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ABSTRACT 

Recent observations of angular distributions of TT mesons in p-p 
i, 

annihilation indicate a deviation from the predictions of the usual Fermi 

statistical model. In order to shed light on these phenomena, a modification 

of the statistical model is studied. We retain the assumption that the 

transition rate into a given final state is proportional to the probability of 

finding N free TT mesons in the reaction volume, but express this probability 

in terms of wave functions symmetrized with respect to particles of like 

charge. The justification of this assumption is discus sed. The model 

reproduces the experimental results qualitatively, provided the radius of 

the interaction volume is between one -half and three -fourths of the pion 

Compton wave length; the dependence of angular correlation effects on the 

value of the radius is rather sensitive. Quantitatively, there seems to 

remain some discrepancy, but we cannot say whether this is due to experi-. 

mental uncertainties or to some other dynamic effects. In the absence of 

information on TT-TT interactions and of a fully satisfactory explanation of the 

mean pion multiplicity for annihilation, we wish to emphasize the preliminary 

nature of our results. We consider them, however, as an indication that 

the symmetrization effects discussed here may well play a major role in the 

analysis of angular distributions although it is too early to say whether or 
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not these effects can account, quantitatively for the phenomena. It is 

pointed out that in this respect the ene'rgy dependence of the angular corre-

• ' f 

lations may provide valuable clues for the validity of our model. 
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I. INTRODUCTION 

Recently a study has been made 1 in a propane bubble chamber of 

"hydrogenlike" annihilations of antiprotons of 1. 05 Bev/ c laboratory-system 

momentum, corresponding to an energy release of 2.1 Bev in the center-of-

mass system. A hydrogenlike event is defined as one in which equal numbers 

of n + and n- mesons are produced and in which no visible evaporation prongs 

appear. 2 The experiment indicates 1 that the distribution of the angle between 

pairs of pions (in the c. m. system of p-p) deviates from the prediction of 

the conventional statistical model. In particular it was found that there is 

a clear difference between the angular distribution for pion pairs of like 

charge and that for pairs of unlike charge. In the statistical model in its 

usual sense, there is no room for distinctions of this kind. 

It is the purpose of this paper to indicate a simple refinement of 

the statistical model which could possibly explain the bulk of the effect, and 

which consists of taking into. account the influence of the Bose -Einstein (BE) 

statistics for pions of like charge. As we show in what follows, such an 

interpretation appears to reproduce the experimental results qualitatively--

provided, however, that the radius of the volume of strong interactions is 

* h. T 1s work was done under the auspices of the U. S. Atomic Energy Commission. 

tPermanent address: Institute for Advanced Study, Princeton, New Jersey. 
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about 3/4 times the 7T Compton wave length, which is a physically reasonable 

order of magnitude. The dependence of the angular effects on the interaction 

radius appears to be a sensitive one. Hence 1 it would seem that such 

effects may provide valuable information on the annihilation mechanism. 

It should be stressed from the outset, however, that the results 

of this study should not be construed to imply that detailed dynamical effects 

(such as 1 for example, 1r-1r interactions) are definitely negligible in the dis­

cussion of the kind of phenomena considered here. The present stage of both 

our experimental and our theoretical knowledge of the annihilation process 

seems to us to be far too early for us to make such categorical statements. 

In the concluding remarks (Section IV) 1 we briefly discuss the dependence 

of the BE effect on the available energy for annihilation. This gives one 

instance of how further experimental study may reveal whether or not the 

present considerations provide substantially the correct approach to the 

problem. It may directly be noted, however, that the symmetrization 

effects which we shall now outline are relevant regardless of whether 7T-7T 

interactions are large or small. 

For the statement of our ideas 1 it is helpful to recall first wha,t 

the assumptions of the usual statistical model (SM) are. For definiteness, 

consider the system enclosed in a large box with volume V and with periodic 

boundary conditions. A first assumption of the SM is that the rate of 

annihilation into any given N1r state is proportional to PN (Q), given by 

( 1) 

Here n is the "reaction volume II in which the statistical mixture of states 

is supposed to be produced. In the following description1 

3 
it is helpful to 

interpret PN(Q) as the probability to find N free pions in the reaction volume: 
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where 

1 
<j>N = yN/2 exp i 

N 

L 
m=l 

p •-·r~· ... 
-m--m 

UeRL-9169 

(2) 

(3) 

Thus, ac~ording to the SM, the total rate RN of annihilation is given by 

(4) 

Here F N(W) is the Lorentz -invariant phase space introduced by Srivastava 

and Sudar shan: 
4 

dpl ... dp 
- -N o(w - r w.) Q~ ~ 

i= 1 l. i= 1 

(5) 

where W is the available annihilation energy and is fJ. if the 1T mass; 

These authors noted that this invariant form lends itself conveniently to the 

derivation of .relations recursive in N. This circumstance was also em-

ployed by Kalogeropoulos, 
5 

and is likewise used in what follows. 

The factor eN in Eq. (4) does not depend on W, and is usually 

taken to be 

eN = const. 
n(N) 
--m (6) 
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where n(N) 1s the total number of I=O, 1 states of the N1r system. Hence 

the SM assumptions are a constant transition rate into a given N1r config-

uration, and equal weight for all allowed I-spin states. 

Thus the SM takes only incompletely into account the various 

conservation laws and asymmetries to which the system is subjected. In 

particular, angular-momentum conservation is neglected in this version 

6 
of the SM. Furthermore, BE statistics is rather cursorily taken care 

- -1 
of by the factor (N'. ) in Eq. (5). It is this last aspect of the SM that we 

refine here. We again assume proportionality of~ to PN(Q) given by 

Eq. (2), but employ suitable symmetrized wave functions instead of <j>N given 

by Eq. (3). 

Rigorously, ~ is the incoherent sum of transitions into the 

various I=O, 1 states. For given I, these states can be characterized by 

distinct spatial symmetries. 
7 

For a specific charge partition of the final 

products, such as, for example, for N = 4, we have 

+ -:P + p --+- 21T + 21T (7) 

+ -The rate R 4 (2 , 2 ) is, of course, distinct from R
4

, the latter being the sum 

over all charge channels for N = 4. To get R
4 

(2+, 2-) we must first project 

out that part of each I state which refers to the given charge partition and 

then sum the corresponding charge-partition probability over the I states. 

All of these projections have in common the property of symmetry 

between particles of like charge. They are distinguished (always for a 

given charge partition) by additional properties of symmetry and (or) anti-

7 
symmetry between particles of unlike charge. The problem that we study 

is characterized as follows. We again take free-particle states for the 

given charge partition and we assume that the summing over the I-spin states 

... .'-

.. -

... 

'I' 
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tends to cancel the additional symmetry or antisymmetry properties just 

mentioned. Hence we approximately describe PN(n) by introducing in 

. Eq. (2) an expression for <j>N' which is symmetrized with respect to the 

sets of particles of like charge only. This paper is devoted to a discussion 

of four charged-pion stars from this point of view. Here the simplest 

contributions come from reaction (7 ); it is assumed that in addition only the 

+ - 0 + - 0 channels (2 , 2 , 1 ) and (2 , 2 , 2 ) contribute (see, further, Section III). 

Once the free -particle assumption is introduced,. it becomes, of· 

course, a decidable proposition to find out actually how good is the assumption 

of a SM with BE symmetrization between like particles. Let us first note 

that this last assumption is certainly not rigorously satisfied. This can be 

seen as follows. Suppose we ignore !-spin conservation altog.ether and then 

give all possible final !-spin states (1=0, 1, · · ·, N) equal weight. The number 

of projections for the charge partition N = n+ + n _ + n 0 is then 

N! 
(8) 

Now it is physically obvious that if all these states have equal weight, the 

net result will be just the BE-symmetrization effect between like particles 

and nothing else. 
8 

But if we adhere to !-spin conservation and only consider 

equal weights for 1=0, 1 states, the number of projections of the charge 

partition (n+' n , n
0

) is in general smaller than n', and therefore some 

symmetries other than that of like -particle kind may remain. 

Even so, the approximation is perhaps not too bad. In Appendix I 

we discuss this in a little more detail; there it is shown that for N = 4 the 

assumption of equal weight for the projections of the charge partition (7) 

into the various !-spin states happens to give exactly the BE-effect between 
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like particles only. It is then shown, again for N = 4, that the SM assumption "' 

of equal weight for the !-spin states [rather than for the projection (7)] leads 

to a small deviation from the pure like -particle-only effect. For the case of 

N = 5, 6, no such detailed studies have been performed, but it is made 

plausible that there also the present picture may be a reasonable approxi-

mat ion. 

Thus it would appear that, as a first orientation at least, the 

present assumption of BE symmetrization is not much less well-founded 

than any other aspect of statistical considerations in this domain. We 

repeat, however, that we consider this work as an orienting approach rather 

than as a definitive answer and wish to give one more reason for this res-

ervation. Of course, an adequate model should at the same time give a 

reasonable account of all combined aspects of the annihilation process, 

especially also of the mean multiplicity. The usual SM needs a radius of 

- 2. 5 ti/f.!c to account for multiplicities. 9 Such a large radius is devoid of 

direct physical meaning. As we argue in Section IV, the inclusion of the 

BE effect tends to decrease this value of the radius, but at least in the way 

we proceed here, we cannot hope to fit the multiplicities with a value 

- 0. 7 5 ti/f.!c for the radius, which was quoted above in connection with the 

angular -correlation effect. Until this problem is resolved, our results 

must be considered as tentative. Possibly improved angular -momentum 

considerations may here bridge the gap, or, perhaps the presence of a 

. t . 0 k: . lf f 1 1 0 
TI-lT 1n eractlon 1s rna 1ng 1tse e t. 

.. 
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II. STATISTICAL MODEL WITH BE-CORRELATIONS 

A. The Correlation Function 

As an orientation, consider first the case of N = 2 with two 

identicalparticle.s, having momenta fl' ;e_2. The cor,responding P 2 (f2) 

plays an important role in what follows and is denoted by 4;(12). Thus we 

can write 

2 
4;(12) = f J I <j>s(l, 2) I d!:I d;_2• (9) 

where we integrate twice over a sphere f2 = 4Tip 
3
/3, and 

s 1 
<j> (1,2)= 1/2 

2 v 

(1 0) 

Th . . b . 11 us, on 1ntegrat1on we o ta1n 

.P(l2) " 1 + 9 (~:z t - sin t )
2 

3 ' t 
t =I £I - ;e_2 I p, (sphere). (11) 

Evidently 4;(12) as defined by Eqs. (9) and (10) no longer depends only on 

the size of the interaction volume n but also on its shape. It is premature 

to discuss this shape dependence in any detail, but one point is of some 

computational interest, namely that 4;(12) for a spherical model, given 

by Eq. (11), differs very little from 4;(12) for a Gaussian-shaped volume: 

s ' 2. 2 2.) 
ljJ ( 1 2. ) = J f I <j> ( 1 , 2. ) I e xp [ ( r 1 + r 2 )/2. A] d ,:.

1 
d ;:

2 

2 -s 
~ 1 + e , 1/2 

s = I ;e_ 1 - £z. I · A Gauss, ( 12) 

where we integrate twice over all space. This well-known property of the 

• Fourier transform of a sphere relative to that of a Gaussian is shown in 
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Fig. 1 where the two curves refer to a ratio of p to A
1
/

2 
given by 

1/2 
p = 2.15 A . ( 13) 

The Gaussian model simplifies some computations to follow and therefore 

we shall adopt it from here on. However, we shall continue to refer to 

the "radius" p of the interaction volume--by which we mean the quantity 

relatedto A byEq. (13). 

In one further respect we have used an argument of convenience 

to simplify the calculations as much as possible before reverting to numeri-

cal evaluation techniques. Instead of Eq. (12) we have actually used its 

relativistic counterpart, 

4J(l2) (14a) 

where 

(14b) 

This is indeed convenient because we have to deal with integrals of the type 

(5) but with a number of 4J functions- -the "correlation functions"- -entering 

into the integrand~ Thus the relativistic scalar form of 4J(x) makes it 

possible to make simplifying Lorentz transformations on the integrand. Of 

course, it must be asked how much difference it makes to use Eq. (14) as 

comparedtoEq. (12). Intworegions--l;e1 1, 1£.2 1 << f.Land l;e1 1-::lg2 1 

the difference is small. As the momentum distribution in annihilation is 

fairly sharply peaked (certainly for N = 5, 6), it follows that the replacement 

of Eq. (12) by Eq. · (14) cannot change the results drastically. We have 

made a numerical check of this, which is mentioned below. 
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Instead of Eq. (4), for RN we now have 

dp .. 0 dp 
RN:::: J ... J -1 -N PN(p, p 1 · · · pN) o(W-~ w.) 6(~ p.). 

I'#O#o _,. 1 _,.1 
(15) 

Fo.r the case of reaction (7), we must symmetrize separately with respect 

to two pairs of particles, and hence P 4 is a product of two correlation 

+ - 0 functions. l)J. The same is true for the channel (2 , 2 , 1 ), while for 

I + - 0 
(2 , 2 , 2 ), P 6 is the product of three correlation functions. 

Thus we see immediately that the deviations in angular correlations 

due to the expression (15) as compared to the usual SM must vanish in.two 

liiniting cases. First, ljJ approaches a constant for p - 0 [see Eqs. (13) 

and (14)] and we are back to the SM result~-for small interaction volume, 

the BE correlations have no opportunity to develop. Second, for p - oo 

(or rather if n tends to V), it follows from Eq. (2) that the BE effects will 

be confined more and more to such configurations where two participating 

momenta are more and more equal to each other. Hence, the weight of 

the configurations affected by the BE effect gets smaller and smaller and 

can be ignored in the limit considered, so that also for p - oo we reach 

the SM values. Hence an optimum finite p exists for which the BE effects 

are most marked. This is shown quantitatively below. 

We use :21 
N(y) and ~uN(y) to denote the distribution in y =cos 8 

of pion pairs of like and unlike charge, respectively (8 is the pair angle in 

the pp CM frame). For p - 0, both these functions approach the common 

limit of the SM distribution denoted by !SM(y). The ratio of pairs emitted 

in the backward hemisphere to those in the forward is denoted by 'I· 

1 u SM 
Specifically, 'I , 'I and 'I denotes this ratio for the cases of like pairs, 

\:1 unlike pairs, and the statistical model without correlation functions, 
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respectively. In the following dis.cussion ~ means the relativistic 

expression {14) except in Eq. (29). 

B. Calculation of the Correlation Effects 

l. - + -p + p - 2'TT f 2'TT 

We have 

4 
~(12) ~(34) o (W - ~ 

l 

4 
w.) 0 ( ~ p. ). 

1 . l -1 

' ( 16) 

To find 2'£ 4 we integrate only over £3' e4 , I fll, I £2 1. The integration 

over the 3, 4 variables is simplified by going to the system where £3 + e4 = 0 

and using invariance arguments. The result is 

(l7a) 

where 

(l7b) 

Here 

(18) 

is the two-body phase space. The (w1, w
2

) integration is bounded by 

w 2 > 4 2 
12 - JJ. ( 19) 

u 
To find g?

4 
· we integrate in Eq. (16) over all variables except the 

angle between particles l and 3. The result is 

(2.0) 

where 

..! 

.. 
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-2AA1 

z (£_ 
1 

1 E. 
2 

I £) : 1 + _e __ _ 

2>.. 1~11 £ 
.x 

(21) 

Here we have 

[ 
w 122 

£ = 4 
2 ]1/2 

- fJ. I (22) 

(23a) 

[ 

W. 

€ 0 P 0 + €. (p 1 + P2) _1_ 
1 . .,..1 1- - w 

12 
- ~l ' 

J (23b) 

and i = 1, 2, € 1 = - 1 1 and € 2 = + 1. The integration limits are again given 

by Eq. 19. 
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- + - 0 p + p ... 2 7T + 27T + 7T • 

We start from 

5 5 
ljJ(l2) ljJ(34) o(W- ~ w.) o(~ p.). 

1 1 1 -:-1 

(24) 

To find :p\, integrate over all variables except the angle between .El and 

j>
2

. The integration over the (3, 4, 5) variables is best performed in the 

(3, 4, 5) rest system, and one finds 

!£ 
5

(y) ~ J J p
1 

p
2 

dw
1 

dw
2 

ljJ(l2) F 
2
+

1 
(W 12), (25) 

fJ. fJ. 

where 

2 2 w 12 > 9 f.L • 

Here F 
2
+ 1 (W12) is the three -particle phase space for two like plus one 

distinct particle. We have 

which can be reduced further by integrating in the (3, 4) rest system. This 

yields 

(26) 

and 

-· 

• 



... 

.\ 

-16- UCRL-9169 

Proceeding in a similar way :with g?
5
u, one gets 

where 

The bounds in the (1, 2, 5) integrations are again as given in Eqs. (25) and 

(26 ). Z is as defined in Eq. (21 )jl and we have 

s1 = [ 
2 .... _tJ-2,,] 1 I 2. W 5 4(W 12) 

(28) 

We next give an expression for ~.t 
5 

where the nonrelativisti~ 

form (12) of the correlation function is used which we shall here label ~NR' 

The .starting point is again Eq. (24), with ~ replaced by ~NR' Thus we have 

~.t 5NR (y) ::::: JJ 

where 

Here G has the form (in the 3, 4 rest system): 

dp 
G(W ) =I - 5 

12 w5 

where 

1 1 

J df3 df4 

w 1 w 1 

3 4 



-17-

t 2 4 I 2 
= E 3 

v = 

2 2 
v :z 

2 
1-v 

] 

and z is the cosine of the angle· between e3 • and (£_1 + £.2 + £_5}. 

After some further transformations, we get 

+1 

UCRL-9169 

lJ;NR (12} ~ 1 dx J P5 dw5 F 2 (W 125} -~(q}, 

where 

+1 2 
~(q) = J dz ( 1 + e - >.. l1 }. 

-1 

2 2 r, 
l1 = 4q L + 

2 
v 

2 1-v 

2 
2 w 125 2 

q = 4 . iJ. 

and x is the cosine of the angle between e5 and El + £_
2

. 

The bounds of the (w
5

, x} domain are given by 

(29} 

while the limits on the (w·
1

, w
2

} domain are again as indicated in Eq. (25}. 

In the neKt section we shall discuss the relation between Eqs. (25) J_ 

and (29) from a numerical point of view. Here we only note the considerable 

advantage that the use of an invariant correlation function brings with it in 

simplifying the integrals. 
, 
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- + - 0 3. p + p - 2'1T + 2'1T + 2'1T • 

In this case, the starting point is 

dp ••• dp6 6 6 
+ - 0 J' J' -1 - 6 ( } R

6
(2 , 2 , 2 ) ~ · · · ljJ(12} ljJ(34) ljJ(5 ) o(W - ~ w.) o ~ p .. 

1 1 1 -1 

It will be obvious that 

with 

where F 2+2 (W} is the four -particle phase space for two pairs of like 

particles. Thus we have 

J. 
dy p 

4 
(y, W), 

(30) 

(31} 

(32} 

where ~J. 
4 

is given by Eq. (17}. For ~6 u(y) one finds, after some trans-

formations, 

+1 
Pu6(y) = f f P1P2 dw1 dw2 J J 

~ ~ ~ ~ 

p 3p 4 dw3 dw4 J dx 
-1 

(33) 

with 

x = cos. e
34

, 
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(34) 

and 

{ 

(W I )2 s" _ 12 - 4 
1'2} 1/2 

! 

In Eq. (33) the respective integration domains are further bounded by 

w12 
I > 21J. 

for (w3, w
4

). and 
(35) 

w12 > 41J. 

for (w1' w2). 

f. 
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III. NUMERICAL RESULTS AND COMPARISON WITH EXPERIMENT 

In the preceding discussion we have shown that the inclusion of 

BE statistics is a very plausible refinement to the statistical model when 

specific effects involving the charge of pions are considered. Such a re-

finement may lead toward explaining some features of the observed pion-

pion correlations in nucleon-antinucleon annihilation. 

To compare the effect of the BE correlation functions with experL-

ment, we have to evaluate the contribution of each charge channel to the 

+ - 0 sample under consideration. Four -prong events of the type (2 1 2 , n ) 

consist (at the energy of the experiment under discussion) of four charge 

- +- +- 0 +- 0 +- 0 channels, namely (2 1 2 ), (2 , 2 , 1 ), (2 , 2 , 2 ), and (2 , 2 , 3 ). As has 

been shown in Section II, the complexity of the integration involved in 

evaluating the distribution functions of the pion-pair angles, ~(y), increases 

with the number of particles participating. For seven pions, a new type of 

correlation enters the problem, namely, that between three identical bosons. 

The experimental indication is that the contributi~n of seven pions to the 

+ - 0 (2 , 2 , n ) sample is no more than 7 ± 5o/o. We have thus restricted our 

calculations to the first three charge channels only. For each of the three 

channels we evaluated the functions l£ (y) and i u(y). To investigate the 

behavior of !_(y) as a function of the radius of interaction, P• we evaluated 

9? for six values of p, i. e. , p = 0,, 0. 31 0. 5, 0. 7 5, 11 and 2 (in units of 

ti/f.Lc). 
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A. Numerical Evaluation 

The distribution functions of the pion-pair angles were numerically 

integrated either by the Simpson-rule technique or the Monte Carlo method, 

depending on the complexity of the problem. 

Wherever'possible, the symmetry properties of the integrand 

were used. Each function p(y) was evaluated at equally spaced intervals of 

y = cos fJ for each of the above -mentioned p values. The functions 

u i. u i. l 4 • ~ 
5

, ]? 
5 

and! 6 were evaluated on an IBM-650 computer by the 

Simpson-rule technique. 
12 

The more involved integrations of the functions, 

u i. 
~ 6 and .P 5NR were performed by the Monte Carlo method on the IBM 704 

(see appendix II). 

B. The Pion- Pair Angle -Distribution Functions, ~ (y) 

Here we will illustrate the devi~tion of the functions ~£ and ~u 

which include BE correlation effects, from the one obtained from the con~ 

ventional statistical model ~SM. 0 i. u SM 
In F1g. 2 we show! , J' , and ~ for 

one particular radius, p = 0. 7 5. As can be seen from a comparison of 

Figs,~.2(a), 2(b), and 2(c) corresponding to 4, 5, and 6 pions, respectively, 

the variation of g?SM: towards greater isotropy with increasing N is very 

marked. The BE correlation effects become somewhat less pronounced as 

N increases. 

ratios indicate, perhaps even more clearly than the distribution functions 

themselves, the effect of the BE correlation functions on the statistical 

model. It is interesting to note that these ratios for N = 4, 5, and 6 fall rather 

close together .. The BE correlation functions for like pions have the effect 

of raising the distribution for small pair angles and lowering it for large 

pair angles. For the unlike pions, the inverse is true. 
' 
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The experimental observations with which we wish to compare our 

results have been expressed by a quantity, y. The ratio y is defined as 

the ratio of the number of pion-pair angles greater than 90 deg to the 

number of pion pair angles less than 90 deg. Thus we obtain 

J J' 'VN = 
-1 

0 J 1 J 
~N(y)dy/ f ~N(y)dy, 

0 

.. , 

where J corresponds to .R., u, and SM, respectively. The ratio y gives 

a convenient quantitative measure of the modifications occurring in the 

SM by the introduction of the BE correlation functions as a function of p. 

In Fig. 4, we present y for N = 4, 5, and 6 for both the like and unlike 

correlation functions. It is evident that the maximum effect of the correlation 

function occurs for values of p between 1/2 and 3/4 ti/!J.c. 

C. Comparison between Invariant and Noninvariant Correlation Functions 

The relativistic scalar form of the correlation function ljJ(x) 

[ Eq. (14)] facilitates the calculations of rather involved integrations. In 

order to test the validity of this approximation, we performed the calculation 

also in the nonrelativistic form for two selected cases, i.e., q>1
4 andT 

5
. 

The result for five pions [see Eq. (29) for I\NR] is illustrated in Fig. 5 

in which we show both yl (relativistic) and yiNR. As can be seen, the 

qualitative features of the distributions are similar. Results of the two 

calculations differ by l Oo/o from each other at p = 0. 7 5 with the relativistic 

form deviating more from the statistical model. The corresponding 

calculations performed for four pions (not given in this paper) give 

essentially the same results as for five pions. 
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D. Comparison with Expet,iment 

To enable us to compare the calculated distribution functions with 

the experimental data, we need to know the relative weights of the contributing 

charge channels. Here we did not want to use the predictions of the statis-

tical model, since it has failed to reproduce the observed multiplicity 

distribution without involving one of a number of different ad hoc 

assumptions. 9 • 10 We thus prefer to rely on information furnished by 

experiment, In order to determine the relative weight of a charge channel, 

the contribution of the neutral pions had to be determined, We proceeded 

by the following method: 

(a) The average missing energy per event (E . ) was determined for the 
mlSS 

+ - 0 sample (2 , 2 , n ). 

(b) The average neutral-pion energy (E1To) was estimated from the experi­

mental-average charged-pion energy. Here we assume that for stars of a 

given multiplicity the charged and neutral pions have the same energy 

spectrum. A small correction which lowers (E1To) has been applied. This 

correction arises from the fact that (E1T±) was obtained from stars with 

four, five, six and seven pions, while (E1To) comes from stars with five, 

six, and seven pions, 

(c) The aver~ge number of neutral pions is. thus ( n °) = ( Emiss) / (E1To) . 

The experimental result is ( n °) = 1. 15 ± 0.1. This value is in excellent 

agreement with the one obtained from a direct count of electron pairs 

produced from the conversion of the 1TO -decay y rays, viz. ( n
0

) 
13 = 1.1 ± 0.1. 

(d) The experimental distribution of E . corresponds to a folded 
. mlSS 

di"stribution of the energy in neutral pions, If one could unfold this distribution 

completely, it would determine the weights of the corresponding charge 

channels uniquely. The experimental errors in the momentum determination 
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and the fluctuation in neutral-pion energies do not permit such a ~omplete 

-unfolding. It is possible, however, to set narrow limits for the two end 

points of the distribution. From these we obtain the corresponding weights 

s
4 

= 0.15±0.05 and s7 = 0.07±0.05 for N = 4 and N = 7g respectively. 

(e) To solve for the weights s
5 

and s
6

• we used the two equations: 

7 
~ SN = 1 and S 5 + 2S 6 + 3S7 = (nO) . 

N=4 

In these equations we allow s4 , s
7

• and (n °) to vary within their quoted 

uncertainty, imposing the constraint that only one maximum can occur in 

the multiplicity distribution. 

Finally, as these calculations for ~ have not been extended to 

seven pions, we have added the seven-pion contribution to that from six 

pions. The ratios ofthe resulting weights are s4 : s 5 : (S6 ts7 )=0.15: 0.60: 0.25, 

with limiting values of 0.10:0.70:0.20 and 0.20:0.50:0.30, respectively. 

Fortunately 1av' given by ~av = s~4 + s5~5 + (S6 + s7) P6• is very insensitive 

to which of the above sets is chosen. In Fig. 6, the experimental distribution 

is compared with that calculated for p = 0. 7 5. The dashed curve gives the 

result of the SM. It is clear from this figure that the fit to the experimental 

data is improved for both like and unlike pions by the introduction of BE 

correlation functions. 

In Tables I and II we give the experimentally determined values 

for y together with a series of y values calculated for various radii of 

interaction. An inspection of Table I, which lists also ySM. shows again 

that the bulk of the experimentally observed deviations from the SM can be 

accounted for by our calculations with a reasonable choice of p (~e, p 

14 
between l/2 to 3/4 of ti/JJ.c). It cannot be concluded now whether the 

/~. 

remaining discrepancy between experimental results and the SM including 
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BE correlation effects, as evaluated here, is due to experimental un-

certainty or to inadequacies of our model. 

Table I 

Comparison between the experimental values for ··/ and yu and the cor res-

ponding values derived by use of the BE correlation functions for\ p = 0. 5 
.!. 

and 0. 7 5. Also shown is the value for the. usual Fermi SM. All the. theoreti-

cal values have been averaged over the four-, five-; and six-pion distributions 

as discussed in the text. 

Yav 

p = 0.5 p = 0. 7 5. 
SM 

"'~expt "'~av 

Like 1.23 :I:: 0.10 1.41 1. 38 

} 1.80 

Unlike 2.18 :I:: o. 12 1. 95 1. 91 

Table II 

List of computed y
1 

and yu values. The values for p = 0.5 and 0.75 are 
av av 

repeated here for clarity. 

p 

(li/fJ.C) 

0.3 

0.. 5 

0. 75 

1.0 

2.0 

1. 57 1. 91 

1.41 1.95 

1. 38 1. 91 

1.44 1.87 

1.66 1. 79 

.;. 

.. 
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IV. CONCLUDING REMARKS 

We have seen that the BE symmetrization leads to a fairly 

satisfactory possible interpretation of the observed angular distributions. 

We believe that this conclusion is of importance for the assessment of 

evidence for the existence of the strength of possible iT-iT interactions. 

The least the present results indicate is that if one wishes to extract in-

formation about such interactions from annihilation phenomena, such 

kinematic symmetry effects as here discussed must always be taken into 

account. 

It may be asked whether further information can lead to arguments 

for or against the model here employed. Several possibilities exist for 

getting such information. In the first place one may study six- and higher­

prong stars by the same method. Secondly, if the BE symmetrization is 

the major source for the deviations from the usual SM, this implies a specific 

dependence of quantities like yu, / on the available annihilation energy, W. 

For the case N = 4, this dependence is shown in Fig. 7. Here we have 

computed ·/ 4 as a function of p for various values of W, the available 

energy in the center-of-mass system. We have chosen for W the energies 

1.88, 2. 5, and 4.4 Bev corresponding to p laboratory momenta of 0, 2. 25, 

and 6 Bev/ c, respectively. It can be seen from Fig. 7 that the correlation 

effects occur at smaller values of the radius as the energy increases. If 

a radius of interaction is a meaningful quantity for the annihilation and does 

not depend critically on the incident antiproton energy, it might be expected 

that the correlation effects due to BE statistics will decrease at higher born­

barding energy. Studies of correlation effects as a function of W may thus 

be a test for the ideas discussed in this paper. Of course, with increasing 
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W, the relative fraction of four-pion annihilations will decrease. It is 

therefore indicated that if one wishes to pursue the annihilation process in 

more detail, an unambiguous s~paration into the various individual multi­

plicities will become quite imperative. Only if this is done will curves like 

those of Fig. 7 and similar ones for other given N be of any use. 

Finally, a comment may be made about the question of the mean 

pion multiplicity. It has been suggested by various people that the high p 

value obtained from the SM may be reduced by taking into account .the 

existence of 1T isobars. These isobars are often thought of as pseudo­

particles compounded of two (or more) 1T mesons and with prescribed spin 

and angular momentum. It is clear on qualitative grounds that the existence 

of such 'structures would reduce the p value for given average multiplicity. 

Again on qualitative grounds it follows that under the same conditions the 

present model also will lead to a reduction in the p value. This is because 

correlated pairs are somewhere between pseudo two-body systems and 

totally free pairs. Preliminary estimates indicate, however, that the BE 

effect seems to be insufficient by itself to lead to the right multiplicity for 

p ...., 0.7 5 n/f.Lc. It must be added, however, that several points are at present 

not quite clear to us. In particular, it may be asked whether the use of the 

factor (N .') -l occurring in Eq. (6) is indeed a proper way to deal with the 

question of indistinguishability. This particular N dependence plays a 

sizable role 9of course, in the theoretical determination of average multipli­

cities. Thus a further study of the effect of BE symmetries is needed in 

conjunction with improved considerations on angular momentum and on the 

possible role of strong 1T-1T forces. 
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APPENDICES 

I. Derivation of the BE Correlation Function for N=4 

We shall here give a rather detailed discussion for the case N=4 

of the validity of the use of wave functions symmetrized with respect to 

like particles only .. For the case N = 5, 6, we shall content oursel'VIes with 

some qualitative remarks. 

Thus we consider the charge partition (2+, 2 -) .. First note that 

if we would ignore I-spin (as described in the INTRODUCTION), we would 

have, by Eq. (8), six independent and orthogonal (2\ 2-) states for a given 

momentum configuration. Their spatial wave functions can be chosen as 

follows. Define [ i j k J.] by 

[ i j k J.] = exp i(p. · x 1 + p. · x 2 + pk · x 3 + p n • x 4 ) 
"""""1 ,_. -J ,.,. - ,... --x. --

(AI) 

Next define a symbol of the [ i j k £] type, with a bar over two letters to 

mean symmetrization with respect to the two momenta marked by a bar 

and symmetrization with respect to the two remaining momenta. For 

example, write 

[3 14 2) = [3142] + [4132) + [3241) + [4231). 

The six functions, 

; 1 =[I234), 

; 2 = [I 3 4 2], 

;3=[1324],. 

; 4 = [ 3 I 2 3], 

;5=[3142], 

; 6 = [ 3 4 I 2]:. 

(A2) 

(A3) 

form a complete orthogonal set of spatial functions spanning the configuration 

(We referred to this set earlier in footnote 8.) Note that we 

have 
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where tjJ(l2) is given by Eq. (11}. Thus, as alre~dy stated for general N 

inthe INTRODUCTION, 
15 

it is trivially correct that equal weight for.all 

six states just means like particle symmetry and nothing else. 

Next consider the I = 0, 1 states for N = 4. By the methods 

described in Ref. 7, we may labe.l these states by their correlation numbers 

and divide them: in the classes: (4:), (31), (22), (211). The number of states 

pertaining to these classes is 1, 3, 2 8 and 3, respectively. 16 . This totality 

of 9 states may be chosen as an orthogonal set. We must now project out 

+ - . . 
the (2 , 2 ) parts of these nine states. Observe that the three states of 

class (211) have projection null. This is easily seen from the Young 

tableaux corresponding to these states, which imply antisyrnmetry between 

the coordinates of three of the four particles, a condition that leads to 

identically vanishing wave functions for the charge partition in hand. Thus, 

the number of orthogonal I-spin projections for I = 0, ·1 is equal to 9 - 3 = 6. 

Hence these six projections must be related to the functions ;1' · · ·, ; 6 of 

Eq. (A3) by a unitary transformation •. Thus equal weight for these projections 
I 

again gives us the BE effect between like particles only, a result mentioned 

in the INTRODUCTION. 

We verify this explicitly by constructing the various I- spin 

projections of (2+, z-- ), a procedure that is also helpful for the rest of the 

argument. To do this, ·we construct ·first the following operators. Let 

.2,(i) denote the 1T field (an isotopic vector) at the point x .. 
17 

Put 
-1 

A ijk£ = (.2,(i) . !U)) (!(k) . 1(£ )) 

and (AS) 

and consider the nine operators: 



-31- UCRL-9169 

0 (4) 
. 1 = 

0 (22) - 2 
. 1 

' (22) 
o2 
0 (31) 
-1 

0 (31) 
-2 

0 (31) 
-3 

= 

= -2 

= 

= 

~1234 +~1324 + 3~1423 + ~2314 + 3~2413 

~1324 + ~1423 - ~2314 - ~2413 - 2~3412 

~1234 + ~1324 + ~2314 
·- (211) 
91 = -2 ~1234 + ~1324 - ~1423 + ~2314 - ~2413 

9 2 (
211

> = - 3~1324 + ~1423 + 3~2314- ~2413 - 2~3412 
0 (211) = 
-3 -~2413 +~3412 . 

(A6) · 

These 0 operators have just the !-spin and symmetry properties required 

by .the classes that label them by superscript; the subscript distinguishes 

the !-spin states within each class. The construction of this set of operators 

was first given by Halpern
18 

and was also recently discussed elsewhere. 19 

It is a simple matter to derive from these 0 operators the wave functions 

for the (2+, 2-) system.One imagines the ,2(i) to be Fourier expanded and 

picks off in all possible ways the contributions to the momentum configurations 

+ -El, · · · , £.4 for the charge channel (2 , 2 ). Evidently this procedure 

guarantees the combined BE symmetry with regard to charge and space 

coordinates. Proceeding in this way, one finds that the operators 0. (
211

) 
-1 

for i = 1, 2, and 3, give the zero result mentioned earlier. The nonzero 

functions are written generally as ~(1234), where the arguments shall 

refer to the momentum labels now. It is convenient to write 

~(1234) = 1\(1234) + A(l324) + A(l432). (A7) 
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0. f" d .. 20 ne 1n s 

A l (4 ) (J 234) = 

A {Z 2){1234) = 
1 

A (22) (1234) = 
2 

[ 

A (3 !)(1234) = 
2 £ 2 + £ 3 ~. £4- £ 5 

A (3 l)(l234) = 
3 

Here TT±. denotes the amplitude for a t/ meson with momentum 
1 . . . 

p .. 
-1 

] . 1 
16i72 

(A8) 

The 

space ~ave functions £i are as defined in Eq. (A3) .. Now if the projections 

.:i(l234) into (2+, 2-} (given by Eqs. (A7) and (A8)] all have equal weight, the 

total rate of transition into a given momentum configuration is equal to 

six ~tates {1'!'(! 234
) j

2

, 
(A9) 

where the summation is taken over the six states of different symmetry, 

and the integral means summation over charge and integration over space 

coordinates. Performing all these operations, one sees that all cross 
~c 

terms of the-type £i£j cancel. Hence, using also Eq. (A4), we have 

veriffed the prop~rty of pure BE symmetry between like particles only, 

which was proved previously on gene~al grounds. 

Let us next see what happens if we give equal weight to the 

various !-spin states, rather than to their (2+, 2 -)'projections, as is 

required in the SM; This means that we must weigh-~>each of the six terms 
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in Eq. (A9) with the branching ratio (or correlation coefficient) that gives 

the relative weight of the (2+, 2-) part in the mixture of (4°), (1+ 1 ~ 2°), 

(2+, 2-) out of which the !~spin states are built up .. These relative weights, 

which can be read off from Table IV, N = 4 of Ref. 7, are 8/15 for class (4), 

4/5 for class (31.), and 1/3 for class (22). Hence, it follows that now the 

over-all rate of transition lnto a given momentum configuration becomes, 

in.the SM, 

The first integral just corresponds to pure BE symmetry between like 

particles. The second term constitutes a. correction to this. To evaluate 

the magnitude of this correction term, we have computed ~41 (y) for the 

case p = 0. 7 5 at three selected y values. The integrations, in which 80 

individual integrals were involved, were performed on the IBM~ 704 

computer. The results show that for y = + 1, 0, and -1, the correction 

terms are all positive and amount to a 2%, 2. 7%, and 2.1% change in "P.}, 
respectively. Since the corrections are all positive, the effect on y is 

even smaller. 

For N greater than four, we have not made such a detailed analysis, 

but merely note the following .. Evidently something special happens for 

N = 4 in that the number of (2+, 2-) states is equal to the actual number of 

projections of.the orthogonal I = 0, 1 states into this charge channel regard-

less of !-spin restriction to I = 0, l. This accounts .to a large extent for 

the fact that the BE assumption is particularly good in this case .. For 

N = 5, 6, this ~quality is no longer true .. Equation (8) tells us that the total 

+ - 0 + - 0 number of (2 , 2 , 1 ), (2 , 2 , 2 ) states is equal to 30 and 90, respectively, 

- whereas the number of orthogonal projections from I = 0 and 1 is equal to 
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21 
21 and 51, respectively. As the latter numbers are of. the same order as 

the former ones, it is at least :plausible that most of the "additional symmetries 

between unlike particles- will cancel out, so that also here the assumption of 

like particle -symmetry only may be a reasonable approximation . 

. ~ . 
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II .. The Monte Carlo Method 
Used for Multiple Integrals in Phase Space 

For the evaluation of the n-fold integrals with n > 4 occurring 

inthe various expressions in many-particle phase space, we have used a 

Monte Carlo method (MCM) of integration. These calculations were coded 

in FORTRAN by Marjory Simmons and were evaluated with the IBM-704 

computer of the University of California Com:puter Center in Berkeley. 

An n-fold integral corresponds to a volume in n + 1 dimensional 

space. This volume can be expressed as the average height of the function 

multiplied by the "area" of the domain of integration. Here the domain 

extends over n dimensions and contains all the permissible values of the 

variables. The MCM used here consists of generating n random numbers 

which, after suitable normalizations, correspond to a point in n-dimensional 

space. The essence of the method is just to ascertain whether this, "point•• 

lies inside (= success) or outside (=failure) of the domain of integration. 

For each "success" point, we then compute the value of the integrand. The 

sum over the values of the integrand divided by the number of "tries", N, 

for a sufficiently large N converges to a number proportional to the desired 

integral. 

write 

To be more specific, let us consider ann-fold integral and 

l_(n, ~) = )· ) f(x 1, ..• , xn; n, ~) dx1 ..• dxn. ",' 

:Q::>main D(x1 , ... , xn' a. } 

(AlO) 

Here the· integrations are to be carried out over an n-dimensional domain 
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The n variables~ .xk' are limited by known upper and lo~er. bounds: 

min max min max 
xk . < xk _::: xk ; . for k = 1, ... ,. n (xk and xk are cqnstapts ). 

The domain D(x
1

, .. ; xri; a.) over which the in,tegration is carried out is an 

n-dimensional volume which is thus contained in, but is in general smaller 

max 
than, D , where 

n 

TT 
k=l 

(: max min) 
xk -xk . (All) 

We willdesignate the n variables in ann-dimensional point by 

Our procedure can be best understood if we now consider a 

specific example--say the f~nction ~6u(y) [Eqs. (33), .. (34), (35)]. This 

function is given by a five -fold integral. The parameters a. and [3 are now 

y(=cos 8) and p. respectively, as defin,ed in the text. To obtain a distribution 

in y, we need to evaluate the integral for several values of the parameter y. 

We chose seven distinct values for y, and thus need seven five-fold integrals. 

In addition, we need a distribution in p. We chose six values of P• giving 

us 42 five-fold i~tegrals in all. Fortunately we were able to evaluate all 

42 integrals at the same time, because of the following two circumstances. 

First, the domains are independent of the parameter, p. Second~ we can 

order the domains as a function of the parameter y in such a fashion that 

each domain contains all the subsequent domains, 

D~~~; yl)) D(~; Yzl)- '. 0 0,1 0 ) D(~; ym) 

Thus, when a given "point" x lies outside the ith domain D(x; y. ), we 
- - ; Hill< 1 

know it will also lie outside all the subsequent domains, i + 1, ... , m. 

We will proceed in describing the MCM by giving a sequence of 
; • 'c- : • •• 

steps that correspond crudely_to the logic followed during the computations. 

5 This sequence was repeated a large number of times (N:::: 10 ), where 
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each repetition represents another "try. " The steps are: 

(a) Generate n random numbers r 1, · · •, rn with the property 0 < ri < 1. 

(b) Compute a set of random variables xk with these random numbers 

according to 

min + ( max min) k 1 ~ = ~ . ~ -~ rk, = , • · •, n. (Al2) 

Th.is (ordered) set represents an n-dimensional point x 

random in the domain Dmax defined in Eq. (All). 

chosen at 

(c) Test whether the point ! is contained in D(!; y 1). If it is, this try 

is counted as a "success" for the domain D(!; y 1); proceed to 

step (d). If it is not, this try is considered as a "failure" for 

D(!; y 1) and for all subsequent domains D(:.::;¥j_)i = 2, • • ·, m. Start 

at step (a) again. 

{d) Test whether the point _x is contained in D(x; y.) for i = J. - 1. 
. - 1 

This try is counted a "success" for the domains D( x; y.) i = 2, • • •, 
- 1 

I. -1 and a "failure 11 from i = J., • • • , m·~ where D <:.:; y 1 ) is the first 

domain that does not contain the point !· (Here J. - 1 = m means 

that the point is contained in all domains. ) Proceed to step (e). 

(e) Compute f(x; y., p.), the integrand at the point x for the values 
- 1 J -

of the parameters i = 1, · • ·, P. - 1 and p. for j = 1, • •., v. 
J 

Cumulate the integrands in an array of m v numbers. Repeat at 

step (a). 

Let N (y.) be the number of successful tries for y = y.. Then s 1 1 

T(y., p.) = [ N.~ f (x; y., p.)J /N (y.) 
1 J p= 1 p - 1 J . s 1 

(Al3) 

is the average value of the integrand, where we use the convention that 

whenever x is not inside the domain, f is set equal to zero. The value 
p 
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of the' fU:nction is given by 

= Lim 
N-+oo 

~6u(y., p .} = Lim D(y.) f (y., p.) 
1 J N-+ 00 1 . 1. 1 

N (y.) J: -r- 1 
SN 1 N (y.) 

·s ·1 

N 
:E 

p=l 
f (x ; y., pJ.~ p- 1 

' 

= Lim 
N-+ oo 

Dmax [·~· 
p=l 

f (x; y .• p.)J ;-_ N. 
p - 1 J 

I. 

The practical question is: After how many tries, N, has the above 

expressio~ ~6nverged sufficiently close to its limiting value? 

(Al4) 

To answer this question; we have evaluated the variance. In 

terms of the variance, the statistical errors in the MCM have well-defined 

. 21 L d f' ~No meatnngs. '· et us e 1ne ~ as the f.l.th approximate solution obtained 
fJ. 

after a consecutive set of N
0 

tries given by: 

f.I.No 
= 1 :E 

No p=(f.L~l)N 0+1 
f -,, 
p 

where N0 ;, N/A.. Then the sohition after N tries, ~N, is given by 

N 
:E 

p=l 

The variance of N tries is obtained in the following manner. We choose 

No 
N 0 large enough that the set p , fJ. = 1, · · ·, A. can be considered to have 

f.l. N 
a gaussian distribution and yet each p 0 

is not expected to be a good 
fJ. 
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\ 
approximation to_!. The variance of N

0 
tries is obtained by plotting 

No . . 
! J jJ. = 1, ... >... 

jJ. 
The variance aN 2 of N tries is then obtained from 

the variahce of N 0 tries by the expression 2 2/ aN = aNo >... 

To give a qualitative feeling for the time on the IBM 704 involved 

in such calculations, we quote some examples herewith. The 42 integrals 

for the function ~6 (y, p) were evaluated in 4:5 hours for a total number 

of tries, N = 67,000. Here we chose N 0 = 1000 thus giving us >.. = 67 

points for the evaluation of the variance. The resulting number of success-

ful tries and errors are given in Table III. 

Table III 

Details on the evaluation of the function ~6 by the Monte Carlo method, 

for a total number of "tries 11 N = 67,000 corresponding to 4. 5 hr on 

the IBM 704. Errors are given for six of the 42 integrals performed. 

Successful Percent error Percent error 

y tries for p = 0 for p = 0. 7? 

-1 8,188 1.4 1.2 

0 6,019 1.3 1.5 

+1 4,833 1.7 1.8 

.. 



,. 
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FOOTNOTES 

1. Goldhaber, Fowler; Goldhaber, Hoang, Kalogeropoulos, and Powell, 

Phys. Rev. Letters 3, 181, 1959. 

2. All center-of-mass transformations were made on the assumption that 

the struck proton is at rest. From the known annihilation cross sections 

in carbon and hydrogen and from the 'IT-multiplicity distribution, it was 

deduced that about 85o/o of the hydrogenlike events correspond to annihi-

lations on hydrogen. 

3. For a further discussion of this interpretation, see R. H. Milburn, Revs. 

Modern Phys. 27, l (1955). It does not affect any subsequent argument 

if one takes · PN(O) = (0/V)N -l, as is sometimes done. 

4. P. P. Srivastava and G. Sudarshan, Phys. Rev. 110, 765 (1958). 

5. T. Kalogeropoulos, The Study of the Antiproton Annihilation Process in 

Complex Nuclei (Thesis}, Lawrence Radiation Laboratory Report 

UCRL-8677, March 6, 1959. 

6. For an attempt to incorporate this, see LeRoy F. Cook, Multiple Meson 

Production in Nucleon-Antinucleon Annihilations and Polarization Effects 

in Cascade Showers (Thesis), Lawrence Radiation Laboratory Report 

UCRL-8841, July 31, . 1959. 

7 .. See A. Pais, The Many-1r-Meson Problem, Annals of Physics, to be 

published. 

8. Proof: if all states have equal weight, we can as well choose a set of 
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Figure Legends 

Fig. I. Evaluation of the correlation functions as ·a fuhction of the· argu-

ment. Here 4; h(t) and 4; (s) ·correspond to the spherical and 
sp gauss · 

gaussian models, respectively. As can be seen from the figure) the 

curves corresponding to the two models differ by about 2o/o at most. 

Note that the insert (Fig. lb) is enlarged by a factor of 100 vertically 

and is reduced by a factor of 5 horizontally. 

Fig. 2. The distribution functions of pion-pair angles. The functions 

.P~ (cos 8) and ~;(cos 8) referring to the distributions of angles 

between pion pairs are plotted for like and unlike pions, respe,ctively. 

We illustrate the behavior of the functions for p = 0,7 5 fi/~J.c. Also 

shown, for comparison, is j 5 M, the distribution without correlation 

functions. All curves are normalized to the same area with arbitrary 

units for ~· Figures 2a, 2b, and 2c refer to N = 4, N = 5, and N = 6, 

respectively. 

Fig. 3. The ratios ~N~~N SM for like and unlike pions. 

Fig. 4. The ratio '( for like and unlike pions as a function of radius P• 

Here p is given in unit. of fi/J.Lc. All calculations correspond to 

four charged pions t - 0 (21T and 21T ) with zero, one, or two 1T mesons 

(i.e. , N = 4, 5, and 6, respectively). 

Fig. 5. A comparison of the y distributions calculated with the relativistic 

and nonrelativistic correlation functions, respectively. P. 
Here y 5NR 

refers. to the distribution obtained from the nonrelativistic correlation 

function, whereas y
5
1 

refers. to the relativistic one. 
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Fig. 6. The functions Pav (cos 8) computed at p = .o. 7 5 are compared 

with the experimental distribution of angles between pion pairs . 

Figures 6a and 6b give the distributions for like and unlike pions 

respectively. Also shown in each is the c~rve for ;r,. SM(cos 8), ::rav 

the statistical distribution, without the effect of correlation functions. 

Here 2av represents an average of ~4, ~ 5 and ~6 , weighted according 

to the individual charge channels. 

Fig. 7. The distribution of ../4 as a function of p for various incident 

p energies. The energies in the center-of-mass system are 

W = 1.88, 2.5, and 4,;4 Bev and the curves are labeled with W. These 

correspond to p-p collisions at laboratory momenta 0, 2.25, and 6 Bev/c, 

respectively. The dotted curves refer to y4
5M. 

! >' •• 
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This report was prepared as an account of Government 
sponsored work. Neither the United States, nor the Com­
mission, nor any person acting on behalf of the Commission: 

A. Makes any warranty or representation, expressed or 
implied, with respect to the accuracy, completeness, 
or usefulness of the information contained in this 
report, or that the use of any information, appa­
ratus, method, or process disclosed in this report 
may not infringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, 
or for damages resulting from the use of any infor­
mation, apparatus, method, or process disclosed in 
this report. 

As used in the above, "person acting on behalf of the 
Commission" includes any employee or contractor of the Com­
mission, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee 
of such contractor prepares, disseminates, or provides access 
to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 




