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Adaption of Helicobacter pylori to Chronic Infection and Gastric 
Disease by pH-Responsive BabA-Mediated Adherence

A full list of authors and affiliations appears at the end of the article.

SUMMARY

The BabA adhesin mediates high-affinity binding of Helicobacter pylori to the ABO blood-group 

antigen-glycosylated gastric mucosa. Here we show that BabA is acid responsive but binding is 

restored by pH neutralization. Acid responsiveness differs among strains; often correlates with 
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different intragastric regions; changes during chronic infection and disease progression; and 

depends on pH sensor sequences in BabA and on pH reversible formation of high-affinity binding 

BabA multimers. We propose that BabA’s extraordinary reversible acid-responsiveness enables 

tight mucosal bacterial adherence while at the same time allowing an effective escape from 

epithelial cells and mucus that are shed into the acidic bactericidal lumen and that bio-selection 

and changes in BabA binding properties through mutations and recombination with babA-related 

genes are selected by differences among individuals and by changes in gastric acidity over time. 

These processes generate diverse H. pylori subpopulations, and BabA’s adaptive evolution 

contributes importantly to H. pylori persistence and to overt gastric disease.

In Brief

Helicobacter pylori bind with high strength to ABO/Leb blood group antigens to persist in the 

stomach mucosa. Bugaytsova et al. show that its adherence is acid responsive but fully reversible, 

activated by BabA pH sensors and adapts during chronic infection and disease to allow for 

functional recycling of infection.

Keywords

Helicobacter pylori; blood group antigen-binding adhesin (BabA); gastric acidity; acid-
responsiveness; adaptation; diversity; polymorphism; subpopulations; multimerization; gastric 
cancer

INTRODUCTION

A great challenge for any microbe is how to best exploit hospitable niches while avoiding 

nearby deleterious ones. This is especially the case for Helicobacter pylori, which 

chronically infects billions of people worldwide and is implicated in peptic ulcer disease and 

gastric cancer (Peek and Blaser, 2002). H. pylori thrives in the gastric epithelium and in the 

~300 micron thick overlying mucus, a special niche that is hostile to nearly all other 
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microbes (Figure S1I). The mucus layer normally contains a pH gradient from pH ~6 to pH 

2 between the epithelial and luminal boundaries and is intrinsically unstable with mucus and 

epithelial cells continuously being shed into the lumen (Schreiber et al., 2004; Lee, 1985). 

H. pylori is partially protected from luminal acidity by epithelial secretions of buffering 

bicarbonate and urea and the ammonia generated by its urease (Sachs et al., 2003), by 

chemotaxis away from acidity (reviewed in Keilberg and Ottemann, 2016), and by tight 

adherence to mucosal glycan receptors (Ilver et al., 1998; Aspholm-Hurtig et al., 2004) 

mediated by attachment proteins (adhesins) that are extraordinary in being acid responsive, 

as detailed here. The best-studied H. pylori adhesin is BabA, which mediates high-affinity 

bacterial binding to ABO/Leb blood-group antigens (Leb) that are abundant on gastric 

epithelial cells and mucins (Aspholm-Hurtig et al., 2004; Lindén et al., 2002). BabA binding 

affinities (Ka ~107–1012 M−1) are orders of magnitude greater than most carbohydrate-

binding proteins (Aspholm-Hurtig et al., 2004; Imberty et al., 2005) and aid H. pylori’s 

delivery of effector molecules that subvert host defenses (Ishijima et al., 2011) and are 

necessary for H. pylori replication (Tan et al., 1995) and nutrient acquisition (Kirschner and 

Blaser, 1995). However, if such binding were unalterable, this would prevent the bacteria 

from escaping from the mucosal debris that is shed into the acidic and bactericidal gastric 

lumen.

Here we show that BabA-mediated binding is acid sensitive and responsive, but also fully 

reversible and restored by pH neutralization. The acid sensitivity profiles change by 

mutations and recombination with babA-related sequences driven by adaptation to 

differences in acidity in gastric regions and also in different individuals.

RESULTS

Acid Response and Reversal of Leb Binding

We found that adherence of H. pylori strain 17875/Leb to human gastric mucosal epithelium 

was acid sensitive, with 2- and 20-fold less binding at pH 4 and 2, respectively, compared to 

pH 6 (Figure 1A). Equivalent acid-sensitive binding was seen with human MUC5AC gastric 

mucin and a clinical H. pylori isolate (Figure 1B). A quantitative dissociation assay showed 

detachment of >85% of previously bound Leb within 30 seconds of a pH 6 to pH 2 shift 

(Figure 1C). Leb binding at equilibrium showed 10-fold lower affinity at pH 4 than at pH 6 

and a further 2000-fold reduction at pH 2, i.e. >20,000-fold decrease in total affinity (Figure 

1D). Four sets of experiments showed that acid inactivation of H. pylori binding is 

reversible. First, H. pylori was preincubated at several low pHs and then restored to pH 5 

(which is optimal for its Leb binding). More than 95% of the binding activity was recovered 

after initial incubation at ≥pH 3, and 87% and 74% after incubation at pH 2.5 and 2.0, 

respectively (in red, Figure 1E). Second, prior acidification did not affect Leb binding 

kinetics (Figure S1B). Third, 87% of Leb binding was retained after five full cycles of pH 

2.5 acidification and pH 5 restoration (this is referred to as a pH-cycle) (Figure 1F). Fourth, 

H. pylori were applied to a LigandTracer dish (Figures S1C–S1H) coated with Leb-

expressing buccal epithelial cells (BECs) from a Leb-expressing volunteer that represent an 

authentic epithelial glycosylation pattern typical of human primary gastro-intestinal 

epithelium collected (Figure 1H) or with Leb-expressing recombinant CHO-cells (Figure 
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S1G), and adherence was LigandTraced to monitor bacterial binding as a function of pH in 

real time. Adherence to both cell types was again lost at pH 2 and regained at pH 6 (Figure 

S1H; Figure 1G), though the response to acidification was more pronounced with Leb-CHO 

cells that overexpress the Leb antigen compared to the authentic and more complex BECs.

These results inspired our dynamic model in which H. pylori escape from shed mucosal 

debris as it moves towards the acidic and bactericidal lumen and then return to the epithelial 

surface and proximal mucus through chemotaxis where the bacteria with best adapted ability 

in adherence reattach to their Leb binding sites (Movie S1).

BabA’s Polymorphic and Reversible Acid Sensitivity in Binding

Acid sensitivity of 21 Swedish clinical isolates (SW) was scored as the pH at which half the 

maximal Leb binding was lost (pH50). The pH50 values ranged from 2.3 (the most acid 

resistant) to 4.9 (the most acid sensitive) (Figure 2A) (median = 3.7, Figure 6F). Thus, acid-

sensitive Leb binding is a general trait but with differences among strains, which suggests 

that H. pylori can adapt to individual acid secretion patterns. To test in real time for 

adaptation by selection and gain of function, bacterial cells of the acid-resistant strain SW7 

and the more acid-sensitive strain SW38 (Figure 2A) were mixed and exposed to a pH-cycle 

and LigandTraced. The two strains adhered most similarly to the Leb-coated dish at neutral 

pH, but after step-wise acidification to pH 3, followed by reconditioning to pH 6, the SW7 

strain had a 2-fold increase in binding compared to SW38 (Figure 2B; Figure S2C).

Seven experiments tested if reversible acid sensitivity and pH50 differences among strains 

stem from differences in BabA protein sequence. First, a Far-Western test showed that Leb 

binding to size-separated BabA protein was maximal at pH 5–6 and negligible at <pH 3 

(Figure 2C). Second, immunoblotting showed that the BabA protein was stable at pH 2 for 

24 h (Figure S2D). Third, a babA deletion mutant of strain SW38 (pH50 = 3.8) was 

transformed with babA from acid-resistant SW7 (pH50 = 2.4). The transformant with SW7’s 

complete babA gene, “Trans38-7”, had a pH50 of 2.8 and thus had gained ~75% of SW7’s 

acid resistance (Figure 2D). Fourth, native 17875/Leb BabA protein purified to homogeneity 

(Figure 2E; Figures S2G and S2H) bound specifically to human gastric foveolar epithelium 

at pH 6 (Figure 2Fa). Acidification to pH 4 and pH 2 caused 15% and >99% detachment, 

respectively (Figure 2Fb–c; Figure S2I), with binding at pH 6 being unaffected by prior 

incubation at pH 2 (Figure 2Fd). Fifth, BabA purified from strains SW7, 17875/Leb, and 

SW38 showed pH50 values with the same rank order as those of their source bacteria, 

although with 0.9, 0.2, and 0.3 pH units higher acid sensitivities, respectively (Figure 2G). 

Sixth, circular dichroism (CD) spectra showed that acidification from pH 7 to pH 4 and pH 

2.5 caused only minor local shifts in native BabA protein secondary and tertiary structure 

(Figure S2J). Seventh, for comparison, the common blood group O antigen binding lectins 

UEA and AAA were tested, and unlike BabA, acid inactivation was found to be irreversible 

for both lectins (Figure S2K). Thus, the BabA protein sequence determines acid sensitivity 

in Leb binding, its remarkable reversibility, and the diversity of sensitivity among strains.
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Gastric Antrum–Corpus Differences in Acid-Sensitivity in Binding

The gastric antrum is less acidic and has a thicker protective mucus layer than the gastric 

corpus, which contains the acid-producing parietal cells (Figure S3A). To assess if regional 

gastric physiology might select for pH50 differences in resident H. pylori strains, we studied 

20 antrum and 10 corpus isolates from Swedish patient SO-2 with reflux dyspepsia. These 

isolates had a median difference of 0.7 pH units (pH50 4.4 in the antrum and 3.7 in the 

corpus, Mann–Whitney U-test, p < 0.0001) (Figure 3A). All SO-2 isolates had identical glr 
and cysS housekeeping gene sequences (Table S5), indicating recent descent from the same 

ancestral strain. In contrast, no significant pH50 differences were found among isolates from 

another patient, SO-1, with non-reflux dyspepsia (Figure 6F). We propose that the process of 

BabA adaptation to antrum vs. corpus acidity would be more discriminating in patients such 

as SO-2 with hyper-secretion of acid (pH50 of patient SO-2 vs. SO-1 (Figure 6F)). Several 

babA alleles were found among the SO-2 isolates, and these differed mainly at only two 

amino acid positions – Leu(L)199 and Glu(E)428 in the antrum isolates vs. Pro(P)199 and 

Gly(G)428 in the corpus isolates (Table S5; Figure 3C; Figure S3B; Figure S3F). Two tests 

showed that the residue at position 199 is functionally important. First, surface plasmon 

resonance (SPR) of recombinant BabA (recBabA) proteins showed that residue P199 

(corpus) conferred a 0.5 pH unit higher acid resistance than L199 (antrum), but without 

detectable contribution from E428 vs. G428 (Figure 3D; Figure S3C). Second, full-length 

P199 BabA expressed on the surface of E. coli had >20-fold higher Leb binding than L199 

BabA (Figure 3E) due to P199 BabA’s 10-fold higher affinity and ~40-fold higher binding 

capacity (equilibrium data not shown). Furthermore, chimeric BabA with P199 (corpus) and 

E428 (antrum) had 30% lower binding than corpus BabA (Figure 3E) due to 1.5-fold lower 

binding capacity and 1.15-fold lower affinity (equilibrium data not shown), and this 

contribution by E428 was also seen by SPR (Figure S3C). Thus, position 199 is an important 

determinant of both acid sensitivity and binding affinity and will henceforth be denoted as 

“Key-position”. This is the first residue in a short α-helix (amino acids 199 to 202) called 

the “Key-coil” because it affects the acid sensitivity in Leb binding (Figures 4A and 4B; 

Figure S4A). Replacement of P199 with L can turn Key-coil into a random coil (Krieger et 

al., 2005). Similar L to P substitutions with subsequent structural alterations are recognized 

human cancer markers (Kundu et al., 2013). We also found that 5 of the 30 SO-2 isolates 

were “Exceptional” in having an antrum-like median pH50 of 4.4 (Figures 3A and 3B) but 

corpus-like affinities 20-fold and 50-fold higher than other antrum isolates at pH 6 and pH 4, 

respectively (Figure S3E). This unusual pH50 and affinity combination revealed a corpus-

like P199 paired with E192K and G205D substitutions. Positions 192 and 205 are both 

located next to the Key-position in BabA’s carbohydrate binding domain (CBD) (Figure 

4B). The second set of substitutions that influence the acid sensitivity of SO-2 BabA is G/

E428 in Helix-9 (H9), which is located ~40 Å away from the CBD. H9, together with H1 

and H10, form a coiled-coil Stalk Domain connecting BabA’s surface-exposed domains and 

membrane-anchored domains (Figure 4B) (Hage et al., 2015). We denote this trio of helices 

as BabA’s “Velcro Domain” (Figure 4B). We suggest that the Velcro Domain contributes to 

BabA multimerization and thus to its binding avidity (Figure 6; Figure 7).

BabA differences that reflect adaptations to local gastric sites were also seen in the analysis 

of 30 Greek isolates that, similar to the Swedish isolates, exhibited a range of pH50 values 
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from 3.3 to 5.3 (Figure S4Ba), with a median pH50 of 3.8 (Figure 6F). Of the 13 strains that 

demonstrated Leb binding in both antrum and corpus isolates, four strains exhibited pH50 

antrum-corpus differences, from + 0.9 to −0.6 pH units. The antrum isolates from two 

patients (G0017 and G1055) were more acid sensitive, whereas the corpus isolates from two 

other patients (G1034 and G2030) were more acid sensitive (Figure S4Bb–f). For 

comparison, an equivalent difference in acid-sensitive Leb-binding of the G1007 antrum vs. 

corpus isolates was seen with human MUC5AC gastric mucin (Figure S4C). The antrum and 

corpus isolate pairs were 3 to 79 amino acids different (Figure S4D), and each isolate pair 

had identical glr and cysS housekeeping gene sequences (Table S5). These substitutions 

tightly overlap the BabA Clusters I–III, i.e. domains that are high in positive-selection 

activity (with amino acid substitution as a consequence of nucleotide mutation), including 

the CBD (Figure 4A). Also present are three amino acid substitutions in the Velcro Domain 

of strain G1007, including E428G (Figure S4D), which is identical to the Velcro Domain 

substitution in patient SO-2 (Figure 3C). The positions of these substitutions suggest that 

they have direct acid-responsive effects on both monomeric BabA-Leb interactions (through 

the CBD) and monomer-oligomer transitions (through the Velcro Domain).

BabA Acid Sensitivity and Geographic Disease Patterns

The babA genes are far more diverse than other H. pylori genes, as illustrated by the unique 

sequences of ~100 full-length BabAs (Figure S5A), and this diversity is shaped by multiple 

selective forces, including ABO blood group phenotypes and differences in the gastric 

physiology among human populations. Because H. pylori infection is associated with 

pangastritis, corpus atrophy, hypochlorhydria (higher gastric pH), and elevated gastric 

cancer risk in Peru (Correa, 2013) vs. antrum-predominant gastritis (Misra et al., 2000), 

hyperchlorhydria (lower gastric pH), increased duodenal ulcer risk, and reduced gastric 

cancer risk in India (Lam, 2000), we hypothesized that Leb binding by Indian strains would 

be more acid resistant. However, we found that 14 of 16 Indian strains were more acid 

sensitive compared to Peruvian strains (Figure 5A), with a median difference of 0.8 pH units 

(pH50, 4.2 vs. 3.4) (Mann–Whitney U-test, p = 0.003).

The Key-position is P in 20 of 23 Peruvian strains (Aspholm-Hurtig et al., 2004), but in only 

1 of 14 Indian strains with acid-sensitive binding (Table S5). In addition, 11 of these 14 

Indian BabAs lack residues 199 and 200, and thus have a truncated Key-coil compared to 

most other strains (Figure 5B). BabAs of acid-sensitive Indian strains I93, I9, and I17 also 

contain the K192D205-motif (Figure 5B), which similarly makes the Exceptional SO-2 

isolates more acid sensitive (Figures 3B and 3C). In contrast, BabAs of the two acid-

resistant Indian strains (I18 and I110) with pH50 = 3.16 and 3.48 (Figure 5B) contain full 

Key-coils, but with K or R in the Key-position (red in Figure 5B), which is reminiscent of 

charged (K, E) or polar (Q) residues that are present in the majority of BabAs from 

European H. pylori isolates and which is distinct from the almost universal P in BabAs from 

East Asian and Amerindian isolates (Figure 5C).

Six experiments were performed to determine the contribution of the Key-coil to acid 

sensitivity. First, BabAs from Indian acid-sensitive (I9) and acid-resistant (I18) strains 

(Figures 5A and 5B) were expressed from a plasmid shuttle vector (SV) in H. pylori strain 
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P1 babA. The resulting pH50 profiles closely matched those of the source strains (Figure 

S5B), further showing that the BabA sequence determines its acid sensitivity. Second, 3 

(M1), 8 (M2), or 11 (M3) amino acid residues in and near the Key-coil of acid-resistant 

strain I18 were used to replace the corresponding BabA residues in acid-sensitive strain I9 

(pH50 = 4.17). The H. pylori I9 BabA-M3-mutant, containing I18’s S198–S208 segment, 

became 0.6 pH units more acid resistant than the original I9 isolate (Figures 5D and 5E). 

Third, two strains from Japan (J511, J512) and one from Spain (S851) (Aspholm-Hurtig et 

al., 2004), which similarly lack Key-coil positions 199 and 200, were found to be more acid 

sensitive (pH50 4.12–4.40) than phylogenetically closely related Japanese BabAs with intact 

Key-coils (J532, J519) (pH50 = 3.66 and 3.74) (Figure 5B). Fourth, the importance of Key-

coil positions 199 and 200 was further demonstrated by deletion of K199 and Q200 in strain 

I18, which increased the pH50 by 0.6 units (Figure 5F), i.e. a gain in acid sensitivity that is 

very similar to the three strains from Japan and Spain that naturally lack these two residues 

(Figure 5B). Fifth, the increase in acid resistance caused by replacement of D198–R207 with 

S198–Q207 (R207 vs. Q207 indicated in Figure 5B) in the M3-mutant (in the second 

experiment) is noteworthy because charged residues D198 and R207 are predicted to form a 

salt bridge (Figure 4B) (Moonens et al., 2016). In contrast to M3, the M1 and M2 mutants 

that lost the salt bridge D-pole became much more acid sensitive (Figure 5E). The 

contribution of the putative salt bridge in strain I9 was analyzed by a D198A substitution, 

which increased acid sensitivity by 0.8 pH units (Figure 5G). Sixth, we used Force 

Measuring Optical Tweezers (FMOT) to understand how acid-induced Key-coil relaxation 

relates to binding kinetics. Important in this context is that BabA is largely unaffected by 

BabA multivalency because the bacterial cell and Leb make distinct contacts due to the use 

of spherical beads as handles during the measurements (Björnham et al., 2005), which is 

very different from SPR measurements where the interpretation of bacterial cell binding is 

complicated by extremely slow dissociation at pH optimal for Leb binding i.e. the nearly 

zero off-rate in binding (Figure S3D). However, with FMOT we subjected BabA-Leb bonds 

to increasing external force and exponentially increased loading rates from pH 7.4 to 3.6 

(Figure 5H), and we found that the off-rate increased >500-fold at pH 3.6 (Figure 5I). We 

conclude that BabA’s rapid acid-induced decrease in Leb binding and affinity stems mainly 

from an increased off-rate. Thus the D198/R207 salt bridge clamps the Key-coil at higher 

pH, but it acts as a pH sensor where the salt bridge is disrupted at pH <4 (~pKa of D). This 

mechanism brings about immediate Key-coil relaxation, distortion of the proximal fucose-

binding CL2 loop, and a hugely increased off-rate in binding because CBD loses its ability 

to hold Leb in place upon acidification.

Adaptation of BabA Acid Sensitivity During Disease Progression Into Gastric Cancer

We next tested for BabA evolution driven by the gastric changes that H. pylori itself elicits. 

Rhesus macaques resemble humans in gastric physiology and mucosal ABO/Leb-

glycosylation (Lindén et al., 2008) and are naturally infected by H. pylori, although babA 
and hence Leb binding tend be lost during infection (Solnick et al., 2004). Two rhesus 

macaques (54H and 81G) had been infected by H. pylori USU101, a strain originating from 

a patient with gastric cancer, initially to test if the alimentary carcinogen ethyl-nitro-

nitrosoguanidine (ENNG) exacerbated H. pylori-induced gastritis development into gastric 

cancer (Liu et al., 2009). After 6 years of USU101 infection, the 81G animal that had also 
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received the ENNG carcinogen developed gastric atrophy, dysplasia, and gastric cancer 

(Figure S6A; Table S3A). In contrast, the 54H animal with no ENNG supplementation was 

only diagnosed with gastritis (Table S3B). As expected, most H. pylori recovered from each 

animal had lost Leb binding activity. However, distinct subpopulations of Leb-binding 

bacterial cells were detected in both animals (Figure S6B) and were isolated from both the 

antrum and corpus (Figure S6C). In the ENNG-treated 81G animal, coexisting 

subpopulations of Leb binders developed adapted binding properties during the progression 

into gastric cancer. Here, the corpus isolates (81G-C) were more acid sensitive (mean pH50 = 

4.25) and the antrum isolates (81G-A) were less acid sensitive (mean pH50 = 3.9) compared 

to the US101 parent strain (pH50 = 4.1) (Figure 6A; Figure S6D). We suggest that the higher 

acid sensitivity of the corpus clones reflects gastric hypochlorhydria caused by corpus 

atrophy, depletion of acid-producing parietal cells, and BabA adaptation to the elevated 

corpus pH. Such increased acid sensitivity was also seen with corpus isolates from two 

Greek patients (G1034 and G2030) (Figure S4Bb). In contrast, the pH50 difference in 

isolates from the 54H animal (not ENNG treated) was only 0.2 units (pH50 = 4.2 for corpus 

and 4.4 for antrum isolates). Such a more acid sensitive and hence health-associated antrum 

clone, suggests adaptation to a healthier gastric environment such as the 54H animal (Figure 

S6E). This was similar to the SO-1 patient with non-reflux dyspepsia with a ~0.2 difference 

in pH50 between corpus clones and more acid sensitive antrum clones (Figure 6F). SPR 

binding tests of the corresponding recBabA proteins confirmed the differences in acid 

sensitivity (Figure S6F). Equilibrium analysis revealed ~10-fold lower Leb affinity (Figure 

6A) and 30% reduced binding capacity (fewer BabA/bacterial cell) for 81G-C compared to 

81G-A isolates and to the more intermediate US101 parent strain. The CD spectra showed 

that the recBabA 81G-A and C proteins require acidification to pH 2.5 and 3.5, respectively, 

to reach similar helical features in acid-induced secondary structure, which suggests that the 

antrum and corpus proteins have differences in structural stability (Figure S7B). Seven 

amino acid differences between the antrum and corpus isolates and/or the USU101 ancestor 

were found (Table S5; Figure 6B), all of which clustered in the highly polymorphic H9/H10 

Velcro Domain (Figure 6C). The seven substitutions in BabA were aa469 and aa475 in 

Helix-10 in both 81G-A and 81G-C isolates (Figures 6B and 6C; Figure S6G, yellow box), 

four substitutions in the aa433–454 segment in H9 uniquely in 81G-C (Figures 6B and 6C; 

Figure S6G, green box), and a single aa486 substitution unique to 81G-A in H10 (Figures 

6B and 6C; Figure S6G, red box). Sequencing of the related but divergent babB gene (BabB 

does not bind to Leb) (Ilver et al., 1998) argues that the 81G-A and 81G-C BabA proteins 

adapted due to recombinational import-based gene conversion of babB DNA sequences into 

babA (Table S5; Figure 6B; Figure S6G), a phenomenon also seen with SO-2 isolates (Table 

S5; Figure S3F) and similar to the E428G substitution in the Greek G1007 isolates (Figure 

S4D). Reciprocally, 81G-C babB contained a ≥50 bp segment with six nucleotide 

differences derived from the original babA gene (dashed arrows in the red box in Figure 

S6G). Importantly, because the 81G-A and 81G-C BabA CBDs are identical, the divergence 

between these BabAs in pH50 acid sensitivity and affinity can be ascribed to their differences 

in Velcro Domain strength. Thus multiple recombinations between babA, babB, and 

possibly babC gene sequences present in the same genome can create changes in Velcro 

Domain sequence and influence BabA binding properties.
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We also studied BabA adaptation during chronic infection in a patient who developed gastric 

cancer (here denoted the GC-patient) using isolates from the time of the first intestinal 

metaplasia at year Y0 and Y3 and at Y16 when the metaplasia had progressed to dysplasia 

(Kennemann et al., 2011). The single available Y0 and Y3 isolates and one of three Y16 

isolates were each more acid resistant in Leb binding (pH50 = 4.0, 3.9, and 4.2, respectively) 

than two other Y16 isolates (pH50 = 4.65) (Figure 6D), although all isolates were similar in 

binding capacity and affinity (Figure S6H). Again, the identical glr and cysS gene sequences 

in the isolates verify that they derived from the same ancestral strain (Table S5). The BabA 

sequences from Y0 and Y3 were identical and differed from Y16-1 by 9 substitutions and 

from Y16-2 and Y16-3 by 25 substitutions (Figure 6E; Table S5). All but one of these acid 

sensitivity-determining amino acid substitutions stem from single nucleotide differences, 

cluster in the CBD (yellow segment in Figure 4A), and are specifically located in 

intrinsically unstructured regions (green bars in Figure 4A) where they can modulate the 

reactivity of these loops. The dual clustering of apparently adaptive BabA substitutions in 

the CBD and Velcro Domain during chronic infection and progression to gastric cancer 

illustrates the importance of these two domain in determining BabA’s acid sensitivity and 

Leb affinity.

Acid Sensitive and Reversible BabA Multimerization

We investigated whether BabA’s reciprocity in acid sensitivity vs. high affinity in Leb 

binding depends on the CBD’s intrinsic affinity seen in BabA monomers combined with 

multimeric avidity in binding through Velcro Domain interactions. First, 2D-electrophoresis 

showed that BabA proteins migrate as oligomeric and high molecular mass (HMM) 

multimeric complexes (Figures 7A and 7B; Figure S7A). Second, BabA eluted as oligomeric 

complexes during cation exchange (CEX) chromatography (Figure 7C). Third, the bacterial 

whole-cell protein level of BabA (Table S1) compared to bacterial cell Leb-binding capacity 

(Figure 1D) gave a ratio of 2.8 BabA proteins per binding site, which suggests that the high-

affinity form of BabA is a trimer. Fourth, in contrast to the acid stability of the native BabA 

protein, CD spectra of the 81G antrum and corpus recBabA526 fragments show structural 

transitions at pH 4.5, which suggests that the C-terminal β-barrel membrane domain and 

proximal Velcro and Stalk domains indeed contribute to structural support (Figures S2J vs. 

S7B). Fifth, small-angle X-ray scattering (SAXS) showed recBabA in pure monomer form 

below pH 4, whereas BabA forms discrete higher molecular weight species above pH 6 

(Figure S7C). Sixth, non-reducing (less denaturing) SDS-PAGE showed that BabA released 

from H. pylori membranes by the mild detergent ZW-12 is oligomeric but is monomerized 

by acidification to <pH 4 (Figure 7D). Seventh, crosslinker treatment of H. pylori bacterial 

cells at different pHs identified BabA in HMM multimers at pH 6–5 that progressively 

dissociated into ~250 kDa oligomers at pH <4 and ultimately into 75 kDa monomers at 

lower pHs (Figure 7E; Figure S7D). Eight, to determine how acid-induced dissociation of 

BabA multimers relates to its highly reversible Leb-binding mode, we again used crosslinker 

treatment to show that reconditioning of the cells to pH 6 from prior pH 2.5 exposure 

resulted in ~70% recovery of the BabA HMM multimers and a reciprocal reduction in BabA 

monomers (Figure 7F; Figure S7E). Ninth, we found a ~35% increase in H. pylori binding 

capacity during the initial acidification to pH 4 (Figure 7G), which we interpret as an 

increase in the number of independent Leb-binding sites due to acid-induced dissociation of 
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BabA multimers to monomers. These results show that BabA contains two distinct domains 

that together determine acid sensitivity, affinity, and avidity of Leb binding – the CBD for 

direct glycan receptor binding and the Velcro Domain that controls BabA multimerization, 

and thus Leb-binding multivalency, with increased avidity that is interpreted in terms of 

increased binding strength and acid resistance.

DISCUSSION

Here we show that BabA-mediated H. pylori adherence is acid sensitive, which allows the 

infection to adapt to changes in gastric acidity due to BabA’s responsive and fully reversible 

binding by pH neutralization. This adaptation is reflected in the spectra of acid sensitivity 

profiles among clinical isolates. BabA acid sensitivity allows the H. pylori infection to adapt 

to the gradual shifts in gastric acidity that result from life-long chronic inflammation, and 

this adaptation occurs through mutations and recombination events with divergent babA-

related genes that are duplicated in the same genome and/or genes from other strains. Gain 

of function is achieved by natural selection for the optimum combination of acid sensitivity 

in binding combined with chemotaxis-driven recycling of infection. Such adaptation and 

selection allows H. pylori to occupy its niche in the thicker and more buffered antrum 

mucosa, even during elevated acid secretion, as well as in the thinner and more acidic corpus 

mucosa. Given the heterogeneity of the inflamed, and sometimes dysplastic, mucosa, H. 
pylori also develops heterogenic subpopulations of bacterial cells that are optimized for 

different gastric habitats. Such selection pressures adapt BabA for increased acid secretion 

(lower pH) or decreased acid secretion (higher pH), conditions that are pathognomonic in 

the development of peptic ulcers and gastric cancer, respectively.

BabA Adaptation to Global Disease Patterns

In principle, evolution should favor H. pylori infections that fully occupy the gastric mucosa 

(as they do in isolates from Peru), so why is it that the Indian strains have developed antrum-

restricted tropism combined with high acid sensitivity in binding? We suggest that due to the 

Indian strains’ preference for high acid sensitivity, the infection relocates closer to the more 

buffered epithelium and away from the acidic mucus layer and the brunt of the gastric lumen 

acidic juice. However, gastrin production increases during antrum inflammation with 

resulting hyper secretion of acid in the corpus through a paracrine loop. It follows that the 

Indian strains prefer to avoid this acid rain, which is reflected in their acquired acid 

sensitivity and predominantly antrum location. However, exacerbation of antral 

inflammation results in increased gastrin secretion, hyper secretion of acid and progression 

into peptic ulcer disease. Indeed, peptic ulcer disease is common in Asian Indians (Misra et 

al., 2000; Lam, 2000). Thus, the sheltered antrum location is augmented by the 

hyperchlorhydria and the resultant low-pH gastric juice. We suggest that such a hallmark 

might have been evolutionarily selected for by the partial protection that high gastric acidity 

confers against lethal gastrointestinal infections such as Vibrio cholera, which has likely 

been endemic in the Bay of Bengal region for centuries or millennia. This is also in accord 

with the unusually high prevalence of blood group B among Indians, which is similarly 

adaptive in decreasing cholera susceptibility (Glass et al., 1985). In contrast, the ~1 pH unit 

increase in acid resistance in binding in Peruvian strains (Figure 6F) allows for pangastric 
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dissemination with resultant corpus atrophy and increased gastric cancer risk (Correa, 2013). 

On the geographic level, our results suggest that changes in acid sensitivity in binding are 

driven by external selection pressures such as pandemic infectious diseases. This 

predisposes for differences in H. pylori regional antrum vs. corpus tropism and shapes the 

types of disease that will develop within a population. Future work will elucidate the 

molecular mechanisms that prevent H. pylori in India from pangastric spread, i.e. whether 

antrum tropism is due to local host factors or H. pylori colonization properties.

BabA Adaptation to Disease Progression

Over time, pangastritis and corpus infection predispose for the loss of acid-secreting parietal 

cells (atrophy) with subsequent reduction in acid secretion and elevated pH. We propose that 

such degenerative processes select for increased acid sensitivity in binding as illustrated by 

BabA from Greek patients (Figure S4Bbef), the dysplastic GC-patient (Figure 6D), and the 

rhesus macaque with gastric cancer (Figure 6A). However, gastric regional heterogeneity in 

terms of inflammation, metaplasia, atrophy, and sometimes also neoplastic dysplasia 

provides ample opportunities for expansion of H. pylori subpopulations. Such 

subpopulations as identified in the rhesus macaques (Figure S6B), the GC-patient (Figure 

6D), and the Exceptional-SO2 isolates (Figure 3B) have evolved binding characteristics for 

optimal conformity to additional mucosal micro-niches in the gastric landscape during long-

term infection. The extraordinarily high diversity in pH50 (ranging from pH 2.3 to pH 5.3) 

among clinical strains shows that BabA adapts over time to changes in the secretion of acid, 

i.e. to local pH conditions. Such adaptation is illustrated by the elevated pH50 in both the 

rhesus macaque isolates and the GC-patient isolates during progression of gastric disease 

over many years into cancer. But how does H. pylori maintain its Leb binding at higher pH, 

sometimes even at neutral pH that occurs as a consequence of atrophy progression and 

gastric cancer? Tests of 110 strains from populations around the world showed that acid 

sensitivity in binding correlates with binding capacity (Figure 6G; Figure S7Fab), but not 

with binding affinity (Figure S7Fc), i.e. strains with high binding capacity, and hence high 

level of BabA expression, are often more acid resistant in binding. In contrast, acid-sensitive 

strains demonstrate low binding capacity and low numbers of BabA adhesins. This suggests 

that the structural plasticity of BabA exhibits an upper pH50 limit of ~5 for adaptation in 

acid sensitivity in binding to disease-associated elevations in gastric pH. This conclusion is 

further supported by the D198A mutant where inactivation of its pH sensor mechanism 

resulted in an exceedingly acid-sensitive phenotype, approaching pH50 = 5. Our results 

argue for a critical role of the spring-activated (but clamped) Key-coil and its acid 

responsiveness through structural relaxation, synergistic mechanisms that together form the 

BabA pH-sensor. Thus, further adaptation in acid responsiveness necessitates a reduction in 

overall bacterial binding strength through lowered avidity by reduced expression of BabA 

and hence lowered binding capacity. Our new understanding of H. pylori adaptation to 

changes over time in gastric pH suggests that BabA-mediated gastric colonization patterns 

can also adapt its adherence properties to long-term acid-secretion inhibition therapy. 

Numerous conditions, including esophageal reflux disease and dyspepsia, are 

symptomatically treated with proton pump inhibitors (PPIs) to reduce gastric acidity, often 

for the patient’s lifetime. When these patients are also infected with H. pylori, there is often 

a redistribution of H. pylori infection and gastritis from predominantly in the antrum to 
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stomach wide, and this increases the risk of pan-gastritis, corpus atrophy, and gastric cancer 

(Kuipers et al., 1996). Similar disease developments by PPI treatment have been confirmed 

in animal models (Hagiwara et al., 2011). Much of the H. pylori movement into the corpus 

in such cases might reflect the search for more acidic mucus pH gradients that would better 

support the function of its acid-responsive BabA-mediated adherence, and by doing so H. 
pylori might circumvent PPI therapy. The often-long duration and consequences of acid-

suppression therapies necessitates the search for alternative therapies and new diagnostics. 

For example, acid sensitivity-linked changes in BabA might be used as a real-time marker 

for changes in gastric pH over time and for the risk of severe disease.

EXPERIMENTAL PROCEDURES

In vitro H. pylori Adherence to Gastric Mucosa

Fluorescence labeled H. pylori were pre-incubated in citrate-phosphate buffers at pH 2, 4, 

and 6 and then applied to gastric mucosal histo-tissue sections. Bacterial adherence was 

digitalized with a Zeiss AXIOcam MRm (Carl Zeiss AB, Stockholm, Sweden) with optical 

magnification of 200×. Zeiss AxioVision software v.4.5 was used to quantify bacterial 

adherence. ApoTome (Carl Zeiss AB) was used in Figure 1A to increase sharpness.

Acid Sensitivity in Leb-binding (pH50) i.e. pHgram

H. pylori Leb binding properties were analyzed by radioimmunoassay (RIA). Leb-HSA 

conjugate (IsoSep AB, Tullinge, Sweden) was 125I-labeled by the chloramine T method 

(Ilver et al., 1998). 125I-Leb-conjugate was incubated with bacteria, and then pelleted by 

centrifugation and the 125I in the pellet vs. the supernatant was measured using the 2470 

Wizard2 Automatic Gamma counter (PerkinElmer, Waltham, MA, USA). pH50 was assessed 

in citrate-phosphate buffers pH 2 – 6. 125I-Leb bound to pelleted cells was determined and 

presented as “pHgrams”. The sensitivity of different strains to pH was expressed as their 

midpoints, pH50 (interpolated pH value at a 50% decrease in binding relative to maximal 

binding).

Real-Time Attachment of H. pylori was performed with LigandTracer Green (Ridgeview, 

Uppsala Sweden). Leb-conjugate, recLeb-CHO cells, or BECs were immobilized on a dish 

to which fluoro-labeled H. pylori was applied and then exposed to a pH gradient. Attached 

bacteria were quantified in real time by the fluorescence detector as described in the SEP:

I. Real-time adhesion to Leb conjugates. The Petri dish was coated with Leb-

conjugate. Alexa488 (acid stabile)-H. pylori cells were applied and placed in 

LigandTracer Green with slow rotation of the dish. After 10 h, pH was decreased 

to pH 3, and then reconditioned by NaOH. The fluorescent signal represents 

number of H. pylori bacterial cells bound to the Leb conjugate;

II. Leb-CHO cells were applied to a Nunclone™ Surface Petri dish (Nunc A/S, 

Roskilde, Denmark) and fixed with paraformaldehyde. Alexa488-labeled H. 
pylori was applied to the dish, and placed in LigandTracer Green system for 9 h 

at RT. The pH was acidified and then reconstituted. Bacterial cells attached were 

registered as described above.
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III. Real-time adhesion to buccal epithelial cells (BECs) The buccal mucosal surface 

of an (ABO/Leb)-secretor positive individual was scraped with a Cytobrush Plus 

Cell collector (CooperSurgical. Inc. Berlin, Germany). For immobilization of 

BECs to the Petri dish, a new method was developed, where BEC cells were re-

suspended in N-hydroxy-succinimide ester (biotin) (Sigma, Steinheim, 

Germany). A Petri dish was coated with MegaCellR-Streptavidin (Cortex 

Biochem, San Leonardo, CA, USA). BECs were added, fixed with 

paraformaldehyde and LigandTraced with Alexa488-labeled H. pylori for 9h 

with slow rotation in a pH 2–6 gradient. Bacterial cells attached to the BECs 

were measured as above.

Purification of Native BabA Adhesin Protein from H. pylori

Bacterial cells were detergent solubilized in ZW 3–12 (Sigma Aldrich, St. Louis, MO, 

USA), and the protein extract was applied to a Source 30S (GE Healthcare, Uppsala, 

Sweden) cation exchange column. BabA protein was eluted with a linear gradient of 0–200 

mM NaCl. BabA fractions were identified by immunoblotting, pooled diluted with octyl-

glucoside, and Leb-affinity purified. BabA protein was eluted by an acid gradient and 

quickly neutralized.

pH-Dependent In Vivo BabA Oligomerization

H. pylori was incubated in buffers pH 2.5 to 6 at RT for 30 min followed by glutaraldehyde 

crosslinking of BabA oligomers at pH 7 for 2 min. BabA oligomers were separated by SDS-

PAGE, immunoblot detected, visualized with IRDye 800CW 2nd antibody, scanned by 

Odyssey Sa, and quantified by Image StudioTM Lite Ver 4 (LI-Cor Bioscience) as described 

in the SEP.

Statistical Analysis was performed with GraphPad Prism 6 as described in the SEP.
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Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• H. pylori adherence is acid responsive, with inactivation fully reversed by 

increased pH

• Adhesin diversity in acid sensitivity is driven by inflammation and disease 

progression

• pH sensor sequences in BabA’s binding domains determine its pH 

responsiveness

• BabA adaptation to mucosal atrophy and resulting elevated pH can promote 

gastric cancer
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Figure 1. H. pylori Binding to Leb in Human Gastric Mucosa is Acid Sensitive, Responsive, 
Reversible, and Robust
(A) In vitro binding of fluorescent H. pylori 17875/Leb (binds only to Leb) at (a) pH 6, (b) 

pH 4, and (c) pH 2 (quantified in Figure S1A); (d) H/E-stained adjacent section.

(B) H. pylori bacterial cells demonstrate pH dependence in binding to mucins (Lindén et al., 

2004). Purified human gastric MUC5AC mucin was probed with gastric cancer (GC)-patient 

isolate (Y0 in Figure 6D) (means + SEM, n = 13 replicates).

(C) 17875/Leb bacteria were mixed with 125I-Leb-conjugate (125I-Leb) at pH 6 then 

acidified to pH 2. The proportion of Leb that remained bound was scored (means ± SD for n 

= 2).

(D) The 4 × 1011 M−1 affinity (Ka) at pH 6 showed log-fold reductions at pH 4, 3.3, 2.8, and 

2.1 (arrows), and these are shown with 95% confidence intervals (CI).

(E) The acid sensitivity profile, here denoted pHgram (in black), was determined by a 1 h 

incubation with 125I-Leb at pH from 6 to 2. The dashed line shows when half of the Leb 

binding remained, i.e. 17875/Leb pH50 = 3.4. Reconditioning of bacterial cells to pH 5 after 

a 1 h exposure to acidic conditions and testing reactivation of Leb binding (in red) showed 

that the Leb glycan conjugate exhibited full acid stability at pH 2 (in green), which suggests 

that acid sensitivity involves the BabA protein itself.

(F) 17875/Leb bacteria were tested for Leb binding after each pH-cycle (means ± SD, n = 2 

replicates).

(G and H) 17875/Leb bacterial binding in real time to recLeb-CHO cells (G and Figure 

S1G) or human BECs (H and Figure S1H) as measured by LigandTracer. The integrity of 

BECs (H) and recLeb-CHO cells (Figure S1G) was assessed at the end of the pH-cycle. 

Alexa488 was acid stabile (Figure S1E), and the restoration of Leb binding after 
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neutralization resulted from pre-existing BabA protein, not de novo synthesis, because these 

experiments used previously frozen (dead) H. pylori.
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Figure 2. Diversity in Acid Sensitivity in Binding to Leb Among Clinical Isolates is Encoded by 
the Protein Sequence of BabA
(A) Leb binding is displayed by pHgram in relative terms to facilitate inter-strain 

comparison in acid sensitivity in binding (absolute Leb binding is shown in Figure S2A). 

Each individual pHgram and pH50 value is highly reproducible (Figure S2B).

(B) Attachment at pH 6 and re-attachment after a full pH-cycle (Figure S2C, similar to 

Figure 1G) by strains SW7 (Alexa555, red) and SW38 (Alexa488, green) was significantly 

different as measured by Bonferroni post-hoc tests; means ± SD, n = 7 and n = 10 field 

views for SW7 and SW38, respectively.

(C) 17875/Leb whole-cell proteins were separated by SDS-PAGE, transferred to a 

membrane, and strips were probed with Leb (Ilver et al., 1998) at pH 2–6 (Leb-binding is 
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shown at the top and quantified in the middle, and the confirmation of full BabA membrane 

retention is shown at the bottom).

(D) pHgrams of babA donor strain SW7, strain SW38, and the Trans38-7 transformant. SW7 

and SW38 were chosen because of their divergence in pH50 (A) and sequence difference (44 

amino acids (6%)) (Table S5; Figure S2F) but similar binding affinities (Aspholm-Hurtig at 

al., 2004). The Trans38-7’s ~25% reduction in gained acid resistance might come from its 

lower BabA expression, which was more similar to SW38 (Figure S2E).

(E) Protein purification of BabA from H. pylori bacterial cells. SDS-PAGE of (a) whole 

bacterial cell protein extract (lane 1), ZW-12 detergent bacterial extract (lane 2), proteins 

eluted from the CEX column (lane 3), and BabA eluted from the Leb column (lane 4) 

(Figure S2G). (b) Silver staining and MALDI–MS (Figure S2H) shows BabA purified to 

homogeneity with high yield (Table S1).

(F) Purified BabA was applied to gastric mucosa at pH 6 and then exposed to (a) pH 6, (b) 

pH 4, or (c) pH 2 followed by immunostaining (yellow) (quantified in Figure S2I); (d) BabA 

was acidified at pH 2, reconditioned at pH 6, then applied to gastric mucosa and 

immunostained.

(G) pHgrams of Leb-ELISA of BabA protein purified from H. pylori strains SW7, 

17875/Leb and SW38 with pH50 values of 3.3, 3.7, and 4.1, respectively (means ± SD for n 

= 2).
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Figure 3. Gastric Antrum vs. Corpus Adaptation in Acid Sensitivity and Affinity in Binding is 
Encoded in BabA
(A) pHgrams of 30 isolates from patient SO-2 from Orebro University Hospital, Sweden. 

The most and least acid sensitive isolates displayed a full pH unit difference.

(B) The Exceptional Antrum (AEx) and Corpus (CEx) isolates are circled.

(C) Location of the SO-2 BabA substitutions: P199L in Key-position and E192K/G205D in 

the Exceptional (Ex) isolates are all in the proximity of the fucose-binding CL2 disulfide-

clasped loop (yellow) that constitutes the basis for the CBD. The G428E substitution is 

located diametrically opposite the CBD where it is part of Velcro Domain and is situated at 

the very junction of the Repeat-Sequence-1, i.e. the C-terminal 200 amino acid segment 

including the membrane anchored domain (Figure 4B) that is conserved between BabA, 

BabB and BabC (Alm et al., 2000).

(D) SPR-derived pHgram analyses of Leb-binding by E. coli recBabA526 protein from SO-2 

corpus (P199/G428 (PG)), antrum (L199/E428 (LE)) and chimeric variants L199/G428 (LG) 

and P199/E428 (PE) (sensograms in Figure S3C).

(E) Leb binding by E. coli bacterial cells that express full-length recBabA720 from SO-2 

corpus (PG), antrum (LE), and chimeric variants LG and PE was assessed by RIA. E. coli 
with no expression of recBabA was used as the control (Ctrl) (means + SD for n = 2).
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Figure 4. Amino Acid Replacements for Adaptation in Acid Sensitivity in Leb-Binding
(A) The BabA CBD is under both positive and adaptive selection. Here, the BabA aa133–

399 segment is shown with the Key-position and Key-coil (red vertical box) indicated in 

close proximity to the fucose-binding CL2 disulfide-clasped loop (red bracket). (a) The 

colored bars represent amino acid residues under positive selection, i.e. single nucleotide 

mutations that result in high level (red) or moderate level (blue) of amino acid substitutions 

or conservation (green) of amino acids (Aspholm-Hurtig et al., 2004). The high-level 

positive selection clusters are indicated as I–IV. (b) The pH50-dependent substitutions co-

localize the strongest with Cluster II (CBD, aa175–255 (yellow)), but not with Cluster IV. 

(c) The series of pH50 substitutions in Greek strains (purple bars (Figure S4D)), SO-2 

isolates (light-blue bars (Figure S3B)), and the GC-patient isolates (orange bars (Figure 6E)) 

are located in Clusters I–III. (d) The reference sequence is P448 BabA, and stars indicate 

positions missing in this strain’s BabA sequence (Aspholm-Hurtig et al., 2004). (e) 
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Intrinsically unstructured regions (IUR) (green bars) were predicted by DisEMBL and 

GlobPlot. In BabA, the IUR segments join β-strands (lilac arrows) and α-helices (ribbons) 

and exhibit higher prevalence of polar amino acids and prolines for rapid and precise 

responses to changes in the local environment (Dyson and Wright, 2005; Rauscher et al., 

2006).

(B) Structural organization of the CBD and Velcro Domain acid-sensitivity determinants. 

The CBD is carried by the Head Domain. The coiled-coil Stalk Domain connects the Head 

Domain with the predicted Membrane-Anchored Domain (Hage et al., 2015; Moonens et al., 

2016). The four β-strands S3–S6 with IUR loops constitute the CBD along with the disulfide 

(C189/C197)-clasped (in magenta) fucose-binding loop CL2, which is immediately followed 

by the Key-coil (aa198–202) and Key-position (aa199) in most BabAs. D198 in the Key-coil 

forms a salt bridge with R207 that acts as a structural clamp (dashed red arrow). The salt 

bridge acts as a pH sensor and breaks open due to protonation of the aspartic acid at pH <4. 

H9 in the Head Domain and H1/10 in the Stalk Domain together comprise the Velcro 

Domain. The K192/D205 Exceptional (Ex) motif (red stars) seems to constitute an 

additional mechanism for increased acid sensitivity in binding.
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Figure 5. Acid Inactivation of Leb Binding Depends on the pH Response-Sensor in the Key-Coil
(A) pHgrams of 17 Asian Indian and 20 Peruvian strains with acid-resistant Indian I18 

shown in red and more acid-sensitive Indian I9 shown in green.

(B) BabA sequences from 17875/Leb, the Asian-Indian strains (I), and strains from Japan (J) 

and Spain (S) with/without Key-coil positions 199 and 200 ranked according to their pH50. 

A red vertical box indicates the Key-coil. The acid-resistant strain I18 (horizontal red box) 

and acid-sensitive strain I9 (horizontal green box) are indicated. The three green arrows 

show strains that carry the K192/D205 Exceptional (Ex) motif for increased acid sensitivity 

in binding (similar to Ex motif in Figure 3C).

(C) The prevalence of P in the Key-position is ~25% in Europe, ~50% among North 

American Amerindians (Alaska), and ~90% among South American Amerindians (Peru) 

(Table S2). The red vertical box illustrates the missing Key-position in most Indian strains.

(D) The three I9-SV BabA mutants (M) with 3, 8, or 11 amino acids from the Key-coil 

region of strain I18.

(E) pHgrams show that BabA I9 with the S198–S208 (11 aa) segment, expressed in H. 
pylori strain P1ΔbabA, gave strain M3 a 60% increase in acid resistance (arrow) compared 

to the original I9 strain (pH50 4.17). M3 pH50 = 3.56 (blue), whereas the M1 and M2 

mutants (orange) showed contrasting increased acid sensitivity (pH50 = 4.46) (means ± SD 

for n = 5 (M1), n = 6 (M2 and M3), or n = 3 (I9 and I18) individual clones).
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(F) Recombinant expression of BabA I18-SV and I18-SV- KQ in H. pylori strain P1ΔbabA, 

demonstrated increased acid sensitivity from pH50 3.3 to 3.9 (means ± SD for n = 4) due to 

deletion of the two residues 199K and 200Q.

(G) Recombinant expression of BabA I9-SV and I9-SV-D198A in H. pylori strain P1ΔbabA 
demonstrated increased acid sensitivity from pH50 = 4.1 to 4.9 (means ± SD for n = 4) due 

to inactivation of the salt bridge’s D-node by the D198A substitution.

(H) Bond strengths for twelve combinations of acidity and loading rate. These are the 

effective loading rates for the binding when the influence of the elasticity of the bacterium 

body has been compensated for (Bell, 1978).

(I) The off-rate was assessed by a linear fit of the measured bond strength versus the 

logarithm of the loading rate (from H), where the off-rate is calculated from the slope of this 

line (Björnham et al., 2009). The measured increase in off-rate (dissociation) is comparable 

to the decrease in bacterial binding affinity at pH 3.6 (Figure 1D). The results are based on 

>4000 single measurements.
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Figure 6. BabA Adaptation in Acid Sensitivity During Severe Disease Progression
(A) The 81G antrum and 81G corpus clones had pH50 values of 3.9 and 4.25 and Ka values 

of 6.8 × 1010 M−1 and 5.6 × 1011 M−1, respectively, compared to 4.15 and 2.9 × 1011 M−1 

for the USU101 parent strain.

(B) Amino acid replacements in BabA due to babA/babB recombinations. The 81G corpus 

and antrum BabAs had six and three amino acid substitutions, respectively, compared to 

USU101 (Figure S6G).

(C) UniProt alignment of 98 BabA Velcro Domain sequences with the seven 81G 

substitutions indicated.

(D) pHgrams of H. pylori isolated from the GC-patient at Year (Y)0, Y3, Y16-1, Y16-2, and 

Y16-3 (means ± SD, n = 2).

(E) BabA alignment of the Y0/Y3 (identical) isolates, the Y16-1 isolate, and the more acid-

sensitive Y16-2/3 (identical) isolates, where all but one substitution (aa343) are located in 

the CBD (in red, blue, and green, respectively, see panel D).

(F) Box plots of pH50 for 26 SO-1 (non-reflux dyspepsia) isolates, 20 SO-2 (gastric reflux) 

antrum (A) and 10 SO-2 corpus (C) isolates (Figure 3A), and 21 Swedish (Figure 2A), 30 

Greek (Figure S4B), 17 Indian, and 20 Peruvian (Figure 5A) strains with values outside the 

Bugaytsova et al. Page 28

Cell Host Microbe. Author manuscript; available in PMC 2018 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



box shown as individual points. Mann–Whitney U-tests show significant differences (** p < 

0.01; *** p < 0.001).

(G) Tests of strains from Sweden (n = 21,) Peru (n = 20), India (n = 17), Greece (n = 30), 

and Japan (n = 22) showed that acid sensitivity (pH50) correlates with Leb-binding capacity 

for the combined set (rs = −0.68, n = 110, p < 0.0001), see also Figure S7F.

Bugaytsova et al. Page 29

Cell Host Microbe. Author manuscript; available in PMC 2018 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. BabA Multimerization and Reversible Acid Dissociation
(A) H. pylori J166 whole-protein extracts analyzed by 2D-DIGE. The two green bands 

(white arrows) that were missing or significantly reduced after 8 weeks of infection in a 

rhesus macaque (presumable BabA oligomers and multimers) were, together with the 

dominant yellow band that corresponds to the BabA monomer, positive for BabA by 

immunoblot (B) (see also differential fluorescence in Figure S7A).

(B) BabA immunoblot of J166 wild-type whole-protein extract separated by 2D-DIGE 

revealed three groups of bands – BabA monomer, oligomers, and HMM (double-band) 

multimers (arrows).

(C) Non-reducing SDS-PAGE of CEX fractions from BabA purification (Figure S2Ga). 

BabA eluted as a monomer followed by HMM oligomers and possible multimers.

(D) Non-reducing SDS-PAGE of ZW-12 detergent extracts of 17875/Leb bacterial cells in a 

pH range from 3.5 to 6. Acidification of the bacterial extract caused dissociation of BabA 

oligomers and multimers into monomers.

(E) Glutaraldehyde crosslinking of 17875/Leb bacterial cells after exposure to pH 2.5–6. 

Digital integration of the BabA fluoro-Infra-Red (IR)-signal is shown in Figure S7D.

(F) Glutaraldehyde crosslinking of 17875/Leb bacterial cells after exposure to pH 2.5 with 

BabA dissociation into monomers (pH 2.5); reconstitution of BabA into multimers by pH 6 
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reconditioning after prior pH 2.5 acidification (pH 2.5→6); and pH 6 exposure for 

visualization of the predominant multimers (pH 6). Digital integration of the BabA IR-signal 

is shown in Figure S7E.

(G) Correlation between acid dependence (pH50) and maximal Leb-binding capacity (as an 

approximation of active and available BabA adhesin protein) for 17875/Leb bacterial cells 

was estimated by equilibrium-in-binding affinity analysis.
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