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Abstract

BACKGROUND—Technology to restore the ability to communicate in paralyzed persons who 

cannot speak has the potential to improve autonomy and quality of life. An approach that decodes 

words and sentences directly from the cerebral cortical activity of such patients may represent an 

advancement over existing methods for assisted communication.

METHODS—We implanted a subdural, high-density, multielectrode array over the area of the 

sensorimotor cortex that controls speech in a person with anarthria (the loss of the ability to 

articulate speech) and spastic quadriparesis caused by a brain-stem stroke. Over the course of 

48 sessions, we recorded 22 hours of cortical activity while the participant attempted to say 

individual words from a vocabulary set of 50 words. We used deep-learning algorithms to create 

computational models for the detection and classification of words from patterns in the recorded 

cortical activity. We applied these computational models, as well as a natural-language model that 

yielded next-word probabilities given the preceding words in a sequence, to decode full sentences 

as the participant attempted to say them.

RESULTS—We decoded sentences from the participant’s cortical activity in real time at a median 

rate of 15.2 words per minute, with a median word error rate of 25.6%. In post hoc analyses, we 

detected 98% of the attempts by the participant to produce individual words, and we classified 

words with 47.1% accuracy using cortical signals that were stable throughout the 81-week study 

period.
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CONCLUSIONS—In a person with anarthria and spastic quadriparesis caused by a brain-stem 

stroke, words and sentences were decoded directly from cortical activity during attempted speech 

with the use of deep-learning models and a natural-language model. (Funded by Facebook and 

others; ClinicalTrials.gov number, NCT03698149.)

ANARTHRIA IS THE LOSS OF THE ABILITY to articulate speech. It can result from 

a variety of conditions, including stroke and amyotrophic lateral sclerosis.1 Patients with 

anarthria may have intact language skills and cognition, and some are able to produce 

limited oral movements and undifferentiated vocalizations when attempting to speak.2 

However, paralyzed persons may be unable to operate assistive devices because of severe 

impairment of movement. Anarthria hinders communication with family, friends, and 

caregivers, thereby reducing patient-reported quality of life.3 Advances have been made 

with typing-based brain–computer interfaces that allow speech-impaired persons to spell out 

messages by controlling a computer cursor.4–8 However, letter-by-letter selection through 

interfaces driven by neural signal recordings is slow and effortful. A more efficient and 

natural approach may be to directly decode whole words from brain areas that control 

speech. Our understanding of how the area of the sensorimotor cortex that controls 

speech orchestrates the rapid articulatory movements of the vocal tract has expanded.9–14 

Engineering efforts have used these neurobiologic findings, together with advances in 

machine learning, to show that speech can be decoded from brain activity in persons without 

speech impairments.15–19

In paralyzed persons who cannot speak, recordings of neural activity cannot be precisely 

aligned with intended speech because of the absence of speech output, which poses an 

obstacle for training computational models.20 In addition, it is unclear whether neural 

signals underlying speech control are still intact in persons who have not spoken for years 

or decades. In earlier work, a paralyzed person used an implanted, intracortical, two-channel 

microelectrode device and an audiovisual interface to generate vowel sounds and phonemes 

but not full words.21,22 To determine whether speech can be directly decoded to produce 

language from the neural activity of a person who is unable to speak, we tested real-time 

decoding of words and sentences from the cortical activity of a person with limb paralysis 

and anarthria caused by a brain-stem stroke.

METHODS

STUDY OVERVIEW

This work was performed as part of the BCI Restoration of Arm and Voice (BRAVO) study, 

which is a single-institution clinical study to evaluate the potential of electrocorticography, 

a method for recording neural activity from the cerebral cortex with the use of electrodes 

placed on the surface of the cerebral hemisphere, and custom decoding techniques to enable 

communication and mobility. An investigational device exemption for the device used in 

this study was approved by the Food and Drug Administration. As of this writing, the 

device had been implanted only in the participant described here. Because of regulatory 

and clinical considerations regarding the proper handling of the percutaneous connector, the 

participant did not have the opportunity to use the system independently for daily activities 

but underwent testing at his home.
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This work was approved by the Committee on Human Research at the University of 

California, San Francisco, and was supported in part by a research contract under 

Facebook’s Sponsored Academic Research Agreement. All the authors were involved 

in the design and execution of the clinical study; the collection, storage, analysis, and 

interpretation of the data; and the writing of the manuscript. No study hardware or data were 

transferred to any sponsor, and we did not receive any hardware or software from a sponsor 

to use in this work. All the authors vouch for the accuracy and completeness of the data 

and for the fidelity of the study to the protocol (available with the full text of this article 

at NEJM.org) and confirm that the study was conducted ethically. Informed consent was 

obtained from the participant after the reason for and nature of implantation and the training 

procedures and risks were thoroughly explained to him.

PARTICIPANT

The participant was a right-handed man who was 36 years of age at the start of the study. 

At 20 years of age, he had had an extensive pontine stroke associated with a dissection of 

the right vertebral artery, which resulted in severe spastic quadriparesis and anarthria, as 

confirmed by a speech–language pathologist and neurologists (Video 1 and Fig. S1 in the 

Supplementary Appendix, both available at NEJM.org). His cognitive function was intact, 

and he had a score of 26 on the Mini–Mental State Examination (scores range from 0 to 

30, with higher scores indicating better mental performance); because of his paralysis, it 

was not physically possible for his score to reach 30. He was able to vocalize grunts and 

moans but was unable to produce intelligible speech; eye movement was unaffected. He 

normally communicated using an assistive computer-based typing interface controlled by his 

residual head movements; his typing speed was approximately 5 correct words or 18 correct 

characters per minute (Section S1).

IMPLANT DEVICE

The neural implant used to acquire brain signals from the participant was a customized 

combination of a high-density electrocorticography electrode array (manufactured by PMT) 

and a percutaneous connector (manufactured by Blackrock Microsystems). The rectangular 

electrode array was 6.7 cm long, 3.5 cm wide, and 0.51 mm thick and consisted of 

128 flat, disk-shaped electrodes arranged in a 16-by-8 lattice formation, with a center-to-

center distance between adjacent electrodes of 4 mm. During surgical implantation, general 

anesthesia was used, and the sensorimotor cortex of the left hemisphere, as identified by 

anatomical landmarks of the central sulcus, was exposed through craniotomy. The electrode 

array was laid on the pial surface of the brain in the subdural space. The electrode coverage 

enabled sampling from multiple cortical regions that have been implicated in speech 

processing, including portions of the left precentral gyrus, postcentral gyrus, posterior 

middle frontal gyrus, and posterior inferior frontal gyrus.9,11–13 The dura was closed with 

sutures, and the cranial bone flap was replaced. The percutaneous connector was placed 

extra-cranially on the contralateral skull convexity and anchored to the cranium. This 

percutaneous connector conducts cortical signals from the implanted electrode array through 

externally accessible contacts to a detachable digital link and cable, enabling transmission 

of the acquired brain activity to a computer (Fig. S2). The participant underwent surgical 

Moses et al. Page 3

N Engl J Med. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.NEJM.org
http://www.NEJM.org


implantation of the device in February 2019 and had no complications. The procedure lasted 

approximately 3 hours. We began to collect data for this study in April 2019.

REAL-TIME ACQUISITION AND PROCESSING OF NEURAL DATA

A digital-signal processing system (NeuroPort System, Blackrock Microsystems) was used 

to acquire signals from all 128 electrodes of the implant device and transmit them to a 

computer running custom software for real-time signal analysis (Section S2 and Figs. S2 

and S3).18,23 As informed by previous research that had correlated neural activity in the 

70 to 150 Hz (high-gamma) frequency range with speech processing,9,12–14,18 we measured 

activity in the high-gamma band for each channel to use in subsequent analyses and during 

real-time decoding.

WORD AND SENTENCE TASK DESIGN

The study consisted of 50 sessions over the course of 81 weeks and took place at the 

participant’s residence or a nearby office. The participant engaged in two types of tasks: an 

isolated-word task and a sentence task (Section S3 and Fig. S4). On average, we collected 

approximately 27 minutes of neural activity during these tasks at each session. In each trial 

of each task, a target word or sentence was presented visually to the participant as text on a 

screen, and then the participant attempted to produce (say aloud) that target.

In the isolated-word task, the participant attempted to produce individual words from a set of 

50 English words. This word set contained common English words that can be used to create 

a variety of sentences, including words that are relevant to caregiving and words requested 

by the participant. In each trial, the participant was presented with one of these 50 words, 

and, after a 2-second delay, he attempted to produce that word when the text of the word on 

the screen turned green. We collected 22 hours of data from 9800 trials of the isolated-word 

task performed by the participant in the first 48 of the 50 sessions.

In the sentence task, the participant attempted to produce word sequences from a set of 

50 English sentences consisting of words from the 50-word set (Sections S4 and S5). In 

each trial, the participant was presented with a target sentence and attempted to produce 

the words in that sentence (in order) at the fastest speed he could perform comfortably. 

Throughout the trial, the word sequence decoded from neural activity was updated in real 

time and displayed as feedback to the participant. We collected data from 250 trials of the 

sentence task performed by the participant in 7 of the final 8 sessions. This task is shown in 

Video 2. A conversational variant of this task, in which the participant was presented with 

prompts and attempted to respond to them, is shown in Figure 1 and Video 1.

MODELING

We used neural activity data collected during the tasks to train, fine-tune, and evaluate 

custom models (Sections S6 and S7 and Table S1). Specifically, we created speech-detection 

and word-classification models that used deep-learning techniques to make predictions from 

the neural activity. To decode sentences from the participant’s neural activity in real time 

during the sentence task, we also used a natural-language model and a Viterbi decoder 

(Fig. 1). The speech-detection model processed each time point of neural activity during a 
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task and detected onsets and offsets of word-production attempts in real time (Section S8 

and Fig. S5). We fitted this model using neural activity data and task-timing information 

collected only during the isolated-word task.

For each attempt that was detected, the word-classification model predicted a set of word 

probabilities by processing the neural activity spanning from 1 second before to 3 seconds 

after the detected onset of attempted speech (Section S9 and Fig. S6). The predicted 

probability associated with each word in the 50-word set quantified how likely it was that 

the participant was attempting to say that word during the detected attempt. We fitted this 

model to neural data collected during the isolated-word task.

In English, certain sequences of words are more likely than others. To use this 

underlying linguistic structure, we created a natural-language model that yielded next-word 

probabilities given the previous words in a sequence (Section S10).24,25 We trained this 

model on a collection of sentences that included only words from the 50-word set; the 

sentences were obtained with the use of a custom task on a crowd-sourcing platform 

(Section S4).

The final component in the decoding approach involved the use of a custom Viterbi 

decoder, which is a type of model that determines the most likely sequence of words 

given predicted word probabilities from the word classifier and word-sequence probabilities 

from the natural-language model (Section S11 and Fig. S7).26 With the incorporation of 

the language model, the Viterbi decoder was capable of decoding more plausible sentences 

than what would result from simply stringing together the predicted words from the word 

classifier.

EVALUATIONS

To evaluate the performance of our decoding approach, we analyzed the sentences that 

were decoded in real time using two metrics: the word error rate and the number of words 

decoded per minute (Section S12). The word error rate of a decoded sentence was defined as 

the number of word errors made by the decoder divided by the number of words in the target 

sentence.

To further characterize the detection and classification of word-production attempts from 

the participant’s neural activity, we processed the collected isolated-word data with the 

speech-detection and word-classification models in off line analyses performed after the 

recording sessions had been completed (Section S13). We measured classification accuracy 

as the percentage of trials in which the word classifier correctly predicted the target word 

that the participant attempted to produce. We also measured electrode contributions as the 

size of the effect that each individual electrode had on the predictions made by the detection 

and classification models.19,27

To investigate the viability of our approach for a long-term application, we evaluated the 

stability of the acquired cortical signals over time using the isolated-word data (Section 

S14). By sampling neural data from four different date ranges spanning the 81-week study 

period, we assessed whether classification accuracy on a subset of data collected in the 
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final sessions could be improved by including data from earlier subsets as part of the 

training set for the classification model; such improvement would indicate that training data 

accumulated across months or years of recording could be used to reduce the need for 

frequent model recalibration in practical applications of our approach.

STATISTICAL ANALYSES

Results for each experimental condition are presented with 95% confidence intervals when 

appropriate (Section S15). No adjustments were made for multiple comparisons. The 

evaluation metrics (word error rate, number of words decoded per minute, and classification 

accuracy) were specified before the start of data collection. Analyses to assess the long-term 

stability of speech-detection and word-classification performance with our implant device 

were designed post hoc.

RESULTS

SENTENCE DECODING

During real-time sentence decoding, the median word error rate across 15 sentence blocks 

(each block comprised 10 trials) was 60.5% (95% confidence interval [CI], 51.4 to 67.6) 

without language modeling and 25.6% (95% CI, 17.1 to 37.1) with language modeling (Fig. 

2A, top). The lowest word error rate observed for a single sentence block was 7.0% (with 

language modeling). When chance performance was measured with the use of sentences that 

had been randomly generated by the natural-language model (Section S12), the median word 

error rate was 92.1% (95% CI, 85.7 to 97.2). Across all 150 trials, the median number of 

words decoded per minute was 15.2 with the inclusion of all decoded words and 12.5 with 

the inclusion of only correctly decoded words (with language modeling) (Fig. 2A, middle). 

In 92.0% of the trials, the number of detected words was equal to the number of words in the 

target sentence (Fig. 2A, bottom). Across all 15 sentence blocks, five speech attempts were 

erroneously detected before the first trial in the block and were excluded from real-time 

decoding and analysis (all other detected speech attempts were included). For almost all 

target sentences, the mean number of word errors decreased when the natural-language 

model was used (Fig. 2B), and in 80 of 150 trials with language modeling, sentences 

were decoded without error. Use of the natural-language model during decoding improved 

performance by correcting grammatically and semantically implausible word sequences in 

the predictions (Fig. 2C). Real-time demonstrations are shown in Videos 1 and 2.

WORD DETECTION AND CLASSIFICATION

In the offline analyses that included data from 9000 attempts to produce isolated words 

(and excluded the use of the natural-language model), the mean classification accuracy was 

47.1% with the use of the speech detector and word classifier to predict the identity of the 

target word from cortical activity. The accuracy of chance performance (without the use 

of any models) was 2%. Additional results of the isolated-word analyses are provided in 

Figures S8 and S9. A total of 98% of these word-production attempts were successfully 

detected (191 attempts were not detected), and 968 detected attempts were spurious (not 

associated with a speech attempt) (Section S8). Electrodes in the most ventral aspect of 

the ventral sensorimotor cortex contributed to word-classification performance to a greater 
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extent than electrodes in the dorsal aspect of the ventral sensorimotor cortex, whereas 

the electrodes in the dorsal aspect contributed more to speech-detection performance (Fig. 

3A). Classification accuracy was consistent across most of the target words (mean [±SD] 

classification accuracy across the 50 target words, 47.1±14.5%) (Fig. 3B).

LONG-TERM STABILITY OF ACQUIRED CORTICAL SIGNALS

The long-term stability of the speech-related cortical activity patterns recorded during 

attempts to produce isolated words showed that the speech-detection and word-classification 

models performed consistently throughout the 81-week study period without daily or weekly 

recalibration (Fig. S10). When the models were used to analyze cortical activity recorded at 

the end of the study period, classification accuracy increased when the data set used to train 

the classification models contained data recorded throughout the study period, including data 

recorded more than a year before the collection of the data used to test the models (Fig. 4).

DISCUSSION

We showed that high-density recordings of cortical activity in the speech-production area 

of the sensorimotor cortex of an anarthric and paralyzed person can be used to decode 

full words and sentences in real time. Our deep-learning models were able to use the 

participant’s neural activity to detect and classify his attempts to produce words from a 

50-word set, and we could use these models, together with language-modeling techniques, to 

decode a variety of meaningful sentences. Our models, enabled by the long-term stability of 

recordings from the implanted device, could use data accumulated throughout the 81-week 

study period to improve decoding performance when evaluating data recorded near the end 

of the study.

Previous demonstrations of word and sentence decoding from cortical neural activity 

have been conducted with participants who could speak without the need for assistive 

technology to communicate.15–19 Similar to the problem of decoding intended movements 

in someone who is paralyzed, the lack of precise time alignment between intended 

speech and neural activity poses a challenge during model training. We addressed this 

time-alignment problem with speech-detection approaches18,28,29 and word classifiers that 

used machine-learning techniques, such as model ensembling and data augmentation 

(Section S9), to increase reliability of the model to minor temporal variabilities in recorded 

signals.30,31 Decoding performance was largely driven by neural-activity patterns in the 

ventral sensorimotor cortex, a finding consistent with previous work implicating this area 

in speech production.9,12,13 This finding may inform electrode placement in future studies. 

We were also able to show the preservation of functional cortical representations of speech 

in a person who had had anarthria for more than 15 years, a finding analogous to previous 

findings of limb-related cortical sensorimotor representations in tetraplegic persons years 

after the loss of limb movement.32,33

The incorporation of language-modeling techniques in this study reduced the median word 

error rate by 35 percentage points and enabled perfect decoding in more than half the 

sentence trials. This improvement was facilitated through the use of all of the probabilistic 

information provided by the word classifier during decoding and by allowing the decoder 
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to update previously predicted words each time a new word was decoded. These results 

show the benefit of integrating linguistic information when decoding speech from neural 

recordings. Speech-decoding approaches generally become usable at word error rates below 

30%,34 which suggests that our approach may be applicable in other clinical settings.

In previously reported brain–computer interface applications, decoding models often 

require daily recalibration before deployment with a user,6,35 which can increase the 

variability of decoder performance across days and impede long-term adoption of the 

interface for real-world use.35,36 Because of the relatively high signal stability of 

electrocorticographic recordings,5,37–39 we could accumulate cortical activity acquired 

by the implanted electrodes across months of recording to train our decoding models. 

Overall, decoding performance was maintained or improved by the accumulation of large 

quantities of training data over time without daily recalibration, which suggests that high-

density electrocorticography may be suitable for long-term direct-speech neuroprosthetic 

applications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematic Overview of the Direct Speech Brain–Computer Interface.
Shown is how neural activity acquired from an investigational electrocorticography electrode 

array implanted in a clinical study participant with severe paralysis is used to directly 

decode words and sentences in real time. In a conversational demonstration, the participant 

is visually prompted with a statement or question (A) and is instructed to attempt to respond 

using words from a predefined vocabulary set of 50 words. Simultaneously, cortical signals 

are acquired from the surface of the brain through the electrode array (B) and processed 

in real time (C). The processed neural signals are analyzed sample by sample with the use 

Moses et al. Page 11

N Engl J Med. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of a speech-detection model to detect the participant’s attempts to speak (D). A classifier 

computes word probabilities (across the 50 possible words) from each detected window 

of relevant neural activity (E). A Viterbi decoding algorithm uses these probabilities in 

conjunction with word-sequence probabilities from a separately trained natural-language 

model to decode the most likely sentence given the neural activity data (F). The predicted 

sentence, which is updated each time a word is decoded, is displayed as feedback to the 

participant (G). Before real-time decoding, the models were trained with data collected as 

the participant attempted to say individual words from the 50-word set as part of a separate 

task (not depicted). This conversational demonstration is a variant of the standard sentence 

task used in this work, in that it allows the participant to compose his own unique responses 

to the prompts.
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Figure 2. Decoding a Variety of Sentences in Real Time through Neural Signal Processing and 
Language Modeling.
Panel A shows the word error rates, the numbers of words decoded per minute, and the 

decoded sentence lengths. The top plot shows the median word error rate (defined as the 

number of word errors made by the decoder divided by the number of words in the target 

sentence, with a lower rate indicating better performance) derived from the word sequences 

decoded from the participant’s cortical activity during the performance of the sentence task. 

Data points represent sentence blocks (each block comprises 10 trials); the median rate, 

as indicated by the horizontal line within a box, is shown across 15 sentence blocks. The 
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upper and lower sides of the box represent the interquartile range, and the I bars 1.5 times 

the interquartile range. Chance performance was measured by computing the word error 

rate on sentences randomly generated from the natural-language model. The middle plot 

shows the median number of words decoded per minute, as derived across all 150 trials 

(each data point represents a trial). The rates are shown for the analysis that included all 

words that were correctly or incorrectly decoded with the natural-language model and for 

the analysis that included only correctly decoded words. Each violin distribution was created 

with the use of kernel density estimation based on Scott’s rule for computing the estimator 

band-width; the thick horizontal lines represent the median number of words decoded per 

minute, and the thinner horizontal lines the range (with the exclusion of outliers that were 

more than 4 standard deviations below or above the mean, which was the case for one trial). 

In the bottom chart, the decoded sentence lengths show whether the number of detected 

words was equal to the number of words in the target sentence in each of the 150 trials. 

Panel B shows the number of word errors in the sentences decoded with or without the 

natural-language model across all trials and all 50 sentence targets. Each small vertical dash 

represents the number of word errors in a single trial (there are 3 trials per target sentence; 

marks for identical error counts are staggered horizontally for visualization purposes). Each 

dot represents the mean number of errors for that target sentence across the 3 trials. The 

histogram at the bottom shows the error counts across all 150 trials. Panel C shows seven 

target sentence examples along with the corresponding sentences decoded with and without 

the natural-language model. Correctly decoded words are shown in black and incorrect 

words in red.
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Figure 3. Distinct Neural Activity Patterns during Word-Production Attempts.
Panel A shows the participant’s brain reconstruction overlaid with the locations of the 

implanted electrodes and their contributions to the speech-detection and word-classification 

models. Plotted electrode size (area) and opacity are scaled by relative contribution 

(important electrodes appear larger and more opaque than other electrodes). Each set of 

contributions is normalized to sum to 1. For anatomical reference, the precentral gyrus is 

highlighted in light green. Panel B shows word confusion values computed with the use 

of the isolated-word data. For each target word (each row), the confusion value measures 
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how often the word classifier predicted (regardless of whether the prediction was correct) 

each of the 50 possible words (each column) while the participant was attempting to say 

that target word. The confusion value is computed as a percentage relative to the total 

number of isolated-word trials for each target word, with the values in each row summing 

to 100%. Values along the diagonal correspond to correct classifications, and off-diagonal 

values correspond to incorrect classifications. The natural-language model was not used in 

this analysis.
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Figure 4. Signal Stability and Long-Term Accumulation of Training Data to Improve Decoder 
Performance.
Each bar depicts the mean classification accuracy (the percentage of trials in which the 

target word was correctly predicted) from isolated-word data sampled from the final weeks 

of the study period (weeks 79 through 81) after speech-detection and word-classification 

models were trained on different samples of the isolated-word data from various week 

ranges. Each result was computed with the use of a 10-fold cross-validation evaluation 

approach. In this approach, the available data were partitioned into 10 equally sized, 

nonoverlapping subsets. In the first cross-validation “fold,” one of these data subsets is 

used as the testing set, and the remaining 9 are used for model training. This was repeated 

9 more times until each subset was used for testing (after training on the other subsets). 

This approach ensures that models were never evaluated on the data used during training 

(Sections S6 and S14). I bars indicate the 95% confidence interval of the mean, each 

computed across the 10 cross-validation folds. The data quantities specify the average 

amount of data used to train the word-classification models across cross-validation folds. 

Week 0 denotes the first week during which data for this study was collected, which 

occurred 9 weeks after surgical implantation of the study device. Accuracy of chance 

performance was calculated as 1 divided by the number of possible words and is indicated 

by a horizontal dashed line.
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