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Summary

We present a generalized contact computation model for arbitrarily shaped 
polyhedra to simplify the contact analysis in discontinuous deformation 
analysis. A list of generalized contact constraints can be established for 
contacting polyhedra during contact detection. Each contact constraint 
contains information for 2 contact points, unique contact plane, and related 
contact modes (open, locked, or sliding). Computational aspects of the 
generalized contact model include identification of contact positions and 
contact modes, uniform penalty formulation of generalized contact 
constraint, and uniform updating of contact modes and contact planes in the 
open‐close iteration. Compared with previous strategies, the generalized 
contact computation model has a simpler data structure and fewer memory 
requirements. Meanwhile, it simplifies the penalty formulation and facilitates 
the open‐close iteration check while producing enough accuracy. Illustrative 
examples show the ability of the method to handle the full range of 
polyhedral shapes.

1 INTRODUCTION

Correctly modeling contact interaction of discrete bodies is the key issue in 
discontinuous computation methods.1-5 Focusing on polyhedral bodies, 
resolving the contact interaction is difficult as the non‐smooth change of 
polyhedron face normal. In DEM and FDEM modeling, the common plane 
model,2 the energy‐conserving contact interaction model,6 the triangulated 
rounded bodies model,7 the polygon‐based description,8 the potential particle
model,9, 10 dilated polyhedra11, 12 and the potential function model13, 14 have 
been applied to treat contact of polyhedra. These contact models are mostly 
for granular materials such as ballast and soils, and the contact interaction 
law is based on the overlap of 2 contact bodies. However, for the 3‐
dimensional (3‐D) discontinuous deformation analysis (DDA) method,3, 4 a 
strict “no penetration” requirement leads to very small overlap during 
contact interaction. The resolution algorithms for both convex and concave 
polyhedral blocks are mostly depending on the classification of the contact 
types.15-17 The final contact constraint information can be obtained according 



to the first entrance rule or shortest exist rule.5 A 4‐type identification 
phase15-17 and the separate treating of the vertex‐to‐face model18, 19 and 
edge‐to‐edge models20-22 are used, which may complicate the data structures
and contact analysis procedure of the program. A more general contact 
model for polyhedral blocks that strictly fits the contact constraint 
requirement and the implicit solution approach is necessary. We address 3 
issues for successful contact analysis in DDA, namely: (1) detection of 
contact constraints on all potential contacting blocks; (2) penalty formulation
of contact force‐displacement function in equilibrium equations; and (3) the 
open‐close iteration (OCI) to revise the penetration/no penetration 
constraints.

Finding all contact constraints of 2 polyhedral blocks is the basic issue. The 
distance criterion and the entrance criterion15, 23 are usually applied to locate 
the contact position and contact normal. Some commonly used contact 
detection algorithms are for convex polyhedral blocks, such as the common 
plane method and its extensions,2, 24, 25 the linear programming method,26 the
potential particle method,9, 10 the approaching face method27 and the fast 
direct search method.23 Typical algorithms to detect arbitrarily shaped 
polyhedra include the direct search algorithm,15 the multi‐shell cover contact 
detection algorithm16 and the angle‐based contact detection algorithm.17 For 
most algorithm in 3‐D DDA, 4 basic types will be recorded and the 
formulation is based on vertex‐to‐face model and edge‐to‐edge model. To go
further, we found that a simple contact model that generalize the detection 
and formulation of all basic contact types for polyhedra can be established, 
as an extension of the general point‐to‐plane contact model for convex 
polyhedron.28

When formulating the contact constraints, attention has to be given to the 
choice of the correct contact points and the contact plane. Generally, there 
are 7 different types of contact between 2 polyhedra: vertex‐to‐vertex (v‐v), 
vertex‐to‐edge (v‐e), vertex‐to‐face (v‐f), cross edge‐to‐edge (cross e‐e), 
parallel edge‐to‐edge (parallel e‐e), edge‐to‐face (e‐f), and face‐to‐face (f‐f). 
All these contact types can be grouped into 3 categories: (1) contacts that 
have a unique contact plane, but with infinite number of contact point pairs, 
ie, parallel e‐e, e‐f, and f‐f contacts, as shown in Figure 1; (2) contacts 
consisting of a pair of points, but non‐unique contact plane, ie, pure v‐v and 
pure v‐e contacts, as shown in Figure 2C,D; and (3) contacts types that have 
a defined contact point pair and a definite contact plane, ie, v‐f, cross e‐e 
and v‐v and v‐e that belong to e‐f or f‐f, as shown in Figure 2A,B. In our 
approach, all these contact types are generalized into a single contact 
computation model. Specifically, a list of contact constraints can be 
established for 2 polyhedral blocks. Each constraint then provides the 
complete information for the formulation of the equilibrium equation: 
coordinates of the 2 contact points, the contact plane (normal direction and 
tangential direction), and the contact mode (open, locked, or sliding). The 
concept of “contact mode” is used to describe the penetration/no 



penetration constraint. Open mode represents no penetration, while locked 
and sliding modes represent penetration. Methods to determine the initial 
contact mode for contact analysis of 3‐D DDA were rarely discussed. Based 
on the complete constraint model, strategies to determine contact mode and
related formulation in the step‐wise discontinuous computation are 
proposed.

Figure 1

Contact types that include infinite contact point pairs: A, face‐to‐face type; B, edge‐to‐face type; C, 
parallel edge‐to‐edge type



Figure 2

Four basic contact types: A, vertex‐to‐face type; B, crossing edge‐to‐edge type; C, vertex‐to‐edge type;
D, vertex‐to‐vertex type 

Correct determination of the penetration/no penetration contact mode is 
very important in solving contact of a discrete block system. The OCI is 
applied in DDA to locate all closed entrances at the end of each computation 
step. In details, 2 requirements should be satisfied: (1) the penalty constraint
should be applied for contact pair from open to close; (2) any penalty 
function should be removed for contact pair from close to open. The final 
contact mode in each time step is determined by the criteria in OCI, which is 
limited in tension and limited in penetration at each first entrance or shortest
exit position,5 along with the friction law to separate the locked and sliding 
modes. Based on the generalized contact model, the OCI process can be 
implemented more conveniently.

To this end, we first present the general contact computation model with 
particular attention on the choice of contact points, contact planes, and 
contact modes. Then, the general contact constraint model and its 
formulation are shown and compared with other formulations. Next, the 
execution of OCI is discussed in detail, potential issues that may affect the 
accuracy of the contact analysis are discussed, and related control methods 
are presented. Finally, examples are provided to illustrate the effectiveness 
of the generalized contact analysis model.

2 GENERAL CONTACT CONSTRAINT MODEL

Contact computation of DDA is achieved by applying contact constraints, ie, 
no penetration in normal direction, Coulomb friction law in shear direction, 
on all contact positions. According to Shi,5 contact of 2 polyhedral can be 
represented by a list of contact covers which define unique contact positions 



and contact planes. Each contact cover corresponds to a contact type and 
provides geometrical information for contact constraints to formulate the 
contact equations. Then, the first entrance rule is used to locate the contact 
position when 2 blocks contact from open to closed. Meanwhile, the shortest 
exit rule is used to locate the contact position when 2 blocks already contact.
The choices of contact points and contact planes for all contact types 
between 2 polyhedra are discussed here based on the 3 categories already 
introduced. For type (a) contacts with infinite contact points, the approach is 
to either integrate over the area or to use a set of finite points that represent
the contact area. Most DDA algorithms use the latter scheme, in which the 
boundary vertices of the overlapping polygon area are chosen as contact 
positions to apply the contact constraints. As shown in Figure 1, the parallel 
edge‐to‐edge, edge‐to‐face, and face‐to‐face contact types are thus 
decomposed into combinations of the previous 4 types (v‐v, v‐e, v‐f, and 
cross e‐e).29, 30 For type (b) contacts with indeterminate contact plane, 
inscribed sphere scheme,30 potential particle scheme,9 common plane,2 or 
shortest exit scheme3can be used to choose the appropriate contact plane. 
The contact plane may change suddenly for polyhedron when the contact 
type changes from v‐v or v‐e to v‐f or e‐e. The inscribed sphere scheme30 and
potential particle scheme9 allow a smooth change of contact plane for all 
contact types of convex polyhedra including type (b), while the accuracy is 
controlled by the size of the inscribed sphere or the parameters that 
determine the curvature of the particle faces. The first entrance approach 
and shortest exit approach were proposed by Shi5 to define the contact 
position. The shortest exit is extended to find the contact plane for both v‐v 
and v‐e pair that include either convex or concave angles (or edges). For 
type (c), both the contact points and contact planes are unique.

Finally, all first entrance positions can be represented by 4 contact types 
(covers): v‐v, v‐e, v‐f, and e‐e.9-14 To simplify and generalize the 
representation of contact constraints and the formulation of contact terms in 
equilibrium equations, we represent all contact types by 2 contact points pi

0 
(xi

0,yi
0,zi

0) and pj
0 (xj

0,yj
0,pj

0) in block i and block j, respectively, a unique plane
with unit normal vector , and its contact mode: open, locked, or sliding, as 
shown in Figure 3A.



Figure 3

Generalized contact models: A, the model with 1 contact plane; B, the model with multiple potential 
contact planes

2.1 Contact points

Contact points, ie, first entrance position, are identified to apply the normal 
constraint, the tangent constraint, or frictional force. The auxiliary‐simplex 
method and vector analysis have been used to derive the formulation of DDA
for the vertex‐to‐face model18, 19 and the edge‐to‐edge model.20-22 For a 
constraint in the normal direction, the vertex and 3 points on the face are 
used to derive the normal constraint matrix for the vertex‐to‐face model; 2 
points on each edge are used to derive the normal constraint for the edge‐
to‐edge model. For constraint in shear direction (shear spring or frictional 
force), 2 closest points on a vertex‐to‐face pair or an edge‐to‐edge pair are 
used to derive the formulation. Beyabanaki et al28 proposed a point‐to‐face 
contact model to derive contact matrix for all contact types, but their 
solution was limited to convex polyhedra. Contact models using the common
plane method simplify the contact of 2 convex polyhedra to contact of 
convex polyhedra and contact plane. The reference point on the common‐
plane defines the line of action of the contact force and is taken as the 
contact location.31

In our proposed contact model, each polyhedra pair has a list of constraints. 
Each constraint is defined by one of the v‐v, v‐e, v‐f, and crossing e‐e contact
types. For each contact type, the closest points are chosen as the contact 
points if blocks do not penetrate and 2 points through which the shortest exit
is obtained to separate the penetrated blocks are chosen as the contact 
points if the blocks penetrate. Figure 2 shows the closest pair of points for 
each contact type.

For vertex‐face pairs, whether they penetrate or not, the contact points can 
be obtained by projecting the vertex on the face. One contact point is the 



vertex itself, the other is its projection point on the face. From Figure 2A, the 
projection point {pj

0} of the vertex {pi
0} on the contact face can be 

computed by

 (1)

For cross edge‐edge pair, whether they penetrate or not, the contact points 
can be obtained by calculating the closest point pair that defines a line 
perpendicular to both edges. From Figure 2B, the 2 contact points on the 
contacting edges can be computed by

 (2)

where t1 and t2 can be computed by

 (3)

For a vertex‐vertex pair in Figure 2D, the contact point pair may be: (a) the 2
vertices; (b) 1 vertex and its projection point on a face neighboring the other 
vertex; or (c) the closest point on 2 edges that neighboring the 2 vertices, 
respectively. In contact detection process, a vertex‐to‐vertex pair is usually 
detected when their distance is smaller than a tolerance. To avoid 
complicated judging and computing of 2 closest points for the vertex‐to‐
vertex pair, the 2 vertices themselves are used as contact points.

For vertex‐edge pair in Figure 2C, the contact point pair can be: (a) the 
vertex and its projection point on the edge; (b) the closest points on 2 edges 
neighboring the vertex and the edge, respectively; and (c) the vertex and its 
projection point on either face neighboring the edge. In contact detection 
process, a small distance tolerance is usually set in locating vertex‐edge pair
and method (a) is chosen to calculate the contact points.

During changes of contact modes, from open to close, from close to open, or 
from close to close, contact points change in a single computing step. In this 
sense, the representation of contact points is an explicit form that uses the 
configuration of contact points at the beginning of the time step. Revised 
approximation of contact point coordinates within the computational step 
can be obtained using vector analysis during the contact process, as is 
discussed later.

2.2 Contact planes

Contact planes are defined and distinct for the following contact types: (1) v‐
f, (2) cross e‐e, and (3) v‐v and v‐e that belong to e‐f or f‐f. However, for pure



v‐v, pure v‐e contact a unique contact plane does not exist, as already 
mentioned. For 2 convex polyhedra, the common plane method uses a 
bisection plane to be the contact plane through which 2 nearest vertices 
have the smallest gap distance.2 To use the common plane algorithm, 
penetrating polyhedra should be separated along a certain path. Cundall2 
proposed an iterative method to find the contact plane, while Nezami et al 
find it using the fast common plane identification process24 or shortest link 
searching procedure.25 Beyabanaki et al28 use a mid‐plane for the v‐v or v‐e 
pairs as the contact plane, the normal of which is computed by taking an 
average of faces neighboring the vertex.

Normals of the contact plane may change abruptly when the contact type 
changes from v‐v or v‐e to v‐f or cross e‐e and vice versa. In this case, the 
block penetration should be carefully controlled. The inscribed sphere 
scheme30 and the potential particle scheme9 can be used to obtain a smooth 
change of contact normal for convex blocks. The first entrance approach and
shortest exit approach proposed by Shi5 are adopted here to deal with both 
convex and concave blocks.

2.2.1 Shortest exit strategy

For convex v‐v and v‐e contact pair, the shortest exit scheme is used as 
follows: (1) Locate all potential contact planes from vertex‐face pairs and 
edge‐edge pairs that neighbor the contacting vertex or contacting edge 
using no‐overlap check15, 17; (2) Choose the contact plane with shortest 
normal penetration for the contact points. For each contact plane, the 
separation distance is computed as Equation 4.

 (4)

Then, the contact plane with the largest separation distance value is chosen. 
Through this strategy, physically implausible large normal penetration can 
be avoided when contact plane abruptly changes for v‐v and v‐e pairs or 
contact type switches between v‐v, v‐e, and v‐f, cross e‐e. As shown in 
Figure 3B, 3 potential contact planes are already established, and a unique 
plane with the shortest normal penetration distance will be chosen as the 
contact plane.

The contact plane algorithm then consists of 2 steps: (1) initial coordinates of
the contact points are used in determining the contact plane for the first 
cycle; and (2) updated coordinates of the contact points are used for 
subsequent cycles.

2.2.2 Concave angles and concave edges

The scheme for choosing a contact plane using the shortest exit approach 
has to be modified for concave vertex and concave edges. Zhang et al15 and 
Zheng et al17 mention using multi‐contact plane scheme for contacts that 
include concave angles and concave edges.



Here, we propose a decomposition strategy for managing concave objects. 
To prevent penetration of concave objects, multiple contact planes are 
established based on the decomposition of the concave object. The strategy 
is as follows: (1) Obtain all potential contact planes from angle‐to‐face pair 
and convex edge to convex edge pair by checking for physical overlap while 
making sure that all potential contact planes point from block j to block i; 
and (2) Check the convexity of the angle bounded by all potential contact 
planes. If it is a convex angle, use the single contact plane scheme; 
otherwise, decompose this angle into the union of several convex angles, 
and choose 1 contact plane for each sub‐convex angle.

An example of determining contact plane for vertex‐to‐edge contact that 
includes a concave edge is shown in Figure 4. By checking for overlap, 2 
potential contact planes forming a concave angle are found. This concave 
angle is then decomposed into 2 half‐plane angles, and both plane 1 and 
plane 2 are regarded as contact planes.

Figure 4

A vertex to concave edge model with multiple contact planes

Another example of determining the contact plane for vertex‐to‐vertex 
contact including concave angle is shown in Figure 5. By checking for overlap
for v‐f and e‐e pair, 4 contact planes forming a concave angle are found. This
angle can be decomposed into 2 convex angles, sub‐angle 1 (plane 1 and 
plane 2) and sub‐angle 2 (plane 3 and plane 4). During computation, 1 
contact plane is chosen for each sub‐angle, according to the shortest exit 
scheme.



Figure 5

A vertex to concave vertex model with multiple contact planes

2.3 Tangent direction

When sliding between 2 contact points occurs on the contact plane, its 
direction is unknown prior to the computation of current step. As the 
formulation of the frictional force term needs an explicit representation of 
frictional force vector, the relative sliding direction needs be assumed. An 
accurate approximation of the tangent sliding direction is important to 
guarantee correct friction force computation. Jiang and Yeung19 proposed an 
iterative procedure for determining the relative sliding direction along with 
OCI, while Huang et al.32presented an algorithm to compute the direction of 
frictional force for contacting spheres.

We provide 3 ways to calculate the tangent direction: (1) using the initial 
velocity of contact points; (2) using the displacement of contact points in the 
previous time step; and (3) using the displacement of contact points in the 
previous iteration of the OCI process.

For computation of the first cycle in a time step, (1) the initial velocity of 
current time step or (2) the relative displacement in previous time step can 
be used to compute the initial tangent direction.

The initial velocity of the 2 contact points can be computed as follows:

 (5)

where Ti(xi,yi,zi) represents transfer matrix defined in Equation 11, and {voi} 
represents initial velocity term (translation, rotation, strain rate) of the block 
centroid. Assuming  and are initial velocities of the 2 contact points pi and pj, 
respectively, and  is the unit normal vector of the contact plane, the relative 
sliding direction can be computed by

 (6)



Replacing  and  by the displacement  and  of point i and j in 
the previous time step, the tangent direction can be obtained using the 
displacement in the previous step.

 (7)

Equation 7 will be used only if the output tangent sliding vector in Equation 6
is smaller than a tolerance. For example, for static analysis that the initial 
velocity is set to zero, Equation 7is used.

For computation of later cycles in the time step, the tangent direction can be

updated in OCI judgment. Using the displacement  and  of point i and 
pint j in the previous iteration, the tangent direction can be updated by

 (8)

2.4 Contact mode

Contact modes refer to 1 of the 3 modes: open, locked, and sliding, for each 
contact pair. At each time step, the contact modes must converge to a single
mode. In general, there are 3 options to determine the contact modes: (1) In 
the initial approximation by using the normal penetration distance dn

0 and 
relative tangential velocity of the contact pair; (2) By inheriting the closed 
contact modes from the same contact pair in the previous time step; and (3) 
By testing against the criteria in the OCI.

If the contact pair is first detected in the current step, method (1) is applied 
to make an initial assumption, using initial normal penetration distance dn

0, 
the initial velocity {vi

0} and {vj
0} of point i and point j, initial tangential 

direction vector {vt
0}, and time step size Δt. Table 1 shows the criteria for 

initial assumption of contact mode.



If dn
0 and the same closed contact pair already exist in the contact list from 

the previous time step, the same closed modes are used for that contact 
type in the current time step, ie, method (2).

In method (3), the contact mode is updated in the OCI process. The 
determination of the mode of contact is based on the computed 
displacement vector {ri

*} and {rj
*} of contact points i and j in the current 

cycle, where dn
* and {vt

*} are the normal penetration distance and the 
tangential sliding direction vector obtained in previous OCI cycle. The criteria
are shown in Table 2.

3 CONTACT FORMULATION

The main assumption during the formulation of contact submatrices and 
contact force vectors is that the unit normal vector of the contact plane 
remains constant during the time step. Based on contact modes, 
formulations of normal spring constraint, tangential spring constraint, and 
frictional force vectors are derived next, and this formulation is then 
compared with that obtained using the determinant form by Wu.18

3.1 Basic assumption

Adopting a first‐order approximation of block displacement function in each 
step and assuming the blocks to be linear elastic hawse have 12 degrees of 
freedom, which can be represented as

 (9)

where u,v,w represent the translation of the block centroid along 3 axes, 
rx,ry,rz represent the rotation of the block along 3 Cartesian axes, and εx, εy, 
εz, γyz, γzx, γxy represent the normal and shear strain of the block.

The displacement of a point (x,y,z) in a block in 1 step can be represented by

 (10)

where

 (11)

and

 (12)



x0, y0, z0 represent the coordinate of block centroid.

An energy function can be established by considering the elastic deformation
energy, inertia potential energy, contact energy, and potential energy of 
loadings and constraints. Then, by minimizing the total potential energy, the 
global equilibrium equation can be established in the following form

 (13)

where {Di} and {Fi} are 12 × 1 vectors that represent the displacement 
unknowns and generalized force vectors for block i, [kii] is a 6 × 6 matrix that
represents the contribution of elastic deformation, inertial force, and some 
other terms to block i, [Kij] is a 6 × 6 matrix represents the contact of block i 
and block j. Detailed formulation of submatrices can be found in Shi.4

3.2 Geometry representation of the contact model

The contact matrix is formulated based on the geometrical model of the 
contact constraint. Assume coordinates of the contact points i and j at the 
beginning of the current time step are {pi

0} = {xi
0,yi

0,zi
0}T and {pj

0} = 
{xj

0,yj
0,pj

0}T, the unit normal vector of the contact plane and unit vector of 
tangential sliding direction at the beginning of the time step are {vn

0} = 
{nx

0,ny
0,nz

0}T and {vt
0} = {tx

0,ty
0,tz

0}T, displacements of contact point i and j 
in current computation cycle are{ri} = {rix,riy,riz}T, {rj} = {rjx,rjy,rjz}T, the 
geometrical relationship in contact process can be established.

Relative displacement of contact points pi and pj in 1 step is

 (14)

where

 (15)

The value of total relative displacement is

 (16)

Relative displacement in normal direction is

 (17)

Assume the tangential direction is known in advance, relative displacement 
in tangential direction is

 (18)



If the tangential direction is unknown in advance, the relative displacement 
in tangential direction can be represented using normal displacement and 
total displacement

(19)

3.3 Formulation of normal constraint

The normal penetration distance at the beginning of the time step is

 (20)

The normal penetration distance at the end of the time step is

 (21)

The potential energy of normal contact spring is

 (22)

where

 (23)

The first order variation of potential energy toward {di} or {dj} contributes 
the force vector term, while the second‐order variation of potential energy 
contributes the matrix term. Then, contribution of this contact pair to global 
equation is



 (24)

3.4 Formulation of tangent locked constraint

The tangential direction is usually unknown in advance. The relative 
tangential displacement of a contact pair can be computed using the total 
relative displacement and relative displacement in normal direction.

The previous contact modes may be open, sliding, or locked. If the locked 
contact mode is inherited from the previous time step, an accumulated 
tangential displacement may exist. If this accumulated tangential 
displacement term cannot be omitted, 2 strategies can be used to eliminate 
these errors. One scheme is to use the first locked contact points as the 
contact points for this pair. Then, information about the first locked contact 
points should always be kept and their coordinates should be updated at 
each step before the mode change. The other scheme is to store the 
accumulated displacement vector since the first locked mode is established.

The accumulated tangential displacement for locked contact type is taken 
into consideration by extending Equation 14 to

 (25)

where {rt
a} represent the accumulated displacement for this locked contact 

pair. Then, the total relative tangential displacement at the end of the time 
step is

(26)

where

 (27)

The potential energy of tangential contact spring is



 (28)

Contribution to the global equation

 (29)

3.5 Formulation of tangent slide constraint

To keep the symmetric, positive define feature of the global matrix in 
equilibrium equation, an explicit representation form of friction force is used,
with a priori assumed sliding direction at beginning of the time step.

The magnitude of friction force is

 (30)

The consumed energy due to friction force is

 (31)

The contribution to global equation is

 (32)



where dn
* for the first computation cycle in the OCI is dn

0, and dn
* for the 

subsequent cycle is dn
1 computed in the previous iteration cycle. {vt

*} for the
first iteration cycle is {vt

0}, and {vt
*} for subsequent iteration cycle is {vt

1} 
computed in the previous iteration.

3.6 Comparison to other formulations

In addition to the formulation model that is based on 2 closest points and 
contact plane,28other formulations have been proposed based on vertex‐to‐
face contact18, 19 and edge‐edge contact.20-22 A major difference in the contact
models is the representation of normal penetration distance.

Wu18 used a determinant to represent the normal penetration distance for 
vertex‐to‐face contact, which can be given exactly by

 (33)

Then, omitting the second‐order and third‐order parts, Δ can be represented 
by

 
(34)

And A can be represented by

 (35)

The normal distance at the end of current time step can be represented in a 
simple form.

 (36)

As unit normal vector of the contact plane can be computed using 3 points 
on the face,



 (37)

Comparing formula 21 and 36, we found the following equation

(38)

(39)

(40)

The 2 formulations given by Equations 21 and 36 produce the same 
translation and rotation terms for vertex‐to‐face contact.

4 IMPLEMENTATION IN DDA

4.1 The proposed procedure

DDA is a step‐based computation method for dynamic and static problems. 
The implementation of the proposed contact analysis model in DDA 
procedure is shown in Figure 6. At the beginning of each step, the contact 
detection algorithm is executed to find the 4 basic contact types, then the 
contact constraint list can be established by identifying the contact point, 
contact normal direction, tangential direction, and the contact mode. Then, 
the contact terms are implemented into the equilibrium equation. The 
contact mode of all contact pairs is verified in the open‐close check. After the
convergence of the contact mode, the displacement, velocity, stress, strain, 
and other terms are updated for the next step.



Figure 6

Implementation of the generalized contact analysis procedure in DDA framework

4.2 Data structure for contact list

For traditional algorithms that detect contact with 4 basic types and 
formulate the penalty function with vertex‐to‐face and edge‐to‐edge types, 
the data structure is usually in one of the following formats: (1) based on a 
list with lots of pointers that point to the basic elements (vertices, edges, 
faces) in blocks; (2) based on a list that save lots of geometrical data. For 
method 1, the extensive usage of pointers in a program tends to be less 
robust, especially for parallel computation models. For method 2, at least 



coordinates of 4 points should be used for traditional v‐f and cross e‐e 
penalty formulation; For v‐v or v‐e types to be identified as v‐f or cross e‐e 
types, a list of 4‐point pairs should be stored for the formulation. By contrast,
the generalized contact analysis model maintains a list of class that contains 
the coordinates of 2 contact points, the vectors of the contact normal and 
contact tangential directions, an integer for contact mode, and a vector list 
for potential contact normal directions for special cases. The data structure 
and memory requirement for basic elements of the contact list are shown in 
Figure 7. Only some integer, double, and pointer data are stored during 
contact analysis. The vector list is only activated when pure v‐v or pure v‐e 
type is detected. The data structure based on the generalized contact model 
is simpler and less memory‐intensive compared with algorithms that store 4 
basic types and formulate contact constraints based on v‐f and cross e‐e 
types. Meanwhile, it makes the program more robust and facilitates the OCI 
check.

Figure 7

The data structure for basic elements in the contact list

4.3 Revision in open‐close iteration

DDA uses an OCI process to update contact modes until reaching the 
convergence of penetration/no penetration constraints. The criteria for 
judging the contact modes were already presented in Table 2. A flowchart to 
exhibit the OCI process is presented in Figure 8. By using the proposed 
contact computation model, only coordinates of the 2 contact points of each 
contact constraint need to be updated in the OCI. Then, the total, normal, 
and tangential displacements can be updated to determine the new contact 
mode. In the current version, only the mode transfer between open and 
closed (locked, sliding) status is checked to fulfill the OCI convergence.



Figure 8

The open‐close iteration process

Additional operations can also be executed during the OCI to increase the 
computation accuracy, such as (1) using the newly computed coordinates of 
contact points and the shortest exit scheme to update the contact plane for 
v‐v and v‐e pair that have multiple potential contact planes, (2) using 
relative displacement to update the coordinates of contact points for contact 
pairs from open to close, and (3) using the computed displacement to update
tangent sliding vector (friction force direction) and normal penetration 
distance for computing the friction force.

5 POTENTIAL ISSUES IN CONTACT ANALYSIS

Considering the potential change in contact types in the contact analysis of 
discrete block systems, the identification algorithm should be robust enough 
to deal with the change of contact points and contact plane during the 
change of contact types. The formulation of the contact constraint should 
also be accurate enough to satisfy the convergence of OCI.



5.1 Revised contact location

In Section 2, we presented algorithms to calculate contact points for the 
generalized model. However, the contact points need revision when the 
contact mode changes from open to close, to make the formulation more 
accurate. Zhang et al22 presented an iterative method to compute the first 
entrance point in order to make the representation more accurate. Here, we 
present a vector analysis method to revise the contact points based on the 
vertex‐to‐face pair and the edge‐to‐edge pair in the OCI.

For vertex‐to‐face contact model shown in Figure 2A, assuming {pi} is the 
vertex from block i, {pj} is the projection point of {pi} on the contact face 
from block j, contact point {pj} can be revised to the penetrating point on 
the face.

The relative displacement of the contact point can be represented by

 (41)

Assuming the relative displacement changes linearly, a linear approximation 
of the penetration point {pj

*} can be represented by

 (42)

where {Δr*} represents the relative displacement of the contact points, 
{Δrn

*} represents the relative displacement along normal direction, and t can
be computed by

 (43)

where dn
0 represents the normal distance before penetration, and dn

* 
represents the penetration distance in the current computing cycle.

For edge‐to‐edge contact type shown in Figure 2B, the relative displacement 
of 2 contact points can be represented in the following form,

 (44)

where {e1} and {e2} represent unit vectors along the contact edges p1p2 and
p3p4, respectively. Parameters t1

* and t2
* can be obtained from Equation 45:

 (45)

Using the linear displacement assumption, the revised contact points on 2 
edges can be represented by



 (46)

where t* can be computed using Equation 43.

It should be mentioned that when the contact points are revised in OCI with 
the contact mode changing from open to closed, the term {Δrm} in Equation 
25 should be replaced by the Equation 47:

 (47)

5.2 Error due to rotation of contact plane

An error in normal penetration may appear in consecutive step, when 
contact plane rotates and sliding occurs. This error is mainly due to the 
assumption that the normal vector of the contact plane is constant during 
the computation.

Figure 9 shows a section along contact sliding direction. Assuming the 
rotation angle of contact plane in this section is θ, the relative displacement 
is d, and the displacement errors in normal direction dne and tangent 
direction dte can be estimated as:

 (48)

 (49)

Figure 9

A schematic diagram for analysis of contact plane rotation

θ is set to 1 to 3° in computation, and in the case of sliding, α is usually 
smaller than 45°, which is related to the ratio of tangent sliding distance and 
normal penetration distance. In sliding cases, dte < dne < d is usually 
satisfied. Large dne may cause unrealistic initial contact force that leads to 
irrational movement of the contacting blocks. To control the error caused by 
using constant normal vector in contact formulation, the displacement and 
block rotation angle should be controlled by a tolerance, and very large 



penalty parameters should be avoided. In the test examples presented 
herein, θ is set 1 to 3°, and the displacement d is controlled by Equation 50:

 (50)

where lemin represents the minimum edge length of blocks from the block 
system, and η is a coefficient that is set 0.1 to 1.

6 ILLUSTRATIVE EXAMPLES

The generalized contact model is implemented into our 3‐D DDA program, 
and 3 typical examples are tested to verify the model.

6.1 Wedge sliding

Wedge sliding is a typical failure mode in rock slope engineering. In this 
example, the wedge block sliding case is modeled to show contact model 
representation and to test the accuracy of the computation model for 
concave blocks. A wedge block is generated by considering 2 joints (joint 1: 
dip = 50°, dip direction = 110°; joint 2: dip = 55°, dip direction = 240°). The 
computation parameters are shown in Table 3.

Without enough cohesion and friction angle value, the wedge block will slide 
along the base block. The sliding process without cohesion or friction is 
shown in Figure 10. The sliding velocity is recorded with unit m/s. The 
contact information for the initial model is listed in Table 4. Six contact 
constraints are established for the 4 contact positions as shown in Figure 11. 
The formation of the contact constraints is according to the identification rule
in chapter 2. Based on the generalized model, we only need to record and 
update the coordinate of 2 points in contact analysis, while the contact 
normal direction keeps constant. Tracking of 4 points in vertex‐to‐face and 
edge‐to‐edge model is avoided.



Figure 10

A wedge sliding model: A, t = 0 s, step = 0; B, t = 0.5 s, step = 600; C, t = 1 s, step = 2000; D, t = 1.5 
s, step = 4000; E, t = 2 s, step = 7400



Figure 11

Geometrical details of the wedge block example

Figure 12



A block toppling model: A, t = 0 s, step = 0; B, t = 0.365 s, step = 1000; C, t = 0.761 s, step = 2000; 
D, t = 1.520 s, step = 3000; E, t = 2.003 s, step = 4000; F, t = 2.546 s, step = 5000

Considering friction angle only, an analytical solution of the factor of safety 
for the wedge block case can be computed by Equation 51:

 (51)

The friction angles for the 2 joints are set at 40°, and the Fs is 2.198 
according to Equation 51. In 3‐D DDA, a bisection method is used to trace 
the critical friction angle φr at which sliding of all contact pair between the 
wedge and base block starts. The factor of safety computed using DDA is 
given by

 (52)

where φ is the initial friction angle, and φr is the reduced friction angle. The 
critical friction angle given by DDA is around 21.25, and related Fs is 2.158.

6.2 Toppling

Toppling involves rotation of blocks of rock about a fixed base. In this 
example, a simple block toppling model is built to verify the validity of 
contact computation model. In this model, the slope angle is set at 30°. 
There are 6 blocks in total, with dimensions 3 m × 1.5 m × 4 m. Friction 
angle between the blocks and the surface is set to 40°, while the friction 
angle between blocks is set to 15°. Other physical parameters are shown in 
Table 3. The toppling process is shown in Figure 12, and block velocity is 
exhibited with the unit m/s. This simulation result shows the generalized 
contact model can treat rotating block correctly.

6.3 Failure of a block system

A model of block system is created by cutting a hexahedral region with 3 
sets of joints. Dip, dip direction, and friction angle for the 3 joints are 
summarized in Table 5. The overall dimensions of the hexahedral region are 
10 m × 10 m × 10 m. A total of 18 blocks are generated during the cutting 
process and the friction angle for all joints is set to zero in order follow the 
progression of the block movements under the influence of gravity. The 
computation parameters are shown in Table 3. The velocity of each block is 
recorded with the unit m/s, as shown in Figure 13. This simulation shows the 
potential of the proposed contact computation model for treating complex 
polyhedral blocks.



Figure 13

Failure process of a block system: A, t = 0 s, step = 0; B, t = 0.45 s, step = 1000; C, t = 0.67 s, step = 
2000; D, t = 0.8 s, step = 3000; E, t = 0.925 s, step = 4000; F, t = 1.05 s, step = 5000

7 DISCUSSIONS AND CONCLUSIONS

We present a generalized contact computation model for arbitrary 
polyhedron in 3‐D DDA. A list of contact constraints can be established by 
identification of 4 basic contact types (v‐v, v‐e, v‐f, and cross e‐e) for 
arbitrary polyhedron. Each constraint contains 2 contact points, unique 
contact plane, and unique contact mode. The following advantages make 
this generalized model promising in 3‐D DDA: (1) The generalized contact 
constraints result in a simpler and less memory‐intensive data structure 
compared with previous algorithms that record 4 basic types in contact list; 
(2) The penalty formulation used in this generalized contact constraint model



avoids the necessity of separate treatment of the vertex‐to‐face and edge‐to‐
edge contacts; (3) The initial assumption and updated estimate of the 
contact mode are all based on 2 contact points and a constant contact plane,
which eliminates the number of points to be computed in the OCI; and (4) By
considering multiple contact planes, this generalized model extends the 
point‐to‐plane model presented by Beyabanaki et al28 to both convex and 
concave polyhedral shapes. Additionally, to maintain the accuracy and 
stability of the contact analysis for blocks with linear displacement 
assumption, the displacement of the block system in each step should be 
carefully controlled, and the strategy in chapter 5.2 can be used as a 
reference.
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