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Abstract

A Model of Spacetime Emergence

in the Early Universe

by

Martin W. Tysanner

This thesis proposes and develops much of the groundwork for a model of emergent

physics, posited to describe the initial condition and early evolution of a universe. Two

different considerations motivate the model. First, the spacetime manifold underlying

general relativity and quantum theory is a complex object with much structure, but its

origin is unexplained by the standard picture. Second, it is argued, the usual assump-

tion of the preexistence of this manifold leads to possibly intractable theoretical (not

observational) difficulties with the usual cosmological inflation idea. Consistent with

both considerations, the assumption of a manifold that precedes a big bang cosmology

is dropped; instead, a spacetime manifold with metric, Lorentz symmetry, and man-

ifestation of standard quantum fields propagating on the spacetime all emerge in the

model from a simpler, statistically scale invariant underlying structure, driven by an

inflation-like process.

The basic structural components of the model are a stochastic (not quantum

or classical) scalar field on a general metric space, plus a collection of quantum fields

that supply the matter content once spacetime begins to emerge. Importantly, stan-

dard quantum fields cannot be defined on the pre-emergent space; this is addressed by

assuming quantum theory exists a priori, and then postulating that quantum fields can

begin to manifest once an approximate spacetime has emerged. Atypical fluctuations in

the scalar field transiently break the statistical scale invariance in a localized region of

the general metric space; a very small subset have field configurations of approximate

spacetimes which can potentially evolve into an initial condition for a universe. Space-

time structure and geometry then arise from the dependence of propagation speeds and

spatial/temporal distances on variations in the scalar field; these variations are seeded

by the matter (quantum) fields.

The thesis develops the mathematics of the basic components of the model in

some detail, outlines a mechanism whereby scale invariance is broken and dimensionality
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is fixed, and develops processes and scenarios wherein variations in the scalar field

can lead to spacetime geometry in an inflation-like process. The resulting picture of

spacetime is then compared with that of general relativity.
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Chapter 1

Introduction

1.1 Aims and overview

This thesis will attempt to lay the groundwork for a model of emergent physics,

in which a spacetime manifold with metric, as well as standard fields propagating on it,

emerge from a simple and general underlying structure. This emergence is viewed both

in terms of emergent laws of physics governing a restricted range of length and energy

scales, and also as a process of emergence, through an inflation-like phase in the early

universe. Indeed, the predictive success and theoretical challenges of inflation form a

major motivation for the ideas that will be explored.

The Big Bang cosmology plus inflation, when married with general relativity

(GR) and the Standard Model of particle physics, form an extremely successful and well-

tested description of laboratory physics as well as the physics of the observable universe

and its evolution from very early times. However, there are many open questions in

pushing beyond these well-described regimes. One of particular interest here is that

of cosmological initial conditions, which as described below appear extremely ‘special’

even with the inclusion of inflation. This thesis will approach the problem of unlikely

initial conditions by treating the observable universe as a part of a larger system, but

one that arises via an emergence process that occurs during an inflation-like era.

Because this model will require a significant departure from the typical con-

ceptual and mathematical toolkit of high-energy physics and cosmology, this thesis will

pay particular attention to motivation of the ideas, both from perceived deficiencies in

current models, as well as the mathematical and physical self-consistency and simplicity
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of the proposed alternatives. This introduction gives, in the next section, a review of

the inflationary model of early universe cosmology, and also points out open problems

in that view. This motivates the emergence scenario, which the next section sketches

in broad form. Following that is an outline of the content of the thesis and the basic

ideas it puts forth.

1.2 Inflation and its difficulties

Cosmological inflation was invented in the early 1980s to provide a natural

explanation for three general characteristics of the observable universe: its homogeneity

and isotropy at scales greater than several hundred Mpc, given that the gravitational

instability of a Friedmann-Lamâıtre universe should lead to growing lumpiness of matter

at all scales [57]; its spatial flatness; and an apparent absence of heavy monopoles

that grand unified theories predict [19]. Guth produced the first complete physical

model [26], followed by proposals by Linde [46, 47] and Albrecht and Steinhardt [5] which

fixed problems with Guth’s original proposal. Computations of expected fluctuations

cosmic microwave background were soon computed for the improved model [63, 27],

and were extended to Ω = 1 cold dark matter dominated universes with scale invariant

adiabatic initial conditions; see Refs. [11, 12]. Not only is the inflation idea elegant and

explanatory, it is also in excellent agreement with observations thus far. [44].

As this very brief history of inflation suggests, its observationally verified pre-

dictions largely originate from work done in the 1981-1984 time frame. It is these pre-

dictions one usually considers when discussing confirmations of inflation: the successes

are very real, but as theoretical work has continued it has become apparent the inflation

picture is deeper and more cloudy than what the preceding suggests, particularly in its

theoretical implications and limitations.

The essential motivation behind cosmological inflation is to give a ‘natural’

explanation for the origin of what appears to be an extremely unnatural state of the

universe today, which state was preceded by a series of even more unnatural states that

led to it1. It is usual to characterize the improbable condition today in terms of two

problems that demand explanation [54]. The ‘horizon problem,’ or homogeneous and

isotropic spatial distribution of energy at scales greater than a few hundred megaparsecs,

1Universe will always mean the observable universe unless otherwise noted.
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is characterized by a distribution of energy density ρ(x), smoothly distributed with a

fractional variation δρ/ρ . 10−4 over at least 1084 causally disconnected regions. The

‘flatness’ (or initial velocities) problem arises from the extreme fine tuning of the initial

velocities, such that the huge negative gravitational energy of all matter is somehow

matched, within one part in 10−56, by a huge positive initial kinetic energy; with less

tuning the universe would collapse or become dilute too soon to be consistent with

observations.

Inflation addresses the horizon and flatness problems naturally with the help

of a (or more than one) specially introduced scalar quantum field, or inflaton, that

slowly ‘rolls’ down a gently sloped plateau of its potential. Consistent with general

relativity, a properly crafted inflaton potential can yield an exponential expansion of

space by a factor of e75 or more, flattening and homogenizing the energy density to

an extent needed to obtain the inferred unnatural initial state [54]. Inflation continues

until the inflaton reaches a steeply descending region where the inflaton gains kinetic

energy and drops into a minimum of its potential; it ends with the inflaton oscillating

rapidly in a reheating phase, whereby it seeds the universe with all of its radiation and

matter. This elegant idea, however, has an unintended side effect: due to the quantum

mechanical nature of the inflaton, potentials that are adequate to obtain 75 or more

e-folds of inflation often imply that inflation will not end everywhere at once. We will

return to this issue in Subsect. 1.2.2.

1.2.1 Penrose’s entropy argument

Inflation is intended to start from a generic initial state of randomly fluctuating

energy density and obtain a very flat and homogeneous universe like what we see. In 1989

Penrose [58] offered a qualitative argument based on a statistical mechanical analysis

that strongly indicates inflation was a very improbable path through phase space to

the present state of the universe, compared to many other paths which could obtain

the same present day state without inflation. His argument depends on Hamiltonian

evolution in general relativity.

General relativity with matter is a Hamiltonian system (e.g., Wald [71]). The

one-particle phase volume is the product of the differential spatial volume and the

3



differential momentum ‘volume’ element with lowered indices [54],

d3x d3p = dx1dx2dx3dp1dp2dp3 . (1.1)

This is invariant under general coordinate transformations. According to the Liouville

theorem, the total phase space volume of a Hamiltonian system (here, of the universe)

is invariant under canonical transformations. This is straightforward to prove in flat

spacetime, so consider a curved spacetime. At each point on a particle trajectory, it

is always possible (by definition of a manifold) to choose a locally inertial coordinate

system, so that the Liouville theorem in flat spacetime applies there. Since the volume

element (1.1) does not depend on the coordinate system, the phase space volume will be

constant along the particle trajectory. Consequently, the Liouville theorem also holds

in generally relativistic spacetimes.

Penrose’s argument can be briefly summarized as follows. Since (according to

the Liouville theorem) the canonical measure is invariant under Hamiltonian evolution,

it is easiest to define the measure at late times; the answer should not depend on when

the measure is applied. Hence it is sufficient to estimate the phase space volume at late

times. As a reference point, the entropy of the CMB in the observable universe today

is approximately2

Sγ = log Γ ∼
(
TγH

−1
0

)3 ∼ 1088 , (1.2)

where H−1
0 is the Hubble radius today and the CMB temperature Tγ = 2.7K.

However, entropy of gravitational clumping dominates the CMB entropy. As-

sume 1080 baryons in the universe, all contained in galaxies of 1011 solar massesM�, with

each galaxy containing a central black hole of mass 106M�. The Bekenstein-Hawking

entropy formula for a black hole of mass M and horizon surface area A = 16πG2M2 is

Sbh = A/4G (G is Newton’s constant). This gives a total entropy Snow ∼ 10101. Penrose

estimated an entropy bound Smax ∼ 10123 for the far future under the assumption of

a ‘big crunch,’ a closed universe scenario where all 1080 baryons coalesce into a single

black hole. A more plausible scenario is an open universe, but this has an unbounded

phase space. Hence, consistent with Penrose’s bound, assume Smax ∼ 10120.

Since the phase space volume is constant under Hamiltonian evolution, a prob-

ability measure can be readily constructed from phase space volume fractions. If we

2We use ‘natural’ units in which ~ = c = kB = 1, where ~ is Planck’s constant divided by 2π, c is
the speed of light and kB is Boltzmann’s constant.
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denote by Γnow the number of states (or subvolume of Γmax) that are consistent with

the condition Unow of the observable universe today, then the probability of randomly

choosing a point in Γmax that is consistent with the state of the universe today is simply

P (Unow) =
eSnow

eSmax
∼ e10101

e10120 ≈ e−10120
.

Hence the initial conditions at the Big Bang would need to be tuned to one part in

e10120
to obtain a state as low entropy as our present universe, assuming Hamiltonian

evolution. Penrose estimates an initial condition constrained to one part in e1060
would

generously supply the necessary conditions to create our solar system and all the life

on earth from random assembly by particle collisions. Thus, anthropic arguments are

inadequate to explain one part in e10120
/e1060 ' e10120

: Why would a vast, evolving

assembly like the observable universe be needed for us to exist?

Inflation was invented to give a natural explanation for such improbable ini-

tial conditions at the Big Bang. In addressing the horizon problem, the inflation sce-

nario assumes thermalization of inhomogeneities occurred through interactions prior

to inflation; then inflation pushed the thermalized region into 1084 causally discon-

nected regions. But thermalization serves to obtain a more probable, higher entropy

state from an inhomogeneous, lower entropy state: the pre-thermalization state must

have been even more special than the thermalized pre-inflation state. Gibbons and

Turok [21] quantitatively constructed a canonical measure to estimate the probability

of N e-folds of inflation in single field, slow-roll inflation models and concluded that

P (N e-folds) ∼ e−3N , or e−180 for 60 e-folds. There are many more ways to reach the

current state of the universe without going through the extraordinarily rare initial state

where inflation must have begun, compared to going through inflation. More recently,

Steinhardt [64] has presented a Liouville argument to similar effect.

1.2.2 Predictivity problem of eternal inflation

Steinhardt has also argued [64] that eternal inflation compromises the predic-

tivity of inflation models in a crucial sense: it either implies the universe we observe is

extremely improbable or it requires crafting a probability measure specifically to allow

concluding our universe is typical. This is a different difficulty with inflation than the

question of whether or not inflation should occur at all. The following summary gives

Steinhardt’s argument.
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Steinhardt opines that he and others made a significant judgement error in

the early days of inflation model building by assuming quantum mechanics would have

only perturbative effects on an essentially classical scalar field picture. What was found

instead is that quantum mechanics and inflation make, in his words,“a toxic mix.” In all

inflation models quantum mechanics introduces stochastic perturbations into the other-

wise predictable evolution of the scalar field toward the minimum of its potential where

inflation ends [54]; e.g., in false vacuum inflation models the tunneling rates are proba-

bilistic. Thus, inflation will not gracefully end everywhere at once. Specifically, ‘rogue

regions’ at the tail of the distribution will, with low but finite probability, delay their

exit from inflation. Due to their continued inflationary expansion, such ‘procrastinat-

ing’ regions grow exponentially in overall volume even if their volume fraction decreases.

Because inflating regions are never completely killed off, inflation is generically eternal

to the future once it begins [25, 1].

Moreover, because inflation is future-eternal, the uncertainties of quantum me-

chanics ensure different pockets do not look the same. As Guth puts it [24], “Anything

that can happen will happen, and it will happen an infinite number of times.” This is

one way to view the so-called measure problem: when everything is possible and occurs

infinitely many times, how do we measure and compare probabilities?

The simplest and most natural measure is the volume measure, where probabil-

ities are given by relative volumes as in Penrose’s entropy argument. However, it can be

shown [68] that at any given time the total volume occupied by pocket universes much

younger than ours is exponentially greater than the total volume occupied by universes

as old as ours — universes like ours should be exponentially suppressed according to the

volume measure. Anthropic arguments do not help: our universe is more homogeneous,

spatially flat, and has a more scale invariant CMB than life requires; much younger

(and hence far more typical) universes than ours should also be hospitable to intelligent

observers.

Measures other than the volume measure are certainly possible. Such a mea-

sure should predict our universe is typical within an eternally inflating Universe. The

measure must not appear contrived to avoid disagreement with observations, so the

choice of measure should be justified by an underlying physical principle. Steinhardt

posits that a ‘measure principle’ is not likely to be unique; hence, the eternal inflation

causes everything to happen that can happen, but all the statistical predictions of the
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theory ultimately originate from the (subjective) choice of measure. And if we take that

theoretic approach, he argues, we should compare the predictive power of the chosen

measure on an eternally inflating Universe with predictions of other cosmological models

that rely on a different preferred measure, and this should include cosmological models

where there is no inflation at all.

One could claim that, even though eternal inflation is an unintended side

effect of the inflation idea, we can use it to side-step the Liouville and entropy argu-

ments. Specifically, once eternal inflation begins, essentially all universes will be pocket

universes with inflation in their past according to the volume measure, rendering the

Liouville and entropy arguments irrelevant. While this may be true, it trivially requires

assuming a priori the inflation picture is correct; otherwise eternal inflation could not

exist to counterbalance the entropy and Liouville arguments. It does not help decide

whether inflation actually occurred. Moreover, the argument is inconsistent — the vol-

ume measure on which it depends already predicts universes like ours are exponentially

suppressed.

There are obvious difficulties with testing eternal inflation scenarios, given that

we have only one universe to observe and anything outside it lies beyond our Hubble

horizon. Observational tests proposed thus far are restricted to analyzing the CMB for

possible evidence of collisions between pocket universes in the distant past. Such colli-

sions can occur in false vacuum eternal inflation models as follows [3, 2]. In a rogue re-

gion the inflaton is trapped in a local minimum of the potential, creating a de Sitter-like

phase that maintains inflation. A pocket universe forms when, in a localized region, the

inflaton tunnels out of the false vacuum state and then rolls to the state of true vacuum

(or at least a lower energy local minimum), ending inflation. This ‘bubble nucleation’ is

a phase transition, so a domain wall separates the pocket universe from the surrounding

de Sitter vacuum. Consistent with the scalar field equation of motion the domain wall

accelerates outward and the bubble expands into the de Sitter vacuum effectively at

the speed of light; the bubble interior, meanwhile, evolves as a Friedmann-Lamâıtre

cosmology like that of our visible universe. Since bubble nucleation is a probabilistic

event, there is a finite probability that two (or more) bubbles will nucleate near enough

that the accelerating walls of the two bubbles outrun the exponential expansion of space

between them, and the bubble walls collide, potentially with observable effects. [4]. A

recent study [20] attempted to detect characteristic inhomogeneous signatures of bubble
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collisions in the Wilkinson Microwave Anisotropy Probe (WMAP) seven year data, but

found no statistically significant evidence for them.

1.3 Assessment

The theoretical difficulty where we now find ourselves can be summarized as

follows. We look out at the observable universe and find it is homogeneous, isotropic

and spatially flat at large scales. Moreover, the universe is expanding; this and the

homogeneity and isotropy mean matter obeys the Hubble law at large scales. Extrap-

olating backward in time (and also considering other variables, for example the CMB

spectrum and the relative densities of hydrogen, helium and other light elements to

name just two) we infer the universe began with a Big Bang about 13.7 billion years

ago and has expanded since then.

However, Penrose’s entropy argument shows the universe we observe is ex-

tremely unlikely, having probability of order exp(−10101) or exp(−10123) depending on

the choice of upper entropy bound. Since general relativity has a Hamiltonian formu-

lation, then Liouville’s theorem applies; this means the evolution is time reversible.

Given the improbable current state, we can consider the set of possible trajectories

through phase space that could lead to it, and thus infer the universe almost certainly

was even more homogeneous and isotropic when it was much younger — much more so,

in fact, because otherwise inhomogeneities would have caused much more gravitation-

ally induced clumping of matter than what we observe today. Our extremely unlikely

universe practically demands an explanation of how it came about.

The clever idea of cosmological inflation offers a compelling, even ‘natural,’

explanation for the extreme homogeneity and isotropy we infer must have existed at

the time of the Big Bang. It also quantitatively accounts for the observed structure

of the CMB. Unfortunately, inflation introduces all the substantial theoretic difficulties

outlined in the previous section, among others. These problems make conventional

inflation scenarios much less convincing from a theoretical standpoint.

Despite substantial theoretic difficulties, the fact that inflation allows substan-

tive predictions that agree so well with observations strongly suggests there is something

correct about the inflation idea, at least in the simple picture where inflation occurs

and then ends gracefully. Just one case in point is the spectral index ns. Linde pointed
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out [48] in 2005 that it is very difficult to construct inflation models with an exactly flat

spectrum of metric perturbations; most inflation models predicted ns = 1± 0.2 but not

ns = 1. Linde remarked it would be interesting to see if observations agreed with the

prediction ns 6= 1, which was unknown at the time because observations were consistent

with ns = 1. Recent WMAP results [44] find ns = 0.968 ± 0.012 at the 68 percent

confidence level, effectively answering Linde’s question. This kind of agreement with

substantive predictions argues for considering new early universe models that incorpo-

rate some key aspects of inflation but are not subject to its main difficulties. This may

mean not relying on general relativity, or even assuming the universe at the time of the

Big Bang was a Hamiltonian system, for example.

The crux of the entropy and Liouville arguments is the time-asymmetric evo-

lution of the universe with time-symmetric laws. Physical laws are apparently time

symmetric, including quantum mechanics, general relativity, classical mechanics and

electromagnetism [22]. Thus, if we reverse the flow of time and evolve the system with

time-symmetric laws, we expect from the second law of thermodynamics evolution to

a more generic, higher entropy condition. On the other hand, there is widespread ac-

ceptance that the time asymmetry or ‘arrow of time’ embodied in the second law of

thermodynamics ultimately has a cosmological origin: low entropy conditions were pre-

ceded by even lower entropy conditions, reaching a minimum at the time of the Big Bang

(or even earlier for inflation scenarios). This creates the severe problem of explaining

the conflict between expectations of time-symmetric evolution and our inferences from

observations that a low entropy Big Bang was in our past.

We can thus frame the question as: How can we obtain the extremely im-

probable initial conditions that are necessary for time symmetric laws to generate the

inferred time-asymmetric evolution? However, we have not yet defined what we mean

by a law. This thesis will adopt the following working definition: A physical law will

mean a dynamical rule that acts consistently within a specified domain of applicability

and for all times; its action may be deterministic or statistical. The domain of appli-

cability necessarily includes spacetime characteristics like curvature and smoothness.

These are usually implicit in the metric, but one must also consider the distance scale.

According to conventional wisdom, spacetime is no longer well defined at the Planck

scale, and consequently neither are laws that require a smooth, consistent spacetime.

Conventional wisdom does not posit an origin of a special Planck scale; it just assumes
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the scale exists and a future nonperturbative theory of quantum gravity will allow us

to deal with it.

Spacetime plays a critical role in physical laws. A physical law will not act

time symmetrically if the spacetime on which it is defined evolves time-asymmetrically

and that evolution is independent of the law. However, the nature of spacetime near

the time of the Big Bang is completely opaque to us; it is possible no well defined

spacetime existed then at any scale. We can assume general relativity (or a future

theory of quantum gravity which obtains general relativity as a low energy limit) will

provide a well defined spacetime on which our time-symmetric theories can live, but

general relativity and current contenders for quantum gravity all assume prior manifold

structure. Nonetheless, other than convenience and theoretical prejudice, neither of

which confers any obligation on Nature, we have no real evidence that even spacetime

manifold structure existed at the time of the Big Bang.

1.3.1 Motivation for an emergence picture

The main content of Sect. 1.2 can be summarized thusly. Inflation is a clever

and explanatory idea that makes generic predictions in excellent agreement with obser-

vations, but it does not fulfill its original mandate. At least in its usual form, it does

not offer a natural explanation of the extremely improbable state of the observable uni-

verse because it depends on preceding, even more improbable initial conditions. Since

inflation offers no insight into the origin of the very special initial conditions it requires,

its viability depends on extreme fine tuning or predictivity-destroying eternal inflation

scenarios, undermining the naturalness of the inflation idea. Ultimately, the problem

originates from trying to obtain the improbable initial condition with time symmetric

laws.

The problem of initial conditions arguably has two distinct aspects:

• an extremely improbable initial state; and

• the origin and properties of spacetime, quantum fields, and the particular forms

of matter interactions we observe.

There is general agreement that the first issue is a genuine, significant problem. Whether

one expects an explanation of the second aspect or is content to accept such elements
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as a priori attributes of Nature is largely a matter of philosophy rather than physics.

The perspective adopted in this thesis is that they require explanation.

Addressing the first issue with time symmetric laws acting within a closed

system appears unworkable: fluctuations from typical states to improbable states are

exponentially suppressed as the entropy argument (Subsect. 1.2.1) shows. Proposals

by Carroll and Chen [17] and Greene et al. [23] both regard the observable universe

as a subsystem of something larger. For example in Ref. [23] a boundary condition is

externally imposed, but if the enclosing system evolves with time symmetric laws in a

global phase space it is unclear that the problem is solved; the origin and likelihood of

the special boundary condition beg explanation.

It is perhaps remarkable that most proposals for early universe scenarios build

on the same physical objects, mathematical structures, and formalisms that are so

successful in describing the low-energy physics of the present day universe. Presumably,

if general relativity and low energy formulations of quantum mechanics are limiting

cases of an ultraviolet-complete theory, then that theory must contain many of the

mathematical elements of QM plus GR like Hilbert spaces, manifolds, and spacetime

symmetries.

From this perspective, when conceptual difficulties like the entropy and Liou-

ville arguments confront successful ideas like inflation, the logical response is to retain

the successful ideas and propose ways to rectify their weaknesses. The more natural,

predictive and ‘battle tested’ the ideas are, the more sense it makes to pursue this

approach. It has been the general response to difficulties with inflation thus far.

When developing theories of the very early universe, no direct observational

guidance exists so it is necessary to rely on extrapolations from known physics, con-

sistency arguments, and aesthetic considerations, none of which can provide reliable

guidance the way observations can. Notably, there is a widespread belief that at the

small distance scales that were dominant near the time of the Big Bang, at least some

of our theories and usual conceptions of smooth spacetime are untrustworthy. So one

can reasonably wonder why many early universe scenarios accept such theories and con-

ceptions as a starting point. Moreover, we have no reliable understanding of the future

quantum gravity theory, only ideas that have been worked out with varying degrees of

completeness and plausibility. Thus, when conceptual problems arise, we do not have

the same mandate for patching up existing early universe ideas as we do for theories
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with direct observational support.

In this thesis, the foregoing will be a rationale for considering new scenarios

which rest on some different assumptions than do existing early universe ideas. Natu-

rally, interesting new scenarios must skirt existing conceptual problems without intro-

ducing even worse ones. Of specific interest will be scenarios where general relativity

can be considered an emergent theory, in contradistinction to a low-energy limit of an

ultraviolet-complete theory.

Emergence scenarios offer an interesting way to overcome conceptual difficulties

because they do not imply explicit connections between the principles and mathematical

structures of the emergent and more fundamental theories. If former conceptual difficul-

ties become artifacts of an emergent picture at low energy, they lose their fundamental

quality and may even disappear altogether in the regime of interest.

An emergent theory in the sense intended here describes phenomena statis-

tically, analogous to the way pressure and the ideal gas law emerge in a statistical

description of a gas of microscopic molecules at sufficiently high temperature. Namely,

the more fundamental theory must contain some domain or regime where new phenom-

ena appear statistically after coarse-graining certain degrees of freedom. We can then

say the new theory emerges at a characteristic scale given by the scale of coarse graining.

Phenomena which are not manifest in the fundamental theory will statistically emerge

above the characteristic distance scale, and they will be described by the emergent the-

ory. The coarse-graining scale is not arbitrary — it is the specific scale at which the

emergent phenomena first become statistically discernible at some chosen significance

level.

1.4 Overview of the Emergence Picture

The global system from which the observable universe is presumed to emerge

will be taken to be a stochastic field ϕ, also endowed with dynamical properties, which

lives on a simply connected general metric space M. The ϕ field is neither quantum nor

classical. Almost everywhere it statistically manifests symmetry in the greatest possi-

ble sense: scale invariance, homogeneity, isotropy3, and without spatial dimension; it

3Even in a general metric space a tangent space can be defined, albeit without an associated vector
space.
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altogether lacks notions of physical time, space, matter and even energy, but nonethe-

less it can be considered a kind of thermal system in that ϕ is self interacting and its

amplitude obeys a Brownian probability distribution function along every curve in M.

Accordingly, ϕ field modes k are unbounded, 0 < k <∞.

The observable universe will be taken to be a subsystem of this global system,

a dynamical phase of finite extent on M which consists of a collection of interacting

quantum fields living on an emergent spacetime manifold M . The only available origin

of a dynamical phase in this picture is a large, extraordinarily improbable fluctuation of

the stochastic phase which effects a local phase transition on a subset U of M. Because

the new phase has finite extent and has no sharply defined boundary, it can be described

by a finite range of ϕ modes, [kmin, kmax]. The ranges (0, kmin) and (kmax,∞) remain

in the stochastic phase, and, moreover, modes in [kmin, kmax] introduce perturbative

stochastic effects into the dynamical phase. Thus, the two phases coexist within U.

An elementary particle in flat spacetime is an irreducible representation of the

group P ×G, where P is the Poincaré group and G is the internal symmetry group [8].

For the Standard Model G = U(1)×SU(2)×SU(3). However, Poincaré symmetry is not

a symmetry of M because M has no manifold structure and therefore cannot directly

support a spacetime. Hence, elementary particles cannot exist in the scenario unless

the fluctuation simultaneously brings about two conditions, which are also conditions

for subsequent cosmogenesis:

• A ϕ field configuration transiently obtains an ‘approximate’ spacetime with ap-

proximate Poincaré symmetry in a neighborhood S ⊂ U, so that a quantum field

can manifest transiently on S; and

• a quantum fluctuation creates an elementary particle ψ (or particle pair), e.g. of

the Standard Model, in a neighborhood S′ ⊂ S.

Due to its highly special nature, this kind of fluctuation will occur in only an exceedingly

small subset of already rare large fluctuations; almost always the dynamical phase should

instead quickly dissipate with no spacetime or matter field transiently appearing.

Given this context, a scenario is now proposed whereby the dynamical phase,

obtained by a very special fluctuation of the above sort, can evolve into an inflation-like

process and then a Big Bang. The ϕ field will mediate the emergence of M ; then, once

M has emerged, the quantum fields will determine the geometry on M through their
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interactions with ϕ. In general, the distance d(x, y) between two points x, y ∈M, where

d is the distance metric on M, will be unrelated to the physical distance between x and

y when x and y are considered points on M .

Assume for illustration purposes that the Standard Model describes the com-

plete particle spectrum for our universe all the way to the Planck scale. Let a fluctuation

realize the two conditions above, so that a ψ field transiently exists on S with a single

ψ quantum. The ψ field will have quantum corrections that involve other fields of the

Standard Model, e.g. the photon. The initial fluctuation only introduced the ψ field,

but quantum corrections to it requires the existence of other quantum fields. In that

sense, the ψ field brings into manifestation on S those quantum fields with which it

interacts. Those fields in turn acquire quantum corrections which require additional

quantum fields, and so on: ψ on S thereby implies the full Standard Model on S, at

least transiently.

Thus, the approximate nature of the Poincaré symmetry in the scenario should

not change the particle spectrum or interactions compared to what they are in a fully

emerged spacetime. Instead, the effect of the symmetry being only approximate is

presumably to make the quantum fields extremely unstable: energy and momentum are

only approximate notions, and quantum corrections are in no sense perturbative. In

that regime the distinction between virtual and ‘real’ processes is unclear (and probably

unimportant) because lifetimes are so short and have a very large variance.

The persistence of the nonperturbative quantum ‘soup’ on S, i.e., its evolution

toward cosmogenesis, depends on making the spacetime progressively more smooth and

the Poincaré symmetry more exact. The interactions between the quantum fields and

non-quantum ϕ determine how this occurs, which is via a ‘bootstrap’ process:

• The approximately localized field quanta act as sources of ϕ inhomogeneity on S.

• Given the central role of ϕ in determining spacetime structure, large ϕ inhomo-

geneities will cause localized changes of the (approximate) spacetime structure

which can affect virtual processes. For example independent scattering of virtual

particles can prevent subsequent absorption (e.g., of virtual photons) or annihi-

lation (e.g., of virtual lepton pairs), effectively creating new free particles which

then acquire their own quantum corrections.

• The ϕ inhomogeneities propagate and disperse, making ϕ variations more spatially
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homogeneous in the interior of S.

• Greater homogeneity of ϕ increases the smoothness of the approximate spacetime

and improves the approximate Poincaré symmetry on S.

• Greater Poincaré symmetry increases the stability of the quantum fields, and hence

particle lifetimes.

This cycle occurs recursively until spacetime becomes sufficiently smooth and homoge-

neous on S.

The components of the above process will be developed later; most of its

particulars are not important to this overview. What is important is that the interaction

of a field quantum with ϕ involves an approximately localized transfer of energy from

the particle to ϕ. Since all quantum fields interact with ϕ they all transfer energy to it.

Hence, the characteristic energy scale or mean particle energy will continually decrease

on S as the energy density of ϕ increases, consistent with some approximate notion of

energy conservation. The process ends with stable particles and a stable characteristic

energy scale once spacetime has fully emerged and Poincaré symmetry holds to excellent

approximation.

The ϕ field on S interacts with the vacuum at the boundary of S. The

interaction acts dissipatively on the evolving spacetime, via thermalization. Thus, if the

spacetime is to persist, the region S on which it lives must grow on U, and eventually U

must grow on M. This will occur automatically as long as the assumed ϕ dynamics allow

the approximate spacetime structure near the boundary of S to induce approximate

spacetime structure in U\S adjacent to the boundary. Then a stable spacetime can

persist in the interior after developing via the bootstrap process — a transition region,

comprised of an approximate spacetime in a very early stage of emergence, protects it

from thermalization by the vacuum outside S.

The bootstrap process is inflation-like in two ways. First, consistent with gen-

eral relativity (but independently of it, since no smooth manifold exists), the increasing

energy density of ϕ will cause the spacetime on S to expand relative to any two fixed

points x, y ∈ S. This is analogous to placing a ruler between x and y, keeping the

distance d(x, y) constant, but continually rescaling the ruler so it measures increasingly

large physical distances as the process proceeds. As the spacetime becomes progressively
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smoother the ‘doubling time’ for the physical distance between x and y will increase,

but the expansion is clearly exponential in time.

Second, independently of the ruler rescaling above, the self coupling of ϕ at

the boundary of S allows ϕ to mediate a continually growing diameter of S on M:

the coupling between the quantum fields and ϕ just inside the boundary can thereby

indirectly induce approximate spacetime structure just outside the boundary. As S

expands, the bootstrap process will proceed as in the interior, but at a different rate

because it is at an earlier stage of the process. Since the boundary region is itself an

emerging, exponentially expanding spacetime and the boundary expansion is continual,

the total spacetime volume of S will continue grow after the inflation-like stage ends in

the ‘older’ interior of S.

The continual expansion of S on M will cause the eventual demise of the

spacetime and all matter in it. Energy conservation, even when it is only approximate,

implies that the characteristic energy scale at the beginning of the bootstrap process

in the boundary region will decrease as the diameter of S increases. This will cause

the expansion of S to eventually terminate: since average mode amplitudes in the

stochastic phase increase with decreasing k, there will be some diameter of S for which

the mode amplitudes in the boundary region are similar to those of the stochastic phase.

Once that condition occurs, it no longer makes sense to consider the boundary region

a separate dynamical phase, and the expansion of S thereby ends. Then nothing can

stop the inexorable thermalization of the dynamical phase by the stochastic vacuum; the

diameter of S will gradually decrease until the dynamical regime dissipates altogether.

What starts as an extremely improbable fluctuation from a typical condition ends in a

typical condition — ultimately, a cosmology is just another way to dissipate a (large) ϕ

fluctuation.

An implicit assumption for the initial fluctuation is that the ψ field on S

is defined in the same spacetime dimension as the transient, approximate spacetime

on S. If the dimensions are different, the ψ particle will not be in an appropriate

representation of G and cannot manifest. By extension, all the other quantum fields

brought into manifestation by ψ must also exist in the same spacetime dimension in this

picture. However, it is possible in principle that other, non-manifesting quantum fields

may be consistent in n+1 spacetime dimensions for n 6= 3, so that in general an initial

fluctuation can bring about the same bootstrap process for any n in which quantum
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fields are consistent. Presumably, n = 3 is merely the most probable.

Clearly the bootstrap process has no separate ‘reheating’ phase as conventional

inflation scenarios do: particle production and exponential spacetime expansion deter-

ministically end together when spacetime (and hence matter distribution) is sufficiently

homogeneous and isotropic. It does not contain an unobserved inflaton field, nor a spe-

cial potential that ensures both enough inflation and a CMB that is compatible with

observations. Hence, the model is strongly constrained and thus subject to falsification:

it must reproduce all the successes of conventional inflation but without the ‘flexibility’

of employing new fields and ad hoc potentials that are only relevant at very early times.

Because the bootstrap process automatically terminates locally once the local

spacetime and matter distribution are sufficiently homogeneous and isotropic, in prin-

ciple the scenario fulfills one of the central goals of inflation without implying eternal

inflation. The way it addresses the horizon problem, again in principle, is a little more

subtle. From the description of the process above, it is apparent that particles are free

to interact and thus redistribute energy among themselves even as the characteristic

energy scale steadily decreases. While a decreasing energy scale cannot correspond to

global equilibrium, if the energy scale decreases at approximately the same rate through-

out a region S′ ⊂ S, then a state of relative equilibrium (relative to the characteristic

scale) can exist within S′. Indeed, this should be the case: the degree of inhomogeneity

determines the particle production rate and the rate at which spatial distances increase

between two fixed points x, y ∈M, but interactions among nearby particles should make

the distribution of inhomogeneities relatively homogeneous within S at each stage of

the process.

The extraordinarily small probability that a fluctuation can lead to cosmoge-

nesis raises a question: Is the emergence picture vulnerable to the Liouville, entropy or

‘Boltzmann brain’ arguments that helped motivate it? General considerations indicate

it is not. The stochastic phase of ϕ almost everywhere on M is maximally uncorre-

lated and free of information. Typical, small fluctuations will be insufficient to create

information, and will rapidly dissipate by self diffusion. Although the stochastic phase

represents an equilibrium-like condition in that ϕ modes have a thermal spectrum, the

nature of the phase precludes defining a set of distinct states or density of states of ϕ

in any region of M. There are multiple reasons for this:

• Volumes and surfaces are undefined on the general metric space M because no
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dimensioned space exists; while balls and spheres of finite radius are compact on

M, using them as a finite cover is inadequate because they are no more measurable

than the object they cover.

• Scale invariance means no function of ϕ is uniquely measurable because the choice

of measure is intrinsically arbitrary.

• Absence of physically meaningful notions of distance or time precludes conserved

dynamical quantities that could usefully define a state.

Moreover, one-dimensional curves are the most general geometric objects on M, so it is

not possible to quantify relative likelihoods of more general ϕ configurations, e.g. over

a given neighborhood on M. Hence, in the stochastic phase there is neither a useful

definition of entropy nor a useful measure of probabilities of different ϕ configurations

arising from a fluctuation.

Even if the relative likelihood of different possible fluctuations cannot be made

precise, there seems to be a heuristic sense in which some resulting configurations are

more likely than others. But how might one frame the issue? Intuition in 3+1 di-

mensions with well defined measures of spatial and temporal intervals is unhelpful for

characterizing the scale-free ϕ on a space-less and timeless M. Different choices of

measure can change the apparent likelihood of the same ϕ configuration. So can the

(fictitious) assignment of different topologies to the same region of M to mimic different

choices of emergent manifolds. Thus, it appears that characterizing relative likelihoods

of different fluctuations from the stochastic phase is not possible, even heuristically: the

idea is too ill-defined to make sense.

The ‘Boltzmann brain’ argument posits that it is far more probable a fluctua-

tion will obtain a transient sentient observer with false memories than a large universe

that produces observers as a by-product; hence, since we see a universe rather than

transient ‘brains,’ the universe was surely not the product of a fluctuation. This ar-

gument assumes a prior state space that does not exist in the emergence scenario, but

even so the argument can be dispatched on other grounds as follows.

For probabilistic reasons, the emergence picture essentially offers a single way

to produce a lump of stable matter, even something as simple as an electron or photon.

Specifically, the bootstrap process requires the production of vast numbers of particles

via the inflation-like process, described above, to obtain the homogeneity and isotropy
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of spacetime needed for stable particles. A cosmology is a (apparently inevitable) con-

sequence of this process rather than a precursor to it. Hence, production of sufficiently

stable matter to build an observer is an all-or-none affair: a ‘sufficiently large’ fluctu-

ation will either lead to rapid dissipation or cosmogenesis. For that reason anthropic

arguments can act as a kind of superselection principle, albeit a non-predictive one:

existence of intelligent observers implies prior cosmogenesis, although in principle the

converse need not be true. Hence, Boltzmann brains should not exist because an emer-

gent spacetime already requires huge quantities of matter to stabilize the spacetime

manifold, making it is vastly ‘cheaper’ to create observers from all that existing matter

than to create, via independent fluctuations, the many particles and requisite spacetime

for a transient brain. (Even if such a brain could be assembled from many independent

fluctuations, a cosmology would ensue regardless, progressing by the same bootstrap

process that ordinarily starts from a single particle.)

1.5 Thesis Plan

1.5.1 Thesis outline

Sect. 1.4 describes a bootstrap process wherein spacetime and matter emerge

concurrently in an inflation-like phase, the goal of which is to provide a plausible ori-

gin of the initial conditions of the Big Bang without the theoretical difficulties of the

conventional inflation idea. The main task of Part I of the thesis is to develop basic

components that implement this process, working in a general metric space with no

prior manifold structure. Part II presents the basic emergence scenario for 3+1 dimen-

sional spacetime and examines the consistency of the construction with some aspects of

established physics. Briefly, key questions addressed in each chapter are thus:

1. Why consider an emergence picture; what is it?

2. From what does spacetime emerge?

3. What existing and new mathematical tools provide full mathematical control of

the emergence?

4. How do dynamics emerge?

5. Is the emergence picture consistent with QM?
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6. How well does the emergence picture reproduce general relativity?

An irreducible scalar field ϕ, postulated in Chapter 2, will play the central role

in this thesis. It manifests both stochastic and dynamical properties. Through its inter-

actions with quantum fields ϕ mediates the emergence and geometry of spacetime. The

picture that will be developed differs substantively from the usual picture of quantum

gravity: while quantum fields determine spacetime geometry through its interactions

with the mediating field, gravity itself is not a quantum field because (as will be seen),

while ϕ acts as an effectively quantized field in its interactions with ‘true’ quantum

fields, in the regime where it mediates gravity ϕ is not a quantum field. Although grav-

ity in the emerged spacetime has a geometric interpretation, the emergent manifold is

only approximately smooth. From this perspective the classical spacetimes described

by general relativity are idealizations that break down at small distance scales because

stochasticity becomes important.

Part I: Basic components

Chapter 2 motivates and develops the basic postulates of the non-quantum,

non-classical, irreducible, real-valued scalar field ϕ, as well as the general metric space

M on which the field lives. M is not endowed with manifold structure, nor is it even

a product space. The rationale for this choice is philosophical: if a spacetime emerges

dynamically, there is no a priori reason for preferring a particular number of spatial

dimensions (or even for it being an integer), metric signature, local flatness, or differen-

tiability; hence, the elementary manifold and its attributes should emerge dynamically.

Chapter 3 focuses on the mathematical framework needed to work with the

intrinsic stochasticity of ϕ and the lack of prior manifold structure. The intrinsic

stochasticity renders ϕ nondifferentiable because ϕ has infinite variation along every

finite path. This necessitates use of the stochastic calculus, which differs in important

respects from the usual calculus of functions of finite variation. Spectral analysis of

functions of infinite variation also require special care. While the mathematical theory

of stochastic calculus and processes is well developed, the construction of stochastic

differential equations is somewhat different in form from partial differential equations

that typically occur is physics. Sect. 3.3 addresses this, using the fact that stochastic

fluctuations are perturbative in the dynamical phase to define an approximate deriva-
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tive. This derivative can then be used anywhere a partial derivative would occur in a

physical setting, recognizing its statistical nature implies an uncertainty. The fact that

the most general objects of study in a general metric space like M are one-dimensional

curves requires adaptation of standard stochastic process theory. Specifically, only one

dimensional stochastic processes can be defined on M, but elementary dynamics involve

local interactions with the entire neighborhood at each point.

Chapter 4 focuses on the emergence of dynamics of ϕ, starting from the pos-

tulates in Chapter 2. The first part develops the stochastic phase; there, the amplitude

of ϕ along every curve obeys the probability density function for Brownian motion, im-

plying the ϕ motions are scale invariant in that phase. A dynamical phase occurs in a

region S of M if a very improbable fluctuation sufficiently breaks scale invariance in S;

this preferred scale is characterized by a finite range of Fourier modes [kmin, kmax] whose

amplitudes exceed their corresponding stochastic phase amplitudes by some physically

motivated factor. The finiteness of the range implies intrinsic hard cutoffs in descriptions

of phenomena, both ultraviolet and infrared — spacetime geometry, energy, momentum,

and phenomena like particles have only a statistical meaning, a meaning that exists only

within (and relative to) the preferred scale. An origin is proposed for product space

structure where none previously existed; it is posited that the spacetime dimension is

essentially fixed by the initial fluctuation that breaks scale invariance. Since there is no

connection between the dynamics on an emergent spacetime and the scale-free dynamics

on the general metric space where they are initially defined, it is necessary to introduce

postulates to provide that connection. After considering these issues, the field equation

for ϕ is derived from the elementary dynamics in 1+1 dimensions for motions along

curves.

Part II: Spacetime and matter emergence

A common viewpoint is that a composite field theory of quantum fields inter-

acting with a non-quantum field is not consistent with quantum mechanics. Chapter 5

is largely devoted to demonstrating that such a field theory can indeed be consistent.

The composite theory has two sectors which should evolve somewhat independently of

each other: a classical sector in which the quantum fields live, and a classical-stochastic

sector which determines the emergence and geometry of spacetime. To help argue that
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the composite field theory is consistent with QM, a formalism developed by Hall and

Reginatto [32] for consistently describing composite systems of interacting quantum and

classical subsystems will be employed. The Hall-Reginatto formalism is summarized,

along with the Schrödinger representation of quantum field theory that it assumes. Ap-

pendix A reviews Hamilton-Jacobi field theory; this is used to define the dynamics of a

non-quantum field component of the composite field theory. The formalism is applied to

a model composite field theory of ϕ plus a collection of quantum fields. Further support-

ing the consistency of the composite field theory, the ϕ becomes effectively quantized

in the quantum sector; this and its self interaction provides the necessary connection

between the quantum fields and the spacetime metric which is developed concretely in

Chap. 6. To assist in modeling the effects of the quantum fields on the ϕ motions, a toy

model of a particle is constructed.

Chapter 6 brings together the material of Part I and part of Chapter 5 to

concretely show how a manifold emerges. Quantitative arguments demonstrate that a

statistically homogeneous energy density of the ϕ field in the classical-stochastic sec-

tor implies boost symmetry; homogeneity and isotropy thus imply emergent Poincaré

invariance. Arguments are then presented that the Lorentz invariance thus derived is ac-

tually local Lorentz invariance, so that introducing inhomogeneous matter distributions

while maintaining the assumptions of the derivation lead to a more general metric like

that obtained in GR. Finally the inflation-like scenario already considered in Sect. 1.4

is examined further.

1.5.2 How to read this thesis

This thesis is lengthy and considers many new ideas. Since reading it com-

pletely at first exposure may be excessively burdensome, it is useful to tailor the reading

to one’s goals. What follows hopefully helps in that regard.

A first reading can reasonably consist of this introductory chapter, Sect. 2.2

which introduces the ϕ field, Sect. 3.3 which defines the approximate derivative, Sect. 4.5

which introduces the ϕ field equation, and Chapter 6. That should give some basic

idea of the emergence picture. Sect. 2.1 includes a brief summary of some standard

background from topology, and Sects. 3.1 and 3.2 review some needed definitions and

theorems from the mathematical theory of stochastic calculus and stochastic processes;

these may be useful if those ideas are unfamiliar. The temptation to skip Sect. 1.6
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(Notation and Conventions) should be resisted; notation has been designed to reduce

ambiguity, but not knowing it may cause confusion at times.

A more careful first reading would include skimming the background material

in Sects. 2.1, 3.1 and 3.2 to find motivations and other comments specific to the emer-

gence picture. One can also skim sections that appear interesting in Chapter 4. If the

composite field theory of ϕ and a collection of quantum fields is of interest, most of

Chapter 5 stands alone and may be read without previously reading Part I.

Limited summaries of standard material are occasionally provided. Specif-

ically, these include standard definitions from topology and general metric spaces in

Sect. 2.1; stochastic calculus and stochastic processes (Sects. 3.1 and 3.2); the Schrödinger

representation of quantum field theory (Subsect. 5.1.2); and a very brief summary of de-

termining the spacetime geometry from the stress-energy tensor in GR (Subsect. 6.2.1).

These may serve as a quick review or brief introduction, but may be skipped if the mate-

rial is already familiar. However, all these sections except the review of the Schrödinger

representation of QFT and the GR summary also include thesis-specific discussion or

postulates, so they should at least be skimmed for non-standard material and remarks.

1.6 Notation and Conventions

Standard conventions

Unless otherwise noted, spatial components of vectors and tensors will be rep-

resented symbolically by Roman letter indices (e.g. i = 1, 2, 3), and spacetime compo-

nents by lowercase Greek letters (e.g. µ = 0, 1, 2, 3). A three-vector (p1, p2, p3) will be

written in non-component form as ~p or p; a four-vector (p0, p1, p2, p3) will be denoted

by p. Tensors of rank greater than one have a boldface font in non-component form.

The metric signature of d-dimensional spacetime will conform to the ‘East

Coast’ convention. For example, Minkowski spacetime with d = 4 has the metric

ηµν = diag(−1, 1, 1, 1) ; γij = diag(1, 1, 1) ; (1.3)

i.e., γij is the usual Euclidean metric. More generally, the physical metric will be

denoted by g, or gµν in component form.
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The Einstein convention will be in effect: summation over a repeated raised and

lowered index is implied; e.g. pµxµ =
∑3

µ=0 p
µxµ =

∑3
µ,ν=0 p

µxνgµν is the contraction

of four-vectors p and x.

Nonphysical versus physical spaces

Some objects will be introduced to provide a mathematical framework for

defining physical objects and quantities. Notation will be employed to distinguish such

objects versus ones with a more direct physical interpretation. For example, two differ-

ent spaces will be important:

1. Nonphysical metric space M ≡ (Σ, d), where d is a distance function, or metric,

on a set Σ. This space contains no notion of dimensionality, area or volume;

the most general objects of interest are one-dimensional paths and curves. A

nonphysical ‘space-time’ Mt ≡ (Σ, d, t, i.e., M augmented with nonphysical time,

will find frequent use.

2. Physical spacetime (M ,g) consisting of a physical metric g on a d-dimensional

manifold M .

Symbols for nonphysical entities will generally be Latin letters written with a

fraktur font. For example: U ⊂M denotes a subset of the general metric space, t is a

nonphysical-time coordinate and d is a distance metric on M. Latin letters in a Roman

or script font will label physical quantities and objects with a physical interpretation,

e.g., S ⊂M might denote a subset of a spacetime manifold M .

One minor abuse of notation that will occur from time to time is to denote an

n-dimensional Euclidean space En as Rn. The two are not the same because En is an

affine space but Rn is not.

For coordinate names, the font will distinguish the space on which the coordi-

nate is defined.

• Nonphysical space. A fraktur font labels coordinates, e.g., x, t are coordinates on

Mt.

• Physical spacetime. Coordinate names on (M ,g) will use an italicized Roman

font, e.g., x and t.

Unfortunately, some letters look similar in Roman and fraktur fonts, like t, t or x, x.
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Symbols for distances and time durations

Accents below the symbol name will distinguish the underlying space on which

it is defined:

• Abstract quantities on Mt have an under-bar, e.g. T = δt for a time duration

or ` for a distance d(x, y). However, when a symbol appears as a subscript no

under-bar is shown, e.g., an open ball of radius ε centered at x would be written

Bε(x).

• Physically meaningful quantities on Mt have an under-tilde, e.g. a physically

interesting interval τ˜ = δt might correspond to a nonphysical time interval τ = δt;

both are defined with respect to Mt.

• Denote physically meaningful quantities on (M ,g) by omitting the above accents.

Presumably τ ∝ τ˜, even though τ and τ˜ are defined on different spaces.

• Labels for points on M or (M ,g) are always unaccented. For example, σ could

label a point on either M or (M ,g); its meaning should be clear from the context.

Fields versus functions of a variable

Notation can help distinguish whether a function argument is a set of points, a

variable or a point. This will be especially important in expressions involving ϕ because

ϕ can occur in so many contexts.

The argument of a function will be enclosed by parentheses or square brack-

ets, and multiple arguments may be separated by commas or semicolons. A spatial

parameter can be a point, coordinate range, or subset; a temporal parameter can be a

particular time or a time interval.

1. Single-valued arguments

• φ(x, t): the comma signifies x and t vary independently; alternatively both

x and t may be fixed if the context indicates.

• φ(x; t): x is fixed and t varies, or vice versa; the context determines which

case applies.
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2. Multiple-valued arguments (sets or intervals)

• φ(x; IT ] given an interval IT ≡ [t0, t0+T ]: the left parenthesis identifies the

first argument as single-valued; the semicolon specifies one argument is fixed

while the other varies; and the right square bracket makes clear the second

argument is a set or interval. The context is that IT is a fixed interval; hence

x must be the varying argument. (If IT were arbitrary but fixed it could be

replaced by δt.)

• ϕ[γ] given γ ⊂ M: denotes the ‘instantaneous’ ϕ field configuration on the

subset γ. Square brackets make clear γ is a set.

• ϕ[γ; t) given γ ⊂ M: denotes the ‘time evolution’ of ϕ[γ] (context is that γ

is a fixed subset; thus t is what varies).

• Point labels may be used instead of coordinates, e.g., ϕ(σ; t) is the time

evolution of ϕ at the fixed point σ.

Arguments of functionals

In some places square brackets will be employed in their more conventional

role in functionals. Like the notation above brackets and parentheses can be mixed:

• F [A,B] : F is a functional of A and B.

• F [A, t) : F is a functional of A and a function of t.

• Notation for functionals and fields may be combined in an expression, e.g., F [ϕ[γ]]

could denote a functional of the field configuration on γ ⊂M.

It should be clear from the context whether square brackets indicate a functional versus

a function of a set or interval.

Standard versus new formal results

To distinguish standard mathematical results from definitions and propositions

obtained in this thesis, the terms Def, Axiom and Theorem will be employed when

summarizing established mathematics, whereas Def*, Postulate and Proposition will

denote precise statements that apply to the new ideas developed herein. The unfortunate
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use of ‘Def*’ to indicate new definitions reflects my lack of imagination in proposing an

equivalent word for ‘definition.’

Verbatim quotations

Related to the statements of standard mathematical results above, there is

often no advantage in rewording statements of axioms, definitions and theorems by

cited authors because they are already clearly and concisely phrased. To identify verba-

tim restatements of such results, the citation will often immediately appear within the

parenthesized definition or theorem. For example, in the title of Def. 3.1.1, the citation

immediately follows the title inside the parentheses thusly:

(Convergence properties of random variables. [42])
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Part I

Pre-Emergent Space
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Chapter 2

Foundation

The introduction described some severe difficulties cosmology faces in explain-

ing the extraordinarily improbable state of the observable universe with time symmetric

physical laws, motivating a picture of emergent spacetime and abandonment of a pre-

existent manifold. Absent a prior manifold, theory offers very limited guidance, a state

of affairs that persists until a manifold has emerged. Hence, philosophical considera-

tions can play an important guiding role in choosing the elementary postulates of the

pre-emergent space.

Two general assumptions or guiding principles have been adopted a priori in

this thesis:

• All physical laws, phenomena and numerical relationships should be comprehen-

sible dynamical consequences of an elementary theory. In turn, the underlying

theory should rest on very simple assumptions containing the barest of prior struc-

ture.

• The elementary theory should imply a typical equilibrium-like condition and con-

tain a stochastic component that allows a temporary, localized exit from the typ-

ical condition. This atypical condition should then dynamically evolve, consistent

with the first assumption.

Of course, both of these general assumptions reflect a particular philosophical viewpoint

about the comprehensibility of Nature — our knowledge of Nature neither indicates

nor contraindicates either of them. The underlying viewpoint is consistent with the

general progress of physics thus far, although the continuing incomprehensibility of some
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foundational aspects of quantum theory are arguably in tension with it. Furthermore,

the first assumption has appeal from the standpoint of theory falsifiability: a theory

which conforms to it should be highly constrained, offering little flexibility for fine

tuning, ad hoc addition of parameters or imposition by fiat of new symmetries to evade

future empirical disagreement. Having offered this limited rationale, no further attempt

will be made to justify these assumptions; they should, however, be remembered for

their role as implicit guiding principles.

The first assumption does not imply that a 3+1 dimensional universe is in-

evitable — it is sufficient that a 3+1 dimensional universe is not unlikely. The assump-

tion does suggest that the full range of possible physical laws and phenomena should

be constrained or even fully determined by the spacetime dimension. The second as-

sumption allows chance initial conditions to determine the dimensionality as well as

‘environmental’ laws that particular distributions of matter may dictate, e.g. a kind of

‘multiverse.’ It also motivates pursuing a picture where spacetime and physical laws are

emergent rather than directly derivable.

The influence of the guiding assumptions is greatest in this chapter. They help

motivate the definitions and postulates that will form the foundation for the rest of the

thesis. Broadly, this foundation can be viewed as a proposal for answering the question,

“What is it that spacetime might emerge from?”

Such definitions and postulates will appear below in two primary contexts. The

first is the mathematical space on which the elementary physical objects and dynamics

will be defined. As Sect. 1.4 indicated, this will be a nonphysical general metric space M

augmented by a nonphysical time t ∈ R+. This space will be specified in Sect. 2.1: its

particular properties will be motivated by the guiding assumptions, but its definition

will rely on established mathematics. The second context is the elementary physical

scalar field ϕ, which will be defined on the augmented space Mt ≡M×R+ in Sect. 2.2.

Here also the guiding assumptions will motivate the choice of properties; the relevant

standard mathematics is Fourier analysis and the stochastic calculus.

Throughout this chapter, significant effort is expended to give the rationale for

each postulate, state relevant definitions, and clearly identify all nontrivial assumptions.

At a minimum this should make it easier to verify inferences and determine the origin

of conclusions that differ from what one’s intuition or implicit theoretical priors might

suggest.
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2.1 Topological Space (Σ, TΣ)

An elementary particle in flat spacetime is an irreducible representation of the

group P ×G, where P is the Poincaré group and G is the internal symmetry group [8].

As a symmetry of spacetime, Poincaré symmetry cannot manifest if no manifold exists,

then the quantum fields whose excitations are the elementary particles cannot manifest

either. Hence assume, as already indicated, there exists an irreducible, non-quantum

field ϕ which mediates the emergence of a physical spacetime with Poincaré symmetry.

Assign no properties to ϕ yet; its properties and laws will be proposed in Subsect. 2.2.

For now, just assume a theory of initial conditions will depend only on a field theory

for ϕ.

Since ϕ is a field, it must be a field over a set; denote this set Σ. Σ must contain

enough structure to permit construction of a theory, but it is desirable to keep prior

structure to a minimum to avoid imposing artificial constraints on the theory. Since a

field theory needs notions of neighborhoods, paths and connectedness, promote Σ to a

topological space with topology TΣ. Jänich [40] defines a topological space thusly1:

Def. 2.1.1 (Topological space. [40]) A topological space is a pair (Σ, TΣ) consisting

of a set Σ and a set TΣ of open subsets of Σ, such that the following axioms hold:

Axiom 1. Any union of open sets is open.

Axiom 2. The intersection of any two open sets is open.

Axiom 3. ∅ and Σ are open.

Following standard convention, we will refer to the space (Σ, TΣ) as Σ unless noted

otherwise.

A field theory obviously requires some notion of relative ‘closeness’ of points.

Moreover, there are pragmatic considerations: it is very difficult to imagine making

much progress in developing a field theory for ϕ without tools like elementary calculus,

so we need a more precise notion of distance between points. We need Σ to be a metric

space.

Def. 2.1.2 (Metric space. [40]) A metric space is a pair (Σ, d) consisting of a set Σ

and a real function d : Σ× Σ→ R, called the ‘metric,’ such that:

1Most definitions in this section will be taken from Jänich [40].
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M1. d(x, y) ≥ 0 for all x, y ∈ Σ and d(x, y) = 0 if and only if x = y.

M2. d(x, y) = d(y, x) for all x, y ∈ Σ.

M3. (Triangle Inequality.) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ Σ.

To simplify notation, henceforth M ≡ (Σ, d).

Def. 2.1.2, while standard, may seem not to hold for Minkowski space. That is

not true, however, because the underlying space is R4; d(x, y) is a distance function on

R4, not R1,3. Stated differently, a space must have a prior topology in order to define a

manifold M and a Minkowski metric η on M ; d determines that topology, so it cannot

be the same as η.

Balls and spheres in M will find repeated use, so collect their definitions here.

Def. 2.1.3 (Balls and spheres. [40]) Let M ≡ (Σ, d) and x, y ∈M.

B1. Bε(x) is the open ball of radius ε (or ε-ball) centered at x:

Bε(x) ≡ {y | d(x, y) < ε} .

B2. B̄ε(x) is the closed ball of radius ε centered at x:

B̄ε(x) ≡ {y | d(x, y) ≤ ε} .

B3. Kε(x) is the sphere (or shell) of radius ε centered at x:

Kε(x) ≡ {y | d(x, y) = ε} = B̄ε(x)\Bε(x) .

The metric induces a topology on the set Σ as follows.

Def. 2.1.4 (Topology of a metric space. [40]) Let M ≡ (Σ, d). V ⊂ Σ is called

open if for every x ∈ V there is an ε > 0 such that Bε(x) is still contained in V . The

set TΣ(d) of all open sets of Σ is called the topology of M.

To make Def. 2.1.1 for a topological space (Σ, TΣ(d)) consistent with Def. 2.1.4,

we need (Σ, TΣ) to be metrizable. The space M is metrizable if there is a metric d on

the set Σ such that TΣ(d) = TΣ.

Elementary calculus requires well defined limiting procedures, so we care about

convergence of sequences along paths in M.
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Figure 2.1: Convergent sequence.

Def. 2.1.5 (Convergence in a topo-

logical space. [39]) A sequence {σn} of

points in M converges to σ if for each

neighborhood U of σ there exists an inte-

ger k such that σn ∈ U whenever n ≥ k.

If {σn} converges to σ in this sense, then

σ is a limit point of {σn}, and we can

write σn → σ . A sequence {xi} such that

d(xi, xj)→ 0 as i, j →∞ is called a Cauchy sequence. Every convergent sequence is

a Cauchy sequence.

Def. 2.1.6 (Completeness of a space. [39]) If every Cauchy sequence is convergent

in a space, the space is called complete.

Hausdorff separability guarantees uniqueness of limits of sequences in M. A

topological space is Hausdorff separable if every pair of different points x, y ∈ M have

disjoint neighborhoods. All metric spaces are Hausdorff separable [40]; for example, if

d(x, y) = ε > 0, then subsets P = {p | d(x, p) < ε/2} and Q = {q | d(x, q) < ε/2} are

disjoint.

If physical spacetime is emergent, it must emerge from something; assume

that physical spacetime emerges in consequence of the laws of ϕ. Since a metric has

been imposed on Σ largely for pragmatic reasons, d should have no discernible relation

to the emergent metric on the emergent physical spacetime. That is, d is part of the

‘scaffolding’ of the theory: it will be used to define and construct its elements, but it

should leave no visible trace in the eventual theory. To achieve this ideal, M should

contain a bare minimum of structure; certainly it should not imply a spacetime manifold.

Notions like dimensionality, metric signature, and even product space topology should

emerge along with the physical metric, and not in any way be implied by or traceable

to M.

Curves, paths and arcs are primary objects of study in general metric spaces.

An arc will mean a curve distinguished by some property, for example a geodesic (see

Def. 2.1.14).
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Def. 2.1.7 (Curve. [16]) Let M be a general metric space. A curve is a continuous

map c : I → M, where I = [ta, tb] ⊂ R is an interval having a nonempty, connected

interior. (For notational convenience this curve may sometimes be denoted c(ta, tb).)

Def. 2.1.8 (Path in a metric space. [16]) A path γ of curve c is its image, i.e., the

set { c(t) | t ∈ I } ⊂ M, having endpoints γ(ta) = σa and γ(tb) = σb. (For notational

convenience this path may sometimes be denoted γ(σa, σb).)

Although not required by their definitions, the following convention will usually

be employed: a path will indicate a spatially continuous subset of M that is coordina-

tized as x : R 7→ γ, whereas a curve will refer to a map c(t) parameterized by time.

With this convention, a curve has an associated speed.

Def. 2.1.9 (Bounding speed of a curve. [16]) Given a curve c : I → M parame-

terized by an interval I = [ta, tb], and a path γ(σa, σb) which is its image: ρ ≥ 0 is a

bounding speed of c if d(c(s), c(t)) ≤ ρ|s− t| for all s, t ∈ I.

Def. 2.1.10 (Speed of a curve. [16]) The speed, or metric derivative, of a curve c(t)

is the infimum of the bounding speed at t, or the limit superior,

|ċ(t)| = lim sup
|t−s|→0

d
(
c(t)− c(s)

)
|t− s|

. (2.1)

Hence distinct curves can have the same image and thus correspond to the

same path. For example, a path can be traced at different speeds, or a closed path can

be traversed n ∈ N times. The speed may vary along the curve.

One topological attribute of TΣ that could potentially manifest in a physical

theory is any non-connectedness of M. Given that ϕ is to mediate spacetime emergence,

it is sensible to assume ϕ completely covers M; otherwise the ‘uncovered’ part would

be inaccessible to a theory. Similarly, it makes sense to assume at least one path exists

between each two points x, y ∈ M; otherwise M would break up into disjoint subsets,

and only the subset where we as observers find ourselves would be meaningful in a

theory: M should be path connected.
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Def. 2.1.11 (Connectedness. [40]) M

is said to be path-connected if every two

points σa, σb ∈M are connected by a path

γ such that γ(ta) = σa and γ(tb) = σb.

M is also simply connected if, further-

more, whenever γ : [ta, tb] → M and η : [ta, tb] → M are two paths such that

γ(ta) ≡ η(ta) and γ(tb) ≡ η(tb), then γ and η are homotopic (informally, each can

be ‘continuously deformed’ to the other).

Path connectedness alone is insufficient to prevent observational consequences

of artifacts of TΣ like exotic effects from ‘holes’ in the space. Assume M is simply

connected to preclude such holes. Furthermore we should require that M is a complete

metric space (Def. 2.1.6), i.e., a space in which every Cauchy sequence in M converges

in M. Requiring completeness precludes exotic features of the metric that might lead

to non-converging sequences with the same effect as holes.

The metric must meet additional requirements to serve its pragmatic role in

defining properties and dynamics of ϕ. The metric distance d(x, y) should be analogous

to the geodesic distance between x and y on a manifold; it is the ‘shortest distance’

between x and y consistent with the topology of M. The next three definitions make

this precise.

Def. 2.1.12 (Path and Curve Lengths in a Metric Space. [16]) Given a curve c

defined as in Def. 2.1.7, the length L(c) is the supremum:

L(c) = sup
n−1∑
i=0

d (c(ti), c(ti+1)) , (2.2)

taken over the set of all finite partitions (ta= t0, t1, . . . , tn= tb) of c(ta, tb). If L(c) <∞
then c is called rectifiable; otherwise c is non-rectifiable. If a path γ(σa, σb) is the

image of c, then L(γ) = L(c); γ is rectifiable if L(c) <∞.

The curve length can also be expressed in terms of its speed (Def. 2.1.10):

L(c) =

∫ T

0
|ċ(t)| dt . (2.3)

35



Def. 2.1.13 (Intrinsic Metric, and Length Spaces. [40])

Let Γ(x, y) ≡ {γ
λ

: [x, y] → M | γ
λ
⊂ M, λ ∈ Λ} with Λ an indexing set for all

rectifiable paths between x, y. The intrinsic metric is a function dI : Σ×Σ→ R, such

that dI(x, y) = inf{L(γxy) | γxy ∈ Γ(x, y)}. If d(x, y) = dI(x, y) for all x, y ∈ Σ then M

is a length space.

We will assume M is a length space. The meaning of a geodesic, or minimum

path between x and y, readily follows from the intrinsic metric dI :

Def. 2.1.14 (Geodesic. [40]) A geodesic or arc is a curve c for which L(c) = dI(x, y).

Euclidean spaces are especially simple to work with; for example, parallel

transport trivially holds. When defining the properties and motions of ϕ on M, it will

be convenient if M is as ‘Euclidean-like’ as possible. Since M is neither one-dimensional

nor a product space, this can be by analogy only. The idea is to impose a homogeneous

metric which, given a ball Bε(a) centered on a and a map f that ‘translates’ the ball

from a to b, both preserves the distance between points in the ball (no deformation)

and ensures the distance between each point x and its image f(x) is invariant for all

x ∈ Bε(a) (no ‘rotation’):

Def*. 2.1.15 (Homogeneous Metric.) Let M ≡ (Σ, d) be a complete, simply con-

nected metric space and f : Bε(x) → Bε(y) be a continuous invertible map defined for

some Bε(x), Bε(y) ⊂M, such that d(a, f(a)) = d(b, f(b)) and d(a, b) = d(f(a), f(b)) for

all a, b ∈ Bε(x). (This is trivially true when x and y are the same point.) If f exists

for all choices x, y ∈ Σ, then d is a homogeneous metric on Σ.

This allows defining the counterpart of a straight line in Euclidean space:

Def*. 2.1.16 A geodesic of M is a straight curve, and its image a straight path, if

d(x, y) is homogeneous in the sense of Def*. 2.1.15.

For utility, the metric on M will be assumed homogeneous in the sense above.

Developing equations of dynamics and notions like ‘parallel transport’ and wavefront

propagation along a path, for example, are much easier when there are no local varia-

tions of the metric. If we can say that two closed balls B̄ε(x) and B̄ε(y) for x 6= y ‘look

alike’ in some sense, even when M has minimal geometric structure, then we can more
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easily characterize how the ‘shape’ and extent of an object change as it ‘moves’ on M,

compared to the more general case where ‘deformations’ are introduced by inhomogene-

ity of d.

Imposing homogeneity on d is a very strong constraint on M. Nevertheless, as

noted in the discussion following Def. 2.1.6, d is a nonphysical metric and thus can have

no observable consequences. This requirement holds whether or not d is homogeneous.

Insensitivity to the form of d is the important constraint — that is what imposes a severe

restriction on what dynamics can be postulated. In that sense, there is no new loss of

generality in postulating M is homogeneous. (Indeed, Proposition 4.2.2 will show that

the stochastic behavior implied by Postulate 2.2.8 makes it is unnecessary to postulate a

homogeneous metric: any choice of metric on Σ that is consistent with Postulate 2.1.27

sans the homogeneity requirement will be suitable; see also Rmk. 4.2.3.)

For future convenience, two related definitions can be given here:

Def. 2.1.17 (Distance between sets. [40]) Let M be a metric space. The distance

between a point x and a set A ⊂M is

d(x,A) = inf{d(x, y) | y ∈ A} , (2.4)

and the distance between two sets A,B ⊂M is

d(A,B) = inf{d(x, y) |x ∈ A, y ∈ B} . (2.5)

Homogeneity on d allows useful generalized notions of angle, inner product

and norm. Angles can be defined from a generalization of the cosine law for triangles,

C2 = A2 +B2 − 2AB cos θ.

Def. 2.1.18 (Angle in a metric space, ∠̃. [16]) The angle between two curves c1

and c2 : [0, 1]→M with the same origin c1(0) = c2(0) = y is

∠̃(c1(0), c2(0)) ≡ lim
s,t→0+

∠̃c1(s) y c2(t) (2.6)

when the limit exists, where ∠̃ is the comparison angle,

∠̃xyz ≡ arccos
d(x, y)2 + d(y, z)2 − d(x, z)2

2 d(x, y) d(y, z)
. (2.7)
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Def. 2.1.19 (Metric space inner product. [16]) Let the norm ‖ċ‖ be the speed of

c(t) at t = 0,

‖ċ‖ ≡ lim sup
t→0

d(c(t), c(0))

|t|
. (2.8)

Then the inner product is

〈c1, c2〉 ≡ ‖ċ1‖‖ċ2‖ cos
[
∠̃(c1(0), c2(0))

]
. (2.9)

Next, consider to what extent properties of M can and should determine what

might be characterized as intrinsic ‘scales.’ First, consider boundedness:

Def. 2.1.20 (Boundedness. [14]) The diameter of a region U of M is diam(U) =

sup{d(x, y) |x, y ∈ U}; then U is bounded if diam(U) is finite.

Remark 2.1.21 (Closed and bounded metric spaces. [14]) Every metric space is

closed [14]. Moreover, if d is a metric then ρ = d/(1+d) is also a metric, so that, given

the homeomorphism h : Σ → Σ defined by h(x) = x, (Σ, d) and (Σ, ρ) are topologically

equivalent. Thus, a bounded metric can be equivalent to an unbounded metric.

Def. 2.1.22 (Total boundedness. [14]) A metric space M is totally bounded if for

every ε > 0 there is a finite set {x1, x2, . . . , xn} ⊂M such that Bε(x1) ∪Bε(x2) ∪ · · · ∪
Bε(xn) = M.

Total boundedness can be also be stated in terms of Cauchy sequences (Def. 2.1.5) [14]:

Theorem 2.1.23 A metric space M is totally bounded if and only if every sequence

has a Cauchy subsequence.

Compactness is a useful property when it is present.

Def. 2.1.24 (Compactness. [40]) A topological space is called compact if every open

cover possesses a finite subcover. This means that M is compact if the following holds:

If U = {Uλ}λ∈Λ is an arbitrary open cover of M, i.e., Uλ ⊂M open and
⋃
λ∈Λ Uλ = M,

then there is a finite number of λ1, . . . , λr ∈ Λ such that Uλ1 ∪ · · · ∪ Uλr = M.

The following theorem characterizes compactness in general metric spaces [14]:

Theorem 2.1.25 A metric space is compact if and only if it is complete and totally

bounded.
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The role of d will primarily be restricted to defining the dynamics of ϕ. An

important goal is that d should have no discernible relation to a dynamically emergent

physical metric g. If M is bounded then diam(M) is the maximum possible d-measured

distance scale. In light of Rmk. 2.1.21, however, the distinction between bounded and

unbounded is artificial; an equivalent metric can make M unbounded and vice versa.

Hence, to ensure d has no effect on the physical distances measured by g, physical

distances will be determined by the ϕ dynamics alone. That is, the dynamics of ϕ can

effect an arbitrary rescaling of d-measured distances2, thereby obtaining an unbounded

physical space from a bounded metric space. Hence, M can be taken to be bounded

without loss of generality.

If M is bounded and an emergent physical spacetime metric does not de-

pend on the form of d, then Σ cannot be a discrete set. Discreteness would imply

inf{d(x, y) |x, y ∈ Σ} imposes a finite minimum distance on M. The following theorem

guarantees that every neighborhood of x ∈ Σ is an infinite set when M is complete

(Def. 2.1.6).

Theorem 2.1.26 (Munroe 1953, p.27 [55]) Given a neighborhood Bε(x) = {y | d(x, y) <

ε}, if x is a limit point of P ⊂M then for every ε > 0, P ∩Bε(x) is an infinite set.

The desired properties of M can be summarized in a single postulate.

Postulate 2.1.27 (Metric space M.) An irreducible field ϕ (Sect. 2.2) can be defined

on an uncountable set Σ with the following properties and structure:

T1. Associated with Σ is a metric d : Σ×Σ→ R such that Def. 2.1.2 holds. That is,

M ≡ (Σ, d) is a metric space, and hence also a topological space (Σ, TΣ) having

the topology TΣ which is induced by d.

T2. M is complete (Def. 2.1.6).

T3. M is simply connected (Def. 2.1.11).

T4. M is homogeneous in the sense of Def*. 2.1.15. (Rmk. 4.2.3 will explain why

this postulate is unnecessary; it is imposed for its utility.)

T5. In light of Rmk. 2.1.21, M can be taken to be bounded without requiring it to be

actually postulated.

2Penrose diagrams represent infinite distances finitely. Here, on the other hand, infinite distances
should be obtainable by (dynamically) rescaling finite distances.
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2.2 Irreducible Field ϕ on (Σ, d)

Sect. 2.1 proposes a minimal ‘canvas,’ M, upon which a theory might be drawn

and painted. In this dubious metaphor, the paint is the irreducible ϕ field that will

mediate spacetime emergence and determine its properties. This section motivates and

postulates specific attributes of ϕ.

Energy and momentum are dynamical quantities with very special status in

physics. They are fundamental to the Hamiltonian (and hence Lagrangian) formalism

on which quantum theory depends, and they determine spacetime geometry in general

relativity. In an emergence picture, however, they cannot be taken for granted because

they depend on physical space and time which do not exist prior to spacetime emergence:

• The Hamiltonian is the generator of time translations, but the absence of time

implies there is no Hamiltonian to generate it;

• linear momentum is the generator of spatial translations, but the absence of a

notion of relative position implies momentum is undefined; and

• angular momentum is the generator of rotations, but since a notion of angle is not

meaningful neither is angular momentum.

Even if it were possible to define consistent notions of energy and momentum on M,

without a unique map from points on M to points on a physical manifold M , i.e.,

a physical spacetime with M unique, the exercise would be purely formal. That is

why M should be considered nonphysical. The physical entity is ϕ, which requires the

mathematical structure of M for its definition and manipulation in a theory.

Thus, energy and momentum should be considered emergent notions and not

elementary properties of ϕ. It makes no sense to specify the dynamics of ϕ by writing

down a Lagrangian. Instead it is necessary to specify a more elementary form of dy-

namics, one that can be defined locally on M. This will require augmenting M with

a nonphysical cosmic time t to do so. Then the motions of ϕ should be expressible on

curves parameterized by t; curves are the most general, measurable geometric objects

on M.

Finally, if ϕ is the only irreducible field that can manifest in the absence of

physical spacetime, its properties and dynamics must provide whatever is necessary to
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generate an ‘initial condition’ ϕ[U; t0) in a region U of M. Otherwise cosmogenesis would

not be possible in this picture.

2.2.1 Elementary oscillator field, ω̃[M]

A primary role of ϕ is to mediate the emergence of spacetime, relying only on

the minimal prior structure of Postulate 2.1.27 and local, elementary properties of ϕ. An

elementary property of ϕ obviously cannot emerge (or else it would not be elementary).

The lack of notions like spatial dimension and angle, ϕ on M means ϕ cannot be vector-,

tensor-, or spinor-valued; ϕ is effectively constrained to be scalar valued. Hence take ϕ

to be a real-valued field as the simplest choice.

What might the elementary scalar property of ϕ represent? If energy is an

emergent notion as the Introduction argues, energy is not a viable candidate. If ϕ were

a quantum field it might represent a probability amplitude, but it is not. No physi-

cal quantities are obvious candidates — ϕ likely has no direct counterpart in existing

theories.

In a picture where the initial conditions for the Big Bang are obtained from

ϕ and a collection of quantum fields, a scenario for cosmogenesis must include at least

two stages. The quantum fields cannot manifest without at least some form of primitive

spacetime, so in the ‘primordial’ condition the only available dynamics come from ϕ

self interaction. Then the initial stage, the onset of cosmogenesis, is a transition from

the primordial condition of ϕ[M] to a primitive, predecessor spacetime in a neighbor-

hood U ⊂M; it can depend only on properties of ϕ[U]. The second stage presumably

encompasses the evolution of that predecessor into an emergent spacetime in U. Since

a primitive spacetime exists from the first stage, the quantum fields can now also par-

ticipate.

What this means is the properties of ϕ, in particular whatever the real-valued

quantity at each point of M represents along with the ϕ field equation, must contain the

wherewithal to obtain at least the limited form of physical spacetime of the first stage

above. Hausdorff separability of the points in M means that, in principle, ϕ at a point σ

can vary relatively to ϕ on the infinitesimal neighborhood Bε(σ). That and the simple

connectedness of Bε(σ) suggests σ could be a precursor to a position in physical space.

The variations of ϕ at σ, ignoring the variations of ϕ on its neighborhood Bε(σ)\σ, can

be taken to be evolution with respect to a precursor of time. Finally, interactions of
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ϕ(σ) with ϕ[Bε(σ)\σ] could cause propagation of field changes and thereby connect the

precursors of space and time to obtain a precursor of spacetime.

Hence assume the elementary property of ϕ at each point somehow obtains

a physical precursor of local time, such that it eventually manifests in local dynamics

(e.g., signal propagation), randomness in time, and, indirectly, even an arrow of time.

Propose δt as the minimum interval of this ‘primitive’ time.

Now consider the propagation of ϕ inhomogeneities on M. The ‘signal’ prop-

agation is constrained by the boundedness of M, Postulate 2.1.27(T5): Clearly if M is

bounded, then d measures a finite maximum distance diam(M); see Def. 2.1.20. Since

M is homogeneous by Postulate 2.1.27(T4), no straight path between two points of M

will be longer than diam(M). Hence, in principle, if d directly or indirectly measures

signal propagation distances, the bounded nature of M could be detected in an emergent

spacetime by observing signals that were emitted sufficiently distant in the past. This

would violate a requirement of Sect. 2.1 that the form of d must have no observable

effect in an emergent spacetime.

One way to avoid this violation is to assume the primitive time has no minimum

interval, i.e., δt → 0. To accommodate a flow of primitive time, it will be convenient to

mathematically abstract the notion by augmenting M with ‘cosmic time,’ a real-valued

affine parameter t. Then by rescaling cosmic time intervals ∆t and the distance metric

d, the effective scale of phenomena can be whatever we wish. As long as the propa-

gation speed of signals scales in the same way as the characteristic scale of emergent

phenomena, we can have a finite but arbitrarily large physical spacetime emerge in U.

Such rescaling should allow, in principle, obtaining a scale invariant fundamental the-

ory wherein different, arbitrarily large universes can arise at different cosmic times or

different regions of M from the same dynamics but different initial conditions. This

picture motivates two postulates.

Postulate 2.2.1 (Cosmic time.) The cosmic time t is a continuous, dimensionless,

monotonically increasing, real-valued affine parameter which orders a sequence of ϕ con-

figurations on M. Cosmic time applies globally on M by fiat, so that a time-augmented

metric space can be defined as Mt ≡M× R ≡ (Σ, d; t).

Remark 2.2.2 Cosmic time has the same mathematical status as M. Like M, it is

an artificial construction in that it is introduced solely to provide minimal mathemat-
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ical structure for defining the physical elements and their motions. Consequently, an

emergent physical spacetime should contain no evidence of cosmic time.

The ϕ field will be introduced indirectly. Define a field of point-like oscilla-

tors, ω̃[M], of inconstant, arbitrarily large frequency (ω(σ) → ∞) as the elementary

substructure of the ϕ field.

Postulate 2.2.3 (Irreducible oscillator field, ω̃[M; t).) A unique simple harmonic

oscillator ω̃(σ; t) exists at each σ ∈M, whose frequency and evolution are measured with

respect to cosmic time.

Due to a paucity of suggestive symbols, ω(σ) will denote two different things: ω̃(σ) will

denote the oscillator at the position σ, while ω(σ) (no tilde) will denote the frequency

of the oscillator ω̃(σ).

The difference in phase between oscillators will be needed to define ϕ.

Def*. 2.2.4 (Oscillator position, ϑ(σ; t).) For all σ ∈ M, the dimensionless po-

sition ϑ(σ; t) ∈ [0, 2π) is the difference in position of ω̃(σ; t) from ω̃(σ0; t) at the same

cosmic time t, where σ0 ∈M is a fixed (but arbitrary) reference point.

Def*. 2.2.5 (Relative oscillator phase, φ(σ,σ′; t).) Let c : [0, 1]→M be a geodesic

with c(0) = σ and c(1) = σ′, and let Tn be a sequence of partitions (0= t1, t2, . . . , tn=1).

Then the dimensionless relative phase between ω̃(σ) and ω̃(σ′) at time t is the supremum

over partitions of accumulated relative oscillator positions:

φ(σ, σ′; t) ≡ sup lim
n→∞

n−1∑
i=1

[
ϑ(c(ti); t)− ϑ(c(ti+1); t)

]
. (2.10)

The relative phase between two oscillators is more general than their relative

displacement. The former can be any finite number while the latter is restricted to

[0, 2π).

Postulate 2.2.6 (Elementary oscillator properties.) The oscillator field of Pos-

tulate 2.2.3 has the following properties.

W1. Infinite oscillator frequency in the sense that ω(σ; t) → ∞ for all t. In

general ω(σ; t) is not constant on any time interval.
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W2. Continuity of relative oscillator phase: Given ω̃(σ; t) and its infinitesimal

neighborhood, ω̃[Bε(σ); t),

ϑ(σ; t)− ϑ(σ′; t)→ 0 as ε→ 0 , ∀σ′ ∈ Bε(σ) . (2.11)

W3. Finite but unbounded relative phase φ(σ, σ′; t) at any time t when d(σ, σ′)

is finite.

The physical field is the oscillator field, ω̃[M] given by Postulates 2.2.3 and

2.2.6. No new postulate is needed for the elementary scalar field that will be of primary

interest in this thesis; it is sufficient to define ϕ in terms of the oscillator field:

Def*. 2.2.7 (Irreducible scalar field, ϕ[Mt].) The dimensionless real scalar field

ϕ on Mt is

ϕ(σ; t) ≡ φ(σ, σ0; t) , (2.12)

where σ0 ∈ M is a fixed reference point for all t and φ(σ, σ0; t) is the relative phase

(Def*. 2.2.5) between ω̃(σ; t) and ω̃(σ0; t).

Thus ϕ(σ0; t) = 0 for all t by definition. Finiteness of ϕ is protected by the continuity

property, Postulate 2.2.6(W2).

2.2.2 Intrinsic stochasticity of ϕ

Neither the postulates for ϕ nor for Mt on which ϕ lives provide an origin

of initial conditions for cosmogenesis. Clearly, a homogeneous scalar field contains no

information and hence no phenomena. One solution is to postulate an initial state

ϕ[M; t=0) that happens to be conducive to cosmogenesis, then let ϕ evolve determin-

istically as a classical field. That idea feels contrived and non-explanatory — it leaves

completely unanswered the question of what produced the initial state. A more natural

origin of inhomogeneity is random ϕ fluctuations, originating from an intrinsic property

of the point-like oscillators: that would make ϕ a stochastic field.

According to Postulate 2.2.3 the oscillator field ω̃[M] is the underlying irre-

ducible physical field; the ϕ field is defined in terms of ω̃[M] through Def*. 2.2.7. Since

the oscillators are assumed to be the most elementary entities, no external constraint can
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exist to impose a ‘natural’ or intrinsic mean frequency. Thus a reasonable assumption

is that an oscillator’s frequency can drift over time relatively to the reference oscillator

ω̃(σ0). This would be due to the accumulation of small stochastic ‘impulses,’ with the

continuity property keeping the frequency difference ω(σ; t)− ω(σ0; t) finite. Assuming

the probability density function for the resulting fluctuations δϕ(σ; t) is scale invariant,

similar behavior should occur at all d-measured scales. Randomness can thus introduce

finite inhomogeneities into ϕ[Mt] that, in principle, provide the initial conditions for

cosmogenesis.

Electronic oscillators offer a useful analogue of this idea. Thermally induced

random voltage variations modulate the frequency and manifest as oscillator jitter.

During a period T that is short compared to the oscillator period but long compared

to the time scale of thermal fluctuations, a large number of thermal fluctuations of

different amplitudes superpose to obtain a measurable change, δV . A good model [73]

for thermal noise is Gaussian white noise, Nw(t), which has the properties:

• Expected value 〈Nw(t)〉 = 0, where the mean is an ensemble mean;

• Autocorrelation (autocovariance) function

Rw(τ) = 〈Nw(t+ τ)Nw(t)〉

which states that the correlation length is zero; and

• Spectral density function which is constant for all ω,

Sw(ω) = S0 = const .

In physical systems these properties are idealizations. For example, no practical noise

source has a constant spectrum at all scales; the atomic scale imposes an obvious cut-

off. For stochasticity in ϕ the properties must be taken seriously to preserve the scale

invariance of the theory. (Scale invariance is a necessary condition for ensuring the

form of the distance metric d has no observable consequences, given that d measures

the ‘absolute’ scale.) Rmk. 3.1.12 will discuss this further.

Stochastic fluctuations δϕ(σ; t) can be a consequence of white noise as follows.

During a sample period τ , continual oscillator jitter means Nw(t) corresponds to a large

number of frequency changes δω(σ), which can be thought of as a series of impulses
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that modulate ω(σ). Since ω̃(σ) is an infinite frequency oscillator, δω/ω is infinitesimal,

and assuming a uniform distribution for the jitter is reasonable. The cumulative effect

of many frequency-changing impulses during τ is that the oscillator position deviates,

compared to what it would have been in the absence of impulses, by an amount δϑ(σ) ∈
R which may be positive or negative.

Formally, Brownian noise is the integral of white noise (see Subsect. 3.1.2), so

the cumulative deviations in oscillator position over a time τ will obey a probability

density function for Brownian noise (Def. 3.1.2), i.e., Normal distribution with zero

mean and variance τ . The correspondence with classical Brownian motion of a particle

is straightforward: collisions of the particle with molecules in the surrounding fluid act

as impulses that change the particle velocity v, analogously to jitter that changes ω(σ),

and the cumulative effect of the impulses is that the displacement of the particle from

its starting position obeys the PDF for Brownian motion, like the displacement ϑ(σ)

for the oscillator ω̃(σ). The Brownian nature of δϑ(σ; Iτ ], Iτ ≡ (t, t+τ ], can also be

viewed as a random walk, where an impulse δω(σ, t∗) at time t∗ causes a step δϑ(σ, t∗)

of variable size that may be positive or negative.

It will be more useful to work with relative phase changes φ(σ, σ0; t) than

deviations from expected oscillator position δϑ(σ; t). Since the white noise impulses also

change the nonlocally-defined relative phase φ(σ, σ0; t), the field ϕ(σ; t) ≡ φ(σ, σ0; t) will

obey the PDF for Brownian noise whenever dynamics can be ignored.

Hence, the net change in ϕ(σ) during a time period τ can be expected to have

two contributions: intrinsic stochasticity of ϕ(σ) as developed above, and a deterministic

dynamical response to changes of ϕ in the neighborhood of σ. The intrinsic stochasticity

is specified thusly:

Postulate 2.2.8 (Oscillator stochasticity.) Let τ be an arbitrary period of cosmic

time. During an interval Iτ = [t0, t0 +τ ] with t0 arbitrary, the oscillator ω̃(σ) under-

goes a frequency change δω(σ; Iτ ] with a corresponding total change in relative phase

δϕ(σ; Iτ ] ≡ δφ(σ, σ0; Iτ ]. This change includes a stochastic contribution δϕ(σ; Iτ ]rand

which obeys the probability density function for Brownian noise:

f(δϕ, τ) =
1√
2πτ

exp

(
−(δϕ)2

2τ

)
, τ = t− t0 , (2.13)

i.e., the Normal distribution with zero mean and variance τ (see Def. 3.1.2). The total

change δϕ(σ; Iτ ] obeys the PDF (2.13) almost everywhere on Mt.
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The last sentence of the postulate asserts that stochastic fluctuation is the usual con-

dition for ϕ[Mt], and hence ω̃[M], at all distance and time scales. Then manifestation

of dynamical phenomena of physical interest will only occur in special cases of random

origin. The dynamical contribution to δϕ, i.e., a coupling term δϕ(σ; Iτ ]coupling, will be

specified in the next subsection.

A characteristic of Brownian motion is infinite variation along every finite

length curve. (Variation in this sense is a property of a function, and has little to do

with the calculus of variations; see Subsect. 3.1.1.) Infinite variation of ϕ[c] is the reason

that ϕ is not differentiable anywhere in the usual sense. It motivates the introduction

of an approximate partial derivative to replace the usual partial derivative, e.g.,

lim
δt→0

δϕ̄(σ; t)

δt
= ∂̄tϕ(σ; t) .

(The approximate derivative is denoted by ∂̄tϕ instead of ∂tϕ̄ to conform with the

notation introduced in Sect. 3.3.)

Def. 2.2.9 (Variation of a function. [42]) The variation of a real-valued function

φ(t) over an interval [a, b] ⊂ R is

Vφ([a, b]) = sup
n∑
i=1

∣∣φ(tni )− φ(tni−1)
∣∣ ,

with the supremum taken over partitions a = tn0 < tn1 < · · · < tnn = b. Since the sum

increases as the partition is made finer, the variation of φ also can be written

Vφ([a, b]) = lim
δn→0

n∑
i=1

∣∣φ(tni )− φ(tni−1)
∣∣ , δn = max

1≤i≤n
(ti − ti−1) . (2.14)

Hence the variation of φ along a curve c(t) is

Vφ(c) = sup lim
n→∞

n∑
i=1

∣∣φ(c(ti))− φ(c(ti−1))
∣∣ . (2.15)

2.2.3 Elementary dynamics of ϕ

Elementary dynamics of the ϕ field are to be described in terms of the distance

metric and cosmic time. Assuming each oscillator is completely characterized by its

frequency and relative phase, dynamics require coupling between oscillators. It will

be assumed all dynamics are local. That is, consistent with Hausdorff separability
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(separability into neighborhoods), an oscillator ω̃(σ) will only couple to its infinitesimal

neighborhood, ω̃[Bε(σ)\σ]. If local dynamics are what maintain the phase continuity

of Postulate 2.2.6(W2), the coupling strength between neighboring oscillators must be

infinite in an infinitesimal neighborhood.

Specification of the dynamics must respect the role of Mt as a mathematical

space which has been introduced to allow precise definition of elements of the theory,

and not take Mt to be a primitive form of physical spacetime. That is, there is no intrin-

sic correspondence between Mt and an emergent physical spacetime (M ,g); dynamics

provide the only connection between them. Encoding any geometric notions into the

postulates for dynamics, e.g. finite dimensionality or the existence of orthogonal direc-

tions, would imply that such geometric notions are ultimately derived from Mt rather

than being emergent. Inevitably, that would leave a trace of Mt in the description

of the physical spacetime, in conflict with the requirement that Mt has no observable

consequences.3

Curves are the most general measurable geometric objects on Mt, so they will

be the starting point for defining the dynamics. That is, the coupling can be defined

between two oscillators ω̃(σ) and ω̃(σ′), say along a straight path γ(σ, σ′) in the limit

L(γ)→ 0. Each oscillator ω̃(σ) couples to its neighborhood ω̃[Bε(σ)], so the net coupling

of ω̃(σ) should just be the average contribution from all straight paths γ(σ, σ′) for all

σ′ ∈ Bε(σ), in the limit ε → 0. Hence, by postulating the dynamics in terms of paths

or curves and developing a procedure for averaging over neighborhoods (the task of

Sect. 3.5), it should be possible to avoid over-specifying the dynamics.

As an irreducible field, ϕ is locally defined, in contradistinction to reducible

fields derived from it which are not locally defined. For example, a reducible field

Φ(σ) in n emergent spatial dimensions may be constructed by averaging over over a

neighborhood of σ, but such averaging is intrinsically nonlocal because all samples at

spatially separated points are taken at the same cosmic time. Thus the dynamics of ϕ

must also be locally defined. In developing the dynamics it will be more convenient to

work directly with the relative phase φ than with ϕ, then at the end restate the result

in terms of ϕ.

The idea to be captured by the coupling between oscillators is an analogue

3Certainly connectedness of an emergent spacetime is inherited from ϕ[Mt], so arguably a physical
spacetime inherits that from Mt. However, Rmk. 2.2.2 argues connectedness of Mt is inherited from
the oscillators.
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of Newton’s second law for a mass on a spring, ẍ = − k
mx. While suggestive, the

mechanical analogy is imperfect because an accelerated mass has inertia and thus can

oscillate about its equilibrium position, whereas the oscillators ω̃(·) have no inertia.

Figure 2.2: Spring analogue.

Consider an oscillator at σ cou-

pled to neighbors at σ1, σ2 lying on the

same curve. Fig. 2.2 shows the analo-

gous mechanical system: a mass is at

rest at σ, connected to two springs hav-

ing constant k, respectively fixed at dis-

tances ∆x1 and ∆x2 from σ and exert-

ing forces F1 =−k∆x1 and F2 = −k∆x2.

Each unstretched spring has zero length

so its extension is always positive. Then

ẍ(σ) = − k
m(∆x2 −∆x1). With damping,

Fd ∝ ẋ so ẍ(σ) = −2ηẋ− k
m(∆x2−∆x1).

Now consider the correspondence between oscillator coupling and the spring

analogue in Fig. 2.2. A ‘displacement’ is now a relative phase (Def*. 2.2.5), so the

correspondence is ∆xi → φ(σi, σ) :

k∆xi → g φ(σi, σ; t) ; mẍ → ρ
δ2

δt2
φ(σi, σ; t) , (2.16)

where g is the coupling strength analogous to the spring constant and ρ is a field ‘inertia’

analogous to the mass. Finite differences have replaced derivatives in the second line

because, while derivatives like φ̈ and φ̇ appear to be consistent with Postulate 2.2.3, the

postulated intrinsic stochasticity of ω(·) makes φ nondifferentiable. The finite differ-

ence approximation to the second derivative can be computed by a centered difference

approximation,

δ2φ(σ; t)

δt2
=
φ(σ; t+h)− 2φ(σ; t) + φ(σ; t−h)

h2
+O(h2) , (2.17)

where h = τ/2. Because this finite difference approximation is for local dynamics the

error term O(h2) will vanish as τ → 0. To be physically meaningful, τ cannot be smaller

than the time needed for field changes to propagate the distance d(σi, σ).

Fig. 2.2 shows two springs whose superposed forces determine the acceleration.

By analogy, ρ δ2/δt2[φ(σ2, σ; t) − φ(σ, σ1; t)] = −g · [φ(σ2, σ; t) − φ(σ, σ1; t)] will also be

obtained by superposition.
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The field ‘inertia’ ρ serves to reduce the rate at which the field ϕ(σ; t) can

change in time, but is non-dissipative. It should be present because the field cannot

change instantaneously at σ to remove an inhomogeneity, except perhaps in the limit

of infinite coupling with its neighborhood. Presumably, stochastic and propagating

inhomogeneities continually modify ϕ(σ; t) at all time scales, so that any given inhomo-

geneity must ‘compete’ with all the others in its ability to determine the new field value

at σ. The property of the field that can serve the role of ρ is the total variation, Vφ(c),

for c in the neighborhood of σ. Because the total variation is time dependent, we need

mẍ→ δ
δt [Vφ(c) δϕ/δt]. Hence, let ρ = ρ(Vφ(c)) = ρ0Vφ(c), where ρ0 is a constant.

Next consider the coupling strength g, analogous to k. In the mechanical

analogy, the spring constant depends on the material and temperature. The ϕ field

has only one ‘material’ of interest, the oscillators. The effect of the temperature is to

weaken the molecular bonds (reduce Young’s modulus) due to thermal motion within the

material and thereby reduce the spring constant. The analogous quantity for oscillator

coupling is the total variation, Def. 2.2.9.

Remark 2.2.10 (Coupling strength, g(·).) If d(σ, σ′) is kept constant, an increase

in the total variation of φ(σ, σ′) corresponds to an increase in number or magnitude of

sign reversals of φ along a geodesic c : [0, 1] → γ(σ, σ′). Propagation of changes in φ

Figure 2.3: Variation of φ.

along c thus involves corresponding reversals

in direction of propagation, thereby reducing

the propagation speed and thus the effective

coupling strength. Intrinsic stochasticity of the

oscillators, asserted by Postulate 2.2.8 for ev-

ery point of M, is presumably the dominant

source of variation, but sign changes due to

dynamical motions must also be considered.

Thus the coupling between ω̃(σ) and

ω̃(σ′) should be sensitive to the total variation

of φ along the geodesic c. That is, the distance

scale d(σ, σ′) is fixed, then g decreases as the

total variation along curves between σ and σ′

increases. In the locality limit, d(σ, σ′) → 0,
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contributions by the geodesic c dominate so that g ∝ 1/Vφ(c). From this it follows that

g →∞ as d(σ, σ′)→ 0, and the continuity of φ asserted by Postulate 2.2.6(W2) can be

taken to be due to infinite coupling in this limit.

Therefore, rather than assuming the field coupling strength g(φ(σi, σ; t)) de-

pends only on d(σi, σ), take it to depend on the total variation of φ along the curve c

between those points. That is, the coupling strength g should be a function of the form,

g = g
(
Vφ(c)

)
= g0 Vφ(c)−1 , (2.18)

where g0 is a ‘bare’ dimensionless coupling constant. To compute g over an ensemble,

Vφ must be computed for each member. The behavior of g must be postulated (see

Postulate 2.2.11), but the foregoing provides the motivation.

In general, the form (2.18) is local only if the speed of the curve is the same

as the propagation speed of a field change. In all cases, the coupling strength is locally

defined in the limit L(c)→ 0.

Since M is simply connected and each oscillator couples to all oscillators in

its infinitesimal neighborhood, there are uncountably many curves between σ and σ′ —

the net coupling should depend on contributions from all of them. A path integral is

required, but defining a path integral to sum over all curves between σ and σ′ is likely

to be highly nontrivial in a general metric space.

Because φ does not vary smoothly along a curve due to intrinsic stochasticity of

the oscillators, the simple relative phase φ(σi, σ) in Eq. (2.16) is not a correct analogue

of a spring displacement ∆xi. In general, given fixed values for φ at the endpoints σi

and σ, i.e., φ(σi, σ0) and φ(σ, σ0) fixed, a single sample that compares φ(σi, σ) with the

mean 〈φ(σi, σ)〉 along a geodesic c almost surely yields φ(σi, σ) 6= 〈φ(σi, σ)〉 due to the

stochastic fluctuations along c. Hence, take the correct analogue of Fig. 2.2 to be

k

m
∆xi →

〈
g(Vφ(σi, σ; t)) · φ(σi, σ; t)

〉
2τ

; mẍ → δ

δt

〈
ρ(Vφ(c))

δ

δt

〈
φ(σi, σ; t)

〉
τ

〉
τ

,

(2.19)

where 2τ is the time interval of interest. The averaging interval for the second deriva-

tive approximation is chosen to be h = τ to be consistent with the finite difference

approximation (2.17).

The expectation value
〈
g(Vφ(σi,σ;t))· φ(σi,σ; t)

〉
2τ

in Eq. (2.19) requires expla-

nation. It can be interpreted as an ensemble average of similarly prepared field con-

figurations along a geodesic between σi and σ, where each member of the ensemble is
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obtained by a (cosmic) time average with the same starting time t∗ and duration 2τ .

Thus the configuration term obeys a probability density function.

To be consistent with the requirement that the nonphysical metric has no

observable consequences, time scales like τ must be determined dynamically in a scale

invariant manner. Like the approximation (2.17) for (2.16), if the ‘acceleration’ of φ is

to be attributed to the configuration, τ cannot sensibly be smaller than the time needed

for field changes to propagate the distance d(σi, σ), i.e., along a geodesic. On the other

hand, if τ is much longer than the propagation time the error term in the approximation

(2.17) may render Eq. (2.19) an inadequate representation of the local dynamics.

Unlike the spring analogy, ω̃(σ) at time t∗ couples to an (uncountable) in-

finitesimal neighborhood, ω̃[Bε(σ)\σ] for ε→ 0. In this limit the coupling is completely

local. All oscillators on B̄ε(σ) will contribute equally to the net change of ω(σ) because

the distance metric d is homogeneous, so without loss of generality it is sufficient to

stipulate the coupling between ω̃(σ) and ω̃ at a single point σ′ ∈ B̄ε(σ)\σ. The net

coupling, then, is the sum of contributions of the form (2.19) for all σ′ ∈ B̄ε(σ)\σ.

How to proceed to construct such a sum is not at obvious because notions of

volume and area are undefined in a general metric space like M. That is, while B̄ε

is compact so that a finite cover of B̄ε exists, the volume of each cover element must

be determined by its own cover, and so on ad infinitum. Thus, measures on balls and

spheres in M have no quantitative basis like intervals on R — an exact integral over

B̄ε(σ) does not exist because B̄ε is ultimately unmeasurable.

Nonetheless, because φ is a scalar, it is possible to define an integral for com-

puting 〈φ[B̄ε(σ)]〉 that converges in probability to the ‘true’ mean value, and that will

be good enough. The idea is to use the statistical and dynamic properties of ϕ to obtain

a meaningful notion of ‘similar directions’ on a ball in M, and use that together with

the desired accuracy of the approximate mean value to choose an element of ‘area’ or

‘volume’ to compute the mean. Sect. 3.5, and Subsect. 3.5.3 in particular, develops this

integral. The needed statistical properties of ϕ will be determined in Chap. 4, especially

Proposition 4.2.2. Thus, the postulate for local motion of ϕ below must restrict consid-

eration to the contributions by φ along individual geodesics with endpoints σ′ ∈ B̄ε(σ)

and σ, i.e.,

δ

δt

〈
ρ(Vφ(c))

δ

δt

〈
φ(σi, σ; t)

〉
τ

〉
τ

= −
〈
g(Vφ(σ′, σ; t)) · φ(σ′, σ; t)

〉
2τ

(2.20)
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(means are taken over over the time period τ), and then imply the general case by

postulating that the net motion is just the sum of contributions by such geodesics for

all σ′ ∈ B̄ε(σ).

The coupling of an oscillator to its neighborhood, developed above using a

spring analogy, can be summarized thusly. The coupling acts to minimize the deviation

of an oscillator’s phase (and hence its frequency) from that of its neighborhood, such that

the restoring ‘acceleration’ of the relative phase is proportional to the relative phase, φ.

Continuity of phase is imposed by Postulate 2.2.6(W2), so deviations of phase between

neighbors ω̃(σ), ω̃(σ′) can be at most infinitesimal: the coupling strength g → ∞ as

d(σ, σ′)→ 0, but for finite d(σ, σ′) the coupling strength depends on the total variation

of φ along the geodesic between σ and σ′. The instantaneous relative phase is important;

if neighboring oscillators ω̃(σ), ω̃(σ′) are instantaneously in phase with slightly different

frequencies at time t∗, then the coupling has no effect until a frequency difference leads

to a nonzero relative phase. Because the coupling is with each neighbor separately, the

coupling of ω̃(σ) to its entire infinitesimal neighborhood ω̃[B̄ε(σ)] determines the net

acceleration of ω(σ) by superposition. Eq. (2.20) describes this superposition.

The relative phase φ(σ, σ′; t) is the physically relevant variable that determines

the field acceleration, but it is inconvenient because two points, σ and σ′, must be

explicitly specified for each field value. It will generally be more convenient to work

with a field that explicitly depends only on a single point. The ϕ field (Def*. 2.2.7),

i.e., ϕ(σ; t) ≡ φ(σ, σ0; t), is thus a more convenient scalar field than φ, even though it is

defined nonlocally. For this reason, ϕ is the irreducible scalar field of primary interest

in this thesis.4

Postulate 2.2.11 (Local motion of ϕ.) Let c be a geodesic with image γ(σ, σ′) ⊂
B̄ε(σ), τ be an arbitrary period of cosmic time, and Iτ = [t0, t0 +τ ] be a time interval

beginning at arbitrary t0.

D1. Sources of motion. During an interval Iτ , the ϕ field at σ undergoes a net

motion

δϕ(σ; Iτ ] = δϕ(σ; Iτ ]coupling + δϕ(σ; Iτ ]rand , (2.21)

where δϕ(σ; Iτ ]rand is given by Postulate 2.2.8, i.e., it obeys the Brownian noise

PDF (2.13).

4Of course, φ and ϕ represent the same physical field since the relative phase can always be recovered
from ϕ, i.e., φ(x, x′; t) = ϕ(x; t)− ϕ(x′; t).
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D2. Dynamic contribution. The contribution by δϕ[c; Iτ ] to δϕ(σ; Iτ ]coupling is

implicitly defined by

δ

δt

〈
ρ(Vφ(c))

δ

δt

〈
φ(σ′, σ; t)

〉
τ

〉
τ

= −
〈
g(Vφ(c)) · φ(σ′, σ; t)

〉
2τ

(2.22)

in the limit ε → 0, where φ(σ′, σ; t) is the relative phase (Def*. 2.2.5) between

ω̃(σ) and ω̃(σ′) at time t, and g(·) is the coupling strength; a subscript on the an-

gle brackets denotes the interval over which the mean is computed. The ‘inertia’

term ρ(Vφ(c)) = ρ0Vφ(c), where ρ0 is a constant.

D3. Coupling strength, g(·). The coupling strength g(·) in (2.22) has the form

(2.18):

g = g
(
Vφ(c)

)
= g0 Vφ(c)−1 , (2.23)

where g0 is the ‘bare’ dimensionless coupling constant and g →∞ as d(σ, σ′)→ 0.

D4. Local propagation speed. The instantaneous coupling strength g in (2.23) is

proportional to the instantaneous propagation speed of local changes in φ(σ, σ′; t)

along c.

D5. Net motion. The net local motion of ϕ(σ; t) is obtained by a simple sum of

contributions (2.22) for all σ′ ∈ B̄ε(σ) (ε→ 0), relating ϕ and φ by Def*. 2.2.7.

Sect. 3.5 will develop a suitable procedure for computing the average over B̄ε(σ) in D5.

Coupling between oscillators implies propagation of field changes, since the

coupling allows an oscillator ω̃(σ) to effect a change in a neighboring oscillator ω̃(σ′).

However, the notion of propagation speed, or delay in the effect of a change of ϕ at σ

appearing at σ′, is nonphysical without an emergent spacetime.

Remark 2.2.12 (Propagation.) Oscillator coupling will cause propagation of changes

in ϕ(σ) in the following sense. Consider a closed neighborhood of σ, B̄ε(σ) = {σ′ | d(σ, σ′) ≤
ε}. According to Postulate 2.2.11, ω̃(σ) couples to oscillators on the sphere Kε(σ). Let

B̄ε′(σ) be another closed neighborhood of σ such that B̄ε(σ) ⊂ Bε′(σ); then δε = ε′−ε >
0. Taking δε→ 0, then for each σ′ ∈ Kε(σ) there is a closed ball B̄δε(σ

′) that contains

at least one point in B̄ε′(σ), and Postulate 2.2.11 again applies. In this sense changes

of ϕ(σ) can be said to propagate from B̄ε(σ) into B̄ε′(σ)\B̄ε(σ), and vice versa.
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The explicit dependence of the coupling on the field configuration ϕ[c; Iτ ] sug-

gests a crude analogy with point charges q1 and q2 at σ and σ′, respectively, which are

separated by a dielectric. Just as the electrostatic force between q1 and q2 depends in

part on the particular characteristics of the dielectric, the coupling strength between

ϕ(σ; Iτ ] and ϕ(σ′; Iτ ] may depend on how ϕ varies between σ and σ during the relevant

interval Iτ .

Continuity of ϕ, asserted by Postulate 2.2.6(W2), implies neighboring oscilla-

tors ω̃(σ), ω̃(σ′) are not truly independent. The following remark argues this does not

contradict Postulate 2.2.8.

Remark 2.2.13 Postulates 2.2.11 and 2.2.8 are mutually consistent. Consider the

probability density for Brownian noise, Eq. (2.13):

f(δϕ, δt) =
1√

2πδt
exp

(
−(δϕ)2

2δt

)
, δt = t− t0 .

This PDF is both scale invariant and symmetric with respect to the sign of δϕ. More-

over it applies everywhere on M, independent of the time, so Postulate 2.2.8 assumes

symmetry of Eq. (2.13) with respect to ‘translation’ along curves on Mt. Hence, the field

motion postulate 2.2.11 is consistent with Brownian noise of δϕ(σ; Iτ ]rand for all σ ∈M

if it maintains all of the symmetries assumed by Postulate 2.2.8.

Postulate 2.2.11 does not depend on position. Furthermore, it is immediately

apparent that the form of the dynamics (2.22) is scale invariant and time independent.

Therefore, the coupling preserves the symmetries of space and time translation and scale

invariance. Finally, the coupling depends on the magnitude of δϕ̄ but not its sign, so it

preserves the symmetry of the probability density (2.13) with respect to the sign of δϕ̄.

Hence, it maintains all the symmetries assumed by Postulate 2.2.8.

Clearly the coupling has some effect on the behavior of the oscillators; otherwise

it could not maintain continuity of ϕ along every curve c ⊂ Mt. It is apparent the

coupling has a rescaling effect on the time dependence δt in Eq. (2.13): the stochastic

variation at each point proceeds more slowly compared to zero coupling because it is

the ‘average’ fluctuation over the oscillator neighborhood, i.e., ω[B̄ε(σ)], and not the

fluctuation δω(σ) by itself, that determines the rate at which the stochastic fluctuation

of ω(σ) proceeds as a Brownian noise process. Since the cosmic time is nonphysical,

there is no difficulty in rescaling it to accommodate the effect of the coupling on the rate

of the Brownian process.
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Postulate 2.2.11 fully specifies the local dynamics of ϕ at a point σ ∈M, but

it cannot be directly used to describe the dynamics over an extended region S where

ε is finite. In this more general case, the dynamical motions of ϕ, e.g. of a wave

front, are subject to interactions with ϕ homogeneities that enter S from the outside.

Such interactions will lead to random scattering of wave fronts so that c is no longer a

geodesic, and moreover they will modify V(c). Thus the postulate only describes the

interactions at each point in S but not ϕ[S] overall. The more general case will require

path integration; the postulate is the starting point for developing such a procedure.

The contribution (2.22) to the field motion will be the basis for an equation

of motion for ϕ which describes propagation of field changes. While the equation of

motion should ultimately be a consequence of Postulate 2.2.11, derivation of the former

from the latter is not immediate:

• An equation of motion is a physical statement: it requires well defined notions of

physical space, physical time, and spacetime dimensionality. The time-augmented

metric space Mt contains none of these.

• Variational methods, i.e., the Euler-Lagrange equations, are inadequate for deter-

mining the equation of motion because notions like energy and momentum require

a physical spacetime. Space and time are to acquire meaning as a result of a dy-

namical emergence process — using energy to define dynamics requires circular

reasoning.

• Postulate 2.2.11 is more general than propagation. Coupling can maintain the

continuity of ϕ, for example, even in a general metric space.

2.2.4 Preferred scale

The postulates introduced thus far apply to the abstract realm of ϕ on Mt.

There, the field is scale invariant in its stochastic variation and its dynamics. However,

physics as we understand it is not scale-free: particle masses, coupling constants and

quantum uncertainty all have associated scales. Dynamics in general are not scale free.

Hence, it is necessary to break the symmetry of scale invariance of ϕ in some region of M,

at least over some range of distance scales, [lmin, lmax], so that different behavior appears

compared to the scale invariant motions of ϕ. Presumably, breaking scale invariance
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is a precursor to, or at least something concurrent with, the appearance of physical

distances and time scales on an emergent spacetime manifold M . An descriptive term

for this condition is a preferred scale.

Remark 2.2.14 A preferred scale [lmin, lmax] exists in a region Ut ⊂Mt when di-

latation symmetry (scale invariance of ϕ) is broken in Ut. This can be informally

defined in the following way. Take U to be a ball BR(σ) of finite radius R, and let

Γ = {γ | γ ⊂ U, γ straight, σ ∈ γ } be the diameters of U that contain σ. If for all γ ∈ Γ

a mode decomposition of ϕ[γ] obtains a continuous range of modes [kmin, kmax] whose

amplitudes differ from their expected values by δk/k ≥ δk, then at the significance level

δk a preferred scale exists in Ut, and is characterized by [kmin, kmax] = [l−1
min, l

−1
max]. The

expected values are given by a Brownian motion PDF; see Subsect. 4.2.1.

The usefulness of this definition requires that spectral analysis is valid for func-

tions of infinite variation. This is the case as Subsect. 3.1.2 will show.
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Chapter 3

Stochastic Processes and Calculus of ϕ

The previous chapter developed a number of definitions and a set of postulates

for an irreducible, real-valued scalar field ϕ which lives on a general metric space M

(and its time-augmented version Mt). That can be viewed as a proposal for answering

the question, “What is it that spacetime might emerge from?” The present chapter is

devoted to choosing existing mathematical tools and, where needed, limited development

of additional tools, to describe how spacetime can actually emerge from the proposed

foundation.

Of particular import is the field stochasticity postulate 2.2.8: it introduces

intrinsic stochasticity into ϕ by assuming the change in ϕ at a point σ during an in-

finitesimal interval dt has two contributions, one dynamical and the other stochastic.

The stochastic contribution is to obey the probability density function for Brownian mo-

tion. Some of its basic characteristics and stochastic processes more generally will be

summarized in this chapter. A property of Brownian motion of special interest is scale

invariance. The dynamics, postulated in Postulate 2.2.11 and developed in Chap. 4, also

have a scale invariant form. Thus, in general, ϕ[Mt] will be scale invariant except in

rare regions where scale invariance is sufficiently broken that a preferred scale [lmin, lmax]

can exist for a finite time.

Two other properties ϕ will inherit from its Brownian motion PDF are nondif-

ferentiability almost everywhere and infinite variation along every curve of finite length.

These mean, respectively, that differentiation and integration methods of ordinary cal-

culus are inadequate. Since it is hard to imagine getting very far without calculus it is

necessary to define procedures for integration and differentiation that are appropriate
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for random functions of infinite variation. The stochastic calculus provides the needed

tools.

Intrinsic stochasticity has been postulated to provide a source of initial con-

ditions for cosmogenesis. While a simple idea, its effects on the emergence picture are

substantial. It means the picture must ultimately be probabilistic, even though the

dynamics must dominate the randomness in regions that contain a persistent preferred

scale. Hence, a summary of some important results from the mathematical theory of

stochastic processes, followed by development of appropriate definitions of integration

and differentiation for ϕ[M], will provide a necessary mathematical foundation for the

dynamics and phenomena that Chap. 4 will consider.

The theory of stochastic processes is well developed for spaces with a well

defined dimension. Unfortunately, generalization of stochastic processes to a general

metric space does not appear to have been developed in the literature. Thus, the need

to develop some generalizations is unavoidable, and where needed that has been pursued

in very limited form in this chapter.

3.1 Stochastic Processes

This section and the next summarize some results from the mathematical the-

ory of stochastic processes, focusing especially on Brownian motion. The discussion is

of a general mathematical nature, and does not refer specifically to the space Mt or the

field ϕ. For that reason, this section and next will not strictly adhere to the notation

introduced by Sect. 1.6.

3.1.1 Stochastic processes and Brownian motion1

A stochastic process or random process [42] is a collection {X(t)} of iden-

tically distributed random variables X(t1), ..., X(tn) with t0=0 < t1 < t2 < · · · < tn=T ,

1 ≤ n < ∞. A given instance of the process is a path x(t), e.g. a function of time t

(0 ≤ t ≤ T ) which can be represented as the finite sum

x(t) = c0I0(t) +
n−1∑
i=1

ciI(ti, ti+1)(t)
[
ci = x(ti) , x(ti) ∈ X(ti)

]
, (3.1)

1Klebaner [42], source of much of the material in this subsection, gives an accessible introductory
treatment of stochastic calculus and mathematical theory of Brownian motion.
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where IA is an indicator (or characteristic function) of a set A, defined thusly: IA(ω)≡1

if and only if ω∈A and zero otherwise. (A path of a process has no relation to Def. 2.1.8

for a path on M.) Since xi ≡ x(ti) is randomly drawn from X(ti), x(t) is one of an

ensemble of possible paths in {X(t)}.
From Eq. (3.1), it is apparent that performing computations with {X(t)} re-

quires knowing the collective properties of all possible paths, which in turn are deter-

mined by the probability distribution of X(t). Hence, the process {X(t)} is determined

by all its finite dimensional probability distributions,

Pn(X(t1) ≤ x1, X(t2) ≤ x2, . . . , X(tn) ≤ xn), 1 ≤ n <∞ , (3.2)

for any choice of times 0 ≤ t1 < t2 < · · · < tn < T ; x1, x2, . . . , xn ∈ R . Let pi(xi, ti)

denote the probability density for X(ti), and write the joint probability density for

{X(t)} as pn(x1, t1; . . . ;xn, tn). Then the probability that a given path drawn from

ensemble {X(t)} takes a value in the range [x1, x1+dx1) at t1, then a value in [x2, x2+dx2)

at t2, and so on, is just

P (X(t1) = x1, . . . , X(tn)=xn) = pn(x1, t1; . . . ;xn, tn) dx1 · · · dxn . (3.3)

The m-point correlation function is

〈x(t1) · · ·x(tm)〉 =

∞∫
−∞

· · ·
∞∫
−∞

dx1 · · · dxmpm(x1, t1; . . . ;xm, tm)x1 · · ·xm . (3.4)

Convergence properties play a a central role.

Def. 3.1.1 (Convergence properties of random variables. [42]) Given a random

variable X, a sequence {Xn} converges to X

X1. in distribution if their distribution functions Fn(x) converge to the distribution

function F (x) at any point of continuity of F .

X2. in probability if, for any ε > 0, P (|Xn −X| > ε)→ 0 as n→∞.

X3. almost surely (a.s.) if, for any value of ω, outside a set of zero probability

Xn(ω)→ X(ω) as n→∞.

In what follows, all relations involving conditional expectations, such as equalities and

inequalities, are to be understood in the ‘almost sure’ sense, X3 above.
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The well developed mathematical theory of Brownian motion, or Wiener pro-

cess, will be of particular interest in that Postulate 2.2.8 states that the field ϕ(t) at

a point σ obeys the probability density function (PDF) for Brownian motion when os-

cillator coupling is not too strong. This process, {B(t)} where B(t) is a single path,

is a model for the cumulative effect of pure (i.e., ‘white’) noise. For example, if B(t)

is the position of a particle) at time t then the pure noise that effects a displacement

B(t+ ∆t)−B(t) during ∆t might be random molecular collisions.

A derivation of one-dimensional Brownian motion as the continuum limit of

a one-dimensional random walk highlights the origin of some of the properties of the

Wiener process. The generalization to random walks in Rn for n > 1 is merely a matter

of treating each component as an independent 1-D random walk.

There are two general approaches to the derivation. Both start with the notion

of a particle moving in discrete steps of length ε at equally spaced discrete times t1, . . . , tn

with τ = ti+1− ti. Represent the position x of the particle at time ti as Xi = X(ti) = x.

The direction of a step at time ti is a random variable with associated probabilities

p+ = P ((Xi+1 −Xi) = +ε) , p− = P ((Xi+1 −Xi) = −ε) = 1− p+ , (3.5)

where p+ and p− are the probabilities of steps of length ε in the (+) and (-) directions,

respectively. If p+ = p− there is no bias in either direction, so that the expected value

x̄ = 0; if p+ > p−, the bias will cause x̄ to increase in time, corresponding to a drift

velocity.

The first approach recognizes that the discrete random variable X(t) obeys a

binomial distribution, and then uses the central limit theorem in the continuum limit

ε, τ → 0 to deduce that X(t) (t now continuous) is a normally distributed random

variable; that and the other properties of the random walk imply that in the limit

of infinitesimal step size the random walk is a Brownian motion process. The other

approach is to obtain a difference equation for the probability P (Xi = x) at discrete

time ti, and show it leads to the diffusion equation in the continuum limit, which has a

Gaussian solution; that and the other properties of the random walk again correspond to

Brownian motion. The second approach is developed below because it better elucidates

ideas that will be important in later chapters.

Eq. (3.5) implies the difference equation,

P (Xi+1 = x) = p+ · P (Xi = x+ ε) + p− · P (Xi = x− ε) ,
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which after subtracting P (Xi=x) from both sides and rearranging becomes

P (Xi+1 =x)− P (Xi=x) = 1
2 [P (Xi = x+ε)− 2P (Xi=x) + P (Xi = x−ε)]

+
p− − p+

2
[P (Xi=x+ε)− P (Xi=x−ε)] .

After dividing by time step τ , this difference equation can be written in terms of the

discrete variables x, t as

P (x, t+ τ)− P (x, t)

τ
=
ε2

2τ

P (x+ ε, t)− 2P (x, t) + P (x− ε, t)
ε2

+
ε(p+ − p−)

τ

P (x+ ε, t)− P (x− ε, t)
2ε

. (3.6)

The left hand side is a finite difference, forward derivative approximation to ∂P (x, t)/∂t,

the first term on the right side is ε2

2τ multiplying a centered second derivative approx-

imation to ∂2P (x, t)/∂x2, and the last term on the right is ε
2(p+ − p−) multiplying a

centered first derivative approximation to ∂P (x, t)/∂x. In the limit ε→ 0, τ → 0 where

x and t become continuous, we should identify the discrete probability P (Xk = x) =∫ x+ε/2
x−ε/2 P (x′, kτ)dx′. Then Eq. (3.6) becomes the diffusion equation with finite ‘diffusion

coefficient’ D and ‘drift velocity’ v:

∂P

∂t
= D

∂2P (x, t)

∂x2
+ v

∂P (x, t)

∂x
; (3.7)

D = lim
ε→0,
τ→0

ε2

2τ
, v = lim

ε→0,
τ→0

ε(p+ − p−)

τ
.

If the particle starts at x = 0 at t = 0, the probability it is at x at time t > 0 is the

solution to Eq. (3.7), i.e., the Gaussian

f(x, t) =
1

2
√
πDt

exp

(
−(x− vt)2

4Dt

)
.

Take D = 1
2 and rescale x, t accordingly to give the Normal probability density with

mean vt and variance t:

f(x, t) =
1√
2πt

exp

(
−(x− vt)2

2t

)
. (3.8)

The random walk is a discrete stochastic process which becomes the Brownian

motion process in the continuum limit of infinitesimal ε, τ . In both cases, the process is

a collection of random variables {X(t)}, and the evolution of the process is determined
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by its finite dimensional probability distribution, Eq. (3.2), with each path having the

form (3.1).

Brownian motion has three defining properties:

Def. 3.1.2 (Brownian motion. [42]) A stochastic process {B(t)} is Brownian motion

if it has these three properties:

1. Normal increments. B(t)−B(s) has N(0, t−s) distribution, i.e., Normal dis-

tribution with zero mean and variance (t − s), for arbitrary times s < t with

0 ≤ t, s <∞.

2. Independent increments. B(t)−B(s) is independent of B(u), 0≤ u< s.

3. Continuity of paths. The B(t), t ≥ 0 are continuous functions of t.

Properties 1 and 2 determine all the finite dimensional distributions; it can be proven

that all are Gaussian. Property 3 is not obvious when B(t) is expressed in the form of

Eq. (3.1), since in general ci+1−ci will be finite; understanding this requires the concept

of versions of a process [42].

Def. 3.1.3 Two stochastic processes X,Y are called versions of one another if

P (X(t) = Y (t)) = 1 (i.e., they converge in probability) for all t, 0 ≤ t ≤ T .

Since a random process is determined by its finite dimensional distributions (3.2), if

processes X and Y differ on a nonempty set of probability zero then with probability

1 they can be taken to be the same process. That is, they are different versions of

the same process, and we are free to choose whichever is most convenient, generally

the most continuous one. It can be proved that if certain conditions hold, there will

always be at least one continuous version of a process. Brownian motion satisfies those

conditions, so in that sense Brownian motion processes are continuous.

Def. 2.2.9 defined the variation of a real-valued function g(t) over an interval

[a, b] ⊂ R as

Vg([a, b]) = sup
n∑
i=1

∣∣g(tni )− g(tni−1)
∣∣ , (3.9)

with the supremum taken over partitions a= tn0 < tn1 < · · · < tnn = b. A theorem gives

necessary and sufficient conditions for a function to have finite variation:
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Theorem 3.1.4 (Jordan decomposition theorem. [42])

Any function g(t) : [0,∞) → R of finite variation can be expressed as the difference of

two increasing functions: g(t) = a(t)− b(t). If g is right-continuous, it can be expressed

as the difference of two right-continuous increasing functions.

A sufficient condition for g to have finite variation is [42] :

Theorem 3.1.5 If g is continuous and g′ exists with
∫
|g′(t)| dt <∞, then g is of finite

variation.

From the theory of functions, a function defined on an interval [a, b] can have

no more than countably many jumps. Furthermore [42],

Theorem 3.1.6 A finite variation function can have no more than countably many

discontinuities. Moreover, all discontinuities are jumps.

Scale invariance will be needed below and elsewhere:

Def. 3.1.7 (Scale invariance or dilatation symmetry.) A function f(x) is scale

invariant, or has dilatation symmetry, if, for some choice of s and all dilatations

(or dilations) λ, it is invariant under the rescaling

f(λx) = λs f(x) . (3.10)

Brownian motion paths have some (provable) properties, collected here into a

theorem2:

Theorem 3.1.8 (Brownian motion properties. [42])

Almost every sample path B(t) ∈ {B(t)}, 0 ≤ t ≤ T ,

B1. is a continuous function of t;

B2. is not monotone increasing or decreasing on any interval;

B3. is not differentiable at any point;

B4. has infinite variation (Def. 2.2.9) on every interval, no matter how small;

B5. is scale invariant;

B6. has covariance function Cov(B(t), B(s)) = min(t, s); and

2Theorems in this subsection will usually be stated without proof.
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B7. has quadratic variation on [0, t] equal to t for any t. The quadratic variation

of Brownian motion [B,B](t) is defined as

[B,B](t) = [B,B]([0, t]) = lim
n∑
i=1

∣∣B(tni ) − B(tni−1)
∣∣2 , (3.11)

where for each n, {tni }ni=1 is a partition of [0, t], and the limit is taken over all

partitions with δn = maxi(t
n
i+1 − tni ) → 0 as n → ∞. (Smooth functions have

zero quadratic variation, but B(t) is smooth nowhere.)

Proof: (Partial proof. [42])

[Part B1.] Kolmogorovs condition guarantees the continuity of paths of a random

process with continuous time under this condition: If for some γ > 0 and β > 0, and

for all t, s there is a positive constant C such that

〈|X(t)−X(s)|γ〉 ≤ C1+β ,

then paths of X(t) are continuous functions.

A property of Gaussian random variables Y having a zero mean and variance

σ2 = 〈Y 2〉 is that 〈Y 4〉 = σ4; hence, for a Brownian motion process, 〈|X(t)−X(s)|4〉 =

3|t− s|2 = 3σ4. Comparing with Kolmogorov’s condition, γ = 4, β = 1 and C = 3 and

continuity follows.

[Part B4.] Since B(t) is right-continuous, this follows from Def. 3.1.4 and property B2.

[Part B5.] From Eq. (3.8), f(x, t) depends only on (x − vt)2/t. Choose a new scale

` > 0 and let X(t)→ Y (t) = `X(t/`2). This implies another Brownian motion process

{B`(t)}, which is indistinguishable from {B(t)} except for the change of scale. The

result immediately follows.

Finally, define the martingale and Markov properties of a stochastic process.

Def. 3.1.9 (Martingale property. [42]) If we know the path x(t) of the process

{X(t)} up to time t′, and X(t′) = x(t′), and the expectation value at any future time is

x(t′), then the process is said to have the martingale property.

Brownian motion processes have three main martingales [42]:

Theorem 3.1.10 Let B(t) be a Brownian motion path. Then
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M1. B(t) is a martingale.

M2. B(t)2 − t is a martingale.

M3. For any u, exp
(
uB(t)− u2

2 t
)

is a martingale.

A process with the Markov property has no ‘memory’ of how it arrived at its

current state x; if we know the current state of the process, then the future evolution

of the process is independent of its past. More precisely, the process {X(t)} has the

Markov property if the conditional distribution of X(t+ s) given X(t) = x does not

depend on the earlier values of x(t); it may depend on the present value x, however.

Brownian motion has this property [42]:

Theorem 3.1.11 Brownian motion {B(t)} possesses the Markov property.

3.1.2 Spectral analysis of stochastic functions

Spectral analysis for stochastic processes has been thoroughly investigated and

its validity established [10]. On every finite interval, almost every path B(t) ∈ {B(t)} of

Brownian noise (or motion) has infinite variation, so as the process duration T becomes

infinite the spectrum of B(t) will contain modes of all frequencies. The variance of

{B(t)} is t, so in the general case as T →∞, the displacement |B(t)| of the path from

its origin is unbounded and its Fourier integral will diverge. Nonetheless, B(t) can be

developed as a Fourier integral for finite T , and then the limit T→∞ taken. This

will now be done for stationary stochastic processes more generally; {B(t)} is but one

important example.3

Let B(t) be a path of a stationary stochastic process, and assume its mean

B̄(t) = 0, where the mean is taken over the ensemble {B(t)}. Consider a process y(t)

which is a restriction of B(t) to a long but finite time T , e.g.,

y(t) =

B(t), −T/2 < t < T/2 ,

0, |t| > T/2 .
(3.12)

Then its Fourier integral is well defined:

y(t) =

∫ ∞
−∞

dω

2π
A(ω) eiωt =

∫ ∞
−∞

df A(f) ei2πft ,

ỹ(f) =

∫ ∞
−∞

dtA(t) e−i2πft . (3.13)

3Much of this discussion will closely follow Wang and Uhlenbeck [73].
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Since y(t)is real, A∗(f) = A(−f). From Parseval’s theorem,∫ ∞
−∞

y2(t)dt =

∫ ∞
−∞
|A(f)|2df , (3.14)

where

A(f) =

∫ ∞
−∞

y(t) ei2πft dt = lim
T→∞

∫ T
2

−T
2

y(t) ei2πft dt . (3.15)

Use (3.14) to compute the mean square of y(t). Since |A(f)|2 is an even function,〈
y2(t)

〉
= lim

T→∞

1

T

∫ ∞
−∞

y2(t) dt =

∫ ∞
0
Sy(f) df , (3.16)

where the factor of two from the evenness of |A(f)|2 is absorbed into Sy(f),

Sy(f) = lim
T→∞

2

T
|A(f)|2 = lim

T→∞

2

T

∣∣∣∣∣
∫ T/2

−T/2
y2(t) ei2πft dt

∣∣∣∣∣ . (3.17)

Sy(f) is the spectral density (or power spectral density) of y2(t).

Next consider the autocorrelation function Ry(τ). Using a similar approach,

Ry(τ) = 〈y(t) y(t+τ)〉 = lim
T→∞

1

T

∫ ∞
−∞

y(t) y(t+τ) dt . (3.18)

Insert the Fourier transforms (3.13) and use ỹ∗(f) = ỹ(−f) so the domain becomes only

the positive frequencies:

Ry(τ) = lim
T→∞

1

T

∫∫∫ ∞
−∞

dt df df ′ ỹ(f) ỹ(f ′) e−i2πfτ ei2π(f+f ′)t

= lim
T→∞

1

T

∫ ∞
−∞

df |ỹ(f)|2e−i2πfτ

= lim
T→∞

2

T

∫ ∞
0

df |ỹ(f)|2 cos(2πfτ)

=

∫ ∞
0

df Sy(f) cos(2πfτ) , (3.19)

where the second step used
∫∞
−∞ exp(i2π(f+f ′)t) = δ(f+f ′). Hence Eqs. (3.17) and

(3.19) imply the Fourier cosine transform pair,

Ry(τ) =

∫ ∞
0

df Sy(f) cos(2πfτ) = 〈y(t) y(t+τ)〉 , (3.20)

Sy(f) = 4

∫ ∞
0

dτ Ry(τ) cos(2πfτ) . (3.21)

This is the content of the Wiener-Khintchine theorem. It can be restated

thusly: The correlation function,

ρ(τ) =
〈y(t) y(t+τ)〉
〈y2〉

=
Ry(τ)

σ2
y

, (3.22)

67



and normalized spectrum,

S(f) =
Sy(f)∫∞

0 df Sy(f)
, (3.23)

are each uniquely related to the other’s Fourier cosine transform.

The foregoing explicitly assumed a zero mean for the process, i.e., ȳ = 0

obtained for the ensemble over the interval T . If that assumption is dropped so that the

ensemble mean ȳ computed over the interval T is arbitrary, the spectral density (3.17)

should be rewritten,

Sy(f) = lim
T→∞

2

T

∣∣∣∣∣
∫ T/2

−T/2

(
y(t)− ȳ

)
ei2πft dt

∣∣∣∣∣
2

. (3.24)

Then Eq. (3.16), which follows from Parseval’s theorem, becomes∫ ∞
0
Sy(f) df = lim

T→∞

1

T

∫ T/2

−T/2

(
y(t)− ȳ

)2
dt = σ2

y . (3.25)

This shows the integral of the spectral density is the variance for the process.

Gaussian white noise Nw(t) is a very simple case, but is important because of

its relationship to Brownian noise. Specifically [9], Brownian noise is the cumulative

effect of Gaussian white noise Nw(t):

B(t)−B(0) =

∫ t

0
dB(t′) =

∫ t

0
Nw(t′) dt′ , (3.26)

with initial condition B(0) ≡ 0. Subsect. 2.2.2 summarized the defining properties

of Nw(t) thusly: It has zero mean over an ensemble; its spectral density (or spectral

intensity) is flat, i.e., Sw(ω) = const for all ω; and its autocorrelation length is zero:

Sw(ω) = const , (3.27)

Rw(τ) =
Sw

2
δ(τ) .

Remark 3.1.12 The properties (3.27) of white noise in physical systems are in general

idealizations [73]. The spectral density Sw(ω) = const will never occur in a physical

system, although it may be constant over a large range of frequencies. Furthermore, the

correlation length will never be truly zero in practice, although it may be effectively zero

over the time scales of interest.

However, a constant spectral density and zero correlation length cannot simply

be idealizations when applied to the irreducible field ϕ. If Sw(ω) were not constant, then
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there would necessarily be nonphysical scales lmin, lmax where the spectrum was no longer

white. This would set a preferred scale in the theory, destroying its scale invariance —

the nonphysical scale lmin could be deduced in principle by measuring the spectrum.

Hence, the assumptions (3.27) must be taken more literally for ϕ.

The Langevin equation can be used to characterize the spectrum of a Brow-

nian process. First consider the equation of motion for a free particle of mass m and

instantaneous velocity v subject to a random force K(t) and friction force fv:

m
dv

dt
+ fv = K(t) .

Assume K(t) has a mean of zero and a very sharp autocorrelation function, so that

its spectrum is nearly white; the spectral density of K(t) is 4fkBT , where f is the

friction coefficient, kB is Boltzmann’s constant and T is the ambient temperature of the

medium. Next consider a simple R-L electrical circuit that is subject to a thermal noise

source with spectral density 4RkBT , which applies a purely random fluctuating EMF

E(t) to this circuit,

L
di

dt
+Ri = E(t) .

A single equation describes both systems:

dy

dt
+ βy = N (t) , (3.28)

which has the form of a Langevin equation.

Assume that N (t) is a Gaussian white noise source Nw(t) with constant spec-

tral density Sw(ω) = 4D:

〈Nw(t)〉 = 0 ,

〈Nw(t1)Nw(t2)〉 = 2D δ(t1 − t2) .

The second equation follows from Eq. (3.21) after expressing Sw(t) as an integral of a

delta function and equating integrands, i.e.,

Sw(ω) =

∫ ∞
−∞

dτ 4D δ(τ) =

∫ ∞
−∞

dτ 2 cos(ωτ) 〈Nw(t)Nw(t+τ)〉 .

Remark 3.1.13 The Langevin equation (3.28) should provide a reasonable model for

the stochastic frequency changes which are intrinsic to the oscillators ω̃(·) from which ϕ
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is derived. The stochastic frequency-changing impulses are represented by a white noise

source Nw(t). For a massive particle undergoing Brownian motion, y(t) represents the

velocity v(t) of the particle; because the particle has inertia the position continues to

change as v∆t in the absence of additional impulses from Nw(t).

For ϕ motions, (3.28) is a more appropriate model of ϕ(σ; t) than the ‘velocity’

dϕ/dt. That is, according to Postulate 2.2.8, δϕ(σ; IT] = δϕ(σ; IT]coupling +δϕ(σ; IT]rand

so that ϕ(σ; t) should not continue to change according to (3.28) without additional

impulses from Nw(t); except through δϕ(σ; IT]coupling. Then the ‘friction’ coefficient β

in (3.28) corresponds to the damping effect of the dynamical coupling between ω̃(σ) and

its neighborhood, computed as an ensemble mean as discussed in Subsect. 2.2.3.

Since Nw(t) is Gaussian, y(t) is also a Gaussian random process. Substi-

tuting the solution eiωt into the characteristic equation y′ + βy = 0 of the Langevin

equation (3.28), the system response function H(ω) = (iω + β)−1. Hence the power

spectrum is

Sy(ω) = |H(ω|2 Sw(ω) =
4D

β2 + ω2
, (3.29)

as shown in Fig. 3.1.

Figure 3.1: Brownian noise spec-

trum [74]. The spectrum was obtained

from 104 samples of a Brown noise sound

source. The slope of the dashed line is −2,

corresponding to mode intensity I ∝ ω−2

(or I ∝ k−2 for spatial modes).

Since ρ(τ) is the Fourier cosine of the normalized spectrum (3.23),

ρ(τ) = e−β|τ | . (3.30)

Eq. (3.22) relates this to the autocorrelation function as Ry(τ) = σ2
y ρ(τ). Substituting

the power spectrum (3.29) and this expression for Ry(τ) into Eq. (3.21),

4D

β2 + ω2
= 4

∫ ∞
0

dτ σ2
ye
−β|τ | cos(ωτ) = σ2

y

β

β2 + ω2
. (3.31)

Hence, the variance is

σ2
y = 〈y2〉 =

D

β
. (3.32)
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The constant D can be interpreted as a diffusion constant.

The Fokker-Planck equation for the Langevin equation (3.28) is [73]

∂P

∂t
= β

∂

∂y
(yP ) +D

∂2P

∂y2
. (3.33)

Here, P = P (y(t) | y0) is the probability distribution for being in state y at time t =

t0 +τ), given the state y0 at t0. Note that this equation reduces to the PDE (3.7) for

the continuum limit of a random walk when β = 0, namely when there is no ‘friction.’

The fundamental solution to (3.33) is

P (y, t | y0) =

(
β

2πD(1− ρ2)

)1/2

exp

(
−β (y − y0ρ)2

2D(1− ρ2)

)
(3.34)

The limit t→∞ gives the stationary PDF:

W1(y) = lim
t→∞

P (y, t | y0) =

(
β

2πD

)1/2

exp

(
−βy

2

2D

)
(3.35)

consistent with σ2
y = D/β from Eq. (3.32). A fluctuation from this stationary distribu-

tion at time t1 obeys, over a shorter time τ = t2 − t1, the PDF,

W2(y1y2t) = W1(y1)P (y2, t | y1)

=
β

2πD (1− ρ2)1/2
exp

(
− β

2D(1− ρ2)

(
y2

1 + y2
2 − 2ρy1y2

))
, (3.36)

where ρ = ρ(τ) is the correlation function (3.30). Since Brownian motion is a Markov

process, subsequent steps will also obey Eq. (3.36).

Remark 3.1.14 In computing mean values, the average is implicitly assumed to be

taken over an ensemble of similarly prepared paths of the process, for example all paths

{B(t)} which start at time t0 and are observed over an interval T . Under an assumption

of ergodicity, mean values over an ensemble will be the same as their time averages,

i.e., averages computed for a single path B(t) ∈ {B(t)} over a period T → ∞. In

general, an ensemble average and time average will be different when the governing

probability density is time dependent.

For a stationary process the probability density is independent of time, and

hence the two methods of computing a mean will yield the same result [73]. Since

the Brownian motion/noise process {B(t)} is stationary (and hence so is the white

noise process), ensemble and time averages can be used interchangeably. Finally, if the
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parameter t represents a spatial displacement along a curve c(t) and T = L(c) is the

length of the curve, then the same equivalence of ensemble mean and interval mean

should hold true, as long as the process B(t) is stationary along c(t).

3.2 Stochastic Calculus

The stochastic calculus is designed to work with nondifferentiable functions like

ϕ, where ordinary calculus fails and ordinary differentials do not exist4. It considers only

regular stochastic processes, which are either continuous, or else are right-continuous

with left limits or left-continuous with right limits. Regularity further requires that the

process has at most a countable number of discontinuities, all of them jumps.

3.2.1 Stochastic differentials

A stochastic differential equation (SDE) takes a different form than a partial

differential equation normally encountered in physics, made necessary because SDEs

involve nondifferentiable functions. To allow an exact treatment, they are expressed

in terms of differentials, not derivatives. The following remark summarizes how differ-

entials of nondifferentiable functions are given meaning in the stochastic calculus [42].

Remark 3.2.1 Although ordinary differentials do not exist for nondifferentiable func-

tions, it is possible to define an integral with respect to such functions, and through

an integral representation give meaning to differentials of them. Specifically, once an

integral has been defined with respect to a stochastic function w (w possibly has infinite

variation), i.e.,
∫ t
a f(s) dw(s), then if the relation holds that

X(t) = X(a) +

∫ t

a
f(s) dw(s) for all t > a , (3.37)

then by agreement or convention this integral relation can be written in differential

form as

dX(t) = f(t) dw(t) .

4The brief review of some of its highlights in this section will generously borrow from Ref. [42]. Like
the previous section, this section will not strictly adhere to the notation introduced by Sect. 1.6.
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In this sense X possesses a differential with respect to w. That is, the differential dw

of nondifferentiable function w has no independent meaning; it is a shorthand notation

derived exclusively from the integral relation (3.37).

This form is not well suited to an equation of motion or other dynamical dif-

ferential equations. Sect. 3.3 will start with a different construction of a differential and

define an approximate derivative that will be employed in this thesis to describe dy-

namics, implicitly or explicitly. The applicability of the approximate derivative relies on

an assumption that stochastic effects are perturbative to the dynamics, an assumption

that only holds in what will be called the dynamics-dominated regime (or dynamical

regime) of ϕ[Mt]. Dynamics domination accompanies and maintains a preferred scale

(Rmk. 2.2.14); the preferred scale gives unique physical meaning to quantities of dis-

tance, time, rates of change, and so on.

Due to its probabilistic origin, a preferred scale should be rare. Almost every-

where ϕ will be a stochastic process with no meaningful dynamics. This will be called

the stochastics-dominated regime (or stochastic regime) of ϕ[Mt]: here, the assumption

does of perturbative stochasticity does not hold and the standard theory of stochastic

differential equations must be used instead.

The established mathematical theory of stochastic processes apparently has not

been extended to general metric spaces like M which are not product spaces. Thus, even

the stochastic calculus may not be wholly adequate for describing ϕ in the stochastic

regime without some generalization. No such generalization will be attempted here.

3.2.2 Stochastic integrals

When integrating a stochastic function, the integration measure is obtained

from the underlying stochastic process. Recall from Subsect. 3.1.1 that a stochastic

process is a collection {Xi(t)} of random variables Xi(t) ≡ X(ti) of identical probability

distribution. The collection must have a finite number of elements, corresponding to

a finite partition of the parameter t of the process. Even if the continuum limit is

of interest, a stochastic process requires a finite dimensional probability distribution,

Eq. (3.2):

P (X(t1) ≤ x1, X(t2) ≤ x2, . . . , X(tn) ≤ xn), 1 ≤ n <∞,

for any choice of times 0 ≤ t1 < t2 < · · · < tn < T , with x1, x2, . . . , xn ∈ R .
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Since n can be arbitrarily large, an arbitrarily precise description of a path

X(t) of the process can be obtained by making the partition of the interval 0 ≤ t ≤ T

sufficiently fine. For example, consider one path B(t) for Brownian motion in one spatial

dimension:
This could represent the displacement of a par-

ticle as a function of time. If B(t) corresponds

to the amplitude ϕ(t) along a coordinatized path

γ ⊂ M, then ti would represent a displacement

along γ.

The generalization of a process {X(t)} to n-dimensional Euclidean space in

n+1 spacetime dimensions is straightforward. If B(t) represents the path of a particle

undergoing Brownian motion in three spatial dimensions, then B(t) can be thought of

as a 1-D path of a point-like object through a 3+1 dimensional embedding spacetime,

with B(ti) one point on that curve.

Denote dX(t) the integration measure with respect to the process {X(t)}, and∫ T
0 Y (t) dX(t) the integral of a function Y (t) with respect to {X(t)} over an interval

[0, T ]. The integral should have the property that, when Y (t) = c = const,∫ T

0
Y (t) dX(t) = c ·

∫ T

0
dX(t) = c (X(T )−X(0)) . (3.38)

A simple stochastic process is one where Y (t) is constant during each subin-

terval (0, t1], . . . , (ti, ti+1], . . . , (tn−1, T ] with n finite. Consider n= 2 with Y (t) = c0 on

[0, t1] and Y (t)=c2 on (t1, T ], and require that
∫ T

0 Y (t) dX(t) has the additional property∫ T
0 Y (t) dX(t) =

∫ t1
0 Y (t) dX(t) +

∫ T
t1
Y (t) dX(t); both integrals evaluate as (3.38).

Integration of more general functions with respect to {X(t)} proceeds by writ-

ing Y (t) in terms of indicator functions I(ti,ti+1](t) as in Eq. (3.1),∫ T

0
Y (t) dt = c0I0(t) +

n−1∑
i=1

ciI(ti, ti+1](t) ,

where I(ti,ti+1](t) ≡ 1 if t ∈ (ti, ti+1] and zero otherwise. Hence, taking the limit

max1≤i<n(ti+1 − ti) → 0 with n finite but arbitrarily large, then X(ti+1) − X(ti) →
dX(ti) with probability 1, and

∫ T
0 Y (t) dX(t) becomes a sum of integrals each of the

form (3.38).

First consider integration with respect to a process {A(t)} of finite variation,

i.e., where the variation VA([a, b]) = sup
∑n

i=1 |A(tni ) − A(tni−1)| < ∞. The Jordan
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decomposition (Thm. 3.1.4) says that any function of finite variation is a difference of

two monotone functions, so an integral defined with respect to a monotone function is

sufficient.

Given an interval [a, b] and a partition a = tn0 < tn1 < · · · < tnn = b with

δ = max1≤i≤n(tni − tni−1) and tni−1 ≤ ξni ≤ tni , define the Stieltjes integral of f with

respect to a monotone function g on interval (a, b] thusly [42]:∫ b

a
f dg =

∫ b

a
f(t) dg(t) = lim

δ→0

n∑
i=1

f
(
ξni
)(
g
(
tni
)
− g

(
tni−1

))
. (3.39)

Now consider integration with respect to a process of infinite variation, Brow-

nian motion being the most common of such processes. Specializing to the Brownian

motion process, X(t) ≡ B(t), leads to the Itô integral for a simple stochastic pro-

cess [42], ∫ T

0
Y (t) dB(t) =

n−1∑
i=0

ci
(
B(ti+1)−B(t)

)
. (3.40)

If Y (t) is a deterministic function that contains no random variables, e.g.,

Y (t) = t2, then stochasticity only enters through the measure dX(t). More generally,

Y (t) can be a stochastic process: Y (t)={Y (ti) | 1≤ i≤n−1}. For example,
∫ T

0 B(t) dB(t)

is the integral of Brownian motion with respect to Brownian motion on [0, T ]. This is

straightforwardly accomplished by replacing each constant ci in (3.40) with a value b(ti)

drawn from the random variable B(ti).

Integrals having the form of the Itô integral (3.40) are not the most general

stochastic integrals. Most generally, the underlying process is a semimartingale.

Def. 3.2.2 (Semimartingale. [42]) A regular right-continuous with left limits adapted

process is a semimartingale if it can be represented as a sum of two processes: a local

martingale {M(t)} and a process {A(t)} of finite variation,

S(t) = S(0) +M(t) +A(t) , with M(0) = A(0) = 0 . (3.41)

Thus, the most general stochastic integral,
∫ T

0 H(t) dS(t), breaks up into a sum of two

integrals, ∫ T

0
H(t) dS(t) =

∫ T

0
H(t) dM(t) +

∫ T

0
H(t) dA(t) .

Since A is a function of finite variation, the second integral on the right hand side can

be done path by path with a Stieltjes integral (3.39), provided H is integrable with

respect to A, i.e.,
∫ T

0 |H(t)| dVA(t) <∞.
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3.3 Differentiation of ϕ

Postulate 2.2.11 is the starting point for obtaining the dynamics of ϕ[Mt]. It

asserts the coupling of ϕ(x) to its neighborhood Bε(x) depends on differences in field

values, not the field values themselves. Namely, a constant scalar value can be added

to ϕ at each point with no net effect: ϕ(x) → ϕ′(x) = k + ϕ(x) for all x ∈ M leaves ϕ

and ϕ′ indistinguishable in their behavior. Hence, the dynamics should depend on field

derivatives and variations, but not absolute field magnitudes.

As suggested in Subsect. 3.2.1, the stochastic calculus is inadequate once dy-

namics become important because it provides no counterpart to ordinary and partial

derivatives that occur throughout physics. This is not a deficiency of the stochastic

calculus itself: functions of infinite variation like ϕ are nowhere differentiable on any

finite interval, and there is nothing the stochastic calculus or any other consistent math-

ematical theory can do to change that fact.

The theory of stochastic processes is a mathematically precise model of the

stochastic regime, but in the dynamics-dominated regime where partial differential equa-

tions of physics typically apply, fluctuations are perturbative. This behavior can be

captured by an approximate derivative: the mean (or ‘classical’) derivative ∂̄ϕ is ob-

tained by smoothing over small distance scales, whereas the standard deviation from

this mean captures the effects of the stochastic perturbations. The smoothing scale for

∂̄ϕ is presumably the minimum physically resolvable distance and time scales ε and τ ,

respectively. At scales smaller than ε and τ the fluctuation amplitudes are too small to

contribute to the classical motions.

However, the coarse graining introduces a physically relevant uncertainty into

the derivative, so that the PDE describes a distribution whose mean is the classical

case. That is, a PDE constructed from approximate derivatives should be interpreted

in an ensemble sense. (Thus an approximate derivative may also be called a statistical

derivative.) The ensemble is the set of field configurations that are compatible with the

temporal and spatial boundary conditions.

Of course, the same PDE governs the individual members of the ensemble;

each member corresponds to a particular, actual instance. Studying the evolution of

a single configuration may provide information about detailed processes that is lost

by averaging over the ensemble. For example, if an unstable particle is taken to be a
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dynamical field configuration which is described by a PDE, then the ensemble can give

insight into decay rates and decay paths but probably not details of the decay process

itself. Study of individual members of the ensemble is needed for insight into the details

of the process, e.g., a growing instability induced by an atypical fluctuation.

Continuous derivatives can exist only for functions of bounded variation, so

the first step is to define a procedure for obtaining a version of ϕ that has bounded vari-

ation. Since Fourier modes of arbitrarily high frequencies are responsible for the infinite

variation of ϕ, the obvious way to bound the variation is to introduce a cutoff scale

using scale-free criteria. Specifically, let [kmin, kmax] be a preferred scale (Rmk. 2.2.14),

and ε−1 ∈ [kmin, kmax] and τ−1 ∈ [ωmin, ωmax] respectively be the spatial and temporal

cutoff scales for approximate derivatives along curves on Mt. Implementing the cutoff is

straightforward: a smoothed ϕ̄(x) is obtained by averaging over an interval of length ε

or τ , centered on x; then the derivative is computed as lim∆x→0[ϕ̄(x+∆x)− ϕ̄(x)]/∆x.

Thus the approximation is introduced by the smoothing, not by the limiting process.

The cutoff scales ε, τ are not arbitrary. Presumably, random spatial varia-

tions on d-measured scales smaller than ε and random temporal variations on cosmic

time scales smaller than τ cannot discernibly affect phenomena at the preferred scale.

Namely, the corresponding physical values ε˜, τ˜ are physical resolution limits; i.e., ε˜ is

the minimum distance below which physical changes cannot be reliably discerned in

principle by any experiment, and similarly τ˜ is the minimum time interval between two

events below which the two events cannot be distinguished by any conceivable experi-

ment. This physical origin of cutoff scales will be considered in Subsect. 4.4.4.

In the remainder of the chapter, the nonphysical ε, τ , and curves on Mt will be

used rather than their physical counterparts ε˜ and τ˜. This is because the approximate

derivatives will be defined on Mt. Postulate 4.4.5 connects (ε˜, τ˜) with (ε, τ).

For spatial derivatives, the goal is a useful directional derivative ∂̄xϕ along an

arbitrary path γ; x is a coordinatization of γ. It is necessary to work with paths, and

curves more generally, because they are the basic objects of study in a general metric

space like M.

The first step is to smooth ϕ without requiring that γ is straight (Def. 2.1.16).

To do this, obtain the mean ϕ̄ over a distance ε using stochastic integration, then assign

ϕ̄ to the midpoint. Distances along γ are readily computed with the distance metric

d(x, y); see Def. 2.1.12.
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Assume that ϕ in the stochastics-dominated regime is a Brownian motion

process, {B(t)}. According to Thm. 3.1.8(B1) there is always a continuous version of

a given path B(t) of the process. Hence use the Itô integral (3.40) at fixed time t to

compute

ϕ̄(x; t) =
1

ε

∫ x+ε/2

x−ε/2
ϕ(s; t) dB(s) . (3.42)

This smoothing procedure allows defining an approximate derivative that can

be used in place of a partial derivative with the recognition that the smoothing scale ε

introduces an uncertainty into the computed derivative.

Def*. 3.3.1 (Approximate derivative, ∂̄ϕ.) Given a path γ : [0, 1]→M, compute

the approximate derivative ∂̄xϕ along γ thusly:

• Coordinatize γ with a smooth invertible map x : R 7→ γ.

• Smooth ϕ(x) over characteristic scale ε by applying Eq. (3.42) for each x ∈ γ. This

coarse-graining of ϕ is consistent with the assumption that phenomena at the ε

scale are substantially independent of scales less than ε.

• Compute the approximate derivative of ϕ(x; t) at fixed t with

∂̄xϕ(x; t) = lim
∆x→0

∆ϕ̄(x; t)

∆x
, with ∆x on γ . (3.43)

A completely analogous approximate derivative ∂̄tϕ(x; t) can be obtained by fixing x

and smoothing ϕ(x; t) over an interval of length τ in Eq. (3.42), then using a limiting

procedure like (3.43). Note that the smoothing (3.42) is only first order, so ∂̄ϕ(x, t) has

infinite variation.

Remark 3.3.2 (Second and higher-order derivatives.) We also need to define

the second derivative of ϕ(x, t). If ∂̄xϕ were a smooth function, we could differentiate it

along γ in the traditional way as

∂x
(
∂̄xϕ(x, t)

)
= lim

h→0 on γ

∂̄xϕ(x + h; t)− ∂̄xϕ(x; t)

h
. (3.44)

Recall ∂̄xϕ(x, t) was obtained by smoothing ϕ(x′, t) over a fixed interval [x′−
ε
2 , x

′+ ε
2 ], for all x′ ∈ [x−h, x+h]. That is, statistics for computing ∂̄xϕ(x, t) are obtained

by sampling ϕ over the interval [x−ε2−h, x+
ε
2+h], which has length ε+2h. Thus computing
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the second derivative according to (3.44) requires sampling over a total interval length

ε+4h. Although h is vanishingly small it is still finite — taking the second derivative

using (3.44) requires differentiating an infinitely varying function of ϕ over a finite

distance 2h, which is not possible.

Hence, taking a second derivative ∂̄2
x ϕ(x, t) requires smoothing ∂̄xϕ(x, t) accord-

ing to Eq. (3.43), substituting ∂̄xϕ(x, t) for ϕ(x, t). This procedure can be extended to

higher order derivatives with an accompanying increase of the sampling interval by 2h

required for each successive derivative. Note these are the same intervals used to com-

pute approximate derivatives in terms of finite differences, given discrete time steps τ

and spatial steps ε. However, space and time are not discrete here, by assumption.

3.4 Tangent Spaces on (Σ, d)

Postulate 2.2.11 implies that all dynamics are localized. Even propagation

of field changes (Rmk. 2.2.12) should be a succession of local changes on Mt. Since

an uncountable number of unique paths can intersect at a point x, field evolution at

x can occur in each of the ‘directions’ that correspond to those uncountable paths.

(Path uniqueness in this context means that, given any two straight paths γ, γ′ ⊂ M,

each containing x, then γ 6⊆ γ′ and γ′ 6⊂ γ.) There are uncountably many relevant,

independent field derivatives at x, and the evolution of ϕ(x, t) should depend on the

collective effect of all of them.

Although M is a metric space, it is not a product space, and hence there is

no tangent space at a point in the usual sense, i.e., a vector space with an orthogonal

basis. First generalize the notion of tangency on Rn or any normed linear space to a

general metric space:

Def. 3.4.1 (Tangent paths. [16]) Two paths γi : Ii →M for i = 1, 2 (Ii an interval)

are tangent at x ∈ I1 ∩ I2 if

lim
h→0

d(γ1(x + h), γ2(x + h)

h
= 0 . (3.45)

Tangency can be used to define the notion of a path direction on M:

Def*. 3.4.2 (Direction of a path.) Given a straight path η (Def. 2.1.16) tangent at

x to another path γ, then γ has the η-direction at x. If both paths are straight, γ and

η have the same direction if and only if η ⊆ γ or γ ⊂ η.
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This allows generalizing the directional derivative to ϕ[γ]:

Def*. 3.4.3 (Directional derivative.) Given an arbitrary path γ and a straight path

η tangent to γ at x, the directional derivative at x is the approximate derivative

∂̄xϕ(x), and has the η-direction.

Given a notion of direction, we can construct a more general form of tangent

space at x that is appropriate for M. First consider how tangent spaces are constructed

on a manifold M . The tangent space TxM at x ∈M consists of all equivalence classes of

differentiable functions u : [0, 1) →M with u(0) = x. Two functions u, v : [0, 1) →M

are in the same equivalence class if they are tangent at zero, i.e.,

lim
h→0+

‖u(h)− v(h)‖
h

= 0 . (3.46)

This idea can be carried over to a general complete metric space [67]. Denote

C0([0, 1),M) the space of all functions u : [0, 1) → M, continuous at zero. With the

help of Def. 3.4.1 of tangency, Eq. (3.46) can be generalized.

Def. 3.4.4 (Equivalence classes.) Let u, v ∈ C0([0, 1),M) with u(0) = v(0) ≡ x.

Then u and v are in the same equivalence class if they are tangent at zero, that is if

lim
h→0+

d(u(h), v(h))

h
= 0 . (3.47)

Denote the tangent space TxM to mean the set of all equivalence classes of functions

u ∈ C0([0, 1),M) with u(0) = x, and the tangent bundle T M to mean the disjoint

sum of all TxM for all x ∈M.

While Def. 3.4.4 is general, it will not be the preferred definition for tangent

spaces and tangent bundles on M. The simple connectedness and homogeneity of M

(Postulates 2.1.27 (T3, T4)) allow a particularly simple construction of a tangent space

at x. Specifically, identify each equivalence class with a straight path from x to a unique

point on the sphere Kε/2(x). The choice diam(Kε/2(x)) = ε is the distance over which

a directional derivative ∂̄xϕ(x) should be computed along each diameter γ of Bε/2(x).

Def*. 3.4.5 Given a ‘homogeneous’ metric d, the tangent space TxM is the set {η}
of all straight paths from x to points on the sphere Kε/2(x),

TxM ≡
{
η : [0, 1]→M, η(0)=x, η(1)=y | y ∈ Kε/2(x), d(x, y) = ε/2

}
. (3.48)

The tangent bundle T M is the disjoint sum of all TxM for all x ∈M.
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Note TxM ∼= Kε/2(x), an isomorphism implied by (3.48).

The homogeneity of d permits defining a kind of ‘transport’ or translation of

an ε-ball along a path. This requires some way to relate the directions in Bε(a) to those

in Bε(b) when a and b are nearby. On a manifold, parallel transport is defined via a

connection, so we would like to generalize this idea to M.

Def*. 3.4.6 (Connection.) Given a complete, simply connected metric space M ≡
(Σ, d) where d is homogeneous in the sense of Def*. 2.1.15, define a connection on M

to be a continuous invertible map

Θ : TaM→ TbM (for all a ∈M with d(a, b)→ 0) , (3.49)

such that d(ya, za) = d(yb, zb) for all ya, za ∈ B̄ε(a) and all yb, zb ∈ B̄ε(b).

Since ε is arbitrary in Def*. 3.4.6, it holds everywhere inside a ball B̄ε′(x),

i.e., for any ε such that 0 < ε ≤ ε′. Hence the connection can be used to transport an

arbitrary ball along any finite-length path by successive applications of (3.49).

Def*. 3.4.7 (Transport.) Transport of an ε-ball along a path γ is the translation of

B̄ε(x) along γ, consistent with a connection (3.49) on M, such that B̄ε(b) is homeomor-

phic to B̄ε(a) for all a, b ∈ γ.

The homogeneity of d means this holds for all paths in M: all B̄ε(·) ⊂ M are home-

omorphic. Hence the tangent bundle on M is trivial: TxM is invariant for all x ∈M.

This generalizes the idea that the metric d is flat, i.e., that M is the generalization of

a flat, homogeneous space. (Since d is not a physical metric, homogeneity of d clearly

has no bearing on whether an emergent spacetime (M ,g) is flat.)

3.5 ‘Surface’ and ‘Volume’ Integrals on (Σ, d)

It will be necessary to integrate in more general contexts than simple paths.

Difficulties arise when trying to construct integrals of ϕ over surfaces and volumes in

the emergence picture. A tangent space of Sect. 3.4 does not correspond to a tangent

space on a manifold. Indeed, these tangent spaces have no intrinsic finite dimensional

basis, nor even a countable one: surfaces and volumes are undefined on M. Moreover,

even in Rn, the ϕ field has infinite variation so that ordinary integrals of ϕ over surfaces

and volumes will not converge.
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However, these and other difficulties that arise when trying to integrate in more

general contexts than one-dimensional paths appear to be fully contained. Derivatives

are not meaningful in the scale invariant, stochastics-dominated regime because scale

invariance means there is no preferred choice of smoothing distance ε. In that regime

the statistics of ϕ are determined by a homogeneous and scale invariant probability den-

sity function so that phenomena that could distinguish one direction or distance from

another do not exist. This saves the consistency of the picture: The same decisive break-

ing of scale invariance that leads to a locally preferred scale also implies some notion

of dimensionality. That is, the insurmountable difficulties only arise where differential

operators and general integrals have no meaning, but once they become meaningful

those difficulties become surmountable. This issue will be explored in Subsect. 3.5.1

and again in Chap. 4

The preceding argument notwithstanding, it is important that the transition

between the stochastic and dynamic regimes remains under full mathematical control to

ensure self consistency. A transition between the two regimes takes two forms: spatial

(or temporal), because boundaries of the region where scale invariance is broken are not

sharply defined; and distance scale dependence, because scale invariance is broken over

only a finite range of d-measured distance scales. In transition regions or scales, both

stochastics and dynamics are relevant. These considerations point to a need for being

careful.

3.5.1 Fundamental difficulties of integrals over regions

The first step is to clarify the difficulties of constructing consistent integrals

over regions more general than simple paths. Then general strategies for overcoming

each one can be considered. Some of the problems are specific to the stochastics-

dominated regime, and thus can be side-stepped. Others require more work.

As suggested by this section’s introduction, generalizing differential elements

of area (da) and volume (dV ) on Rn to their analogues on M encounters the obvious

difficulty that M is a general metric space with no intrinsic notion of spatial dimension.

Hence there is no way to meaningfully define areas or volumes. One idea might be

to define a ‘standard ball’ with some fixed radius, and then determine the maximum

number of them that could be packed into a given region U ⊂M; such a ‘packing

measure’ would provide a way to define a primitive notion of the volume of U. This
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would work if U could be mapped to Rn, but with n undefined how could such a

packing be specified?. Nonetheless, in the special case where the mean value of ϕ is to

be computed over a sphere or ball, an approximate integral can be usefully defined over

a region of M. Subsect. 3.5.3 will outline such a computation.

For the most part, however, this problem can be side-stepped. There is no

quantity of physical interest that requires a volume or surface integral in the stochastics-

dominated regime. The scale invariance of that regime, in particular, precludes inter-

esting phenomena — physical phenomena require a preferred scale. This makes the

impossibility of computing surface and volume integrals irrelevant. Once scale invari-

ance is broken the problem has a very elegant solution, even during the transition to a

well-defined physical spacetime. This solution will be developed in Chap. 4.

Now assume scale invariance is broken so that surfaces and volumes can be

defined. Three significant problems arise when integrating ϕ or its derivatives over a

surface or volume.

First, the stochastic properties of ϕ must be respected even in a dynamics-

dominated regime. Integrating ϕ over surfaces and volumes requires extending the

Itô integral (3.40) to n > 1 dimensions. Infinite variation means exact differentials

ϕ(dx) = dϕ(x) do not exist (see Rmk. 3.2.1); clearly, differentials ϕ(dV ) and ϕ(da) are

undefined for the same reason. This difficulty is fundamental, but can be overcome by

constructing an approximate differential, such that the resulting integral converges

in probability (Def. 3.1.1) to the ‘true’ value under appropriate conditions. It requires a

suitable smoothing procedure to handle the infinite variation analogously to Eq. (3.43)

for approximate derivatives.

The second and third problems are consequences of the lack of any intrinsic

relationship between directions on M and directions on an emergent physical spacetime

(M ,g). At an arbitrary point x ∈M an approximate derivative can be computed for

each direction η ∈ TxM. Unlike a physical metric g, d(x, y) is just a scalar distance

function that implies no relationship between directions in TxM. There is no intrinsic

notion of orthogonal directions on M that would allow expressing ∂̄ηϕ in terms of a

finite dimensional basis at x. That is, correctly representing changes in ϕ at x using

the postulated structure of M requires knowing all elements of the uncountable set

Dx = { ∂̄ηϕ | η ∈ TxM }. On the other hand, summing differential elements D(da) and

D(dV ) with an integral requires a finite dimensional basis. Two difficulties arise:
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1. M contains no intrinsic properties that suggest a way to obtain a finite-dimensional

basis.

2. Assuming a finite dimensional basis exists, it is still necessary to compute D(da)

and D(dV ) from Dx for all x ∈ da or x ∈ dV . Assume some function relates the Dx

over an entire differential element. Then obtaining the differential elements D(da)

or D(dV ) requires summing the contributions of all elements of Dx at each x, i.e.,

∂̄ηϕ(x) for all η ∈ TxM. Constructing an integral over all directions in Dx requires

that Dx is countable, but Dx is uncountable because TxM is uncountable; the sum

cannot be performed.

The first difficulty cannot be solved by relying on properties of M. Reduction

to a finite dimensional basis must be accomplished dynamically — orthogonality of

spatial directions must be an emergent notion of the dynamics-dominated regime.

The second problem can be solved if we can construct an approximate integral

that obtains the desired sum over directions to whatever precision we require. This

requires reducing Dx to a finite set. The approximate integrals will be satisfactory

provided they converge in probability to their ‘true’ values.

3.5.2 Obtaining finite covers of balls and spheres on (Σ, d)

The ability to obtain a finite cover of a ball or sphere in M will be important

to the remainder of this section. The postulated properties of M provide sufficient

conditions for spheres and closed balls to be compact, which is what we need.

Specifically, given the metric homogeneity imposed by Postulate 2.1.27(T4),

Theorems 2.1.23 and 2.1.25 imply finite subcovers of radius-` spheres K` and closed

balls B̄` exist:

Thm. 2.1.25: A metric space is compact if and only if it is complete and totally

bounded.

Thm. 2.1.23: A metric space is totally bounded if and only if every sequence

has a Cauchy subsequence.

Postulate 2.1.27(T2) already asserts M is complete. In light of Rmk. 2.1.21,

M can be taken to be bounded, and bounded metric spaces are closed [14]. This, the
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simple connectedness of M and the assumed homogeneity of M imply every sequence

in M has a limit point. Given completeness, every sequence has a Cauchy subsequence

so that the conditions for M compact are met. Finally, every compact set has a finite

subcover; balls of radius 1
n with n ∈ N, centered on a finite set of points σ1, σ2, . . . , σN(n)

in K`(σ) or B̄`(σ), give the required collection.

3.5.3 Integrating over uncountably many directions

Consider a ‘surface’ integral of ϕ over a sphereK`(σ) in M. Integration requires

a measure on sets (i.e., neighborhoods in K`, not points in K`), so TσM must be mapped

to a countable partition of K`(σ). Fig. 3.2 illustrates the construction of a finite subcover

of K`(σ) from N ‘surface’ elements dai:

N⋃
i=1

dai=
N⋃
i=1

(
Bε(σ

′
i) ∩K`(σ)

)
, σ′i ∈ K`(σ) . (3.50)

Figure 3.2: Cover of K`(σ) by N balls

of radius ε < `.

The idea is to compute the mean of ϕ over K`(σ) by approximating the mean

value ϕ̄ on each element dai, then average all N mean values to obtain an approximation

for ϕ̄[K`(σ]. That is, construct a sequence of approximations,

SN =
1

N

N∑
i

ϕ̄[dai] , (3.51)

over finer and finer finite partitions, or subcovers, of K`(σ). If this sequence converges

in probability (Def. 3.1.1) to the ‘true’ average S∞ = ϕ̄[K`(σ)] as N → ∞ (so that

diam(dai) becomes arbitrarily small), i.e., if for any desired ε > 0

lim
N→∞

P
(∣∣SN − S∞∣∣ > ε

)
→ 0 , (3.52)
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then the sum (3.51) is a valid approximate integral for computing the mean value

ϕ̄[Kε(σ)]. In order to interpret this mean as an ensemble mean, the expectation values

ϕ̄[dai] must be computed over an ensemble of similarly prepared field configurations for

each dai ⊂ K`(σ).

The construction (3.51) clearly requires the existence of a finite subcover of

K`(σ) with balls of radius ε < `. Subsect 3.5.2 shows this can always be obtained for

spheres (and closed balls) in M. In approximating the (ensemble) mean ϕ̄[dai], the idea

is to use something like the intermediate value theorem of real analysis: there is a point

σ′′ ∈ Bε(σ′) such that ϕ(σ′′) = ϕ̄[Bε(σ
′)]. Presumably this can be proven in a general

metric space with a ‘homogeneous’ metric, like M, by generalizing from the provable

observation that there is a point x on each straight path γ(σ′, σ′′), σ′′ ∈ Kε(σ
′), such

that ϕ(x) = ϕ̄[γ]. Thus, if we can choose a point in Bε(σ
′) ∩K`(σ), i.e., a point from

each element of the cover, such that ϕ(σ′) is in some sense ‘close enough’ to the true

mean value ϕ̄[Bε(σ
′) ∩K`(σ)] at arbitrary time t, then we can define an approximate

integral by taking the average of ϕ over all elements of the cover.

To make this idea more precise, choose an acceptable uncertainty with which

the mean value of ϕ must be known on an element of the cover, and denote it by

δϕ. Also choose a relative frequency ε, such that it is phenomenologically acceptable

(i.e., experiments cannot detect violations of physical laws) if ϕ(σ′) differs from the true

mean value by more than δϕ a fraction ε of the time. This criterion of ‘phenomenological

acceptability’ is quite important — as ε becomes smaller, implying higher experimental

precision or larger statistical sample sizes, inexactness in the mean value computation

will show up in higher order terms of a model of a phenomenon, and thus become

observable.

Hence, for all σ′′ ∈ Bε(σ
′), the PDF which governs stochastic fluctuations

(i.e., Eq. (2.13) for δϕ(σ′)rand), together with the dynamical response to δϕrand due to

interactions with the field on Bε(σ
′)\σ′, imply that

P
(
|ϕ(σ′′; t)− ϕ(σ′; t)| > δϕ

)
< ε , 0 < ε < 1, (3.53)

for all t. That is, ϕ(σ′) can be taken as the average value of ϕ on the cover element

Bε(σ
′) ∩K`(σ) with probability 1−ε, within the specified uncertainty δϕ.

Together, δϕ and ε imply the value of ε and thus N , the number of elements

needed to cover K`(σ). For example, decreasing ε while keeping δϕ fixed implies a
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smaller relative frequency ε of erroneously computed mean values. Or decreasing ε while

keeping ε fixed decreases the uncertainty of the computed mean value. Nonetheless, δϕ

cannot be made arbitrarily small because broken scale invariance implies a minimum

length scale exists. Hence, is probably best to regard δϕ as a ‘constant of Nature’ and

take ε (and thus N) as implied by the choice of ε and vice versa. Note the minimum

length scale does not imply a minimum value of ε because ε is an effective smoothing

scale for ϕ — its effect is to coarse grain ϕ and thus smooth out ϕ variations contributed

by the stochastic regime at distance scales less than ε, but the scale invariance of the

stochastic regime allows arbitrarily small values of ε.

Hence the value ϕ(σ′) will converge in probability to ϕ̄[Bε(σ
′) ∩ K`(σ)] ± δϕ

as N → ∞, where N is the number of elements in the cover of K`(σ). It follows that

the average of the N such values will also converge in probability to the true average

ϕ̄[K`(σ)] in that limit. Hence define the approximate average of ϕ on K`(σ), convergent

to the true value ϕ̄[K`(σ)]± δϕ in the limit N →∞, as

ϕ̄[K`(σ)] ' 1

N

N∑
i

ϕ(σ′i) , (3.54)

where σ′i is the center of the ith element of the cover.

An analogous ‘volume’ average ϕ̄[B̄`(σ)] can be constructed as (3.54), given a

finite cover of B̄`(σ) by balls Bε(σ
′) with σ′ ∈ B̄`(σ). Taking the limit N → ∞ as in

Eq. (3.54), the average will converge in probability to the true average ϕ̄[B̄`(σ)]± δϕ by

reasoning similar to the sphere case.

3.5.4 Volumes and packing measures in M

Integration can be used to construct differential operators in Rn, for exam-

ple [6],

∇ϕ(x) = lim
dτ→0

∫
ϕda∫
dτ

,

∇ ·Φ(x) = lim
dτ→0

∫
Φ(x) · da∫

dτ
, (3.55)

where
∫
dτ = dV is the differential volume element and da is the (oriented) area of a

surface of dV . Because
∫
dτ in (3.55) is a spatial volume and not a ϕ related quantity, it

can be evaluated in Rn but not M. As Subsect. 3.5.1 explained, this is not a conceptual
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problem because notions of volume and area are only meaningful at a preferred scale.

If there is a preferred scale, there are maps from regions of M to Rn, in principle;
∫
dτ

can be evaluated indirectly, subject to uncertainties discussed in Subsect. 3.5.5.

In the emergence picture, the spatial dimension n is determined dynamically,

subject to the initial conditions of the particular instance of the preferred scale. Thus

the physical volumes
∫
dτ will depend on those dynamics.

Let U be a simply connected, compact region of M. Because U has a finite

subcover (Subsect. 3.5.2), it should also be possible to define a packing of balls in U

without reference to spatial dimension. This indicates a packing measure can be defined

on U. Edgar [18] discusses packing measures in general metric spaces.

3.5.5 Uncertainty in ϕ on surfaces and volumes

By assumption, in the dynamics-dominated regime the ϕ field within a region

U of Rn is primarily determined by the ϕ field equation — stochasticity is perturbative.

The ability to construct useful integrals of ϕ over surfaces and volumes to describe

dynamics completely depends on this behavior. The reason is straightforward.

In general, stochastic contributions will introduce diffusion into the evolution;

see, e.g., Eqs. (3.7) and (3.32).5 The variance in a diffusion process is proportional to

the time. Thus, if diffusion is significant, summing the infinitesimal field changes over a

finite surface or volume can obtain a value that deviates significantly from the classical

expectation inferred from the dynamics alone. If, however, stochasticity is perturbative,

i.e., the dynamics effectively dominate the ϕ evolution and thereby limit the diffusion,

the variance introduced by diffusion will be small. Then the integral should obtain the

classical expectation within a small uncertainty.

Hence, if stochasticity is perturbative, it is reasonable and convenient to work

only with smooth functions of ϕ on U , and separately compute the uncertainty in terms

of the variance over an ensemble. Nonetheless, it is important to specify a formal

integration procedure that considers the perturbative stochasticity explicitly in order to

demonstrate mathematical consistency. Determining the components of that procedure

has been the main task of this section.

5Brownian motion is the governing stochastic process for diffusion.
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3.6 Differential Operators on Infinitely Varying ϕ on M

Although the tangent space of Sect. 3.4 has no physical correspondence to

a tangent space on an emergent spacetime manifold, it will serve a necessary role in

generalizing vector operators like the gradient and divergence of ϕ to M. Derivatives

are not meaningful in the scale invariant stochastics-dominated regime because there

is no preferred choice of smoothing distance ε. Derivatives become relevant only after

a preferred scale emerges, i.e., after decisively breaking scale invariance. Dynamical

evolution that characterizes interesting physical phenomena can only exist at a preferred

scale; such evolution is best described with respect to a physical metric g very different

from the nonphysical metric d. Thus the need for generalized vector operators which

rely on d but not g may not be obvious.

The dynamics of ϕ on an emergent spacetime (M ,g) must have representations

on both (M ,g) and Mt, because both spaces contain the same physical situation but

embody different viewpoints. Spacetime manifolds are locally Rd: given the role of ϕ in

determining physical spacetime, there must be a physically motivated map from ϕ on

Bε ⊂Mt to ϕ on Bε˜⊂ Rd.

Moreover, the dynamical process governing evolution from the initially bro-

ken scale invariance to the establishment of emergent spacetime cannot lead to a sharp

boundary between the emergent (M ,g) and the stochastics-dominated Mt. There will

be a finite range of d-measured Fourier modes (or distance scales) which manifest a sta-

tistically significant departure from their scale invariant probability density; this range

characterizes the preferred scale where interesting physics presumably occurs. Distance

scales far below the preferred scale will remain dominated by stochastics. Hence there

should be transition regions of Fourier space at the extremes of the preferred scale where

both stochastics and dynamics are relevant. To maintain full mathematical control over

the transition region, and over the emergence process more generally, operators which

are defined with respect to d are needed.

Assume a finite cover of N elements on a sphere, Kε ⊂M. By identifying each

element of the tangent space at σ with a point on Kε(σ), the cover implies a basis of

N
2 elements can be constructed for TxM that can be mapped to a sphere Kε˜(x) on Rn.

Fig. 3.3 illustrates the basic idea. With no notion of spatial dimension on M, in general

n is undefined, and thus arbitrary. Hence, the notion of a gradient, or ‘net direction’
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for ∂̄ϕ(x) is ill-defined. If, however, there is some a priori choice for n, then it may be

possible to define a meaningful map from the N
2 ‘basis elements’ of TxM to a basis for

TxRn.

Figure 3.3: Different emergent direc-

tions.

3.6.1 The derived field Φ

The derived field, Φ(x), is the starting point for defining spatial differential

operators on a region Ut ⊂Mt. The presumption is that dynamical contributions to

ϕ[Ut] are small compared to a homogeneously thermalized ϕ which acts as an (effective

or actual) stochastic regime, and that the perturbative dynamics determine both the

smoothing interval ε and effective spatial dimension n.

Because M is not a product space, it has no intrinsic spatial dimension n

that determines the tangent space TxMt has n basis vectors. Whether TxMt or TxM , a

tangent space has uncountably many elements of course, but Mt is not an inner product

space. Thus, considering only the intrinsic structure of Mt, relationships among the

uncountable directions in TxMt are undefined at best. The generalization to M of a

gradient is uncountably many field derivatives ∂̄ηϕ at each x ∈M, not an economical,

n-component representation like ∇ϕ on Rn.

Hence, it is useful to define a derived field Φ(x) as the collection of directional

derivatives along the straight paths which comprise TxM, computed over distances ε.

An isomorphism between the tangent space at x and a sphere centered on x (Sect. 3.4)

suggests a convenient representation of Φ(x). Given a sphere Kε/2(x) define two sets of
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straight paths,

{ ηy(x, y) | y ∈ Kε/2(x) } ,

{ γy(a, b) | γy = ηa ∪ ηb is a diameter of Kε/2(x) },

where each ηy is isomorphic to a element of TxM. From this definition L(γ) = ε. Assign

each approximate derivative ∂̄ηaϕ(x) to a point a ∈ Kε/2(x), such that the derivative is

computed along γ in the direction x → a. Since Φ(x) is defined thusly for all x ∈M,

Φ[M] is a real-valued instantaneous field on M × Kε/2; Φ[Mt] is its time dependent

generalization.

Denote this real-valued field of directional derivatives onKε/2(x) by Υx[Kε/2(x)].

Let {a, b} = γ ∩Kε/2(x), and note two elements ξa, ξb ∈ TxM correspond to each choice

of γ = ηa∪ηb: ξa for x to a and ξb for x to b. Moreover, ηa and ηb correspond to opposite

directions on γ: derivatives along ηa are computed x → a while derivatives along ηb

are computed x → b. In this sense, the elements of TxM which correspond to ηa and

ηb can be said to have opposite directions. Accordingly, require Υx(a) = −Υx(b),

and impose the convention that Υx(a) = ∂̄γϕ(x) if the coordinatization of γ assigns x a

smaller coordinate value than a; otherwise Υx(a) = −∂̄γϕ(x).

Def*. 3.6.1 (Derived field Φ.) At a scale ε, the derived field Φ(x) is a real-valued field

Υx(·) over a sphere Kε/2(x), i.e., the collection of all directional approximate derivatives

at x. For all x ∈M and all ξa, ξb ∈ TxM,

Φ(x) =
{

Φγ(x) ≡ ∂̄γϕ(x) = Υx(a) = −Υx(b)
∣∣

{a, b} = γ ∩Kε/2(x), γ = ηa ∪ ηb; ηa, ηb ∼= ξa, ξb

}
, (3.56)

where each approximate derivative ∂̄γϕ(x) is computed over the distance L(γ) = ε. By

convention, Υx(a) = ∂̄γϕ(x) when the coordinatization of γ assigns x a smaller coordinate

value than a, and Υx(a) = −∂̄γϕ(x) otherwise. Denote the γ-component of Φ(x) by

Φγ(x).

A computation of Φ(x) could be similarly performed if M were a smooth n-

dimensional manifold, replacing approximate derivatives with ordinary partial deriva-

tives and obtaining the uncountable set of possible directions from TxM instead of

TxM. A set of n basis vectors can always be obtained at each x ∈M , so that a gradient
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∇ϕ(x) is fully specified by n components expressed in the chosen basis at x. The most

general analogue on M of the n-component∇ϕ(x) on M is a restricted version of Φ(x),

defined in the next subsection.

3.6.2 Gradient of ϕ(x) on M

Let
⋃2N
i Bε(yi) be a finite subcover of Kε/2(x) obtained as in Subsect. 3.5.2

with ` → ε/2. Let YN = {y1, . . . , yN} be the set of unique directions obtained

from this cover: Given the 2N elements of the cover centered on {y1, . . . , y2N}, omit

yj from YN if yi and yj 6=i lie on the same diameter γ and the angle (Def. 2.1.18)

∠̃(ηN (x, yN ), ηi(x, yi)) < ∠̃(ηN (x, yN ), ηj(x, yj)) (i.e., ηN is the reference direction).

Define the N component gradient ΦN (x):

ΦN (x) =
{

Φγi(x) = Υx(yi) | yi ∈ YN
}
, (3.57)

where Υx(yi) is computed as in Subsect. 3.6.1. To simplify notation, Φγi(x) may also be

denoted by Φi(x).

The connection (3.49) allows transporting Kε/2 along any path γ, mapping

the directions on Kε/2(x) to those on nearby Kε/2(x′ 6= x), and hence relating direc-

tional derivatives on Φ(x) and Φ(x′). This allows constructing a finite dimensional (N

component) ‘gradient’ over any finite distance at the chosen characteristic scale ε.

3.6.3 Divergence of Φ(x) on M

Because Φ(x) already contains one derivative, the divergence div Φ(x) involves

second derivatives. Hence the considerations of Rmk. 3.3.2 for higher order derivatives

apply. It is now necessary to employ a second sphere Kε(x) of twice the radius used for

Φ(x) because second derivatives must be computed over a total distance 2ε.

Consider two opposite directions ξa, ξb ∈ TxM and denote their corresponding

straight paths by ηa(x, a), ηb(x, b) ⊂ B̄ε/2(x) as in the previous subsection; γε(a, b) =

ηa ∪ ηb is a diameter of Kε/2(x) as before. The second derivatives along a diameter

γ2ε ⊃ γε are now computed thusly:

• Define χa(x, y1) ⊃ ηa and χb(x, y2) ⊃ ηb(x, b) with y1, y2 ∈ Kε(x) and χa∪χb = γ2ε.

• Compute a continuous succession of approximate first derivatives along γ2ε over

distances ε in the usual way (3.43), where the initial derivative is along χa, the last
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along χb, and at x it is just Υx(a) for Φγ(x). See Fig. 4.3. This set of approximate

first derivatives defines a new scalar field ϕ′ along γε.

• Smooth ϕ′[γε] over a distance ε and compute its approximate derivative in the

same way as for first derivatives.

Figure 3.4: Computing second deriva-

tives.

The resulting second derivatives for all y ∈ Kε(x) can now be assigned to points

on Kε(x) to obtain a field (2)Φ(x) on Kε(x). Like the derived field Φ, (2)Φ(x) is defined

for all x ∈M and hence it is a real-valued instantaneous field on M × Kε/2. Its time

dependent generalization to Mt is immediate.

Working in a finite ‘basis’ allows working with separate components of (2)Φ(x).

The minimum number of basis elements (call this number 2N for consistency with

the discussion of gradients) must now be determined by convergence in probability for

approximate first derivatives of ϕ, not ϕ itself. Like the computation of Φ(x), where

Υx(a) = −Υx(b), an analogous situation exists for (2)Φ(x). Thus, given a cover of 2N

elements, only N second derivatives must be retained as components of (2)ΦN (x).

Hence assume (2)Φ(x) contains N components, where the set Y that identifies

these components has been constructed according to the prescription of Subsect. 3.6.2

for N -component gradients. Define the N-divergence of Φ(x) as

div ΦN (x) =
N∑
i=1

(2)ΦN
i (x) . (3.58)
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Chapter 4

Emergence of Dynamics

Enough structure is now in place to take steps toward obtaining physics from

the postulated foundation of Chap. 2, utilizing the mathematical tools and structures

examined or developed in Chap. 3. That material has been developed in some detail

with special attention to ensuring self-consistency. The present chapter will consider

how dynamics can emerge from that foundation.

A significant part of Chap. 3 was devoted to careful treatment of the intrinsic

stochasticity of ϕ. A common way of accommodating stochasticity in physics is to treat

it as a contribution to the equation of motion. For example, the Langevin equation

includes a time dependent random force, F(t), which introduces randomness so that

the motion can only be determined in a probabilistic sense:

m
dv

dt
=
∑
i

Fi + F(t)− αv , (4.1)

where v is the velocity, the Fi are the deterministic forces and αv is a dissipative

force which pushes the system toward equilibrium. However, the Langevin equation is

only relevant if dynamics are well defined, and this is not the case prior to manifold

emergence. Until then, ϕ is essentially a random process — the stochastic calculus is

the appropriate tool for describing its motions in that regime.

Moreover, a spacetime requires a preferred scale (Rmk. 2.2.14), a continuous

range of modes, [kmin, kmax] where dynamics and phenomena are not scale invariant,

but a preferred scale only exists over a finite range of modes. This means there is a

transition region of Fourier space near kmin and kmax where the Langevin equation is

inapplicable. To maintain full mathematical control from the stochastic regime through
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the transition region, it is again necessary to rely on the stochastic calculus to ensure

self consistency at all scales.

Dynamics emerge from the stochastic regime when the motions of ϕ are mostly

governed by the coupling equation (2.22) and intrinsic stochasticity is relegated to a

perturbation of it. Then the stochastic calculus can be relegated to a formal role in

the definition of the approximate derivative (Def*. 3.3.1) which is implicitly assumed

whenever a partial derivative occurs; this formally accommodates infinite variation of

ϕ due to modes k > kmax and contributes a small uncertainty to the derivatives. The

primary task of this chapter is to examine the emergent dynamics.

4.1 The Two Regimes of ϕ on Mt

Chap. 2 assumed scale invariance is a very desirable property of ϕ[Mt]. The

dynamics and stochastic behavior were carefully specified to be scale invariant with

respect to the distance metric d. Hence d on M must be regarded as arbitrary, even

though Postulate 2.1.27(T4) specifies it to be homogeneous. The rationale is there

is no intrinsic means for selecting an a priori absolute scale which every cosmology

must respect, so if the preferred scale is absolute a fundamental theory must arbitrarily

impose it by fiat. On the other hand, experience shows observable phenomena generally

have a (fixed) characteristic scale: if ϕ[Mt] cannot exhibit phenomena at some preferred

scale the program begun in the preceding chapters is doomed. From that standpoint,

scale invariance is potentially an undesirable property.

The tension between the desirability of scale invariance and the need for

preferred-scale phenomena is minimized if ϕ can inhabit two somewhat stable or per-

sistent regimes:

• Stochastics domination. This is characterized by a scale invariant probability

density function (PDF). It is the expected regime for ϕ globally.

• Dynamics domination. This is characterized by ‘broken’ scale invariance in

some localized neighborhood Ut ⊂Mt of arbitrary diameter, arising in accordance

with the PDF for ϕ, such that the broken symmetry condition is maintained (and

evolved) via dynamics on Ut — stochastics play a perturbative role. Hence this

regime governs a persistent preferred scale (Rmk. 2.2.14) required for cosmology

and physics in general.
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To realize this program, it is necessary that ϕ obeys dynamical laws so that

a dynamic regime can persist once it arises in Ut, but those dynamics are mostly sup-

pressed in Mt\Ut so that ϕ acts as a random process along almost all curves outside

Ut. The characteristic scale of dynamics in Ut is arbitrary because diam(U) is arbitrary;

hence the laws governing the ϕ dynamics must have a scale invariant form.1

The two regimes have a concrete origin in the oscillator stochasticity postu-

late (2.2.8) and the field motion postulate (2.2.11). The field motion postulate attributes

the change in ϕ at σ during a time interval Iτ to two contributions:

δϕ(σ; Iτ ] = δϕ(σ; Iτ ]coupling + δϕ(σ; Iτ ]rand , (4.2)

where the stochastic contribution δϕ(σ; Iτ ]rand is a Brownian noise, or Brownian motion

process of the ϕ field at σ. Looking ahead to Proposition 4.2.2, Eq. (4.2) implies that

δϕ[c]rand is also a Brownian motion process, where c is an arbitrary curve in Ut.

The contribution δϕ[c]coupling qualitatively plays several roles. It explains the

continuity of ϕ[c] implied by Postulate 2.2.6(W2). Since the forms of both the stochas-

tics and dynamics of ϕ are scale invariant, δϕ[c]coupling must maintain continuity at all

scales. Second, δϕ[c]coupling should cause dispersion of localized fluctuations because

such fluctuations represent (usually very small) deviations from an ‘equilibrium’ condi-

tion.

When δϕ[c]coupling plays only the two roles above, variations of ϕ along any

curve c in Ut should remain consistent with the probability densities in time (4.3) and

space (4.5) over most of their range. Then δϕ[c(δt)] = δϕ[c; It]rand + δϕ[c; It]coupling

characterizes field variations in the stochastic regime.

The third role of δϕ[c]coupling is strictly dynamical: it is responsible for the

dynamic regime in which an equation of motion, derived from the field motion pos-

tulate (2.2.11), exists and has deterministic (classical) solutions; stochasticity merely

perturbs and adds small uncertainties to the solutions. Given that the dynamic regime

departs from primarily stochastic behavior, scale invariance is clearly broken. The dy-

namic regime is the regime of interesting physics.

1In this chapter, scales are assumed to be distances measured with respect to d or time intervals
measured with respect to cosmic time.

96



4.2 The Stochastic Regime of ϕ

The stochastic regime is the answer to the question, What does spacetime

emerge from? This section studies some of its properties.

4.2.1 Characterizing the stochastic regime

The field stochasticity postulate (2.2.8) asserts that, during a time interval

It ≡ [t0, t0 + δt] and for each σ ∈ M, ϕ(σ; It] undergoes the net variation (4.2). The

stochastic contribution δϕrand is a Brownian noise process {B(t)} and therefore the

paths of the process manifest the three defining properties of Brownian motion given

by Def. 3.1.2:

1. (Normal distributed increments.) B(t)−B(s) has distribution N(0, |t− s|),
i.e., the Normal distribution with zero mean and variance (t − s), for arbitrary

times s < t with 0 ≤ (t, s) <∞.

2. (Independent increments.) B(t)−B(s) is independent of B(u), 0≤ u< s.

3. (Continuity of paths.) The B(t), t ≥ 0 are continuous functions of t.

The probability density for Brownian noise without dissipation is given by Eq. (3.8)

with v = 0 and x→ δϕ(σ; δt] = ϕ(σ, t0 + δt)− ϕ(σ, t0):

f(δϕ, δt) =
1√

2πδt
exp

(
−(δϕ)2

2δt

)
; δt = t− t0 . (4.3)

A new proposition will now be stated and proved. It generalizes the field

stochasticity postulate to general continuous curves c ⊂Mt, suggests a way to charac-

terize the stochastic behavior of ϕ[B`(σ); t). It is also important in its own right.

Two definitions will be needed. Let l = L(c) be the d-measurable length of a

curve c(t). In general the parameter t is either a temporal or spatial displacement from

the start of the curve.

Def*. 4.2.1 Let c ⊂Mt be parameterized by t and let γ be its image on M. Then c(t)

is purely space-like if t is a displacement along γ, 0 ≤ t ≤ τ , at some time t∗ and total

spatial displacement τ=L(c); and it is purely time-like if t is the time, t0 ≤ t ≤ t0+τ ,

at some point σ and total temporal duration τ .
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Proposition 4.2.2 Let γ be a path on M, and C[γ] be a family of continuously param-

eterized curves,

C[γ] = {ca(t) | ca : R+ → γ, 0 < t ≤ τa } ,

such that the maps from c to γ are invertible and τa is the duration of ca. For each

ca ∈ C, denote the stochastic contribution to {ϕ[ca]} along ca by {ϕ[ca]rand}. Then

i. In the stochastic regime, i.e., when ϕ[ca]coupling is at most perturbative in the

decomposition (4.2), {ϕ[ca]} is a Brownian noise process along ca, having the

PDF (4.3).

ii. For each γ(x) = ca(t) in which L(γ) > 0 there exists a time-invariant cosmic

time rescaling at γ(x),

δt→ sa(γ(x)) · δt , sa[γ] = { sa(σ) |σ ∈ γ } , (4.4)

whereby {ϕ[ca]rand} and {ϕ[γ; t=const)rand} have the same probability density.

iii. For all cb 6=a ∈ C[γ] in which L(γ) > 0 , sb[γ] 6= sa[γ].

Proof: For Part i it must be shown that the three defining properties of Brownian noise

hold for {ϕ[c(t)]rand }, for all c ∈ C. Then {ϕ(x; t) } is a Brownian noise process in the

stochastic regime because the increments δϕ → δϕrand in that regime. In what follows

take δϕ = δϕrand.

The case L(γ) = 0 (i.e., γ(σ, σ) = σ with τa > 0) is an automatic consequence

of the field stochasticity postulate 2.2.8. Next consider the purely space-like process

{B(x) }, 0 < x ≤ L(γ), where each sample path of the process is just a single member

of an ensemble, B(x) = ϕ[γ; t) with t fixed. Continuity of the process is ensured by

Postulate 2.2.6(W2) for a purely space-like curve: dϕ = |ϕ(x, t) − ϕ(x′, t)| → 0 as

|x−x′| → 0. According to the field stochasticity postulate, {ϕ(x; t) } and {ϕ(x′; t) } are

independent Brownian noise processes and therefore have independent increments and

obey the PDF (4.3). Since the sum of Brownian processes is also a Brownian process,

{B(t) } = {ϕ(x; t) − ϕ(x′; t) } = {ϕ(x; t) } − {ϕ(x′; t) } is a Brownian process (where x, x′

are fixed and t ∈ R+), but so is {B(x) } = {ϕ(x; t)− ϕ(0; t) } (t fixed and x ∈ (0,L(γ)]).

The argument above assumes only the points on γ contribute, but Postu-

late 2.2.11 implies all paths in the tangent space of x ∈ γ contribute to the dynamics
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and thus to {ϕ(x; t)}. However, in the stochastic regime the dynamics maintain conti-

nuity of ϕ but do not modify the form of the PDF (4.3), leaving the argument intact.

Hence {ϕ[γ; t) } is a space-like Brownian process in the stochastic regime, and obeys the

PDF

f(δϕ, δ`) =
1√

2πδ`
exp

(
−(δϕ)2

2 δ`

)
, 0 < δ` ≤ L(γ) . (4.5)

It remains to generalize the purely space-like case to all ca ∈ C[γ]. Partition

γ(0,L(γ)) as γn = (0 = x1 < x2 < · · · < xn−1 < xn=L(γ)); likewise partition [t0, t0+τa]

as τam.

Clearly we can choose n = m so that the partitions of γn and τam have the

same number of elements. Then for each curve ca, each partition τam=n implies a unique

partition γn (since xi = c(ti)), and the partitions τan and γn imply a unique partition of ca

also with n elements. Since every curve can be approximated by a set of constant-speed

curves, without loss of generality we can consider the case ċa(t) = δ`/δt = L(γ)/τan =

const. Examining the probability densities (4.3) and (4.5), it is clear they are identical

for all L(γ) > 0 if we rescale δt in Eq. (4.3) as δt → sa[γ]·δt, where sa[γ] = L(γ)/τan is

a time-independent constant function. This demonstrates Part ii. (After the rescaling,

δt in Eq. (4.3) is reinterpreted as a time interval an ‘observer’ moving along ca would

‘measure.’) A different constant speed curve cb(t) with ċb(t) = L(γ)/τ b6=an will have a

rescaling function sb[γ] 6= sa[γ], so s[γ] depends on the speed of c, which is Part iii.

Since every curve can be approximated by a sequence of constant speed curves, the

result generalizes to all c ∈ C[γ].

Thus {δϕ[c]rand} is a one-dimensional Brownian noise process described by the PDF (4.3),

where t parameterizes the curve c; c(t) need not be either purely time-like or purely

space-like.

Proposition 4.2.2 implies that for each γ ⊂ M there is a unique family of

rescaling functions S[γ] such that there is one and only one s ∈ S[γ] for each c ∈ C[γ].

Hence, after rescaling δt using S[γ], there is no way in principle to determine c(t) by

examining {ϕ[c]rand }. This is a physical implication, even though it has been derived in

terms of a nonphysical metric d(x, y) and nonphysical cosmic time t. In the stochastic

regime where {ϕ[c]} = {ϕ[c]rand } this means there is no way to physically distinguish

motion from non-motion by observing the process {ϕ[c]}.
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Remark 4.2.3 Proposition 4.2.2 justifies a previous claim that the particular choice

of d(x, y) has no physical consequence. Consider Postulate 2.1.27(T4), which states the

nonphysical metric is homogeneous. Homogeneity implies all straight paths γ ⊂ M of

the same length ` have equivalent S[γ]. If the postulate is eliminated so that d is not

homogeneous, it will still always be possible to find some S[γ] such that {ϕ[ca]rand} is

again invariant for all choices of ca ∈ C[γ], although now {γa |L(γa) = `, γa straight}
will not, in general, have equivalent S[γ]. The (time independent) rescaling needed to

obtain effective homogeneity of d is possible because it is essentially a mathematical

choice or convention; it is not dynamical in origin and has no dynamical consequences.

This means Postulate 2.1.27(T4) is superfluous: any metric that is consistent with the

other requirements of Postulate 2.1.27 is suitable; a homogeneous metric is simply a

convenience.

Given the flexibility to rescale the time so that {ϕ[ca]} and {ϕ[cb]} are indistin-

guishable for all ca, cb 6=a ∈ C[γ], {ϕ[c]}, not {ϕ[γ; t∗)} or {ϕ(σ; t)}, should be considered

the fundamental process. The time-like process {ϕ(σ; t)} restricted to a single point

σ is a special case, where γ = γ(σ, σ) = σ so that C[σ] contains exactly one element,

c(t) = t; similarly S[σ] contains a single element, s(σ) = 1. The space-like process

{ϕ[γ; t∗=const)} is also a special case: it can be evaluated like any other curve in C[γ],

with s[γ] = L(γ)/δt in the limit δt→ 0.

Remark 4.2.4 (Inapplicability of equation of motion to stochastic regime.)

The equation of motion holds in the dynamic regime and in the transition between the

stochastic and dynamic regimes, but does not hold in the stochastic regime. This can be

seen as follows.

Together, Proposition 4.2.2 and the scale invariance of Brownian motion mean

that, in the stochastic regime, the probability density (4.3) is the same for all rescaled

times t and along all curves c ∈ C[γ] for all γ ⊂ M. Since {ϕ(σ; t)} is a stationary

process, there is no useful way to distinguish different times. Furthermore, {ϕ(σ; t)}
‘looks the same’ at all points in M, so there is no meaningful way to distinguish different

points nor measure physical distances. That is, just as there is no way to determine

the state of motion by observing the process {ϕ[c(t)]}, there is no way to distinguish

spatial intervals from time intervals. The stochastic regime admits no notions of physical

distance, position, time, motion, or scale; it has the greatest possible symmetry. Absent
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notions of distance, time or motion, there is no sense in which the equation of motion

can apply to the stochastic regime; it only applies if the stochastic regime does not hold.

Subsect. 3.1.2 discussed spectral analysis of time dependent stochastic pro-

cesses, which included procedures suitable for determining the spectral density S(ω)

and time correlations 〈y(t) y(t+τ)〉 in terms of the cosmic time at a single point. Spec-

tral analysis of spatially extended processes in terms of wavenumber modes k will also

be necessary. The methods of Subsect. 3.1.2 can be used by fixing the time and taking

samples over an ensemble of paths or over very long spatial distances to determine the

spectral density (3.17), S(k), and correlation function (3.22), for example 〈y(x) y(x+`)〉.
Of special interest are modes below the cutoff kmax (and similarly ωmax) which arise

when scale invariance is broken. As indicated by the intensity-frequency relationship

for a Brownian noise source in Fig. 3.1, coefficients A(k) → 0 as k → ∞ and similarly

for A(ω). Thus a mode decomposition of ϕ[c] can be obtained to any desired accuracy

by choosing an appropriate but finite range of frequencies.

What is an appropriate interpretation of a spectrum obtained along curves

c(t)? According to Proposition 4.2.2, ϕ[c] has the spectrum of Brownian noise. Because

c(t) maps to a single point x in the image of c, the spectrum S(ω) implies S(k) and vice

versa — the two spectra contain identical information. This is a manifestation of the

indistinguishability of space and time in the stochastic regime.

4.2.2 Statistics of neighborhoods

To fully characterize the stochastic regime, it is necessary to generalize the

statistical behavior of ϕ for points and curves to ϕ over neighborhoods, B`(σ). The

simplest approach is to use the property of scale invariance. Consider the stochastic

behavior of the process, {ϕ(σ, t)}, as the limit

lim
`→0
{ϕ[B`(σ); t) } = {ϕ(σ; t) } .

To maintain scale invariant behavior of ϕ on Mt in the stochastic regime, the statistics

of the mean field value ϕ̄[B`(σ)] at a time t must obey the PDF (4.5) for all finite `.

The Brownian nature of neighborhoods in the stochastic regime can also be

seen straightforwardly by considering ϕ on the sphere K`(σ). According to the field

stochasticity postulate, ϕ(σ′; It] is a Brownian noise process for all σ′ ∈ K`(σ). Sums
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of Brownian noise processes are Brownian noise processes, so if a finite sum can be

constructed on K`(σ) the Brownian nature of ϕ[K`(σ); It] will follow. Subsect. 3.5.3

gives the procedure for constructing the desired sum.

The martingale property of Brownian noise gives a third way to see the Brown-

ian behavior of ϕ̄[K`(σ); t). The field ϕ(σ; t) in the stochastic regime is a Brownian noise

process in time. The martingale property (Def. 3.1.9) implies that if the path ϕ(σ; t) of

the process {ϕ(σ; t)} up to time t′ is known, then the expected value at σ at any future

time is ϕ(σ; t′). Likewise, if the path of the process {ϕ(c(t); t∗)} along a curve c is known

up to the point σ′ = c(t′), where t∗ is fixed and σ′ varies as t increases with c(0) = σ,

then the expected value at any point c(t′′) > c(t′) is ϕ(c(t′); t∗). Taking the latter point

of view, and letting c ≡ γ be a radius of K`(σ), we have ϕ̄[K`(σ); t∗) = ϕ(σ; t∗) at

t = L(γ) = `. As before, since ϕ(σ; t) is a Brownian noise process in time, ϕ̄[K`(σ); t)

will also be a Brownian process in time. By similar reasoning, if K` is transported along

a curve c(t), ϕ̄[K`(c(t)) is a Brownian noise process as it moves along c.

4.3 Breaking Scale Invariance

In the emergence picture, stochastics domination is the natural or ‘equilibrium’

condition for ϕ, presumably holding almost everywhere on Mt. In that regime, ϕ is

statistically homogeneous and scale invariant — it contains no information at all, since

there is no attribute of the stochastic regime that allows distinguishing two points

σ, σ′ ∈ M, nor two cosmic times t and t′, nor one d-measured scale from another. In

that regime ϕ[Mt] has maximal symmetry in the most general sense possible.

Moreover, ϕ is the physical entity, not Mt ≡M×R. Consequently, despite the

superficial appearance of cosmic time as an absolute, globally applicable Newtonian time

coordinate, there is no physically meaningful global ‘rest frame.’ The scale invariance

of ϕ and its dynamics is the reason: Scale invariance with respect to both cosmic time

and d-measured neighborhood diameter leaves no way in principle to distinguish the

state of motion on Mt by any observation of ϕ configurations. In fact, this is true even

if scale invariance is broken in some region S because, again, the scale invariance of ϕ

outside S makes it impossible to determine a state of motion of S on M. Hence there

is no preferred sequence of spacelike slices ϕ[M].

To simplify the discussion below, all curves will have constant speed, ċ(t) =
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const, and each map c : R+ → γ ⊂ M is continuous and invertible. For all t ≥ 0 (and

t ≤ τ if the curve has finite duration τ), c(t) is a point in the image of c. Except for

the special case of purely time-like c where γ is a point, γ is a continuous path on M

and t directly corresponds to a displacement ` = ċt from the start of the path. For the

purely time-like case, δt = ċt. Fourier transforms are valid on Brownian paths [41], so

the spectra of ϕ modes along curves will be the starting point.

4.3.1 Transient preferred scale

Consider what it means to break scale invariance in a neighborhood Ut ⊂Mt,

ignoring for now the process which leads to it. The stochastic regime is scale invariant

because ϕ is a random process along all curves in Mt, and its PDF is scale invariant. The

PDF is Eq. (4.3), denoted below by f0(δϕ, δt), where t parameterizes the constant-speed

curve of interest.

That is, continuously taking samples while moving at constant speed v along

a curve c(t) in the stochastic regime, the spectral density over an ensemble will be

Eq. (3.29),

S0(ω) = α/ω2 (4.6)

for some constant α; this is illustrated by Fig. 3.1. In terms of spatial displacements

along the image of c, (4.6) corresponds to

S0(k) = α′/k2 (4.7)

where α′ = α/v since ω = vk and v is assumed constant. To break scale invariance,

the spectral density must deviate from S0 over some range of modes [kmin, kmax], where

k−1
max ' diam(U). These modes are deterministic solutions of an equation of motion,

so their increased amplitudes compared to S0 must be sufficiently large to lead to

distinguishable phenomena. The stochastic motions of all modes (k > 0) in Ut are

perturbations of those solutions.

The development of a proposal for dilatation symmetry (scale invariance)

breaking will start with an unsuitable model in order to assess what does not work.

Fig. 4.1 is a cartoon of the first attempt; compare with Fig. 3.1.

Two interpretations of Fig. 4.1 will be entertained. The first is that broken

scale invariance in Ut is characterized by a different probability density f1(δϕ, δt) for
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Figure 4.1: Hypothetical breaking of scale

invariance. The frequency ω ∼ 1/δt, where

δt is the sampling interval; then δϕ(σ) is the

departure from 〈ϕ(σ)〉 ≡ 0 after δt.

the same interval δt. Then PDF in Ut after breaking scale invariance would look like

f(δϕ, δt) →


f0(δϕ, δt) , 0 ≤ t < tmin

f1(δϕ, δt) , tmin ≤ t ≤ tmax

f0(δϕ, δt) , tmax < t <∞ .

(4.8)

A problem with Eq. (4.8) is that it treats f1 as a probability density in the

same sense as f0, even though dynamics alone are clearly responsible for the change

f0 → f1. That is, f0 is stationary and time- and space-translation invariant, whereas f1

cannot be either — dynamics imply non-random field evolution in both space and time.

Another possibility, also suggested by Fig.4.1, is that the spectral density

changes due to a shift of ‘power’ from one range of modes to another, i.e., the change

from S0 → S1 is accompanied by an opposite change S0 → S2. Such a simple picture

is suggested by conservation of energy, but there is no notion of energy, at least until

some form of manifold exists. However, there are other difficulties with this idea.

First, it is not clear how a shift of ‘power’ from one part of the spectrum to

another could be maintained over time without additional postulates, given that the

form of the coupling (Postulate 2.2.11) should cause two different frequency ranges,

[ωmin, ωmax] for S1 and [ω′min, ω
′
max], for S2, to shift toward each other to reduce their

frequency difference. This is because both ranges coexist in the same spatial region

U at the same time. Since such a shift should not affect the phenomena governed by

S1 because the dynamics have a scale invariant form, such shift is consistent with an

equation of motion. As the two ranges shift toward each other, the modes comprising

the range with spectral density S1 will no longer have the needed excess amplitudes —

a dynamic regime could not persist in the scenario of Fig. 4.1.

Second, the part labeled S0 in Fig. 4.1 is isotropic in the stochastic regime,
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where isotropy at a point x ∈ Ut means the statistics of ϕ motions are the same in all

directions given by the tangent space TxUt; see Sect. 3.4. Although isotropy with respect

to TxUt is reasonable for S0, it is less reasonable for S1. Phenomena are solutions to

an equation of motion, but phenomena of physical interest live in a space with some

notion of spatial dimension. The equation of motion must exist in some finite number

n of spatial dimensions. Thus, since S1 deviates from S0 due to the equation of motion,

S1 can at best be isotropic in n spatial dimensions. That means the ‘shape’ of S0 and

S1 can only be compared in the n independent spatial directions represented in the

equation of motion.

The second problem in particular indicates the property of the stochastic

regime that must be modified: isotropy of the spectral density with respect to TxUt

along all curves that meets the assumptions of Proposition 4.2.2. If there were a range

of modes [kmin, kmax] in Ut for which the spectral density depends on the path the curve

takes, that would mean scale invariance is broken in Ut — invariance of the spectral

density along all candidate curves would be absent.

For interesting dynamics to emerge, it is necessary that a set of special curves

emerge, so that the spectral density is no longer the same for all curves in Ut. Denote

this set of special curves at a point x ∈ Ut by Gx. Since Postulate 2.22 indicates the

equation of motion will be some kind of wave equation, the spectral density should be

different along curves where waves propagate than along arbitrary curves which are only

sometimes tangent to the propagation curves. Thus, Gx acts like a set of geodesics, not

of M but of a different space M that is in the process of emerging.

Because the spectrum along the curves of Gx includes solutions to an equation

of motion, the spectral density along the propagation paths of the waves will be different

than S0. Denote this spectral density by S1, although it should be noted that S1 will

depend on both the position and the emergent geodesic in the general case.

If in some small neighborhood of x the field evolution along all curves in Gx can

be decomposed as a linear combination of field evolutions along a subset of n members

of Gx, where each such ‘component’ separately solves the equation of motion, then those

n members act like a basis of TxM in the emerging space. In this way a product space

can arise at x where none previously existed.

It is not necessary that only one curve in Ut maps to one curve in Gx. To retain

generality, it should be possible that symmetries exist so that a curve in Gx corresponds
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to an equivalence class of curves in Ut.

The discussion above motivates using the spectral density to define what it

means to break scale invariance, or dilation symmetry. Because Postulate 2.2.8 asserts

there are only two sources of field change, δϕ(σ; δt]rand which has spectral density S0,

and δϕ(σ; δt]coupling which leads to an equation of motion, the deviation of S1 from S0

in the definition below is ultimately due to the action of the equation of motion.

Def*. 4.3.1 (Dilatation symmetry breaking.) Let S0 be the spectral density (4.7)

of the stochastic regime, 0 < k <∞, and let all spectral densities S1(c) in the following

be computed over an ensemble of similarly prepared field configurations in Ut. For all

x ∈ Ut ⊂Mt, if there exists a set Gx of curves containing x, such that the deviation δk in

spectral densities S1(c) (for all c ∈ Gx) and S0 for all k ∈ [kmin, kmax] exceeds a threshold

ε, then

• Dilatation symmetry is broken in Ut at a significance level ε, where k−1
min ' diam(Ut).

• The range of modes [kmin, kmax] gives the preferred scale (Rmk. 2.2.14).

Fig. 4.2 illustrates the general idea. No attempt will be made at a specific quantification

of ε in this thesis.

Figure 4.2: A preferred scale is bounded by

[kmin, kmax]. Modes {k} are measured by d.

If ϕ[Ut] meets additional require-

ments, then Ut also contains a pre-

emergent space in this picture:

Def*. 4.3.2 (Pre-emergent space, M .)

Let ϕ[Ut] satisfy Def*. 4.3.1. If St is

a simply connected subregion of Ut such

that, for each x ∈ St, there is a special set

of curves Gx along which the field evolu-

tion can be decomposed as a linear com-

bination of field evolutions along n mem-

bers of Gx (where each such ‘component’

separately solves the equation of motion),

then

• St contains a pre-emergent space, M .
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• The n members of Gx are a basis of TxM .

• M has spatial dimension n.

A region Ut that meets the requirements of Def*. 4.3.1 may contain multiple

disjoint subregions that meet the requirements of Def*. 4.3.2. There is no requirement

that all such subregions have the same dimension n. It is also possible that the spa-

tial dimension of a subregion of Ut may change during evolution toward an emergent

spacetime, if such an evolution occurs.

4.3.2 Fluctuations leading to a preferred scale

A good probabilistic model that describes how fluctuations of the stochastic

regime can lead to a transient preferred scale with n emergent directions as developed in

Subsect. 4.3.1 is presently absent. A transient preferred scale is a necessary precursor of

cosmogenesis, needed to generate a persistent preferred scale. Simultaneous fluctuations

according to the PDF (4.8) over a finite d-measured neighborhood is an implausible way

to get an n-dimensional preferred scale due to the very large transitions δϕ needed for

dynamics to manifest and the exponential suppression of such dynamics. Moreover, the

fluctuations would need to respect the continuity of ϕ along all curves.

A more likely scenario starts from a very low-amplitude preferred scale, not

necessarily having the same number of emergent directions as the ‘final’ preferred scale,

and then grows into its final form by a combination of dynamics and many additional,

highly unlikely fluctuations of the Brownian type. That is, it presumably appears as

the outcome of a process rather than a single event. It should be possible to enforce

continuity at all stages, since continuity is necessary for both the dynamic and stochastic

regimes.

A good model which describes the most probable process is not required to

proceed. For present purposes it is sufficient to note that it must occur in order to get

dynamical phenomena from ϕ[M], whatever the reason.

4.4 Physical Observability of ϕ Motions

Although it should be possible to develop an elementary theory on the base

space Mt ≡M × R, at the end there obviously needs to be a way to relate it to ob-
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servations by physical observers in a physical spacetime (M ,g) if the theory is to be

a physical one. In the strong emergence picture in this thesis, connecting fields on the

nonphysical Mt to fields on (M ,g) is neither immediate nor trivial. The main problem

is that a physical spacetime is not implied by ϕ on Mt; that and the intrinsic stochastic-

ity of ϕ suggest it is impossible in principle for any observer to obtain an unambiguous

map from ϕ on Mt to ϕ on (M ,g), or vice versa. The best we can do is demonstrate

that ϕ on (M ,g) is compatible with ϕ on Mt, then find relationships on Mt that should

also hold on (M ,g) to obtain concrete connections between the two realms. That is

the task of this section.

From the form of the local dynamics in Postulate 2.2.11(D2), or, alternatively,

anticipating the field equation that will be developed in Sect. 4.5, it is reasonable to

expect the field equation that governs dynamics of ϕ will be a wave equation. Thus,

it will be assumed throughout this section that a preferred scale [kmin, kmax] exists in

a region Ut of Mt, the dynamic regime completely dominates the stochastic regime in

Ut so that perturbative stochastic influences can be ignored, and ϕ inhomogeneities

propagate as waves.

4.4.1 Wave propagation speed

Rmk. 2.2.10 argued that an increase in the total variation of φ(x, x′) corresponds

to an increase in number or magnitude of sign reversals of φ along the geodesic c whose

image is γ(x, x′). Thus, propagation of changes in φ along c involves corresponding

reversals in direction of propagation, thereby reducing the propagation speed and the

effective coupling strength. The reduction in coupling strength as Vφ(·) increases is

analogous to reducing a spring constant by increasing the total length of the wire that

comprises the spring.

Postulate 2.2.11 codified this idea for local dynamics in parts (D3) and (D4).

Since the field equation should inherit at least most of its properties from the local

dynamics, these two postulates will provide the foundation for the propagation speed

over longer distances.

The model curve for what follows has duration T (i.e., 0 ≤ t ≤ T ) and image

γ(x, x′) whose length L(γ) is finite:

c : [0, T ]→M ; T and L(c) are finite .
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It will be assumed propagation occurs along c, and the total propagation time T from

x→ x′ will be allowed to vary from one trial to the next. The instantaneous position of

the wavefront is c(t), and the instantaneous propagation speed is v = dc(t)/dt = ċ.

Postulate 2.2.11(D4) and Eq. (2.23) relate the instantaneous propagation speed

of local changes in φ(x, x′; t) along c to the instantaneous coupling strength g. Since

v ∝ g, and noting Vϕ(c) = Vφ(c),

v = v0 Vϕ(c)−1 . (4.9)

Because the total variation Vϕ(c) is an additive function and v0 is a constant, Eq. (4.35)

also holds for arbitrary T and L(c) assumed for the model curve.

Postulates 2.2.11(D3) and (D4) also imply v → ∞ as d(x, x′) → 0. This

implication can be checked for self consistency as follows. Assume as in Rmk. 2.2.10

that a wavefront can be scattered by ϕ inhomogeneities; this is the proposed explanation

for why increasing the total variation slows the net propagation speed. If we let the

propagation speed of a wavefront correspond to the finite diffusion speed of a particle

undergoing Brownian motion, no generality will be lost because diffusion is generally

slower than propagation. However, the instantaneous speed is nonetheless infinite:

Theorem 4.4.1 The instantaneous speed of a particle undergoing Brownian motion is

infinite.

Proof: Eq. (3.7) for a random walk in the continuum limit says that

∂P

∂t
= D

∂2P (x, t)

∂x2
+ v

∂P (x, t)

∂x
; D = lim

ε→0,
τ→0

ε2

τ
, v = lim

ε→0,
τ→0

ε

τ
(p+ − p−) , (4.10)

where D is the diffusion coefficient and v = D
ε (p+ − p−) is the particle drift velocity.

Since D is finite, clearly the instantaneous particle velocity ε/τ →∞ as τ → 0. The

Fokker-Planck equation (3.33) for Brownian motion with friction is more general than

Eq. (3.7), but the same conclusion holds.

Physical particles cannot have infinite instantaneous velocities, so the theorem

is obviously inapplicable to real particles2, but that is unimportant to the present ar-

gument. The theorem adheres to assumptions already postulated for ϕ. Because ϕ in

2Thm. 4.4.1 is a consequence of infinitesimal step size. An infinitesimal step size involving physical
particles would require that collisions occur in zero time, that intermolecular distances are infinitesimal
everywhere, and that position and momentum can be simultaneously determined to arbitrary accuracy
in violation of the uncertainty principle.
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the stochastic regime is a Brownian process both temporally and spatially, it inherits

the properties of Brownian motion including infinite variation and scale invariance. An

infinite instantaneous propagation speed is therefore acceptable in the limit L(c)→ 0.

Returning to Eq. (4.35), the absolute propagation speed v along the model

curve is ill defined because Vϕ(c) is infinite and v0 is unspecified (v0 might be finite or

infinite). The absolute speed is also nonphysical because it is defined with respect to

the distance metric d(x, x′) and cosmic time, both of which are nonphysical.

Consider a ratio of nonphysical speeds:

v =
v0

n(ϕ[c(t)])
; n(ϕ[c]) ≡ Vϕ(c)

Vϕ(cref)
, (4.11)

where cref is some reference curve which has the same duration T as the model curve c.

It is not obvious whether this is workable because n is a ratio of two infinite quantities.

The usefulness of (4.11) depends on finding constraints on ϕ[c] and ϕ[cref ] that make n

well defined and finite.

First consider a regime where ϕ is a Brownian noise process, a reasonable

approximation when motions of ϕ are very small. This is the stochastic regime, implying

c and cref lie in a region of Mt where ϕ is scale invariant. As Brownian processes, ϕ[c]

and ϕ[cref ] can diverge arbitrarily — the finiteness of (4.11) cannot be ascertained.

Try instead taking the mean 〈n(ϕ[c])〉 as the relevant ratio. Again working in

the stochastic regime,

〈n〉 =

〈
Vϕ(c)

Vϕ(cref)

〉
=
〈

(〈Vϕ(c)〉+ δVϕ(c)) (〈Vϕ(cref)〉+ δVϕ(cref))
−1 〉

'
〈
〈Vϕ(c)〉
〈Vϕ(cref)〉

(
1 +

δVϕ(c)

〈Vϕ(c)〉

)(
1− δVϕ(cref)

〈Vϕ(cref)〉

)〉

=

 〈Vϕ(c)〉
〈Vϕ(cref)〉

1−
��

���
���

��:0〈
δVϕ(c) δVϕ(cref)

〉〈
Vϕ(c)

〉〈
Vϕ(cref)

〉


=

(
〈Vϕ(c)〉
〈Vϕ(cref)〉

)
,

where the correlation vanishes in the second to last step because fluctuations at space-

like separated points are independent for Brownian processes. Directly using the defi-

nition 2.2.9 of Vϕ(c), compute the mean value

〈Vϕ(c)〉 =

〈
sup

n∑
i=1

∣∣∣ϕ(c(tni ))− ϕ(c(tni−1))
∣∣∣〉 = sup

n∑
i=1

∣∣∣〈ϕ(c(tni ))
〉
−
〈
ϕ(c(tni−1))

〉∣∣∣ .
110



By assumption, ϕ(c(tni )) and ϕ(c(tni−1)) are Brownian noise processes. The ensemble

average 〈ϕ(c(tni )) 〉 should be the same as the time average due to the stationarity

of the scale invariant vacuum: the ensemble can be generated by shifting the entire

curve by different values δt. This and the martingale property of Brownian motion

(see Thm. 3.1.10 and Def. 3.1.9) implies 〈ϕ(c(tni ))〉 = ϕ(c([t+δt]ni )), and similarly for

ϕ(c(tni−1)). Thus, 〈Vϕ(c)〉
∣∣
t′

= Vϕ(c)
∣∣
t
. The same reasoning holds for 〈Vϕ(cref)〉. No

advantage is accrued by considering the average 〈n〉 compared to considering a single

sample n.

Hence n is undefined when either curve lies in a region of Mt where ϕ is

scale invariant. While this conclusion is useful, it does not imply n, as it is defined in

Eq. (4.11), is finite when scale invariance is broken.

To examine that case, consider a ‘boundary case’ where c and cref are the same

curve, lying within a region of Mt where a mode decomposition of ϕ deviates from the

scale invariant spectrum. Let ϕ[c]broken be the deviation of ϕ from scale invariance along

c, i.e.,

ϕ[cref ] = ϕ′[cref ] + ϕbroken[cref ], (4.12)

where ϕ′[cref ] is scale invariant. In general Vϕ(c)broken is finite while Vϕ(cref) is not, so

Vϕ(c)broken/Vϕ(cref) will be nonvanishing only on a set of field configurations of measure

zero, i.e., those configurations of ϕ[cref ] which have finite variation because they contain

only finitely many jumps. Then

n(ϕ[cref ]) =

(
Vϕ(cref)

Vϕ(cref)

)
= 1 =

Vϕ′(cref)

Vϕ(cref)
+
��

�
��

��*0
Vϕ(c)broken

Vϕ(cref)

 .

This means that n in Eq. (4.11) is completely determined by the scale invariant contri-

bution, and the conclusion that Eq. (4.11) is not well defined, reached when c or cref are

in a scale invariant region, generalizes to everywhere on Mt.

Apparently there are no constraints on ϕ[c] and ϕ[cref ] that can make (4.11)

unambiguous and thus finite. The problem must lie in the proposed definition (4.11)

for n. Nevertheless, Eq. (4.12) suggests a modification of (4.11) that can make n finite.

The idea is to work with the finite variations Vϕ(c)broken and Vϕ(cref)broken, and then

determine what constraint(s) are necessary to ensure their ratio remains finite even if

Vϕ(c)−Vϕ(cref) diverges.
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A finite variation Vϕ(c)broken implies a finite effective cutoff scale lmin (and

vice versa), the smallest distance scale where there is a deviation from scale invariance.

That is, given a mode decomposition of ϕ[cref ] (see Subsect. 3.1.2), modes k > l−1
min can

be ignored without loss of consequential information because the emergent physics will

be a consequence of deviations from scale invariance. Scale invariance means there is

no intrinsically preferred scale, so the cutoff scale lmin can occur at any d-measured

scale where a chance fluctuation breaks scale invariance sufficiently. (In this thesis a

‘physically interesting situation’ will usually mean a cosmology.) Sect. 4.3 considers the

physical origin of lmin and shows natural cutoffs will inevitably accompany the initial

conditions of a cosmology; its introduction here is not a new assumption.

The finite variation Vϕ(c)broken can be defined more generally as a residual

variation:

Def*. 4.4.2 (Residual variation.) Given a cutoff mode kmax = l−1
min and a curve

c(t) ⊂Mt, t0 ≤ t ≤ t0+τ for some parameter t and interval length τ : let Vϕ̄

∣∣
k<kmax

be

the variation of ϕ(c(t)) when ϕ has been smoothed over intervals of length k−1
max. Then

the residual variation of ϕ along c is

V (kmax)
ϕ (c) = Vϕ(c)−Vϕ̄(c)

∣∣
k>kmax

; (4.13)

Vϕ(c) is defined by Def. 2.2.9.

A straightforward way to compute ϕ̄(c(t)) is the ‘smoothing’ procedure sum-

marized in Eq. (3.42), where ε = k−1
max is the smoothing interval. This procedure is

also used to compute ϕ̄(c(t), t) in Eq. (2.22), although the choice of ε may be different

there. The smoothing forces a sharp cutoff at kmax so that Vϕ(c) ignores modes greater

than kmax. The procedure requires extending c at each end by a distance ε/2 to allow

computing ϕ̄(c(t), t) at the ends, but otherwise it is as expected. (The curve can be

extended by geodesics of d which are tangent to c; Def. 3.4.1 defines tangent paths.)

Def*. 4.4.2 is the basis for defining n as a relative variation, superseding

Eq. (4.11). The relative variation will be useful because it is a scalar quantity that

characterizes different ϕ configurations, one that is independent of the nonphysical at-

tributes of curves on Mt when c and cref have the same length and duration.

Def*. 4.4.3 (Relative variation.) Let Ut ⊂Mt be a region throughout which ϕ de-

viates from scale invariance over a continuous range of modes [kmin, kmax]. Given a
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curve c ⊂ Ut and a reference curve cref ⊂ Ut of equal length and temporal duration, the

relative variation with respect to cref is

n(ϕ[c]) ≡

(
V

(kmax)
ϕ (c)

V
(kmax)
ϕ (cref)

)
. (4.14)

Because kmax is finite, the infinite variation along each curve is due to modes

greater than kmax; hence both the numerator and denominator of (4.14) are nonzero

and finite, implying n is finite. While finiteness of (4.14) is necessary for its usefulness,

it is not sufficient. Persistence of a deviation of ϕ[Ut] from scale invariance is the most

important auxiliary condition. If scale-specific configurations do not persist, then nei-

ther will physical phenomena that originate from those deviations from scale invariance;

physical laws would not manifest the invariance that makes them useful.

As a ratio, Eq. (4.14) gives n a scale invariant definition, as required. That is,

kmax will be determined by a scale invariant random process so quantities defined relative

to it have a scale-free meaning. Although the variations V
(kmax)
ϕ (c) and V

(kmax)
ϕ (cref) are

defined with respect to the nonphysical distance metric d and cosmic time t, the ratio

(4.14) hides all references to these nonphysical objects.

Write the propagation speed along a curve c of duration T , in a scale-free form

that is useful on either Mt or a physical spacetime:

• Define a reference curve cref which also has duration T ;

• Take v0 ≡ const to be the invariant propagation speed along the chosen cref (can

choose a ‘natural’ set of units in which v0 ≡ 1 if desired);

• Compute n(ϕ[c]) according to Def*. 4.4.3; and

• Relate the (non-constant) propagation speed along c to v0 by

v =
v0

n(ϕ[c])
. (4.15)

The choice of the symbol n in (4.14) is intended to suggest an analogy with the refractive

index n in geometric optics. Eq. (4.15) is not uniquely implied by Postulate 2.2.11, so

it must be postulated; see Postulate 4.4.5(S1).
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4.4.2 Physical lengths and times

Let c be a geodesic of duration τ along which a wave propagates, and let

L(c) = `. Denote the reference curve, implicitly required to determine the relative

variation n in Eq. (4.15), by cref . Using (4.15) for the propagation speed along cref ,

v =
v0

n(ϕ[cref ])
= v0 =

`0
τ
,

which is clearly constant because v0 is defined to be a universal constant. Along c,

v = v0/n(ϕ[c]) is not constant in general. However, the propagation speed can be taken

to be v0 (and hence constant) by rewriting v:

v0 = nv =
`n

τ
=
`n1−p

τn−p
=
`′

τ ′
.

Taking p = 1
2 ,

v0 =
`n1/2

τn−1/2
=⇒ `′ = ` n1/2 , τ ′ = τ n−1/2 . (4.16)

This is just a rewrite of Eq. (4.15) in terms of ` and τ , but it shows how the propagation

speed can be taken to be a universal constant with lengths and times being what change

with n. The choice p = 1
2 is completely unmotivated for now, but the rationale for the

choice will become clear in Chap. 6.

Taking the transformations (4.16) of lengths and times to be correct, Def*. 4.4.3

can be used to define a scale-free relationship between physical and nonphysical distances

along an arbitrary curve c(t):

Def*. 4.4.4 (Variational length Lε(c).) The variational length Lε(c), measured with

respect to a specified cutoff scale τ , is

Lτ (c) = sup lim
n→∞

n∑
i=1

∣∣∣c(si)− c(si−1)
∣∣∣ , (4.17)

where

si =

ti n
1/2(ϕ[c(ti)]) for purely space-like c

ti n
−1/2(ϕ[c(ti)]) otherwise.

(4.18)

Here n(ϕ[c]) is the relative variation defined by Def*. 4.4.3, and n(ϕ[c(ti)]) means that

n(·) is computed over the interval [1
2(ti+ ti−1), 1

2(ti+ ti+1)] for 1 ≤ i < n; for i = 0 and

i = n, respectively, c is extended by geodesics (tangent to the curve) of length 1
2(ti+1−ti)

and 1
2(ti − ti−1), and the values computed with the fictitious t−1 or tn+1.
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4.4.3 Concretely connecting ϕ[Mt] to physical spacetime

The complete absence of reference to the background structure Mt in the

relative variation in Eqs. (4.14) and (4.15) means it is appropriate to use n in expressions

for quantities whose effects are to be observed within a physical spacetime. The relative

variation only refers to field variations that can be inferred, in principle, within that

spacetime. The inference requires a model of interactions between ϕ and quantum fields

whereby the there is a theoretical link between observable distributions of energy and

the variations of ϕ, but that is not a problem of principle. Chap. 5 will take steps

toward such a link.

In order to avoid referring to Mt, the relative variation assumes a reference

curve, cref . Field motions along cref act as a standard against which ϕ motions along

all other curves can be quantitatively compared. Thus far, cref has only be used for

quantifying propagation speed, but physical lengths and times can also be defined with

respect to it. The reference curve will be the basis for quantifying the geometry of

physical spacetime.

Given the central importance of cref , an unambiguous prescription for obtaining

it is needed in order to concretely connect ϕ motions on Mt to ϕ motions on a spacetime

(M ,g). It will require a new postulate.

Postulate 4.4.5 (Relationship between Mt and (M ,g).) Let [kmin, kmax] be a

preferred scale in a region Ut ⊂Mt, and O ∈ Ut be a privileged but arbitrary reference

point that acts as the origin of an observational reference frame. Let cref(t) be an abstract

curve of image length L, duration T , and endpoint O, which becomes concrete once L,

T , and the base space for cref are all specified.

S1. The instantaneous propagation speed (and thus average propagation speed) of ϕ

waves is defined to be a universal constant v0 at all points along cref(t), for all

t (0 ≤ t ≤ T ). The propagation speed along other curves is related to v0 by

Eq. (4.15): v = v0/n(ϕ[c]).

S2. If the base space is Mt, cref(t) is a geodesic of the distance metric d (hence

O ∈ Ut); L is measured by d, T is measured by the cosmic time, the parameter t

is the cosmic time, and v0 = ċ(t).

S3. If the base space is an emergent spacetime (M ,g), cref(t) is a geodesic of g (hence
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O ∈M ); L and T are measured by g, the parameter t is the proper time in the

reference frame where O is at rest, and v0 = c is the speed of light.

S4. The reference curve is associated with the point O, and is fixed on Mt or M only

if O is fixed on either.

S5. Both the quantum fields and the ϕ field move in the same (emergent) spacetime

and transform according to the same spacetime symmetries.

S6. A geodesic of Mt may not be a curve on M , or vice versa; an unambiguous map

between Mt and (M ,g) may not exist.

By convention, the fixed reference point σ0 ∈ M, with respect to which ϕ is defined

everywhere on M by Def*. 2.2.7, will be taken to be the point O which is in the image

of cref .

Part (S5) is needed because the equations of motion and symmetries of the

quantum fields are defined outside the emergence picture. It ensures that once ϕ has

mediated an emergent spacetime, the quantum fields will also be subject to that space-

time. Moreover, the quantum fields will not physically manifest where the spacetime

does not exist.

Part (S6) implies the full preferred-scale vacuum structure of an emerged space-

time is inaccessible to an observer. The variation of ϕ must be computed in terms of the

emergent metric, so only comparisons between the vacuum structure along cref(t) and

other curves are possible. This restriction is compatible with computing the relative

variation (4.14).

Generally each observer will be associated with a privileged point O. There is

no requirement that O be the same point for every observer; consistency only requires

that all computations a given observer makes are performed with respect to the same O.

Hence, an observer A who computes quantities with respect to OA may obtain different

values than an observer B who computes quantities with respect to OB. However,

because observer A computes all values with respect to the same privileged point OA
and similarly for B and OB, A can immediately obtain the values computed by B using

a transformation that maps computed values at OB to values at OA (and vice versa).
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4.4.4 Physical basis for the smoothing intervals ε, τ

An equation of motion (a restricted version of the general field equation; see

Footnote 3) can hold in the dynamic regime and the transition between the stochastic

and dynamic regimes, but cannot apply to the stochastic regime where position and

time have no physical meaning. Hence the full field equation is useful only when space

and time are well defined; by extension spacetime position and smoothing intervals ε

and τ for approximate derivatives can also be defined. The equation of motion should

thus be understood to apply usefully when stochasticity is perturbative, i.e., in the

dynamic regime or strong coupling limit, δϕ(x; Iτ ]rand ' 0 in Eq. (2.21). This limit will

be assumed implicitly.

Approximate derivatives of the nowhere-differentiable ϕ correspond to ordi-

nary partial derivatives that appear in a PDE for a classical smooth field, in this sense:

in both cases derivatives track changes in the field at the highest resolution that is physi-

cally meaningful. Smooth fields are differentiable everywhere, so the smallest physically

interesting distance is infinitesimal. On the other hand, descriptions of determinis-

tic phenomena of ϕ in the dynamic regime would not benefit by incorporating scales

smaller than the minimum physically resolvable distance and time scales — such small

scales would probe the stochastic regime where fluctuations are essentially uncorrelated

with the phenomena of interest. Hence, the minimum physically resolvable distance ε̃

and minimum physically resolvable time τ̃ should play the same role for ϕ[Mt] as their

infinitesimal counterparts dx and dt do for smooth fields on a smooth manifold M .

Hence, when computing approximate derivatives for the field equation, the

formally defined averaging intervals ε and τ respectively used to compute ∂̄x and ∂̄t

on Mt should be identified with the minimum physically resolvable intervals ε̃ and τ̃ .

Assuming this identification, the accents above ε and τ will be omitted henceforth.

Provided that ε and τ are much smaller than the minimum distances and times that

experiments can probe, approximate derivatives of a nowhere-differentiable ϕ can be

viewed as partial derivatives of a smooth ϕ. The only limitations of this viewpoint

are that position and time uncertainties inevitably exist in the solutions due to the

underlying stochasticity.

The foregoing makes it clear the finite intervals τ and ε explicitly and implicitly

appearing in Eq. (2.21) have physical meaning and thus should not be freely chosen.
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Without a physical motivation for a particular choice for τ , there is no reason to expect

an arbitrary τ will yield a physically correct field equation. Clearly τ is related to how

quickly the oscillator at x dynamically responds to a change in oscillator neighborhood of

x. It is desirable that the field equation predicts a slower response due to rapid random

motions, but if τ in the field equation is chosen too large, the field equation will ‘filter

out’ very rapid but non-random changes within the oscillator neighborhood, and thus

incorrectly model the actual dynamics.

Thus, τ is the minimum physically resolvable interval of time in another sense.

Taking τ to be larger than that minimum value can, in principle, lead to incorrect

predictions when probing the smallest distance scales of the preferred scale. On the

other hand, taking τ to be too much smaller than the minimum physically resolvable

interval could produce a less clear picture of dynamics at the smallest scales because

stochastic contributions are over-represented.

We will now propose physically motivated values of τ and ε. Computations will

be in terms of d-measured distances and cosmic time intervals, but using the results of

Subsects. 4.4.1 and 4.4.2 they can be reexpressed as quantities in a physical spacetime.

Given a preferred scale, [ωmin, ωmax], an obvious absolute lower bound for τ is

ω−1
min, but that choice would almost certainly be too small. A reasonable choice would

start with a theoretically motivated spectral density S(ω) for ϕ modes in the preferred

scale vacuum, then compute the variance σ2
ϕ of the ‘process’ ϕ(x; t) from Eq. (3.25):∫ ∞

0
Sϕ(f) df = lim

T→∞

1

T

∫ T/2

−T/2

(
ϕ(x; t)− ϕ̄(x)

)2
dt = σ2

ϕ . (4.19)

Now introduce a cutoff frequency fco such that Sϕ(f) ≡ 0 for all f > fco. Determine fco

to be the frequency which gives σϕ = 1 in (4.19). With the choice τ = f−1
co , predictions

and ‘measurements’ of ϕ(x, t) should agree within one standard deviation at the highest

frequencies of the preferred scale.

Determination of the minimum physically resolvable distance, ε, can be done

in exactly the same way, replacing f by the inverse wavelength k = λ−1.∫ ∞
0
Sϕ(k) dk = lim

L→∞

1

L

∫ L/2

−L/2

(
ϕ(x; t)− ϕ̄(x)

)2
dk = σ2

ϕ . (4.20)

Introduce a cutoff frequency kco such that Sϕ(k) ≡ 0 for all k > kco, and determine kco

to be the frequency which gives σϕ = 1 in (4.20). Finally, choose ε = k−1
co .
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Modes in the dynamic regime are propagating modes, ei(kx−ωt), so it is reason-

able to expect that the smoothing intervals ε and τ at any given point are related to each

other in a particular way. Specifically, they are presumably related by the propagation

speed:

v =
ε

τ
. (4.21)

This relationship will be assumed when deriving the field equation.

Remark 4.4.6 The limits of a preferred scale, (kmin, kmax) and (ωmin, ωmax) have cor-

responding physical limits (kmin, kmax) and (ω˜min, ω˜max) which must be defined relative

to the lower bound (kmin, ωmin) of the preferred scale if they are to have a scale-free def-

inition. The physical limits can be estimated but not directly measured by the physical

metric: presumably, the metric itself depends on the motions of the modes between the

physical limits, which limits its resolution. Hence, the physical bounding modes are hard

cutoffs. That is, there is no sense in which any time or distance scale can have physical

meaning outside [ω˜−1
min, ω˜−1

max] or [k−1
min, k

−1
max]. For example, it is clearly impossible to

construct an approximate Fourier integral for a function which varies on distance scales

smaller than k−1
max because the modes that are needed to capture the variations do not

exist. These physical cutoffs act as natural ultraviolet and infrared cutoffs for quantum

field theory computations.

4.5 Field Equation for ϕ

At the level of elementary dynamics, i.e., prior to emergence of spacetime and

manifestation of matter fields, the only mathematical space in which to work is M or

its time-supplemented version Mt. The field self-coupling is only indirectly observable

through its consequences, for example the equation of motion.3 Hence, in principle it

is possible to fully define and work with the field equation on Mt, then transform to

physical variables when deriving physical consequences.

3Conventionally, ‘field equation’ and ‘equation of motion’ are interchangeable terms, but in this
section the field equation will denote the most general dynamical equation derived from postulates 2.2.11;
the equation of motion will mean the field equation restricted to the dynamic regime where stochasticity
is perturbative.
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4.5.1 Generalizing from local dynamics

A brief review of the local dynamics developed in Subsect. 2.2.3 will get things

started. The physical entity is the field of infinite frequency, point-like oscillators, ω̃[M].

A cosmic time, whose mathematical status as an a priori nonphysical measure of inter-

vals is the same as the distance metric d, is introduced to allow measuring the position

of individual oscillators. Together, M and cosmic time provide a minimal mathematical

structure that allows defining neighborhoods, describing interactions between oscilla-

tors, and describing the evolutions of spatially extended configurations of oscillators, in

a mathematically precise way.4

The basis for all dynamics is the coupling of an oscillator ω̃(x; t) to its infinites-

imal neighborhood ω̃[Bε(x); t), which can be expressed as a sum over pairwise couplings

of ω̃(x; t) to ω̃(x′; t) for all x′ ∈ Bε(x). The pairwise coupling when ε → 0 is implicitly

defined by Postulate 2.2.11:

δ

δt

〈
ρ(Vφ(c))

δ

δt

〈
φ(x, x′; t)

〉
τ

〉
τ

= −
〈
g(Vφ(c)) · φ(x, x′; t)

〉
2τ

(4.22)

where φ(x, x′; t) is the relative phase (Def*. 2.2.5) between ω̃(x) and ω̃(x′) at time t,

and Vφ(c) is the total variation of φ (Def. 2.2.9), computed along c by Eq. (2.15). A

subscript on the angle brackets denotes the interval over which the mean is computed.

The ‘inertia’ ρ(·) has the form

ρ = ρ
(
Vφ(c)

)
= ρ0 Vφ(c) , (4.23)

where ρ0 is a constant. The coupling strength g(·) has the form

g = g
(
Vφ(c)

)
= g0 Vφ(c)−1 , (4.24)

where c is the geodesic between x, x′.

Since all dynamics of ϕ are local, Eqs. (4.22) and (4.24) are the starting point

for developing a field equation that describes dynamics over spatially extended regions.

The field equation will only be relevant to the dynamic regime — Rmk. 4.2.4 has already

argued why it has no effect in the stochastic regime.

In generalizing from local dynamics to a field equation, working with dynamics

along curves appears to be the appropriate approach. A curve is the most general

4To reiterate, the assumption, indeed requirement if a scale free elementary theory is to be obtained,
is that the description of an emergent physical spacetime is completely free of any traces of the particular
definitions of d and cosmic time.
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measurable geometric object in a general metric space. By its definition 2.1.7, a curve

c : [0, 1] → M has a static image, i.e., a path on M, and a real valued parameter t,

0 ≤ t ≤ 1. Def. 2.1.10 allows computing a ‘speed’ ċ(t), but the definitions do not imply

t should be interpreted as an elapsed time. Nevertheless, it would be very convenient

for present purposes to interpret a general curve c(t) as a time-dependent physical

displacement from c(t = 0).

Curves have a fixed image on M and t has a fixed range (e.g., [0, 1]), so the

most general analogue of c(t) in a physical spacetime is a specific world line. A field

equation in 1+1 dimensions should describe field evolution along any world line, so the

model ‘base space’ on which the field equation can be defined should be an abstract

curve, one whose image and range of t are unspecified. If t is taken to be the cosmic

time it ceases to be a parameter, and the requirement that it has an endpoint at t = 0

or any other fixed value must be dropped.

In taking t to be the cosmic time the curve is defined on M×R+, not M. The

analogy between a curve on M × R+ and world line on a physical spacetime is clear,

but it is only an analogy. Specifically, M× R+ is a nonphysical space with no intrinsic

relationship to a physical spacetime, and there is no necessity (nor is it even desirable)

that there is a direct correspondence between curves on Mt and world lines on (M ,g).

A fixed point on (M ,g) might be a point, a curve, or a more general region on Mt, for

example.

The local motion postulate 2.2.11 attributes both a dynamical and stochastic

contribution to the local motion of ϕ(x; t) for x ∈M:

δϕ(x; Iτ ] = δϕ(x; Iτ ]coupling + δϕ(x; Iτ ]rand , (4.25)

where τ is a chosen sampling period that also appears in the pairwise coupling (4.22).

The total ϕ[x; Iτ ] is what couples to its neighborhood, not just ϕ[x; Iτ ]coupling, so a

randomly fluctuating term should rightfully be included in the field equation. Denote

this perturbation by F (t).

The averaging period τ , left unspecified by Postulate 2.2.11, will play an impor-

tant role in the field equation. Its interpretation becomes straightforward by comparing

the argument inside the outer angle brackets on the left side of Eq. (4.22) with the

definition of an approximate derivative, Eq. (3.43): It can be identified with ∂̄tφ(x, x′; t)

computed over a smoothing period τ . Note the actual smoothing interval in this case
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is [t−τ/2, t+τ/2].

From Rmk. 3.3.2, higher order approximate derivatives require increasing the

sampling interval to obtain the same smoothing. That means τ → 2τ for ∂̄2
t ϕ in this

case. Fig. 4.3 illustrates the basic idea, although for a spatial approximate second

derivative along a path γ(x1, x2). Hence the full left side of (4.22) looks like ∂̄2
t φ(x, x′; t)

(ignoring averaging and the total variation), and 2τ is the total time to compute a

second approximate time derivative.

Figure 4.3: Spatial second derivative at x

in the x1 → x2 direction. First compute first

derivatives at σ1, σ2, . . . , σn by smoothing over

a smaller distance ε. Average these over the

interval [σ1, σn], then compute the approxi-

mate derivative of the smoothed first deriva-

tive to get the approximate second derivative,

∂̄2xϕ(x). See Eq. (3.43).

After rewriting the left side of Eq. (4.22) in terms of approximate derivatives,

the starting point for getting a 1+1 dimensional field equation is

∂̄t
〈
ρ(Vφ(c)) ∂̄t

〈
φ(x, x′; t)

〉
τ

〉
τ

=
〈
g(Vφ(c)) · φ(x′, x; t)

〉
2τ

+ F (t) . (4.26)

4.5.2 Field equation in 1+1 dimensions

The form of Eq. (4.26) suggests the field equation will be a wave equation,

so consider how to write the right side of (4.26) in terms of a spatially extended field

configuration. Since there are no external boundaries, waves should propagate; call

their propagation speed v, not necessarily constant. Propagation of ϕ inhomogeneities

is presumably the primary means by which finitely separated oscillators affect each

other.

Subsect. 4.4.4 developed a physically motivated smoothing time τ (Eq. (4.19))

for approximate time derivatives, and distance ε (Eq. (4.20)) for approximate space

derivatives. Thus ∂̄xϕ(x; t) can be computed along the propagation path by the usual

prescription (3.43):

∂̄xϕ(x; t) = lim
δx→0

∆ϕ̄(x; t)

δx
,

122



where ϕ̄(x; t) is the average field obtained by smoothing over a distance ε, symmetric

about x.

The choice of ε also acts as a cutoff for the rapidly changing random function

F (t). Since F (t) represents stochastic motions of ϕ contributed by modes outside the

preferred scale, it is reasonable to ignore it when dynamics strongly dominate. This will

typically be the case when an equation of motion is relevant. Hence take F (t) ' 0 in

(4.26) and drop it for now.

Let B̄ε(x) ⊂M be a closed neighborhood of x, and let ξ1, ξ2 be radii of B̄ε(x)

such that γ(x1, x2) = ξ1(x, x1) ∪ ξ2(x, x2) is a diameter of B̄ε(x). See Fig. 4.4.

Figure 4.4: In the mechanical oscillator

Fig. 2.2, the net force on m vanishes when

δx1 = δx2. An analogous result holds when

δϕ1 = δϕ2. Since ξ1 and ξ2 have directions

given by elements of TxM, ξ1 and ξ2 have op-

posite orientation. The high frequency noise

on ϕ[γ] is modeled by F (t).

Postulate 2.2.11 obtains the net motion of ϕ(x; t) over the interval Iτ by sum-

ming contributions (4.22) by all neighbors of σ over the period τ . This means the

coupling strength g, Eq. (4.24), is an additive function: g(a+ b) = g(a) + g(b). In 1+1

dimensions the sum over an infinitesimal neighborhood contains two terms, one for each

nearest neighbor of x. If c has image γ and c1 and c2 respectively have images ξ1 and

ξ2, after dropping F (t) the right side of Eq. (4.26) can be written

〈
g
(
Vφ(c1)

)
· φ(x, x1; t) + g

(
Vφ(c2)

)
· φ(x2, x; t)

〉
2τ

=
〈
g
(
Vφ(c1)

)
· φ(x, x1; t)− g

(
Vφ(c2)

)
· φ(x, x2; t)

〉
2τ

(4.27)

where ξ1 and ξ2 are the images of curves c1(t) and c2(t), respectively, with t0 ≤ t ≤ t0+δt.

Essentially all the contribution to the total variation Vφ(·) is due to stochas-

ticity at distance scales smaller than the preferred scale. The stochastic contributions

are perturbative in the dynamic regime, and will be smoothed out after averaging over

time τ . What remains is essentially the same as the residual variation (4.13), V
(kmax)
ϕ (c).

Over a time scale τ or distance scale ε, i.e., the smoothing scales for approx-

imate derivatives, the residual variation can be taken to be constant throughout B̄ε(x)
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over a time scale τ ; indeed, if that were not so it would mean ε and τ were not correctly

chosen in the neighborhood of x. Hence, take Vφ(c2) = Vφ(c1) = Vφ(c0) in (4.27),

where the image of c0 is an arbitrary radius of B̄ε(x); after smoothing the constancy

assumption should be met. Also note φ(x, xi; t) = ϕ(x; t) − ϕ(xi; t). Then the argument

inside the outer angle brackets in (4.27) becomes

g
(
Vφ(c1)

)
· φ(x1, x; t)− g

(
Vφ(c2)

)
· φ(x, x2; t)

= g(·) ·
{

[ϕ(x2; t)− ϕ(x; t)]− [ϕ(x; t)− ϕ(x1; t)]
}
, (4.28)

where g(·)=g(Vφ(·))=g(Vϕ(·)) since Vϕ(·)=Vφ(·).
The temporal and spatial dependence of the ‘tension’ and ‘density’ can be

modeled in two ways. The first is to take measures of time and distance to be invariant

along c0 and let the tension and density vary. The other is to take the tension and

density to be constant along c0 but the measures of time and distance vary. This second

viewpoint is illustrated in Subsect. 4.4.2 (see Eq. (4.16)) for wave propagation speeds,

and will be adopted here.

Since Vϕ rescales distances in the adopted viewpoint, it is convenient (and

suggestive) to define a matrix gµν :

gtt = 1/V(t)
ϕ = h2

t , gxx = V(x)
ϕ = h2

x , gxt = gtx = 0 (4.29)

with gµν = 1/gµν . Call hx the position- and time-dependent ‘scale factor’ which tells

how distances vary in the x direction in the neighborhood of x; similarly ht is the scale

factor for the time direction. That is, hxε and htτ are the rescaled smoothing distance

and time, respectively. The particular expressions assigned to gtt and gxx above will be

assumed without justification below; they will be obtained analytically in Chap. 6.

To be clear, the matrix defined by Eq. (4.29) should be viewed as a naming

convention intended to make the field equation have a more familiar appearance. There

is no assumption it is a valid spacetime metric, that it generalizes to more than 1+1

dimensions, or even that it is a tensor. Those issues cannot be considered until Chap. 6.

Since x1 = x − ε and x2 = x + ε, (4.28) can be written in terms of central

124



differences (time coordinate omitted):

g(·) ·
{

[ϕ(x2)− ϕ(x)][ϕ(x2)− ϕ(x)]− [ϕ(x)− ϕ(x1)]
}

= g(·) · hxε
{ϕ(x + ε)− ϕ(x)

hxε
− ϕ(x)− ϕ(x− ε)

hxε

}
' g(·) · hxε

{
h−1
x ∂̄xϕ(x + ε

2)− h−1
x ∂̄xϕ(x− ε

2)
}

= g(·) · hxε2 ζ(x + ε
2)− ζ(x− ε

2)

2(ε/2)
, (4.30)

where ζ(x± ε
2) = h−1

x ∂̄xϕ(x± ε
2), using Eq. (4.29). The field was implicitly smoothed over

a distance ε between the second and third steps above. After smoothing the approximate

first derivatives in the numerator of the last step of (4.30), again over a distance ε,

g(·) · hxε2 ∂̄xζ(x) =
g0

V
(x)
ϕ

hxhtε
2 ∂̄x

(
1

hxht
∂̄xϕ(x)

)
. (4.31)

This can be straightforwardly put into the traditional form. Since
√
−g = hxht

and gxx = 1/gxx, then
√
−ggxx = 1/hxht so that, using Eq. (4.29),

g0

V
(x)
ϕ

hxε
2 ∂̄x

(√
−ggxx ∂̄xϕ(x)

)
=

g0

V
(t)
ϕ

ε2 hxht
h2
xh

2
t

∂̄x
(√
−ggxx ∂̄xϕ(x)

)
=

g0

V
(t)
ϕ

ε2 1√
−g

∂̄x
(√
−ggxx ∂̄xϕ(x)

)
, (4.32)

since V
(t)
ϕ /V

(x)
ϕ = 1/h2

t h
2
x .

The left side can be put into a similar form, repeating much of the reasoning

above for difference equations in time. Using Eq. (4.23) to write ρ = ρ0V
(t)
ϕ , inserting

the scale factors where appropriate, and ignoring the angle brackets, the left side of

Eq. (4.26) can be written

ρ(·) · htτ2 ∂̄t

(
1

ht
∂̄tϕ(x; t)

)
= ρ0 V

(x)
ϕ τ2 1√

−g
∂̄t
(√
−ggtt ∂̄tϕ(x; t)

)
. (4.33)

The remaining issue is the how to handle the time-averaging brackets that

appear on both sides of Eq. (4.26). The time averaging was implicitly performed when

taking approximate time derivatives in Eq. (4.33), but what about the time average on

the right side of (4.26)? In analyzing the right side of the field equation, interactions

were taken to be along the curves c1 and c2 because they are due to ϕ inhomogeneities

propagating along those curves. Hence, the distinction between time averaging and

space averaging is artificial in deriving the field equation. Because modes in general

125



propagate in the dynamic regime, it is reasonable to expect the fixed relationship be-

tween ε and τ given by Eq. (4.21). Hence, the space averaging performed in computing

the approximate derivatives in Eq. (4.32) has presumably already performed the time

averaging on the right side of Eq. (4.26). Then the averaging brackets can be dropped

there as well.

Equating Eqs. (4.32) and (4.33) and slightly rearranging gives a homogeneous

wave equation,

1√
−g

∂̄t
(√
−ggtt ∂̄tϕ(x; t)

)
=

[
g0

ρ0

1

V
(x)
ϕ V

(t)
ϕ

ε2

τ2

]
1√
−g

∂̄x
(√
−ggxx ∂̄xϕ(x)

)
= v2 1√

−g
∂̄x
(√
−ggxx ∂̄xϕ(x)

)
, (4.34)

where

v ≡

(
g0

ρ0

1

V
(x)
ϕ V

(t)
ϕ

) 1
2 ε

τ
. (4.35)

Evidently, v is the wave propagation speed, measured with respect to the distance metric

d and cosmic time. If v is constant, and moreover if gµν is a tensor on a manifold with

Lorentzian signature, the equation can also be expressed in the traditional form:

1√
−g

∂̄µ
(√
−ggµν ∂̄νϕ(x)

)
= 0 . (4.36)

Chap. 6 will consider whether gµν in (4.34) meets these requirements.

Subsect. 4.4.1 obtained a scale-free expression for the propagation speed, Eq.

(4.15):

v =
v0

n(ϕ[c])
, (4.37)

where n(ϕ[c]) is the relative variation (Def*. 4.4.3) along c; v0 is the speed along a

reference curve cref (used to compute the relative variation), defined to be a univer-

sal constant. This propagation speed is consistent with the one obtained in the field

equation (4.34) because both depend on the field variation in the same way. Their

relationship is even more straightforward if

v0 ∼
√
g0

ρ0

ε

τ
,

which is similar in form to the propagation speed for waves on a string.

If the relative variation n is used instead of the total variation Vϕ, the field

equation (4.34) becomes scale-free. It is only necessary to use the propagation speed

(4.37).

126



As it is written, the field equation is a homogeneous wave equation. This is

not particularly suitable because it contains no way to describe interactions and self

interactions involving ϕ. That means it cannot be complete.

At least part of the problem, and maybe all of it, is that all the analysis leading

to it assumed interactions only occurred along geodesics. This is certainly wrong. If,

instead, the field equation (4.34) describes interactions due to a single path, then it can

be applied to all possible paths between the points of interest, i.e., it can be the basis

for path integration. The next subsection will explore this issue further.

Interestingly, once path integration is introduced, the stochasticity of ϕ leads to

something like annealed randomness.5 This is important because annealed randomness

can introduce effective interactions into ϕ, e.g. a λϕ4 interaction [7]. Thus, it is possible

that the necessary self interactions will occur without introducing them in an explicit

postulate.

Regardless, the ϕ field equation must have one or more interaction terms if it

is to underlie a physical theory. Hence, take the general form of the field equation with

the random perturbation F (t) restored to be

v2 1√
−g

∂̄x
(√
−ggxx ∂̄xϕ(x)

)
− 1√
−g

∂̄t
(√
−ggtt ∂̄tϕ(x; t)

)
=
dV(ϕ)

dϕ
+ F (t) , (4.38)

where v is the wave propagation speed and V(ϕ) is the effective potential. The effective

potential may include an effective mass.

4.5.3 Generalization to n+ 1 dimensions

Mathematically, the field equation (4.38) immediately generalizes from n = 1

to arbitrary n. It is only necessary to define new scale factors gij = δji h
2
i , where δji is the

Kronecker delta, add additional terms of the same form as the first term of of (4.38),

and take v to have n components v1, v2, . . . , vn with v2 =
∑n

i=1 v
2
i .

Physically, the generalization obviously only makes sense where there are n >

1 independent directions. The meaning of ‘independent directions’ in the emergence

picture is described in Subsect. 4.3.1 and codified in Def.*4.3.2. Generalization to n > 1

dimensions does not require (or imply) Lorentz symmetry of the space or a tensorial

5Thanks to Tom Banks for bringing annealed randomness to my attention.
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nature of gµν in Eq. (4.38). Applicability of (4.38) to a physical spacetime does impose

such requirements, along with others like smoothness of space and time in some sense.

4.5.4 The need for path integration

The local dynamics of Subsect. 2.2.3 take the simple form of Postulate 2.2.11

because the coupling between neighboring points σ and σ′ is just a nearest neighbor

interaction. Hence it is only necessary to consider the geodesic between σ and σ′ in

Eqs. (4.22) and (4.24) to completely describe the interaction between neighboring oscil-

lators ω̃(σ; t) and ω̃(σ′; t).

If ` = d(σ, σ′) is finite, it should still be possible to specify an interaction be-

tween ω̃(σ; t) and ω̃(σ′; t), but now it will be an effective interaction. That is, the relative

phase φ(σ, σ′; t) can only influence the evolution of ω(σ; t) by first propagating to the in-

finitesimal neighborhood Bε(σ), after which the local dynamics determine the effect on

ω(σ; t). Since ` is finite, φ(σ, σ′; t) can propagate to Bε(σ) along uncountably many paths

γ(σ, σ′), e.g. the uncountable set of geodesic paths {γ(σ′, σ′′) |σ′′ ∈ Bε(σ)L(γ) = `}.
Moreover, uncountably many curves have the same image γ(σ′, σ′′), and there is no a

priori justification for excluding any of them in computing the coupling.

By similar reasoning, since ` is finite there are uncountably many intermediate

points {ξ1, ξ2, . . .} along the geodesic γ(σ, σ′) which should be analyzed similarly to σ.

Considering only the contribution by γ, before φ(σ, σ′; t) can influence ω(σ; t) it must

influence ω(ξi; t) due to φ(σ′, ξi; t), which it does by the same local dynamics at ξi as it

does for σ. As before, there are uncountably many contributions to change in ω(ξi; t)

due to φ(σ′, ξi; t) because ξi has an uncountable neighborhood.

The reasoning above makes it clear that the interactions over finite distances,

being indirect and thus effective, are vastly more complicated than the direct, fully local

interactions where the contribution from the geodesic between two neighbors completely

dominates contributions from other paths between the same points. Path integration

is the usual tool for dealing with such situations. However, path integration methods

have been developed for use in established spacetimes, not general metric spaces.

Present interest in path integrals in general metric spaces is primarily restricted

to regions of Mt where scale invariance has been broken in the sense of Def*. 4.3.1 but

which lack a well defined dynamic regime. One important example is presumably the

earliest stage of cosmogenesis. Yet it is doubtful path integration would be appropriate
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in that case even if it could be rigorously defined. The quantum fields are almost

certainly in a non-perturbative regime during that era due to the same lack of an

established spacetime, so it is unclear what quantity could act as a small parameter

that would allow expanding a path integral as a perturbation series. The initial stage

of cosmogenesis is likely to require a nonperturbative approach.

The other primary example where path integration in a general metric space

might be desirable is the netherworld between the stochastic and dynamic regimes at

the boundaries of a preferred scale. Fluctuations of ϕ would likely be large in that case;

like the initial stage of cosmogenesis, it is not clear what could act as an expansion

parameter.

Hence it appears a reasonably well established spacetime should exist whenever

path integration could be a useful computation tool. As will be argued in Chap. 6, a

small mean square fluctuation of ϕ is necessary for an established spacetime, and that

can provide a small parameter for perturbation theory.

Alas, while the last point lessens the practical necessity of path integration

methods in a general metric space it does not argue against the theoretical desirability

of them. The chief reason is that the field equation must be defined on Mt first because

that is the postulated base mathematical space, and path integration should be at

least formally a part of that definition. Only after appropriate relationships have been

established between Mt and an emergent physical spacetime (M ,g) can the full field

equation be promoted to a physical spacetime.
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Part II

Emergence and Post-Emergent

Spacetime
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Chapter 5

Composite Field Theory

One of the premises of this thesis is that quantum fields do not manifest if no

manifold or other basic elements of spacetime exist. Hence, if spacetime emerges from a

condition where the rudiments of spacetime do not exist a priori, then it is reasonable

to consider the possibility that quantum mechanics also emerges from a condition where

its rudiments are absent. If so, then quantum theory may be an effective description

that hides important microscopic degrees of freedom. The problem of emergent quan-

tum mechanics is not readily addressed, if indeed it is emergent. Hence the following

‘provisional’ approach will be adopted instead:

• Assume a collection Q of quantum fields exists a priori, but their manifestation

is contingent on the emergence of a physical manifold.

• Assume standard QM is valid once spacetime emerges, at least when gravitational

effects are not important.

• Restrict the role of the quantum fields in gravity to interactions with ϕ; these

induce motions of ϕ which lead to spacetime emergence, spacetime persistence

and gravity.

• Sidestep foundational questions of QM that would require attention if QM were

actually emergent. (To do otherwise would lead the discussion well beyond the

scope of this thesis.)

The present chapter will assume a spacetime manifold M has already emerged. This

allows focusing on the interactions between the quantum fields and the ϕ field, especially
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in providing the necessary conditions for ϕ to act as a mediator between the stress-energy

tensor Tµν and spacetime geometry. A specific candidate model that explains how ϕ

can actually play the mediating role in manifold emergence and spacetime geometry

will be postponed until Chap. 6.

A common viewpoint is that a composite field theory of quantum fields in-

teracting with a non-quantum field is not consistent with quantum mechanics in a

fundamental theory. The first section of this chapter will argue this view is not correct,

at least when the role of the non-quantum field is to mediate gravity as does ϕ. It will

review a formalism for mixed classical and quantum ensembles wherein quantum and

classical fields can coexist on equal footing while remaining consistent with quantum

theory. Although ϕ is not a classical field, it can play the role of the classical subsystem

in the formalism.

5.1 Composite Theory in 3+1 Dimensions

Given the assumption that emergence of a spacetime manifold M is mediated

by the semi-stochastic scalar field ϕ, it is necessary to ascertain the constraints on

models wherein M dynamically emerges on Mt via ϕ coupled to Q, the collection of

model quantum fields. In the emergence picture, the members of Q depend on ϕ because

they live on the spacetime (M ,g) whose structure is generated by ϕ; in turn, ϕ depends

on the members of Q through their backreaction on ϕ. Hence, coupling between ϕ and

the members of Q remains important after emergence of M is complete.

In determining constraints on a composite field theory of {ϕ,Q}, it is obviously

helpful to start from an established body of empirical and theoretical knowledge and

then work backwards. Specifically, if a consistent picture can be constructed in 3+1

dimensions, then restriction of the dynamics to the time-augmented general metric space

Mt ≡M×R can offer a productive way to obtain elements of a more elementary theory

that is consistent with emergent 3+1 dimensional spacetime.

In 3+1 dimensions a very strong and thus extremely useful constraint on mod-

els clearly exists: consistency with general relativity and quantum theory, at least in the

regime where those theories are empirically established. The substantial mathematical

framework that already exists for analyzing quantum and gravitational theory gives

another compelling reason to first focus on the 3+1 dimensional case.
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This section starts by introducing two sectors of the composite field theory:

quantum and classical-stochastic. The ϕ field participates in both, but in different

ways. In the quantum sector ϕ couples to the quantum fields, and in a limited sense it

thereby acts as a gravitational source like the quantum fields. In the CS sector ϕ can

be treated as an effectively classical field, but now its role is a mediating field which

‘implements’ the 3+1 dimensional spacetime, only acting as a gravitational source in

a passive (albeit nonlinear) way. These two sectors coexist because ϕ participates in

both, so it is crucial that the coupling between the ‘classical’ ϕ in the CS sector and

the quantum fields in quantum sector is consistent with quantum mechanics.

The Hall-Reginatto configuration ensemble formalism, introduced in Subsect.

5.1.3, provides a framework to ensure a consistent composite field theory. Due to the

weakness of gravity it should be unnecessary to work within the formalism to do ac-

tual field theory calculations in most cases, a claim considered in Subsect. 5.1.6. The

formalism imposes consistency constraints nevertheless.

5.1.1 The quantum and classical-stochastic sectors

Consider an interacting field theory of a collection of NQ quantum fields:

Q = { ξj | 1 ≤ j ≤ NQ } (5.1)

plus a non-quantum scalar field ϕ 6∈ Q. Assume for simplicity they live on a spacetime

with Minkowski metric

ηµν = diag(−1, 1, 1, 1) ; γij = diag(1, 1, 1) . (5.2)

Let Σ be a space-like hypersurface in some reference frame; it has Euclidean metric γij .

The configuration space for the theory is the product space (Aϕ is the field

configuration space for ϕ)

A = Aϕ ×A1 ×A2 × · · · × ANQ . (5.3)

Since this is a field theory, Aj is the infinite-dimensional space of all possible field

configurations on Σ for the field ξj . For each ξj ∈ Q, assume a basis { |Aj〉} on Aj
for which the field operator is diagonal. For the ‘classical’ ϕ, let the basis { |ϕ〉} be a

complete set {ϕk | 0 < k <∞} of mode functions on Σ. Then the ‘coordinate’ basis on

the space (5.3) is a complete set of kets,
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{ |A〉} = { |ϕ〉} ⊗
⊗NQ

j=1 { |Aj〉} .

Denote the (infinite dimensional) Hilbert space for |Aj〉 by Hj so that the Hilbert space

for a state ket |Ψ〉 = |ϕA1A2 · · ·ANQ〉 is the product space

H = Hϕ ⊗H1 ⊗H2 ⊗ · · · ⊗HNQ . (5.4)

Let the field theory have the Lagrange density

L =

NQ∑
j=1

Lfree(ξj , ∂µξj , ϕ) + Lϕ(ϕ, ∂µϕ) +

NQ∑
i=1,
j=i

Lint(ξi, ∂µξi, ξj , ∂µξj , ϕ) , (5.5)

where ϕ has the Lagrange density

Lϕ(ϕ, ∂µϕ) = Lfree + Lint + Lrand = 1
2

[
−c−2ϕ̇2 + (∇ϕ)2 −m2ϕ2

]
− Vint(ϕ) + Lrand .

(5.6)

Thus Lϕ defines an interacting scalar field augmented by a stochastic term Lrand(ϕ, ∂µϕ)

which remains unspecified for now. (Lrand will play a significant role in the early stages

of spacetime emergence.) The propagation speed c is a function c(x, t) = v0/n(x, t),

where n(x, t) is the relative variation of ϕ (Def*. 4.4.3); see Eq. (4.37). The effective

mass m will be considered in Sect. 5.4.

Much of this chapter will assume the viewpoint that, to the extent that gravity

is very weak compared to other interactions, the composite field theory can usually be

partitioned into two sectors or subsystems: quantum and classical/stochastic. The ϕ

field mediates the interactions between these two sectors.

• Quantum sector. This contains the matter fields and observables of the quantum

mechanical world, i.e., essentially all non-gravitational phenomena. The quantum

sector describes whatever goes into the stress-energy tensor Tµν that determines

the spacetime geometry.

• CS sector. Interactions with the quantum fields in the quantum sector induce

motions in ϕ which transfer energy to the CS sector. These motions then imple-

ment the structure and geometry of spacetime within which the quantum sector

lives. The zero point motions of the quantum fields are also considered part of

this sector, and hence are not included in Tµν .
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Hence, gravitation is a phenomenon that is to be described within the CS sector. That

is, gravity is to be mediated by the non-quantum manifestation of the ϕ field.1

To demonstrate consistency of this picture with quantum theory, a formalism

developed by Hall and Reginatto [32] will be employed. It works with ensembles of field

configurations on configuration space. Except for the zero-point motions of the quantum

fields, quantum theory is described by the quantum sector. To usefully employ the Hall-

Reginatto formalism, it is necessary to consider an effectively classical ϕ coupled to the

quantum fields. This can be most easily accomplished while maintaining the distinction

between the quantum and CS sectors by demoting the ‘quantum ϕ’ to a classical field

and then considering only the quantum sector. This modification will only be necessary

to establish consistency of the composite field theory; once this has been done, the

distinction between the quantum ϕ in the quantum sector and the classical/stochastic

ϕ in the CS sector can be restored.

The formalism is most natural in the Schrödinger representation of quantum

field theory. After briefly reviewing selected aspects of this representation, the remainder

of the section will summarize the formalism and use it to demonstrate consistency

between quantum theory and a composite field theory of ϕ and a collectionQ of quantum

fields. The argument is not restricted to three spatial dimensions.

5.1.2 Schrödinger representation of field theory

The Schrödinger representation is the natural representation for quantum field

theory on configuration space. Symanzik showed [65, 49] the Schrödinger representa-

tion exists for all renormalizable quantum field theories to all orders of a perturbation

expansion, and with suitable regularization the Hamilton operator also is well-defined.

Thus the Schrödinger representation is suitable for all fields in Q.

Start with the Schrödinger equation,(
~
i

∂

∂t
− ~2

2m
∇2 + V (x, t)

)
ψ(x, t) = 0 (5.7)

(with ~ explicitly shown), can be interpreted as a matter field equation on Σ for ψ [60].

The (infinitely many) degrees of freedom are the values of ψ(x, t) for all x ∈ Σ at a

given time t. Assume Hamilton’s principle applies to ψ. Then variation of the action

1In Sect. 5.2, ϕ will be promoted to an effectively-quantum field in the quantum sector, so it can
contribute to the renormalization flow of the ‘true’ quantum fields.
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at each point x,

0 = δ

∫ t2

t1

dt

∫
d3xL

(
ψ,∇ψ, ψ̇, t

)
,

obtains the (infinite set of) Euler-Lagrange equations for ψ, one equation for each x ∈ Σ.

If

L = i~ψ∗ψ − ~2

2m
(∇ψ∗ · ∇ψ)− V ψ∗ψ , (5.8)

then the Euler-Lagrange equations applied to (5.8) yield the Schrödinger equation (5.7)

for the conjugate field ψ∗. (Varying (5.8) with respect to ψ∗ gives (5.7) itself.) Since

π(x, t) =
∂L

∂ψ̇(x, t)
= i~ψ∗(x, t)

is the momentum field conjugate to ψ, the Hamiltonian

H(ψ,ψ∗) = π ψ̇ − L =
~2

2m
∇ψ∗ · ∇ψ + V ψ∗ψ , (5.9)

The reformulation (5.9) in terms of matter fields (ψ,ψ∗) is purely formal. To

obtain a quantum field theory, the fields are ‘second quantized’ in the usual way. The

canonical variables ψ(x) and π(x) become operators on the elements Ψ of some Hilbert

space HΣ. The infinite dimensional function space of all smooth field configurationsA =

{A(x) } on Σ comprises the configuration space of the system. The (time dependent)

state ket |Ψ〉 is a complex-valued wave functional Ψ[A, t] = 〈A|Ψ〉, where the argument

A runs over all elements of A. In the Schrödinger representation of QFT, one works in a

‘coordinate’ basis { |A〉} on Fock space in which the field operator ψ(x) is diagonal [36],

so that

ψ(x) Ψ[A] = A(x) Ψ[A] ⇔ ψ(x) |A〉 = A(x) |A〉 . (5.10)

Hence, Ψ[A] can be interpreted thusly [49]: |Ψ[A]|2 is proportional to the probability

(in the Heisenberg picture) that the quantum field ψ(x, t) has the value A(x) at time

t = 0. Note Ψ is not a point function of x; it depends on the function ψ for all x.

The commutation relations are

[ψ(x), ψ(y)] = [π(x), π(y)] = 0,

[ψ(x), π(y)] = i~ δ(x− y)
(5.11)

which requires that

π(x) Ψ[A] =
~
i

δ

δA(x)
Ψ[A] . (5.12)
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Here δ/δA(x) denotes functional differentiation with respect to A(x).

The Schrödinger equation for Ψ is the functional differential equation2,

i~
∂

∂t
Ψ[A, t) = HΨ[A, t) . (5.13)

The Hamiltonian operator H is obtained via Eqs. (5.10) and (5.12).

For example, an interacting scalar field φ with classical Hamilton density H =

1
2π

2 + 1
2(∇φ)2 + 1

2m
2φ2 + 1

4!λφ
4 has the corresponding Hamiltonian, now a functional

differential operator [49]:

H=

∫
d3x

[
~2

2

δ2

δφ2
+

~2

2
(∇φ)2 +

m2

2
φ2 +

λ

4!
φ4

]
. (5.14)

Hatfield [36] has computed the quantum corrections to the mass for this QFT in some

detail using Rayleigh-Schrödinger perturbation theory. Following Hatfield, the general

idea of Rayleigh-Schrödinger perturbation theory is as follows.

The mass m in (5.14) is the physical mass of a φ particle. Rewrite it: m→ m+

δm, where m is now the ‘bare’ (non-renormalized) mass. Write (5.14) as H = H0+αHint,

where H0 is the free-field Hamiltonian and Hint = 1
2δ

2
mφ

2 + λ
4!φ

4 gives the interaction.

Expand the wave functional Ψn[ϕ] and energy eigenvalue En as a power series in α:

Ψn = Ψ(0)
n + αΨ(1)

n + α2Ψ(2)
n + · · · , (5.15)

En = E(0)
n + αE(1)

n + α2E(2)
n + · · · .

Ψ
(0)
n [φ] satisfies the Schrödinger equation for the free field: H0Ψ

(0)
n = E

(0)
n Ψ

(0)
n . Insert

the expansions (5.15) into the Schrödinger equation, HΨn = EnΨn, and collect terms

for each order in α. Then take inner products with Ψm[φ] to get

Ψ(1)
n =

∑
n6=m

〈Ψm|Hint|Ψn〉
En − Em

Ψ(0)
n , (5.16)

E(1)
n = 〈Ψm|Hint|Ψn〉 , (5.17)

E(2)
n =

∑
n6=m

|〈Ψm|Hint|Ψn〉|2

En − Em
Ψ(0)
n . (5.18)

All expectation values are computed as functional integrals. Hatfield [36] gives a detailed

explanation of perturbation theory in the Schrödinger representation, and of computa-

tions in that representation more generally.

2The notation Ψ[A, t) denotes that Ψ is a functional of A and a function of t.
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5.1.3 Hall-Reginatto ensemble formalism for fields

Hall and Reginatto (HR) have developed a formalism [32] that is well-suited

to examining a composite field theory in an established spacetime. It works with en-

sembles on configuration space to describe interactions between classical and quantum

systems or fields. Use of ensembles allows it to avoid the problems earlier attempts have

encountered in coupling quantum mechanics and classical fields. Ref. [32] summarizes

various earlier proposals, giving some details and references.

The HR formalism facilitates several tasks in 3+1 dimensional spacetime:

• constructing ‘in principle’ arguments that a composite field theory with interacting

quantum and classical fields, required for classical scalar field-mediated spacetime

emergence, is self-consistent;

• indicating how observable consequences can be interpreted statistically; and

• casting the theory into a form that allows using perturbation theory to perform

computations.

The brief overview of selected aspects of the HR formalism below draws from Refs. [28,

29, 30, 31, 32].

Let { |A〉} be a complete set of kets that spans the configuration space A, where

each point in the function space A specifies a particular spatial field configuration (now

not necessarily scalar) that A(x) can visit. (Recall A(x) is an eigenstate of the field

operator; see, e.g., Eq. (5.10).) Then the field functional3 Ψ[A, t) can be interpreted

as an ensemble of wave functions Ψ(A, t), with one member of the ensemble for each

possible field configuration A(x).

Assuming a quantum field on configuration space has an intrinsically statisti-

cal nature, each possible field configuration A(x) has an associated probability P (A),

normalized as
∫
DAP (A) = 1 with DA the functional measure on the configuration

space A. In general P (A) will be time dependent under Hamiltonian evolution. Thus,

the ensemble wave functional Ψ[A, t) has an associated probability density functional

P [A, t) which associates a probability P (A, t) ∈ P [A, t) with (i.e., assigns a weight to)

each member Ψ(A, t) of the ensemble Ψ[A, t).

3Recall the notation (Sect. 1.6) that F [A, t) indicates F is a functional of A and a function of t.
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For present purposes, a chief benefit of the Schrödinger representation of QFT

is that it works within a Hamiltonian formulation in configuration space. Hence we

can perform a canonical transformation from (Ψ,Ψ∗) to a different pair of conjugate

functionals that are better suited to the problem. Because the transformation is canon-

ical, the equations of motion will have the same content in the new representation as

in the old (Ψ,Ψ∗) representation. As suggested by the previous paragraph, a useful

choice is P [A, t) for one of the functionals; call its canonically conjugate functional

S[A, t). Thus, a key step in developing the HR formalism is to canonically transform

the (Ψ[A, t),Ψ∗[A, t)) representation to the (P [A, t), S[A, t)) representation.

In classical Hamilton-Jacobi theory, S is the classical action, or Hamilton’s

principal function. With an appropriate decomposition analogous to the factoring of a

wave functional, the Hamilton-Jacobi equation is the classical limit of the Schrödinger

equation for a system (see, e.g., Laudau [45], §17). Consider the classical one particle

system (A.2). Insert the decomposition Ψ = P 1/2 eiS/~ into the Schrödinger equation

(5.7). After differentiating and separately equating the real and imaginary parts to zero,

we get two differential equations:

∂S

∂t
+

1

2m
(∇S)2 + V − ~2

2m

∇2P 1/2

P 1/2
= 0 , (5.19)

∂P

∂t
+∇ ·

(
P
∇S
m

)
= 0 . (5.20)

In the classical limit ~ → 0, the first equation is equivalent to the Hamilton-Jacobi

equation (A.3). The second equation is the continuity equation for P = |Ψ∗Ψ|, i.e.,

P is a probability density which is conserved as the system evolves according to H.

Appendix A further reviews classical Hamilton-Jacobi field theory.

Hence define the real-valued functionals (P, S) by the polar decomposition:

〈A|Ψ〉 = Ψ[A, t) = P 1/2 eiS/~ , (5.21)

so that the Hamiltonian H̃ is a functional of functionals,

H̃[P, S] = 〈Ψ |Ĥ|Ψ〉 =

∫
DAP [A, t) Ĥ[P, S] . (5.22)

Note that the transformation of representation from (Ψ,Ψ∗) to (P, S) also transforms

the Schrödinger equation to a nonlinear differential equation. For example, Hamilto-

nian (5.9) becomes, in the (P, S) representation,

H = P (x)

(
(∇S)2

2m
+ V (x)− ~2

4m

(∇P )2

P 2

)
. (5.23)

139



The transformation is canonical in the sense of the Hamiltonian formalism, but it is not

linear and hence is not unitary.

The interpretation of Eq. (5.22) is that H̃ is the Hamiltonian for an ensemble

in the |A〉 basis. The evolution of Ψ[A, t) ≡ P 1/2 eiS/~ is determined by the ensemble

Schrödinger equation,

i~ ∂tΨ[A, t) = H̃Ψ[A, t) ⇔ i~ ∂t|Ψ〉 = H̃|Ψ〉 . (5.24)

Given Hamilton’s principle δα = δ
∫
Ldt = 0 with

α =

∫
dt

[
−H̃ +

∫
S ∂tP

]
= −

∫
dt

[
H̃ +

∫
P ∂tS

]
(up to a total time derivative d

dt(PS) which leaves the equations of motion invariant)

the canonical equations of motion for P and S follow for the ensemble as4

∂P

∂t
=
δH̃

δS
,

∂S

∂t
= −δH̃

δP
. (5.25)

Hence, once H̃ is specified, S[A, t) is determined by integrating the equation of motion

for S.

Now consider a system of two interacting fields ξA, ξB, respectively living on

configuration spacesA,B and governed by ensemble Hamiltonians H̃[PA, SA], H̃[PB, SB].

The new degrees of freedom of the second field are handled by adding new coordinates

to the P and S functions, just as would be done if the system were purely quantum

or purely classical. For example, if ξA is a quantum field with P and S functionals

P [A, t) and S[A, t), and a classical field ξB is added, we have P [A, t) → P [AB, t) and

S[A, t)→ S[AB, t).

Hence, following HR [32], the composite ensemble requires an enlarged con-

figuration space A× B, a joint probability density functional P [AB, t), a conjugate

functional S[AB, t), and a composite ensemble Hamiltonian H̃AB[P, S] given by

H̃AB[P, S] =

∫
d3xP

(
H̃[PA, SA] + H̃[PB, SB] + H̃int[P, S]

)
. (5.26)

Here H̃int[P, S] describes the energy of interaction between the two fields; see also

Eqs. (5.21) and (5.22).

Expectation values represent observables in the formalism [29]. Let q label

the quantum configuration, most generally a complete set of kets { |q〉} spanning the

4Note that if F [A] =
∫
dxG(A,∇A), the functional derivative δF/δA = ∂G/∂A−∇ · (∂G/∂∇A).
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configuration space A, and x label a continuous set of coordinates on the classical

configuration space B. For a classical observable f(x, k), the expectation value is given

by the functional integral

F =

∫
DADB P [A,B, t) f

(
x,∇xS[A,B, t)

)
,

whereas a quantum observable ĝ is computed as

G =

∫
DB 〈Ψ(x) |ĝ|Ψ(x)〉

with the inner expectation value obtained similarly to the ensemble Hamiltonian (5.22).

If the interaction is turned off so that H̃int[P, S]=0, then ξA and ξB respectively

live on their own subspaces of A× B. The probability density factors as

P [AB, t) = P [A, t) · P [B, t) ; and furthermore,

S[AB, t) = S[A, t) + S[B, t) . (5.27)

With interactions, the system visits off-diagonal elements of A× B so that neither P

nor S separates as in (5.27).

The following point by HR [32] clarifies the interpretation of S:

. . . for the configuration ensemble formalism to maintain full generality
across the classical and quantum spectrum, no limiting interpretation should
be assigned to S [...]. Thus, S will be regarded here simply as the canonical
conjugate of the probability density P , with its existence being an immediate
consequence of the requirement of an action principle for P .

In particular, for an ensemble of classical particles [...] it will not be assumed
that the velocity of a member of the ensemble at position x is a physically
well-defined quantity given by ∇S/m, contrary to the usual trajectory in-
terpretation of the Hamilton-Jacobi equation. This avoids forcing a similar
trajectory interpretation in the quantum and quantum-classical cases (al-
though this remains as an option if desired, albeit attended by the types
of difficulties associated with the de Broglie-Bohm approach [56]). Such an
assumption is in fact unnecessary for classical ensembles: if an ensemble is
well localized about some position x0 at time t = 0 (e.g., via a position
measurement at time t = 0), such that ∇S ≈ mv over the support of P
for some constant vector v, then the ensemble will be well localized about
x0+vt a sufficiently short time t later [...].
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5.1.4 The composite free field theory with ensembles

The Hall-Reginatto formalism will now be applied to a composite field theory

of the ϕ field (the ‘classical’ subsystem) coupled to a single quantum field, ψ. Gener-

alization to any number of quantum fields is straightforward, although complicated by

back-reactions on ϕ from quantum-quantum interactions.

To usefully employ the Hall-Reginatto formalism to the composite field theory

of ϕ coupled to a set of interacting quantum fields:

• The stochasticity of ϕ must be highly suppressed so that classical Hamilton-Jacobi

field theory appropriately describes a non-quantum ϕ. This condition should be

met in an established spacetime, since dynamics dominate.

• The quantum and classical-stochastic sectors must effectively decouple from each

other, so that the formalism can be restricted to the quantum sector only where

spacetime can be modeled classically. Presumably this would not be true inside a

black hole or near the time of the Big Bang.

The remainder of this section will focus on applying the HR formalism to the quantum

sector where the requirements above are met.

To apply the HR formalism to a subsystem in the quantum sector, ϕ and

the quantum fields must be on the same footing in a given computation. The choice of

representation may vary with the problem. For example, Hall, Kumar and Reginatto [30]

work in the (P, S) representation for a bosonic field calculation; on the other hand, a

Schrödinger representation has already been worked out for fermionic fields5 so that

fermionic calculations may be more expedient with (Ψ,Ψ∗). As long as a canonical

transformation effects the change from one Hamiltonian formulation to another, the

transformation will preserve the equation of motion.

Working in the Schrödinger representation, the classical ϕ field functional will

be denoted by Φ[ϕ, t) to easily distinguish it from the wave functional Ψ[ψ, t).

First obtain (P, S) and (Φ,Φ∗) representations for the ϕ free field Lagrangian.

From (5.6),

Lϕ(ϕ, ∂µϕ) = 1
2

[
−c−2π2 + (∇ϕ)2 −m2ϕ2

]
, (5.28)

5See Hatfield [36] for a computation oriented discussion of fermionic fields in the Schrödinger
representation.
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where π = ϕ̇ = ∂L/∂ϕ. The Hamiltonian density H = πϕ̇ − L so that, in units where

c = 1,

H =

∫
d3xH(ϕ, π) =

1

2

∫
d3x

[
π2 + (∇ϕ)2 +m2ϕ2

]
. (5.29)

The conjugate field for ϕ is π = δS[ϕ, t)/δϕ, where S =
∫
d4xL is Hamilton’s

principal function. The classical Hamilton-Jacobi equation for the ϕ field is ∂S/∂t+H =

0 :
∂S

∂t
= −1

2

∫
d3x

[(
δS

δϕ

)2

+ (∇ϕ)2 +m2ϕ2

]
. (5.30)

The probability functional P is given by the continuity equation,

∂P

∂t
= −

∫
d3x

δ

δϕ

(
P
δS

δϕ

)
, (5.31)

which is normalized as ∫
DϕP =

∫
DϕΦ∗Φ = 1 . (5.32)

Eqs. (5.30) and (5.31) together with the normalization (5.32) define the real-valued

(P, S) representation for ϕ. We will adopt the same interpretation of the probability

functional as Holland [38] for quantum fields (with minor notation changes):

... at time t, PDϕ is the probability for the [classical] field to lie in an
element of ‘volume’ Dϕ about the configuration ϕ(x) for all x. The notation
Dϕ means the infinite product Πxdϕ of field volume elements Dϕ for each
value of x.

Now obtain a single functional differential equation for complex-valued Φ[ϕ, t).

Give Φ the polar decomposition (5.21), i.e., Φ = ReiS . Partially differentiate this with

respect to time and multiply by i:

i
∂Φ

∂t
Φ =

[
i

1

R

∂R

∂t
− ∂S

∂t

]
Φ . (5.33)

Obtain an expression for the first term on the right by rewriting (5.31) in terms of

R2 ≡ P , performing the indicated differentiations and rearranging:

i
1

R

∂R

∂t
Φ = −

∫
d3x

[
i

R

δR

δϕ
+
i

2

δ2S

δϕ2

]
Φ

=
1

2

∫
d3x

[
− δ2

δϕ2
−
(
δS

δϕ

)2

+
1

R

δ2R

δϕ2

]
Φ , (5.34)

where the second line follows from functionally differentiating δ2Φ/δϕ2 = δ2(ReiS)/δϕ2

and substituting for the integrand of the first line. Since R = P 1/2 = (Φ∗Φ)1/2 from
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(5.32), then from Eqs. (5.33) and (5.34) we get the following functional differential

equation for the (Φ,Φ∗) representation:

i
∂Φ

∂t
=

1

2

∫
d3x

[
− δ2

δϕ2
+ (∇ϕ)2 +m2ϕ2 + (Φ∗Φ)−1/2 δ2

δϕ2
(Φ∗Φ)1/2

]
Φ . (5.35)

Identifying π2Φ=−δ2Φ/δϕ2, the momentum operator is

π(x) = −i δ

δϕ(x)
. (5.36)

For a quantum field, π(x) = −i~ δ/δϕ(x).

This is a classical, relativistic field theory. Functionally differentiating the

Hamilton-Jacobi equation (5.30) with respect to ϕ and using ϕ̇ = π = δS/δϕ leads to

the massive Klein-Gordon equation for ϕ, as desired [38]. Note (5.35) has a form similar

to the Schrödinger equation, but with an extra term:6

i
∂Φ

∂t
= HΦ +

(
(Φ∗Φ)−1/2 δ2

δϕ2
(Φ∗Φ)1/2

)
Φ . (5.37)

5.1.5 Interactions between quantum fields and classical ϕ

Superficially at least, the procedure above puts the quantum fields and ϕ on

equal footing. However, the composite theory above is uninteresting because it does not

include interactions. Adding interactions among the quantum fields is straightforward,

as is adding self-interaction to the classical ϕ. Without interactions between ϕ and the

quantum fields, the quantum sector of the theory looks like any other QFT and the

classical sector looks like a classical field theory.

Returning to the two field theory of the previous subsection, the composite

state Ψ[ψ,ϕ, t) factors as |Ψ[ψ, t)Φ[ϕ, t) 〉, where Φ(x) evolves classically to obtain the

ϕ configuration, whereas the field operator ψ(x) acts on Ψ but not Φ. However, this

too is an uninteresting composite field theory because ψ and ϕ do not mix. Hence,

introduce an interaction Hamiltonian for (perturbative) interactions between the ϕ and

ψ fields, as well as a ϕ self interaction.

An an example, let the quantum/classical interaction be of the Yukawa form

and the ϕ self interact via a ϕ4 potential:

Hint =

∫
d3x

(
gψ̄ψϕ+

λ

4!
ϕ4

)
, (5.38)

6In de Broglie-Bohm field theory [38] this term is missing from the Schrödinger equation i ∂Φ
∂t

= HΦ
(~=1), but appears in the Hamilton-Jacobi equation (5.30) as the ‘quantum potential’.
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where λ and g are dimensionless coupling constants. The interesting question is what

happens when the interaction (5.38) is treated with perturbation theory.

Figure 5.1: Classical λϕ4 interaction.

Unlike quantum fields the per-

turbation expansion for classical fields

contains no loops [66]. Fig. 5.1 shows an

example diagram for the self interaction

of the classical ϕ field.

The Yukawa interaction in (5.38)

contains a leg for classical ϕ, allowing

scattering analogous to Møller scattering;

see the left tree-level diagram in Fig. 5.2.

Because the interaction is mediated by the

classical ϕ, the interactions cannot include loops like the right diagram in Fig. 5.2 —

classical ϕ cannot contribute to the renormalization flow of the quantum fields.

Figure 5.2: Classical Yukawa interaction,

gψ̄ψϕ. Loops are not allowed.

One potential inconsistency in-

troduced by interactions must be ad-

dressed. Salcedo [62] and Hall et al. [33]

have identified an empirical inconsistency

of the HR formalism that can arise if

an interacting quantum/classical theory

is taken to be fundamental, as it is here.

Once the quantum and classical subsys-

tems interact their configuration probability density P [AB, t) no longer factorizes as in

Eq. (5.27), i.e., the quantum and classical subsystems become entangled. The inconsis-

tency arises if the interaction is subsequently turned off. One would naturally demand

that once the quantum and classical subsystems no longer interact, they should evolve

independently. However, the nonlinear term in Eq. (5.23), proportional to (∇P )2/P 2,

causes them to remain entangled so that a change in one system can cause a change in

the other, even though there is no interaction. This is obviously unacceptable if it can

occur in the composite theory under consideration.

What saves the consistency of the composite field theory in the HR formalism

is that the role of ϕ is to mediate gravity, but gravity cannot be turned off. Hence there

is no way to have Hint = 0 and thereby bring about the possibility of nonlocal signalling.
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For that reason, Hall et al. suggest that a classical gravitational field interacting with

a quantum system is the only case where their formalism in its present form can apply

to a fundamental theory. That is good enough for present purposes.

Gravitational radiation presents a potential challenge to the claim Hint cannot

become zero after an interaction. A gravitational wave becomes causally disconnected

from its source, so clearly its interaction with the quantum system vanishes. Nonethe-

less, this is not actually a problem. The HR formalism is being used to analyze the

quantum sector of the composite field theory, but gravitational radiation rightfully is

part of the classical-stochastic sector because it is a perturbation of the metric, consis-

tent with general relativity. It represents a transfer of energy from Tµν (and hence the

quantum sector) to the CS sector, so that the associated ϕ motions now lie outside the

domain of the HR formalism.

Hence, introducing quantum/classical interactions has not caused inconsisten-

cies in the composite field theory. It appears justified to conclude a composite field

theory of ϕ and a collection of quantum fields is consistent with quantum theory, as

desired.

5.1.6 Role of the Hall-Reginatto formalism

The chief objective of this section, which is to argue that a composite field

theory of ϕ and a collection Q of quantum fields can be consistent with quantum me-

chanics in 3+1 dimensional spacetime, is essentially complete. To work within the HR

formalism for ensembles in configuration space, ϕ can be given a Schrödinger repre-

sentation such that ϕ and the quantum fields comprising Q are on the same footing.

Since all renormalizable quantum field theories have a Schrödinger representation, this

demonstration is general.

The HR formalism imposes constraints on a composite field theory which must

be respected to maintain consistency with quantum theory. In particular, measurements

of observables must be attributed to an ensemble of similarly prepared quantum-classical

field configurations so that quantum uncertainty transfers to ϕ configurations. The

deterministic evolution of a particular configuration ϕ(x, t) contributes to the ensemble

according to the probability density functional P [ϕ, t] in the HR formalism.

Although the HR formalism serves an important purpose in allowing a demon-

stration that a composite field theory is consistent with quantum theory, it will not be
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necessary to actually work within it in this thesis. This is a benefit of the decoupling of

the quantum and CS sectors. In the CS sector ϕ can be treated as a scalar field with

both classical and stochastic attributes, ignoring coupling with the quantum fields. The

next section will develop a proposal whereby the particles of the quantum fields can be

taken to be effectively localized in a hidden-variable sense, which will allow promoting

ϕ to a quantum field in the quantum sector. Hence, in the quantum sector, the only

region where the ϕ field contributes nontrivially to the stress-energy tensor will be in

the vicinity of a particle, and in that region the field can be taken to be effectively

quantized. Thus, assuming the necessary decoupling of the quantum and CS sectors

occurs, ϕ and the quantum fields can be analyzed in the framework of standard QFT.

5.2 Effective Quantization of ϕ

The previous section treated ϕ as a classical field in the quantum sector of the

composite field theory. Doing so allowed application of the Hall-Reginatto configuration

ensemble formalism to show that a non-quantum field ϕ interacting with a collection

of quantum fields in the quantum sector is consistent with quantum theory, even in a

fundamental theory. Having demonstrated the desired consistency, it is appropriate to

specify the role of ϕ in the quantum sector more carefully.

Some troubling issues exist with the naive picture of a classical ϕ field interact-

ing with quantum fields, insofar as ϕ mediates gravity in the emergence picture. While

there appear to be no internal inconsistencies with the hybrid picture presented thus

far, ir is inelegant and has a certain arbitrariness.

1. The inability of a classical field to affect the renormalization flow of the quantum

fields goes against the spirit of quantum field theory. Experience and intuition

with quantum theory indicates fluctuations of of ϕ should occur in the quantum

sector, and these should induce quantum corrections, at least in principle.

2. If ϕ acts classically in both the quantum and CS sectors, there is no clearly iden-

tifiable behavior that indicates which ϕ dynamics should be regarded as gravity-

inducing behavior that belongs in Tµν and thus lies in the quantum sector, versus

implementing the gravitational field within the CS sector.

3. If ϕ acts classically in both sectors, there is no natural indication of how to accom-
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modate energy exchange between them. Gravitational radiation is an example of

such an exchange.

These theoretical issues will be taken seriously in light of a central premise of

the thesis that Nature is ultimately comprehensible and elegant, not arbitrary. Specif-

ically, the goal is to align the ϕ field more closely with the quantum fields, at least in

the quantum sector where they necessarily interact. It appears possible to do this.

5.2.1 Origin of effective quantization

The key observation that suggests a better approach is as follows. If a particle

of a ψ field can be localized to a volume S, then the coupling between the ϕ field and

the particle will also be localized to S. As a quantum of the ψ field, the particle energy

is quantized. If the ϕ field in S has an energy density Eϕ,ψ[S], due to its coupling with ψ

in S, is proportional to the energy of the ψ particle, then ϕ in S has become effectively

quantized.7 That is, ϕ effectively becomes a quantum field in S through its coupling

to the quantized ψ field, but not outside S.

This observation is the seed of a program that will be partially developed in the

remainder of this section and Sect. 5.4. The energy Eϕ,ψ[S] comes from the ψ particle,

so the interaction involves an energy transfer from the ψ field to ϕ. In its effectively

quantized form, ϕ[S] is part of the quantum sector because its energy can be considered

a contribution from the energy of the ψ field in S. However, since the ϕ field is also self

interacting, its motions in S due to coupling to ψ will couple nonlinearly to ϕ outside S,

leading to an energy transfer to the surrounding vacuum where it becomes part of the

CS sector. This energy transfer is both explanatory and problematic: It is explanatory

in that it provides the needed mechanism for a long range gravitational field to result

from local coupling to a quantum field, but it is problematic because there is no obvious

way to stop the energy transfer from dissipating all energy from the ψ particle. Sect. 5.4

will propose a non-obvious resolution of the crucial issue of dissipation, one that also

gives a mass to ϕ in S and thereby avoids introducing a new ϕ-mediated long range

interaction (besides gravity) into the quantum sector.

Localizable particles are also indicated by classical gravitation theory. In New-

tonian gravity, the gravitational potential is attributable to precisely localized masses so

7‘Effective’ in this context means ‘for all practical purposes.’
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that the gravitational field can be determined exactly everywhere. In general relativity,

the stress-energy tensor replaces mass as the field source, but GR is a classical field

theory which in principle can be solved exactly once the Tµν is specified everywhere

on the spacetime manifold. Thus, both theories share a common assumption that the

gravitating sources can be precisely localized, at least in principle.

Quantum uncertainty clearly conflicts with the notion of precisely localizable

gravitating sources. For quantum fields, the problem is especially significant because

there appears to be no direct analogue of the position operator of nonrelativistic QM.

Various no-go theorems indicate true localization of particles is not possible in QFT,

although a notion of effective localization8 can make sense. Subsect. 5.2.3 discusses

the theoretical difficulties; for the present it is sufficient to assume effective localization

has meaning.

Effective localization is only a useful notion if the localization occurs continu-

ously from the time a particle is created until it annihilates. The consequent continuous

trajectory of the particle should be viewed as a hidden variable that is subject to all the

constraints of quantum mechanics, including the fact that particles of the same species

are indistinguishable. For example, particle trajectories are not classical paths that can

be precisely predicted if one ‘only knows’ the complete state of the universe at some

instant. Instead, they can be predicted in an ensemble sense according to the rules of

QM. Moreover, after detection, one can say the particle followed one trajectory from

an ensemble, but QM limits the ability to determine which was the actual path. The

quotation at the end of Subsect. 5.1.3 is relevant here.

The notion of effective localization has some empirical support. In a relatively

recent experiment [43], particles in a two-slit interferometer were partly localized by

weak measurements prior to detection, where ‘weak’ means partial measurements that

perturb the system too little to destroy quantum interference. The authors noted this

implies one can operationally define a set of trajectories for an ensemble of trials.

Similarly, the interaction of a particle with the ϕ field can act as a form of

continuous weak position measurement. The weakness of gravity means the ‘measure-

ment’ will provide very little information about the trajectory of a body unless it is very

massive.

Even though the precise trajectory of an effectively localized particle is un-

8Again, ‘effective’ means ‘for all practical purposes.’
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knowable, the assumption that every particle follows some continuous trajectory over

its lifetime is important from a theoretical standpoint. It allows associated a localized

energy density of ϕ with every particle, thereby allowing ϕ to be treated as a quantum

field in the quantum sector with its energy density included in Tµν . A new postulate

makes the assumption explicit.

Postulate 5.2.1 Every excitation of a quantum field is an effectively localized, indistin-

guishable particle which, over its lifetime, follows a continuous (approximate) trajectory

between interactions. The definiteness with which the trajectory can be observed or

predicted is subject to the rules of quantum mechanics.

In providing the conditions needed to promote ϕ to a quantum field, the postulate

provides a way to address the first two theoretical difficulties of the composite field

theory, mentioned at the beginning of the section.

5.2.2 ϕ as a quantum field

The ϕ field will be taken to be a scalar quantum field in the quantum sector

of the composite field theory. The justification was given in the previous subsection:

given a particle of a quantum field ψ, effectively localized to a region S, and continuous

coupling between ϕ and ψ, ϕ[S] inherits quantization from the ψ particle. This means

ϕ should be promoted to a field operator on the field state functional Φ[ϕ, t) in S.

Explicitly, let the ϕ operator and its conjugate π have the same Fourier rep-

resentation as field operators of a Klein-Gordon field. In Minkowski spacetime [59],

ϕ(x, t) =

∫
d3k

(2π)3

1√
2ωk

(
a(k) e−ik·x + a†(k) eik·x

)

π(x, t) = −i
∫

d3k

(2π)3

√
ωk

2

(
a(k) e−ik·x + a†(k) eik·x

)
(5.39)

where ω(k) =
√
|k|2 +m2. In the ith direction, a(ki) |Φ〉 obtains the amplitude of

positive mode ki of the ϕ field in the quantum sector; a†(ki) |Φ〉 acts similarly for

negative ki. Like any other quantum field, its eigenvalues are quantized.

Once the full Lagrangian for ϕ is defined, including its interactions with all

the quantum fields, everything in the quantum sector can be analyzed in the QFT

framework. Gravity, which is to be fully described within the CS sector, will not employ

the QFT framework.
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The energy density of ϕ that lies within the CS sector can be considered a

kind of ‘ground state’ energy. For a true quantum field, the mean energy per mode ω is

~ω/2. In this, ϕ differs from the ‘pure’ quantum fields — there is no reason to expect

its per-mode energy is that of a quantized harmonic oscillator because ϕ acts mostly

classical in the CS sector. This is not a problem with effective quantization of ϕ because

the ground state energy is not an observable quantity.

To be consistent with other quantum fields, the ϕ field must manifest quantum

fluctuations. This is straightforwardly achieved because ϕ participates in both the

quantum and CS sectors. Chaotic motions of ϕ in the CS sector in the vicinity of a

particle can induce transient changes in the ‘quantum ϕ motions; this can be interpreted

as a fluctuation of either positive or negative energy, where a positive energy fluctuation

corresponds to a transient transfer of energy from the CS sector (ϕ ‘ground state’) to

the quantum sector, and a negative energy fluctuation is the converse. Sects. 5.3 and

5.4 will examine energy exchange between the two sectors in more detail.

Energy exchange between the two sectors allows ϕ to run in loops in pertur-

bation theory like other quantum fields, and thereby contribute to the renormalization

flow of the other fields. Its energy can be take to be quantized as ~ωeff , with ωeff defined

to be Eϕ/~. Likewise, the effective momentum can be defined by |peff | =
√
E2

eff −m2.

The weakness of gravity suggests that the coupling between ϕ and the quantum fields is

weak, so quantum corrections from ϕ will be correspondingly small, at least at currently

accessible energy scales.

A final consideration in loop-level calculations is the momentum cutoff. In the

emergence picture, a physical spacetime exists at a preferred scale, i.e., within an ‘island’

of modes, [kmin, kmax], of the scale invariant stochastic regime. The kmax mode provides

an ultraviolet cutoff that cannot be breached by phenomena within the preferred scale —

doing so would imply that kmax does not really bound the preferred scale. Nonetheless,

the actual cutoff should occur at a somewhat longer distance scale where spacetime is

at least approximately defined. By similar reasoning, kmin acts as a hard infrared cutoff

but the actual cutoff mode is presumably greater than kmin. Since, by assumption,

quantum fields only manifest within a preferred scale, emergent spacetime physically

imposes momentum cutoffs that are conventionally employed by QFT regularization

procedures. This is also true for the ϕ component of the composite field theory.

The entire discussion has assumed a Minkowski background spacetime. If
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spacetime curvature is nontrivial at the assumed particle localization scale RS , then

surely quantum/classical interactions like (5.38) can no longer be approximated as point-

like; the value of RS depends on the curvature scale, and the details of the deterministic

ϕ motions in the localization region S should be considered. Thus, in highly curved

spacetimes, the quantum and CS sectors presumably will not decouple, making it nec-

essary to generalize the functional differential equation (5.35) to curved spaces. While

needed, a generalization of the composite field theory to curved spacetime will not be

pursued in this thesis.

5.2.3 Localization of field quanta

It is important to ascertain whether Postulate 5.2.1, which asserts excitations

of quantum fields are effectively localized particles, is consistent with quantum theory.

Quantum fields are presumed to be the gravitating sources in this thesis, but classical

gravitation theory assumes gravitating sources are classical particles and classical fields.

Localization of particles in QFTs is problematic. Various ‘no-go’ theorems

show that non-interacting quantum field theories do not admit localization of quanta

at all. While all realistic QFT are interacting, the issues raised are important enough

to consider, especially given the necessity for particle localization.

In Einstein’s equations for general relativity,

Gµν = 8πGTµν , (5.40)

where Gµν is the Einstein tensor and G is Newton’s constant, the metric is a classical

tensor field. Hence Gµν , being constructed as it is from gµν , is a classical tensor field. If

the left side of (5.40) is classical then presumably the right side is too. Hence we expect

Tµν describes a classical energy density: Particles should be localizable and have well

defined momenta and energy everywhere. As Bondi puts it [13]:

In relativity a non-localizable form of energy is inadmissible, because any
form of energy contributes to gravitation and so its location can in principle
be found.

This is in obvious tension with quantum mechanics.

One possible resolution of the apparent conflict is to adopt Rosenfeld’s sugges-

tion [61] that the right side of Einstein’s equations represents the expectation value of
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the quantum mechanical stress-energy tensor operator T̂µν , i.e., Eq. (5.40) becomes

Gµν = 8πG 〈Ψ|T̂µν |Ψ〉 , (5.41)

where |Ψ〉 denotes the complete state of the quantum fields.

Eq. (5.41) is the starting point for the program of semi-classical gravity. Work-

ing with the expectation value might eliminate the need for localizable particles with

well defined momenta. Be that as it may, the program leads to significant theoretical

difficulties. To quote Mattingly [51]:

• The expectation value 〈Tµν〉 needs to be regularised to avoid diver-
gences. Wald has done this, but there remains an ambiguity in its
definition. Since his regularisation procedure is not scale invariant,
there is a problem determining two conserved local curvature terms.
The presence of a natural length scale for the theory would resolve this
ambiguity, but it is not clear how to determine this scale.

• Some solutions of the semi-classical Einstein equations are unstable.
Small changes in initial conditions produce dramatically different solu-
tions. Some solutions have runaway behavior. Thus we need a way to
distinguish physically acceptable solutions from those that are not.

• There is trouble with choosing the quantum state. “In addition,” ob-
serve Butterfield and Isham, “if |ψ1〉 and |ψ2〉 are associated with a
pair of solutions γ1 and γ2 to [Gµν = k〈Tµν〉], there is no obvious con-
nection between γ1 and γ2 and any solution associated with a linear
combination of |ψ1〉 and |ψ2〉. Thus the quantum sector of the theory
has curious non-linear features, and these generate many new problems
of both a technical and a conceptual nature.”

Woodard [76] argues inflation implies a severe difficulty with semi-classical

gravity. As he phrases it, one of the tenets of primordial inflation is:

The structures of today’s universe derived from 13.7 billion years of gravita-
tional collapse into the tiny (one part in about 105) inhomogeneities provided
by quantum fluctuations of the stress-energy tensor near the end of inflation.

He argues this eliminates the option of taking the source of a classical metric to be the

expectation value of stress-energy tensor operator in some state, because

If inflation is correct then the expectation value of the stress-energy tensor
at the end of inflation cannot retain inhomogeneities of more than about
one part in 1078, otherwise they would have been so big at the beginning of
inflation that gravitational collapse would have ensued.
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Given these (and other) reasons, working with the expectation value of the

stress-energy density evidently does not eliminate the need for localized gravitational

field sources. This observation can be taken as evidence that the gravitational field

must be quantized, i.e., that both sides of Einstein’s equations (5.40) are quantum

mechanical. That viewpoint is assumed by all major quantum gravity programs, so

it needs no justification here. This thesis takes a different tack: the metric and the

manifold on which it lives are emergent; since the quantum fields are presumed unable

to manifest without a spacetime manifold, some other field that is not quantum must

mediate the manifold emergence. The non-quantum field can be identified as the ϕ field.

The emergence scenario requires that the field excitations interact with ϕ as

though they are effectively localized. They need not be classically localizable, however.

Hence it is important to examine why quanta of free fields are non-localizable and

consider the extent to which the issue causes difficulties for interacting fields. The

outcome will be that, for all practical purposes, the difficulties with localization are more

of philosophical than practical interest — effects of the tails of the position distribution

for a particle will very likely be swamped by randomness in gµν due to ϕ fluctuations.

After ‘second quantization’ (Subsect. 5.1.2) the quanta of the free fields in

Minkowski spacetime are plane wave solutions of the equation of motion. This is evident,

for example, in the Klein-Gordon field operator (5.39). Plane waves are in no sense

localized.

As Teller and Halvorson point out [70, 34], the problem of localization is already

present in nonrelativistic QM: operators with continuous spectra (like position) have no

eigenvectors, so that no vector in the Hilbert space strictly localizes a particle. Although

an extension of the Hilbert space (e.g., a rigged Hilbert space) can allow mathematical

representation of exact, continuous values, assigning a physical meaning to point-like

localization of a particle is highly questionable — its momentum would be completely

undetermined, implying an infinite expectation value of kinetic energy [70]. However, it

can make sense to localize particles within some region, e.g., of a screen after they pass

through a double slit.

Some ‘no-go’ theorems for localizability of particles indicate there is no rel-

ativistic quantum theory of particles which could serve as a ‘middle ground’ between

nonrelativistic particle QM and relativistic QFT:

1. Malament [50, 35]. Under assumptions of translation covariance, energy bounded
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from below, particle localizability to bounded space-like regions of Minkowski

spacetime, and locality: the particle cannot be found in any bounded region. This

reductio ad absurdum indicates conflicting assumptions, presumably localizability

and causality.

2. Hegerfeldt [37]. Under conditions of energy positivity (i.e., the Hamiltonian oper-

ator is a hermitian operator which is positive or bounded from below): a particle

or system, if initially completely localized to a bounded region S, will immediately

develop infinite tails of its spatial distribution so that it is no longer localized to

S, except in the special case where it remains in S for all times. The latter result

might be a bound state, but would presumably require external potentials.

3. Busch [15]. Under assumptions similar to #1 above, the conclusions of Malament

can be generalized to ‘unsharp’ localization. (A sharp measurement is like a

projection onto an eigenstate, as is assumed for #1 and #2; unsharp measurements

involve Hilbert space ‘effects’ which are not necessarily orthogonal9.) Halvorson

and Clifton [35] subsequently closed a loophole in Busch’s theorem.

4. Halvorson and Clifton [35]. They introduce the assumption of a system of local

number operators on bounded space-like regions, which is the minimum require-

ment to have a localizable particle interpretation of a quantum theory. Under

this and assumptions similar to the no-go theorems above, but restricted to non-

interacting quantum fields: the particle number is zero everywhere. This reductio

ad absurdum extends the ‘no particles’ conclusion to (uninteresting) QFTs.

The usual conclusion is that these no-go theorems show a relativistic quan-

tum theory cannot be a theory of localizable particles. However, as Busch notes this

conclusion is not clear [15]:

[...] the concept of a localization observable–whether sharp or unsharp–
involves global elements, namely, the totality of all bounded spatial subsets
of S as well as the defining requirement of translation covariance. It is
thus quite conceivable that from their very operational definition, sharp or
unsharp localization effects cannot be regarded as locally measurable quan-
tities. As local measurability is a premise of the weak Einstein causality
postulate (and of the objectivity requirement), this postulate and, along
with it, proposition 2 would in this situation become inapplicable. Thereby

9See App. A of Ref. [15] for a brief introduction to unsharp measurements
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the validity of weak causality would not be affected by a violation of the com-
mutativity condition; indeed, this condition would lose its intended meaning
indicated by the phrase ‘local commutativity’.

[...] Up to now we have assumed that bounded spacetime regions–in which
local physical operations are to be carried out–can be defined operationally
solely by classical physical means. [...] sharp localization may not be an
operationally meaningful concept; given that the (quantum) devices used to
define spacetime regions are themselves only unsharply localizable, the con-
cept of a local measurement–and with it that of a local observable algebra–
would have to be reformulated. This would render weak and strong Einstein
locality inapplicable and would call for an operationally significant notion
of causality, possibly in the form of a probabilistic concept and involving
reference to appropriate levels of detector sensitivities.

In the emergence picture, classical notions of smooth spacetime and (exactly)

local operators are untenable. They break down entirely near the small-distance cutoff.

(Even the notion of a spacetime point becomes meaningless below the emergence scale,

as the manifold itself is no longer evident.)

Regardless of the ‘true’ status of localizable particles, we can be satisfied with

a ‘For All Practical Purposes’ argument. We need localization and trajectories for con-

sistency with classical gravity, but almost localized particles will do the job. Hegerfeldt’s

theorem, i.e., instantaneous propagation of tails to infinity, remains valid even if sharp

localization is not meaningful, but even so, it probably cannot be exploited for super-

luminal signaling [15]. From Halvorson and Clifton [35]:

Our experience shows us that objects (particles) occupy finite regions of
space. But the reply to this argument is just as simple: These experiences
are illusory! Although no object is strictly localized in a bounded region of
space, an object can be well-enough localized to give the appearance to us
(finite observers) that it is strictly localized.

After critiquing the approach of Halvorson and Clifton, Wallace [72] also concludes a

solution, where ‘For All Practical Purposes’ particles can be localized, is appropriate:

From the perspective of this paper, the problem with this approach [of
Halvorson and Clifton] is its a priori assumption that what we measure
are always exactly localised operators. This is, of course, an interpretive
axiom of AQFT as it is often presented, but it effectively assumes the pres-
ence of outside observers whose measurements cannot be treated within the
ordinary dynamics of the QFT. We shall instead construct an account which
treats observers as part of the internal dynamics of the system (although,
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apart from that difference of emphasis, the solution below will be rather
similar in character to that of Halvorson and Clifton).

As a general conclusion it appears taking particles to be precisely localized

is problematic, but assuming them to be effectively localized appears consistent with

quantum mechanics. Hence Postulate 5.2.1 is restricted to asserting effective localization

— it is good enough for the purposes of this thesis.

It must be emphasized that the investigation above assumes non-interacting

field theories, which do not exist in Nature. For interacting theories, QFT models the

interactions as point-like, indicating localization during the interaction: Plane waves

are inappropriate models of particles during interactions. For gravity, the interaction

with the gravitational field is continuous, although very weak, so it is reasonable that

the interaction is capable of localizing particles at least approximately. That is, a wave

packet appears to be a more realistic model of a field excitation than a plane wave.

5.3 Origin of Quantum Fluctuations of ϕ

Sect. 5.1 assumed the composite field picture can be partitioned into quantum

and classical-stochastic sectors, then focused on the quantum sector. This is a viable

approach because it is assumed throughout this chapter that gravity is weak and metric

fluctuations are small.

Partitioning the total system into two decoupled sectors allows analyzing each

with the most appropriate or convenient set of tools, for example QFT for the quantum

sector and a combination of classical and stochastic field theory for the CS sector. Each

sector has its own energy budget for describing the motions of ϕ. This is because

decoupling means the phenomena of one sector can be analyzed in that sector without

regard for phenomena of the other sector; otherwise the two sectors cannot be treated

as essentially independent. When a more accurate description is needed, the motions

of ϕ in one sector can be treated as perturbations of the ϕ motions in the other sector.

Subsect. 5.1.1 qualitatively indicated the roles of the two sectors. By assump-

tion or definition, the quantum sector includes essentially everything that is conven-

tionally represented by the stress-energy tensor Tµν , i.e., the contributions from the

quantum fields. Thus it corresponds to the right side of Einstein’s equations (5.40).

The CS sector implements the structure and geometry of spacetime; the hope is this
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will reproduce the left side of Einstein’s equations. The unobservable zero-point motions

of the quantum fields, assumed chaotic like the ϕ motions in the CS sector, contribute to

the CS sector through their coupling to ϕ. The ‘stochastic’ part of ‘classical-stochastic’

comes from the stochastic regime described in Sect. 4.2, but that is of little interest here

because it only manifests outside the preferred scale and has no notion of energy.

While each sector has its own energy budget, ϕ is single valued at every point

so the physical field configuration in a given region is the same for both. That presents

no obvious problem to the idea of decoupling, due to the following rationale. The

phenomena of interest in the CS sector are primarily gravitational, and these, as will

be considered later, relate to establishing and maintaining local equilibrium among

the modes of the ϕ field; these modes are in chaotic motion, uncorrelated with the

motions of the quantum fields in the quantum sector. (The ground state motions of

the quantum fields are also assumed to be chaotic and in a kind of equilibrium.) The

quantum sector contains phenomena with more discernible, persistent structure like

atoms and the particle spectrum of the Standard Model, i.e., non-gravitational wave-

like phenomena that evolve according to quantum mechanics. Thus the evolution of

the quantum sector can ignore the CS motions by simply averaging them out; their

instantaneous amplitudes are small and should not substantively affect the quantum

evolution. The rationale for this claim will be more clear in Subsect. 6.1.2. The evolution

of the CS sector can ignore quantum phenomena by regarding them as being superposed

on top of the CS motions but not interacting with them, a claim that is reasonable only

because gravity interacts so weakly with matter.

The boundary between the two sectors is virtual and thus porous. Since ϕ is

single-valued, if a fluctuation has positive energy in the CS sector, the same fluctuation

will occur in the quantum sector with negative energy, i.e., it corresponds to a negative

frequency. In order to respect energy conservation of the total system, there must be

an accounting of energy transfers across that virtual boundary. The accounting should

maintain the illusion of two independent sectors.

The remainder of this section considers a model for transient energy fluctua-

tions in the quantum sector due to the chaotic motions of the CS sector. However, the

model will not be suitable for the more deterministic energy transfers to or from the CS

sector which are due to the evolution of the quantum fields, like emission of gravitational

radiation. That will require a toy model of a particle that can deterministically induce
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or respond to ϕ motions in the CS sector; Sect. 5.4 will propose such a model.

Because the ϕ field is self interacting, its modes should reach thermal equilib-

rium in the CS sector, at least locally. For now, assume such an equilibrium exists in a

large volume V , as would be expected for a flat spacetime. This suggests the CS sector

in V can act as a heat reservoir with which the quantum sector in V can exchange

energy. The reservoir temperature is interpreted as the mean kinetic energy density of

the random motions of the ϕ field in the CS sector. Since the (classical) ϕ field admits

a mode decomposition in V , the kinetic energy of ϕ in the CS sector can be attributed

to the sum of the energies of the (classical) ϕ modes.

It is natural to consider the reservoir, i.e., the CS sector in V , to be one sub-

system and the quantum sector in V to be another subsystem; label the two subsystems

R and S, respectively. Note that R and S have been defined to account for energy

exchanges for only the ϕ field in V .10 The reason why R acts as a reservoir but S does

not, even though both R and S occupy the same physical volume, has to do with the

relatively large energy density of ϕ in the CS sector that is needed to have a stable

spacetime. This claim will be considered in Chap. 6; for now it will be sufficient to

assume R can be treated as a reservoir so that energy exchanges with S are at most

perturbative in R. Hence, if the total energy of the ϕ modes is constant in V then

the total energy of the ϕ modes is effectively constant in R, although not necessarily

effectively constant in S.

The porousness of the boundary between the two sectors corresponds to ther-

mal contact between R and S. The chaotic, uncorrelated motions of the ϕ modes in R

will naturally lead to effectively random fluctuations of energy within subvolumes of V .

As noted above, a fluctuation in the CS sector implies a fluctuation of the opposite sign

in the quantum sector, corresponding to a transient transfer of energy between R and

S. The lack of correlation between the motions of ϕ in R and S allows considering the

fluctuation to be random in S.

Assume the total energy of the ϕ modes is constant in V , and moreover as-

sume the total number N of available modes in V is constant. Since R and S are

in thermal contact while the ‘particle number’ N and system volume V are fixed, the

setup adequately meets the conditions assumed by the canonical ensemble. Hence, the

10The quantum fields also fluctuate due to motions of the unexcited (ground state) modes, but that
is not being modeled here, and in fact lies outside the scope of this thesis.
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ϕ fluctuations in S can be analyzed by the machinery of standard statistical mechanics.

Of particular interest is what happens if a fluctuation occurs in a subvolume

V ′ of V which contains an (effectively localized) ψ particle, where ψ here is a generic

symbol for some ‘true’ quantum field. The coupling between ϕ and ψ causes effective

quantization of ϕ in V ′, but the fluctuation in V ′ has its own mode decomposition which

contributes to the mode decomposition for the ‘quantum ϕ’ and acts as a perturbation of

it. The combined ϕ decomposition should therefore correspond to a different momentum

than the unperturbed quantum ϕ. The momentum change depends completely on

the mode decomposition of the fluctuation, both spatial and temporal. The transient

momentum change of ϕ in V ′ will therefore obey a probability density function. The

PDF is determined by the canonical ensemble.

Figure 5.3

Thus, a fluctuation can manifest as a dis-

turbance of the quantized ϕ field. In this way,

fluctuations in the CS sector can induce quantum

corrections of the ϕ field in the quantum sector.

In terms of a Feynman diagram the perturbation

in S corresponds to momentum running inside a

loop, e.g. like Fig. 5.3 if ϕ has a λϕ4 interaction.

5.4 Coupling between ϕ and Quantum Fields

A primary role of the ϕ field is mediation between the quantum fields and the

structure and geometry of an emergent spacetime (M ,g). The ϕ field can only play that

role if the localized particles of the quantum fields induce localized classical motions in

ϕ. Thus, it is necessary to model the interaction between effectively localized particles

of the quantum fields and the effectively quantized ϕ with a process that contains at

least some classical elements.

The setting will be that of the rest of the chapter. That is, it is assumed

a 3+1 dimensional spacetime has already emerged, and the quantum and classical-

stochastic sectors are decoupled. The field coupling will be considered in this section

and a process wherein the motions of ϕ in the CS sector generate a spacetime will be

proposed in the next chapter. In the spirit of the rest of the thesis, and given the

well known problems [76] of mixing general relativity and quantum mechanics, a goal
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is to minimize a priori constraints on candidate processes. That means nonstandard

interpretations of a quantum phenomenon can be entertained if it is explanatory and

does not imply conflict with observations.

Coupling between the ϕ and ‘true’ quantum fields has two primary conse-

quences. First, it provides the means by which quantum fields induce the motions in

ϕ in the CS sector which determine spacetime geometry. Second, it is responsible for

energy transfer from the quantum sector to the CS sector. Sect. 5.3 has already consid-

ered energy transfers from the CS to quantum sectors; a goal here is to model energy

transfer in the other direction.

The quantum fields, through their coupling with ϕ, are the sources of inhomo-

geneity in ϕ that provide the ‘boundary conditions’ which drive the dynamical evolution

of ϕ(x, t). We wish to create simple models of these sources and let them act classically

(deterministically) on ϕ(x, t). Provided the ϕ subsystem is analyzed separately from

the quantum subsystem, this can be done by adding terms to the ϕ Lagrangian (5.6).

5.4.1 The model interaction

As a representative quantum field, consider a quantized Dirac field ψ in the

momentum representation in Minkowski spacetime. The ψ field operator which acts on

the vacuum state |Ψ[ψ, t)Φ[ϕ, t) 〉 is [59]

ψ(x) =

∫
d3p

(2π)3

1√
2Ep

∑
s

(
aspu

s(p)e
ip·x
~ + bs†p v

s(p)e
−ip·x

~

)
, (5.42)

where the summations are over spins, u(p) and v(p) are smooth functions, Ep is the

energy corresponding to 3-momentum p, and (a, a†) and (b, b†) are, respectively, (anni-

hilation, creation) operators for the species of Dirac (particle, anti-particle). This is a

plane wave solution of the Dirac equation, which in turn follows from the ψ Lagrangian,

LDirac = ψ(iγµ∂µ −m)ψ . (5.43)

The modes (plane waves for a free field) e±ip·x can be interpreted as com-

pletely non-localized excitations of definite momentum, but this is not an acceptable

interpretation for gravitating sources, for reasons already discussed in Subsects. 5.2.1

and 5.2.3. Instead, consistent with Postulate 5.2.1, excitations of each quantum field

should be considered effectively localized, indistinguishable particles with continuous

161



trajectories between interactions, represented as wave packets constructed as superpo-

sitions of plane wave solutions. The consistency with QFT of this interpretation was

argued in Subsect. 5.2.3, although the discussion only considered Minkowski spacetime.

It is not necessary to assign a definite trajectory to point-like particles as-

sociated with wave packets; indeed, doing so would introduce difficulties that the de

Broglie-Bohm approach encounters [56]). Hence, assume that trajectories are meaning-

ful in a probabilistic sense, consistent with the Hall-Reginatto configuration ensemble

formalism; see the quotation at the end of Subsect. 5.1.3.

Analogously, wave packets should continuously couple to ϕ along their trajec-

tories. Given the very weak coupling strength, one can imagine this serves to perform

very weak, continuous ‘position measurements’ on the wave packet as it propagates.

Moreover, assuming the motions of ϕ in the CS sector determine the metric, in princi-

ple those measurements will leave an objective gravitational signature while being too

weak to collapse the wave function.

The model interaction will be between ϕ and an effectively localized particle

of a Dirac field ψ. Only massive fields will be considered here. Assume a coupling of

the Yukawa form,

Lint,ϕ = λψψϕψ (5.44)

with very small coupling strength λψ. This coupling will be given two interpretations:

quantum and classical. The ϕ field plays a different role in each.

5.4.2 The quantum picture

In the first interpretation, a ψ particle acts as both a source and absorber

of excitations of the ϕ field. As a source, the ψ particle continuously induces scalar

(longitudinal) waves in ϕ, as represented by the left diagram of Fig. 5.4; it thus con-

tinuously transfers some of its energy to ϕ by radiation. The right diagram of Fig. 5.4

corresponds to a ψ particle continuously absorbing energy from incoming ϕ radiation,

the inverse process. Since both emission and absorption of radiation are continuous, in

an equilibrium condition the expectation value of the ψ particle momentum will remain

constant, although small fluctuations can occur instantaneously.
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Figure 5.4

The ϕ radiation is a propagating wave solution,

obtained by the ϕ field operator (5.39). From the ψ field

operator (5.42), the ψ particle also has wave solutions. The

frequency of the ϕ waves will be assumed equal to the fre-

quency ωψ of the ψ particle that radiates them. Under the

assumption of particle localization, ωψ actually represents

a set of frequencies for a wave packet; to simplify the dis-

cussion take ωψ to be the central frequency of the wave packet. Furthermore, it will be

assumed the outgoing radiation is coherent with the ψ particle. Requiring coherence is

contrary to the usual assumption that the phase has no physical meaning, but that will

not be true in this case.

The ϕ radiation will not have energy ~ωψ, where ωψ is the frequency of the ψ

particle. Otherwise, the ψ particle would quickly lose all its energy to radiation. Instead,

the coupling strength λψ will determine the radiation energy. Since this is taken to be

very small in Eq. (5.44), the radiation will contain only a small amount of energy.

That is, the ϕ radiation inherits quantization from ψ through the coupling (5.44), but

the quantization is not intrinsic to ϕ; hence, the energy/frequency relationship for the

radiation will be determined by the coupling (5.44) which is the origin of the effective

quantization.

The derivation of the ϕ field equation (4.38) in Sect. 4.5 indicates the ϕ field

is not intrinsically massive. A massless scalar quantum field would have an associated

long range interaction. Although gravity is a long range interaction, gravity in the

emergence picture is presumed to be mediated by ϕ in the CS sector, not the quantum

sector. That indicates a long range interaction mediated by the quantum ϕ, however

weak, is undesirable. Hence, the quantum ϕ field should somehow acquire a mass in the

vicinity of a particle. This issue is considered further in the next subsection.

5.4.3 The classical picture

The second interpretation of the coupling (5.44) is more classical. The ef-

fectively quantized ϕ must interact with the ϕ modes which comprise the classical-

stochastic sector in order for the quantum fields to have gravitational consequences.

Viewed classically, this is no problem because the propagating modes of the quantum ϕ

field are no different than propagating modes of the classical ϕ field, because ultimately
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both are the same field manifesting in two different ways. Quantum mechanics does not

offer a similar viewpoint because it has no ‘awareness’ of classical fields, so it appears

the classical view will be most productive. However, the classical interactions are to be

considered in an ensemble sense, consistent with the probabilistic nature of QM, so it

might be more correct to regard it as a quasi-classical view.

In the quantum picture, a ψ particle of 3-momentum p in the x1 direction

has a plane wave (packet) solution, where the wave also propagates in the x1 direction.

Likewise, the quantum ϕ which couples to it can also be given a plane wave solution in

the x1 direction. However, treating ϕ modes as plane wave solutions in the x1 direction

inadequately represents the physical situation in the non-quantum sector because the

particle must gravitate in all directions, not just the x1 direction. Plane wave solutions

for the quantum ϕ modes would indicate that, after their partial thermalization with the

ϕ vacuum, there is an asymmetric gravitational field of the particle that is incompatible

with predictions of Newtonian gravity or GR. Likewise, the ψ particle must absorb ϕ

modes, as in the right diagram in Fig. 5.4, preferentially in the x1 direction; this would

require a completely unmotivated postulate to obtain the behavior.

Hence it appears necessary to posit that a particle must radiate ϕ waves in

all directions, not just the direction of momentum. However, to correctly represent the

momentum density the radiated ϕ waves in a given direction should have a frequency

given by the relativistic Doppler shift of the Compton frequency of the particle at rest.

Symmetrically, the frequency of ϕ radiation absorbed by a particle from each direction

is modified by the relativistic Doppler shift.

This proposal is compatible with the quantum ϕ having plane wave solutions

like the ψ particle to which it couples. The 4-momentum is determined by p̂ = −i∂µ
operating on the ϕ field, so the operator will pick out the Doppler shift in the field; the

frequencies in the +x1 and −x1 directions will be shifted in opposite directions while

the other spatial components are shifted differently, so the momentum operator can

extract the 4-momentum information from the ϕ field. This is a somewhat classical

interpretation of the momentum operator, but it shows that the quantum ϕ field can

retain its quantum character while also producing radiation compatibly with it acting

as a gravitational source.

The ϕ radiation from the ψ particle must interact with the ϕ vacuum in order

to ‘telegraph’ the information about its position and 4-momentum to the ϕ vacuum, thus
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determining its effect on the gravitational field. As emphasized already, the interaction

must be very weak to be consistent with the weakness of gravity. A very weak Yukawa

coupling λψ in (5.38) constrains the rate of energy transfer between the quantum and

CS sectors over short intervals. Notice this constraint applies equally to radiation and

absorption of ϕ waves. Unlike transient random fluctuations, this energy transfer is

essentially deterministic.

Now return to the issue raised in the previous subsection, that the ϕ field must

acquire an effective mass in the vicinity of a particle to avoid the introduction of a new

and unwanted long range interaction. To see the effect of an acquired mass, consider

a classical analogue of the massive Klein-Gordon field. This is a flexible string with

additional stiffness provided by a ‘bracing’ medium, e.g. by embedding the string in

something like a thin sheet of rubber [53] (p.138). The restoring force due to the string

tension is augmented by a restoring force from the bracing medium on each part of the

string. If K is a constant that depends on the elastic properties of the bracing medium,

T is the string tension, and ρ is the linear density of the string, then the equation of

motion of the string is

1

c2
∂2
t ψ = ∂2

x − µ2ψ ; c2 =
T

ρ
, µ2 =

K

T
.

Its Green function is

G(x, ξ) =


1

2µ e
µ(x−ξ) ;x < ξ

1
2µ e

µ(ξ−x) ;x > ξ ,
(5.45)

where the unit transverse force is steadily applied to the string at x = ξ. Thus, the

effective mass µ causes the wave motion to decay exponentially. (The bracing medium

also has the effect of increasing the natural frequencies of the wave motion and making

the propagation speed frequency-dependent so that the medium becomes dispersive.)

Eq. (5.45) illustrates by analogy how even a classical field can suppress long

range interactions if it has mass. While at least one promising candidate process exists

whereby ϕ in the Lagrangian (5.6) can acquire a mass in the neighborhood of a particle,

none is sufficiently developed at present to allow proposing it here. Mass acquisition

requires further study.
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5.4.4 Toy model for coupling to ϕ

Some key properties of a toy model of quantum-classical coupling for massive

quantum fields, motivated in the previous two subsections, can be summarized thusly:

• The ‘quantum ϕ’ field couples to the other quantum fields via a Yukawa interaction

(5.44).

• Through the coupling, the effectively localized particles of the ‘true’ quantum

fields radiate and absorb scalar radiation in the quantum ϕ field continuously as

they moves along their trajectories. The radiation and absorption rates are equal

when the particle momentum is constant.

• The ϕ waves are radiated and absorbed by the particle in all directions, with

the frequency in each direction given by its direction-dependent Doppler shifted

Compton frequency.

• The scalar radiation interacts and partially thermalizes with the ϕ vacuum in an

extended neighborhood; this conveys particle position and momentum information

to the gravitational field.

• The ‘quantum ϕ’ field acquires a mass in the vicinity of a massive particle by some

as-yet unspecified process that is at least partly classical.

Clearly there needs to be an analogous model for coupling between ϕ and

massless particles of the gauge fields. The propagating virtual field quanta of the gauge

fields, i.e., off-shell disturbances in the quantum fields, provide the means for ‘potential

energy’ to couple to ϕ and thus have gravitational consequences consistent with general

relativity. Coupling of virtual quanta can be handled straightforwardly by assuming the

disturbance represented by a virtual particle propagates along a trajectory, consistent

with its Green function, and couples to ϕ along the trajectory as would an on-shell

particle.
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Chapter 6

Emergent Spacetime and Gravity

In this chapter, the assumption of Chap. 5 that a 3+1 dimensional manifold

M has already emerged is dropped. The new objective is to obtain M and a metric g

on M via an emergence process.

Some sections will be mostly descriptive rather than quantitative. The intent

is to offer some general ideas to help complete the conceptual picture, even though the

ideas have not been developed much beyond general speculations. A limited quantitative

treatment may also reflect an intent to summarize in words results from earlier in the

thesis or obtained by others in order to draw attention to a relevant point.

6.1 Manifold emergence

6.1.1 Origin of n spatial dimensions

The basic field equation (4.38) is a wave equation in 1+1 dimensions, but it

readily generalizes to n > 1 spatial dimensions, as Subsect. 4.38 discussed. The primary

criterion for n > 1 is that the spectral density of modes has directional dependence, in

the sense that the spectral density in any given direction can be inferred by knowing

the spectral density in no more than n different directions while at least n different

directions are necessary to determine the spectral density everywhere. That is, a basis

of n directions is necessary and sufficient to describe the ϕ motions everywhere in the

space. See the discussion in Subsect. 4.3.1 and Def*. 4.3.2 in particular.

Since the ϕ field equation is a wave equation, its basic solutions are propagating

modes (waves) of the form ei(kx−ωt). There are no plane wave sources in Nature because
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that would require planar sources of infinite extent. Thus, the waves will necessarily

attenuate as they propagate in n spatial dimensions, ultimately having an amplitude

comparable to that of the uncorrelated ϕ fluctuations of the vacuum. Unless there are

sources of new propagating waves, the thermalized modes will eventually thermalize

with the scale invariant vacuum of the stochastic regime and the preferred scale will

dissipate.

Chap. 5 posited that the quantum fields are the ultimate source of propagating

ϕ modes, through their coupling to ϕ. The coupling made ϕ an effectively-quantum field

in the quantum-classical sector of the composite field theory. The propagating ϕ modes

have a limited range due to an effective mass ϕ acquires in the quantum-classical sector,

but ϕ self interaction leads to energy transfer to the classical-stochastic sector wherein

the ϕ modes thermalize and determine the metric. Postulate 4.4.5(S1) is especially

relevant in connecting the variations of ϕ with the physical spacetime structure.

If the assumption that the quantum fields are the only non-stochastic source

of propagating ϕ modes is correct, then there must be a direct correspondence between

the spatial dimension n and the number of independent directions in which the quantum

fields couple to ϕ. (The value of n might come from the number of spacetime dimensions

needed for internal symmetries to manifest, for example.) That is because the subse-

quent interactions among the propagating modes cannot introduce additional spatial

degrees of freedom; ϕ is not an independent source of non-stochastic fluctuations.

While this last observation may be obvious, it is important because it makes

the following claim more plausible. Once the initial fluctuation sets the dimension n

of the precursor of spacetime in a region Ut ⊂Mt, if that primitive initial spacetime

has an approximate Poincaré symmetry that is ‘good enough’ that a fluctuation of a

quantum field in Ut can immediately manifest also in n dimensions, then if cosmogenesis

subsequently occurs it will maintain the same spatial dimension n throughout the evolu-

tion. That is because the quantum field and the other quantum fields to which it couples

should couple to ϕ in the same n dimensions, ‘reinforcing’ the initial n dimensional prim-

itive spacetime of the initial fluctuation; this in turn should lead to additional quantum

fluctuations in n dimensions, and so on in a recursive, self-bootstrapping fashion.

Thus, the scenario presented in the paragraph above is a proposal for the

origin of spacetime dimension in the emergence picture. Fortunately, it is not necessary

to postulate the scenario to make progress. The only needed ingredients are that the
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quantum fields couple to ϕ in n independent directions, and that the quantum fields

are the sole generating source of dynamically generated motions. Then the resulting

thermalization of ϕ modes will obtain an emergent n+1 dimensional spacetime, at least

in those cases where an initial fluctuation somehow proceeds into a cosmology rather

than quickly dissipating.

6.1.2 Equipartition in the ϕ vacuum

The 1+1 dimensional equation of motion for ϕ that was derived in Sect. 4.5 is

Eq. (4.38):

v2 1√
−g

∂̄x
(√
−ggxx ∂̄xϕ(x, t)

)
− 1√
−g

∂̄t
(√
−ggtt ∂̄tϕ(x, t)

)
=
dV(ϕ)

dϕ
+ F(t) , (6.1)

where v is the wave propagation speed, F(t) is a stochastic perturbation and V(ϕ) is the

effective potential. In an established n+1 dimensional spacetime, gµν can be interpreted

as the metric and the equation of motion takes the standard form,

1√
−g

∂̄µ
(√
−ggµν ∂̄νϕ

)
=
dV(ϕ)

dϕ
+ F(t) . (6.2)

The effective potential was left unspecified, but it was argued that the stochas-

ticity of ϕ together with the necessity for path integration could give rise to an effective

self interaction through annealed randomness, e.g. λϕ4. Regardless, self interactions

are necessary for ϕ to play the role as the mediator of spacetime, so if they do not

arise through something like annealed randomness they must be imposed by postulate.

Hence, V(ϕ) must include a self interaction that causes modes to mix and exchange

energy (or the counterpart of energy in a pre-emergent spacetime). For the present

discussion, let the effective potential have the massless form,

V(ϕ) =
λ

4!
ϕ4 .

Let U be a region in which spacetime has fully emerged. To keep the picture

simple, assume an established Minkowski spacetime in U with n = 3 spatial dimensions.

Then the classical Hamiltonian that corresponds to Eq. (6.2) in this simple scenario is

H =

∫
V

1
2

(
π2 + (∇ϕ)2 +

λ

4!
ϕ4

)
, (6.3)

where interactions with the quantum fields are omitted because they are not consequen-

tial to equipartition of modes of the ϕ field in U .
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Associate a preferred scale with U , having a range of modes [kmin, kmax] with

diam(U) = k−1
max. The λϕ4/4! potential is nonlinear, ensuring interactions among all

modes in [kmin, kmax]. Thus, taking the ϕ modes of the vacuum in U to be at equilibrium,

then, since the dynamics (6.3) are classical, classical equipartition of energy will occur

for the kinetic and gradient energies in U . Since n = 3 by assumption, each frequency

k ∈ [kmin, kmax] corresponds to four independent degrees of freedom (ω, kx, ky, kz); each

will have average energy kBT . The temperature, T = 〈12π
2(ω)〉, of the ϕ vacuum is

undetermined.

The Rayleigh-Jeans law for ϕ in U gives the energy density in ω-space of the

infinitesimal shell, radius ω and thickness dω:

E(ω) = ρ(ω) = kBT
ω2

π2

where kB is Boltzmann’s constant. Integrating over the entire preferred scale range

[ωmin, ωmax] and taking ωmin ' 0 gives the ‘ground state’ energy per unit volume:

E ' kBT

3π2
ω3

max =
kBT

3π2
k3

max . (6.4)

This is presumably a large number. Naively taking Tµν ∼ E in the right side of

Einstein’s equations, Gµν = 8πGTµν , GR predicts a large spatial curvature. However,

the naive calculation is not correct in the emergence picture due to the mediating role

of ϕ. Essentially, the ϕ configuration is the metric through Postulate 4.4.5(S1), and

hence it is implicit in the Gµν . It is incorrect to include E in Tµν because E is already

implicit in Gµν . This means large E is entirely compatible with spatial flatness.

The finiteness of E in Eq. (6.4) has been preserved because the hard cutoffs

ωmax, kmax place an upper bound on the modes which can participate in equipartition.

Without the cutoff, essentially all the energy would be dumped into the high frequency

end of the spectrum, and all modes would contain essentially zero energy. Although ϕ

avoids this so-called ‘ultraviolet catastrophe’ due to the cutoffs, the high frequency end

of the spectrum still contains most of the energy.

Now drop the assumption of an established spacetime in U and consider instead

the early era of a cosmology, where a preferred scale exists and a spacetime is in the

process of emerging via an inflation-like process. The quantum fields play a crucial

role during this era, in that they are the sources of ϕ modes that interact among each

other and thereby drive the exponential expansion of spacetime. Strictly speaking, the
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effective potential V(ϕ) in the field equation (6.1) should now include interactions with

the quantum fields since those interactions are crucial to the evolution of ϕ.

Nonetheless, interactions between ϕ and the quantum fields should lead to an

effective quantization of ϕ; see Subsect. 5.2. The subsequent thermalization of the ϕ

modes that originate from the ‘quantum ϕ’ is what generates the emerging spacetime,

not the non-thermalized modes of the effectively quantized ϕ. So even in the very early

inflation-like era it appears reasonable to continue to ignore the interactions between

the quantum fields and ϕ when considering equipartition of ϕ modes.

There is another problem with energy equipartition during the inflation-like

era: the spacetime has only partly emerged, so a notion of energy is only approximate at

best, and describing ϕ by a Hamiltonian like Eq. (6.3) is presumably invalid. Moreover,

during the emergence era there is no sense in which the ϕ modes are in equilibrium in

U , so the even if a valid Hamiltonian existed energy equipartition would not logically

follow.

This problem can be addressed as follows. First, the motions of the ϕ field can

be described entirely on the time-augmented metric space Mt, even in an established

spacetime, since that is the context of the postulates of the field and its properties.

Postulate 4.4.5 allows connecting the description on Mt to a physical spacetime. Since

the physics of ϕ cannot depend on the choice of space used to describe the field dynamics,

any physical conclusions drawn on a physical spacetime (M ,g) must also hold on Mt,

and vice versa. That means that if energy equipartition occurs among modes on (M ,g),

an equipartition of an analogous quantity must occur on Mt (but that quantity is not

energy because no notion of energy exists on Mt). Hence, what is important is that

there is something which undergoes equipartition on Mt if the necessary preconditions

exist, such as an equilibrium-like condition. This suggests the spectral density should

be the important quantity to consider, since it can be defined with respect to either Mt

or (M ,g). (The spectral density for the same field configuration, expressed in terms

of measures on Mt and (M ,g), may not be equal, but they should be related by a

transformation between the two spaces.)

Second, the lack of anything remotely like equilibrium means equipartition

will not occur, at least during the early stages of the inflation-like era. Nonetheless, ϕ

remains a self interacting field, so ‘energy’ can still be exchanged between modes and

thermalization can still proceed in a limited sense. That is good enough. Presumably, as
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the emergence process proceeds, the ongoing redistribution of ‘energy’ will more closely

approximate true thermalization, causing a gradual approach to equilibrium and true

equipartition.

6.1.3 Lorentz symmetry

Let U ⊂ Mt be a region in which spacetime has fully emerged, such that

the ϕ vacuum is completely thermalized, homogeneous, and the spectral density is the

same in all directions (isotropy). The task is to show that if the residual variation of

ϕ (Def*.4.4.2) as assumed, Lorentz symmetry will exist in U . The goal is not to derive

special relativity from a different set of postulates than is conventional; it is to show

that the Lorentz symmetry follows automatically from the emergence picture without

being put in ‘by hand.’

The analysis will be with respect to the distance metric d and cosmic time. Due

to the assumed homogeneity and isotropy in U , rotational invariance in the emergent

space in the interior of U is automatically satisfied. Thus, obtaining Lorentz symmetry is

a matter of demonstrating boost invariance; the 2+1 dimensional case will be sufficient.

Start with the residual variation (Def*. 4.4.2) along a curve c ⊂ U in position

space,

V (kmax)
ϕ (c) = Vϕ(c)−Vϕ̄(c)

∣∣
k>kmax

. (6.5)

This is finite because it is attributable solely to the finite range of preferred scale modes,

kmin ≤ k ≤ kmax; contributions by k > kmax which are the source of the infinite variation

of ϕ have been subtracted. Let c be a geodesic of the emergent spacetime which spans

U . Assume c is also a geodesic of d because the ϕ vacuum is homogeneous and isotropic

in U ; to simplify the setting without losing generality, intrinsic uncertainty in the path

(image) of the curve on M will be ignored.

Then V
(kmax)
ϕ (c) and V

(ωmax)
ϕ (c) can be represented by a sum of Fourier modes,

V (kmax)
ϕ (c) =

∫ kmax

−kmax

dk

2π

[
ã(k) ei(kx−ωt) + c.c.

]
,

V (ωmax)
ϕ (c) =

∫ ω˜max

−ω˜max

dω

2π

[
ã(ω) ei(kx−ωt) + c.c.

]
, (6.6)

where kmax and ω˜max are hard, physically motivated effective cutoffs. They are effective

cutoffs in that kmax < kmax, and similarly ω˜max < ωmax, because the short-distance (and
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long-distance) transition between the dynamic and stochastic regimes is not sharp. The

infrared cutoffs kmin = diam(U)−1 and ω˜min are taken to be zero to simplify the integrals.

Having distinguished ω from ω˜, henceforth the accent on ω will be dropped.

The modes appearing in the integrals are propagating modes which are so-

lutions of the ϕ equation of motion. This contrasts with the stochastic regime where

modes do not propagate because the equation of motion does not apply.

From Subsect. 6.1.2, equipartition will occur among all modes in [kmin, kmax]

and [ωmin, ωmax] in U . The average energy per mode is kBT = const; hence the average

energy density per mode is also constant. Call this constant a2
0; it represents the average

kinetic energy density 1
2〈π

2〉 of each mode ω and the average gradient energy density

1
2〈(∇ϕ)2〉 of each component i of each mode k.

From Postulate 4.4.5(S1), the propagation speed c of waves at a preferred scale

varies inversely with the residual variation, i.e.,

c =
v′0

V
(kmax)
ϕ (c)

, v′0 ∝ v0 . (6.7)

(The postulate is stated in terms of the relative variation n, which is why c is proportional

to v0/V
(kmax)
ϕ (c) rather than equal to it; the residual and relative variations are related

by Def*. 4.4.3.) For the ϕ vacuum, at equilibrium in U , the residual variation should

be the same effective constant along all curves c ⊂ U so that c is constant in U .

Within this setup, a box will be given a relative velocity v within a ‘lab’ frame

as in Fig. 6.1. The idea is to deduce the change in residual variation of the vacuum

which an observer in the box would experience due to Doppler shifting of propagating

modes sin(k±x− ω±t) entering the box. The non-relativistic form of the Doppler shift

must be used because special relativistic effects on dy and dt are to be determined,

not assumed. The nonrelativistic form assumes waves propagate through a medium,

where the wave source, observer or both may be in motion relative to the medium. The

medium in the present context is the relative variation due to the sum of all modes in

[kmin, kmax] and [ωmin, ωmax], since that determines the propagation speed. Given the

dependence of c on V
(kmax)
ϕ the change in measures of distance, dx and dy, and time, dt,

can be determined.

A sample computation will only consider the effect of the Doppler shift on

the spatial modes, k±, but similar reasoning applies to temporal frequencies ω±. The

computation depends crucially on whether the observer is taken to be at rest in the
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medium or moving relatively to it, so it is necessary to be careful in correctly choosing

the setting. There is no single frame which can be declared to be ‘at rest’ with respect

to the medium because there is no frame which acts as the source for all modes — all

modes interact and undergo equipartition independently of any notion of a reference

frame. That is because, ultimately, all propagating modes live on top of the stochastic

regime at distance scales k−1 < k−1
max, but the stochastic regime contains no notions of

either space or time.

Hence, there is no natural choice of rest frame for the medium; the notion

of such a frame does not even make sense. Nevertheless, Doppler shift of propagating

modes clearly occurs because a particular mode k− in the lab frame that enters the top

of the box in Fig. 6.1 clearly has a different frequency with respect to the box when

v > 0 than it does when v = 0, computed within the lab frame.

One option for the medium’s rest frame assumes the lab frame and the box

are both moving relatively to the medium. That is, the relative velocity between the

box and lab frame is known but their speeds with respect to the medium are undefined.

However, this will not work because a Doppler shift computation requires that motion

with respect to the medium is at least a meaningful notion, even if the particular relative

speed is unknown. The only other option is to declare that the lab frame and frame of

the box are both at rest with respect to the medium. Then it does not matter which

frame is chosen to do the calculations as long as the entire calculation respects that

choice. Since this option is apparently the only possibility that makes sense, it will be

assumed henceforth.

Figure 6.1

Given the observer is stationary

in the vacuum, take k± to be generated

by sources moving at speed v with re-

spect to the vacuum. Let k+, k− in the

lab frame be such that their Doppler shift

makes them the same k in the observer’s

frame:

k =
k±

1± v/c
.

The shift is in the y direction only because

v has no x component.

In the lab frame, the average amplitude (or weight) of mode k after equipar-
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tition is ã(k) = 〈|a(k)|2〉1/2 = a0/k and kã(k) = k±ã(k±). For v > 0, k± → k due to

Doppler shift (all frequencies are measured by ‘lab’ frame ruler), e.g. for k+ :

kã(k) = k+ã(k+)
Doppler shift

−−−−−−−→ k ã(k+) =
k+

1 + v/c
ã(k+) =

a0

1 + v/c
. (6.8)

In the lab frame, mode k leaves the top weighted as ã(k) while k−, weighted as ã(k−),

enters through the top. For the bottom, k leaves with weight ã(k) while k+ enters with

weight ã(k+). Average weight ã′(k) (entering) replaces average weight ã(k) (leaving):

k ã′(k) = 1
2 a0

[
(1 + v/c)−1 + (1− v/c)−1

]
= a0(1− v2/c2)−1 . (6.9)

Thus, from the viewpoint of the lab frame, the entire spectrum is shifted to

higher frequencies by a factor γ2 =(1−v2/c2)−1. In terms of a sum of modes, V
(kmax)
ϕ (c)

is ∫ kmax

−kmax

dk

2π

[
ã(k) ei(kx−ωt) + c.c.

] Doppler shift

−−−−−−−→ γ2

∫ kmax

−kmax

dk

2π

[
ã(k) ei(kx−ωt) + c.c.

]
.

(6.10)

From (6.7), c ∝ 1/V
(kmax)
ϕ (·). The conclusion within the lab frame is that processes in

the box are subject to a propagation speed c′ = c/γ2, necessarily constant because v

and c are constant in the box as measured within the lab frame. Hence measures of

length and time for the moving (primed) frame are

dy′ = αdy, dt′ = βdt such that
dy′

dt′
= c′ =

α

β
c

∴
α

β
= γ−2 . (6.11)

Now look at the transverse direction where V
(kmax)
ϕ (·) is unchanged, so dx′ =

dx.

Figure 6.2

In the moving frame v′ = 0. Be-

cause the observer’s reference frame in

the moving box is taken to at rest in the

medium, the speed of light is isotropic in

that frame, just as it is in the lab frame.

Thus, from Fig. 6.2,
√
c′2 − v′2 = c′ and

dx′ = c′dt′ = dx =
√
c2 − v2 dt ,
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where dt is the time required to traverse dx, measured in the lab frame. Hence

dx′

dx
= 1 =

c′

c
√

1− v2/c2

dt′

dt
=
dt′

dt
γ−1

which, using (6.11), leads to the expected transformation equations for boosts:
dt′ = βdt = γdt

dx′ = dx

dy′ = αdy = (βγ−2)dy = γ−1dy .

(6.12)

From these and isotropy, the Lorentz transformations and other properties of Lorentz

invariance in physical systems follow. Little would be gained repeating here what is

already available in standard texts on special relativity.

The transformed measures (6.12) are non-dispersive. That is, the trans-

formations are insensitive to the mode frequency. This indicates there should be no

scale-dependent violation of Lorentz invariance over the entire range of distance and

time scales in U , [k−1
max, k

−1
min] and [ω−1

max, ω
−1
min] respectively, provided equipartition holds

over the entire range of scales.

The result (6.12) will generalize to the number of independent directions, or

spatial dimensions, in which equipartition occurs. That and homogeneity and isotropy

are the properties of the vacuum that are needed for boost symmetry in the reasoning

above.

6.1.4 Metric signature

Having proposed that the product topology of spacetime has a dynamical ori-

gin, the next problem is to explore what determines the spacetime dimension, d = n+m

where m is the number of time dimensions. The number of spatial dimensions was the

subject of Subsect. 4.3.1; assume n is an integer. Here, the task is to determine the

metric signature for an emergent spacetime, i.e., m.

Tegmark [69] argues for m = 1 (and also n = 3) on ‘anthropic’ grounds. When

m > 1, namely the ultra-hyperbolic case for Eq. (6.13), there exists no spacelike hy-

persurface on which initial condition data can be specified, so the initial value problem

is ill-posed; specifying the initial conditions on a small subset of the spacetime deter-

mines the solution throughout spacetime, so that consistency with observation requires
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specification of that data with infinite precision. Fig. 6.3 summarizes this anthropic

argument for preferring (n,m) = (3, 1).

Figure 6.3: Properties of n + m-

dimensional spacetimes [75] (reproduced

under Creative Commons license).

An anthropic argument is of limited use, however, because it is phenomenolog-

ical: it can indicate what the metric signature should be to allow intelligent observers

to exist, but says nothing about the physical origin of that signature. On the other

hand, given the premise that spacetime emerges dynamically, it should be possible to

infer the metric signature from the ϕ dynamics.

Consider a general, linear second order partial differential equation in Rd:(
Aµν

∂

∂xµ

∂

∂xν
+Bµ

∂

∂xµ
+ C

)
ϕ(x) = 0 , (6.13)

where the matrices A and B and the constant C are all differentiable with respect to the

d coordinates. In a fully emerged spacetime where (6.13) describes the covariant partial

differential equations of physics, e.g. the wave equation, 2ϕ = 0, or diffusion equation,(
∇2 − ∂t

)
ϕ = 0, A will have the same eigenvalues and hence the same signature as the

metric tensor g [69].

The dynamics of ϕ on an emergent spacetime (M ,g) must have representations

on both (M ,g) and Mt because both spaces contain the same physical situation but

embody different viewpoints. Consistency requires the same number of time dimensions

in both representations, so consider the field equation for ϕ on Mt. This is well defined

along curves, i.e., in 1+1 dimensions. Rewrite the left side of Eq. (6.2), taking V ′(ϕ) +

F(t) = 0 and
√
−g = 1 without loss of generality:

0 =
(
Aµµ ∂̄2

µ +Bµ ∂̄µ + C(ϕ)
)
ϕ(x, t) =

(
A1 ∂̄

2
x −A0 ∂̄

2
t

)
ϕ(x, t) , (6.14)

where µ ∈ {0, 1}. Comparing Eqs. (6.13) and (6.14), A ∼ diag(−1, 1).
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Now consider the same field equation in the Rd representation. The sign of the

eigenvalues of A must be the same because the physical situation is the same, although

their magnitudes will in general be different. Since the eigenvalues of A and g are the

same, the metric signature is diag(−1, 1). In more than 1+1 spacetime dimensions, n

can change without affecting the content of (6.14), but m cannot. Hence, m = 1 so that

the metric signature1 that is consistent with the ϕ field equation is, in Rd,

gµν = diag(g00, g11, . . . , gnn) ∼ (−+ · · ·+) . (6.15)

This reasoning shows g inherits its signature from the ϕ equation of motion, which in

turn is derived from the elementary dynamics of Postulate 2.2.11(D2).

6.2 Reproducing General Relativity

This section considers the extent to which the emergence picture can reproduce

general relativity. It starts with a very brief overview of how the metric is determined

in general relativity, followed by a discussion of how the emergence picture reproduces

the correspondence between energy density and spacetime geometry.

6.2.1 Computing gµν in general relativity

In general relativity spacetime is modeled by a pseudo-Riemannian manifold

(M ,g), specifically a Lorentzian manifold which, in the convention of this thesis, has

signature (−++ · · ·+). One starts with Einstein’s equations on the pre-existent smooth

manifold M in n+ 1 spatial dimensions:

Gµν =
8πG

c4
Tµν , (6.16)

where G is Newton’s gravitational constant and the cosmological constant is omitted

for simplicity. The Einstein tensor Gµν is defined by

Gµν = Rµν − 1
2Rgµν , (6.17)

where Rµν = Rλµλν is the Ricci tensor, R = Rµµ is the Ricci scalar, and the Riemann

curvature tensor Rρσµν is

Rρσµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ . (6.18)

1This assumes the sign convention (6.15) specified in the Introduction.
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The Levi-Civita connection Γσµν is given in terms of the metric by

Γσµν = 1
2g
σρ (∂µgνρ + ∂νgρµ − ∂ρgµν) . (6.19)

The energy/momentum density in Tµν determines the metric:

Rµν − 1
2Rgµν − Λgµν = 8πGTµν

Correctly specifying the energy-momentum density via Tµν everywhere on M implicitly

requires a metric. If the metric is not known, perturbation theory can be used in many

cases, using the Minkowski metric to initially specify Tµν :

gµν = ηµν + hµν

where hµν is the perturbation. Finally, one solves (6.16) for the (up to) ten independent

components of the dynamical tensor field gµν , which is the spacetime metric on M .

6.2.2 More general emergent metrics than ηµν

The derivation of Lorentz invariance in Subsect. 6.1.3 assumes the ϕ vacuum

is completely thermalized, homogeneous, and has an isotropic spectral density which

results from equipartition. In terms of a metric with n spatial dimensions, the transfor-

mations (6.12) plus isotropy imply a Minkowski metric, ηµν .

Importantly, the derivation is purely a local one, i.e., the assumed conditions

only need to hold in the vicinity of the infinitesimal box in Fig. 6.1. This means the

Lorentz invariance can be taken to hold locally in a neighborhood where the neces-

sary conditions are present. If the spectral density for ϕ waves is inhomogeneous or

anisotropic over an extended region S, local Lorentz invariance will still be obtained

provided the ϕ modes have thermalized and the required conditions of homogeneity

and isotropy hold locally within S. The relative variation n(x, t), defined by Eq. (4.14)

in terms of the residual variation V
(kmax)
ϕ (x, t), quantifies local departures from homo-

geneity in S.

It is helpful to frame this idea in terms of the ideas of the previous chapter.

Effectively localized particles of quantum fields couple locally to ϕ in the quantum-

classical sector, and as a result ϕ effectively becomes a quantum field in that sector.

The modes of the quantum ϕ arise due to the coupling between ϕ and the particles, not

from the internal motions of ϕ itself; this is clear from the toy model for the coupling,
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summarized in Subsect. 5.4.4. However, the ϕ thermal ‘vacuum’ is essentially classical,

not effectively quantized, and the thermal vacuum is what generates the physical met-

ric. Since ϕ is a single, self interacting field which acquires quantum or non-quantum

characteristics depending on the setting, its self interactions inevitably lead to partial

thermalization of the quantum ϕ modes in the vicinity of the particle, and that leads to

local inhomogeneities of the ϕ vacuum. Moreover, the energy density of the quantum ϕ

modes is proportional to the energy of the particle of the quantum field which is acting as

the source, so that after partial thermalization the energy density of the thermal vacuum

in the vicinity of the particle increases with the energy of the source (particle). Since

the relative variation in the vicinity of the particle, after partial thermalization, also in-

creases in proportion to the energy (characteristic frequency) of the particle, spacetime

curvature in the vicinity of the particle should increase with increasing particle energy.

Thus, as long as a local equilibrium is achieved between the quantum ϕ and

the thermal ϕ in the vicinity of a particle, the thermalization and equipartition will

occur locally in the same way as it does for the large-scale vacuum initially assumed

in Subsect. 6.1.3. The required equilibrium is such that energy exchange between the

quantum ϕ and thermal ϕ can continually occur, but the net transfer from one sector

to the other is zero. The relative variation will then vary in the same way as the energy

density, so that an inhomogeneous energy distribution will obtain an inhomogeneous

spacetime geometry.

To make this explicit, rewrite the measures (6.12) for flat space in terms of the

relative variation, n(x, t), taking the reference curve cref to be fixed in the lab frame.

Since c′ = c/n(x, t), then from (6.12),
dt′ = dt · n1/2

dx′ = dx

dy′ = dy · n−1/2 .

(6.20)

The picture not only reproduces the basic idea that matter introduces curva-

ture into spacetime, it also reproduces the crucial aspect of GR that gravity itself acts

as a source of gravitation. That is because the propagating ϕ modes which comprise

the ϕ vacuum have an associated propagation speed that is determined by the relative

variation in the same way as the propagating modes of the quantum fields. In a region S

where the relative variation increases from the ambient, ϕ modes propagating in S will
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slow, and this in turn will cause the relative variation to increase above what it would

be if the modes passed through S without slowing. The increased relative variation then

causes further slowing of modes in S until the nonlinear process reaches a ‘fixed point’

where the relative variation in S achieves an equilibrium value. Idealizing the propagat-

ing modes as plane waves, the spatial inhomogeneity of the relative variation in S will

lead to deflection of the modes, analogous to how light passing through a material with

a varying index of refraction will deflect. This can lead to mixing of different spatial

components in the resulting metric.

This picture is completely consistent with the assertion by Einstein’s equations

that the stress-energy tensor determines the spacetime geometry. Moreover, the picture

offers an explanation for why the energy density determines geometry — it indicates an

underlying process by which the geometry is determined.

6.2.3 Computing gµν in the emergence picture

In the emergence picture that has been developed in this thesis, the process

of determining the metric is conceptually different than solving Einstein’s equations.

The corresponding procedure, in which an n+1 dimensional manifold M has already

emerged in a region Ut ⊂M × R, can use either of two approaches. Each of the two

approaches must obtain the same final result because the physical situation is the same.

The first approach starts by specifying the energy-momentum density every-

where on Ut, and then computing the residual variation in terms of a homogeneous

metric d (Def*. 2.1.15) and cosmic time, then solving the ϕ equation of motion (6.2)

and taking ensemble averages to arrive at the residual variation. This approach is fine

for conceptually developing in-principle arguments, and it has the advantage of not re-

quiring an emergent manifold, but it is probably impractical unless there is a very high

degree of symmetry that allows reducing the problem to 1+1 dimensions.

The other, more practical approach starts by specifying the energy-momentum

density on a Rn,1 background space, then uses the ϕ equation of motion in n+ 1 dimen-

sions to solve for the relative variation (Def*. 4.4.3). The speed of light, measured with

respect to Euclidean measures of space and time, now can vary everywhere according

to the relative variation; see Eq. (4.37). Where the relative variation is large, nonlin-

earity will exist: The relative variation in a region S depends on the speed at which

modes propagate in and out of S, and if the relative variation increases in S then the
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mean mode amplitudes will also increase in S, leading to a further increase in relative

variation in S, and so on. Because the matter content is completely specified on a flat

space and the relative variation is then computed on the same space, the field may

evolve nonlinearly but it should be well defined at all times, even for arbitrarily large

energy-momentum densities.

In the second approach, once the relative variation is known everywhere, the

propagation speed (6.7) is also known everywhere in terms of Euclidean measures of

space and time. By changing the point of view so that the propagation speed is con-

stant everywhere but the measures of space and time are what vary, the metric can be

computed everywhere from the relative variation on Rn,1.

Finally, once the metric is known everywhere the Einstein tensor can be com-

puted directly from Eqs. (6.19), (6.18) and (6.17). This indicates a direct correspondence

between the spacetime geometry from Einstein’s equations and the geometry computed

from the relative variation in the emergence picture. However, that does not guarantee

the metric computed from the same Tµν in the two pictures will be proportional to each

other. That is an important question that requires additional study.

6.2.4 Manifestation of matter fields

General relativity establishes a close connection between matter, or more pre-

cisely energy and momentum density, and spacetime geometry. However, GR requires

a preexistent pseudo-Riemannian manifold on which the physical spacetime metric g

and stress-energy tensor T can be defined. A smooth manifold contains somewhat more

structure than the time-supplemented metric space Mt ≡M × R. Namely, lacking a

notion of spatial dimension, Mt is not a manifold, much less an inner product space.

Moreover, GR assumes a well defined local energy density, whereas energy and momen-

tum density are emergent notions in the emergence picture.

In one significant respect, GR is incompatible with the emergence picture in

this thesis: Stable solutions of Einstein’s equations exist for universes that contain lit-

tle or no matter at all, such as a Kasner metric [52]. Matter-free solutions are highly

problematic in the emergence picture because, while gravitational energy alone could

induce curvature as it can in GR (see the latter part of Subsect. 6.2.2), without matter

there appears to be no means for generating the spacetime manifold on which a space-

time metric could live. By asserting a prior manifold, GR ‘surreptitiously’ implies the
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existence of such vacuum solutions and skirts the burden of justifying their existence or

physical sensibility.

While GR describes how the energy density determines spacetime geometry,

its description of how spacetime geometry affects matter is restricted to determining the

motions of matter. GR has nothing to say about whether spacetime geometry affects

the existence or stability of elementary particles.

6.3 Cosmogenesis and Inflation-like Era

Sufficient groundwork has been laid that an inflation-like process, wherein a

spacetime manifold and metric emerge and the quantum fields manifest, can be outlined

in a little more detail than in Sect. 1.4. It appears that any spacetime emergence scenario

that relies only the elements that have been developed in this thesis will contain the

basic features of the process. The discussion will be somewhat general.

In the emergence picture, the equation of motion (6.1) indicates that the phys-

ical metric g should be describable in terms of the relative variation n(x, t), Eq. (4.14).

Local curvature should correspond to local variations in n. Obtaining a realistic mani-

fold on which g lives is the harder part: The relatively small number of postulates and

the very limited prior structure they assume significantly limits the possible processes

for manifold emergence.2 Subsect. 4.3.1 took some initial steps by proposing in broad

terms how a fluctuation could transiently obtain a product space where none previ-

ously existed. A transient product space is a necessary but insufficient condition for

cosmogenesis, however.

6.3.1 Initial fluctuation

Subsects. 4.3.1 and 6.1.1 discuss the idea of an initial fluctuation that produces

a transient preferred scale. If a fluctuation is to lead to cosmogenesis, there must be

mode sources, i.e., manifestation of quantum fields, to amplify the initial fluctuation

and lead to its growth. Hence consider a highly improbable fluctuation that produces

a ϕ field configuration with approximate Lorentz symmetry in n spatial dimensions in

some finite region Ut of Mt.

2An optimist may regard the paucity of candidate processes as a benefit because it reduces the range
of possible models that must be considered.

183



A field configuration with approximate Lorentz symmetry can come about

through a combination of dynamics and randomness, not just randomness. The discus-

sion of Subsect. 6.1.3 shows that Lorentz symmetry corresponds to equipartition in a

fully thermalized condition. Since complete thermalization is an equilibrium condition

and hence corresponds to maximum entropy in an established spacetime, presumably it

is far more likely that a random fluctuation will produce a configuration with approxi-

mate Lorentz symmetry than one like Fig. 6.4 which contains a small number of modes.

That is, a fluctuation will almost certainly be a wave packet.

Figure 6.4

As a wave equation, the equa-

tion of motion will act on each mode of

the fluctuation. Letting Fig. 6.4 represent

just two constituent modes of a packet, it

is clear that each mode is a solution to a

wave equation, and thus will propagate.

For a fluctuation in n spatial dimensions,

the waves will thermalize in all n dimen-

sions due to the self interaction potential in the equation of motion, so it is reasonable

that until the fluctuation dissipates there can be approximate equipartition sufficiently

deep in the interior of Ut. However, the lifetime of the fluctuation is presumably very

short: the exterior of Ut is governed by the stochastic regime, so as modes propagate

outside Ut they do so in a region with undefined spatial dimension, and the usual dy-

namics will no longer apply. Presumably attenuation will be rapid; once amplitudes

decrease to those that characterize the stochastic regime, complete thermalization with

those modes will occur and dynamics will cease.

The expected rapid dissipation of a fluctuation can be slowed if there are

sources of modes that replace those which propagate outside Ut. Working within the set

of assumptions of this thesis, the quantum fields are the primary candidates for mode

sources. Being quantized, their particles are in some sense persistent — if they were not

persistent in time or space there would be no sense in which they could be considered

quantized. Moreover, as asserted by Postulate 5.2.1, the particles are effectively localized

which allows them to exist in the interior of Ut without also being at the boundary of

Ut where the requisite symmetry is tenuous at best. This justifies the assumption that

effectively localized particles of the quantum fields are the mode sources needed to slow

184



the dissipation of the preferred scale in Ut.

6.3.2 Initial manifestation of quantum fields

In a relativistically correct quantum field theory in Minkowski spacetime, par-

ticles are unitary irreducible representations of the Poincaré group. Within Ut Lorentz

symmetry is only approximate, and almost certainly translation invariance is even more

tenuous. Nonetheless, obtaining the ‘right’ fluctuation by random processes only re-

quires waiting long enough, so let approximate Poincaré symmetry exist over some

restricted region S in the interior of Ut.

Poincaré symmetry is at best approximate near the time of the initial fluctua-

tion largely because notions of physical time, distance and angle are subject to significant

time-dependent statistical variation. But even in an established spacetime measures of

distance, time and angle are subject to uncertainty because they are derived from ϕ,

and ϕ is ultimately a stochastic field.

Hence, in the emergence picture, spacetime symmetries have an intrinsically

statistical nature. The origin of Lorentz symmetry developed in Subsect. 6.1.3 indicates

how to quantify a deviation from perfect symmetry: it corresponds to the root mean

square fluctuation of ϕ, such that the symmetry becomes classical in the limit σϕ → 0.

Eq. (3.25) allows computing the variance σ2
ϕ = 〈(δϕ)2〉 from the spectral density, as was

done in Eq. (4.19):∫ ∞
0
Sϕ(f) df = lim

T→∞

1

T

∫ T/2

−T/2

(
ϕ(x; t)− ϕ̄(x)

)2
dt = σ2

ϕ .

Note that σϕ is derived from the dynamical fluctuations of ϕ at the preferred scale,

not the stochastic fluctuations of the stochastic regime. Nonetheless, in an established

spacetime σϕ will be a property of the classical/stochastic sector, not the quantum

sector. This suggests the possibility that quantum uncertainty is ultimately derived

from uncertainty in the spacetime itself rather than an intrinsic property of the quantum

fields.3

In light of the above, the ability of quantum fields to manifest in the absence

of exact Poincaré symmetry will be attributed to the variance σ2
ϕ:

3In an established spacetime, it is reasonable to expect there will be a quantitative relationship
between Planck’s constant and σϕ.
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Postulate 6.3.1 (Poincaré symmetry and stable particles [provisional].) Let

variance σ2
ϕ be the mean square fluctuation of ϕ in the dynamic regime. The quantum

fields cannot manifest at all when σ2
ϕ → ∞, and manifest as they do in an established

spacetime when σϕ = σϕs for some empirically established value σ2
ϕs

. For σϕ ∈ (σϕs ,∞),

a particle’s rescaled lifetime τ/τ0 (τ0 is its lifetime in established Minkowski spacetime)

is inversely related to σϕs/σϕ.

Determination of the particular quantitative inverse relationship between particle life-

time and variance is beyond the scope of this thesis. Given that stable particles must

become unstable somehow when σϕ increases beyond σϕs , it cannot be a linear rela-

tionship for all particles, and it may depend on the particular field. It is plausible the

relationship will be different for different values of spatial dimension n. Nonetheless,

the postulate is useful in relating the variance to particle stability, thereby asserting

that quantum fields do not manifest in the stochastic regime and become progressively

more stable as the variance decreases. The postulate is considered provisional in that

it may be quantitatively derivable in a future theory.

Now assume some quantum field ψ fluctuates in S before the approximate

Poincaré symmetry dissipates, producing a virtual particle or particle pair in S. This

brings the ψ field into manifestation in Ut. Because the Poincaré symmetry is only

approximate and the diameter of Ut is finite, time translation and space translation

symmetries are at best approximate. Thus, the ψ particle is virtual.

Assuming the ψ field in some sense has observable, non-gravitational effects in

an established spacetime, it has an interaction Lagrangian which describes its coupling

with other quantum fields.4 The approximate nature of the Poincaré symmetry should

not change the particle spectrum or interactions, compared to what they are in an es-

tablished spacetime. Those other fields introduce quantum corrections into the coupling

constants, and also the mass if ψ is a massive field. In this sense, the ψ field brings into

manifestation the other quantum fields appearing in its Lagrangian. Each field brought

into manifestation by ψ has its own interaction Lagrangian, thereby causing those fields

to manifest.

Thus, the spacetime dimension d = n+1 and eventual particle spectrum are

essentially determined completely by the initial ϕ fluctuation and subsequent quantum

4There is no notion of energy at this stage, but the Lagrangian in an established spacetime nonetheless
determines what fields couple to ψ, even in an emerging spacetime.
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fluctuation, i.e., the number of independent spatial directions in which the ψ field

couples to ϕ and possibly other properties of the ψ field. The subsequent evolution will

either end in dissipation (presumably the usual case) or evolve dynamically according

to the d-dimensional version of the ϕ equation of motion, interacting in d spacetime

dimensions with the quantum fields. Hence, quantum corrections will cause the full set

of quantum fields that can appear in an established n+1 dimensional spacetime to also

manifest at the time of the initial fluctuation.

Lacking additional constraints on what fields can manifest for a given choice

of n, in principle it is possible that there can be disjoint collections of quantum fields

Q1,Q2, . . ., such that only one collection will manifest in a given occurrence of an n+1

dimensional spacetime. If ψi ∈ Qi appears in an initial fluctuation, then only the

fields of Qi will manifest if the fluctuation evolves into an established spacetime. For

example, in n = 3 the fields of the Standard Model would define one such collection Qi.
There is no reason to expect such disjoint collections of fields exist for a given n, but

the possibility can only be precluded by new constraints. No such constraints will be

considered here; for present purposes they are of peripheral interest anyway.

It is clear that in an approximate spacetime where the field quanta are all

virtual there is no sense in which interactions are perturbative. The same holds true

for interactions between the ‘true’ quantum fields and the effectively quantized ϕ —

the approximate spacetime provided by the ϕ fluctuation will be significantly affected

by the self interaction between it and the induced ϕ modes of the ‘quantum ϕ’ field.

Thus, after the initial quantum fluctuation, the collection of quantum fields and ϕ must

be treated as a strongly coupled system. Moreover, the composite quantum/ϕ field

theory cannot be separated into quantum and classical/stochastic sectors as described

in Subsect. 5.1.1 because there is no equilibrium in an approximate spacetime.

Postulate 6.3.1 asserts the quantum fields are increasingly unstable as Poincaré

symmetry becomes less exact. Presumably lifetimes of different particles of the same

field have a large variance also. Energy and momentum are at best only approximate

notions in this regime.

As long as Poincaré symmetry is approximate and energy and momentum are

somewhat ill defined, transitions from one particle type to another which are allowed by

internal symmetries (but are broken at lower energy in an established spacetime) can

presumably occur rapidly and somewhat freely. The usual dictum of quantum theory
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applies: whatever is not prohibited will occur.

6.3.3 Exponential expansion

The spacetime emergence scenario outlined below essentially proceeds by suc-

cessively reducing the mean square fluctuation in the measures of distance and time

until it is sufficiently small, where ‘sufficiently small’ presumably means the spacetime

can support persistent phenomena with a law-like character. The basic process at work

is straightforward.

From the previous subsection, when the variance σ2
ϕ is large, particle lifetimes

are small and the quantum fields are strongly coupled. Moreover, the ϕ modes induced

by the quantum fields are far out of equilibrium, both in terms of lack of equipartition

Figure 6.5

and with respect to balance between radiation and absorp-

tion by the quantum fields. In terms of the model discussed

in Subsect. 5.4.2, the lack of equilibrium corresponds to the

virtual particles radiating much more energy as ϕ waves

than they absorb. That is, absorption, represented by the

left diagram of Fig. 5.4 (repeated in Fig. 6.5) is suppressed

compared to radiation, represented in the right diagram.

Thus there is a continual transfer of energy from the quantum fields into propagating

ϕ modes.

The asymmetry between radiation and absorption of ϕ waves drives a con-

tinuous, net transfer of energy (in its approximately defined sense) from the quantum

fields to the ϕ field. The growing radiation field gradually thermalizes. This has some

important consequences.

First, the total approximate energy content of the quantum fields decreases

with time, even if, in some sense, the total energy of ϕ plus the quantum fields remains

constant. Taking the energy content of the ‘non-quantum ϕ’ field to be gravitational

energy, consider the correspondence with GR. In GR, the energy of the gravitational

field is negative and the energy of the matter fields is positive. This contrasts with the

situation above, where the energy of both the matter and gravitational fields is positive.

The two viewpoints can be reconciled by taking the energy of the ‘non-quantum ϕ’ field

to be negative by adding an appropriate negative energy offset.

Second, the net energy transfer increases the ϕ mode amplitudes, increasing
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the relative variation. (The variation along the reference curve cref used to compute the

relative variation needs to be fixed at some early time for this statement to be physically

relevant; otherwise the variation along cref would change as the energy of the ϕ field

increases.) The increased relative variation changes the measures of space and time; see

Eq. (6.20). Hence an infinitesimal volume element dx dy dz in S scales as n−3/2 so that

the total volume of S (measured, e.g., by the distance metric d) scales as n3/2.

As the volume of S increases due to net radiation by the virtual particles, the

particles will propagate in the added volume just as they did in the prior volume. The ϕ

radiation is still far out of equilibrium and the quantum fields are still strongly coupled,

so the net transfer of energy to the ϕ field with the consequent increase in n continues

as above, recursively. Thus, the volume of S expands exponentially.

Third, and also due to the increase in relative variation, the mean square fluc-

tuation of ϕ decreases in S as the relative variation increases. This is analogous to the

mean square pressure fluctuation in a container of ideal gas: as the number of particles

increases the mean square fluctuation in pressure decreases, as do the fluctuations of

other intensive variables. The decreasing mean square fluctuation is what moderates the

exponential expansion and eventually causes it to end. The smoothness of the emergent

manifold is also determined by the mean square fluctuation.

Quantitatively modeling the interplay of all these factors is likely to be some-

what complex due to the nonlinearity of the process. Additionally, the relative variation

cannot be assumed proportional to the particle content, in that there is additional non-

linearity because the propagation speed of the ϕ modes is also determined by n; see the

discussion below Eq. (6.20). Moreover, the volume of S will increase as the ϕ field on S

interacts with the vacuum at the boundary of S. Clearly the foregoing is a very rough

sketch.
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Appendix A

Hamilton-Jacobi Field Theory

As a prelude to classical field theory, consider the Lagrangian for a classi-

cal system consisting of single particle in a time-independent potential V . That is,

L(q, q̇, t) = 1
2mq̇

2 − V (q), where q(t) is the particle’s trajectory and q̇ ≡ dq/dt. The

Hamilton-Jacobi function, defined as the classical action, is, on a fixed time interval

[ti, tf ],

S(q, t) =

∫ tf

ti

L(q, q̇, t) dt . (A.1)

Hamilton’s principle δS = 0 implies the Euler-Lagrange equation,

dp

dt
− ∂L

∂q
= 0 , p ≡ ∂L

∂q̇
. (A.2)

The equation of motion immediately follows from (A.2); we could integrate it to obtain

q(t) once V (x) is specified. However, it is more useful for present purposes to identify S

in (A.1) with Hamilton’s principal function, and solve for S(q, t) via the Hamilton-Jacobi

equation:
∂S(q, t)

∂t
+H

(
q,
∂S

∂q

)
= 0 ; H(q, p) = pq̇ − L . (A.3)

The momentum p has been rewritten as ∂S/∂q, which follows from integrating the

second equality in (A.2) and using (A.1).

The Hamilton-Jacobi equation for a classical scalar field φ(x, t) involves a

straightforward generalization. The field configuration φ(x) corresponds to the coor-

dinate q of the single particle system; then q(t) ∼ φ(x, t). Thus, the Hamilton-Jacobi

function (i.e., classical action) is a functional of the field configuration and a function

of the time.
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The Lagrange density for φ in Minkowski spacetime is

L = 1
2

(
−φ̇2 + (∇iφ)2 −m2φ2

)
− V(φ) , (A.4)

where V(φ) is the potential. The H-J function is

S =

∫ tf

ti

dt

∫
dx3 L(φ, ∂µφ, t) ;

this governs the field evolution from time ti to tf . (In a more general spacetime, the

action would have explicit time dependence due to factors involving the metric in the

covariant volume element
√
−gd3x and covariant derivatives.)

Introduce functional derivatives with respect to the coordinate volume, e.g.,

δS =

∫
d3x

δS

δφ
δφ .

Fix the boundary conditions at time ti, and vary the action while remaining consistent

with the equations of motion to get the functional analogue of Eq. (A.3):

δS

δφ
=

∂L
∂φ

= π(x, t) . (A.5)

Thus, the H-J equation for a scalar field theory, corresponding to the single particle

case (A.3), is

H

(
φ,
δS

δφ
, t

)
+
∂S(φ, t)

∂t
= 0 , (A.6)

where

H(φ, π, t) =

∫
d3x

(
πφ̇− L

)
. (A.7)
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