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What are the symmetries of a dataset? Whereas the symmetries of an individual data element
can be characterized by its invariance under various transformations, the symmetries of an ensemble
of data elements are ambiguous due to Jacobian factors introduced while changing coordinates. In
this paper, we provide a rigorous statistical definition of the symmetries of a dataset, which involves
inertial reference densities, in analogy to inertial frames in classical mechanics. We then propose
SymmetryGAN as a novel and powerful approach to automatically discover symmetries using a
deep learning method based on generative adversarial networks (GANs). When applied to Gaussian
examples, SymmetryGAN shows excellent empirical performance, in agreement with expectations
from the analytic loss landscape. SymmetryGAN is then applied to simulated dijet events from the
Large Hadron Collider (LHC) to demonstrate the potential utility of this method in high energy
collider physics applications. Going beyond symmetry discovery, we consider procedures to infer
the underlying symmetry group from empirical data.
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I. INTRODUCTION

The properties and dynamics of physical systems are
closely tied to their symmetries. Often these symmetries
are known from fundamental principles. There are also,
however, systems with unknown or emergent symmetries.
Discovering and characterizing these symmetries is an
essential component of physics research.

Beyond their inherent interest, symmetries are also
practically useful for increasing the statistical power of
datasets for various analysis goals. For example, a
dataset can be augmented with pseudodata generated
by applying symmetry transformations to existing data,
thereby creating a larger training sample for machine
learning tasks. Neural network architectures can be con-
structed to respect symmetries (e.g. convolutional neu-
ral networks and translation symmetries [1]), in order to
improve generalization and reduce the number of model
parameters. Furthermore, symmetries can significantly
increase the size of a useful synthetic dataset created
from a generative model trained on a limited set of ex-
amples [2, 3].

Deep learning is a powerful tool for identifying pat-
terns in high-dimensional data and is therefore a promis-
ing technique for symmetry discovery. A variety of
deep learning methods have been proposed for symme-
try discovery and related tasks. Neural networks can
parametrize the equations of motion for physical systems,
which can have conserved quantities resulting from sym-
metries [4, 5]. Generic neural networks targeting classifi-
cation tasks can encode symmetries in their hidden lay-
ers [6, 7]. This possibility can be used to actively learn
symmetries by encoding a shared equivariance in hidden
layers across learning tasks [8]. Directly learning sym-
metries can be framed as an inference problem given ac-
cess to parametric symmetry transformations of the same
dataset [9]. A given symmetry can be identified in data
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FIG. 1. A schematic diagram of (top) the training setup
for a usual GAN and (bottom) the SymmetryGAN variation
discussed in this paper for automatically discovering symme-
tries. Here, g is the generator and d is the discriminator. Not
represented here is the incorporation of the inertial reference
dataset. In our numerical examples, this is accomplished by
directly imposing constraints on g.

if a classifier is unable to distinguish a dataset from its
symmetric counterpart [10–12] (similar to anomaly de-
tection methods comparing data to a reference [13–15]).
Another class of targeted approaches can be found in the
domain of automatic data augmentation. If a dataset can
be augmented without changing its statistical properties,
then one has learned a symmetry. Significant advances
in this area have used reinforcement learning [16, 17].

An alternative symmetry discovery approach that is
flexible, fully differentiable, and simple is based on gen-
erative models [18, 19]. Usually, a generative model
is a function that maps random numbers to structured
data. For example, a deep generative surrogate model
can be trained such that the resulting probability density
matches that of a target dataset. For symmetry discov-
ery, by contrast, the random numbers are replaced with
the target dataset itself. In this way, a well-trained gener-
ator designed to confound an adversary will implement a
symmetry transformation. We call this generative model
framework for symmetry discovery SymmetryGAN, since
it has the same basic training strategy as a generative
adversarial network (GAN) [20], as shown in Fig. 1.

In this paper, we extend the SymmetryGAN approach
(suggested in Ref. [17], but in the language of data aug-
mentation rather than symmetries) and introduce it to
the physics community. In particular, we build a rigor-
ous statistical framework for describing the symmetries

of a dataset and construct a learning paradigm for au-
tomatically detecting generic symmetries. The key idea
is that symmetries of a target dataset have to be de-
fined with respect to an inertial reference dataset, anal-
ogous to inertial frames in classical mechanics. Our deep
learning setup is simpler than existing approaches and
we develop an analytic understanding of the algorithm’s
performance in simple cases. This in turn allows us to
understand the dynamics of the machine learning as it
trains from a random initialization to an element of the
symmetry group. The primary purpose of this paper is
to carefully demonstrate that this method of symmetry
discovery works. Having done so, in the last section we
move forward to a discussion of methods to infer which
formal groups of symmetries are present in the dataset,
a related but distinct problem which is a rich area for
future research.

This rest of this paper is organized as follows. In
Sec. II, we build a rigorous statistical framework for dis-
covering the symmetries of a dataset, contrasting it with
discovering the symmetries of an individual data element.
Our machine learning approach with an inertial restric-
tion is introduced in Sec. III and the deep learning im-
plementation is described in Sec. IV. Empirical studies of
simple Gaussian examples, including both analytic and
numerical results, are presented in Sec. V. We then apply
our method to a high energy physics dataset in Sec. VI.
In Sec. VII, we discuss possible ways to go beyond sym-
metry discovery and towards symmetry inference, with
further studies in App. A. Our conclusions and outlook
are in Sec. VIII.

II. STATISTICS OF SYMMETRIES

What is a symmetry? Let X be a random variable
on an open set O ⊆ Rn, and let x be an instantiation
of X. When we refer to the symmetry of an individual
data element x ∈ X, we usually mean a transformation
h : O → O such that:

h(x) = x, (1)

i.e. x is invariant to the transformation h. More generally,
we can consider functions of individual data elements,
f : O ⊆ Rn → O′ ⊆ Rm. In that case, the function is
symmetric if

f(h(x)) = f(x), (2)

i.e. the output of f is invariant to the transformation h
acting on x. One can also consider equivariances, where
the output of f has well-defined transformation proper-
ties under the symmetry [21–24]. While symmetries act-
ing on individual data elements are interesting, they are
not the focus of this paper.

We are interested in the symmetries of a dataset as
a whole, treated as a statistical distribution. Let X be
governed by the probability density function (PDF) p.
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Naively, a symmetry of the dataset X is a map g : Rn →
Rn such that g preserves the PDF:

p(X = x) = p(X = g(x)) |g′(x)|, (3)

where |g′(x)| is the Jacobian determinant of g. While
it is necessary that any candidate symmetry preserves
the probability density, it is not sufficient, at least not in
the usual way that we, as particle physicists, think about
symmetries.

Consider the simple case of n = 1. Let F be the cumu-
lative distribution function (CDF) of X. F (X) is itself a
random variable satisfying

F (X) ∼ U [0, 1], (4)

where U(O) is the uniform random variable on O. Con-
versely, F−1(U [0, 1]) is a random variable governed by
the PDF p (for technical details, see Ref. [25]). The uni-
form distribution on the interval [0, 1] has many PDF-
preserving maps, such as the quantile inversion map:

g̃(x) = 1− x. (5)

This map has the additional property that g̃(g̃(x)) = x,
so it appears to represent a Z2 (i.e. parity) symmetry.
Using the CDF map from above, every probability den-
sity p admits a Z2 PDF-preserving map:

g = F−1 ◦ g̃ ◦ F, (6)

where ◦ refers to functional composition.
If we were to accept Eq. (3) as the definition of a sym-

metry, then all one-dimensional random variables would
have a Z2 symmetry, namely the one in Eq. (6). While
true in a technical sense, this is not what particle physi-
cists (or, to our knowledge, any domain experts) think of
as a symmetry of a dataset. The precise definition of a
symmetry must therefore be stricter than simply PDF-
preserving. In particular, while this Z2 PDF-preserving
map applies to every one-dimensional random variable,
it requires a different map for each such variable. When
we usually think about symmetries, we imagine common
maps that can be applied to a variety of physical systems
that share the same underlying symmetry structure.

This line of thinking suggests a sharper definition of
a symmetry that makes use of a reference distribution.
Consider two probability density functions

p : Rn → R≥0, pI : Rn → R≥0, (7)

where R≥0 is the set of non-negative real numbers. A
map g : Rn → Rn is defined to be a symmetry of p
relative to pI if it is PDF-preserving for both p and pI :

p(x) = p(g(x)) |g′(x)|, pI(x) = pI(g(x)) |g′(x)|. (8)

The reference or inertial density pI is the analogue of an
inertial reference frame in classical mechanics. This new
definition of a symmetry will typically exclude quantile
maps, like g̃ above, because the g̃ that works for one

random variable will typically not work for another (e.g.
Gaussian and exponential random variables).

While this new definition solves the problem of “fake”
symmetries, it also introduces a dependence on the iner-
tial distribution. Just as with inertial reference frames,
however, there is often a canonical choice for pI which
reduces the number of possibilities in practice. A natu-
ral choice for many physics datasets is to pick the uni-
form distribution on Rn, where n is the dimension of
the dataset, because many physics problems outside of
General Relativity are set either in Euclidian space Rn
or in Lorentzian space Rp,q, and the affine groups dis-
cussed above are independent of signature Affp,q(R) =
Affp+q(R). This not a proper (i.e. normalizable) proba-
bility density because Rn is a non-compact space,1 so we
discuss techniques below to use it as the inertial distri-
bution nonetheless.

Finally, it is instructive to relate the definitions of sym-
metries for datasets and functions. Given the two PDFs
in Eq. (7), we can construct the likelihood ratio

`(x) ≡ p(x)

pI(x)
. (9)

Applying the symmetry map g as in Eq. (8), the likeli-
hood ratio transforms as:

`(g(x)) =
p(g(x))

pI(g(x))
=

p(x)

pI(x)
= `(x), (10)

where the Jacobian factor |g′(x)| cancels between the nu-
merator and denominator. Therefore the likelihood ratio,
which is an ordinary function, is symmetric by the defini-
tion in Eq. (2). This cancelling of the Jacobian factor is
an intuitive way to understand why an inertial reference
density is necessary to define the symmetry of a dataset.

III. MACHINE LEARNING WITH INERTIAL
RESTRICTIONS

The SymmetryGAN paradigm for discovering symme-
tries in a dataset involves simultaneously learning two
functions:

g : Rn → Rn, (11)

d : Rn → [0, 1]. (12)

The function g is a generator that represents the sym-
metry map.2 The function d is a discriminator that tries
to distinguish the input data {xi} from the transformed
data {g(xi)}. When the discriminator cannot distinguish

1 A compact space is a topological space that is closed and
bounded.

2 Here, we are using the machine learning meaning of a “gener-
ator”, which differs from the generator of a symmetry group,
though they are closely related.
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the original data from the transformed data, then g will
be a symmetry. The technical details of this approach
are provided in Sec. IV using the framework of adversar-
ial networks. The generator is randomly initialized on the
search manifold, and through gradient descent, converges
to the nearest symmetry. It is possible that the nearest
symmetry is the identity transformation, in which case
the generator will converge to the identity map. When
the generator is randomly initialized across the search
manifold several times, however, there is no reason why
the nearest symmetry on that manifold should always be
the identity map, so the generator will converge to the
nearest non-trivial symmetry. In fact, when the dataset
respects a continuous symmetry group, the probability
of the generator converging to the identity is zero.

As described in Sec. II, it is not sufficient to require
that g preserves the PDF of the input data; it also has
to preserve the PDF of the inertial density. There are
several methods to implement an inertial restriction into
the machine learning strategy.

• Simultaneous discrimination: In this method, the
discriminator d is applied both to the input dataset
and to data drawn from the inertial density pI . The
training procedure penalizes any map g that does
not fool d for both datasets. In practice, it might
be advantageous to use two separate discriminators
d and dI for this approach.

• Two stage selection: Here, one first identifies all
PDF-preserving maps g. Then one post hoc selects
the ones that also preserve the inertial density.

• Upfront restriction: If the PDF-preserving maps
of pI are already known, then one could restrict
the set of maps g at the outset. This allows one
to perform an unconstrained optimization on the
restricted search space.

Each of these methods has advantages and disadvan-
tages. The first two options require sampling from the in-
ertial density pI . This is advantageous in cases where the
symmetries of the inertial density are not known analyt-
ically. When pI is uniform on Rn or another unbounded
domain, though, these approaches are not feasible.3 The
second option is computationally wasteful, as the space
of PDF-preserving maps is generally much larger than
the space of symmetry maps. We focus on the third
option: restricting the set of functions g to be automati-
cally PDF-preserving for pI . This in turn requires a way
to parametrize all such g, or at least a large subset of
them.

3 One could try to leverage approximate strategies, such as cut-
ting off the support for pI a few standard deviations away from
the mean of p. Still, one can run into edge effects if there is a
mismatch between the domain and range of g.

For all of the studies in this paper, we further focus
on the case where the inertial distribution pI is uni-
form on Rn. For any open set O ⊆ Rn, a differen-
tiable function g : O → O preserves the PDF of the
uniform distribution U(O) if and only if g is an equiareal
map.4 To see this, note that the PDF of X ∼ U(O)
is p(X = x) = 1/Vol(O), where Vol is the n−volume.
Hence, the PDF-preserving condition p = p ◦ g · |g′| is
met if and only if |g′| = 1. A map is equiareal if and only
if its Jacobian determinant is 1, which proves our claim.
Therefore, our search space to discover symmetries of
physics datasets will be the space of equiareal maps of
appropriate dimension. Of course, there are interesting
physics symmetries that do not preserve uniform distri-
butions on Rn; these would require an alternative ap-
proach.

The set of equiareal maps for n > 1 is not well char-
acterized. For example, even for n = 2, not all equiareal
maps are linear. A simple example of a non-linear
area-preserving map is the Hénon map [26]: g(x, y) =
(x, y − x2). This makes the space of equiareal maps dif-
ficult to directly encode into the learning. While the
general set of equiareal maps is difficult to parametrize,
the set of area preserving linear maps on Rn is well un-
derstood:

ASL±n (R) = {g : Rn → Rn | g(x) = Mx+ V,

M ∈ Rn×n,detM = ±1, V ∈ Rn}.

This is a subgroup of the general affine group Affn(R),
and it can be characterized as a topological group5 of
dimension n(n+ 1)− 1. These maps even have complete
parametrizations such as the Iwasawa decomposition [27]
which significantly aid the symmetry discovery process.

Not all symmetries are linear, however, and if one
chooses ASL±n (R) as the search space, one cannot dis-
cover non-linear maps. Even so, the subset of symme-
tries discoverable within ASL±n (R) is rich enough, and
the benefits of having a known parametrization valuable
enough, that we focus on linear symmetries in this paper
and leave the study of non-linear symmetries to future
work.

IV. DEEP LEARNING IMPLEMENTATION

To implement the SymmetryGAN procedure, we mod-
ify the learning setup of a GAN [20]. For a typical GAN,
a generator function g surjects a latent space onto a data

4 By carefully taking suitable limits, these ideas go through even
if U(O) is an improper prior. The important takeaway is that
uniform distributions are preserved by equiareal maps.

5 A topological group is a topological space with a group operation
defined on it, and where the group operation and inversion are
continuous functions.
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space.6 Then, a discriminator distinguishes generated
examples from target examples.

For a SymmetryGAN, the latent probability density
is the same as the target probability density, as illus-
trated in Fig. 1. The generator g and discriminator d
are parametrized as neural networks. Following Sec. III,
we construct the generator g such that it is guaranteed
to preserve the inertial distribution, e.g. it is an area-
preserving linear transformation, but the discriminator
d has no such restriction. These two neural networks
are then trained simultaneously to optimize the binary
cross entropy loss functional, where the generator tries
to maximize the loss with respect to g and the discrim-
inator tries to minimize the loss with respect to d. The
binary cross entropy loss functional is:

L[g, d] = − 1

N

∑
x∈{xi}Ni=1

[
log
(
d(x)

)
+ log

(
1− d(g(x))

)]
.

(13)

This differs from the usual binary cross entropy in that
the same samples appear in the first and second terms.
A similar structure appears in neural resampling [30] and
in step 2 of the OmniFold algorithm [31].

We now show that optimizing the above loss corre-
sponds to finding a symmetry generator g. The behavior
of Eq. (13) can be understood analytically by considering
the limit of infinite data:

L[g, d] = −
∫ [

log
(
d(x)

)
p(x)

+ log
(
1− d(g(x))

)
p(g(x)) |g′(x)|

]
dx , (14)

where the Jacobian factor |g′(x)| is now made manifest.
For a fixed g, the optimal d is the usual result from binary
classification (see e.g. Ref. [32, 33]):

d∗ =
p(x)

p(x) + p(g(x)) |g′(x)|
, (15)

which is the ratio of the probability density of the first
term in Eq. (14) to the sum of the densities of both terms.
We then insert d∗ into Eq. (14) and optimize using the
Euler-Lagrange equation:

δL[g, g′]

δg
=
∂L

∂g
− d

dx

∂L

∂g′
= 0. (16)

By use of a computer algebra system capable of solv-
ing simple differential equations (in our case, Mathemat-
ica [34]), one can show that the optimal g satisfies

p(x) = p(g∗(x)) |g′∗(x)|, (17)

6 While all the GANs discussed here are (approximately) bijective,
GANs in general need not be. Symmetry discovery requires the
generator to be bijective, so one may want to leverage nomalizing
flows [28, 29] in future work.

i.e. g is PDF preserving as in Eq. (3). For such a g, we
have that d∗ = 1

2 , the loss is maximized at a value of
2 log 2, and the discriminator is maximally confounded.

The SymmetryGAN approach has the potential to find
any symmetry representable by g(x). To target a partic-
ular symmetry subgroup, G ≤ ASL±n (R), we can add a
term to the loss function. For example, to discover a
cyclic symmetry group, G = Zq, q ∈ N, the loss function
can be augmented with a mean squared error term:

L[g, d] = LBCE[g, d]− α

N

∑
x∈{xi}Ni=1

(gq(x)− x)2, (18)

where LBCE is the binary cross entropy loss in Eq. (13),
gq is g composed with itself q times, and α > 0 is a
weighting hyperparameter. A SymmetryGAN with this
loss function will discover the largest subgroup of G that
is a symmetry of the dataset.

V. EMPIRICAL GAUSSIAN EXPERIMENTS

In this section, we study the SymmetryGAN approach
both analytically and numerically in a variety of simple
Gaussian examples. For the empirical studies here and
in Sec. VI, all neural networks are implemented using
the Keras [35] high-level API with the Tensorflow2
backend [36] and optimized with Adam [37]. The gener-
ator function g is parametrized as a linear function, with
constraints that vary by example and are described fur-
ther below. The discriminator function d is parametrized
with two hidden layers, using 25 nodes per layer. Rec-
tified Linear Unit (ReLU) activation functions are used
for the intermediate layers and a sigmoid function is used
for the last layer. For the empirical studies, 128 events
are generated for each example.

A. One-Dimensional Gaussian

Our first example involves data drawn from a one-
dimensional Gaussian distribution with a Z2 reflection
symmetry. Data are distributed according to the proba-
bility distribution N (0.5, 1.0), i.e. a Gaussian with µ =
0.5 and σ2 = 1.0. This distribution has precisely two
symmetries, both linear:

g(x) = x, g(x) = 1− x. (19)

Implicitly, we are taking the inertial distribution to
be uniform on R. As stated earlier, the PDF-preserving
maps of U(R) are equireal. In one dimension, the only
equireal maps are linear. Linear maps in one dimension
are defined by two numbers, so the generator function
can be parametrized as

g(x) = b+ c x. (20)

In Fig. 2, we show the analytically computed loss from
Eq. (14) as a function of b and c. In this figure, the
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FIG. 2. The analytic loss landscape in the slope (c) vs.
intercept (b) space for the one-dimensional Gaussian example.
The two maxima are indicated by stars.

discriminator d is taken to be the analytic optimum in
Eq. (15). There are two maxima in the loss landscape,
one corresponding to each of the linear symmetries from
Eq. (19). Here, and in most subsequent examples below,
we have shifted the output such that maximum loss value
is 0.

Another interesting feature of the loss landscape is the
deep minimum at c = 0 that divides the space into two
parts. This gives rise to the prediction that, under gra-
dient descent, the neural network will find g(x) = 1 − x
when c is initialized negative and find g(x) = x when c
is initialized positive. In the edge case when c is initial-
ized to precisely zero, the generator is degenerate and no
longer even bijective and the outcome is indeterminate,
but the likelihood of sampling c to be precisely zero is,
of course, zero. For the rest of the paper, we ignore such
edge cases. There are no such features in the loss land-
scape as a function of b, suggesting that there should be
little dependence on the initial value of b.

These predictions are tested empirically in Fig. 3,
where the initialized parameters are (bi, ci) ∼ U([−5, 5]2)
and the learned parameters are (bf , cf ). In Fig. 3i, there
are distinct clusters at (bf , cf ) = (0, 1) and (1,−1), show-
ing that the SymmetryGAN correctly finds both symme-
tries of the distribution and nothing else. In Fig. 3ii,
there is a demonstration of the loss barrier in slope
space; if the initial slope is positive, the final slope is
+1, whereas if the initial slope is negative, the final slope
is −1. Finally, Fig. 3iii shows the absence of a loss bar-
rier in intercept space; the final intercepts are scattered
between 0 and 1 independent of the initialized intercept.
We discuss further the symmetry discovery map from ini-
tialized to learned parameters in Sec. VII C and App. A.

In the above example, the parametrization of g was suf-
ficiently flexible that the SymmetryGAN could find both
symmetries and the loss landscape had no other maxima.

If the space is incompletely parametrized, though, then
local maxima can manifest as false symmetries. For ex-
ample, suppose instead of a two parameter g as above, g
were parameterized as g(x) = 1+c x. The corresponding
analytic loss landscape is shown in Fig. 4. A Symme-
tryGAN initialized with a negative slope correctly finds
the only symmetry of this form, g(x) = 1 − x, but a
neural network initialized with positive slope is unable
to cross over the loss barrier at c = 0 and instead settles
at the locally loss maximizing g(x) = 1 + 0.5x. While
our investigations of ASL±n (R) suggest that this does not
happen with the full parametrization, the topology of
the set of equiareal maps is not known and therefore ob-
structions like the one illustrated here are possible. It
is always possible to check if a solution is a symmetry,
however. Specifically, one can apply the learned function
to the data and train a post hoc discriminator to en-
sure that its performance is equivalent to random guess-
ing. For an analytic symmetry, we know that at the
point of loss maximization p = p ◦ g · |g′|, and conse-
quently d = p

p+p◦g·|g′| = 1
2 . Hence, at the global (symme-

try) maxima, L = − 1
N

∑
xi

[log d+ log(d ◦ g)] = 2 log 2.
On the other hand, there is no way for the neural net-
work to get stuck at non-symmetry local maxima with
L = 2 log 2. Hence, the true symmetries can be distin-
guished from local optima by checking the value of the
loss.

B. Two-Dimensional Gaussian

Next, we consider cases of two-dimensional Gaussian
random variables. These examples offer much richer sym-
metry groups for study as well as a greater scope for vari-
ations. We take the inertial distribution to be uniform
on R2.

We start with the standard normal distribution in two
dimensions,

N1,1 ≡ N
(
~0,12

)
, (21)

where 1n is the n× n identity matrix. This distribution
has as its linear symmetries all rotations about the origin
and all reflections about lines through the origin, which
constitute the group O(2). For further exploration, we
consider a two-dimensional Gaussian with covariance not
proportional to the identity,

N1,2 ≡ N
(
~0,

[
1 0
0 2

])
. (22)

The symmetry group of this distribution is quite com-
plicated and described below. Among other features, it
contains the Klein 4–group, V4 = {1,−1, σ3,−σ3}, for
Pauli matrix σ3.

The linear search space that preserves R2, the general
affine group in two dimensions, Aff2(R) = AGL2(R), has
six real parameters. Before exploring the entire space,
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FIG. 3. The empirical symmetry discovery process for the one-dimensional Gaussian example. The initial parameters have a
subscript i and the final parameters have a subscript f . (i) Final slope (cf ) vs. final intercept (bf ), showing that the network
finds the two maxima. (ii) Final slope (cf ) vs. initial slope (ci), showing the phase transition at ci = 0. (iii) Final intercept
(bf ) vs. initial intercept (bi), showing the independence on bi.
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FIG. 4. The analytic loss landscape for the restricted gen-
erator g(x) = 1 + cx, with two local maxima at c = −1 and
c = 0.5.

we first examine the subspace:

g(X) =

[
c s
−s c

]
X, (23)

for c, s ∈ R×, where R× is the set of non-zero real num-
bers. While this is only a rotation if c2 +s2 = 1, we want
to test if a SymmetryGAN can discover this relation-
ship starting from this more general representation. The
symmetries represented by Eq. (23) are a subgroup of
GL2(R): SO(2) × R+ = 〈θ, r|θ ∈ [0, 2π), r ∈ R+〉, where
R+ is the set of positive real numbers. For the N1,1 Gaus-

sian, this means looking for the r = 1 subgroup, which is
indicated by the red circle in the loss landscape in Fig. 5i.
To test the SymmetryGAN, we sample the parameters c
and s uniformly at random from [−1, 1]2, and the learned
c and s values correspond to the expected SO(2) unit cir-
cle, also shown in Fig. 5i. We repeat this exercise for the
N1,2 Gaussian in Fig. 5ii, where the SymmetryGAN dis-
covers the Z2 subgroup of V4 generated by a rotation by
π.

This two-dimensional example allows us to test the ap-
proach in Eq. (18) for finding Zq subgroups of the full
symmetry group. Restricting our attention to the N1,1

example and the SO(2) × R+ subgroup in Eq. (23), we
add the cyclic-enforcing mean squared error term to the
loss with α = 0.1. Results are shown in Fig. 6 for q = 2,
3, and 7, where the analytic loss optima and empirically
found symmetries are broken into discretely many solu-
tions, with the number corresponding to the qth roots of
unity, as expected.

We now consider the general affine group, Aff2(R). In
two dimensions, the elements of this group can be repre-
sented as a matrix with 6 parameters:

• d ∈ R×, the determinant;

• θ ∈ [0, 2π), the angle of rotation;

• r ∈ R+, the dilatation;

• u ∈ R, the shear in the x direction; and

• (a, b) ∈ R2 the overall affine shift.

By Iwasawa’s decomposition [27], the full transformation
can be written as

g(X) =
√
|d|
[
1 0
0 −1

]δ[
cθ sθ
−sθ cθ

][
r 0
0 1

r

][
1 u
0 1

]
X +

[
a
b

]
,

(24)
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FIG. 5. The analytic loss landscapes overlaid with empirically discovered symmetries for the two-dimensional Gaussian
examples with the generator restriction in Eq. (23). (i) The Gaussian N1,1 with uniform covariance, which has loss maxima on
the unit circle c2 + s2 = 1. (ii) The Gaussian N1,2 whose covariance matrix has non-equal diagonal elements, which only has
symmetries at c = ±1 and s = 0.

where δ = 1−sgn(d)
2 and cθ = cos(θ) and sθ = sin(θ).

For the distribution N1,1, the symmetry group is O(2),
described by the parameters d = ±1, θ ∈ [0, 2π), r = 1,
and u = a = b = 0. Visualizing this space is difficult, but
multiple slices through the analytic loss landscape are
presented in Fig. 7. The neural network is trained over all
six parameters of the Iwasawa decomposition of Aff2(R).
The empirically discovered symmetries, shown as yellow
dots in Fig. 7, are two-parameter slices of the discovered
symmetry group, where slices are chosen such that the
parameters not under study are closest to d = r = 1,
θ = a = b = 0. The empirical data agree well with the
predictions.

The same analysis of N1,2 is more complex because
the corresponding symmetry group is more complicated
than for N1,1. When r = 1 and u = 0, the symmetries
are the V4 we saw earlier (θ = 0, π and d = ±1). By
varying r and u, however, one can in fact undo the sym-
metry breaking induced by the non-identity covariance,
thereby restoring the rotational symmetry. For example,
when r =

√
2, N1,2 is transformed into a Gaussian with

covariance diag[2, 1], therefore r =
√

2 and θ = π
2 ,

3π
2

constitutes a symmetry. It is difficult to describe the
whole symmetry group in closed form, or even to visual-
ize it because it does not live in any single planar slice
of AGL2(R). As shown for various parameter slices in
Fig. 8, though, the empirical results agree well with the
analytic predictions.

C. Gaussian Mixtures

As our last set of simple examples, we apply the Sym-
metryGAN approach to three Gaussian mixture models,
inspired by the examples in Ref. [38]. The first is a one-
dimensional bimodal probability distribution:

p(x) =
1

2
N (−1, 1) +

1

2
N (1, 1), (25)

which respects the Z2 symmetry group g(x) = ±x. The
empirical distribution for this example is shown in Fig. 9i.
Applying SymmetryGAN starting from the generator for
linear transformations in Eq. (20), it finds the predicted
symmetries with great accuracy, as shown in Fig. 9ii.

We next consider two two-dimensional Gaussian mix-
tures. The octagonal distribution,

p(x) =
1

8

8∑
i=1

N
(

cos
2πi

8
, 0.1

)
×N

(
sin

2πi

8
, 0.1

)
,

(26)

has the dihedral symmetry group of an octagon D8. The
two-dimensional 5× 5 square distribution,

p(x) =
1

25

5∑
i=1

5∑
j=1

N (i− 2, 0.1)×N (j − 2, 0.1), (27)

has the symmetry group of a square D4. We use the
generator

g(X) =

[
c s
−s (−1)δc

]
X, (28)
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FIG. 6. The analytic loss landscapes overlaid with empirically discovered symmetries for theN1,1 example with a cyclic-enforcing
term added to the loss, to be compared to Fig. 5i. The cases studied are (i) Z2, (ii) Z3, and (iii) Z7.
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FIG. 7. Slices through the analytic loss landscape together with empirically discovered symmetries for N1,1 with the full
AGL2(R) search space. (i) The determinant-rotation angle space. The maxima are indicated by vertical red lines. (ii) The
dilatation-shear space. The maximum is indicated by a red star. (iii) The affine translation space. The maximum is indicated
by a red star at the origin.
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FIG. 8. Similar to Fig. 7 but for the N1,2 distribution. (i) The determinant-sheer space. The maxima are indicated by two
red stars. (ii) The dilatation-rotation angle space. The maxima are indicated by four red stars. (iii) The affine translation
space. The maximum is indicated by a red star at the origin.
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FIG. 9. Empirical distribution (i) and empirically discovered symmetries overlaid on the analytic loss landscape (ii) for a
one-dimensional bimodal distribution inspired by Ref. [38].
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FIG. 10. Empirical distributions (left column) and empirically discovered rotations (middle column) and reflections (right
column) overlaid on the analytic loss landscape for two two-dimensional Gaussian mixture models inspired by Ref. [38]. The
studied examples are (i,ii,iii) a two-dimensional octagonal distribution, and (iv,v,vi) a two-dimensional 5×5 distribution. Note
that antipodal points on (iii) and (vi) represent the same reflection
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which can discover the the entire symmetry subgroup (ro-
tations and reflections) in O(2). Data sampled from these
distributions are shown in the left column of Fig. 10. In
the middle and right columns of Fig. 10, we see that Sym-
metryGAN finds the expected rotations and reflections,
respectively.

VI. PARTICLE PHYSICS EXAMPLE

We now turn to an application of SymmetryGANs
in particle physics. Here, we are interested to learn if
this approach can recover well-known azimuthal symme-
tries in collider physics and possibly identify symmetries
that are not immediately obvious. By the Coleman–
Mandula theorem [39], space-time and internal symme-
tries cannot be combined in any but a trivial way. Ergo,
from momentum data, the only symmetry groups that
can be discovered are subgroups of the Poincaré group,
R1,3 o O(1, 3). There is much to be explored and stud-
ied within the Poincaré group itself, however. We do not
even have a complete classification of its unitary repre-
sentations [40, 41] and its subgroup structure is remark-
ably rich and complex. Discovering which specific sub-
group of the Poincaré group constitutes the symmetry
group of the system at hand is a non-trivial question,
one we can seek to address through SymmetryGAN.

A. Dataset and Preprocessing

This case study is based on dijet events. Jets are colli-
mated sprays of particles produced from the fragmenta-
tion of quarks and gluons, and pairs of jets are one of the
most common configurations encountered at the LHC.
With a suitable jet clustering algorithm, each jet has a
well-defined momentum, and we can search for symme-
tries of the jet momentum distributions.

The dataset we use is the background dijet sample from
the LHC Olympics anomaly detection challenge [42, 43].
These events are generated using Pythia 8.219 [44, 45]
with detector simulation provided by Delphes 3.4.1 [46–
48] The reconstructed particle-like objects in each event
are clustered into R = 1 anti-kT [49] jets using FastJet
3.3.0 [50, 51]. All events are required to satisfy a single
pT > 1.2 TeV jet trigger, and our analysis is based on the
leading two jets in each event, where leading refers to the
ones with largest transverse momenta (p2T = p2x + p2y).

Each event is represented as a four-dimensional vector:

X = (p1x, p1y, p2x, p2y), (29)

where p1 refers to the momentum of the leading jet, p2
represents the momentum of the subleading jet, and x
and y are the Cartesian coordinates in the transverse
plane. We focus on the transverse plane because the
jets are typically back-to-back in this plane as a result of
momentum conservation. The longitudinal momentum of

the parton-parton interaction is not known and so there
is no corresponding conservation law for pz.

7

Since we have a four-dimensional input space, a nat-
ural search space for symmetries is SO(4), the group of
all rotations on R4. Before exploring the whole candi-
date symmetry space, we first consider an SO(2)×SO(2)
subspace where the two leading jets are independently
rotated.

B. SO(2)× SO(2) Subspace

Because of momentum conservation, we expect that
only those rotations that simultaneously rotate both jets
by the same angle will be symmetries. We start from a
generic SO(2)× SO(2) group element:

gθ1,θ2

p1xp1yp2x
p2y

 =

 cos θ1 sin θ1 0 0
− sin θ1 cos θ1 0 0

0 0 cos θ2 sin θ2
0 0 − sin θ2 cos θ2


p1xp1yp2x
p2y

,
(30)

where (θ1, θ2) ∈ [0, 2π)2. We expect the symmetries to
correspond to the subgroup {gθ1,θ2 |θ1 = θ2} ∼= SO(2).
This prediction is borne out in Fig. 11i.

We can also study the training dynamics of the Sym-
metryGAN. More information about this procedure is
given in App. A, but the idea is to find a symmetry dis-
covery map Ω : SO(2)×SO(2)→ SO(2), (θ1i, θ2i) 7→ θf ,
that describes how the initial parameters map to the
learned ones. We propose the map given by

Ω(θ1, θ2) =

{
θ1+θ2

2 |θ1 − θ2| < π ,
θ1+θ2

2 − π |θ1 − θ2| > π ,
(31)

where there is only one output angle even though the
output space is two-dimensional. This map posits that
the final angle will bisect the smaller angle between θ1
and θ2, which is validated by the empirical results shown
in Fig. 11ii.

C. SO(4) Search Space

We now turn to the four-dimensional rotation group.
SO(4) is a six parameter group, specified by {θi}6i=1,
which parametrize the six independent rotations:

R1 : p1x  p1y, R2 : p1x  p2x, (32)

R3 : p1x  p2y, R4 : p1y  p2x, (33)

R5 : p1y  p2y, R6 : p2x  p2y, (34)

7 In principle, we could use SymmetryGAN to confirm the absence
of a symmetry in pz .
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FIG. 11. (i) Empirically discovered symmetries in the LHC Olympics dijet dataset. The final values of θ1 and θ2 from the
SymmetryGAN are plotted over the line θ1 = θ2. (ii) The map between initial and final symmetry parameters. The final
rotation angle is the average of the initialized rotation angles, offset by π if the angle between the initialized angles is reflex.
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where the notation R : a b means

R(a) = a cos θ + b sin θ, (35)

R(b) = b cos θ − a sin θ. (36)

One way to describe a generic generator gθ is by

gθ(X) = R1R2R3R4R5R6X. (37)

It is not easy to visualize a six-dimensional space, and
the symmetries discovered by SymmetryGAN do not lie
in any single 2-plane or even 3-plane. Therefore, we need
alternative methods to verify that the maps discovered
by the neural network are indeed symmetries.

One verification strategy is to visually inspect X and
gθ(X) to see if the spectra look the same. In Fig. 12,
we show a projection of the distribution of X and one
instance of gθ(X), which suggests that the found gθ is
indeed a symmetry.

Another verification strategy is to test if the dis-
covered symmetries preserve special projections of the
dataset. Each of the two jets has an azimuthal angle
φj = arctan2 (pjy, pjx) for j = 1, 2 that is uniformly dis-
tributed over [−π, π), where arctan2 is the two argument
arctangent function, which returns the principal value of
the polar angle θ ∈ (−π, π]. Symbolically, the data can
be represented as

X =

p1xp1yp2x
p2y

 =

p1T cosφi1
p1T sinφ1
p2T cosφ2
p2T sinφ2

, φj ∼ U [−π, π) , (38)

where pjT is the transverse momentum of each jet (which
is approximately the same for both jets since they are
roughly back to back). If one applies an arbitrary rota-
tion, there is no reason the new azimuthal angles,

φ̃1 = arctan2 (gθ(X)2, gθ(X)1), (39)

φ̃2 = arctan2 (gθ(X)4, gθ(X)3), (40)

should be uniformly distributed anymore, as Fig. 13
demonstrates. If one of the symmetry rotations discov-

ered by the neural network is applied to X, however, φ̃j
must remain uniformly distributed, as shown in Fig. 14.

This effect can be quantified by computing the

Kullback-Leibler (KL) divergence of the two φ̃j distri-
butions against that of φj . In Fig. 15, we see that the
KL divergence of the symmetries is much smaller than
the KL divergence of the random rotations. Also plotted
on the same figure is the KL divergence of two samples
drawn from U [−π, π), which represents the irreducible
effect from considering a finite dataset. This would be

the KL divergence of φ̃j obtained from applying an ideal
analytic symmetry to X, against φj . It is instructive to
consider the means of the histograms. The KL divergence
of randomly selected elements of SO(4) has means of 0.37
(0.34) for the leading (subleading) jet, while the KL di-
vergence of symmetries in SO(4) has respective means

0.0058 (0.0090). The irreducible statistical noise has a
mean of 0.0010.

Clearly, the symmetries reconstruct the distribution
much better than randomly selected elements of SO(4),
and are in fact quite close to the irreducible KL diver-
gence due to finite sample size. Note that the x-axis of
Fig. 15 is logarithmic, which magnifies the region near
zero, so the difference between the symmetry histogram
and the statistical noise histogram is smaller than it
might appear.

A final method to independently verify that the rota-
tions SymmetryGAN finds are symmetries of the LHC
Olympics data is by computing the loss function. As
discussed at the end Sec. V A, when g represents a sym-
metry and d is an ideal discriminator, the binary cross
entropy loss is 2 log 2. By training a post hoc classifier,
we can therefore compute the loss of a specific symmetry
generator.8 In Fig. 16, we compare the loss of randomly
sampled rotations from SO(4) to the loss of rotations dis-
covered by SymmetryGAN. The latter is quite close to
the analytic optimum, 2 log 2.

From these tests, we conclude that SymmetryGAN has
discovered symmetries of the LHC Olympics dataset. As
discussed further in Sec. VII below, though, discover-
ing symmetries is different from inferring the structure
of the found subgroup from the six-dimensional search
space. Mimicking the study from Fig. 6i, we can study
its Z2 subgroups, through the loss function in Eq. (18)
with q = 2. The backbone of this subgroup is expected
to be the reflections p1k ↔ p2k (because both jets have
approximately the same momenta) and pjx ↔ pjy (be-
cause sinφ and cosφ look the same upon drawing suf-
ficiently many samples of φ). The learning process re-
veals a much larger group, though. There is in fact a
continuous group of Z2 symmetries, which combine an
overall azimuthal rotation and one of the aforementioned
backbone reflections. In retrospect, these Z2 symmetries
should have been expected, since they are compositions
of well-known symmetry transformations. This example
highlights the need to go beyond symmetry discovery and
towards symmetry inference.

VII. TOWARDS SYMMETRY INFERENCE

The examples in Secs. V and VI highlight the poten-
tial power of SymmetryGAN for discovering symmetries
using deep learning. Despite the many maps discovered
by the neural network, though, it is difficult to infer, for
example, the precise Lie subgroup of SO(4) respected
by the LHC Olympics data. This highlights a limitation
of this approach and the distinction between “symmetry

8 In principle, one could look at the value of the loss after training
the discriminator. In practice, a post-hoc classifier yields more
reliable behavior; see related discussion in Ref. [52].
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FIG. 12. Two dimensional projection of (i) the original LHC Olympics dijet dataset and (ii) its transformation by one of the
generators discovered by the SymmetryGAN. Here, we plot the momenta of the two leading jets in the transverse plane.
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FIG. 13. An example of the jet azimuthal angle distributions, (i)φ̃1 and (ii)φ̃2, of the LHC Olympics dijet data rotated by a
randomly selected rotation in SO(4). The distribution is not uniform, so a random rotation is not a symmetry.
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FIG. 14. The same as Fig. 13, but for a symmetry in SO(4). The distribution is uniform, so this rotation is a candidate
symmetry.
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FIG. 15. The KL divergence between the jet azimuthal angle distribution before and after a random rotation or a symmetry
rotation, for the (i) leading jet and (ii) subleading jet. The KL divergence between two samples drawn from U [−π, π) is shown
for comparison.

discovery” and “symmetry inference”. Though Symme-
tryGAN can identify points on the Lie group manifold,
there is no simple way to infer precisely which Lie group
has been discovered. While symmetry discovery is suf-
ficient for the data augmentation described in previous
sections to facilitate data analysis, it is of theoretical in-

terest to infer which formal Lie groups comprise the sym-
metries of our collider data. In this section, we mention
three potential methods to assist in the process of sym-
metry inference.
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FIG. 16. The loss of random rotations in SO(4) compared
to the loss of rotations learned by SymmetryGAN, overlaid
with the analytic loss of a symmetry, 2 log 2.

A. Finding Discrete Subgroups

One way to better understand the structure of the
learned symmetries is to look for discrete subgroups. As
already shown in Fig. 6 and mentioned in the particle
physics case, we can identify discrete Zq symmetry trans-
formations by augmenting the loss with Eq. (18). By
forcing the symmetries to take a particular form, we can
infer the presence (or absence) of such a subgroup.

It is interesting to consider possible modifications to
Eq. (18) to handle non-Abelian discrete symmetries. The
goal would be to learn multiple symmetries simultane-
ously that satisfy known group theoretic relations. For
example in the Abelian case, a loss term like

− α

N

∑
x∈{xi}Ni=1

(g1 ◦ g2(x)− g2 ◦ g1(x))2 (41)

could be used to identify any two symmetries g1 and g2
that commute. We leave a study of these possibilities to
future work.

B. Group Composition

By running SymmetryGAN a few times, one may dis-
cover a few points on the symmetry manifold. By com-
posing these discovered symmetries together, one can
rapidly increase the number of known points on the man-
ifold because the discovered symmetries are elements of
a group, by construction, so their composition is still an
element of the group.

This notion is quite powerful. The ergodicity of the
orbits of group elements is a richly studied and complex
area of mathematics (see e.g. Ref. [53]). Many groups

of physical interest are locally connected, compact, and
have additional structure. In that context, it is likely
that the full symmetry group is generated by {r1, . . . , rν},
where ri is randomly drawn from the group and ν is the
product of the representation dimension and the number
of connected components.

For example, consider the group U(1) ∼= SO(2), which
has ν = 1. Almost any element of U(1), eiθ, has rotation
angle which is an irrational multiple of π, θπ ∈ R \Q. We

can therefore approximate any element eiφ ∈ U(1) by
repeated applications of eiθ:

∀eiφ ∈ U(1) ∀ε > 0 ∃n ∈ N
∥∥eiφ − einθ∥∥ < ε . (42)

In other words, the subgroup generated by eiθ is dense
in U(1).

In practice, the symmetries discovered by Symmetry-
GAN will be not exact due to numerical considerations.
Since the network learns approximate symmetries with
some associated error, each composition compounds this
error. Thus, there are practical limits on the number of
compositions that can be carried out with numeric data.

C. The Symmetry Discovery Map

So far, we have initialized a SymmetryGAN with uni-
formly distributed values of certain parameters, and then
trained it to return the values of those parameters that
constitute a symmetry. We can define a symmetry dis-
covery map, which connects the initialized parameters of
g to the parameters of the learned function:

Ω : Rk → Rk, (43)

where k is the dimension of the parameter space. This is
a powerful object not only for characterizing the learning
dynamics but also to assist in the process of symmetry
discovery and inference.

There are at least two distinct reasons why knowledge
of this symmetry discovery map is useful. First, the map
is of theoretical interest. We discussed in Sec. V A the im-
portance of understanding the topology of the symmetry
group. The symmetry discovery map induces a defor-
mation retract from the search space to the symmetry
space. Every deformation retract is a homotopy equiva-
lence, and by the Eilenberg-Steenrod axiom of homotopy
equivalence [54], the homology groups of the symmetry
group can be constructed from the homology groups of
the search space. Even in low dimensions, the topology of
the symmetry group can be non-trivial (cf. Sec. V B for an
example in 2D). The topology of GLn(R), however, has
been studied for over half a century, and the homotopy
and homology groups of several non-trivial subgroups of
Affn(R) have been fully determined [55]. Hence, if the
symmetry discovery map were known, one could leverage
the full scope of algebraic topology and the known results
for the linear groups to understand the topology of the
symmetry group.
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Second, this map has practical value. Every time a
SymmetryGAN is trained, it must relearn how to move
the initialized values of g to the final values. Intuitively,
nearby initial values should map to nearby final values,
so learning the symmetry discovery map should enable
a more efficient exploration of the symmetry group. In
practice, this can be accomplished by augmenting the
loss function in Eq. (13). Let g(x|c) be the symmetry
generator, with the parameters c made explicit. Let Ω(c)
be a neural network representing the symmetry discovery
map. Sampling parameters from the space of parameters
Rk and data points fromX, we can optimize the following
loss:

L[Ω, d] = −
∑

c∈{ca}

∑
x∈{xi}

[
log
(
d(x)

)
(44)

+ log
(
1− d(g(x|Ω(c)))

)]
.

Note that this loss is now a functional of Ω instead of g.
If Ω(c) can be initialized to the identity function, then
gradient descent acting on Ω(c) is (asymptotically) the
same as gradient descent acting on the original param-
eters. Thus, as long as Ω(c) has a sufficiently flexible
parametrization, the learned Ω(c) will be a good approx-
imation to the symmetry discovery map learned by the
original SymmetryGAN.

We defer a full exploration of the symmetry discovery
map to future work. Preliminary analytic and numeri-
cal studies of the symmetry discovery map are shown in
App. A.

VIII. CONCLUSIONS AND OUTLOOK

In this paper, we provided a rigorous statistical defini-
tion of the term “symmetry” in the context of probabil-
ity densities. This is highly relevant for the field of high
energy collider physics where the key objects of study
are scattering cross sections. We proposed Symmetry-
GAN as a novel, flexible, and fully differentiable deep
learning approach to symmetry discovery. Symmetry-
GAN showed promising results when applied to Gaus-
sian datasets as well as to dijet events from the LHC,
conforming with our analytic predictions and providing
new insights in some cases.

A key takeaway lesson is that the symmetry of a
probability density only makes sense when compared to
an inertial density. For our studies, we focused exclu-
sively on the inertial density corresponding to the uni-
form distribution on (an open subset of) Rn, since Eu-
clidean symmetries are ubiquitous in physics. Further-
more, we only considered area preserving linear maps on
Rn, a simple yet rich group of symmetries that main-
tain this inertial density. This method has great util-
ity for data analysis. The symmetries of a dataset dis-
covered by SymmetryGAN can be used to augment a
dataset, thereby increasing its statistical power substan-
tially. Conversely, it could be used to preprocess the data

to explicitly project out symmetries and fix a preferred
reference frame, thereby once again boosting the data
analysis process substantially. Moving forward, there are
many opportunities to further develop the concepts in-
troduced in this paper. As a straightforward extension,
non-linear equiareal maps over Rn could be added to the
linear parametrizations we explored, as could Lorentz-
like symmetries. In more complex cases where there is
no obvious notion of an inertial density, one could study
the relative symmetries between two different datasets. It
would also be interesting to discover approximate sym-
metries and rigorously quantify the degree of symmetry
breaking. This is relevant in cases where the complete
symmetry group is obscured by experimental acceptances
and efficiencies.

A key open question is how to go beyond symmetry dis-
covery and towards symmetry inference. We showed how
one can introduce loss function modifications to empha-
size the discovery of discrete subgroups. One could imag-
ine extending this strategy to continuous subgroups to
gain a better handle on group theoretic structures. The
symmetry discovery map is a potentially powerful tool
for symmetry inference, since it in principle allows the
entire symmetry group to be discovered in a single train-
ing. In practice, though, we found learning the symmetry
discovery map to be particularly challenging. We hope
future algorithmic and implementation developments will
enable more effective strategies for symmetry discovery
and inference, in particle physics and beyond.

The code for this paper can be found in this
GitHub repository.
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Appendix A: Explorations of the Symmetry
Discovery Map

In this appendix, we initiate a study of the symme-
try discovery map from Sec. VII C, both analytically and
numerically.
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18

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
c

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

s
N1, 1: Symmetry Discovery Map

path
unit circle
learned value
original value

(i)

1.5 1.0 0.5 0.0 0.5 1.0 1.5
i

1.5

1.0

0.5

0.0

0.5

1.0

1.5

f

N1, 1

f = i

Data points

(ii)

FIG. 17. Symmetry discovery maps for the standard two-dimensional Gaussian. (i) Motion from the initialized parameters to
the learned parameters. (ii) Transforming to polar coordination, the initialized and learned values of the polar angle.

1. One-Dimensional Gaussian

In the simplest cases, the symmetry discovery map
can be determined analytically, and a neural network
can be used to independently verify that the proposed
map is indeed the symmetry discovery map. For exam-
ple, consider the one-dimensional Gaussian example from
Sec. V A, where the probability distribution is N (0.5, 1)
and the candidate symmetry transformations take the
form g(x) = b + cx for (b, c) ∈ R2. There are two sym-
metries in this case: the identity and g(x) = 1− x.

In Sec. V A, we conjectured that the learned symmetry
is the one on the same side of the loss barrier at c = 0
as the initialization. This means that independent of bi,
if ci > 0, then g will be the identity and if ci < 0, g
will be the inversion map. Symbolically, the symmetry
discovery map Ω : R2 → R2,Ω : (bi, ci) 7→ (bf , cf ) takes
the form

Ω(b, c) =

{
(0, 1) c > 0 ,

(1,−1) c < 0 .
(A1)

The numerical results already shown in Fig. 3 verify that
Ω is indeed the correct symmetry discovery map.

2. Two-Dimensional Gaussian

We next consider one of the two-dimensional Gaussian
examples from Sec. V B. The probability distribution is

N1,1 and the candidate symmetry transformations are

g(X) =

[
c s
−s c

]
X, (c, s) ∈ R2. (A2)

From analyzing the loss landscape, we expect the neural
network to map the initialized point to the nearest point
on SO(2) along a radius of the unit circle. This leads to
the symmetry discovery map:

Ω(c, s) =

(
c√

c2 + s2
,

s√
c2 + s2

)
. (A3)

In Fig. 17i, we show the numerical mapping between ini-
tial and final parameters, corresponding to the plot in
Fig. 5i. The radial behavior is clearly visible, although
there are some outliers that could be due to incomplete
training and the stochastic nature of the gradient decent.

We can gain more insight by studying this behavior in
polar coordinates:

r =
√
c2 + s2 θ = arctan2 (s, c) . (A4)

Going back to c and s can be done with the inverse map-
ping c = r cos θ and s = r sin θ. In polar coordinates, the
symmetry discovery map is rather simple:

Ω(r, θ) = (1, θ). (A5)

The numerics support this prediction, as shown in
Fig. 17ii. The initialized and learned points collect
around the line of constant polar angle.
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3. Learning the Symmetry Discovery Map

Ultimately, the symmetry discovery map will be most
useful if it can be learned from a single training run.
In preliminary studies, however, we encountered two key
challenges.

The first challenge is that, for Ω to approximate the
symmetry discovery map, it needs to be initialized to the
identity function. If the goal is just to find a family of
symmetries, then it would be fine to start from a ran-
domly initialized neural network. In that case, g(x|Ω(c))
would be a parametrized symmetry network, in the spirit
of Ref. [56]. But for the goal of finding the symmetry
discovery map, one needs a parametrization of Ω that is
flexible enough to describe the map, but simple enough
that it can be initialized close to the identity.

The second challenge is that performing min-max op-
timization of Eq. (44) seems particularly finicky. GANs
are known to exhibit issues like mode collapse, and be-
cause the target space of the symmetry discovery map is
often disjoint, these kinds of issues seem to arise in our
case as well.

Consider the simple case of learning the symmetry dis-
covery map for data X ∼ N (0, 1) and the generator
g(x) = c x. We know that the symmetries of X are
g(x) = ±x. Therefore, the symmetry discovery map
should be the step function Ω(c) = sign(c):

Ω(c) =

{
1 c > 0 .

−1 c < 0 .
(A6)

The form in Eq. (A6) is not so easy to learn with
any of the standard neural network activation functions,
though. The one exception is unit step activation, of

course, but this activation is far from the identity and
therefore difficult to use for finding a symmetry discov-
ery map.

One approach to this problem is to use a custom acti-
vation function:

Ω(c) = λ ReLU(c)− µ ReLU(−c) + ρ . (A7)

This can be initialized at λ = µ = 1, ρ = 0 so that in the
beginning Ω = 1. As λ moves away from µ, this func-
tion develops a non-linearity as desired. With a single
layer, this form is not sufficient to learn the correct an-
swer, though it may be possible that with a deep network
stacked with these components, the correct map could be
learned.

Another approach to this problem is to use polynomial
activation,

Ω(c) = λc+ µc2 + νc3 + · · ·+ ζc11, (A8)

initialized with λ = 1, µ = ν = · · · = ζ = 0. A step func-
tion is not within this class of functions, but with such a
high degree polynomial, it is expected to be a reasonable
approximation. This was in fact the case, though the
result was far from satisfactory.

Finally, as a proof of principle, we tested the simplified
ansatz:

Ω(c) = λc+ (1− λ) sign(c− µ). (A9)

When initialized with the identity function (λ = 1, µ =
0), gradient descent indeed converges to Eq. (A6) (λ =
0, µ = 0). This ansatz is too contrived to draw any ro-
bust conclusions, but is does motivate future exploration
of more complex architectures and training protocols to
learn the symmetry discovery map.
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[45] Torbjorn Sjöstrand, Stephen Mrenna, and Peter Z.
Skands, “A Brief Introduction to PYTHIA 8.1,” Com-
put. Phys. Commun. 178, 852 (2008), arXiv:0710.3820
[hep-ph].

[46] J. de Favereau, C. Delaere, P. Demin, A. Giammanco,
V. Lemaitre, A. Mertens, and M. Selvaggi (DELPHES
3), “DELPHES 3, A modular framework for fast simu-
lation of a generic collider experiment,” JHEP 02, 057
(2014), arXiv:1307.6346 [hep-ex].

[47] Alexandre Mertens, “New features in Delphes 3,” Pro-
ceedings, 16th International workshop on Advanced Com-
puting and Analysis Techniques in physics (ACAT 14):
Prague, Czech Republic, September 1-5, 2014, J. Phys.
Conf. Ser. 608, 012045 (2015).

[48] Michele Selvaggi, “DELPHES 3: A modular frame-
work for fast-simulation of generic collider experiments,”
Proceedings, 15th International Workshop on Advanced
Computing and Analysis Techniques in Physics Research
(ACAT 2013): Beijing, China, May 16-21, 2013, J. Phys.
Conf. Ser. 523, 012033 (2014).

[49] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez,
“The anti-kt jet clustering algorithm,” JHEP 04, 063
(2008), arXiv:0802.1189 [hep-ph].

[50] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez,
“FastJet User Manual,” Eur. Phys. J. C72, 1896 (2012),
arXiv:1111.6097 [hep-ph].

[51] Matteo Cacciari and Gavin P. Salam, “Dispelling the N3

myth for the kt jet-finder,” Phys. Lett. B641, 57 (2006),
arXiv:hep-ph/0512210 [hep-ph].

http://dx.doi.org/ 10.1103/PhysRevD.99.014038
http://arxiv.org/abs/1902.02634
http://dx.doi.org/ 10.1103/PhysRevD.99.015014
http://dx.doi.org/ 10.1103/PhysRevD.99.015014
http://arxiv.org/abs/1806.02350
http://arxiv.org/abs/1805.09501
http://arxiv.org/abs/1805.09501
http://arxiv.org/abs/1905.00397
http://arxiv.org/abs/1911.06987
http://arxiv.org/abs/1711.04340
http://arxiv.org/abs/1406.2661
http://arxiv.org/abs/2012.00964
http://arxiv.org/abs/2002.08772
http://arxiv.org/abs/2006.04780
http://arxiv.org/abs/2107.02908
http://www.jstor.org/stable/2132726
http://www.jstor.org/stable/43635985
http://www.jstor.org/stable/43635985
http://www.jstor.org/stable/1969548
http://dx.doi.org/ 10.1109/tpami.2020.2992934
http://dx.doi.org/ 10.1109/tpami.2020.2992934
http://dx.doi.org/10.1103/PhysRevD.102.076004
http://arxiv.org/abs/2007.11586
http://dx.doi.org/ 10.1103/PhysRevLett.124.182001
http://arxiv.org/abs/1911.09107
http://dx.doi.org/10.1017/CBO9781139035613
http://dx.doi.org/10.1017/CBO9781139035613
https://www.wolfram.com/mathematica
https://github.com/fchollet/keras
https://github.com/fchollet/keras
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1804.08682
http://dx.doi.org/10.1103/PhysRev.159.1251
http://dx.doi.org/10.1103/PhysRev.159.1251
http://dx.doi.org/10.1142/0537
http://dx.doi.org/10.1142/0537
http://dx.doi.org/10.1142/0537
http://arxiv.org/abs/https://www.worldscientific.com/doi/pdf/10.1142/0537
http://www.jstor.org/stable/1968551
http://www.jstor.org/stable/1968551
http://dx.doi.org/10.5281/zenodo.4536377
http://dx.doi.org/10.5281/zenodo.4536377
http://arxiv.org/abs/2101.08320
http://dx.doi.org/ 10.1088/1126-6708/2006/05/026
http://dx.doi.org/ 10.1088/1126-6708/2006/05/026
http://arxiv.org/abs/hep-ph/0603175
http://dx.doi.org/ 10.1016/j.cpc.2008.01.036
http://dx.doi.org/ 10.1016/j.cpc.2008.01.036
http://arxiv.org/abs/0710.3820
http://arxiv.org/abs/0710.3820
http://dx.doi.org/10.1007/JHEP02(2014)057
http://dx.doi.org/10.1007/JHEP02(2014)057
http://arxiv.org/abs/1307.6346
http://dx.doi.org/10.1088/1742-6596/608/1/012045
http://dx.doi.org/10.1088/1742-6596/608/1/012045
http://dx.doi.org/10.1088/1742-6596/523/1/012033
http://dx.doi.org/10.1088/1742-6596/523/1/012033
http://dx.doi.org/10.1088/1126-6708/2008/04/063
http://dx.doi.org/10.1088/1126-6708/2008/04/063
http://arxiv.org/abs/0802.1189
http://dx.doi.org/10.1140/epjc/s10052-012-1896-2
http://arxiv.org/abs/1111.6097
http://dx.doi.org/ 10.1016/j.physletb.2006.08.037
http://arxiv.org/abs/hep-ph/0512210


21

[52] Sascha Diefenbacher, Engin Eren, Gregor Kasieczka,
Anatolii Korol, Benjamin Nachman, and David Shih,
“DCTRGAN: Improving the Precision of Generative
Models with Reweighting,” JINST 15, P11004 (2020),
arXiv:2009.03796 [hep-ph].

[53] Robert J. Zimmer, “Ergodic theory, group representa-
tions, and rigidity,” Bulletin (New Series) of the Ameri-
can Mathematical Society 6, 383 – 416 (1982).

[54] Samuel Eilenberg and Norman E. Steenrod, “Axiomatic
approach to homology theory,” Proceedings of the

National Academy of Sciences 31, 117–120 (1945),
https://www.pnas.org/content/31/4/117.full.pdf.

[55] Marco Schlichting, “Euler class groups and the homology
of elementary and special linear groups,” Advances in
Mathematics 320, 1–81 (2017).

[56] Pierre Baldi, Kyle Cranmer, Taylor Faucett, Peter Sad-
owski, and Daniel Whiteson, “Parameterized neural net-
works for high-energy physics,” Eur. Phys. J. C76, 235
(2016), arXiv:1601.07913 [hep-ex].

http://dx.doi.org/10.1088/1748-0221/15/11/P11004
http://arxiv.org/abs/2009.03796
http://dx.doi.org/ bams/1183548783
http://dx.doi.org/ bams/1183548783
http://dx.doi.org/10.1073/pnas.31.4.117
http://dx.doi.org/10.1073/pnas.31.4.117
http://arxiv.org/abs/https://www.pnas.org/content/31/4/117.full.pdf
http://dx.doi.org/https://doi.org/10.1016/j.aim.2017.08.034
http://dx.doi.org/https://doi.org/10.1016/j.aim.2017.08.034
http://dx.doi.org/10.1140/epjc/s10052-016-4099-4
http://dx.doi.org/10.1140/epjc/s10052-016-4099-4
http://arxiv.org/abs/1601.07913

	SymmetryGAN: Symmetry Discovery with Deep Learning
	Abstract
	 Contents
	I Introduction
	II Statistics of Symmetries
	III Machine Learning with Inertial Restrictions
	IV Deep Learning Implementation
	V Empirical Gaussian Experiments
	A One-Dimensional Gaussian
	B Two-Dimensional Gaussian
	C Gaussian Mixtures

	VI Particle Physics Example
	A Dataset and Preprocessing
	B SO(2) SO(2) Subspace
	C SO(4) Search Space

	VII Towards Symmetry Inference
	A Finding Discrete Subgroups
	B Group Composition
	C The Symmetry Discovery Map

	VIII Conclusions and Outlook
	 Acknowledgments
	A Explorations of the Symmetry Discovery Map
	1 One-Dimensional Gaussian
	2 Two-Dimensional Gaussian
	3 Learning the Symmetry Discovery Map

	 References




