
takes the value 1 if firm v defaults and the value 0 otherwise. The probability of a given
pattern ε = (εv)v∈V ∈ {0, 1}V of defaults is

P{Iv = εv, v ∈ V } :=
1

Z
exp(H(ε)), (1.1.1)

where the Hamiltonian H is given by

H(ε) :=
∑
u∈V

αuεu +
∑

{v,w}∈E

β{v,w}εvεw (1.1.2)

and the partition function Z is the normalizing constant that ensures the sum over {0, 1}V of
the probabilities is one. The parameter αu, u ∈ V , is clearly some measure of the individual
propensity of firm u to default. The parameter β{v,w}, {v, w} ∈ E, captures in some way the
dependence between the defaults of firm v and firm w: if this parameter is positive, then
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the joint default of both firms is favored, whereas it is discouraged when the parameter is
negative. We write P(G,α, β) for the distribution of the random binary vector I.

Note that if we set Yv = 2Iv − 1, v ∈ V , then (Yv)v∈V ∈ {±1}V and for (σv)v∈V ∈ {±1}V
we have

P{Yv = σv, v ∈ V } = P{Iv = (1 + σv)/2, v ∈ V }

=
1

Z
exp

1

2

∑
u∈V

αu(1 + σu) +
1

4

∑
{v,w}∈E

β{v,w}(1 + σv)(1 + σw)


=

1

Z̃
exp

∑
u∈V

γuσu +
∑

{v,w}∈E

δ{v,w}σvσw


for suitable parameters (γv)v∈V ∈ RV and (δe)e∈E ∈ RE and a corresponding normalization
constant Z̃. Thus, the random vector of spins (Yv)v∈V is described by the usual Ising model
associated with the graph G = (V,E).

It is shown in [FGMS08] that this class of correlated default models is as flexible as
one could possibly hope: if J is an arbitrary {0, 1}V -valued random variable, then there
is a choice of the parameters (αv)v∈V and (βe)e∈E such that Iu has the same distribution
as Ju for all u ∈ V and for all {v, w} ∈ E the pair (Iv, Iw) has the same distribution as
(Jv, Jw). Moreover, it is observed in [FGMS08] that it is possible to fit such a model to data
using existing techniques such as iterative proportional fitting, various convex optimization
techniques, or a number of other “off-the-shelf” numerical optimization methods suitable for
large-scale computation.

A significant drawback of the class of models in [FGMS08] is that they don’t provide a
description of the time dynamics of default: they just give the probability that a given subset
of firms have defaulted during some fixed time period without saying anything about the
distribution of the times at which the defaults occurred. If we let [0, T ] be the time period of
interest, then we would like there to be a {0, 1}V -valued stochastic process (I(t))0≤t≤T such
that

• Iv(t) = 1 if and only if firm v ∈ V has defaulted by time t, so that Iv(0) = 0 and
the sample paths of (Iv(t))0≤t≤T are right-continuous and non-decreasing (once a firm
defaults it does not “undefault”),

• #{v ∈ V : Iv(t) ̸= Iv(t−)} ≤ 1 for any t ∈ [0, T ] (two or more firms do not default
simultaneously – we use the notation #B denote the cardinality of the set B),

• I(T ) is has distribution P(G,α, β).

Furthermore, since P(G,α, β) is supposed to be an appropriate description for the pattern
of defaults during [0, T ], it is reasonable to require that
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• I(t) has distribution P(G,α(t), β(t)) for suitable parameters α(t) and β(t) when 0 <
t < T .

In this chapter we investigate whether such a process exists within the simplest and
perhaps most natural class of models, namely the time-homogeneous Markov chains. Re-
cast in the language of the equivalent Ising model, we are thus asking if it is possible to
begin at time 0 with a configuration in which every spin is −1 and then flip spins one at
a time from −1 to +1 according to Markovian dynamics so that the configuration of spins
at time T is distributed according to a prescribed Ising model and at all other times the
configuration is described by some Ising model.

We can certainly construct such a chain if β = 0, so that P(G,α, β) = P(G,α, 0) is the
distribution of a vector (Iv)v∈V of independent {0, 1}-valued random variables with

P{Iv = 0} =
1

1 + exp(αv)
.

We simply takes the processes (Iv(t))t≥0 to be independent, with

P{Iv(t) = 0} = exp(−λvt),

where the jump rate λv is chosen so that

exp(−λvT ) =
1

1 + exp(αv)
.

Thus, λv =
1
T
log(1 + exp(αv)) and I(t) has distribution P(G,α(t), 0), where

1

1 + exp(αv(t))
= exp(−λvt) = exp

(
− t

T
log(1 + exp(αv))

)
,

so that
αv(t) = log

(
(1 + exp(αv))

t
T − 1

)
for 0 < t < T .

After establishing some general facts in Section 1.2, we investigate in Sections 1.3, 1.4
and 1.5 whether it is possible to construct a time-homogeneous Markov chain for non-zero
β in the following cases:

(I) G is the complete graph KN in which there are N vertices with each vertex connected
to every other one, αu(t) = αv(t) for u, v ∈ V , 0 < t ≤ T , and βe(t) = βf (t) for
e, f ∈ E, 0 < t ≤ T ;

(II) G is the complete bipartite graph KM,N in which V is partitioned into two disjoint

subsets V̂ and V̌ of cardinality M and N such that every vertex in V̂ is connected to
every vertex in V̌ and there are no other edges, αu(t) = αv(t) for u, v ∈ V , 0 < t ≤ T ,
and βe(t) = βf (t) for e, f ∈ E, 0 < t ≤ T ;
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(III) G is again the complete bipartite graph KM,N , αu(t) = αv(t) for u, v ∈ V̂ , 0 < t ≤ T ,
αu(t) = αv(t) for u, v ∈ V̌ , 0 < t ≤ T , and βe(t) = βf (t) for e, f ∈ E, 0 < t ≤ T .

In Model I there is complete symmetry: each firm has the same individual propensity to
default and the interdependence between any two firms is the same as that between any other
two. Model II and III both describe a situation in which there are two types of firms (say,
for example, car manufacturers and auto parts suppliers) and there is only interdependence
between firms of different types. In Model II all firms have the same individual propensity
to default, whereas in Model III this propensity can depend on the type of the firm.

We conclude in all three cases (with a minor technical restriction for Model III) that
it is impossible to construct a time-homogeneous Markov chain with the desired properties
unless β is zero; that is, unless the firms behave independently.

1.2 Generalities

It will be notationally more convenient to identify a vector ε = (εv)v∈V ∈ {0, 1}V with
the subset A = {v ∈ V : εv = 1} ⊆ V and regard P(G,α, β) as a probability measure
on subsets of V rather than {0, 1}V . If we extend the definition of β{u,v} by declaring that
β{u,v} = 0 when {u, v} /∈ E and write β{u,v} more simply as βuv, then our Hamiltonian, now
thought of as function defined on subsets of V , is given by

H(A) :=
∑
u∈A

αu +
∑

{u,v}⊂A

βuv. (1.2.1)

If we write PH for the probability measure P(G,α, β), then

PH({A}) := 1

Z
exp(H(A)), (1.2.2)

where
Z :=

∑
B⊆V

exp(H(B)).

We are interested in the existence of a time-homogeneous Markov chain X = (Xt)t≥0

that has as its state-space the collection of subsets of V and has the following properties,
where we write Q(A,B) for the jump rate from state A to state B:

• Q(A,B) = 0 unless B = A ∪ {v} for some v /∈ A;

• when X(0) = ∅, the distribution of X(T ) is PH ;

• there are parameter vectors α(t) and β(t) for 0 < t ≤ T such that if we set

Ht(A) :=
∑
u∈A

αu(t) +
∑

{u,v}⊂A

βuv(t),

then X(t) has distribution PHt when X(0) = ∅.
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If such a Markov chain exists, we say that the default model admits time-homogeneous
Markovian dynamics.

Write A → B if B = A ∪ {v} for some v /∈ A. The Kolmogorov forward equations for
the chain X with initial state ∅ become

d

dt
PHt(B) =

∑
A→B

PHt(A)Q(A,B) + PHt(B)Q(B,B), (1.2.3)

where, as usual, we put Q(B,B) := −
∑

C ̸=B Q(B,C).

Denoting the partition function associated with the HamiltonianHt by Zt :=
∑

C∈E e
Ht(C),

we have
d

dt
PHt(B) =

d

dt

eHt(B)

Zt
. (1.2.4)

To further simplify notation, set RB = −Q(B,B). Because Ht(∅) = 0, we see from
(1.2.3) and (1.2.4) for B = ∅ that t 7→ Zt is differentiable with

−Z ′
t = −R∅Zt.

We require

1 = lim
t↓0

PHt(∅) = lim
t↓0

1

Zt
,

and so
Zt = eR∅t. (1.2.5)

It now follows from (1.2.4) that t 7→ Ht(B) is differentiable for all B ⊆ V with

d

dt
PHt(B) =

d

dt

eHt(B)

Zt

=
Zte

Ht(B)H ′
t(B)− Z ′

te
Ht(B)

Z2
t

,

and thus (1.2.3) can be re-written as

Zte
Ht(B)H ′

t(B)− Z ′
te
Ht(B) =

∑
A→B

Q(A,B)eHt(A)Zt −RBe
Ht(B)Zt. (1.2.6)

Substituting (1.2.5) into (1.2.6) gives

H ′
t(B) =

∑
A→B

Q(A,B)eHt(A)−Ht(B) +R∅ −RB. (1.2.7)
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Note for u ∈ V that Ht({u}) = αu(t), and so t 7→ αu(t), t > 0, is differentiable. Similarly,
note for u, v ∈ V with u ̸= v that Ht({u, v}) = αu(t) + αv(t) + βuv(t), and so t 7→ βuv(t),
t > 0, is differentiable. Hence, (1.2.7) can be re-written as∑

u∈B

α′
u(t) +

∑
{u,v}⊆B

β′
uv(t)

=
∑
u∈B

Q(B \ {u}, B) exp

−αu(t)−
∑

v∈B\{u}

βuv(t)

 + R∅ − RB.

(1.2.8)

For u ∈ V , set Qu = Q(∅, {u}) and Ru := R{u} = −Q({u}, {u}). Equation (1.2.8) for
B = {u} is

α′
u(t) = Que

−αu(t) +R∅ −Ru. (1.2.9)

Hence, by the method of variation of parameters (also called variation of constants),

αu(t) = log

(
Qu

R∅ −Ru

(
e(R∅−Ru)t − 1

))
(1.2.10)

and

α′
u(t) =

R∅ −Ru

1− e−(R∅−Ru)t
(1.2.11)

when R∅ ̸= Ru. If R∅ = Ru, then

αu(t) = log (Qut) (1.2.12)

and

α′
u(t) =

1

t
. (1.2.13)

Note that each function αu, u ∈ V , is completely determined by the rates Qu = Q(∅, {u}),
R∅ =

∑
v∈V Q(∅, {v}), and Ru =

∑
v∈V \{u}Q({u}, {u, v}), and hence the vector of func-

tions (αu)u∈V is completely determined by the collection of rates {Q(∅, {u}) : u ∈ V } ∪
{Q({u}, {u, v}) : u, v ∈ V, u ̸= v}.

For u, v ∈ V , setQuv := Q({u}, {u, v}) and Ruv := R{u,v} = −Q({u, v}, {u, v}). Equation
(1.2.8) for B = {u, v} is, upon substituting from (1.2.11),

β′
uv(t) = Qvue

−αu(t)−βuv(t) +Quve
−αv(t)−βvu(t)

− α′
u(t)− α′

v(t)−Ruv +R∅

=
Qvu

Qu

R∅ −Ru

1− e(R∅−Ru)t
e−βuv(t) +

Quv

Qv

R∅ −Rv

1− e(R∅−Rv)t
e−βvu(t)

− R∅ −Ru

1− e−(R∅−Ru)t
− R∅ −Rv

1− e−(R∅−Rv)t

+R∅ −Ruv

(1.2.14)
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when R ̸= Ru and R ̸= Rv. Analogous results hold when R = Ru or R = Rv. Recall
that βuv(t) = β{u,v}(t) = βvu(t), and so (1.2.14) is an ordinary differential equation for the
function βuv if we treat the rates of the Markov chain as given. In particular, the two vectors
of functions (αu)u∈V and (βuv)u,v∈V,u ̸=v are completely determined by the collection of rates
{Q(∅, {u}) : u ∈ V } ∪ {Q({u}, {u, v}) : u, v ∈ V, u ̸= v} ∪ {Q({u, v}, {u, v, w}) : u, v, w ∈
V, u ̸= v ̸= w ≠ u}.

In principle, we could attempt to find values for these rates such that (αu(T ))u∈V and
(βuv(T ))u,v∈V,u ̸=v have the required value, substitute the resulting values of αu(t) and βuv(t)
into (1.2.8) (using (1.2.11) or (1.2.13) for the values of α′

u(t) and (1.2.14) or its analogues
when R = Ru or R = Rv for the values of β′

uv(t)) and hope to either find values for the
remaining rates so that (1.2.8) holds for all B ⊆ V or show that this is impossible no matter
what our initial choice of rates was. This seems to be a rather forbidding task in general,
but we are able to carry it out in the three special cases described in the Introduction.

1.3 Model I: complete symmetry

Recall Model I from the Introduction. The graph G is KN , the complete graph on N
vertices for some N , and there are functions α and β such that{

αu(t) = α(t) for all u ∈ V

βuv(t) = β(t) for all u, v ∈ V u ̸= v.
(1.3.1)

Proposition 1.3.1. Model I with N ≥ 4 admits time-homogeneous Markovian dynamics if
and only if the firms default independently.

Proof. We observed in the Introduction that the general default model admits Markovian
dynamics when firms default independently. So we need to establish a converse for the
special case of Model I with N ≥ 4.

Suppose that a collection of rates exists such that (1.2.8) holds for all subsets B. When
#B ≥ 1, (1.2.8) becomes

#Bα′(t) +

(
#B

2

)
β′(t) =

[∑
u∈B

Q(B \ {u}, B)

]
exp (−α(t)− (#B − 1)β(t))

+ R∅ − RB.

(1.3.2)

If we average (1.3.2) over all
(
N
k

)
choices of sets B with #B = k for some k ≥ 1 and set

λℓ =

(
N

ℓ

)−1 ∑
A⊆V,#A=ℓ

RA, 0 ≤ ℓ ≤ N,
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we get the equations

kα′(t) +

(
k

2

)
β′(t) = (λ0 − λk)

+ λk−1
k

N − k + 1
e−α(t)−(k−1)β(t), 1 ≤ k ≤ N.

(1.3.3)

Note that λℓ > 0 for 0 ≤ ℓ ≤ N − 1 and λN = 0.
Equation (1.3.3) for k = 1 and k = 2 yields

α′(t) = (λ0 − λ1) +
λ0
N
e−α(t)

β′(t) = (λ0 − λ2) + λ1
2

N − 1
e−α(t)−β(t) − 2(λ0 − λ1)− 2

λ0
N
e−α(t).

(1.3.4)

Substituting the values for α′(t) and β′(t) from (1.3.4) into (1.3.3) gives a system of equations
of the form

λk−1
k

N − k + 1
e−(k−1)β(t) − λ1

2

N − 1
e−β(t) = ake

α(t) + bk, 1 ≤ k ≤ N, (1.3.5)

for appropriate constants ak and bk, 1 ≤ k ≤ N , that depend on the constants λℓ, 0 ≤ ℓ ≤ N .
We claim that the continuous function β is constant. Suppose that this is not so. Note

that ak can be non-zero for at most one value of k ∈ {1, . . . , N}, because if ak′ ̸= 0 and
ak′′ ̸= 0 for 1 ≤ k′ < k′′ ≤ N , then

λk′−1
k′

N−k′+1
e−(k′−1)β(t) − λ1

2
N−1

e−β(t) − bk′

a′k

=
λk′′−1

k′′

N−k′′+1
e−(k′′−1)β(t) − λ1

2
N−1

e−β(t) − bk′′

a′′k
,

and letting t vary over an open interval J such that the image {β(t) : t ∈ J} contains an
open interval we would conclude that two polynomials of different degrees coincided over an
open interval. Because N ≥ 4, we thus must have ak = 0 for some k ≥ 3. Observe for such
a k that

λk−1
k

N − k + 1
e−(k−1)β(t) − λ1

2

N − 1
e−β(t) = bk,

and again we would conclude that two polynomials of different degrees coincided over an
open interval. Therefore, the function β must be a constant, say β∗. Of course, β∗ is the
pre-specified value for β(T ).

We now show that β∗ = 0. Equation (1.3.3) now becomes

kα′(t) = (λ0 − λk) + λk−1
k

N − k + 1
e−α(t)−(k−1)β∗
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and hence, by (1.3.4),

k

[
(λ0 − λ1) +

λ0
N
e−α(t)

]
= (λ0 − λk) + λk−1

k

N − k + 1
e−α(t)−(k−1)β∗

. (1.3.6)

Each side of (1.3.6) is first degree polynomial in e−α(t) for every k ∈ {1, . . . , N}. It is apparent
from the differential equation in (1.3.4) that the function α is not constant (indeed, we solved
this equation explicitly in (1.2.10)). Consequently, the coefficients of these two polynomial
coincide and hence 

k(λ0 − λ1) = (λ0 − λk)

k
λ0
N

= λk−1
k

N − k + 1
e−(k−1)β∗ (1.3.7)

for 1 ≤ k ≤ N . Re-arranging (1.3.7), we conclude that

λk = k(λ1 − λ0) + λ0

for 1 ≤ k ≤ N and

λk =
(N − k)

N
λ0e

kβ∗

for 0 ≤ k ≤ N − 1. Because N ≥ 4, this is impossible unless β∗ = 0.

1.4 Model II: Two classes with common individual propen-

sity to default

Recall Model II from the Introduction. The graph G is KM,N , the complete bipartite

graph with vertex set the disjoint union V = V̂ ⊔ V̌ , where V̂ has M vertices, V̌ has N
vertices, and there are functions α and β such that{

αu(t) = α(t) for all u ∈ V

βuv(t) = β(t) for all u ∈ V̂ , v ∈ V̌ .
(1.4.1)

Proposition 1.4.1. Model II with M ≥ 3 or N ≥ 3 admits time-homogeneous Markovian
dynamics if and only if the firms default independently.

Proof. As in the proof of Proposition 1.3.1, it suffices from the remarks made in the In-
troduction about the general model to show that if the model admits time-homogeneous
Markovian dynamics, then the firms default independently.

Symmetry considerations similar to those in the proof of Proposition 1.3.1 show that
if (1.2.8) holds for some choice of jump rates, then there are constants λ→m,n and λ↑m,n,
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0 ≤ m ≤ M and 0 ≤ n ≤ N , with λ→M,n = 0 for 0 ≤ n ≤ N , λ↑m,N = 0 for 0 ≤ m ≤ M , and

λ→m,n and λ↑m,n strictly positive otherwise such that

(m+ n)α′(t) +mnβ′(t) = r − λ→m,n − λ↑m,n

+
m

M −m+ 1
λ→m−1,ne

−α(t)−nβ(t)

+
n

N − n+ 1
λ↑m,n−1e

−α(t)−mβ(t),

(1.4.2)

where we set r := λ↑0,0 + λ→0,0 and adopt the convention that λ→−1,n = 0, 0 ≤ n ≤ N , and

λ↑m,−1 = 0, 0 ≤ m ≤M . We leave the straightforward details to the reader.
Setting (m,n) = (1, 0) in (1.4.2) gives

α′(t) = r − (λ→1,0 + λ↑1,0) +
λ→0,0
M

e−α(t). (1.4.3)

Similarly, setting (m,n) = (0, 1) in (1.4.2) gives

α′(t) = r − (λ→0,1 + λ↑0,1) +
λ↑0,0
N

e−α(t). (1.4.4)

In particular, we have the identity
λ→0,0
M

=
λ↑0,0
N

.

Setting (m,n) = (1, 1) in (1.4.2) and substituting in the expression for α′(t) from (1.4.3)
gives

β′(t) = r − (λ↑1,1 + λ→1,1) +

(
λ→0,1
M

+
λ↑1,0
N

)
e−α(t)−β(t) − 2α′(t)

= r − (λ↑1,1 + λ→1,1) +

(
λ→0,1
M

+
λ↑1,0
N

)
e−α(t)−β(t)

− 2

(
r − (λ→1,0 + λ↑1,0) +

λ→0,0
M

e−α(t)
)
.

(1.4.5)

Further substituting the above expressions for α′(t) and β′(t) from (1.4.3) and (1.4.5) into
(1.4.2) for a general pair (m,n) leads to a system of equations of the form

am,ne
α(t) + bm,n = cm,ne

−nβ(t) + dm,ne
−mβ(t) − em,ne

−β(t),

0 ≤ m ≤M, 0 ≤ n ≤ N,
(1.4.6)
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where the various coefficients are given by

am,n = (m+ n− 2mn)(r − λ→1,0 − λ↑1,0) +mn(r − λ↑1,1 − λ→1,1)

− r + λ↑m,n + λ→m,n

bm,n = (m+ n− 2mn)
λ→0,0
M

cm,n =
mλ→m−1,n

M −m+ 1

dm,n =
nλ↑m,n−1

N − n+ 1

em,n = mn

(
λ→0,1
M

+
λ↑1,0
N

)
.

Note that cm,n > 0 whenever m > 0 and dm,n > 0 whenever n > 0.
We claim that the continuous function β is constant. Assume without loss of generality

that M ≥ 3 and suppose that the function β is not constant.
Consider the two cases:

(i) One of a2,1 or a3,1 is zero.

(ii) Both a2,1 and a3,1 are non-zero.

Case (i) is impossible, because for eitherm = 2 orm = 3 we would have 0 = dm,1e
−mβ(t)+

(cm,1 − em,1)e
−β(t) − bm,1 and conclude that either a quadratic or cubic polynomial was

identically zero on some open interval.
Turning to Case (ii), note first that if am,n ̸= 0 we have

eα(t) =
cm,ne

−nβ(t) + dm,ne
−mβ(t) − em,ne

−β(t) − bm,n
am,n

(1.4.7)

and so we would have a quadratic and a cubic polynomial that agreed on an open interval.
Therefore, the function β must be a constant, say β∗. Of course, β∗ is the pre-specified

value for β(T ). We now show that β∗ = 0.
Equation (1.4.2) becomes

(m+ n)

(
r − (λ→1,0 + λ↑1,0) +

λ→0,0
M

e−α(t)
)

= r − (λ→m,n + λ↑m,n) +
mλ→m−1,n

M −m+ 1
e−α(t)−nβ

∗
+

nλ↑m,n−1

N − n+ 1
e−α(t)−mβ

∗
.

(1.4.8)

For a fixed pair (m,n), each side of (1.4.8) is a first degree polynomial in α(t) and, since α(t)
is continuous and non-constant, we can equate coefficients. If we also record our boundary
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conditions and conventions from above we arrive at the following system of equations for
0 ≤ m ≤M and 0 ≤ n ≤ N

(m+ n)

M
λ→0,0 =

m

M −m+ 1
λ→m−1,ne

−nβ∗

+
n

N − n+ 1
λ↑m,n−1e

−mβ∗

(m+ n)(r − λ→1,0 − λ↑1,0) = r − λ→m,n − λ↑m,n

λ↑m,N = 0

λ→M,n = 0

λ↑m,−1 = 0

λ→−1,n = 0.

(1.4.9)

Because λ→M,N = λ↑M,N = 0, we see from the second equation of (1.4.9) for (m,n) = (M,N)
that

r − λ→1,0 − λ↑1,0 =
r

M +N
, (1.4.10)

and we can substitute this value into the second equation of (1.4.9) for general (m,n) to
conclude that

λ→m,n + λ↑m,n = r

(
1− m+ n

M +N

)
, 0 ≤ m ≤M, 0 ≤ n ≤ N.

Setting m = 0 in the first equation of (1.4.9) and noting the fifth equation, we get

λ↑0,n−1 =
N − n+ 1

M
λ→0,0, 1 ≤ n ≤ N.

A similar argument leads to

λ→m−1,0 =
M −m+ 1

M
λ→0,0, 1 ≤ m ≤M.
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Combining these observations, we arrive at the following system of equations

nλ↑m,n−1

N − n+ 1
e(n−m)β∗ −

mλ↑m−1,n

M −m+ 1

=
λ→0,0
M

[
(m+ n)enβ

∗ − m(M +N −m− n+ 1)

M −m+ 1

]
,

1 ≤ m ≤M, 0 ≤ n ≤ N,

λ→m,n + λ↑m,n = r

(
1− m+ n

M +N

)
, 0 ≤ m ≤M, 0 ≤ n ≤ N,

λ↑m,−1 = 0, 0 ≤ m ≤M,

λ→−1,n = 0, 0 ≤ n ≤ N,

λ→M,n = 0, 0 ≤ n ≤ N,

λ↑m,N = 0, 0 ≤ m ≤M,

λ↑0,n =
N − n

M
λ→0,0, 0 ≤ n ≤ N,

λ→m,0 =
M −m

M
λ→0,0, 0 ≤ m ≤M.

(1.4.11)

Note that if λ→m,n and λ↑m,n satisfy (1.4.9), then they also satisfy (1.4.11). It will thus
suffice to show that if β∗ ̸= 0, then there do not exist λ→m,n and λ↑m,n satisfying (1.4.11).

Setting (m,n) = (1, 1) in the first equation of (1.4.11) gives

λ↑1,0
N

−
λ↑0,1
M

=
λ→0,0
M

(
2eβ

∗ − M +N − 1

M

)
,

while the fifth equation of (1.4.11) forces λ↑0,1 =
λ→0,0
M

(N − 1). Thus,

λ↑1,0 =
N

M
λ→0,0(2e

β∗ − 1). (1.4.12)

If instead we set (m,n) = (2, 0) in the first equation from (1.4.11), we obtain

λ↑1,0 =
N

M
λ→0,0. (1.4.13)

Comparing (1.4.12) and (1.4.13), we conclude that

2eβ
∗ − 1 = 1,

and hence β∗ = 0.
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1.5 Two classes with different individual propensity to

default

Recall Model III from the Introduction. As with Model II, the graph G is KM,N , the

complete bipartite graph with vertex set the disjoint union V = V̂ ⊔ V̌ , where V̂ has M
vertices and V̌ has N vertices. Now, however, there are functions α̂, α̌ and β such that

αu(t) = α̂(t) for all u ∈ V̂

αv(t) = α̌(t) for all v ∈ V̌

βuv(t) = β(t) for all u ∈ V̂ , v ∈ V̌ .

(1.5.1)

Proposition 1.5.1. Consider Model III with M ≥ 4, N ≥ 3 or M ≥ 3, N ≥ 4. Suppose
that the prescribed values of α̂(T ) and α̌(T ) are distinct. If the prescribed value of β(T ) is
non-zero and sufficiently small, then the model does not admit time-homogeneous Markovian
dynamics.

Proof. Another symmetry argument similar to those in the proofs of Proposition 1.3.1 and
Proposition 1.4.1 shows that if (1.2.8) holds for some choice of jump rates, then there are
constants λ→m,n and λ↑m,n, 0 ≤ m ≤ M and 0 ≤ n ≤ N , with λ→M,n = 0 for 0 ≤ n ≤ N ,

λ↑m,N = 0 for 0 ≤ m ≤M , and λ→m,n and λ↑m,n strictly positive otherwise such that

mα̂′(t) + nα̌′(t) +mnβ′(t) = r − (λ→m,n + λ↑m,n) +

+
mλ→m−1,n

M −m+ 1
e−α̂(t)−nβ(t) +

nλ↑m,n−1

N − n+ 1
e−α̌(t)−mβ(t), (1.5.2)

where we set r := λ↑0,0 + λ→0,0 and adopt the convention that λ→−1,n = 0, 0 ≤ n ≤ N , and

λ↑m,−1 = 0, 0 ≤ m ≤M .
Applying (1.5.2) with (m,n) = (1, 0) and (m,n) = (0, 1) gives

α̂′(t) = r − (λ↑1,0 + λ→1,0) +
λ→0,0
M

e−α̂(t)

α̌′(t) = r − (λ↑0,1 + λ→0,1) +
λ↑0,0
N

e−α̌(t).

(1.5.3)

Similarly, applying (1.5.2) with (m,n) = (1, 1) and then substituting in the expressions for
α̂(t) and α̌(t) from (1.5.3) gives

β′(t) = r − (λ↑1,1 + λ→1,1) +
λ→0,1
M

e−α̂(t)−β(t) +
λ↑1,0
N

e−α̌(t)−β(t) − α̂′(t)− α̌′(t)

= −r − (λ↑1,1 + λ→1,1)− (λ↑0,1 + λ→0,1)− (λ↑1,0 + λ→1,0) +
λ→0,1
M

e−α̂(t)−β(t)

+
λ↑1,0
N

e−α̌(t)−β(t) −
λ→0,0
M

e−α̂(t) −
λ↑0,0
N

e−α̌(t).

(1.5.4)
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Substituting the expressions for the α̂, α̌ and β from (1.5.3) and (1.5.4) into (1.5.2) for
general (m,n) produces a system of equations of the form

am,ne
α̂(t) + bm,n + cm,ne

α̂(t)−α̌(t) + dm,ne
−β(t) + em,ne

α̂(t)−α̌(t)−β(t)

= fm,ne
−nβ(t) + gm,ne

α̂(t)−α̌(t)−mβ(t),
(1.5.5)

where 

am,n = (m−mn)(r − λ↑1,0 − λ→1,0) + (n−mn)(r − λ↑0,1 − λ→0,1)

+mn(r − λ↑1,1 − λ→1,1)− r + λ→m,n + λ↑m,n

bm,n = (m−mn)
λ→0,0
M

cm,n = (n−mn)
λ↑0,0
N

dm,n = mn
λ→0,1
M

em,n = mn
λ↑1,0
N

fm,n =
mλ→m−1,n

M −m+ 1

gm,n =
nλ↑m,n−1

N − n+ 1
.

Observe that because λ→m,n is strictly positive for 1 ≤ m ≤M −1 and 1 ≤ n ≤ N and λ↑m,n is
strictly positive for 1 ≤ m ≤M and 1 ≤ n ≤ N − 1, both fm,n and gm,n are strictly positive
for 1 ≤ m ≤M and 1 ≤ n ≤ N .

We claim that the continuous function β is constant. Assume without loss of generality
that M ≥ 4, N ≥ 3 and suppose that the function β is not constant.

Re-arrange (1.5.5) to get[
am,n + cm,ne

−α̌(t) + em,ne
−α̌(t)e−β(t) − gm,ne

−α̌(t)e−mβ(t)
]
eα̂(t)

= fm,ne
−nβ(t) − dm,ne

−β(t) − bm,n.
(1.5.6)

Because fm,n is strictly positive for 1 ≤ m ≤ M and 1 ≤ n ≤ N , there is an open interval
J such that the image {β(t) : t ∈ J} contains an open interval and the right-hand side of
(1.5.6) is non-zero for all t ∈ J , 1 ≤ m ≤M and 2 ≤ n ≤ N , and hence the same is true for
the left-hand side.

Taking (1.5.6) with the indices (m,n) replaced by another pair (i, j), we see that if t ∈ J ,
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1 ≤ m, i ≤M and 2 ≤ n, j ≤ N , then[
fm,ne

−nβ(t) − dm,ne
−β(t) − bm,n

]
×
[
ai,j + ci,je

−α̌(t) + ei,je
−α̌(t)e−β(t) − gi,je

−α̌(t)e−iβ(t)
]

=
[
fi,je

−jβ(t) − di,je
−β(t) − bi,j

]
×
[
am,n + cm,ne

−α̌(t) + em,ne
−α̌(t)e−β(t) − gm,ne

−α̌(t)e−mβ(t)
]
.

(1.5.7)

Re-arranging (1.5.7) gives

p(e−β(t);m,n, i, j)e−α̌(t) = q(e−β(t);m,n, i, j), (1.5.8)

where

p(z;m,n, i, j) := (ci,j + ei,jz − gi,jz
i)(fm,nz

n − dm,nz − bm,n)

− (cm,n + em,nz − gm,nz
m)(fi,jz

j − di,jz − bi,j)

and
q(z;m,n, i, j) := am,n(fi,jz

j − di,jz − bi,j)− ai,j(fm,nz
n − dm,nz − bm,n).

Suppose now that 2 ≤ m, i ≤ M and 2 ≤ n, j ≤ N . The leading term of the polynomial
p(z;m,n, i, j) is −gi,jfm,nzi+n if i + n > m + j and gm,nfi,jz

m+j if i + n < m + j (recall
that fm,n, gm,n, fi,j, gi,j are all strictly positive). Therefore, by taking a subinterval of J if
necessary, when i + n ̸= m + j we may suppose that J retains the properties required of
it above and, moreover, that both sides of (1.5.8) are non-zero for all t ∈ J . In particular,
either am,n ̸= 0 or ai,j ̸= 0 and the polynomial q(z;m,n, i, j) has degree either n or j when
n ̸= j.

Consider two 4-tuples (m′, n′, i′, j′) and (m′′, n′′, i′′, j′′) with

2 ≤ m′,m′′, i′, i′′ ≤M

2 ≤ n′, n′′, j′, j′′ ≤ N

i′ + n′ ̸= m′ + j′

i′′ + n′′ ̸= m′′ + j′′

n′ ̸= j′

n′′ ̸= j′′.

(1.5.9)

We conclude from (1.5.8) that

p(z;m′, n′, i′, j′)q(z;m′′, n′′, i′′, j′′) = p(z;m′′, n′′, i′′, j′′)q(z;m′, n′, i′, j′) (1.5.10)

for all z in an open interval. The left-hand side of (1.5.10) is a polynomial in z of degree either
((i′+n′)∨ (m′+ j′))+n′′ or ((i′+n′)∨ (m′+ j′))+ j′′, whereas the right-hand size has degree
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either ((i′′+n′′)∨ (m′′+ j′′))+n′ or ((i′′+n′′)∨ (m′′+ j′′))+ j′. For (m′, n′, i′, j′) = (2, 2, 2, 3)
and (m′′, n′′, i′′, j′′) = (4, 2, 4, 3) we have

i′ + n′ = 4 ̸= 5 = m′ + j′

i′′ + n′′ = 6 ̸= 7 = m′′ + j′′

n′ = 2 ̸= 3 = j′

n′′ = 2 ̸= 3 = j′′

((i′ + n′) ∨ (m′ + j′)) + n′′ = 5 + 2 = 7

((i′ + n′) ∨ (m′ + j′)) + j′′ = 5 + 3 = 8

((i′′ + n′′) ∨ (m′′ + j′′)) + n′ = 7 + 2 = 9

((i′′ + n′′) ∨ (m′′ + j′′)) + j′ = 7 + 3 = 10,

and so the possible degrees of the left-hand side of (1.5.10) are 7 and 8, whereas the possible
degrees of the right-hand side are 9 and 10.

Therefore, the function β must be a constant, say β∗. Note that β∗ is just the pre-specified
value for β(T ). We now show that β∗ = 0.

For the moment, consider Model III with β(T ) = 0, so that the function β must be
identically zero and the firms evolve independently. In this special case, we know from the
Introduction that

exp(α̂(t)) = (1 + exp(α̂(T )))
t
T − 1 (1.5.11)

and
exp(α̌(t)) = (1 + exp(α̌(T )))

t
T − 1. (1.5.12)

It follows from the linear independence of the functions exp(c1·), . . . , exp(ch·) when c1, . . . , ch
are distinct that in this case the functions exp(α̂), exp(α̌) and exp(α̂ + α̌) are linearly
independent when α̂(T ) ̸= α̌(T ).

Now return to the case of a general value for β∗ = β(T ). Equation (1.5.2) becomes

mα̂′(t) + nα̌′(t) = r − (λ→m,n + λ↑m,n)

+
mλ→m−1,n

M −m+ 1
e−α̂(t)−nβ

∗
+

nλ↑m,n−1

N − n+ 1
e−α̌(t)−mβ

∗
.

(1.5.13)

We can solve (1.5.3) for the α̂ and α̌ as in Section 1.2 to get
α̂(t) = log

(
λ→0,0

M(r − λ↑1,0 − λ→1,0)
(e(r−λ

↑
1,0−λ→1,0)t − 1)

)

α̌(t) = log

(
λ↑0,0

N(r − λ↑0,1 − λ→0,1)
(e(r−λ

↑
0,1−λ→0,1)t − 1)

) (1.5.14)
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Substituting (1.5.14) into (1.5.13) gives

m(r − λ↑1,0 − λ→1,0) + n(r − λ↑0,1 − λ→0,1) + (λ→m,n + λ↑m,n)− r

+

(
mλ→0,0
M

−
mλ→m−1,ne

−nβ∗

M −m+ 1

)
M(r − λ↑1,0 − λ→1,0)

λ→0,0(e
(r−λ↑1,0−λ→1,0)t − 1)

+

(
nλ↑0,0
N

−
nλ↑m,n−1e

−mβ∗

N − n+ 1

)
N(r − λ↑0,1 − λ→0,1)

λ↑0,0(e
(r−λ↑0,1−λ→0,1)t − 1)

= 0.

(1.5.15)

It follows from the observations above and a compactness argument that if α̂(T ) ̸= α̌(T )
and β∗ = β(T ) is sufficiently close to zero, then the functions exp(α̂), exp(α̌) and exp(α̂+ α̌)
are linearly independent. Suppose that this is the case. Equation (1.5.15) is of the form

a+ be−α̂(t) + ce−α̌(t) = 0

for suitable constants a, b, c, and hence a = b = c = 0. Thus,

mλ→0,0
M

−
mλ→m−1,ne

−nβ∗

M −m+ 1
= 0

nλ↑0,0
N

−
nλ↑m,n−1e

−mβ∗

N − n+ 1
= 0

m(r − λ→1,0 − λ↑1,0) + n(r − λ→0,1 − λ↑0,1) + (λ→m,n + λ↑m,n)− r = 0

for (m,n) ∈ {0, . . . ,M} × {0, . . . , N}, and so, after some algebra,

λ→0,0
M −m

M
enβ

∗
+ λ↑0,0

N − n

N
emβ

∗
= r −m(r − λ→1,0 − λ↑1,0)− n(r − λ→0,1 − λ↑0,1)

for (m,n) ∈ {0, . . . ,M} × {0, . . . , N}. In particular, considering (m,n) = (k, k) for 0 ≤ k ≤
M ∧N leads to a system of the form

Akekβ
∗
+Bekβ

∗
+ Ck +D = 0

for suitable constants A,B,C,D with A > 0 and B > 0. A straight line can intersect the
graph of the function t 7→ Ateβ

∗t +Beβ
∗t at most twice if β∗ > 0 and at most three times if

β∗ < 0, and since M ∧N ≥ 3 we must have β∗ = 0.
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Chapter 2

The Inverse First Passage Time
Problem

2.1 Introduction

Counterparty risk has to be taken into account when pricing a transaction or portfolio,
and it is necessary to model the occurrence of default jointly with the behavior of asset
values.

The default time is sometimes modeled as the first passage time of a credit index process
below a barrier. Black and Cox [BC76] were among the first to use this approach. They
define the time of default as the first time the ratio of the value of a firm and the value of
its debt falls below a constant level, and they model debt as a zero-coupon bond and the
value of the firm as a geometric Brownian motion. In this case, the default time has the
distribution of the first-passage time of a Brownian motion (with constant drift) below a
certain barrier.

Hull and White [HW01] model the default time as the first time a Brownian motion hits
a given time-dependent barrier. They show that this model gives the correct market credit
default swap and bond prices if the time-dependent barrier is chosen so that the first passage
time of the Brownian motion has a certain distribution derived from those prices. Given a
distribution for the default time, it is usually impossible to find a closed-form expression for
the corresponding time-dependent barrier, and numerical methods have to be used.

We adopt a perspective similar to that of [HW01]. Namely, we model the default time
as

τ := inf

{
t > 0 : λ

∫ t

0

ψ(Ys − b(s)) ds > U

}
(2.1.1)

where the diffusion Y is some credit index process, U is an independent mean one exponen-
tially distributed random variable, 0 ≤ ψ ≤ 1 is a suitably smooth, non-increasing function
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with limx→−∞ ψ(x) = 1 and limx→+∞ ψ(x) = 0, and λ > 0 is a rate parameter. Then,

P{τ > t} = E
[
exp

(
−λ
∫ t

0

ψ(Ys − b(s)) ds

)]
. (2.1.2)

The random time τ is a “smoothed-out” version of the stopping time of Hull and White;
instead of of killing Y as soon at it crosses some sharp, time-dependent boundary, we kill Y
at rate λψ(y − b(t)) if it is in state y ∈ R at time t ≥ 0. That is,

lim
∆t↓0

P{τ ∈ (t, t+∆t) | (Ys)0≤s≤t, τ > t}/∆t = λψ(Yt − b(t)).

When the credit index value Yt is large, corresponding to a time t when the counterparty is
in sound financial health, the killing rate λψ(Yt− b(t)) is close to 0 and default in an ensuing
short period of time is unlikely, whereas the killing rate is close to its maximum possible
value, λ, when Yt is low and default is more probable. Note that if we consider a family of
[0, 1]-valued, non-increasing functions ψ that converges to the indicator function of the set
{x ∈ R : x < 0} and λ tends to ∞, then the corresponding stopping time τ converges to the
Hull and White stopping time inf{t > 0 : Yt < b(t)}.

The hazard rate of the random time τ is

P{τ ∈ dt | τ > t}
dt

:= lim
∆t↓0

P{τ ∈ (t, t+∆t)}
∆tP{τ > t}

= lim
∆t↓0

P
{
λ
∫ t
0
ψ(Ys − b(s))ds ≤ U ≤ λ

∫ t+∆t

0
ψ(Ys − b(s)) ds

}
∆tP

{
λ
∫ t
0
ψ(Ys − b(s)) ds ≤ U

} (2.1.3)

= lim
∆t↓0

E
[
e−λ

∫ t
0 ψ(Ys−b(s)) ds − e−λ

∫ t+∆t
0 ψ(Ys−b(s)) ds

]
∆tE

[
exp

(
−λ
∫ t
0
ψ(Ys − b(s)) ds

)]
=

λE
[
ψ(Yt − b(t)) exp

(
−λ
∫ t
0
ψ(Ys − b(s)) ds

)]
E
[
exp

(
−λ
∫ t
0
ψ(Ys − b(s)) ds

)] .

On the other hand, suppose that ζ is a non-negative random variable with survival
function t 7→ G(t) := P{ζ > t}. Writing g for the derivative of G, the corresponding hazard
rate is

− g(t)

G(t)
= − d

dt
logG(t).

As a result, a necessary condition for a function b to exist such that the corresponding
random time τ has the same distribution as ζ is that

0 < −g(t) < λG(t), t ≥ 0. (2.1.4)
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We show in Theorem 2.3.1 that if Y is a Brownian motion with a given suitable random
initial condition, the assumption (2.1.4) holds, and the survival function G is twice contin-
uously differentiable, then there is a unique differentiable function b such that the stopping
time τ has the same distribution as ζ. In particular, we establish that the function b can
be determined by solving a system consisting of a parabolic linear PDE with coefficients
depending on b and a non-linear ODE for b with coefficients depending on the solution of
the PDE. Note from (2.1.2) that changing the function b on a set with Lebesgue measure
zero does not affect the distribution of τ , and so we have to be careful when we talk about
the uniqueness of b. This minor annoyance does not appear if we restrict to continuous b.

In Theorem 2.5.1 we give an analogue of the existence part of the above result when ψ
is the indicator of the set {x ∈ R : x < 0}.

Having proven the existence and uniqueness of a barrier b, we consider the pricing of
certain contingent claims in Section 2.6. For simplicity, we take the asset price (Xt)t≥0 to be
a geometric Brownian motion

dXt

Xt

= µdt+ σdWt,

where W is a standard Brownian motion. We take the credit index (Yt)t≥0 to be given by

dYt = dBt

where B is another standard Brownian motion, and take the default time to be given by
(2.1.1), where the exponential random variable U is independent of the asset price X and
the credit index Y . We assume that the Brownian motions W and B are correlated; that is,
that their covariation is [B,W ]t = ρt for some constant ρ ∈ [−1, 1]. We consider claims with
a payoff of the form F (XT )1{τ > T} for some fixed maturity T . We show how it is possible
to compute conditional expected values such as

E
[
F (XT )1{τ > T}

∣∣∣ (Xs)0≤s≤t, τ > t
]
.

In Section 2.7 we report the results of some experiments where we solved the PDE/ODE
system for the barrier b numerically. Lastly, in Section 2.8, we follow [DP11] to demonstrate
how it is possible to use market data on credit default swap prices to determine the survival
function G.

2.2 The FPT and IFPT problems

We present a discussion of the literature dealing with first passage times of diffusions
across time-dependent barriers.

Consider a Brownian motion (Bt)t≥0 defined on a filtered probability space (Ω,P,F , (Ft)t≥0)
which satisfies the usual conditions. Define the diffusion (Yt)t≥0 via the SDE

dYt = µ(Yt, t) dt+ σ(Yt, t) dBt,
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where we assume that the coefficients µ : R× R+ → R and σ : R× R+ → R+ are such that
the SDE has a unique strong solution.

For a Borel function b : R+ → R̄ := R ∪ {±∞}, the first passage time of the diffusion
process Y below the barrier b is the stopping time

τ̃ = inf{t > 0 : Yt < b(t)}. (2.2.1)

The following two problems related to this notion have been discussed in the literature.
The First Passage Time problem (FPT): For a given barrier b : R+ → R̄, compute the

survival function G of the first time that X goes below b; that is, find

G(t) := P{τ̃ > t}, t ≥ 0. (2.2.2)

The Inverse First Passage Time problem (IFPT): For a given survival function G, does
there exist a barrier b such that G(t) = P{τ̃ > t} for all t ≥ 0?

The First Passage Time problem started with Bachelier [Bac00] who examined the first
passage of a Brownian motion to a constant boundary. Paul Lévy generalized the problem
to a linear boundary. Kolmogorov clarified the connection between probability theory and
analysis in [Kol31] and this started the PDE approach to first passage time problems. Ex-
amples of the PDE approach are results by Petrowsky [Pet34] and by Khinchine [Khi33].
There are not many closed form results regarding the first passage time problem and those
which exist are mostly confined to Brownian motion. Therefore, people have studied other
aspects of the FPT such as the asymptotic behavior of the FPT distribution (see for example
[Pes02a,Nov14]).

Upper and Lower Boundaries In the case when the diffusion Y is a standard Brownian
motion B it is natural to try to find the value of P{τ̃ > 0}. By Blumenthal’s 0-1 law, because
the event {τ̃ > 0} lies in ∩t>0Ft, we have that P{τ̃ > 0} ∈ {0, 1}. A continuous function
b : R+ → R is a lower boundary function for B if P{τ̃ > 0} = 1 and a upper boundary
function for B if P{τ̃ > 0} = 0. Kolmogorov’s test [IM65] says that if b is continuous,
decreasing and b(s)/

√
s is increasing then b is a lower boundary function for B if and only if

−
∫ ∞

0

b(s)

s3/2
ϕ(b(s)/

√
s) ds <∞

where ϕ is the standard normal density. One can therefore note that −
√
2t log log 1/t is an

upper function for B and −
√

(2 + ϵ)t log log 1/t is a lower function for W for every ϵ > 0.
A large class of first passage time problems may be solved within a PDE framework. Let

u(x, t) = ∂
∂x
P{Yt ≤ x, τ̃ > t} be the sub-probability density of the diffusion Y killed at τ̃ .

Then, by the Kolmogorov forward equation, u satisfies
ut(x, t) =

1

2
(σ2u)xx − (µu)x, x > b(t), t > 0,

u(x, t) = 0, x ≤ b(t), t > 0,

u(x, 0) = f(x), x ∈ R,

(2.2.3)
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where f is the probability density of Y0. For nice enough functions b this system has a unique
solution and we can express the survival probability

G(t) = P{τ̃ > t} =

∫ ∞

b(t)

u(x, t) dx, t ≥ 0.

This approach is used in [Ler86, Val09] to get closed form solutions for some classes of
boundaries. An integral equation technique is used in [Pes02a,Pes02b,PS06,Val09] to find
the derivative g(t) = G′(t) in the FPT problem for a Brownian motion. Writing Ψ(z) :=∫∞
z

1√
2π

exp
(
−x2

2

)
dx, the derivative g satisfies a Volterra integral equation of the first kind

of the form

Ψ

(
b(t)√
t

)
= −

∫ t

0

Ψ

(
b(t)− b(s)√

t− s

)
g(s) ds.

This and other such integral equations can be used to find g numerically.
A. Shiryaev is generally credited with introducing the IFPT problem in 1976 (we have not

been able to find an explicit reference). The IFPT problem is significantly more challenging
than the FPT problem.

Most authors have investigated numerical methods for finding the boundary. Details can
be found in [HW00,HW01, IK02, ZS09]. It is shown in [AZ01] that for sufficiently smooth
boundaries the density u(x, t) and the boundary b(t) are a solution of the following free
boundary problem 

ut(x, t) =
1

2
(σ2u)xx − (µu)x, x > b(t), t > 0,

u(x, t) = 0, x ≤ b(t), t > 0,

u(x, 0) = f(x), x ∈ R,

G(t) =

∫ ∞

b(t)

u(x, t) dx, t ≥ 0.

(2.2.4)

where f is again the probability density of Y0. The existence and uniqueness of a viscosity
solution of (2.2.4) is established in [CCCS11] along with upper and lower bounds on the
asymptotic behavior of b. This chapter also shows that this b does in fact produce a boundary
that gives the survival function G. To our knowledge it has not be proven that a strong
solution to the system (2.2.4) exists, nor that there is a smooth b solving the IFPT.

A variation of the IFPT is studied in [DP11]. There the barrier is fixed at zero (i.e.
b ≡ 0) and it is the volatility parameter σ(·, ·) that is allowed to vary. The authors show
that this problem admits an explicit solution for every differentiable survival function.

2.3 Global Existence and Uniqueness

Suppose for the remainder of this chapter that Yt := Y0 +Bt where (Bt)t≥0 is a standard
Brownian motion and Y0 is a random variable, independent of B and with density f . In this
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case, (2.1.2) is

G(t) =

∫
R
E
[
exp

(
−λ
∫ t

0

ψ(x+Bz − b(z)) dz

)]
f(x) dx

which, by time reversal, becomes

G(t) =

∫
R
E
[
exp

(
−λ
∫ t

0

ψ(x+Bt−z − b(z))dz

)
f(x+Bt)

]
dx.

Set

u(x, t) := E
[
exp

(
−λ
∫ t

0

ψ(x+Bt−z − b(z))dz

)
f(x+Bt)

]
. (2.3.1)

That is, u is the sub-probability density of Y killed at the random time τ . It is well known
that if u is smooth enough, then u is the unique solution of the PDEut(x, t) =

1

2
uxx(x, t)− λψ(x− b(t))u(x, t), x ∈ R, t > 0,

u(x, 0) = f(x), x ∈ R.

Any solution to this PDE satisfies

lim
x→±∞

u(x, t) = lim
x→±∞

ux(x, t) = 0, t > 0. (2.3.2)

Our question as to whether we can find a “barrier” b giving us the survival function G is
now equivalent to whether the system

ut(x, t) =
1

2
uxx(x, t)− λψ(x− b(t))u(x, t), x ∈ R, t > 0,

u(x, 0) = f(x), x ∈ R,∫
R
u(x, t) dx = G(t), t ≥ 0,

(2.3.3)

has solutions (u, b). Differentiating the third equation from (2.3.3) with respect to t and
then using the first equation together with an integration by parts, we get that

− g(t) = λ

∫
R
ψ(x− b(t))u(x, t) dx, (2.3.4)
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where we recall that g(t) = G′(t). A second differentiation in t followed by another integra-
tion by parts yields

g′(t)− λ2
∫
R
ψ2(x− b(t))u(x, t)dx = λ

∫
R
ψx(x− b(t))u(x, t)b′(t) dx

− λ/2

∫
R
ψ(x− b(t))uxx(x, t) dx

= λ

∫
R
ψx(x− b(t))u(x, t)b′(t) dx

+ λ/2

∫
R
ψx(x− b(t))ux(x, t) dx (2.3.5)

= λ

∫
R
ψx(x− b(t))u(x, t)b′(t) dx

− λ/2

∫
R
ψxx(x− b(t))u(x, t) dx.

Note that (2.3.5) may be rearranged to give an ODE for b of the form b′(t) = Θ(b(t), t),
where the function Θ is constructed from the function u (which, of course, depends in turn
on b). Re-writing this integral equation in the form b(t) = b(0)+

∫ t
0
Θ(b(s), s) ds leads to the

following theorem, our main result.

Theorem 2.3.1. Suppose the following.

• The survival function G is twice continuously differentiable with first and second deriva-
tives g and g′ and 0 < −g(t) < λG(t) for all t ≥ 0 for some constant λ > 0.

• The initial density f satisfies
∫
R f(x) dx = 1, f(x) > 0 for all x ∈ R, f ∈ C2(R), and

the functions f, f ′, f ′′ are bounded.

• The function ψ is non-increasing and belongs to C3(R), and for some h > 0, ψ(x) = 1
for x ≤ −h and ψ(x) = 0 for x ≥ h.

Then, there exists a unique continuously differentiable function b : [0,∞) → R such that the
following three equations hold

G(t) =

∫
R
E
[
exp

(
−λ
∫ t

0

ψ(x+Bu − b(u))du

)]
f(x) dx, (2.3.6)

− g(t) = λ

∫
R
E
[
exp

(
−λ
∫ t

0

ψ(x+Bu − b(u))du

)
ψ(x+Bt − b(t))

]
f(x) dx, (2.3.7)
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and

b(t) = b(0) +

∫ t

0

(
g′(s)− λ2

∫
R E
[
ψ2(x+Bs − b(s))e−λ

∫ s
0 ψ(x+Br−b(r))dr

]
f(x) dx

λ
∫
R E
[
ψx(x+Bs − b(s))e−λ

∫ s
0 ψ(x+Br−b(r))dr

]
f(x) dx

+
λ/2

∫
R E
[
ψxx(x+Bs − b(s))e−λ

∫ s
0 ψ(x+Br−b(r))dr

]
f(x) dx

λ
∫
R E
[
ψx(x+Bs − b(s))e−λ

∫ s
0 ψ(x+Br−b(r))dr

]
f(x) dx

)
ds (2.3.8)

for all t ≥ 0.

Proof. From now on we assume for ease of notation that λ = 1. The modifications necessary
for general λ are straightforward. The proof will be via a sequence of lemmas, all of them
assuming the hypotheses of Theorem 2.3.1 (with λ = 1). We start with the following simple
observation.

Lemma 2.3.2. Suppose that

G(t) =

∫
R
u(x, t) dx

for some continuous function u : R×R+ → R such that u(x, t) > 0 for x ∈ R, t ≥ 0. Then,
for each t ≥ 0 there exists a unique b(t) ∈ R such that

−g(t) =
∫
R
ψ(x− b(t))u(x, t) dx.

Proof. Set

F (t, z) =

∫
R
ψ(x− z)u(x, t) dx.

Then,

lim
z→−∞

F (t, z) =

∫
R
u(x, t) dx = G(t),

lim
z→+∞

F (t, z) = 0,

and, by assumption,
0 < −g(t) < G(t).

Furthermore, F is continuous and strictly decreasing in z. So, by the intermediate value
property, we can find a unique b(t) ∈ R such that F (t, b(t)) = −g(t).

Lemma 2.3.3 (Global Uniqueness). Suppose there exist continuous functions b1, b2 such that
equations (2.3.6), (2.3.7) and (2.3.8) are satisfied for b = b1 and b = b2. Then, b1(t) = b2(t)
for all t ≥ 0.
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Proof. Recall that we are assuming λ = 1 to simplify notation.
Suppose that b1 and b2 are two continuous solutions of (2.3.6), (2.3.7) and (2.3.8). It

follows from Lemma 2.3.2 and (2.3.7) that b1(0) = b2(0). Set V := inf{t ≥ 0 : b1(t) ̸= b2(t)}
and suppose that V <∞.

Define f̃ : R → R by

f̃(y) dy :=

∫
R
E
[
1{x+BV ∈ dy}e−

∫ V
0 ψ(x+Br−b(r)) dr

]
f(x) dx,

where b(t) = b1(t) = b2(t) for 0 ≤ t ≤ V . Define functions b̃i : R+ → R, i = 1, 2, by
b̃i(t) = bi(V + t), t ≥ 0. Then, b̃1(0) = b̃2(0) = b(V ), and

b̃i(t) = b̃i(0)

+

∫ t

0

(
g′(s+ V )−

∫
R E
[
ψ2(x+Bs − b̃i(s))e

−
∫ s
0 ψ(x+Br−b̃i(r)) dr

]
f̃(x) dx∫

R E
[
ψx(x+Bs − b̃i(s))e

−
∫ s
0 ψ(x+Br−b̃i(r)) dr

]
f̃(x) dx

+
1/2

∫
R E
[
ψxx(x+Bs − b̃i(s))e

−
∫ s
0 ψ(x+Br−b̃i(r)) dr

]
f̃(x) dx∫

R E
[
ψx(x+Bs − b̃i(s))e

−
∫ s
0 ψ(x+Br−b̃i(r)) dr

]
f̃(x) dx

)
ds.

Fix ϵ > 0 and set

K := min
i=1,2

inf
0≤s≤ϵ

∫
R
E
[
ψx(x+Bs − b̃i(s))e

−
∫ s
0 ψ(x+Br−b̃i(r)) dr

]
f̃(x) dx > 0.

By the triangle inequality, for 0 ≤ t ≤ ϵ,

|b̃1(t)− b̃2(t)| ≤ I + II + III,

where

I := K−2

∫ t

0

|g′(s+ V )|
∫
R
E
[∣∣∣ψx(x+Bs − b̃2(s))e

−
∫ s
0 ψ(x+Br−b̃2(r)) dr

− ψx(x+Bs − b̃1(s))e
−

∫ s
0 ψ(x+Br−b̃1(r)) dr

∣∣∣]f̃(x) dx ds,
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II := K−2

∫ t

0

∫
R
E
[
ψ2(x+Bs − b̃1(s))e

−
∫ s
0 ψ(x+Br−b̃1(r)) dr

]
f̃(x) dx

×
∫
R
E
[∣∣∣ψx(x+Bs − b̃2(s))e

−
∫ s
0 ψ(x+Br−b̃2(r)) dr

− ψx(x+Bs − b̃1(s))e
−

∫ s
0 ψ(x+Br−b̃1(r)) dr

∣∣∣]f̃(x) dx ds
+K−2

∫ t

0

∫
R
E
[∣∣∣ψ2(x+Bs − b̃1(s))e

−
∫ s
0 ψ(x+Br−b̃1(r)) dr

− ψ2(x+Bs − b̃2(s))e
−

∫ s
0 ψ(x+Br−b̃2(r)) dr

∣∣∣]f̃(x) dx
×
∫
R
E
[∣∣∣ψx(x+Bs − b̃1(s))e

−
∫ s
0 ψ(x+Br−b̃1(r)) dr

∣∣∣] f̃(x) dx ds,
and

III :=
1

2
K−2

∫ t

0

∫
R
E
[∣∣∣ψxx(x+Bs − b̃1(s))e

−
∫ s
0 ψ(x+Br−b̃1(r)) dr

∣∣∣] f̃(x) dx
×
∫
R
E
[∣∣∣ψx(x+Bs − b̃2(s))e

−
∫ s
0 ψ(x+Br−b̃2(r)) dr

− ψx(x+Bs − b̃1(s))e
−

∫ s
0 ψ(x+Br−b̃1(r)) dr

∣∣∣]f̃(x) dx ds
+

1

2
K−2

∫ t

0

∫
R
E
[∣∣∣ψxx(x+Bs − b̃1(s))e

−
∫ s
0 ψ(x+Br−b̃1(r)) dr

− ψxx(x+Bs − b̃2(s))e
−

∫ s
0 ψ(x+Br−b̃2(r)) dr

∣∣∣]f̃(x) dx
×
∫
R
E
[∣∣∣ψx(x+Bs − b̃1(s))

∣∣∣ e− ∫ s
0 ψ(x+Br−b̃1(r)) dr

]
f̃(x) dx ds.

Consider the integrand in I. Note that∣∣∣ψx(x+Bs − b̃2(s))e
−

∫ s
0 ψ(x+Br−b̃2(r)) dr − ψx(x+Bs − b̃1(s))e

−
∫ s
0 ψ(x+Br−b̃1(r)) dr

∣∣∣
≤ |ψx(x+Bs − b̃2(s))|e−

∫ s
0 ψ(x+Br−b̃2(r)) dr − e−

∫ s
0 ψ(x+Br−b̃1(r)) dr

∣∣∣
+ e−

∫ s
0 ψ(x+Br−b̃1(r)) dr|ψx(x+Bs − b̃2(s))− ψx(x+Bs − b̃1(s))|

≤ ∥ψx∥L∞s∥ψx∥L∞ sup
0≤r≤s

|b2(r)− b1(r)|

+ ∥ψxx∥L∞ sup
0≤r≤s

|b2(r)− b1(r)|.

Similar arguments for the integrands in II and III using the boundedness and global
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Lipschitz properties of ψ, ψx, and ψxx establish that, for a suitable constant C,

sup
0≤s≤t

|b̃1(s)− b̃2(s)| ≤ C

∫ t

0

sup
0≤r≤s

|b̃1(r)− b̃2(r)| ds

for 0 ≤ t ≤ ϵ. It follows from Grönwall’s inequality that b̃1(t) = b̃2(t) for 0 ≤ t ≤ ϵ, and so
b1(t) = b2(t) for 0 ≤ t ≤ V + ϵ, contrary to the definition of V and the assumption that V
is finite.

Lemma 2.3.4 (Global Existence). Define S to be the supremum of the set of T such that the
equations (2.3.6), (2.3.7) and (2.3.8) have a continuous solution on [0, T ]. Then, S = +∞.

Proof. Suppose to the contrary that S < +∞. From Lemma 2.3.3, the equations have a
unique solution on [0, S). By time-reversal, equation (2.3.6) is equivalent to

G(t) =

∫
R
E
[
exp

(
−
∫ t

0

ψ(x+Bt−u − b(u))du

)
f(x+Bt)

]
dx. (2.3.9)

Similarly, (2.3.7) is equivalent to

− g(t)

=

∫
R
E
[
exp

(
−
∫ t

0

ψ(x+Bt−u − b(u)) du

)
ψ(x− b(t))f(x+Bt)

]
dx.

(2.3.10)

For 0 ≤ t < S put

u(x, t) := E
[
exp

(
−
∫ t

0

ψ(x+Bt−u − b(u))du

)
f(x+Bt)

]
. (2.3.11)

Consider t1 < t2 < . . . ↑ S. It follows from the continuity of the sample paths of B that
as tn ↑ S

exp

(
−
∫ tn

0

ψ(x+Btn−u − b(u)) du

)
f(x+Btn)

→ exp

(
−
∫ S

0

ψ(x+BS−u − b(u)) du

)
f(x+BS)

almost surely for each x ∈ R, and so

u(x, tn) → E
[
exp

(
−
∫ S

0

ψ(x+BS−u − b(u)) du

)
f(x+BS)

]
=: u(x, S).

Because
u(x, t) ≤ E[f(x+Bt)],
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it follows from dominated convergence that∫
R
u(x, S) dx = lim

n

∫
R
u(x, tn) dx = lim

n
G(tn) = G(S).

Also,

lim
n

∫
R
ψ(x− b(tn))u(x, tn) dx = − lim

n
g(tn) = −g(S).

Because 0 < −g(S) < G(S) and

u(x, S) ≥ e−SE[f(x+BS)] > 0, x ∈ R,

there is, by Lemma 2.3.2, a unique b∗ ∈ R such that∫
R
ψ(x− b∗)u(x, S) dx = −g(t).

We claim that b(tn) → b∗. If this was not the case, then, by passing to a subsequence
we would have b(tn) converging to some other extended real c and hence, by dominated
convergence,

−g(t) = − lim
n
g(tn)

= lim
n

∫
R
ψ(x− b(tn))u(x, tn) dx

=

∫
R
ψ(x− c)u(x, S) dx,

contradicting the definition of b∗ (where we used the natural definitions ψ(−∞) := 1, ψ(+∞) :=
0). Using dominated convergence in (2.3.8) we get that there exists a continuous b such that
all three equations hold on [0, S].

All we need to do now is show that we can extend the existence from [0, S] to [0, S + δ]
for some δ > 0. This amounts to proving existence on [0, δ] starting at a different initial
condition – replacing the original probability density f by the density of the probability
measure ∫

R
E
[
exp

(
−
∫ S

0

ψ(x+Bu − b(u)) du

)
, BS ∈ •

]
f(x) dx/G(S).

This will follow if we can establish the local existence, that is the existence for some δ > 0,
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of a solution of the following PDE/ODE system

ũt(x, t) =
1

2
ũxx(x, t)− ψ(x− b̃(t))ũ(x, t), x ∈ R, 0 < t < δ,

ũ(x, 0) = u(x, S)/G(S), x ∈ R,
b̃(0) = b(S),

b̃′(t) =
(g(S + t) + g′(S + t))/G(S)−

∫
R[ψ

2(x− b̃(t))− ψ(x− b̃(t))]ũ(x, t) dx∫
R ψx(x− b̃(t))ũ(x, t) dx

−
1/2

∫
R ψx(x− b̃(t))ũx(x, t) dx∫

R ψx(x− b̃(t))ũ(x, t) dx
, 0 < t < δ.

We note that the expression for b̃′(t) is not the analogue of the one for b′(t) that arises
immediately from differentiating (2.3.8), which in turn arose from rearranging (2.3.5) and
integrating. However, adding 0 =

∫
R ψ(x − b(t))u(x, t) dx − g(t) to the right-hand side of

(2.3.5) and then solving for b′(t) leads to an expression of this form. Note that

u(x, S) = E
[
exp

(
−
∫ S

0

ψ(x+BS−u − b(u))du

)
f(x+BS)

]
> 0,

and, by dominated convergence, that u(·, S) ∈ C2(R) with ∥u(·, S)∥L∞(R), ∥ux(·, S)∥L∞(R),
∥uxx(·, S)∥L∞(R) all finite. Therefore, we can apply Theorem 2.4.14 below to get that there

is a time δ > 0 and a unique pair ũ, b̃ satisfying the PDE/ODE system above with ũ twice
continuously differentiable in x on R and once continuously differentiable in t on [0, δ], i.e.
ũ ∈ C2

x(R)C1
t ([0, δ]), and with b̃ ∈ C1([0, δ]). Thus, we have proven that we have a unique

continuous b satisfying equations (2.3.6), (2.3.7) and (2.3.8) on [0, S + δ]. This contradicts
the maximality of S. As a result, S = ∞ and we are done.

This completes the proof of Theorem 2.3.1.

Remark 2.3.5. Note that one needs the global uniqueness proof from Lemma 2.3.3 because it
is not a priori clear that all the solutions to equations (2.3.6)-(2.3.8) are solutions to (2.3.3).
Therefore, one cannot apply the local existence result 2.4.14 to prove the uniqueness of the
solution of (2.3.6)-(2.3.8).

Remark 2.3.6. Equation (2.3.8) shows that b has a finite right derivative at 0. In the standard
Inverse First Passage Problem this usually fails (for example when G is exponential).

As a corollary we get the global existence and uniqueness of the PDE/ODE system.
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Corollary 2.3.7. Suppose that the conditions of Theorem 2.3.1 hold. Then, the system

ut(x, t) =
1

2
uxx(x, t)− ψ(x− b(t))u(x, t),

u(x, 0) = f(x), x ∈ R,

−g(0) =
∫
R
ψ(x− b(0))f(x) dx,

b′(t) =
g(t) + g′(t)−

∫
R[ψ

2(x− b(t))− ψ(x− b(t))]u(x, t) dx∫
R ψx(x− b(t))u(x, t) dx

−
1/2

∫
R ψx(x− b(t))ux(x, t)dx∫

R ψx(x− b(t))u(x, t) dx
, t > 0,

(2.3.12)

has a unique solution (u, b) ∈ C2
x(R)C1

t (R+)× C1
t (R+).

2.4 Local Existence and Uniqueness

We now consider the PDE/ODE system (2.3.12). We have already used the standard
notation Fx and Fxx to denote the first and second derivatives of a function F of one variable
or the first and second partial derivatives with respect to the variable x of a function F of
several variables. Because we repeatedly deal with the function (x, t) 7→ ψ(x− b(t)), it will
be convenient to recycle notation and define a function ψb : R×R+ → R by ψb(x, t) = ψ(x−
b(t))}. We will then set ψx,b := ∂xψb and ψxx,b := ∂xxψb. We will continue to use the notation
ψx and ψxx with its old meaning, but there should be no confusion between the different
objects ψb and ψx. Similarly, we set ϕ := ψ2−ψ = −ψ(1−ψ) and put ϕb(x, t) = ϕ(x− b(t)).
Lastly, for two functions f, g and fixed t ≥ 0 define ⟨f, g⟩ =

∫
R f(x, t)g(x, t) dx.

In the notation we have introduced, we wish to consider the system

ut(x, t) =
1

2
uxx(x, t)− ψ(x− b(t))u(x, t), x ∈ R, t > 0,

u(x, 0) = f(x), x ∈ R,
b(0) = b0,

b′(t) =
g(t) + g′(t)− ⟨ϕb, u⟩ − 1/2⟨ψx,b, ux⟩

⟨ψx,b, u⟩
, t > 0,

(2.4.1)

for some b0 ∈ R. (In the proof of Theorem 2.3.1 we choose b0 to satisfy −g(0) =
∫
R ψ(x −

b0)f(x) dx, but we may take an arbitrary value for b0 and still obtain a local existence and
uniqueness result.)

We have assumed in the statement of Theorem 2.3.1 that f ∈ C2(R) and ψ ∈ C3(R) with
∥ψ∥L∞ = 1, ∥ψ∥L∞ =: B, ∥ψxx∥L∞ =: C, and ∥ψxxx∥L∞ =: F for finite constants B,C, F .
Furthermore, we have assumed for some h > 0 that ψ(x) = 1 for x ≤ −h, that ψ(x) = 0
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for x ≥ h, and that ψ ≥ 0 and ψx ≤ 0 for all x ∈ R. Set
∫
R |ψx(x)| dx =: D and note that

0 < D <∞. It is immediate that ∥ϕ∥L∞ ≤ 1 and ∥ϕx∥L∞ = ∥ψx(1−2ψ)∥L∞ ≤ ∥ψx∥L∞ = B.
Moreover, the functions ϕ and ϕx are supported on [−h, h] and 0 <

∫
R |ϕ(x)| dx =: E <∞.

Definition 2.4.1. For T > 0, let (LT , ∥ · ∥T ) be the Banach space consisting of pairs of
functions (u, b) such that u ∈ C2

x(R)Ct([0, T ]), b ∈ C([0, T ]) and

∥(u, b)∥T := ∥u∥L∞
x (R)L∞

t ([0,T ])

+ ∥ux∥L∞
x (R)L∞

t ([0,T ]) + ∥uxx∥L∞
x (R)L∞

t ([0,T ])

+ ∥b∥L∞([0,T ])

<∞.

(2.4.2)

Definition 2.4.2. Given constants M,N,P,A, L > 0, b0 ∈ R and T > 0, define the closed
subset ΓTMNPALb0

⊂ LT by

ΓTMNPALb0
:=

{
(u, b) ∈ LT :

∥u∥L∞
x L∞

t ([0,T ]) ≤M,

∥ux∥L∞
t ([0,T ])L∞

x
≤ N,

∥uxx∥L∞
t ([0,T ])L∞

x
≤ P,

b(0) = b0,

∥b∥L∞([0,T ]) ≤ A/2,

inf
x∈[−A,A], t∈[0,T ]

u(x, t) ≥ L

}
.

(2.4.3)

The following is the main result of this section.

Theorem 2.4.3. Suppose that the assumptions of Theorem 2.3.1 hold. Suppose also that
the constants M,N,P,A, L > 0 and b0 ∈ R are such that

• |b0| ≤ A/4,

• f(x) ≥ 4L > 0 for x ∈ [−A,A],

• ∥f∥L∞(R) ≤M/2,

• ∥fx∥L∞(R) ≤ N/2,

• ∥fxx∥L∞(R) ≤ P/2.
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Then, for T > 0 sufficiently small there is a contractive map Φ : ΓTMNPALb0
→ ΓTMNPALb0

defined by Φ(v, b) = (u, c), where

ut(x, t) =
1

2
uxx(x, t)− ψ(x− b(t))v(x, t), x ∈ R, t > 0,

u(x, 0) = f(x), x ∈ R,

c′(t) =
g(t) + g′(t)− ⟨ϕb, v⟩ − 1/2⟨ψx,b, vx⟩

⟨ψx,b, v⟩
, 0 < t ≤ T,

c(0) = b0.

(2.4.4)

We will prove Theorem 2.4.3 in a series of lemmas. Each lemma will assume the hypothe-
ses of Theorem 2.4.3 and the bounds established in the previous lemmas.

Remark 2.4.4. Since f is continuous and positive, for any A > 0 there exists L > 0 such
that f(x) ≥ 4L for x ∈ [−A,A]. Therefore, we are not restricting the possible values of b(0)
by the above assumptions. We will also assume without loss of generality that h ≤ A/4.

Lemma 2.4.5 (Boundedness of u). Suppose that (u, c) = Φ((v, b)), with (v, b) ∈ ΓTMNPALb0
.

Then, there exists a time T > 0 such that

∥u∥L∞
x L∞

t ([0,T ]) ≤M.

Proof. Using Duhamel’s formula (see (2.9.2)),

|u(x, t)| =

∣∣∣∣∫
R
G(y, t)f(x− y) dy −

∫ t

0

∫
R
G(x− y, t− s)ψc(s)(y)v(y, s) dy ds

∣∣∣∣
≤

∫
R
G(y, t)f(x− y) dy +

∫ t

0

∫
R
G(x− y, t− s)|ψc(s)(y)||v(y, s)| dy ds

≤ M/2

∫
R
G(y, t) dy +M

∫ t

0

∫
R
G(x− y, t− s) dy ds

≤ M/2 +Mt

≤ M

when t ≤ 1
2
, where

G(x, t) :=
1√
2πt

e−
x2

2t , x ∈ R, t > 0.

Lemma 2.4.6 (Boundedness of ux). Suppose that (u, c) = Φ((v, b)) with (v, b) ∈ ΓTMNPALb0
.

Then, there exists a time T > 0 such that

∥ux∥L∞
t ([0,T ])L∞

x
≤ N.
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Proof. Since ux solves
(
∂t −

∂xx
2

)
ux = −ψx,cv − ψcvx, x ∈ R, t > 0,

ux(x, 0) = fx(x),

we have via Duhamel’s formula that

|ux(x, t)| =

∣∣∣∣∣
∫
R
G(y, t)fx(x− y) dy

+

∫ t

0

∫
R
G(x− y, t− s)(−ψx,cv − ψcvx)(y, s) dy ds

∣∣∣∣∣
≤

∫
R
G(y, t)|fx(x− y)| dy +

∫ t

0

∫
R
G(x− y, t− s)|ψx,c||v(y, s)| dy ds

+

∫ t

0

∫
R
G(x− y, t− s)|ψ(y − c(s))||vx(y, s))| dy ds

≤ N

2
+MB

∫ t

0

∫
R
G(x− y, t− s) dy ds+N

∫ t

0

∫
R
G(x− y, t− s) dy ds

≤ N

2
+MBt+Nt.

Thus,

∥ux∥L∞
t ([0,T ])L∞

x
≤ N

2
+ (MB +N)T ≤ N

whenever T ≤ T ∗, where

T ∗ =
N

2(MB +N)
.

Lemma 2.4.7 (Boundedness of uxx). Suppose that (u, c) = Φ((v, b)) with (v, b) ∈ ΓTMNPALb0
.

Then, there exists a time T > 0 such that

∥uxx∥L∞
t ([0,T ])L∞

x
≤ P.

Proof. Noting that uxx solves
(
∂t −

∂xx
2

)
uxx = −ψxx,cv − 2ψx,cvx − ψcvxx, x ∈ R, t > 0,

uxx(x, 0) = fxx(x),

analogous manipulations to those from Lemma 2.4.6 yield the result.
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Lemma 2.4.8 (Lower bound for u and boundedness of c′ and c). Suppose that (u, c) =
Φ((v, b)) with (v, b) ∈ ΓTMNPALb0

. Then, there exists a time T > 0 such that

u ≥ L on x ∈ [−A,A], t ∈ [0, T ], (2.4.5)

and c(t) ∈ [−A/2, A/2] for t ∈ [0, T ].

Proof. Recall that b(0) ∈ [−A/4, A/4]. Then, it is immediate that∣∣∣∣∫
R
ψx(x− b(t))v(x, t) dx

∣∣∣∣ = ∣∣∣∣∫
R
ψx(y)v(y + b(t)) dy

∣∣∣∣ ≥ DL, t ∈ [0, T ], (2.4.6)

because on the support [−h, h] of ψx we have y ∈ [−h, h] ⊆ [−A/4, A/4] which together with
the bound on b(t) implies y+ b(t) ∈ [−A,A]. Therefore, v(y+ b(t)) ≥ L for t ∈ [0, T ] which,
since ψx ≤ 0, yields∫

R
ψx(y)v(y + b(t)) dy ≤ L

∫
R
ψx(y) dy = −LD < 0, t ∈ [0, T ].

We see from these bounds that

|c′(t)| ≤
sup[0,t](|g + g′|) +ME +ND/2

LD

and, by integrating,

|c(t)| ≤ |c(0)|+
sup[0,t](|g + g′|) +ME +ND/2

LD
t.

Thus, there is T > 0 such that for t ∈ [0, T ],

|c(t)| ∈ [−A/2, A/2].

Using the assumptions, equation (2.9.2) gives

u(x, t) =

∫
R
G(y, t)f(x− y) dy −

∫ t

0

∫
R
G(x− y, t− s)ψc(s)(y)v(y, s) dy ds

≥ 4L

∫ x+A

x−A
G(y, t) dy −M

∫ t

0

∫
R
G(x− y, t− s) dy ds

≥ 4L

∫ x+A

x−A
G(y, t) dy −Mt.

If 0 ≤ x ≤ A then x− A ≤ 0 and x+ A ≥ A > 0 so for small enough t we have∫ x+A

x−A
G(y, t) dy ≥

∫ A

0

G(y, t) dy ≥ 1

3
.
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If −A ≤ x < 0 then x+ A ≥ 0 and x− A ≤ −A < 0. So, for small enough t,∫ x+A

x−A
G(y, t) dy ≥

∫ 0

−A
G(y, t) dy ≥ 1

3
.

Therefore, there exists a time T > 0 such that whenever t ∈ [0, T ] and x ∈ [−A,A],

u(x, t) ≥ 4

3
L−Mt

≥ L.

Lemma 2.4.9. For a sufficiently small time T > 0, the set ΓTMNPALb0
is mapped into itself

by Φ.

Proof. The above lemmas provided the necessary bounds. Now, note that if we start with
(v, b) ∈ ΓTMNPALb0

, then we first get the function c from the last two equations in (2.4.4) by
simply integrating. The integration is well-defined because the denominator is bounded in
absolute value below by DL > 0 and the numerator is bounded above. Thus, c ∈ C1([0, t]).
Next, having c in hand we get the function u from the first two equations of (2.4.4). We note
that, by Duhamel’s formula, the function u has actually more than the desired smoothness,
namely, u ∈ C2

x(R)C1
t ([0, T ]).

Lemma 2.4.10. Suppose that (v1, b1), (v2, b2) ∈ ΓTMNPALb0
. Set (u1, c1) = Φ((v1, b1)) and

(u2, c2) = Φ((v2, b2)). For any ϵ > 0 there exists T > 0 such that

∥c2 − c1∥L∞
t ([0,T ]) ≤ ϵ∥(v2, b2)− (v1, b1)∥T . (2.4.7)

Proof. Note that the functions c1, c2 satisfy
c′1(t) =

g(t) + g′(t)− ⟨ϕb1 , v1⟩ − 1/2⟨ψx,b1 , ∂xv1⟩∫
R⟨ψx,b1 , v1⟩

, t > 0,

c′2(t) =
g(t) + g′(t)− ⟨ϕb2 , v2⟩ − 1/2⟨ψx,b2 , ∂xv2⟩∫

R⟨ψx,b2 , v2⟩
, t > 0.

(2.4.8)
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Subtracting the two equations gives

c′2(t)− c′1(t) = [g(t) + g′(t)]

(
⟨ψx,b1 , v1⟩ − ⟨ψx,b1 , v2⟩
⟨ψx,b1 , v1⟩⟨ψx,b2 , v2⟩

+
⟨ψx,b1 , v2⟩ − ⟨ψx,b2 , v2⟩
⟨ψx,b1 , v1⟩⟨ψx,b2 , v2⟩

)
+

(⟨ϕb1 , v1⟩ − ⟨ϕb2 , v1⟩) ⟨ψx,b2 , v2⟩
⟨ψx,b1 , v1⟩⟨ψx,b2 , v2⟩

+
(⟨ϕb2 , v1⟩ − ⟨ϕb2 , v2⟩) ⟨ψx,b2 , v2⟩

⟨ψx,b1 , v1⟩⟨ψx,b2 , v2⟩

+
(⟨ϕb2 , v2⟩ − ⟨ϕb1 , v2⟩) ⟨ϕb2 , v2⟩

⟨ψx,b1 , v1⟩⟨ψx,b2 , v2⟩
+

(⟨ϕb1 , v2⟩ − ⟨ϕb1 , v1⟩) ⟨ϕb2 , v2⟩
⟨ψx,b1 , v1⟩⟨ψx,b2 , v2⟩

+
(⟨ψx,b1 , ∂xv1⟩ − ⟨ψx,b2 , ∂xv1⟩) ⟨ψx,b2 , v2⟩

2⟨ψx,b1 , v1⟩⟨ψx,b2 , v2⟩

+
(⟨ψx,b2 , ∂xv1⟩ − ⟨ψx,b2 , ∂xv2⟩) ⟨ψx,b2 , v2⟩

2⟨ψx,b1 , v1⟩⟨ψx,b2 , v2⟩

+
(⟨ψx,b2 , v2⟩ − ⟨ψx,b1 , v2⟩) ⟨ψx,b2 , ∂xv2⟩

2⟨ψx,b1 , v1⟩⟨ψx,b2 , v2⟩

+
(⟨ψx,b1 , v2⟩ − ⟨ψx,b1 , v1⟩) ⟨ψx,b2 , ∂xv2⟩

2⟨ψx,b1 , v1⟩⟨ψx,b2 , v2⟩
.

Using the fact that the functions ψ, ψx and ϕ are Lipschitz, that v1 and v2 are bounded, and
that their first derivatives are bounded, we find that

∥c′2 − c′1∥L∞
t ([0,T ]) ≤

sup[0,T ] |g + g′|∥v1 − v2∥L∞
x L∞

t ([0,T ])

L2D2

+
sup[0,T ] |g + g′|MC(A+ 2h)∥b2 − b1∥L∞

t ([0,T ])

L2D2

+
DM2B(A+ 2h)∥b2 − b1∥L∞

t ([0,T ])

L2D2

+
DME∥v2 − v1∥L∞

x L∞
t ([0,T ])

L2D2

+
EM2B(A+ 2h)∥b2 − b1∥L∞

t ([0,T ])

L2D2

+
ME2∥v2 − v1∥L∞

x L∞
t ([0,T ])

L2D2

+
NMDC(A+ 2h)∥b2 − b1∥L∞

t ([0,T ])

2L2D2

+
MD2∥∂xv2 − ∂xv1∥L∞

x L∞
t ([0,T ])

2L2D2

+
NMDC(A+ 2h)∥b2 − b1∥L∞

t ([0,T ])

2L2D2

+
ND2∥v2 − v1∥L∞

x L∞
t ([0,T ])

2L2D2
.
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Integrating and recalling that c1(0) = c2(0) = b0 leads to∣∣∣∣∫ t

0

(c′2(s)− c′1(s)) ds

∣∣∣∣ = |c2(t)− c1(t)− (c2(0)− c1(0))|

≤
∫ t

0

|c′2(s)− c′1(s)| ds

≤ t∥c′2 − c′1∥L∞
t ([0,t]).

Hence,
∥c2 − c1∥L∞

t ([0,T ]) ≤ T∥c′2 − c′1∥L∞
t ([0,T ]),

and by the above bound on ∥c′2 − c′1∥L∞
t ([0,T ]) for any ϵ > 0 we can choose T small enough

that
∥c2 − c1∥L∞

t ([0,T ]) ≤ ϵ∥(v2, b2)− (v1, b1)∥T .

Lemma 2.4.11. Suppose that (v1, b1), (v2, b2) ∈ ΓTMNPALb0
. Set (u1, c1) = Φ((v1, b1)) and

(u2, c2) = Φ((v2, b2)). For any ϵ > 0 there exists T > 0 such that

∥u2 − u1∥L∞
x L∞

t ([0,T ]) ≤ ϵ∥(v2, b2)− (v1, b1)∥T . (2.4.9)

Proof. The following equations hold

(
∂t −

∂xx
2

)
u1 = −ψ(x− c1(t))v1, x ∈ R, t > 0,(

∂t −
∂xx
2

)
u2 = −ψ(x− c2(t))v2, x ∈ R, t > 0,

u1(x, 0) = f(x), x ∈ R,
u2(x, 0) = f(x), x ∈ R.

(2.4.10)

By Duhamel’s formula we have

u1 = G ∗ (fδt=0) +G ∗ (−ψc1v1) (2.4.11)

and
u2 = G ∗ (fδt=0) +G ∗ (−ψc2v2), (2.4.12)

where we recall that ∗ denotes convolution on R+ ×R. Subtracting the two equations gives

u1 − u2 = G ∗ ((ψc2 − ψc1)v1 + ψc2(v2 − v1)).

Bounding in terms of the sup norm and using the fact that

|ψ(x− c1(t))− ψ(x− c2(t))| ≤ ∥ψx∥L∞
x
|c1(t)− c2(t)|,
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we have

|u1(x, t)− u2(x, t)| ≤
∫ t

0

∫
R
G(x− y, t− s)|ψc1(y, s)− ψc2(y, s)||v1(y, s)| dy ds

+

∫ t

0

∫
R
G(x− y, t− s)|ψc2(y, s)||v2(y, s)− v1(y, s)| dy ds

≤ ∥ψx∥L∞
x
∥v1∥L∞L∞

t ([0,T ])∥c1 − c2∥L∞
x
t

+ ∥ψ∥L∞
x
∥v1 − v2∥L∞

x L∞
t ([0,t])t

= BM∥c1 − c2∥L∞
x
t+ ∥v1 − v2∥L∞

x L∞
t ([0,t])t.

Thus,
∥u1 − u2∥L∞

x L∞
t ([0,T ]) ≤ B∥c1 − c2∥L∞

x
T + ∥v1 − v2∥L∞

x L∞
t ([0,T ])T.

so for small enough T we see that (2.4.9) holds.

Lemma 2.4.12. Suppose that (v1, b1), (v2, b2) ∈ ΓTMNPALb0
. Set (u1, c1) = Φ((v1, b1)) and

(u2, c2) = Φ((v2, b2)). For any ϵ > 0 there exists T > 0 such that

∥∂xu1 − ∂xu2∥L∞
x L∞

t ([0,T ]) ≤ ϵ∥(v2, b2)− (v1, b1)∥T . (2.4.13)

Proof. Differentiating (2.4.10) with respect to x

(
∂t −

∂xx
2

)
∂xu1(x, t) = −ψx,c1(x, t)v1(x, t)− ψc1(x, t)∂xv1(x, t),

x ∈ R, t > 0,(
∂t −

∂xx
2

)
∂xu2(x, t) = −ψx,c2(x, t)v2(x, t)− ψc2(x, t)∂xv2(x, t),

x ∈ R, t > 0,

∂xu1(x, 0) = fx(x), x ∈ R,
∂xu2(x, 0) = fx(x), x ∈ R,

(2.4.14)

Via Duhamel’s formula,

∂xu1 = G ∗ (fxδt=0) +G ∗ (−ψx(· − c1(·))v1 − ψ(· − c2(·))∂xv1) (2.4.15)

and
∂xu1 = G ∗ (fxδt=0) +G ∗ (−ψx(· − c2(·))v2 − ψ(· − c2(·))∂xv2). (2.4.16)
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Subtracting and rearranging,

(∂xu1 − ∂xu2)(x, t) =

∫ t

0

∫
R
G(x− y, t− s)[ψx,c2v2(y, s)− ψx,c1v1(y, s)] dy ds

+

∫ t

0

∫
R
G(x− y, t− s)[ψc2∂xv2(y, s)− ψc1∂xv1(y, s)] dy ds

=

∫ t

0

∫
R
G(x− y, t− s)[ψx,c2v2(y, s)− ψx,c2v1(y, s)] dy ds

+

∫ t

0

∫
R
G(x− y, t− s)[ψx,c2v1(y, s)− ψx,c1v1(y, s)] dy ds

+

∫ t

0

∫
R
G(x− y, t− s)[ψc2∂xv2(y, s)− ψc2∂xv1(y, s)] dy ds

+

∫ t

0

∫
R
G(x− y, t− s)[ψc2∂xv1(y, s)− ψc1∂xv1(y, s)] dy ds.

Using estimates similar to those in the proof of Lemma 2.4.11

∥∂xu1 − ∂xu2∥L∞
x L∞

t ([0,T ]) ≤ BM∥v2 − v1∥L∞
x L∞

t ([0,T ])T

+ CM∥c2 − c1∥L∞
t ([0,T ])T

+ ∥∂xv2 − ∂xv1∥L∞
x L∞

t ([0,T ])T

+ BN∥c2 − c1∥L∞
t ([0,T ])T

= BMT∥v2 − v1∥L∞
x L∞

t ([0,T ])

+ (CM +BN)T∥c2 − c1∥L∞
t ([0,T ])

+ T∥∂xv2 − ∂xv1∥L∞
x L∞

t ([0,T ]).

so for T small we recover (2.4.13).

Lemma 2.4.13. Suppose that (v1, b1), (v2, b2) ∈ ΓTMNPALb0
. Set (u1, c1) = Φ((v1, b1)) and

(u2, c2) = Φ((v2, b2)). For any ϵ > 0 there exists T > 0 such that

∥∂xxu1 − ∂xxu2∥L∞
x L∞

t ([0,T ]) ≤ ϵ∥(v2, b2)− (v1, b1)∥T . (2.4.17)

Proof. Differentiating (2.4.10) twice with respect to x

(
∂t −

∂xx
2

)
∂xxu1 = −ψxx,c1v1 − 2ψx,c1∂xv1 − ψc1∂xxv1,

x ∈ R, t > 0,(
∂t −

∂xx
2

)
∂xxu2 = −ψxx,c2v2 − 2ψx,c2∂xv2 − ψc2∂xxv2,

x ∈ R, t > 0,

∂xxu1(x, 0) = fxx(x), x ∈ R,
∂xxu2(x, 0) = fxx(x), x ∈ R.

(2.4.18)
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Duhamel’s formula and similar manipulations to Lemmas 2.4.11 and 2.4.12 give

∥∂xxu1 − ∂xxu2∥L∞
x L∞

t ([0,T ]) ≤ CM∥v2 − v1∥L∞
t ([0,T ])L∞

x
T

+ FM∥c2 − c1∥L∞
t ([0,T ])T

+ 2B∥∂xv2 − ∂xv1∥L∞
x L∞

t ([0,T ])T

+ 2CN∥c2 − c1∥L∞
t ([0,T ])T

+ ∥∂xxv2 − ∂xxv1∥L∞
x L∞

t ([0,T ])T

+ BP∥c2 − c1∥L∞
t ([0,T ])T

= CMT∥v2 − v1∥L∞
x L∞

t ([0,T ])

+ 2BT∥∂xv2 − ∂xv1∥L∞
x L∞

t ([0,T ])

+ T∥∂xxv2 − ∂xxv1∥L∞
x L∞

t ([0,T ])

+ (FM + 2CN +BP )T∥c2 − c1∥L∞
t ([0,T ]).

so when T > 0 is small (2.4.17) holds.

Theorem 2.4.14. [Local existence and uniqueness] Suppose that the conditions of Theo-
rem 2.3.1 hold. Then, there exists a time T > 0 such that the system

ut(x, t) =
1

2
uxx(x, t)− ψ(x− b(t))u(x, t), x ∈ R, t > 0,

u(x, 0) = f(x), x ∈ R,

b′(t) =
g(t) + g′(t)− ⟨ϕb, u⟩ − 1/2⟨ψx,b, ux⟩

⟨ψx,b, u⟩
, t > 0,

b(0) = b0,

has a unique solution (u, b) ∈ C2
x(R)C1

t ([0, T ])× C1([0, T ]).

Proof. Note there exist strictly positive constants A,M,N and P such that b0 ∈
[
−A

4
, A
4

]
,

f(x) ≥ L > 0, when x ∈ [−A,A], ∥f∥L∞(R) ≤ M, ∥fx∥L∞(R) ≤ N/2, and ∥fx∥L∞(R) ≤ P/2.
Putting all the estimates from the above lemmas together we have that, if 0 < ϵ < 1 is fixed,
then for T > 0 small enough

∥(u2, c2)− (u1, c1)∥ ≤ ϵ∥(v2, b2)− (v1, b1)∥.

Thus, there exists a T > 0 such that the map Φ : ΓTMNPALb0
→ ΓTMNPALb0

is a contraction.
Since ΓTMNPALb0

is a closed subset of the Banach space LT , the Contraction Mapping Theorem
gives that there exists a unique fixed point, that is, a pair (u, b) ∈ C2

x(R)Ct([0, T ])×C([0, T ])
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with b(0) = b0 such that

ut(x, t) =
1

2
uxx(x, t)− ψ(x− b(t))u(x, t)

u(x, 0) = f(x)

b′(t) =
g(t) + g′(t)− ⟨ϕb, u⟩ − 1/2⟨ψx,b, ux⟩

⟨ψx,b, u⟩
b(0) = b0.

(2.4.19)

We can now argue that our fixed point (u, b) has more smoothness than it seems a priori.
The third equation in (2.4.19) implies that b must be continuously differentiable with a
bounded derivative. This, together with the first equation from (2.4.19) then tells us that
u has a continuous derivative in time. Therefore, we must have (u, b) ∈ C2

x(R)C1
t ([0, T ]) ×

C1([0, T ]).

Corollary 2.4.15. Assume the hypotheses of Theorem 2.4.14 and the extra conditions
G(0) =

∫
R
f(x) dx,

−g(0) =
∫
R
ψ(x− b(0))f(x) dx,

0 < −g(t) < G(t), t ∈ [0, T ].

(2.4.20)

Then, there exists a time T > 0 such that the system
ut(x, t) =

1

2
uxx(x, t)− ψ(x− b(t))u(x, t), x ∈ R, 0 < t < T,

u(x, 0) = f(x), x ∈ R,

G(t) =

∫
R
u(x, t) dx, t ∈ [0, T ],

has a unique solution (u, b) : R × [0, T ] → R. Furthermore, u ∈ C2
x(R)C1

t ([0, T ]) and
b ∈ C1([0, T ]).

Proof. First note that by Lemma 2.3.2 we have that b(0) is uniquely determined. From
Theorem 2.4.14 we have that there exist unique u, b with u ∈ C2

x(R)C1
t ([0, T ]) and b ∈

C1([0, T ]) satisfying the PDE and having everywhere in [0, T ]

b′(t) =
g(t) + g′(t)− ⟨ϕb, u⟩ − 1/2⟨ψx,b, ux⟩

⟨ψx,b, u⟩
.

Set F (t) := G(t)−
∫
R u(x, t) dx and note that the first two conditions from (2.4.20) yield,

together with the PDE, Ft(0) = F (0) = 0. The function F belongs to C1([0, T ]) and Ft
belongs to C([0, T ]). The above equation for b′ is equivalent, after using the PDE, to

Ftt(t)− Ft(t) = 0, t ∈ [0, T ].
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Integrating and using the fundamental theorem of calculus, we get

Ft(t)− F (t) = Ft(0)− F (0) = 0, t ∈ [0, T ].

The unique solution to this differential equation is F (t) = Cet for some constant C ∈ R.
This together with F (0) = 0 yields F (t) = 0 for t ∈ [0, T ]. Thus,

G(t) =

∫
R
u(x, t) dx, t ∈ [0, T ].

Then, taking a derivative and using the PDE,

−g(t) =
∫
R
ψ(x− b(t))u(x, t) dx, t ∈ [0, T ].

Because |ψ(x)| ≤ 1 for x ∈ R, ψ = 0 for x ≥ h and u(x, t) > 0 we see that

0 <

∫
R
ψ(x− b(t))u(x, t) dx = −g(t) <

∫
R
u(x, t) dx = G(t).

2.5 Discontinuous killing

Next, we consider the existence of a barrier when killing is done non-smoothly. That is,
we ask whether there exists a function b such that, for a given G

G(t) =

∫
R
E
[
exp

(
−
∫ t

0

1(−∞,0](x+Bu − b(u)) du

)
f(x)

]
dx (2.5.1)

Note that
∫ t
0
1(−∞,0](x+Bu−b(u)) du is the time during the interval [0, t] spent by a Brownian

motion started at x below the barrier b.

Theorem 2.5.1. There exists a function b such that, for a given, twice continuously differ-
entiable G satisfying 0 < −g(t)/G(t) < 1, t ≥ 0, equation (2.5.1) holds for all t ≥ 0.

Proof. Let ϕ be a smooth decreasing function supported on [0, 1] with
∫
R ϕ(x) dx = 1. Put

ψ
ϵ
(x) =

∫ ∞

x

ϕ((y − ϵ)/ϵ))(1/ϵ) dy

and

ψϵ(x) =

∫ ∞

x

ϕ(y/ϵ))(1/ϵ)dy,
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so that
ψ
ϵ
(x) ≤ 1{x ≤ 0} ≤ ψϵ. (2.5.2)

Note also that
ψ
ϵ
(x) increases with ϵ for all x (2.5.3)

and
ψϵ(x) decreases with ϵ for all x. (2.5.4)

Let bϵ and bϵ be the two barriers corresponding to ψϵ(x) and ψϵ. The existence and uniqueness
of these two barriers follows by Theorem 2.3.1. From (2.5.2) we have that

bϵ(t) ≤ bϵ(t)

for all t and from (2.5.3), (2.5.4) that

bϵ(t) is increasing in ϵ for each t

and
bϵ(t) is decreasing in ϵ for each t.

Put
b∗(t) = lim

ϵ↓0
bϵ(t)

and
b∗(t) = lim

ϵ↓0
bϵ(t).

Then,
b∗(t) ≤ b∗(t), (2.5.5)

and both of these functions give a stopping time with the correct distribution for the case
where ψ is the indicator of (−∞, 0]. Because of (2.5.5), it must be the case that b∗(t) = b∗(t)
for Lebesgue almost all t.

2.6 Pricing Claims

Suppose that the asset price (Xt)t≥0 is a geometric Brownian motion given by

dXt

Xt

= µdt+ σdWt, (2.6.1)

where (Wt)t≥0 is a standard Brownian motion. We model default using a diffusion (Yt)t≥0

where
dYt = dBt, (2.6.2)
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with (Bt)t≥0 another standard Brownian motion. We assume that the Brownian motions W
and B are correlated with correlation −1 ≤ ρ ≤ 1; that is, the cross-variation of the two
processes satisfies

[B,W ]t = ρt, t ≥ 0.

We can assume without loss of generality that for two independent Brownian motions B′, B′′

we have {
Wt = B′

t,

Bt = ρB′
t +
√
1− ρ2B′′

t .

In the following we will look at pricing contingent claims with a fixed maturity T > 0 and
payoff of the form

F (XT )1{τ > T}
for the random time

τ := inf

{
t > 0 : λ

∫ t

0

ψ(Ys − b(s)) ds > U

}
,

where U is an independent exponentially distributed random variable with mean one.
Note that

Ex[F (XT )1{τ > T}] = Ex
[
F (XT ) exp

(
−λ
∫ T

0

ψ(Ys − b(s)) ds

)]
.

More generally, we will be interested in expressions of the form

Ex
[
F (XT )1{τ > T}

∣∣∣ (Xs)0≤s≤t, τ > t
]

= Ex
[
F (XT ) exp

(
−λ
∫ T

t

ψ(Ys − b(s)) ds

) ∣∣∣ (Xs)0≤s≤t, τ > t

]
,

which we interpret as the price of the payoff at time 0 ≤ t ≤ T given that default has not
yet occurred.

Consider the Markov process Z = (X,Y, V ) where X, Y are as above, and V is a process
that, when started at v is at v + t after t units of time, that is, Vt = V0 + t. The generator
of Z is

A = (1/2)σ2x2D2
x + µxDx + (1/2)D2

y + ρσxDxDy +Dv.

We want to compute

E(x,y)
[
F (XT )e

−
∫ T
0 λψ(Ys−b(s)) ds

]
= E(x,y,0)

[
F (XT )e

−
∫ T
0 λψ(Ys−b(Vs)) ds

]
.

The Feynman-Kac formula says that the solution to the PDE{
Dtu(x, y, v, t) = Au(x, y, v, t)− λψ(y − b(v))u(x, y, v, t),

u(x, y, v, 0) = F (x),
(2.6.3)
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satisfies

E(x,y)

[
F (XT ) exp

(
−
∫ T

0

λψ(Ys − b(s))ds

)]
= u(x, y, 0, T ).

Thus, if we assume the Brownian motion Y has an random starting point Y0 with density f
that is independent of (Yt − Y0)t≥0, then

Ex
[
F (XT ) exp

(
−
∫ T

0

λψ(Ys − b(s))ds

)]
=

∫
R
u(x, y, 0, T )f(y) dy.

Using this and the Markov property, one can find the function K(x, y, t) satisfying

K(Xt, Yt, t) = Ex
[
F (XT ) exp

(
−λ
∫ T

t

ψ(Ys − b(s)) ds

) ∣∣∣ (Xs)0≤s≤t, (Ys)0≤s≤t, τ > t

]
.

The price at time t, given that we know the history of the price process Xt and that default
has not happened up to time t, is

E
[
F (XT )1{τ > T}

∣∣∣ (Xs)0≤s≤t, τ > t
]

= E
[
K(Xt, Yt, t)

∣∣∣ (Xs)0≤s≤t, τ > t
]

=
E[K(Xt, Yt, t)1{τ > t} | (Xs)0≤s≤t]

E[1{τ > t} | (Xs)0≤s≤t]
.

It follows from the SDE for X that

B′
t = Wt =

1

σ

[
logXt − logX0 +

(
σ2

2
− µ

)
t

]
,

so if we observe the asset price X, then we can reconstruct the standard Brownian motion
B′. On the other hand,

Xt = X0 exp

(
σB′

t −
(
σ2

2
− µ

)
t

)
.

Now,

E[K(Xt, Yt, t)1{τ > t} | (Xs)0≤s≤t]

= E
[
K

(
X0 exp

(
σB′

t −
(
σ2

2
− µ

)
t

)
, Y0 + ρB′

t +
√
1− ρ2B′′

t , t

)
× 1

{∫ t

0

ψ
(
Y0 + ρB′

s +
√
1− ρ2B′′

s − b(s)
)
ds ≤ U

}
∣∣∣∣X0, (B

′
s)0≤s≤t

]
.
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We therefore want to be able to compute for a function c : R+ → R the conditional expected
value

E
[
K

(
X0 exp

(
σc(t)−

(
σ2

2
− µ

)
t

)
, Y0 + ρc(t) +

√
1− ρ2B′′

t , t

)
× 1

{∫ t

0

ψ
(
Y0 + ρc(s) +

√
1− ρ2B′′

s − b(s)
)
ds ≤ U

} ∣∣∣∣X0

]
= E

[
K

(
X0 exp

(
σc(t)−

(
σ2

2
− µ

)
t

)
, Y0 + ρc(t) +

√
1− ρ2B′′

t , t

)
× exp

(
−
∫ t

0

ψ
(
Y0 + ρc(s) +

√
1− ρ2B′′

s − b(s)
)
ds

) ∣∣∣∣X0

]
,

with (B′′
t )t≥0 a standard Brownian motion independent ofX0. We can do this using Feynman-

Kac.
The denominator in the formula for the price at time t is a special case of the numerator

we have just calculated with K ≡ 1, and it can be dealt with in the same way.
We have thus observed that computing the price of a contingent claim reduces to solving

certain PDEs with coefficients depending on the path of the asset price.

2.7 Numerical Results

In this section we present the results of some numerical experiments. We solved the
PDE/ODE system (2.3.12) using the pseudo-spectral Implicit-Explicit Fourth Order Runge-
Kutta scheme ARK4(3)6L[2]SA-ERK, taking 8192 nodes and period 16, developed in [KC03].
For the function ψ we used the Fejér kernel of order 512 applied to the indicator of the set
{x ∈ R : x < 0}; in other words ψ is the Cesàro sum of the truncated Fourier series of order
512 of the indicator of the set {x ∈ R : x < 0}. The time horizon was taken to be T = 8,
the initial distribution of the credit index process Y was taken to be normal (Y0 ∼ N(0, σ2)
with standard deviation σ = 0.25), and the time to default was taken to have an exponential
distribution (G(t) = e−νt with rates ν = 0.0625, 0.125, 0.25, 0.5).

For the first experiment, we fix the killing parameter to λ = 1. We show the resulting
barriers b in Figure 2.1. We also show the relative error between the survival function
G(t) and the numerically computed value of

∫
R u(x, t) dx (recall (2.3.3)), and the relative

error between the hazard rate −g(t)/G(t) and the numerically computed value of
∫
R ψ(x−

b(t))u(x, t) dx/
∫
R u(x, t) dx (recall (2.3.4)).

For the second experiment, we take the exponential rate to be ν = 0.125 and the standard
deviation to be σ = 0.25. We look at the graphs for when the killing parameter is λ =
1, 10, 50, 200. The barriers, together with the relative errors in the survival functions and
hazard rates are given in Figure 2.2.
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Figure 2.1: This figure displays the results of the numerical experiments described in Sec-
tion 2.7. We fix the standard deviation for the initial distribution of the credit index process
Y to be σ = 0.25 and the killing parameter to be λ = 1. The first row gives the barriers for
the rate parameters ν = 0.0625, 0.125, 0.25, 0.5 of the exponential default time distribution.
The first (resp. second) panels in the second row give the relative errors between the actual
survival function values G(t) (resp. the actual hazard function values −g(t)/G(t)) and the
numerically computed ones – see the text for details.
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Figure 2.2: In this figure we fixed the standard deviation to σ = 0.25 and the rate parameter
to ν = 0.125. The first row gives the barriers for the killing parameters λ = 1, 10, 50, 200.
The first and second panels in the second row give the relative errors for the survival function
(resp. the hazard function).
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2.8 Calibrating the default distribution using CDS rates

For the sake of completeness, we review briefly the scheme proposed in [DP11] for deter-
mining the distribution of the time to default.

A credit default swap (CDS) is a contract between two parties. The buyer of the swap
makes a number of predetermined payments until the moment of default. The seller is liable
to pay the unrecovered value of the underlying bond in the event of a default before maturity.
Normalizing the notional value of the bond to 1, the seller’s contingent payment is 1 − R,
where R ∈ (0, 1) is the recovery rate, which we take to be constant. The premium payments
are made at a set of times {ti}. The maturities are a subset of the premium payment times;
that is, they are of the form T0 = 0, Tj = tk(j), j = 1, . . . , n. For j = 1, . . . , n there is an
upfront premium π0

j and a running premium rate π1
j (having accrual factors δi). Denote the

price at time zero of a zero coupon risk-free bond with maturity tj by p0(tj). It follows from
standard non-arbitrage arguments that

π0
j + π1

j

k(j)−1∑
i=k(j−1)

δip0(ti)G(ti) = (1−R)

k(j)∑
i=k(j−1)+1

p0(ti)(G(ti−1)−G(ti)), (2.8.1)

where G(t) = P{τ > t} is the tail of the distribution of the time to default.
Suppose now that the default distribution has piecewise constant hazard rate; that is,

that

G(t) = exp

(
−
∫ t

0

h(s) ds

)
, t ≥ 0,

where h(s) = hi for s ∈ [Ti, Ti+1). Given the market data (π0
1, π

1
1), (π

0
2, π

1
2), . . . we can find,

using equation (2.8.1), the constants h0, h1, . . . .
We use the following procedure to find the barrier b. Set ν = h0 and G(t) = e−νt. Given

the initial density f , which we can choose to be any strictly positive function f that is twice
continuously differentiable with bounded f , f ′ and f ′′, we want to find a barrier such that
for 0 ≤ t ≤ T = T1 we have

e−νt = E
[∫

R
f(x) exp

(
−λ
∫ t

0

ψ(x+Bs − b(s)) ds

)
dx

]
.

This can be achieved by solving the ODE/PDE system (2.3.12). Next, set ν1 = h1, T = T2−
T1, f1(x) = E

[
f(x) exp

(
−λ
∫ T1
0
ψ(x+Bs − b(s)) ds

)]
and find a barrier with b1(0) = b(T1)

such that on 0 ≤ t < T = T2 − T1 we have

e−ν1t = E
[∫

R
f1(x) exp

(
−λ
∫ t

0

ψ(x+Bs − b1(s)) ds

)
dx

]
.

This procedure can be repeated until we find a function b on [0, Tn] that is continuously
differentiable everywhere, except perhaps the finite number of points T1, . . . , Tn.
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2.9 Duhamel’s formula

For the sake of reference, we provide a statement of Duhamel’s formula. Given functions
v : R× R+ → R and b : R+ → R, the solution of

(
∂t −

∂xx
2

)
u = −ψbv, x ∈ R, t > 0,

u(x, 0) = f(x) x ∈ R,
(2.9.1)

is given by

u(x, t) = [G ∗ (fδt=0)](x, t) + [G ∗ (−ψbv)](x, t)

=

∫
R
G(x− y, t)f(y) dy −

∫ t

0

∫
R
G(x− y, t− s)ψb(s)(y)v(y, s) dy ds, (2.9.2)

where

G(x, t) :=
1√
2πt

e−
x2

2t , x ∈ R, t > 0. (2.9.3)
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Chapter 3

Invasibility in spatio-temporally
heterogeneous environments

3.1 Introduction

Environmental conditions such as light, precipitation and food availability are usually
functions of space and time. Organisms are influenced by environmental conditions and are
constantly faced with deciding whether or not they should change location. If an individ-
ual disperses, it may go to a location with poorer conditions. If, on the other hand, the
individual chooses to stay in the same place then it may face worsening local environmental
conditions due to temporal fluctuations. There have been extensive field and simulation
studies regarding the dispersal of a population in a heterogeneous environment and how this
influences the persistence of a population [JY98,RHB05,MG07]. Population growth is inher-
ently stochastic due to numerous unpredictable causes. The simplest continuous time model
for a single population would be one of the form dX̂t = µX̂tdt + σX̂tdBt where X̂t denotes
the population size at time t, µ is the mean growth rate, E[X̂t+∆t− X̂t | X̂t = z] ≈ zµ∆t, σ2

is the variance of fluctuations in the growth rate, E[(X̂t+∆t−X̂t−zµ∆t)2 | X̂t = z] ≈ z2σ2∆t,
and Bt is a Brownian motion. Due to its simplicity, this model has been used in the
literature for evaluating the risk of extinction [DMS91, LES03]. There has been a lot of
work on understanding the joint effects of temporal and spatial heterogeneity on population
persistence and the evolution of dispersal, but most of it is not mathematically rigorous
[GH02,MH92,Has83,LCH84]. There also has been mathematical work for the case of spatial
heterogeneity by itself [HMP01,CC91,CCL06].

A general model which addresses the spatio-temporal effects of heterogeneity is discussed
in [ERSS]. The authors assume that there are n distinct patches and that the population
can disperse from one patch to the other while continuously experiencing uncertainty in
environmental conditions in space and time. They use a system of coupled stochastic differ-
ential equations (SDE) driven by Brownian motions which are not perfectly correlated, so
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that good years in a region (patch) do not necessarily correspond to good years everywhere.
In [ERSS] the authors try to answer some important questions arising in population biol-
ogy: For diffusively dispersing populations, when is there selection for higher versus lower
dispersal rate? How do different spatial scales of environmental heterogeneity influence the
persistence of a population? If there are no constraints on the dispersal strategy, then which
one maximizes the population growth rate?

If (X1
t , . . . , X

n
t ) denotes the populations of the n patches at time t then adding disper-

sal to the regional dynamics, following [ERSS], leads to the following system of stochastic
differential equations

dX i
t = X i

t(µidt+ dEi
t) +

n∑
j=1

DjiX
j
t dt, i = 1, . . . , n,

where (E1, . . . , En) is a vector of correlated Brownian motions with covariance matrix ΓTΓ,
Dij ≥ 0, i ̸= j is the per-capita rate at which the population from patch i disperses to
patch j and −Dii :=

∑
j ̸=iDij is the total per-capita immigration rate out of patch i. The

covariance matrix ΓTΓ captures the spatial dependence between the temporal fluctuations
in patch quality and the drift µi is the mean per-capita growth rate in patch i.

The model from [ERSS] does not account for an important biological feature: negative
density-dependent feedbacks. At the within-patch scale, individual per-capita growth rates
often are reduced by increasing local population density due to the effect of competition for
resources.

Generalizing and extending the model from [ERSS] to include competition of individuals
for resources will lead to studying stochastic differential equations of the form

dX i
t = µiX

i
tdt− κi(X

i
t)

2dt+X i
tdE

i
t +

n∑
j=1

DjiX
j
t dt, i = 1, . . . , n, (3.1.1)

where the term −κi(X i
t)

2dt accounts for negative density dependence which may arise due
to competition for resources. We will study this system of SDE under the simplifying as-
sumption that for all t ≥ 0 the total population Xt is spread through the patches via

X i
t = αiXt, i = 1, . . . , n,

where αi ∈ [0, 1] and
∑n

i=1 αi = 1.
Assume we have two species whose total populationsMt, Nt are spread out viaM i

t = αiMt

and N i
t = βiNt. We show below that we can model the interaction of the two species by the

coupled system of SDE

dMt = Mt [µ · α− ⟨α, β⟩Nt − ⟨α, α⟩Mt] dt+Mt

√
αTΓTΓα dUt

dNt = Nt [µ · β − ⟨α, β⟩Mt − ⟨β, β⟩Nt] dt+Nt

√
βTΓTΓβ dVt.
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As a first step, in Theorem 3.2.1 we find necessary and sufficient conditions for the existence
of a stationary distribution for the one dimensional SDE

dM̄t =

(∑
i

µiαiM̄t −
∑
i

κi(αiM̄t)
2

)
dt+ M̄t

√
αTΓTΓα dWt.

A similar SDE describes the process (N̄). Proposition 3.3.10 tells us that, in some sense,
if we start the diffusion (M,N) at a point (x, y) with x, y > 0 then the process (M,N)
converges weakly to a stationary distribution on [0,∞)× [0,∞). One would like to know in
which cases one, both or none of the two populations go extinct. By looking at the Lyapunov
exponents of the linearized SDE

dN̂t := N̂t

[
µ · β − ⟨α, β⟩M̄t

]
dt+ N̂t

√
βTΓTΓβ dVt,

we show in Proposition 3.3.11 that if the Lyapunov exponent of M̂ is negative, LM̂ < 0 then
almost surely limt→∞Mt = 0 i.e. M goes extinct. This enables us to prove in Theorem 3.3.8
that when LM̂ < 0 the probability measures

1

t

∫ t

0

P(x,y){(Ms, Ns) ∈ ·} ds

converge weakly as t → ∞ to δ0 ⊗ ρ, where ρ is the unique stationary distribution of N̄
concentrated on (0,∞). In Theorem 3.3.14 we say something about the case LM̂ > 0, LN̂ > 0.
When both Lyapunov exponents are positive one can show that there exists ϵ > 0 such that
for all s > 0 there exists t ≥ s such that Mt ≥ ϵ,Nt ≥ ϵ. In particular with probability one
Mt and Nt do not die out.

The species N is trying to invade M so it tries to maximize its Lyapunov exponent.
Theorem 3.4.1 gives us the value of maxβ LN̂ , the maximal Lyapunov exponent of N̂ for a
fixed α. Finally, in Section 3.5 we show some results in the simplified case when we have
only n = 2 patches.

3.2 The Model

Suppose we have n patches and that the total population of the resident species at time
t, M̃t, is spread through these patches via

M̃ i
t = αiM̃t,

where αi > 0 for 1 ≤ i ≤ n and
∑

i αi = 1. Assume to begin with that the population in the
ithpatch satisfies the SDE

dM̃ i
t = µiM̃

i
t dt+ M̃ i

t dE
i
t ,
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where Ei =
∑

j γjiB
j
t for a standard Brownian motion (B1, . . . , Bn)T on Rn and Γ := (γij)

is an n× n matrix.
This model may be thought as the limit as δ → ∞ of a model of the form

dM̃ i
t = µiM̃

i
t dt+ δ

n∑
j=1

qjiM̃
j
t dt+ M̃ i

t dE
i
t ,

where δqji, j ̸= i is the per-capita dispersal rate from patch j into patch i, −δqii = δ
∑

k ̸=i qik
is the total per-capita rate of dispersal out of patch i and α := (α1, . . . , αn) satisfies∑n

j=1 αjqji = 0 for 1 ≤ i ≤ n; that is, the probability vector α is the stationary distri-
bution of the continuous time Markov chain with infinitesimal generator matrix Q. The
covariance matrix ΓTΓ captures the spatial dependence between the temporal fluctuations
in patch quality and the drift µi is the mean per-capita growth rate in patch i.

Returning to our initial model, since M̃t =
∑

i M̃
i
t , we have

dM̃t =

(∑
i

αiµiM̃t

)
dt+

∑
i

αiM̃t dE
i
t

=

(∑
i

αiµi

)
M̃t dt+ M̃t

∑
i,j

αiγji dB
j
t

= (α · µ)M̃t dt+ M̃t

√
αTΓTΓα dWt,

where µ := (µ1, . . . , µn) and W is a one-dimensional standard Brownian motion. The last
line in the above follows because the quadratic variation of the process

∑
i,j αiγjiB

j satisfies

d[
∑

i,j αiγjiB
j]t = αTΓTΓα dt.

Suppose now that we introduce competition between the individuals in each patch. The
SDE for the total population M̄t becomes

dM̄t =

(∑
i

µiαiM̄t −
∑
i

κi(αiM̄t)
2

)
dt+ M̄t

√
αTΓTΓα dWt. (3.2.1)

Note that if we set Xt := log M̄t, then by Itô’s lemma,

dXt =

(∑
i

µiαi −
∑
i

κiα
2
i exp(Xt)−

1

2
αTΓTΓα

)
dt+

√
αTΓTΓα dWt.

It is clear that if M̄0 ∈ R++ := (0,∞), then M̄t ∈ R++ for all t ≥ 0 almost surely. Note that
if we define the process

dX̃t =

(∑
i

µiαi −
1

2
αTΓTΓα

)
dt+

√
αTΓTΓα dWt.
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then X̃ is just a Brownian motion with drift so it does not explode. By the comparison
theorem for 1-dimensional SDE (see Theorem V.43.1 from [RW00]) if X̃0 = X0 then Xt ≤ X̃t

for all t ≥ 0. Therefore, X does not explode to +∞. Equivalently one can use the Feller
test for explosion (see Theorem 5.5.29 in [KS91]) to show that X does not explode to ±∞.

Of course, if M̄0 = 0, then M̄t = 0 for all t ≥ 0.
We can be explicit about conditions under which the one-dimensional diffusion process

{M̄t}t≥0 has a stationary distribution concentrated on R++. For ease of notation, we in-
troduce the inner product ⟨·, ·⟩ defined via ⟨x, y⟩ :=

∑n
i=1 κixiyi and adopt the notation

µ · α :=
∑n

i=1 µiαi for the usual inner product.

Theorem 3.2.1. The diffusion process {M̄t}t≥0 defined by (3.2.1) has a stationary distri-

bution concentrated on R++ if and only if µ · α− αTΓTΓα
2

> 0, in which case that stationary
distribution is unique and has the Gamma density x 7→ 1

Γ(k)θk
xk−1e−

x
θ with parameters

θ :=
αTΓTΓα

2⟨α, α⟩

and

k :=
2α · µ
αTΓTΓα

− 1.

Proof. The diffusion process M̄ has state space the interval I := R++ and is of the form

dM̄t = b(M̄t) dt+ σ(M̄t) dWt,

where b(z) = Az − Bz2 and σ(z) = Cz with A = α · µ, B = ⟨α, α⟩ and C =
√
αTΓTΓα.

General facts about one-dimensional diffusions, in particular about the scale function and
speed measure, can be found in Chapter 23 of [Kal02] and Chapter V.6-7 of [RW00]. It
follows that a choice for the scale function is the function

s(x) =

∫ x

c

exp

(
−
∫ y

a

2b(z)

σ2(z)
dz

)
dy

=

∫ x

c

(y
a

)−2A/C2

e
2B
C2 (y−a) dy

(3.2.2)

for arbitrary a, c ∈ I (recall that the scale function is only defined up to affine transforma-
tions). If we set σ̃ = (σs′) ◦ s−1, then

ds(M̄t) = σ̃(s(M̄t)) dW̃t

and the diffusion process s(M̄) is in natural scale on the state space s(I) with speed measure
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m that has density 1
σ̃2 . The total mass of the speed measure is

m(I) =

∫
s(I)

1

σ̃2(x)
dx =

∫
s(I)

1

((σs′) ◦ s−1)2(x)
dx =

∫ ∞

0

1

σ2(u)s′(u)
du

=

∫ ∞

0

1

(Cu)2
(
u
a

)−2A/C2

e
2B
C2 (u−a)

du

=
1

C2a2A/C

∫ ∞

0

u
2A
C2−2e−

2B
C2 (u−a) du. (3.2.3)

By Theorem 23.15 of [Kal02], the diffusion process M̄ has a stationary distribution concen-
trated on R++ if and only if the process s(M̄) has (−∞,+∞) as its state space and the
speed measure has finite total mass or s(M̄) has a finite interval as its state space and the
boundaries are reflecting. The introduction of an extra negative drift to geometric Brownian
motion cannot make zero a reflecting boundary, so we are interested in conditions under
which s(I) = (−∞,∞) and the speed measure has finite total mass. We see from (3.2.2)
and (3.2.3) that this happens if and only if 2A/C2 > 1.

The diffusion s(M̄) has an stationary distribution with density f := 1
m(I)σ̃2 on s(I) =

(−∞,+∞), and so the stationary distribution of M̄ is the distribution on I that has density

g(x) = f(s(x))s′(x)

=
1

m(I)σ̃2(s(x))
s′(x)

=
1

m(I)σ2(x)s′(x)

=
1

m(I)x2C2
(
x
a

)−2A/C2

e
2B
C2 (x−a)

, x ∈ I.

Note that this has the form of a Gamma(k, θ) density with parameters θ := C2

2B
and k = 2A

C2−1.
Therefore,

g(x) =
1

Γ(k)θk
xk−1e−

x
θ =

1

Γ
(
2A
C2 − 1

) (
C2

2B

) 2A
C2−1

x
2A
C2−2e

−2Bx

C2

for x ∈ I.

The next proposition tells us that the diffusion (M̄t)t≥0 satisfies a Law of Large Numbers.
The argument is standard, but we include it for completeness.

Proposition 3.2.2. Assume µ · α − αTΓTΓα
2

> 0. The process (M̄t)t≥0 given by (3.2.1)
satisfies

lim
t→∞

1

t

∫ t

0

M̄s ds =

∫
R++

xdπ(x) =

(
2α · µ
αTΓTΓα

− 1

)
αTΓTΓα

2⟨α, α⟩
a.s. Px for all x ∈ R++,
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where π is the unique stationary distribution of M̄ concentrated on R++. The above quantity
is equal to Eπ[M̄t], the expected value of M̄t for any t when M0 has the stationary distribution
π.

Proof. By Theorem 3.2.1 we have a unique stationary distribution π which is concentrated
on R++. Theorem 20.21 from [Kal02] implies that the shift-invariant σ-field is trivial for all
starting points. The ergodic theorem for stationary stochastic processes then tells us that

lim
t→∞

1

t

∫ t

0

M̄s ds = Eπ[M̄t] a.s. Pπ.

Now observe by the existence of everywhere positive transition densities (see Theorem
V.50.11 from [RW00]) and the Markov property that if some tail event happens almost surely
for some starting point, then it happens almost surely for every starting point. As a result,

lim
t→∞

1

t

∫ t

0

M̄s ds = Eπ[M̄t] a.s. Px for all x ∈ R++.

By Theorem 3.2.1 it is easily seen that∫
R++

xdπ(x) =

(
2α · µ
αTΓTΓα

− 1

)
αTΓTΓα

2⟨α, α⟩
.

3.3 Conditions for invasibility

Suppose now that a new species with total population size given by the process {Nt}t≥0

tries to invade the habitat of the resident species. We assume that the size of the invader
population in patch i at time t is N i

t = βiNt for all t ≥ 0. We now write Mt for the total
population size of the resident species at time t and letM i

t = αiMt be the size of the resident
population in patch i at time t. The appropriate coupled system of SDEs for the processes
(M1, . . . ,Mn) and (N1, . . . , Nn) is

M i
t = µiM

i
t dt− κiM

i
t (M

i
t +N i

t ) dt+M i
t dE

i
t

N i
t = µiN

i
t dt− κiN

i
t (M

i
t +N i

t ) dt+N i
t dE

i
t .

We re-express the SDE for the two-dimensional diffusion process (M,N) of total population
sizes by noting that

d[M,M ]t = M2
t α

TΓTΓα dt

d[N,N ]t = N2
t β

TΓTΓβ dt

d[M,N ]t = NtMtα
TΓTΓβ dt.
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Therefore, the diffusion process (M,N) is given by

dMt = Mt [µ · α− ⟨α, β⟩Nt − ⟨α, α⟩Mt] dt+Mt

√
αTΓTΓα dUt (3.3.1)

dNt = Nt [µ · β − ⟨α, β⟩Mt − ⟨β, β⟩Nt] dt+Nt

√
βTΓTΓβ dVt, (3.3.2)

where (U, V ) is a (non-standard) Brownian motion with covariance structure d[U,U ]t = dt,

d[V, V ]t = dt, and d[U, V ]t =
αTΓTΓβ√

αTΓTΓα
√
βTΓTΓβ

dt. Note that if αTΓTΓβ√
αTΓTΓα

√
βTΓTΓβ

= 1, then

we are in a singular case and we have U = V . We do not consider this case in what follows.

Definition 3.3.1. We say that the species described by N can invade M successfully if

lim
ε↓0

lim inf
t→∞

P{Nt > δ |N0 = ε} > 0

for some δ > 0.

Question 3.3.2. What are necessary and sufficient conditions for N to be able to successfully
invade the habitat of M?

We partially answer this question in Theorem 3.3.8 and Theorem 3.3.14 below.

Proposition 3.3.3. Define the process N̂ via

dN̂t := N̂t

[
µ · β − ⟨α, β⟩M̄t

]
dt+ N̂t

√
βTΓTΓβ dVt, (3.3.3)

where M̄ is given by (3.2.1) with W = U . Suppose that µ · α − αTΓTΓα
2

> 0, so the Markov
process M̄ has a stationary distribution concentrated on R++. Then, the limit LN̂(α, β) :=

limt→∞
log N̂t

t
exists almost surely and is given by

LN̂(α, β) = µ · β −
(

2α · µ
αTΓTΓα

− 1

)
αTΓTΓα

2⟨α, α⟩
⟨α, β⟩ − 1

2
βTΓTΓβ. (3.3.4)

Proof. Note from (3.3.3) that

d log N̂t =
(∑

µiβi − κiαiβiM̄t

)
dt+

√
βTΓTΓβ dVt +

1

2

(
− 1

N̂2
t

)
N̂2
t (β

TΓTΓβ) dt.

By Proposition 3.2.2,

lim
t→∞

1

t

∫ t

0

M̄s ds = νM̄(α),

where

νM̄(α) :=

(
2α · µ
αTΓTΓα

− 1

)
αTΓTΓα

2⟨α, α⟩
. (3.3.5)

Therefore,

lim
t→∞

log N̂t

t
= µ · β − ⟨α, β⟩νM̄(α)− 1

2
βTΓTΓβ. (3.3.6)



62

Interchanging the roles of the resident and the invader in Proposition 3.3.3, define the
pair of processes (M̂, N̄) via

dM̂t = M̂t

[
µ · α− ⟨α, β⟩N̄t

]
dt+ M̂t

√
αTΓTΓα dUt (3.3.7)

dN̄t = N̄t(µ · β − ⟨β, β⟩N̄t) dt+ N̄t

√
βTΓTΓβ dVt. (3.3.8)

It follows from Proposition 3.3.3 that if the process N̄ has a stationary distribution con-

centrated on R++ (which, by Theorem 3.2.1, occurs if and only if µ · β − βTΓTΓβ
2

> 0),
then

LM̂(α, β) := lim
t→∞

log M̂t

t
= µ · α−

(
2β · µ
βTΓTΓβ

− 1

)
βTΓTΓβ

2⟨β, β⟩
⟨α, β⟩ − 1

2
αTΓTΓα. (3.3.9)

Proposition 3.3.4. Suppose that the processes M̄ and N̄ both have stationary distributions

concentrated on R++, that is, µ ·α− αTΓTΓα
2

> 0 and µ ·β− βTΓTΓβ
2

> 0. Then, LN̂(α, β) < 0
implies that LM̂(α, β) > 0, and LM̂(α, β) < 0 implies that LN̂(α, β) > 0.

Proof. By symmetry, it suffices to prove the first claim. Set A := µ · α − αTΓTΓα
2

and

B := µ · β − βTΓTΓβ
2

. By the assumption that the processes M̄ and N̄ both have stationary
distributions concentrated on R++, we get by Theorem 3.2.1 that A > 0 and B > 0 . Note
that

LN̂(α, β) = B − A
⟨α, β⟩
⟨α, α⟩

and

LM̂(α, β) = A−B
⟨α, β⟩
⟨β, β⟩

.

Assume that LN̂(α, β) < 0 and LM̂(α, β) ≤ 0. From the Cauchy-Schwarz inequality ⟨x, y⟩ ≤
⟨x, x⟩1/2⟨y, y⟩1/2 we get

B⟨α, α⟩1/2⟨β, β⟩1/2 ≥ B⟨α, β⟩ ≥ A⟨β, β⟩
A⟨α, α⟩1/2⟨β, β⟩1/2 ≥ A⟨α, β⟩ > B⟨α, α⟩.

The above inequalities yield the contradiction B⟨α, α⟩1/2 ≥ A⟨β, β⟩1/2 and B⟨α, α⟩1/2 <
A⟨β, β⟩1/2.

For ease of notation, we re-write the joint dynamics of M and N as

dMt = (µ · αMt −Mt(aMt + cNt)) dt+ σMMt dUt (3.3.10)

dNt = (µ · βNt −Nt(cMt + bNt)) dt+ σNNt dVt,

where a := ⟨α, α⟩, b := ⟨β, β⟩, c := ⟨α, β⟩, σM :=
√
αTΓTΓα, and σN :=

√
βTΓTΓβ.

Set R+ := [0,∞). The next theorem gives us the existence and uniqueness of solutions
to the system (3.3.10) as well as some very useful comparison results.
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Theorem 3.3.5. The SDE from 3.3.10 has unique strong solutions and Mt, Nt ∈ Lp(P(x,y))
for all p > 0 for all (x, y) ∈ R2

++. Suppose the processes {(Mt, Nt)}t≥0 and {(M̄t, N̄t)}t≥0 are
equal at t = 0. Then,

Mt ≤ M̄t

and
Nt ≤ N̄t

for all t ≥ 0.

Proof. The uniqueness and existence of strong solutions is fairly standard, see, for example,
Theorem 2.1 in [LM09]. One notes that the drift coefficients are locally Lipschitz so strong
solutions exist and are unique up to the explosion time. It is easy to show this explosion
time is almost surely infinite (see Theorem 2.1 in [LM09]). Next, suppose that M0 = M̄0.
We adapt the comparison principle of Ikeda and Watanabe (Chapter VI Theorem 1.1 from
[IW89]) proved by the local time techniques of Le Gall (see Theorem 1.4 from [LG83] and
Theorem V.43.1 in [RW00]) to show that M̄t −Mt ≥ 0 for all t ≥ 0.

Define ρ : R+ → R+ by ρ(x) = |x|2. Note that

∫ t

0

ρ(|M̄s −Ms|)−11{M̄s −Ms > 0} d[M̄ −M ]s =

∫ t

0

[ρ(|M̄s −Ms|)−1

(σMM̄s − σMMs)
21{M̄s −Ms > 0}] ds

≤ σ2
M t.

Since
∫
0+
ρ(u)−1 du = ∞, by Proposition V.39.3 from [RW00] the local time at 0 of

M − M̄ is zero for all t ≥ 0. Put x+ := x∨ 0. By Tanaka’s formula (see equation IV.43.6 in
[RW00]),

(Mt − M̄t)
+ =

∫ t

0

1{Ms − M̄s > 0}(σMMs − σMM̄s) dUt

+

∫ t

0

1{Ms − M̄s > 0}
[
(µ · αMs −Ms(aMs + cNs))− (µ · αM̄s − aM̄2

s )
]
ds.

For K > 0 define the stopping time

TK := inf{t > 0 :Mt ≥ K or M̄t ≥ K }

and the stopped processes MK
t = MTK∧t, M̄

K
t = M̄TK∧t Then, stopping the processes at TK
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and taking expectations yields

0 ≤ E(MK
t − M̄K

t )+ = E
∫ t∧TK

0
1{Ms − M̄s > 0}[(µ · αMs −Ms(aMs + cNs))

− (µ · αM̄s − aM̄2
s ) ds

= E
∫ t∧TK

0
1{Ms − M̄s > 0}

[
µ · α(Ms − M̄s)− a(M2

s − M̄2
s )− cMsNs

]
ds

≤
∫ t∧TK

0
1{Ms − M̄s > 0}µ · α(Ms − M̄s) ds

≤ µ · αE
∫ t∧TK

0
(Ms − M̄s)

+ ds

≤ µ · αE
∫ t

0
(MK

s − M̄K
s )+ ds

By Gronwall’s Lemma, see Exercise V.11.11 in [RW00], E(MK
t − M̄K

t )+ = 0 for all t ≥ 0,
so MK

t ≤ M̄K
t for all t ≥ 0. Now let K → ∞ to get that, remembering that M̄ does not

explode, Mt ≤ M̄t for all t ≥ 0. Since we have shown before that M̄ is dominated by a
geometric Brownian motion which has moments of all orders we get that Mt, Nt ∈ Lp(P(x,y))
for all t, p > 0 and for all (x, y) ∈ R2

++.

Remark 3.3.6. Note that the SDE for M̂ ,N̂ , M̃ and Ñ have unique strong solutions and
M̂t, N̂t, M̃t, Ñt ∈ Lp for all t ≥ 0, p > 0 and for all starting points (x, y) ∈ R++. This follows
by arguments similar to those that are in Theorem 2.1 from [LM09] and in Theorem 3.3.5
by noting that our SDE always look like

dXt = Xt [λ1 − λ2Yt − λ3Xt] dt+XtσX dUt

dYt = Yt [λ4 − λ5Xt − λ6Yt] dt+ YtσY dVt

X0 = x

Y0 = y

for λ1, . . . , λ6 ∈ R+ and x, y ∈ R++.

The next proposition tells us that none of our processes hit zero in finite time.

Proposition 3.3.7. If (M0, N0) ∈ R2
++, then (Mt, Nt) ∈ R2

++ for all t ≥ 0 almost surely.
A similar conclusion holds for the various processes with hats and bars. Similarly, all of the
other processes we work with, M̂, N̂ , Ñ , Ň , . . . etc live in R2

++ for all t ≥ 0.

Proof. As an example of the method of proof, we look at the process M given by (3.3.10).
Taking logs and using Itô’s lemma,

d logMt =

(
µ · α− (aMt + cNt)−

1

2
σ2
M

)
dt+ σM dUt.
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Therefore,

logMt =

∫ t

0

(
µ · α− (aMs + cNs)−

1

2
σ2
M

)
ds+ σMUt.

can’t go to −∞ in finite time because Mt and Nt do not blow up.

Theorem 3.3.8. Suppose that M̄ and N̄ both have stationary distributions concentrated

on R++ and that LM̂(α, β) < 0, that is µ · α − αTΓTΓα
2

> 0, µ · β − βTΓTΓβ
2

> 0 and

µ · α −
(

2β·µ
βTΓTΓβ

− 1
)
βTΓTΓβ
2⟨β,β⟩ ⟨α, β⟩ − 1

2
αTΓTΓα < 0. Then, for (x, y) ∈ R2

++, the probability
measures

1

t

∫ t

0

P(x,y){(Ms, Ns) ∈ ·} ds

converge weakly as t → ∞ to δ0 ⊗ ρ, where ρ is the unique stationary distribution of N̄
concentrated on R++.

Remark 3.3.9. In Theorem 3.1 of [ZC13] the authors claim to show that the system of SDE
describing (M,N) always has a unique stationary distribution. We note that their use of
moments just checks tightness in R2

+ and not in R2
++. It doesn’t stop mass going off to

the boundary, which is exactly what can happen in our case. Their proof only shows the
existence of a stationary distribution on R2

+ - it does not show the existence of a stationary
distribution on R2

++.
Furthermore, their proof for the uniqueness of a stationary distribution on R2

+ breaks
down because their assumption of irreducibility is false. (M,N) is irreducible on R2

++ but
is not irreducible on R2

+ since for example Pt((0, 0), U) := P(0,0){(Mt, Nt) ∈ U} = 0 for
any open subset U which lies in the interior of R2

+. If we work on R2
+, it is not true that

the diffusion (M,N) has a unique stationary distribution. We can obtain infinitely many
stationary distributions on R2

+ of the form (uπM̄ + vδ0) ⊗ δ0 where πM̄ is the stationary
distribution of M̄ and u, v ∈ R+ satisy u+ v = 1.

Proof. We prepare for the proof with some preliminary results.

Proposition 3.3.10. Fix (x, y) ∈ R2
++. Any sequence {tn}n∈N such that tn → ∞ has a

subsequence {un}n∈N such that the probability measure

1

un

∫ un

0

P(x,y){(Ms, Ns) ∈ ·} ds

converges in the topology of weak convergence of probability measures on R2
+. Any such limit

is a stationary distribution for the process (M,N) thought of as a process with state space
R2

+.
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Proof. Set φ(x, y) := x + y so that φ ≥ 0 for x, y > 0. Put ψ(x, y) = µ · αx + µ · βy −
x(ax + cy) − y(cx + by). Note that ψ is bounded above on the quadrant x, y ≥ 0 and
lim∥(x,y)∥→∞ ψ(x, y) = −∞. Using Itô’s lemma we get

φ(Mt, Nt)−
∫ t

0

ψ(Ms, Ns) ds =

∫ t

0

σNNs dVs +

∫ t

0

σMMs dUs

Therefore, φ(Mt, Nt) −
∫ t
0
ψ(Ms, Ns) ds is a martingale. Applying Theorem 9.9 of [EK05]

completes the proof.

The following result is essentially Theorem 10 in [LWW11]. We include the proof for
completeness.

Proposition 3.3.11. Suppose that M̄ and N̄ both have stationary distributions concentrated

on R++ and that LM̂(α, β) < 0, that is µ · α − αTΓTΓα
2

> 0, µ · β − βTΓTΓβ
2

> 0 and

µ · α−
(

2β·µ
βTΓTΓβ

− 1
)
βTΓTΓβ
2⟨β,β⟩ ⟨α, β⟩ − 1

2
αTΓTΓα < 0. Then, limt→∞Mt = 0 P(x,y)-a.s. for all

(x, y) ∈ R2
++.

Proof. Using Ito’s lemma and (3.3.9),

b
log
(
Mt

M0

)
t

− c
log
(
Nt

N0

)
t

= b

(
µ · α− σ2

M

2

)
− c

(
µ · β − σ2

N

2

)
− (ab− c2)

∫ t
0
Ms ds

t

+ bσM
Ut
t
− cσN

Vt
t

= bLM̂ − (ab− c2)

∫ t
0
Ms ds

t
+ bσM

Ut
t
− cσN

Vt
t

By the Cauchy-Schwarz inequality, (ab− c2) = ⟨α, α⟩⟨β, β⟩ − (⟨α, β⟩)2 ≥ 0, and so

log
(
Mt

M0

)
t

≤ c

b

log
(
Nt

N0

)
t

+ LM̂ + σM
Ut
t
− c

b

Vt
t

Observe that N̄ was defined by

dN̄t = (µ · βN̄t − bN̄2
t ) dt+ σNN̄t dVt.

Following the proof of Theorem 3.2.1, EπN [N̄t] =
1
b

(
µ · β − σ2

N

2

)
where πN is the stationary

distribution of N̄ . By Proposition 3.2.2, we have

lim
t→∞

1

t

∫ t

0

N̄s ds = EπN [N̄t] =
1

b

(
µ · β − σ2

N

2

)
. (3.3.11)
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It follows from Theorem 3.3.5 that Nt ≤ N̄t for all t ≥ 0. Thus,

lim sup
t→∞

logNt

t
≤ lim sup

t→∞

log N̄t

t

=

(
µ · β − σ2

N

2

)
− b lim

t→∞

1

t

∫ t

0

N̄s ds+ σN lim
t→∞

Vt
t

=

(
µ · β − σ2

N

2

)
− bE[N̄ ]

= 0.

Next, since U and V are Brownian motions, limt→∞
Ut

t
= limt→∞

Vt
t
= 0, and lim supt→∞

logNt

t
≤

0, so

lim sup
t→∞

logMt

t
≤ LM̂ < 0.

In particular, limt→∞Mt = 0.

We can now finish the proof of Theorem 3.3.8. Fix ϵ > 0 and η > 0 sufficiently small.
Define the stopping time

Tϵ := inf{t ≥ 0 :Mt ≥ ϵ}.
and the stopped process N ϵ

t := Nt∧Tϵ . By Proposition 3.3.11, there exists T > 0 such that

P(x,y){Mt ≤ ϵ for all t ≥ T} ≥ 1− η

Define the process Ň via

dŇt = Ňt[(µ · β − cϵ)− bŇt] dt+ σNŇtdVt

and the stopped process Ň ϵ
t := Ňt∧Tϵ . Start the process Ň at time T with the condition

ŇT = NT . We want to show that the process Ň ϵ is dominated by the process N ϵ, that is
N ϵ
t ≥ Ň ϵ

t for all t ≥ T . By the strong Markov property, we can assume T = 0.
The proof is very similar to the one from Theorem 3.3.5. With the notation from the

proof of Theorem 3.3.5 it is trivial to check that

∫ t

0

ρ(|Ň ϵ
s −N ϵ

s |)−11{Ň ϵ
s −N ϵ

s > 0} d[Ň ϵ −N ϵ]s =

∫ t

0

[ρ(|Ň ϵ
s −N ϵ

s |)−1

(σNŇ
ϵ
s − σNN

ϵ
s)

21{Ň ϵ
s −N ϵ

s > 0}] ds
≤ σ2

N t,

so the local time of the process Ň ϵ − N ϵ at zero is identically zero. Then, using Tanaka’s
formula,

(Ň ϵ
t −N ϵ

t )
+ =

∫ t∧Tϵ

0
1{Ňs −Ns > 0}(σN Ňs − σNNs) dVt

+

∫ t∧Tϵ

0
1{Ňs −Ns > 0}

[
((µ · β − cϵ)Ňs − bŇ2

s )− (µ · βNs −Ns(cMs + bNs))
]
ds.
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Taking expectations,

E[(Ň ϵ
t −N ϵ

t )
+] = E

∫ t∧Tϵ

0

1{Ňs −Ns > 0}[(µ · β(Ňs −Ns)− (cϵŇs − cNsMs)

− b(Ň2
s −N2

s )) ds]

≤ µ · βE
∫ t∧Tϵ

0

(Ňs −Ns)
+ ds

≤ µ · βE
∫ t

0

(Ň ϵ
s −N ϵ

s)
+ ds.

By Gronwall’s Lemma, E[(Ň ϵ
t − N ϵ

t )
+] = 0. As a result, remembering we assumed

T = 0, we have Ň ϵ
t ≤ N ϵ

t for all t ≥ T . For ϵ small enough we know that Ň has a
stationary distribution concentrated on R++. For any sequence an → ∞, if the Cesaro
averages 1

an

∫ an
0

P(x,y){(Ms, Ns) ∈ ·} ds converge weakly, then the limit is a distribution of

the form δ0⊗φ, where φ is a mixture of the unique stationary distribution ρ of N̄ concentrated
on R++ and the point mass at 0. By the above, the limit of 1

an

∫ an
0

P(x,y){(Ms, Ns) ∈ ·} ds
cannot have any mass at (0, 0) because Ňt ≤ Nt on the event {Mt ≤ ϵ for all t ≥ T} which
has probability P(x,y){Mt ≤ ϵ for all t ≥ T} ≥ 1− η. Since η > 0 was arbitrary, we conclude
that φ = ρ, as required.

Remark 3.3.12. Theorem 3.3.8 partially answers Question 3.3.2. Namely, we show that
invasion is possible under the assumptions of this theorem.

Proposition 3.3.13. Suppose that the processes M̄ and N̄ both have stationary distributions

concentrated on R++ and that LN̂(α, β) > 0, that is µ · α − αTΓTΓα
2

> 0, µ · β − βTΓTΓβ
2

> 0

and µ · β − βTΓTΓβ
2

−
(
µ · α− αTΓTΓα

2

)
⟨α,β⟩
⟨α,α⟩ > 0. Then, there is an ϵ > 0 such that

P(x,y){∀s ≥ 0, ∃t ≥ s : Nt ≥ ϵ} = 1.

for all (x, y) ∈ R++.

Proof. Recall that
dM̄t = (µ · αM̄t − aM̄2

t ) dt+ σMM̄t dUt.

Define the process Ñt via

dÑt = (ξÑt − cM̄tÑt) dt+ σNÑt dVt,

where ξ > 0. Note that if ξ is close enough to µ · β, then, by (3.3.4), we have

LÑ(α, β) := lim
t→∞

log Ñt

t
> 0 (3.3.12)
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so that almost surely Ñt ̸→ 0. Let us compare the drifts of Nt and Ñt. We want, for y small,
to have µ · βy − y(cx+ by) ≥ ξy − ycx. This is equivalent to

(µ · β − ξ)y ≥ by2 (3.3.13)

for small y ≥ 0. It is possible to choose a ξ and a ϵ > 0 such that ξ is close to µ · β and
(3.3.13) is satisfied for 0 ≤ y ≤ 2ϵ.

Set Sϵ := inf{t ≥ 0 : Ñt ≥ 2ϵ}. If (x, y) ∈ R2
++ with y ≤ ϵ, then, by (3.3.12), P(x,y){Sϵ <

∞} = 1.
We next show that Nt ≥ Ñt for 0 ≤ t ≤ Sϵ. This is again very similar to the proof

of Theorem 3.3.5. The local time of Ñ − N at 0 will be zero and taking expectations in
Tanaka’s formula

E[(Ñt∧Sϵ −Nt∧Sϵ)
+] = E

∫ t∧Sϵ

0

1{Ñs −Ns > 0}[(ξÑs − cÑsM̄s)

− (µ · βNs − cNsMs − bN2
s )] ds

≤ E
∫ t∧Sϵ

0

1{Ñs −Ns > 0}[(ξÑs − (µ · βNs − bN2
s ))] ds.

Now use the fact that
µ · βNt − bN2

t ≥ ξNt

when Ñt > Nt and 0 ≤ t ≤ Sϵ to get

E[(Ňt∧Sϵ −Nt∧Sϵ)
+] ≤ ξE

∫ t∧Sϵ

0

1{Ñs −Ns > 0}(Ñs −Ns) ds

≤ ξE
∫ t

0

(Ñs∧Sϵ −Ns∧Sϵ)
+ ds.

By Gronwall’s Lemma E[(Ňt∧Sϵ − Nt∧Sϵ)
+] = 0, so Nt ≥ Ñt for 0 ≤ t ≤ Sϵ. Define

T 1
ϵ := inf{t > 0 : Nt ≤ ϵ} and T 2

ϵ := inf{t > T 1
ϵ : Nt ≥ 2ϵ}. By the strong Markov property,

for any (x, y) ∈ R2
++ we have that T 2

ϵ <∞ P(x,y)-almost surely on the event T 1
ϵ <∞. Define

T 3
ϵ , T

4
ϵ , . . . recursively by T 2n+1

ϵ := inf{t > T 2n
ϵ : Nt ≤ ϵ}, and T 2n+2

ϵ := inf{t > T 2n+1
ϵ : Nt ≥

2ϵ} and repeat the above argument to obtain the desired result.

Theorem 3.3.14. Suppose that the processes M̄ and N̄ both have stationary distributions
concentrated on R++ and that LN̂(α, β) > 0, LM̂(α, β) > 0. That is, assume that µ · α −
αTΓTΓα

2
> 0, µ · β − βTΓTΓβ

2
> 0, µ · β − βTΓTΓβ

2
−
(
µ · α− αTΓTΓα

2

)
⟨α,β⟩
⟨α,α⟩ > 0 and µ · α −

αTΓTΓα
2

−
(
µ · β − βTΓTΓβ

2

)
⟨α,β⟩
⟨β,β⟩ > 0.
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The process (M,N) has smooth strictly positive transition densities and for (x, y) ∈ R2
++

and any sequence (tn) such that tn → ∞ there exists a subsequence (un) ⊆ (tn) such that the
probability measures

1

un

∫ un

0

P(x,y){(Ms, Ns) ∈ ·} ds

converge weakly to a distribution on R+ × R+. Furthermore, there exists ϵ > 0 such that

P(x,y){∀s ≥ 0, ∃t ≥ s :Mt ≥ ϵ} = 1

and
P(x,y){∀s ≥ 0, ∃t ≥ s : Nt ≥ ϵ} = 1

for all (x, y) ∈ R++.

Proof. Note that the infinitesimal generator of (logM, logN) thought of as a process on
R2 is uniformly elliptic with smooth coefficients and so it has smooth transition densities
(see, for example, Section 3.3.4 of [Str08]). Moreover, an application of a suitable minimum
principle for the Kolmogorov forward equation (see, for example, Theorem 5 in Section 2 of
Chapter 2 of [Fri64]) shows that the transition densities are everywhere strictly positive. It
follows that (M,N) thought of as a process on R2

++ has smooth transition densities that are
everywhere positive.

An argument analogous to the one from Proposition 3.3.10 shows that subsequences of
the Cesaro averages 1

tn

∫ tn
0

P(x,y){(Ms, Ns) ∈ ·} ds can be chosen to converge to a distribution
on R+ × R+. Then, the comparison argument from Proposition 3.3.13 applied to both M
and N combined with the assumptions LM̂(α, β) > 0 and LN̂(α, β) > 0 give the last claim
of the theorem.

Remark 3.3.15. In Theorem 3.3.14 we can prove that when the two Lyapunov exponents are
strictly positive, LM̂(α, β) > 0 and LN̂(α, β) > 0 then almost surely Mt ̸→ 0 and Nt ̸→ 0.
We are not able to prove the stronger version of invasibility from Definition 3.3.1.

3.4 A maximization problem

Since the population described by the process N is trying to invade the habitat occupied
by the population described by the process M , it can “choose” its dispersal strategy β in
order to maximize the Lyapunov exponent LN̂(α, β).

The next result tells us how to determine this maximal Lyapunov exponent. Define the
probability simplex ∆ := {(β1, . . . , βn) ∈ Rn

+ :
∑n

i=1 βi = 1}.

Theorem 3.4.1. Assume that the matrix S = ΓTΓ is positive definite and let T = S−1. Fix
α ∈ ∆ and assume that LN̂,max(α) := max{LN̂(α, β) : β ∈ ∆} is attained at some β∗(α) in
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the interior of ∆. Then, β∗(α) is unique and

LN̂,max(α) =
1

2

(
µTTµ+ νM̄(α)2κTTκ− 2νM̄(α)µTT (α ⋄ κ)

− (µTT1− νM̄(α)1TT (α ⋄ κ)− 1)2

1TT1

)
, (3.4.1)

where νM̄(α) is as in (3.3.5), 1 is a column vector with 1 in every entry, and α ⋄ κ is the
column vector (α1κ1, . . . , αnκn)

T .

Proof. For simplicity, set Ci := µi− νM̄(α)αiκi and g(β) =
∑n

i=1 βi− 1. For a fixed value of
α we use Lagrange multipliers to maximize

LN̂(α, β) =
n∑
i=1

Ciβi −
1

2

n∑
i,j=1

Sijβiβj

subject to the constraint g(β) = 0.
The relevant partial derivatives are

∂LN̂
∂βl

= Cl −
n∑
j=1

SljBj

∂g

∂βl
= 1.

for l = 1, . . . , n. We need to solve the system

∂LN̂
∂βl

= λ
∂g

∂βl
l = 1, . . . , n

g(β) = 0,

where λ is the Lagrange multiplier variable. Using the expressions we found for the partial
derivatives, this becomes

Cl −
n∑
j=1

Sljβj = λ, l = 1, . . . , n

n∑
i=1

βi = 1.

If we take β and C to be column vectors and write 1 for the n-dimensional column vector
whose entries are all equal to 1, we get the system

Sβ = C − λ1
n∑
i=1

βi = 1.
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Because the matrix S is positive definite it has an inverse, T := S−1, which is also positive
definite. Our system then becomes

β = TC − λT1
n∑
i=1

βi = 1,

so that βl =
∑n

j=1 TljCj − λ
∑n

j=1 Tlj. The constraint g(β) = 0 forces

λ =

∑n
i,j=1 TijCi − 1∑n

i,j=1 Tij
.

Thus, β 7→ LN̂(α, β) achieves its maximum at the vector β̃(α), where

β̃l(α) :=
n∑
j=1

TljCj −
n∑
j=1

Tlj

(∑n
i,j=1 TijCi − 1∑n

i,j=1 Tij

)
, l = 1, . . . , n. (3.4.2)

provided this vector is in the interior of ∆.
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The corresponding maximal value is

LN̂,max(α) =

n∑
i=1

Clβ
∗
l (α)−

1

2

n∑
i,j=1

Sijβ
∗
i (α)β

∗
j (α)

=
n∑

l,j=1

TljCjCl − λ
n∑

l,j=1

ClTlj −
1

2

 n∑
l,m,j,i=1

SlmTljTmi(λ
2 + CjCi − λ(Cj + Ci))


=

n∑
l,j=1

TljCjCl − λ

n∑
l,j=1

ClTlj −
1

2

 n∑
j,i=1

Tij(λ
2 + CjCi − λ(Cj + Ci))


=

1

2

n∑
l,j=1

(TljCjCl − λ2Tjl)

=
1

2

(
CTTC − (CTT1T − 1)2

1TT1

)
=

1

2

n∑
l,j=1

(Tlj(µj − νM̄ (α)αjκj)(µl − νM̄ (α)αlκl)− λ2Tjl)

=
1

2

n∑
l,j=1

[
Tlj(µjµl + νM̄ (α)2κjκl)− 2νM̄ (α)Tljµjαlκl − λ2Tjl

]
=

1

2

n∑
l,j=1

[Tlj(µjµl + νM̄ (α)2κjκl)− 2νM̄ (α)Tljµjαlκl

−

(∑n
e,f=1 Tef (µe − νM̄ (α)αeκe)− 1∑n

e,f=1 Tef

)2

Tjl]

=
1

2

n∑
l,j=1

[
Tlj(µjµl + νM̄ (α)2κjκl)− 2νM̄ (α)Tljµjαlκl

]
− 1

2

(
(
∑n

l,j=1 Tlj(µl − νM̄ (α)αlκl)− 1)2∑n
l,j=1 Tjl

)
,

which is the same as the expression in (3.4.1).

Remark 3.4.2. If maxβ LN̂(α, β) is attained in the interior of one of the faces of the convex
polytope ∆, that is, in one of the convex sets of the form {β ∈ ∆ : βi = 0, i ∈ I, β >
0, i /∈ I}, where I ⊂ {1, . . . , n}, then it is necessary to perform a similar Lagrange multiplier
computation on that set to determine the optimal β.
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3.5 The two patch (n = 2) case

Since the formula for the maximal Lyapunov exponent is fairly complicated, we look at
the simplest case when there are only two patches in our habitat.

First note that for n = 2 the matrix S is positive definite if and only if S11 > 0 and
S11S22 − S2

12 > 0.
With a slight abuse of notation, we now write (α, 1 − α) for the vector we would have

previously written as α = (α1, α2) and νM̄(α) for the quantity that we would have previously
written as νM̄(α, 1− α). We have

νM̄(α) =
µ1α+ µ2(1− α) + 1

2
(−S11α

2 − 2(1− α)αS12 − (1− α)2S22)

κ1α2 + κ2(1− α)2
.

and

νN̄(β) =
µ1β + µ2(1− β) + 1

2
(−S11β

2 − 2(1− β)βS12 − (1− β)2S22)

κ1β2 + κ2(1− β)2
.

Note that then the numerator of the two above equations is a quadratic in α (respectively
β) and the coefficient of α2 (respectively β2) is

(
−S11

2
+ S12 − S22

2

)
which is strictly negative

because |S12| <
√
S11S22 implies

S11 + S22 − 2S12 > S11 + S22 ∓ 2
√
S11S22

= (
√
S11 ∓

√
S22)

2

≥ 0.

where we have − if S12 > 0 and + if S12 ≤ 0. Set D = S11 − 2S12 + S22.
Thus, there exists an stationary distribution for N̄ and for M̄ for all α ∈ [0, 1] (respec-

tively β ∈ [0, 1]) if and only if

κ2νM̄(0) = µ2 −
S22

2
> 0

κ1νM̄(1) = µ1 −
S11

2
> 0.

Assume the maximum Lyapunov exponent is attained, when α is fixed, for β = β∗(α).
There are two separate cases

1) β∗(α) is in the interior of [0, 1]. Then β∗(α) = β̃(α) is given by equation (3.4.2) which
in our case is

β̃(α) =
(−1 + α)κ2(−2µ1 + 2S12 − S22 + α2D) + ακ1(−2µ2 + S22 + α2D)

2(κ2 − 2ακ2 + α2(κ1 + κ2))D
. (3.5.1)
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The maximum occurs in (0, 1) if and only if β̃(α) ∈ (0, 1). Then by Theorem 3.4.1 the
expression for LN̂,max(α) is

LN̂,max(α) =
[ακ1(2µ2 − S22 + α2D) + (−1 + α)κ2(2µ1 − S11 +D − 2αD + α2D)]2

8(κ2 − 2ακ2 + α2(κ1 + κ2))2D
.

Note that the denominator is strictly positive and the numerator is nonnegative, so
LN̂,max(α) ≥ 0.

2) β∗(α) is on the boundary of [0, 1], that is β∗(α) ∈ {0, 1}. Note that this happens if
and only if β̃(α) /∈ (0, 1). In this case the expression for LN̂,max(α) is

LN̂,max(α) = max {LN̂(α, 0), LN̂(α, 1)}

where

LN̂(α, 0) =
α[ακ1(2µ2 − S22) + (1− α)κ2(−2µ1 + S11 −D + αD)]

2(κ1α2 + κ2(1− α)2)

and

LN̂(α, 1) =
(1− α)[(1− α)κ2(2µ1 − S11) + ακ1(−2µ2 + S22 − αD)]

2(κ1α2 + κ2(1− α)2)

Some computations show that the following identities hold

LN̂(α, 1) =

(
β̃(α)− 1 + α

2

)
(1− α)D

LN̂(α, 0) =
(α
2
− β̃(α)

)
αD.

As a result we have that if β̃(α) ≥ 1 then

LN̂(α, 1) ≥ (1− α)2D

2
≥ 0

LN̂(α, 0) ≤ −
(
1− α

2

)
αD ≤ 0

so we have LN̂,max = LN̂(α, 1) ≥ 0. Likewise, if β̃(α) ≤ 0 then

LN̂(α, 1) ≤ −
(
1 + α

2

)
αD ≤ 0

LN̂(α, 0) ≥ α2D

2
≥ 0

so we have LN̂,max = LN̂(α, 0) ≥ 0.
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The above treatment shows that no matter if the maximum is attained in the interior or on
the boundary of [0, 1] we will always have LN̂,max ≥ 0. It also shows that

β∗(α) = 0 ∨ (β̃(α) ∧ 1).

Remark 3.5.1. There are examples where the maximum is not achieved in the interior. If we
choose S to be the identity matrix, µ1 = 2, µ2 = 1.5, κ1 = 1 and κ2 = 3 then we get that M̄
and N̄ always have stationary distributions for α, β ∈ [0, 1]. However,

β̃(α) =
3(−1 + α)(−5 + 2α2) + α(−2 + 2α2)

4(3− 6α + 4α2)

will not lie in (0, 1) for all α. For example β∗(0.5) = 1.5.

We know from Proposition 3.3.4, Theorem 3.3.8 and Theorem 3.3.14 that if LN̂,max(α) >
0, then

P(x,y){Nt ̸→ 0 as t→ ∞} = 1

and, if in addition LM̂(α, β∗(α)) < 0, then

P(x,y){Mt → 0 and Nt ̸→ 0 as t→ ∞} = 1.

Thus, the population described by the processM should, if possible, “choose” its dispersal
strategy to be α∗ so that

LN̂,min,max := min
α
LN̂,max(α) = min

α
max
β

LN̂(α, β) = LN̂(α∗, β
∗(α∗)) = 0.

We now show that we can always find such an α∗. Note that if there exists a solution ᾱ to
the equation α = β∗(α) then we get LN̂(ᾱ, β

∗(ᾱ)) = LN̂(ᾱ, ᾱ) = 0. It thus suffices to find
solutions to

α = 0 ∨ (β̃(α) ∧ 1)

in [0, 1]. It is enough to show that there exists a solution in the open interval (0, 1). We
prove that that there is some α ∈ (0, 1) which satisfies the fixed point problem

β̃(α) = α.

This is always possible because by the definition of β̃(α) there are solutions if and only if
the cubic polynomial

p(α) := ακ1(2µ2 − S22 + α2D) + (−1 + α)κ2(2µ1 − S11 +D − 2αD + α2D).

has a root in (0, 1). However,

p(0) = −κ2(2µ1 − S11 +D) < 0
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Figure 3.1: In this figure we have the 3D and contour graphs of the Lyapunov exponent
LN̂(α, β) as a function of (α, β) ∈ [0, 1] × [0, 1] when S is the identity matrix, µ1 = 2, µ2 =
1.5, κ1 = 1 and κ2 = 3. One can see that there is a saddle point on the line α = β, which is
expected from our discussion of α∗ and β∗ from the text.
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and
p(1) = κ1(2µ2 − S22 +D) > 0,

and so there is α ∈ (0, 1) such that β̃(α) = α. Therefore, we have shown that there exists
α∗ ∈ (0, 1) such that

LN̂(α∗, β
∗(α∗)) = 0.

Remark 3.5.2. It is not possible to have solutions solutions to

α = 0 ∨ (β̃(α) ∧ 1)

for α ∈ {0, 1} for the following reasons: If α = 0 were a solution we would need 0∨(β̃(0)∧1) =
0, that is β̃(0) ≤ 0. This is impossible because

β̃(0) =
2µ1 − S11 +D

2D
> 0.

If α = 1 were a solution we would need 0 ∨ (β̃(1) ∧ 1) = 1, that is β̃(1) ≥ 1. This is again
impossible because

β̃(1) = 1− 2µ2 − S22

2D
< 1.

Remark 3.5.3. If both populations use the same dispersal strategy, that is if α = β, then our
diffusion becomes singular and one population size is always a fixed multiple of the other.
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[SS01] Philipp J. Schönbucher and Dirk Schubert, Copula-dependent default risk in intensity
models, 2001. Working paper, Department of Statistics, Bonn University. Available at
http://ssrn.com/abstract=301968. ↑1.1

[Str08] Daniel W. Stroock, Partial differential equations for probabilists, Cambridge Studies in Ad-
vanced Mathematics, vol. 112, Cambridge University Press, Cambridge, 2008. MR2410225
(2010a:58046) ↑3.3

[Val09] A. Valov, First passage times: Integral equations, randomization and analytical approximations,
Ph.D. Thesis, 2009. ↑2.2



83

[Wag08] Niklas Wagner (ed.), Credit risk: Models, derivatives, and management, Chapman & Hall, 2008.
↑1.1

[Yu07] Fan Yu, Correlated defaults in intensity based models, Mathematical Finance 17 (2007), 155–173.
↑1.1

[ZC13] Zhenzhong Zhang and Dayue Chen, A new criterion on existence and uniqueness of stationary
distribution for diffusion processes, Adv. Difference Equ. (2013), 2013:13. MR3018249 ↑3.3.9

[Zho01] C. Zhou, An analysis of default correlations and multiple defaults, Review of Financial Studies
14 (2001), 555–576. ↑1.1

[ZP07] Steven H. Zhu and Michael Pykhtin, A guide to modeling counterparty credit risk, GARP Risk
Review 37 (2007), 16–22. ↑1.1

[ZS09] Cristina Zucca and Laura Sacerdote, On the inverse first-passage-time problem for a Wiener
process, Ann. Appl. Probab. 19 (2009), no. 4, 1319–1346. MR2538072 (2010m:60283) ↑2.2


	Non-existence of Markovian time dynamics for graphical models of correlated default
	Introduction
	Generalities
	Model I: complete symmetry
	Model II: Two classes with common individual propensity to default
	Two classes with different individual propensity to default

	The Inverse First Passage Time Problem
	Introduction
	The FPT and IFPT problems
	Global Existence and Uniqueness
	Local Existence and Uniqueness
	Discontinuous killing
	Pricing Claims
	Numerical Results
	Calibrating the default distribution using CDS rates
	Duhamel's formula

	Invasibility in spatio-temporally heterogeneous environments
	Introduction
	The Model
	Conditions for invasibility
	A maximization problem
	The two patch (n=2) case




