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Abstract

While computational cognitive modeling has made great
strides in addressing complex dynamic tasks, the
modeling of individual differences in complex tasks
remains a largely unexplored area of research.  In this
paper we present a straightforward approach to modeling
individual differences, specifically age-related cognitive
differences, in complex tasks, and illustrate the
application of this approach in the domain of driving.  We
borrow ideas from rigorous work in the EPIC cognitive
architecture (Meyer et al., 2001) and extend them to the
ACT-R architecture (Anderson et al., in press) and a
recently-developed ACT-R driver model (Salvucci, Boer, &
Liu, 2001) to model the effects of age on driver behavior.
We describe two validation studies that demonstrate how
this approach accounts for two important age-related
effects on driver performance, namely effects on lateral
stability and brake response during both normal driving
and driving while performing a secondary task.

Introduction
Computational architectures and cognitive modeling have in
recent years begun to account for increasingly complex and
dynamic tasks, in domains such as piloting combat aircrafts
(Jones et al., 1999) and controlling air traffic (Lee &
Anderson, 2001).  While such models have captured many
aspects of human cognition and performance  in these tasks,
one aspect of complex tasks, namely individual differences,
remains a largely unexplored area of research.  The modeling
community has seen several rigorous studies of individual
differences in the context of cognitive architectures, perhaps
most notably the work of Meyer et al. (2001) in the EPIC
cognitive architecture (Meyer & Kieras, 1997) and that of
Lovett, Daily, and Reder (2000) in the ACT-R architecture
(Anderson et al., in press).  However, due to their emphasis
on specific sources of individual differences, these studies
focused on relatively short laboratory tasks in controlled
environments rather than more complex continuous tasks in
dynamic environments.

Our goal in this paper is to generalize ideas from
existing work on individual differences in simpler tasks to
account for individual differences in complex dynamic
tasks.  We illustrate our approach in the domain of driving,
a complex task that people perform on daily basis.  There
now exist several so-called “integrated driver models” (e.g.,
Aasman, 1995; Levison & Cramer, 1995) that attempt to

combine the lower-level aspects of driving (e.g., steering
control) with the higher-level aspects of the task (e.g.,
decision making, navigational planning).  In particular,
Salvucci, Boer, and Liu (2001) have developed and refined
an ACT-R driver model that predicts many aspects of driver
control, situational awareness, and decision making during
common highway driving.  However, to date, no integrated
models of driving, including the ACT-R driver model, have
accounted rigorously for any individual differences in driver
behavior and performance.

This paper builds on previous work by presenting an
account of individual differences, specifically age-related
differences, in the complex task of driving.  Not
surprisingly, age plays a significant role in driver
differences, often couched in broad terms as differences
between younger drivers (roughly 20-30 years of age) and
older drivers (roughly 60-70 years of age).  Our approach
borrows recent results of Meyer et al. (2001), who explored
models of age-related individual differences in the context of
the EPIC cognitive architecture.  Age effects on driving
offer a particularly interesting challenge to computational
cognitive modeling: on the one hand, some studies have
found that older drivers exhibit performance equal to that of
younger drivers for certain combinations of driving and/or
secondary tasks; on the other hand, other studies have found
that older drivers sometimes experience extremely reduced
performance, particularly in the presence of secondary tasks
(e.g., using a cell phone).  Thus, the effects of age are far
from trivial and must be taken in the fuller context of both
the complex behavior necessary for driving and also the
complex interaction between the driver and the “artifact”
(i.e., vehicle, road, etc.) through which the driver’s behavior
is externalized.

In the next section of the paper, we describe our basic
approach and its instantiation in the ACT-R cognitive
architecture.  We then present two modeling studies that
validate our approach for complementary tasks and aspects
of behavior, namely drivers’ ability to maintain lateral
stability on the road and drivers’ ability to respond (i.e.,
brake) to sudden external stimuli.  While our work in this
paper emphasizes driver behavior and the ACT-R cognitive
architecture, the fundamental ideas generalize well to other
complex task domains and other modeling frameworks.
Thus, our ultimate goal is to explore the interaction between
basic individual differences and their downstream effects on
performance in complex dynamic task environments.
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Modeling Age Effects in Driving
The various types of age-related differences that might arise
in driving can be categorized  broadly in terms of
“hardware” and “software” differences (Meyer et al., 2001).
Hardware differences arise from fundamental changes to the
human system — for instance, a slowdown in cognitive
processing, visual processing, or motor movement.
Software differences arise in modifications or differences in
the strategies used to accomplish tasks — for instance,
intentionally slowing down and backing away from a lead
vehicle when talking on the phone.  In this paper, we focus
on hardware differences, specifically differences in cognitive
processing.  While there is no doubt that both hardware and
software differences play a role in effects on driver
performance, we wish to explore to what extent modeling of
basic hardware differences can account for critical effects on
performance found in recent driver studies.

The ACT-R Cognitive Architecture
The ACT-R cognitive architecture (specifically version 5.0:
Anderson et al., in press; see also Anderson & Lebiere,
1998) is a production-system cognitive architecture based on
two types of knowledge stores, declarative and procedural.
Declarative knowledge embodies “chunks” of symbolic
information including factual (‘3+4=7’), perceptual (‘car
10 m in front’), and goal-related (‘driving to the grocery
store’) information.  Procedural knowledge operates through
condition-action “production rules” that evaluate the current
state of declarative knowledge (e.g., ‘if my goal is to pass
the lead car’) and enact changes on memory and/or the
environment accordingly (e.g., ‘check that there is sufficient
room in the left lane’).  Each production rule firing
(instantiation and execution) requires 50 ms of cognitive
“effort” time, in addition to any time needed to wait for
conditions to be met, such as the completion of a memory
retrieval. Overall, the ACT-R architecture has a number of
built-in functions that enable human-like behavior (e.g.,
interaction of memory and perceptual-motor processes) as
well as built-in limitations on behavior (e.g., forgetting
declarative chunks after a period of inactivity).  An in-depth
discussion of the architecture is beyond the scope of this
paper; interested readers may wish to consult Anderson et
al. (in press) for more information.

ACT-R and Age Effects
To model age effects, specifically hardware-related effects on
cognitive processing, we base our approach on recent work
by Meyer et al. (2001).  Meyer et al. found that one of the
most robust differences between younger and older people
arose in the speed of cognitive processing.  In particular,
they found that, in the context of their EPIC architecture
(Meyer & Kieras, 1997), the time for a production-rule
firing increases from 50 ms for a younger person to 56.5 ms
for an older person — a 13% increase.  They offer several
pieces of evidence to back their claim.  First, for the initial
claim of a 50 ms firing time, they argue that this value has

a neurological correlate in the average period between zero
crossings in the brain’s alpha rhythm for younger adults,
which has a positive relationship with mean simple
response time (see Callaway & Yeager, 1960; Surwillo,
1963; and Woodruff, 1975, as cited by Meyer et al.).  For
older adults, they argue that mean zero-crossing periods for
alpha rhythms is about 10-15% higher for subjects with an
age close to 70 when compared to young adults; older
subjects’ mean simple response times also show a 10-15%
increase (see Cerella, 1985; Somberg & Salthouse, 1982, as
cited by Meyer et al.).  These data lead the authors to
conclude that the mean cognitive processor time increases
by 13% for older adults and that this is a robust finding
independent of task.

The work of Meyer et al. has a straightforward
interpretation in the ACT-R architecture.  ACT-R, like
EPIC, uses a 50 ms cycle time for production rules. To
model an older person, we simply incorporate the same
cycle-time increase as Meyer et al. — namely, we increase
the cycle time for production rules (called “effort” times in
ACT-R) by 13%.  As we will show, this change impacts
performance in non-trivial ways: instead of a 13% impact on
performance across measures, the change produces no effects
for some measures and large effects for others depending on
the emergent interactions between model and task.

In this paper, we focus in particular on the effects of
cognitive cycle time and ignore potential changes in the
timing of perceptual and motor processes.  Meyer et al. also
explored how perceptual and motor processes are affected by
age; however, the mapping of their results to the ACT-R
architecture is not as straightforward as the mapping for
cognitive cycle time, and thus we leave this for future work.
Nevertheless, we demonstrate in this paper that at least
some significant aspects of age-related individual differences
in driving can be successfully accounted for simply by
incorporating basic differences in cognitive processing.

Driving and Age Effects
Modeling the effects of age on driver performances centers
on our use of the ACT-R integrated driver model (Salvucci,
Boer, & Liu, 2001).  The driver model, as mentioned,
incorporates both the lower-level aspects of vehicle control
with the higher-level aspects of driver situational awareness
and decision making.  The model can navigate a variety of
highway environments, the most common being a multi-
lane highway with automated traffic and realistic vehicle
dynamics, as pictured in Figure 1.  While driving, the
model interacts with the simulated environment through a
virtual steering wheel and pedals, producing behavioral
protocols completely analogous to those of human drivers
in the simulator — recording, for example, steering and
pedal depression over time along with eye movements to
visual regions.  The model has been validated with respect
to various aspects of basic driver behavior, such as curve
negotiation and lane changing (e.g., Salvucci, Boer, & Liu,
2001), and also with respect to effects of secondary tasks on
performance (e.g., Salvucci, 2001).
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Figure 1: Sample driving simulation environment.

To model the effects of age on driver behavior, we
incorporate the 13% cycle-time increase into the driver
model.  The increase affects all production rules across the
model — most importantly, slowing down the iterating
control cycle that handles the updates for steering and speed
control.  As mentioned, this has non-trivial downstream
effects on performance rather than a simple 13% effect across
measures of performance.  The next two studies demonstrate
how such a small change at the “hardware” level can result
in very interesting emergent behavioral predictions.

Study 1: Age Effects on Lateral Stability
Our first validation study addresses effects of age on drivers’
ability to maintain lateral stability — that is, side-to-side
stability as measured by lateral velocity.  Reed & Green
(1999) compared the performance of younger and older
human drivers in a simulator and on the road while
executing a secondary task (dialing phone numbers).  We
focus our analysis on their simulator data, comparing the
performance of their drivers to the predictions of the driver
model in a simulator with the same task.

Human Data
In Reed and Green’s (1999) study, drivers navigated a
simulated straight road at a constant speed of roughly 60
mph and were occasionally cued verbally to perform a
secondary task, namely dialing an 11-digit phone number
(including ‘1’ and an area code: e.g., ‘1-215-555-1212’).
On cue, drivers picked up the phone, dialed the 11-digit
number presented on a card located at the center console,
and pressed a “Call” button to initiate the call.  The driver
then received a voice confirmation that the number was
dialed correctly, and finally the driver pressed “End” to end
the call.  Reed and Green collected data from a total of
twelve drivers, six of whom were older than 60 years of age,
six of whom were between the ages of 20 and 30.  They
measured lateral stability as the mean lateral (side-to-side)
velocity of the vehicle both during the secondary task and
during normal driving.

Model Simulations
The model for the Reed and Green task was derived in a
straightforward manner.  The ACT-R driver model was
integrated with a task environment analogous to that in the

Reed and Green study — that is, a simulated one-lane
straight road.  The one difference in the model’s task
environment from that of Reed and Green arose in speed
control: because the model has no speedometer with which
to monitor speed, the model was given a lead vehicle
driving at a constant speed, which it used to monitor its
own speed.  The model was then extended to include a
model for the secondary task of phone dialing.  This
secondary-task model derived directly from a similar
previous model of dialing (Salvucci et al., 2004) specified
in the ACT-Simple framework (Salvucci & Lee, 2003),
which is essentially a shorthand notation for standard ACT-
R production rules.  The model, shown in Table 1, differed
from the previous model only in that it dialed the prefix “1”
before the area code and phone number and that it looked at
the cue card for the number rather than recalling it from
memory.  The “pop” marking in the table denotes
commands after which the dialing model passed control to
the driving task.  Because the control characteristics of the
Reed and Green simulator (e.g., steering force feedback)
differed from those of the simulator used to validate the
original driver model, three parameters1 of the model that
control overall steering were adjusted to produce the best fit
in the results below.  However, it should be noted that the
model immediately produced the desired qualitative
fit — this estimation only improved the quantitative fit.
The younger and older driver models differed only in the
13% increase in cognitive cycle time for the older driver
model.  The model data reported below represents roughly
4-5 minutes of driving in which the model performed eight
secondary-task trials with a 20 s delay between task trials.

Table 1: Secondary-task model for Study 1.

(move-hand device pop)
(think pop)
(press-button key1 pop)
(look-at device pop)
(think pop)
(press-button key2)
(press-button key1)
(press-button key5 pop)
(look-at device pop)
(think pop)
(press-button key8)
(press-button key6)
(press-button key7 pop)
(look-at device pop)
(think pop)
(press-button key5)
(press-button key3)
(press-button key0)
(press-button key9 pop)
(think pop)
(press-button send pop)

                                                
1 

€ 

k far  = 13, 

€ 

knear  = 5.6, 

€ 

kI  = 1
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Results
Figure 2(a) shows the lateral-velocity results taken from the
human drivers in the Reed and Green study.  In the No-Task
condition, the younger and older drivers performed equally
and there were no effects of age.  In the Task condition,
while the performance of both younger and older drivers
degraded significantly, the performance of the older drivers
was affected far more dramatically, with older drivers
exhibiting a mean lateral velocity of .44 m/s and younger
drivers a mean lateral velocity of .22 m/s in this condition.

Figure 2(b) shows the models’ predictions for the same
conditions, R=.99. The models, like human drivers, exhibit
no age effect in the No-Task condition.  Here the 13% cycle-
time increase is not large enough to affect the downstream
performance with respect to lateral velocity, effectively
adding only tens of milliseconds to the overall control-cycle
time: while the younger model updates control every
200 ms, the older model updates every 226 ms, and the
extra 26 ms does not affect overall steering performance.
However, also like human drivers, the model exhibits
differential effects of age and task on performance.  The
younger model exhibits reduced performance because of less
time devoted to control, as we have observed in previous
studies (e.g., Salvucci,  2001).  The older model exhibits an
even greater degradation because of occasional, somewhat
severe steering corrections: in situations where the younger
model may not update control for, say, 1 s, the 13%
increase for the older model would exceed 100 ms —
enough time for the vehicle to travel roughly 2.7 m at the
given speed and move significantly off-center in the lane.
The model, seeing the large offset from lane center,
performs a hard steering correction and generates a large
lateral velocity.  In fact, the younger model also experiences
such corrections; however, the corrections are both more
frequent and more severe for the older model.

Study 2: Age Effects on Brake Response
Our second validation study addresses effects of age on
drivers’ ability to respond to sudden external events via
braking.  Hancock et al. (2003) ran an empirical study on
younger and older drivers to investigate differential effects
of cell-phone distraction on braking performance.  We now
examine their task and results and show how the same
driver model can account for this very different aspect of
driver behavior and performance.

Human Data
In Hancock et al.’s (2003) study, drivers drove down a test
track at approximately 25 mph toward an intersection with a
stoplight.  During some trials, the driver was cued by tone
to perform a secondary task: they looked at a digit on
mounted screen and pressed a key to indicate whether or not
this digit corresponded to the first digit of a previously-
memorized number.  Also during these trials, the stoplight
turned red 0.5-1 s after the onset of the secondary task,
causing the driver to brake in response.  During other trials,
the driver only responded to the red stoplight without a
secondary task.  Hancock et al. collected data from 36
drivers — 19 between the ages of 25 and 36, and 16
between the ages of 55 and 65.  Overall, they measured
brake response time with and without the task as the time
delay between the onset of the red stoplight and the initial
depression of the brake.

Model Simulations
To model the Hancock et al. task, we took the model from
the Reed and Green task and modified only the task
components of the model.  The driver model does not
currently have the ability to encode and monitor stoplights,
and thus we modified the environment such that the lead
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Figure 2: Lateral velocity, (a) human drivers (Reed & Green, 1999) and (b) model predictions.
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vehicle’s brake lights would turn red 0.5-1 s after the onset
of the secondary task, keeping the basic temporal structure
of the Hancock et al. task.  The secondary-task model was
derived by modifying the Reed and Green task model to
type only 1 keypress as opposed to 11; the task model is
shown in Table 2.  All parameter values were taken directly
from the model in Study 1.  However, we had to modify
one braking-related parameter because of the nature of this
task: the standard driver model requires 500 ms to move its
foot from accelerator to brake, but because of the emergency
nature of this task, we instead used a time of
310 ms — recently reported by Lee et al. (2002) as the
minimum time for this movement — and eliminated motor
preparation time due to the drivers’ pre-preparation of the
movement as they approached the intersection.  Again, the
younger and older driver models differed only in the 13%
increase in cognitive cycle time for the older driver model.
The model data below includes roughly 5 minutes of
driving in which the model performed 16 secondary-task
trials with a 10 s delay between task trials.

Table 2: Secondary-task model for Study 2.

(move-hand device pop)
(look-at device pop)
(think pop)
(press-button key5 pop)

Results
Figure 3(a) shows the results for the human drivers.  We see
a similar pattern emerge in this study as we saw in Study 1.
First, younger and older drivers showed no significant
difference in the No-Task condition.  Second, the secondary

task significantly degraded the performance of both groups
in the Task condition.  Third, the task has a greater effect on
the older drivers than the younger drivers.  We should note
that, although the graphs for Studies 1 and 2 are visually
similar, they show very different aspects of behavior; the
similarity is rather surprising given that one study examines
lateral stability while the other emphasizes response time for
longitudinal (braking) behavior.

Figure 3(b) shows the results for the model
simulations, R=.94.  As in Study 1, the models nicely
account for the human drivers’ behavior.  The younger and
older models show equivalent braking response times in the
No-Task condition.  Again, the slightly longer control
update cycle for the older model is not enough to produce a
significant effect.  At the same time, the models show large
effects of task in the Task condition, and the older model
shows a significantly larger effect than the younger model.
As in Study 1, the 13% cycle-time increase for the
secondary task model increases pauses in control by 100 ms
or more, thus producing an effect of roughly this size
between the younger and older models.  One might expect
that the age effect for brake response might be heavily tied
to differences in motor-movement speeds (from accelerator
to brake), and given that the interaction effect in the human
data is slightly larger than that for the model, this could
indeed be one factor.  Nevertheless, these results show that
differences in cognitive processing are also a major
component of this interaction and accounts for critical
aspects of the human data.

General Discussion
In this paper we present a straightforward method of
accounting for age-related differences in driver performance,
focusing on “hardware” differences in cognitive processing
time.  While the idea of slowing processing time by 13%
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Figure 3: Brake reaction time, (a) human drivers (Hancock et al., 2003), and (b) model predictions.
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for older people seems simple enough, it should be noted
that the resulting predictions are far from trivial.  Indeed,
one might at first expect the slowdown to result in
analogous performance decrements — for instance, a 13%
degradation in lateral velocity and braking response.
However, for complex dynamic tasks, this situation is much
more complicated: the model’s behavior is filtered through
both the perceptual-motor processes and the vehicle
dynamics, resulting in predictions that can only be
generated and tested through “embodied” cognitive models
that interact directly with realistic task environments.  The
two validation studies show that the ACT-R driver model,
in the context of such a realistic environment, successfully
accounts for these complex interactions in the driving
domain, namely for both the lack of effects (in the No-Task
condition) and larger-than-expected effects (in the Task
condition) for lateral and longitudinal measures.

This work also illustrates one of the important
advantages to working in the context of a cognitive
architecture — namely, the sharing and re-use of ideas and
model implementations within an architecture and even
across different architectures.  Not only does the work of
Meyer et al. (2001) have large implications for their own
EPIC architecture (Meyer & Kieras, 1997), the work
translates well to other architectures such as ACT-R.  In
addition, this type of foundational work has immediate
implications for all models developed in the architectures;
for instance, other ACT-R models of complex dynamic
tasks (or any tasks general) could incorporate the 13% cycle-
time increase to immediately derive age-related predictions,
enabling comparison to human data for a host of new
measures.  Such work would nicely complement recent
work on other aspects of individual differences, such as
differences in working memory (Lovett, Daily, & Reder,
2000).  These studies of individual differences bring to light
the predictive power inherent in cognitive architectures and
help to make further strides toward Newell’s (1990) vision
of more “unified theories of cognition.”
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