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Abstract 

The contents and structure of semantic networks have 
been the focus of much recent research, with major 
advances in the development of distributional models. In 

parallel, connectionist modeling has extended our 
knowledge of the processes engaged in semantic 
activation. However, these two lines of investigation have 

rarely brought together. Here, starting from a standard 
textual model of semantics, we allow activation to spread 
throughout its associated semantic network, as dictated by 

the patterns of semantic similarity between words. We 
find that the activation profile of the network, measured 
at various time points, can successfully account for 

response times in the lexical decision task, as well as for 
subjective concreteness and imageability ratings. 

Keywords: computational modelling; semantic networks; text 
corpora; lexical decision; concreteness; imageability 

Introduction 

In the last 15 years, a great deal of effort was invested in 

collecting extensive behavioural norms, for lexical semantic 

tasks such as free association (Nelson, McEvoy, & 

Schreiber, 2004), similarity judgement (Bruni, Tran, & 

Baroni, 2014; Silberer & Lapata, 2014), feature generation 

(McRae, Cree, Seidenberg, & McNorgan, 2005; Recchia & 

Jones, 2012; Vinson & Vigliocco, 2008). In addition, large 

norms have been obtained for tasks that rely primarily on 

orthographic and phonological processing, but also include 

a semantic component, such as lexical decision (Balota et 

al., 2007; Keuleers, Lacey, Rastle, & Brysbaert, 2012). 

This wealth of data has allowed researchers to start 

exploring the ties that link language to perception and 

action, in a more methodical and in-depth manner than was 

previously possible. At a general level, especially within the 

fields of computational linguistics and natural language 

processing, representational similarity analysis has been 

employed in order to study verbal and visual semantic 

representations across domains of knowledge (Kriegeskorte, 

Mur, & Bandettini, 2008; for a recent review, see 

Kriegeskorte & Kievit, 2013). This approach is inspired by 

several embodied theories of cognition in which the 

semantic system is considered to rely on integrated modal 

(especially visual) and amodal representations (Barsalou, 

Santos, Simmons, & Wilson, 2008; Louwerse, 2007; 

Vigliocco, Meteyard, Andrews, & Kousta, 2009). The 

research following said approach has shown that unimodal 

(i.e., verbal or visual), but especially multimodal (i.e., 

verbal-visual) distributional models (for a detailed review, 

see Bruni, Tran, & Baroni, 2014) can provide a good 

account of human task performance in a number of semantic 

tasks. Such studies demonstrated that integrating 

information from two modalities provides a better account 

of behavioural data than that offered by the individual 

modalities, across a wide range of models and integration 

methods, even for abstract concepts, such as peace and 

freedom (Bruni, Tran, & Baroni, 2014; Hill & Korhonen, 

2014; Hill, Reichart & Korhonen, 2014). The results are 

consistent with those of previous studies (Andrews, 

Vigliocco, & Vinson, 2009; Louwerse, 2011; Maki & 

Buchanan, 2008; Riordan & Jones, 2011; Sadeghi, 

McClelland, & Hoffman, 2015; Steyvers, 2010), indicating 

that language and perception can be seen as highly 

redundant, yet complementary, sources of semantic 

information.     

Differences in the reliance upon one or the other 

modalities, as well as in degree and strength of association 

to other concepts, have been argued to underscore difference 

across domains of knowledge. For example, representational 

richness has been argued to underlie the distinction between 

concrete and abstract concepts, whereby concrete concepts 

are richer than abstract ones when it comes to perceptual 

and motor elements, but poorer with respect to introspective 

and linguistic elements (see Gee, Nelson, & Krawczyk, 

1999; Hill, Korhonen, & Bentz, 2014; Pecher, Boot, & Van 

Dantzig, 2011; Vigliocco et al., 2009; Wiemer-Hastings & 

Xu, 2005). A large number of studies have used 

comprehensive behavioural norms and subjective ratings to 

evaluate the role of semantic richness, using different 

measures of richness such as number of features as well as 

contextual and semantic diversity, to name a few (for 

reviews, see Jones, Johns, & Recchia, 2012; Mirman & 

Magnuson, 2008; Yap, Pexman, Wellsby, Hargreaves, & 

Huff, 2012). Not surprisingly, the results paint a rather 

complex picture, where semantic richness effects are both 

task-general and task-specific, have both an early and a late 

impact on task behaviour (Hargreaves & Pexman, 2014), 

and either facilitate or hinder task performance (Mirman & 

Magnuson, 2008).  

Here, we attempt to bring a fresh perspective in the study 

of how concepts (both concrete and abstract) are represented 

and, crucially, processed, by developing a computational 

model that accounts for previous findings by incorporating 
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both structural and dynamical elements. In particular, we 

explore the extent to which we can predict response times 

and accuracies in visual word recognition (i.e., lexical 

decision), as well as both concreteness and imageability 

ratings, starting from distributional models of semantics 

(Mandera, Keuleers, & Brysbaert, 2015; Westbury et al., 

2013) supplemented by simple assumptions concerning the 

dynamic spreading of activation during processing. 

Method 

Model 

We derive semantic richness measures of words from a 

probabilistic model of semantic processing, in the following 

manner: (a) pre-process the written part of the British 

National Corpus (Leech, Garside, & Bryant, 1994), by 

converting all the words to lowercase, eliminating 

punctuation marks and removing words whose absolute 

frequencies are less than 5; (b) construct 300-dimensional 

vector representations for the words in the BNC, by 

employing the Skipgram1 model (Mikolov, Chen, Corrado, 

& Dean, 2013); (c) compute a representational similarity 

matrix DM from said vectors, using vector cosine as a 

measure of similarity between the vectors (i.e., words); (d) 

set to zero all the negative values in DM, as a means of 

reducing the amount of noise present (i.e., vector cosines 

which carry very little semantic information); (e) normalize 

the rows of the matrix, such that each row sums to one, and 

that any value DM(I,J) can be interpreted as the strength of 

the directional connection from word WI to word WJ ; (f) 

consider the discrete Markov chain associated with DM, 

which we denote as MARKOV(DM), and compute the state 

of MARKOV(DM) at steps K = 1 through K = 7, namely 

SK(DM); (g) for each word W and each K between 1 and 7, 

count the number of close neighbours of W (numNeighK). A 

word V is considered a close neighbour of W if 

P(V |SK(DM)) > threshK, where threshK are lower thresholds.  

In the end, we are left with seven free parameters (i.e., 

thresh1-7) and seven semantic richness measures (i.e., 

numNeigh1-7), as well as with a few fixed parameters for the 

underlying Skipgram model.2 Although our richness 

measures are all derived in a very similar manner, they have 

rather different interpretations, at least from a graph-

theoretical perspective (Koschützki, Lehmann, Peeters, 

                                                           
1 We prefer the Skipgram model for two main reasons: firstly, it 

is nearly state-of-the-art when it comes to accounting for 

behavioral data (Baroni, Dinu, & Kruszewski, 2014; Mandera, 

Keuleers, & Brysbaert, 2015); secondly, several freely available, 

computationally efficient and well documented implementations of 

the model exist (https://code.google.com/p/word2vec/).   
2 We use the Skipgram implementation provided by the gensim 

tool (Řehůřek & Sojka, 2010), with the following parameter 

values: alpha = 0.025 (initial learning rate), window = 5 (radius of 

sliding window), sample = 0 (amount of downsampling), negative 

= 0 (amount of negative sampling), and iter = 1 (number of 

iterations over the entire corpus). 

Richter, Tenfelde-Podehl, & Zlotowski, 2005). The meaning 

of each measure is briefly described in Table 1. 

 

Table 1. Semantic richness measures computed by our 

model, and their tentative interpretation. For clarity, only 

the distinguishing aspects of each measure are presented. 

 

Semantic 

richness 

measure 

Graph theoretical interpretation 

numNeigh1 # of close neighbours  

numNeigh2 # of connections between close neighbours 

# of distant neighbours   

# of connections between close and distant 

neighbours 

numNeigh3 # of connections between distant neighbours   

# of connections between distant and close 

neighbours  

numNeigh4-7 # of close direct and indirect neighbours 

# of very distant neighbours 

Data Analysis 

We focus on four dependent measures: concreteness ratings 

(Brysbaert, Warriner, & Kuperman, 2014), imageability 

ratings (Gilhooly & Logie, 1980; Stadthagen-Gonzalez & 

Davis, 2006), and both accuracies and response times from a 

lexical decision task, for a subset of 2,328 words from 

Keuleers, Lacey, Rastle, and Brysbaert (2012).  

We include the following baseline variables: (log) 

contextual diversity, (log) frequency (van Heuven, Mandera, 

Keuleers, & Brysbaert, 2014), familiarity (Gilhooly & 

Logie, 1980; Stadthagen-Gonzalez & Davis, 2006), age of 

acquisition (Kuperman, Stadthagen-Gonzalez, & Brysbaert, 

2012), (squared) hedonic valence (Warriner, Kuperman, & 

Brysbaert, 2013), number of letters, Coltheart’s N (i.e., the 

number of words that can be produced by substituting one 

letter of a given word for any other, such that the result is a 

valid word; Coltheart, Davelaar, Jonasson, & Besner, 1977), 

orthographic Levenshtein distance (OLD20; the average 

orthographic editing distance between a word and its twenty 

closest neighbours in the lexicon; Yarkoni, Balota, & Yap, 

2008), and phonological Levenshtein distance (PLD20; the 

average phonological distance between a word and its 

twenty closest neighbours in the lexicon; Suárez, Tan, Yap, 

& Goh, 2011). In addition we include semantic diversity 

(Hoffman, Lambon Ralph, & Rogers, 2013) as a baseline 

measure. This latter has been argued to capture basic 

semantic differences across concepts as represented in 

distributional semantic networks. Our variables of interest 

are the seven measures of semantic richness (i.e., 

numNeigh1-7).  

We run two multiple linear regressions, one for the 

baseline variables, and one for the complete set of predictors 

(i.e., the baseline variables and our semantic richness 

measures). Since our richness measures are very strongly 

correlated with one another, we partial out any variance 

shared with other predictors, such that numNeighRK = Res 
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(numNeighK ~ Baseline + numNeighR1 + … + 

numNeighRK−1), for all values of K between 1 and 7. 

Therefore, our predictors consist of Baseline and 

numNeighR1-7, whereas our dependent variables are Log RT, 

Accuracy, Concreteness and Imageability.  

We employ one half of the words for model tuning, and 

the other half for model evaluation. We derive the optimal 

values for our predictors by using a variant of the simplex 

method (Lagarias, Reeds, Wright, & Wright, 1998), with 

(negative) total amount of variance explained serving as the 

objective function. In order to avoid local minima, we run 

100 iterations of the optimisation process, and keep only the 

best result. 

Results 

The results are displayed in Tables 2 and 3. Our semantic 

richness measures can account for a significant amount of 

variance in concreteness and imageability ratings, as well as 

in response times in the lexical decision task. However, they 

do not explain variance in lexical decision accuracy over 

and above the baseline measures (Table 2). Table 3 shows 

the regression weights for all predictors and dependent 

variables. 

 

Table 2. Percentage of variance accounted for by two 

models: a baseline model, and a combined one, consisting 

of all the predictors in the baseline model plus the semantic 

richness measures numNeighR1 through numNeighR7 (all 

values are significant at .001 level, except for accuracy in 

the “combined – baseline” comparison) 

 

Dependent  

variable 

Baseline Combined Combined – 

baseline  

Log RT 47.93 49.80 1.87 

Accuracy 27.09 27.81 0.72 

Concreteness 35.40 58.59 23.19 

Imageability 31.90 53.24 21.34 

Discussion and Conclusions 

We develop a model that takes into account both the 

structural properties of semantics networks, as well as their 

dynamic aspects, by considering the flow of semantic 

activation generated by the automatic processing of 

individual words. An important result of looking at both 

structure and dynamics is that it allows us to assess the 

effects of both direct and indirect, mediated semantic 

relations between words, rather than limiting our analysis to 

strong, direct semantic links. Our results suggest that the 

explanatory power of text-based semantic representations is 

currently being underestimated, as a consequence of not 

taking into consideration the additional information 

provided by spreading activation mechanisms. By ignoring  

Table 3. Regression weights and their associated 

significance values, namely <0.1 (†), <0.05 (*), <0.01 (**), 

and <0.001 (***). Log RT = (log) response time; ACC = 

accuracy; CONC = concreteness; IMAG = imageability. 

 

     Outcome       

 

Predictor 

Log RT ACC CONC IMAG 

(Intercept) 6.611 

*** 

.676 

*** 

7.143 

*** 

7.405 

*** 

Semantic 

diversity 

.009 

 

-.022 

** 

-1.219 

*** 

-1.401 

*** 

Log contextual 

diversity 

-.025 

*** 

.026 

*** 

-.385 

*** 

-.539 

*** 

Log frequency -8.07e-4 

 

-.008 

* 

.190 

*** 

.288 

*** 

Familiarity -.035 

*** 

.024 

*** 

.169 

*** 

.373 

*** 

Age of 

acquisition 

.003 

 

-.003 

 

-.313 

*** 

-.477 

*** 

Squared 

hedonic valence 

-.004 

*** 

.002 

* 

-.090 

*** 

.025 

† 

Number of 

letters 

.007 

** 

.005 

* 

.040 .031 

 

Coltheart’s N .001 

† 

-1.48e-4 

 

.012 

† 

.025 

** 

OLD20 .002 -6.54e-5 

 

-.148 

 

.058 

PLD20 .012 

* 

-8.50e-4 -.263 

*** 

-.342 

*** 

NumNeighR1 -.006 

** 

.004 

* 

.181 

*** 

.401 

*** 

NumNeighR2 .004 

* 

-.003 

† 

-173 

*** 

-.231 

*** 

NumNeighR3 -.001 -3.41e-4 -.132 

*** 

-.271 

*** 

NumNeighR4 -.001 -1.93e-4 -.250 

*** 

-.116 

*** 

NumNeighR5 3.31e-4 

 

-2.91e-4 

 

-.263 

*** 

-.218 

*** 

NumNeighR6 .002 -7.74e-4 -.057 

** 

.014 

 

NumNeighR7 -2.12e+6 

** 

-.002 .150 

*** 

.167 

*** 

 

these simple processes, the extra information they generate 

would have to be integrated into the representations by 
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design, which would lead to the conflation of 

representations and processes.  

Based on the results presented in Table 2, it seems that 

our model is considerably more suitable for predicting 

concreteness and imageability ratings, than reaction time 

and accuracy in the word recognition task. We believe that 

this phenomenon might be due to differences between the 

requirements of the lexical decision task on the one hand, 

and those of the concreteness/imageability rating task, on 

the other. Since our model assumes that the string of letters 

received as input is already a word, it is not surprising that it 

fares rather poorly in predicting lexical decision response 

time and accuracy. In contrast, the rating task involves 

making a considerably more elaborate discrimination, one 

between concrete/imageable and abstract/non-imageable 

words, all of which are present in our model (Buchanan, 

Westbury, & Burgess, 2001). 

Beyond the promising initial results, we believe that our 

model has a number of advantages, which recommend it as 

a potentially useful tool in the study of semantic processing. 

In our opinion, the main quality of our model is that it ties 

together a number of competing modelling approaches, and 

combines many of their strengths, while avoiding most of 

their limitations.  

Firstly, our model has a pronounced connectionist and/or 

dynamical systems flavour to it (Anderson, 1983; for a 

review, see McClelland et al., 2010), whereby the dynamics 

of the model can be interpreted in terms of “spreading 

activation”. In this case, activation flows from an initial 

concept to its neighbours, then to the neighbours of its 

neighbours, and so on, until the system reaches a global 

“attractor” state (i.e., an eigenstate). However, unlike other 

existing models (Chen & Mirman, 2012; Hoffman & 

Woollams, 2015; Rogers & McClelland, 2004), it has a 

large number of nodes and feedforward/feedback/recurrent 

connections, making it slightly more realistic and 

comprehensive. As a result, it might provide better insight 

into the distinct contribution of structural and task related 

aspects of semantic behaviour. One potentially promising 

approach in this regard comes from network science and the 

theory of stochastic processes, two methodologies which 

have attracted an increasing amount of attention in cognitive 

science (De Deyne & Storms, 2008; Ferrer i Cancho & Solé, 

2001; Gruenenfelder, Recchia, Rubin, & Jones, in press; 

Steyvers & Tenenbaum, 2005; Utsumi, 2015; for a general 

review of network-based analyses of cognition, see 

Baronchelli, Ferrer i Cancho, Pastor-Satorras, Chater, & 

Christiansen, 2013). Another possibility might be to use a 

respond-to-signal paradigm (Ratcliff, 2006; Hargreaves & 

Pexman, 2014), which would provide additional quantitative 

insights on the accumulation of task-specific and task-

independent information during task performance (e.g., in 

the word naming or the lexical decision tasks). 

Secondly, our model can be seen as a probabilistic one 

(Griffiths, Chater, Kemp, Perfors, & Tenenbaum, 2010), 

such that at each step, the model makes use of its underlying 

Markov chain, namely MARKOV(DM), in order to perform 

multi-step inferences. In contrast to other probabilistic 

models, such as Topics (Griffiths, Steyvers, & Tenenbaum, 

2007), our model is non-hierarchical and does not undergo 

any form of dimensionality reduction, which means that the 

inferences are easier to interpret and that less semantic 

information is lost. Said inferences allow us to assess the 

strength of both direct and indirect semantic relations 

between words (Steyvers, Shiffrin, & Nelson, 2004; 

Howard, Shankar, & Jagadisan, 2011), for instance by 

testing whether certain words and/or associations between 

words are crucial for successfully carrying out a semantic 

task. Moreover, we can also examine the manner in which 

semantic cues restrict and guide the inference process, as is 

the case in tasks such as semantic fluency (Hills, Jones, & 

Todd, 2012), continued free association (De Deyne & 

Storms, 2008), and extralist cued recall (Nelson, Kitto, 

Galea, McEvoy, & Bruza, 2013). 

Finally, our model is relatively simple, from a structural 

point of view, and is completely transparent in terms of its 

parameters. Taken together, these features make our model 

easy to run, and facilitate comparisons across different 

subsets of participants, stimuli and tasks. Also, as a results 

of its simplicity, our current model is very much open to 

extensions, for instance in order to increase its 

neuropsychological plausibility.  
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