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Abstract 

 Myelodysplastic syndromes (MDS) are heterogeneous myeloid disorders with 

prevalent mutations in several splicing factors, but the splicing programs linked to 

specific mutations or MDS in general have remained to be systematically defined. We 

applied RASL-seq, a sensitive and cost-effective platform, to interrogate 5502 annotated 

splicing events in 169 samples from MDS patients or healthy individuals. We found that 

splicing signatures associated with normal hematopoietic lineages are largely related to 

cell signaling and differentiation programs whereas MDS-linked signatures are primarily 

involved in cell cycle control and DNA damage responses. Despite the shared roles of 

affected splicing factors in 3’ splice site definition, mutations in U2AF1, SRSF2, and 

SF3B1 affect divergent splicing programs, and interestingly, the affected genes fall into 

converging cancer-related pathways. A risk score derived from 11 splicing events appears 

independently associated with MDS prognosis and AML transformation, suggesting 

potential clinical relevance of altered splicing patterns in MDS. 
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Introduction 

 Myelodysplastic syndromes (MDS) are a heterogeneous group of chronic 

hematological malignancies defined by clonal hematopoiesis, impaired differentiation, 

peripheral-blood cytopenias, and a risk of progression to acute myeloid leukemia (AML) 

(Swerdlow et al. 2008). In clinical practice, the disease-related criteria used to evaluate 

patients with MDS include those described in the Revised International Prognostic 

Scoring System (IPSS-R) (Greenberg et al. 2012), the WHO classification-based 

Prognostic Scoring System (WPSS) (Malcovati et al. 2007), and M.D. Anderson Cancer 

Center (MDACC) risk stratification (Garcia-Manero et al. 2008). They are all largely 

reliant on morphological features that require visual examination of bone marrow aspirate 

or biopsy, which is known to have significant inter-observer variability even among 

expert hematopathologists (Font et al. 2013).  Molecularly based diagnostic and 

prognostic criteria might provide better biomarkers than dysplasia since they likely 

reflect the underlying biology of the disease. To that end, several groups have examined 

the utility of somatic mutations as relevant clinical criteria, which appear to work well for 

myeloproliferative neoplasms with highly recurrent mutations and a high degree of 

specificity in appropriate clinical contexts. This is, however, not the case for 

myelodysplastic syndromes, which are nearly as heterogeneous at the genetic level as 

they are clinically (Bejar et al. 2011; Papaemmanuil et al. 2013; Haferlach et al. 2014). 

Alternative biomarkers that capture disease-related biological features may therefore 

improve our ability to diagnose MDS and predict outcomes in these disorders. 

 Gene expression profiling characterizes molecular processes downstream of 

somatic mutations. As such, it may integrate the effects of diverse somatic and epigenetic 
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lesions into common phenotypic patterns. Gene expression profiling has been 

successfully used to identify potential biomarkers for diagnosis and prognosis of various 

cancers, including acute myeloid leukemia (AML) (Payton et al. 2009), MDS (Pellagatti 

et al. 2013), and breast cancer (van 't Veer et al. 2002). However, results from profiling 

the same diseases, like breast cancer, by different groups are sometime inconsistent with 

one another (Koscielny 2010). Furthermore, gene expression profiling alone is 

insufficient to capture additional complexities of regulated gene expression under disease 

conditions, such as alternative isoform utilization (Feero et al. 2010).  

 Alternative splicing (AS) of pre-mRNA is known to play key roles in generating 

genomic and proteomic diversity and complexity, as >90% of multi-exon pre-mRNAs 

undergo AS (Wang et al. 2008; Pan et al. 2008), with many alternatively spliced gene 

products exhibiting distinct or even opposing biological functions (Tress et al. 2007). 

Recent analysis of a large splicing array dataset suggests that splicing signatures may be 

more effective than gene expression profiles for the characterization of cancers (Zhang et 

al. 2013). Several unique mRNA isoforms have been linked to specific cancer types, 

including breast (Eswaran et al. 2013), ovarian (Venables et al. 2009), lung (Misquitta-

Ali et al. 2011), pancreatic (Omenn et al. 2010), head and neck (Li et al. 2014), digestive 

tract (Miura et al. 2011), renal (Malouf et al. 2014), gastric malignancies (Liu et al. 

2014), neuroblastoma (Chen et al. 2015), and AML (Adamia et al. 2014). These 

alternatively spliced transcripts, reflecting an independent layer and critical component of 

regulated gene expression, may thus serve as a new class of biomarkers. 

 Biological differences in gene expression and alternative splicing are particularly 

relevant to MDS, given the high frequency of somatic splicing factor mutations in these 
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disorders. About two-thirds of patients with MDS carry a mutation in a splicing regulator, 

such as U2AF1, SRSF2, SF3B1, and ZRSR2 (Graubert et al. 2012; Papaemmanuil et al. 

2011; Makishima et al. 2012; Thol et al. 2012). Nearly all of the splicing factors mutated 

in MDS characterized to date are associated with U2 small nuclear ribonucleoprotien 

particle (snRNP) of the spliceosome, which defines functional 3’ splice sites in 

mammalian genomes (Sharp and Burge 1997).  The observation that splicing factor 

mutations in MDS are largely mutually exclusive suggests that these mutant splicing 

factors may induce a shared set of mRNA isoforms that may contribute to the 

development and progression of MDS. Several studies utilizing deep sequencing 

examined the splicing patterns associated with these mutations (Przychodzen et al. 2013; 

Dolatshad et al. 2014). However, it has been technically challenging to obtain 

quantitative data from the large number of patient samples to deduce potential disease 

mechanisms imposed by specific genetic lesions.  

 Here we address this challenge by selectively interrogating a large cohort 

(n=5502) of annotated alternative splicing events in hematopoietic cells.  We profiled 115 

MDS and 54 healthy blood and bone marrow samples using RNA-mediated 

oligonucleotide Annealing, Selection, and Ligation coupled with Next-Generation 

sequencing (RASL-seq) (Li et al. 2012). Compared to transcriptome analysis by standard 

RNA-seq, the RASL-seq platform is designed to measure specific and quantitative 

information on potential isoform switches in biological samples with high sensitivity and 

cost-effectiveness. While this technology does not permit de novo discovery of novel 

RNA processing events, it generates robust data for global comparison and 

characterization of splicing programs in different cell types or in response to specific 
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perturbations (Zhou et al. 2012b; Sun et al. 2015). With this approach, we examined 

unique splicing signatures associated with normal hematopoietic cell lineages as well as 

with MDS; established splicing patterns defined by different splicing factors, and 

explored how specific sets of splicing events might serve as biomarkers for MDS 

diagnosis and prognosis. 

 

Results 

Lineage commitment and disease status defined by alternative splicing 

 We previously determined the mutation status of SRSF2, U2AF1, SF3B1, and 

ZRSR1 in a large cohort of MDS patients (Thol et al. 2012). Since this initial study, we 

have collected and characterized additional samples, and extracted total RNA from a total 

of 115 samples, 112 from MDS patients and 54 from 39 healthy individuals (Fig. 1A). 

The MDS group contains samples from bone marrow (BM, n=93) or peripheral blood 

(PB, n=22), whereas the healthy group comprises samples from BM, PB, and sorted cells, 

including CD34+ hematopoietic progenitor cells from bone marrow, common myeloid 

progenitor cells (CMP), granulocytes, monocytes, B lymphocytes, and T lymphocytes 

(Fig. 1A, Supplemental Table S1). The median age of patients was 67 years (range: 26-

92); 71 patients (63%) were males; 59 (53%) had IPSS low or intermediate-1 risk scores; 

74 (66%) were transfusion dependent; 31 (28%) progressed to AML; and 18 (14%) 

received allogeneic stem cell transplantation (Supplemental Table S2). 

 To characterize the splicing profile in our cohort, we chose RASL-seq for a rapid, 

quantitative, and cost-effective survey of 5502 curated alternative splicing events in the 

human genome, including those conserved between mice and humans (Sugnet et al. 2004; 
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Yeo et al. 2005), and those we manually annotated by searching the literature. While the 

current RASL oligonucleotide pool was designed for splicing profiling in diverse 

biological systems, numerous annotated alternative splicing events are related to cancer, 

and like those detected by RNA-seq, the predominant form of alternative splicing events 

is cassette exon (Supplemental Table S3). We obtained a total of 480 million mappable 

sequencing reads and identified 1956 alternative splicing events with sufficient counts of 

both isoforms. The mean and median counts of the sum of short and long isoforms per 

event and per sample were consistently distributed (Supplemental Fig. S1). To validate 

the performance of RASL-seq on human samples from different tissue origins, we 

designed PCR primers (Supplemental Table S4) for four specific splicing events from 

genes known to associate with hematological malignancy, including two myeloid cancer 

related genes, RUNX1 (alternative terminal exon) and NUP214 (alternative 3’ exon), the 

mitochondrial transcription factor TFAM (cassette exon), and the multifunction factor 

DDX50 (cassette exon). RASL-seq results were aligned with the corresponding RT-PCR 

data (Fig. 1B), showing a high overall concordance between ratios derived from RASL-

seq and RT-PCR (R2 = 0.86, Fig. 1C). The high quality RASL-seq data permitted us to 

compare mRNA isoform signatures associated with different hematopoietic cell lineages, 

and with those from different MDS patients characterized by distinct mutations and 

clinical features. 

 Initial analysis of the RASL-seq generated dataset by using unsupervised 

hierarchical clustering largely segregated healthy samples from those with MDS (see the 

color key in the first row on top of Fig. 1D).  More than half of the MDS samples (those 

in the right side, Fig. 1D) showed an overall pattern largely distinct from that of the 
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healthy samples (left cluster), while the rest of MDS samples (middle clusters) appeared 

resembled healthy controls, which likely reflect early disease states of those patients.  

Normal peripheral blood samples and normal hematopoietic progenitor cells (BM-

CD34+) formed distinct clusters (clusters indicated in the second row of colored key, Fig. 

1D), although some of these normal samples were also mixed with MDS samples. As we 

calculated the log ratio of short isoform versus long isoform from each alternative 

splicing event and then normalized the ratio based on the averaged log ratio across all 

samples, this treatment eliminated potential batch-specific clustering (the three cohorts of 

samples separately analyzed were indicated by different grey bars in the third row, Fig. 

1D). Together, these data suggest that splicing signatures may be developed to segregate 

healthy versus disease whole blood samples as well as different lineages of normal 

hematopoietic cells. 

 

Identification of the hematopoietic lineage-specific splicing signature 

 The challenge in studying blood disorders is the presence of heterogeneous cell 

populations and depletion and/or expansion of various cell types in those populations 

(Walter et al. 2012; Woll et al. 2014). We reasoned that we might address this problem 

by first identifying cell lineage-associated splicing events in healthy controls, and then 

focusing on those relatively cell type-independent splicing events for characterizing 

disease samples. We therefore first characterized different normal hematopoietic cell 

lineages by performing principal component analysis (PCA) and a supervised multiple 

logistic regression analysis with 5 defined cell lineages (lin-CD34+ progenitor cells, 

granulocytes, monocytes, B- and T-lymphocytes, and unsorted mononuclear cells from 
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PB and BM) (see Supplemental Table S1). After 10-fold cross validation, we identified a 

collection of 200 events (here termed Hemo-SP for Hematopoiesis-specific Splicing 

Program), which efficiently differentiated 5 sorted lineage-specific cells as well as PB 

and BM mononuclear cells (Fig. 2A, Supplemental Table S5A).  

 Using this Hemo-SP program, we displayed the data among the seven 

hematological cell types with unsupervised hierarchical clustering (Fig. 2B). Even though 

some cell types share various commonalities in certain events, the overall patterns are 

quite distinct among individual cell types, demonstrating the power of our approach in 

extracting unique, cell type-specific splicing signatures. Notably, the lymphoid lineages 

largely resemble peripheral blood (v, vi, and vii, Fig. 2 B, C), which is clearly distinct 

from cells in the myeloid lineages and bone marrow (i to iv and vii, Fig. 2B, C). 

Ingenuity IPA analysis revealed many enriched alternatively spliced genes involved in 

various canonical pathways, including those in PI3K signaling in B lymphocytes and the 

regulation of IL-2 expression in naïve and activated T lymphocytes, in the HIPPO 

pathway known to play a critical role in hematopoietic stem cells (Jansson and Larsson 

2012), and in G� signaling, which is fundamental to hematopoietic cell differentiation 

and function (Wilkie et al. 1991) (Fig. 2D, Supplemental Table S5B). These observations 

suggest that regulated splicing of these genes contributes to hematopoietic lineage 

commitment and proliferation. Importantly, PCA analysis based on Hemo-SP showed 

that MDS PB samples are largely segregated from healthy PB and BM, indicating unique 

cell populations in MDS patients (Fig. 2E).   

 

Characterization of MDS-linked splicing programs 
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 We next wished to identify MDS-specific, but relatively hematopoietic cell 

lineage-independent splicing signatures.  For this purpose, we removed the splicing 

events in the Hemo-SP signature and then applied the same multiple logistic regression 

model to analyze the rest of the RASL-seq data from 115 MDS samples in comparison 

with 26 healthy individuals. Training of the regression model identified a panel of 204 

splicing events capable of robustly differentiating MDS from healthy samples (here 

termed MDS-Dx for MDS Diagnostic panel, Fig. 3A, Supplemental Table S6A). This is 

also evident from unsupervised hierarchical clustering of MDS and healthy samples 

(indicated by colored bars on top of Fig. 3B).  Notably, even though BM and PB (blue or 

red in the second bar) were clustered from one another in the healthy sample group, MDS 

samples clustered independently of cell sources. This suggests that splicing is 

dysregulated in MDS and that the MDS-specific splicing pattern is preserved in cells 

from either PB or BM. A close examination of the cluster tree suggests that ~40% MDS 

samples, regardless of their PB or BM origins, were still segregated with healthy BM and 

CD34+ cells (Fig. 3B), suggesting that this group may be relatively early in disease 

development compared to those that were largely segregated from healthy samples. 

Further analysis provides support to this notion, indicating that the MDS samples closely 

clustered to healthy samples were more linked to the low risk prognostic signature (Fig. 

S9, see below).  

 To gain functional insights into the genes in this MDS-Dx panel, we used 

Ingenuity IPA to identify top canonical pathways linked to MDS. We found specific 

enrichment of alternatively spliced genes involved in cell cycle regulation, DNA damage 

response/repair, self-renewal, and cancer progression (Fig. 3C, Supplemental Table S6B). 
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Therefore, by setting aside cell lineage-associated splicing events, we were able to 

identify critical splicing events that may directly contribute to the etiology and/or 

progression of MDS.  This approach may be generally applicable to characterizing gene 

signature associated with other blood disorders. 

 

Functional insights into MDS-linked splicing events 

 We next performed String network analysis to gain further insights into the genes 

in the MDS-Dx panel, observing two distinct sub-networks (Fig. 4A). The first sub-

network contains a large number of genes (individually listed in Fig. 4B) involved in cell 

cycle control and DNA damage response (i.e. RB1, E2F6), protein ubiquitination (i.e. 

DNAJC3, DNAJC8), hematological physiology (i.e. LMO2, TRAF3), regulation of 

apoptosis (i.e. BAX, BNIP2), and epigenetic control of gene expression, and the other 

sub-network consists of a group of RNA binding splicing regulators, including multiple 

SR protein family members (i.e. SRSF2, SRSF3, SRSF5, SRSF7, SRSF10, and SRSF11), 

specific hnRNP proteins (i.e. HNRNPD and HNRNPH1), various other well-characterized 

splicing regulators (i.e. RALY, SNRNP70, TRA2A, and U2SURP), and those involved in 

the nonsense-mediated mRNA decay (NMD) pathway (i.e. UPF3A and SMG7). This 

observation suggests that many altered splicing events in MDS may result from induced 

splicing of various splicing regulators. 

 Inclusion or skipping of an exonic region as a result of alternative splicing may or 

may not disrupt the reading frame of a given mRNA transcript, and out-of-frame changes 

are more likely to generate functionally distinct or lost of function gene products. Among 

all annotated genes for the current study and those with detectable isoform expression, 
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about 45% would alter the reading frame between the mRNA isoforms from the same 

gene (Fig. 4C). Interestingly, among the MDS-Dx panel of 204 events, more genes 

(>60%) are associated with out-of-frame changes, as exemplified by the alternative exon 

in BAX, MADD, MLH1 and E2F6 (Supplemental Fig. S2A). The frame-shift may convert 

a transcript to become NMD-sensitive, which happened to many splicing regulators (Ni 

et al. 2007). The frame-shift becomes more evident within the events of 39 genes in 

various enriched pathways identified by IPA, >75% of which are out-of-frame. Even for 

the remaining in-frame events in this subgroup, about half of such in-frame events are 

located within a functional domain of individual proteins (Fig. 4C), as exemplified by the 

alternative exons in PRKDC (a key kinase in phosphatidylinositol signaling) and MDM2 

(a p53 E3 ligase) (Supplemental Fig. S2B). These findings suggest that MDS-specific 

alternative splicing events may directly contribute to MDS pathogenesis by creating 

functionally distinct or defective proteins.  

 

Altered splicing programs by splicing factor mutations in MDS  

 The identification of prevalent mutations in some key components of the 

spliceosome machinery (i.e. SF3B1, SRSF2, U2AF1, ZRSR2) suggests that those 

mutations may be key drivers of MDS. Puzzling, however, are the observation that 

mutations in SRSF2 and U2AF1 appear to associate with poor prognosis of the disease 

while mutations in SF3B1 seem to predict good prognosis (Papaemmanuil et al. 2011). 

ZRSR2 was reported as an essential component of the minor spliceosome (U12 

dependent) assembly (Madan et al. 2015), which is the least frequent compared to the 

mutation frequencies of the other three splicing factor genes. As the functions of these 
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splicing factors converge on the definition of 3’ splice sites, a popular hypothesis is that 

mutations in these genes may affect a common set of splicing events that may directly 

contribute to MDS.  Because RNA-seq experiments carried out so far have not yielded a 

sufficient number of altered splicing events for testing this hypothesis, we took advantage 

of our RASL-seq dataset by segregating MDS samples with or without specific splicing 

factor mutations to determine whether individual splicing factor mutations have 

convergent or divergent consequences on alternative splicing. 

 We took our regression model to compare 115 MDS samples with or without 

mutations in specific splicing factor genes. This analysis led to the identification of 197 

mutation-associated events for SRSF2 (Fig. 5A, Supplemental Table S7), 206 events for 

U2AF1 (Fig. 5B, Supplemental Table S8), and 191 events for SF3B1 mutated patients 

(Fig. 5C, Supplemental Table S9). Because of insufficient sample size, we had to exclude 

ZRSR2 from this analysis. It is also worth pointing out that, while mutations in SRSF2 

occurred in a single location in the gene, multiple mutations occurred in two separate 

locations in U2AF1. In our cohort, for example, among 12 patients that carried U2AF1 

mutations, six contained the Q157P mutation; one had the Q157R mutation; four carried 

the S34F mutation, and one contained a non-canonical C163 frame-shift mutation. 

Because there are insufficient samples in different mutation classes, we had to 

characterize them as a cohort, rather than individually analyzed. 

 Strikingly, the identified splicing events were able to efficiently differentiate 

MDS samples without SF mutations from those that carry specific mutations in SRSF2, 

U2AF1, and SF3B1 (Fig. 5A-C). Surprisingly, however, the three splicing programs 

showed little overlap (Fig. 5D, Supplemental Table S10), indicating that mutations in 
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individual splicing factors are unlikely to cause a common set of alternative splicing 

events to induce MDS. Consistent with this possibility, the collection of significantly 

altered splicing events associated with each splicing factor mutation contributes a small 

subset to the splicing program that distinguishes MDS from healthy samples (MDS-Dx) 

(Fig. 5E). Interestingly, however, Ingenuity IPA analysis suggested that mutations in the 

three splicing factors widely affected genes involved in DNA damage response pathways, 

even though different genes were affected by different splicing factor mutations in these 

pathways (Supplemental Fig. S3A-C; Supplemental Tables S11-S13). This observation 

suggests that, instead of causing a common set of alternative splicing events, mutations in 

each splicing factor may modulate critical genes in some common pathways to cause the 

disease.  

 We further analyzed the splicing events overlapped with MDS-Dx splicing factor 

mutations that fall in enriched pathways related to disease progression. The SRSF2 

mutation-affected splicing program has 8 events overlapped with MDS-Dx and all 

changed in the same directions (Supplemental Fig. S4A).  These genes, including CDK7, 

CCNL1, CARD16, SNCA, and PYCARD, function as regulators of cell cycle progression, 

cancer, and apoptosis. Similar to the SRSF2 mutation-affected splicing program, a small 

subset of the U2AF1 mutation-affected splicing program overlapped with MDS-Dx and 

also showed the changes in the same directions (Supplemental Fig. S4B). These 

overlapped genes include RB1, CARD16, ZDHHC16, MYB, CD300LF, DDB2, and TET2, 

which have functions related to cancer, apoptosis, and hematopoiesis. In contrast, the 

genes shared between the SF3B1 mutation-affected splicing program and MDS-Dx, 

inducing MDM2, RAD17, SNRNP 70, and SRSF10, largely showed changes in opposite 
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directions (Supplemental Fig. S4C). This might bear some functional relevance to the 

reports that SF3B1 mutations are associated with better survival, while SRSF2 and 

U2AF1 mutations correlated with worse overall survival in MDS patients (Papaemmanuil 

et al. 2011; Makishima et al. 2012). 

 

Splicing factor mutations induce genes with a unique 3’ splice site consensus 

 U2AF1, SF3B1, and SRSF2 are functionally connected to the U2 snRNP complex 

critical for 3’ splice site selection. The observation that the splicing signatures of these 

mutated genes showed little overlap motivated us to further analyze the number of 

alternative 5’ or 3’ splicing events in different mutation-induced programs relative to 

unaltered events. We found that, while unaltered events covered roughly equal numbers 

of alternative 5’ and 3’ splice sites; SF3B1 and U2AF1 mutation-affected programs were 

more enriched with alternative 3’ splice sites; and the SRSF2 mutation-affected program 

was associated with a high frequency of alternative 5’ events (Supplemental Fig. S5). 

This is consistent with roles of SF3B1 and U2AF1 in 3’ splice site selection, while 

SRSF2 is a more general regulator of splice site selection by multiple mechanisms as we 

reported earlier (Pandit et al. 2013).  

 We further analyzed consensus sequences associated with cassette exons in 

specific splicing factor mutation-induced programs. Besides the motif GTAAGT at 5’ 

donor sites and the canonical 3’ acceptor sites present in all groups, we observed the 

changed consensus at the +1 position of the 3’ acceptor site in U2AF1 mutation-induced 

events (red box in Supplemental Fig S6), a position likely regulated by one of the U2AF1 

zinc finger motifs as noted earlier (Ilagan et al. 2014; Okeyo-Owuor et al. 2014). In our 
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cohort, 6 out of 12 MDS samples carried the U2AF1 mutation at Q157P, which is also 

the most frequent mutation identified among AML patients (Ilagan et al. 2014), thus 

counting for similarly altered 3’ splice sites.  

 Recent studies revealed that mutant SRSF2 showed increased binding to the 

CCNG motif (N=any nucleotide) and decreased binding to the GGNG motif, leading to 

enriched CCNG among enhanced splicing events and enriched GGNG among repressed 

splicing events (Kim et al. 2015; Zhang et al. 2015). To determine whether this trend was 

also represented in our MDS patients, we identified 140 elevated inclusion and 123 

increased skipping events linked to SRSF2 mutations (p < 0.01, |Fold Change| >=2), and 

then calculated 4-mer enrichment as described (Zhang et al. 2015).  While the difference 

is not obvious with CCNG, we detected a dramatic enrichment of GGNG motifs among 

increased exon skipping events (Supplemental Fig. S7).  This observation is consistent 

with compromised SRSF2 binding to the GGNG motif to cause exon skipping.  We 

suspect that many induced exon inclusion events may result from various indirect effects, 

therefore masking the anticipated enrichment of the CCNG motif among enhanced exons, 

as our analysis was based on complex human samples, rather than engineered cell or 

animal models. Together, these motif analyses further re-enforced distinct splicing 

programs induced by different splicing factor mutations in MDS patients. 

 

A critical splicing signature linked to MDS prognosis  

 To determine if differential splicing events detected by RASL-seq in MDS patient 

samples have any prognostic value, we applied a lasso penalized Cox regression model 

(Coxnet) (Pellagatti et al. 2013) to identify isoform ratios associated with overall 
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survival. This analysis was restricted to 96 MDS patients with available survival 

information. After subjecting candidate events to 10-fold internal cross validation, we 

identified a panel of 11 events with prognostic significance (Supplemental Table S14, 

here referred to as MDS-PGx for the MDS-prognostic signature). Patients were assigned 

a risk score based on the weighted expression of these 11 events, and then split into 

equally sized tertiles, as MDS-PGx good risk, intermediate risk, and poor risk. With 3.85 

years median follow up time for this cohort, the results demonstrated significant 

differences in overall survival (Fig. 6A).  

 We next compared this MDS-PGx signature to known prognostic variables, 

including the well-established IPSS risk score. According to the assigned IPSS scores, 29 

MDS patients in the intermediate-1 (int-1) and 25 patients in the intermediate-2 (int-2) 

groups of our cohort were not well separated (Fig. 6B). In clinical practice, a distinction 

is often made between lower risk MDS patients, who are typically treated with growth 

factors and supportive care, and higher risk MDS patients, who are typically treated with 

more intensive options, such as hypomethylating agents, chemotherapy, or stem cell 

transplantation. Application of the MDS-PGx classifier to the 54 IPSS int-1 and int-2 

patients identified 14 (26%) of them as good risk patients, and 24 (44%) as poor risk 

patients (Fig. 6C). Interestingly, some patients with lower IPSS risk (low and Int-1) could 

be re-classified using the MDS-PGx to higher risk (p<0.001; Supplemental Fig. S8A). 

Similarly, in patients with higher IPSS risk (Int-2 and high), MDS-PGx could identify a 

subset of those patients to belong to a lower than perceived risk (p=0.011; Supplemental 

Fig. S8B). These observations suggest a potential value of the MDS-PGx in clinical 

applications. 
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 Demographic and clinical characteristics were compared between the 3 MDS-

PGx score tertiles (Supplemental Table S15). While bone marrow blasts and cytogenetics 

risk groups were distributed evenly between MDS-PGx tertiles, lower IPSS risk groups 

were significantly more frequent in patients from the good risk MDS-PGx tertile 

compared to those in the poor risk MDS-PGx tertile (Supplemental Table S15). Patients 

in the good risk MDS-PGx tertile were younger compared to the MDS-PGx intermediate 

and poor risk tertiles, while Hgb levels were higher in patients from MDS-PGx good risk 

tertile compared to those in the MDS-PGx intermediate and poor risk tertiles 

(Supplemental Table S15). To evaluate the degree to which the MDS-PGx risk score has 

independent prognostic power, we performed multivariate analysis (Table 1) by including 

all risk factors that were significant in univariate analysis (MDS-PGx, IPSS, age, 

Supplemental Table S16). This analysis showed that, despite its association with known 

prognostic features, the MDS-PGx is a prognostic indicator independent of IPSS and age.  

 Finally, we examined the performance of the MDS-PGx classifier on its ability to 

predict progression to acute myeloid leukemia (AML), a relevant biologic characteristic 

for which the classifier was not specifically selected. In our cohort, patients within each 

MDS-PGx tertile had significantly different rates of transformation to AML (p<0.001; 

Fig. 6D). The 1-year AML progression rate was 10%, 25%, and 64% for MDS-PGx 

good, intermediate, and poor risk patients, respectively (Fig. 6D). Similarly, IPSS risk 

score also identified groups with differences in rates of AML progression (p<0.001, Fig. 

6E). However, application of the MDS-PGx score to the 54 IPSS int-1 and int-2 patients 

could further stratify this intermediate risk subset, identifying 14 patients with good risk 

of AML transformation and 24 with poor risk of AML transformation (p<0.002, Fig. 6F). 
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 In patients with lower risk IPSS (low and int-1) the MDS-PGx classifier 

differentiated those with poor risk for AML transformation (Supplemental Fig. S8C). The 

1-year AML progression rate in this subgroup was 4%, 16%, and 47% for MDS-PGx 

good, intermediate, and poor risk tertiles, respectively (p=0.002). In patients with higher 

risk IPSS (int-2 and high), the MDS-PGx classifier identified patients with lower than 

predicted risk for AML transformation (Supplemental Fig. S8D). The 1-year AML 

progression rate in this subgroup was 36%, 36%, and 80% for MDS-PGx good, 

intermediate, and poor risk groups, respectively (p=0.022). In multivariate analysis, 

again, the MDS-PGx classifier remains a significant predictor for AML progression 

independent of the IPSS risk score (Table 2). We lastly compared the baseline and 

genetic characteristics between the three groups of the MDS PGx score. The good risk 

MDS PGx group had more patients with lower risk MDS, which, from a clinical point of 

view, is closer to normal hematopoietic cells than high risk MDS cells (Supplemental 

Table S17). This is also supported by clustering analysis based on MDS-Dx (Fig. 3B) 

where more patients clustered with health samples contained belonged to the low risk 

group (Supplemental Fig. S9).   Together, these data strongly suggest that the splicing 

signature derived from the current cohort contains prognostic information in MDS 

patients, which may be further developed as a biomarker for risk and treatment 

stratification.  

 

Discussion 

 We have used a target-specific global approach to characterize the splicing 

program in MDS in comparison with samples from healthy individuals. In the past two 
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decades, gene expression profiling has been a powerful tool for studying diseases by 

determining changes in transcriptome, which has also been applied to MDS (Pellagatti et 

al. 2013). However, altered mRNA isoform expression has been recognized to have the 

potential to more robustly characterize specific disease states (Zhang et al. 2013), which 

is particularly relevant to MDS because of prevalent mutations in specific splicing factors 

found in the disease. This has prompted the identification of specific mRNA isoforms 

associated with MDS, and RNA-seq appears uniquely suited for this purpose. However, 

published results to date using this approach have only yielded a small number of 

disease-linked mRNA isoforms, and in most cases, there is limited quantitative 

information that can be used to classify MDS.  

 In the present study, we took advantage of the RASL-seq technology developed in 

our lab, which is specifically designed to interrogate mRNA isoforms, even those from 

low-expressed transcripts. Thus, all reads are related to specific targets under survey. Our 

previous studies demonstrated that the approach is of high sensitivity and can well 

tolerate partially degraded RNA. We assume that, by targeting >5,000 annotated events, 

which contain numerous disease (including cancer)-linked events documented in the 

literature, we have sufficient power for global comparison. The cost-effectiveness of this 

tool coupled with the quantitative information obtained thus significantly offsets the 

limitation of RNA-seq based approaches. 

 To efficiently dissect the splicing landscape of MDS, we recognize a challenging 

problem particularly relevant to studying hematological malignancies, which is the highly 

heterogeneous cell population in both healthy and disease samples. Thus, a putative 

signature may reflect changes in the population of cells or within specific cell types or 
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both.  We thus developed a strategy to first identify cell type-specific alternative splicing 

events among sorted cells from healthy individuals. The signature we obtained (Hemo-

SP) can clearly differentiate cell types in different blood lineages. Interestingly, pathway 

analysis of the panel showed enrichment of genes in cell differentiation, indicating their 

contribution to hematopoiesis. Filtering out genes in the Hemo-SP panel enabled us to 

use relatively cell type-independent alternative splicing events to characterize MDS, 

leading to the MDS-Dx panel that could efficiently distinguish between healthy and MDS 

samples.  The altered splicing events in this panel are enriched in genes involved in cell 

cycle control, apoptosis, and DNA damage responses, strongly arguing for their direct 

contribution to the MDS disease phenotype.  

 As MDS contain prevalent mutations in specific splicing factors, one of the most 

pressing questions is whether these mutations affect a common set of splicing events that 

may be underlying MDS because SRSF2, U2AF1, and SF3B1 have convergent functions 

in 3’ splice site definition, yet puzzling is the observation that the mutations in these 

splicing factors are divergently associated with prognosis (Papaemmanuil et al. 2011; 

Makishima et al. 2012). By identifying specific splicing signatures associated with MDS 

samples containing individual splicing factor mutations, we found that each signature 

appears to be largely confined to a unique set of genes, suggesting that mutations in each 

of these splicing factors affect a unique spectrum of splicing events in MDS patients. 

Interestingly, however, alternatively spliced genes that are associated with mutations in 

different splicing factors appear to converge to several common pathways, such as those 

involved in cell cycle control and DNA damage response/repair. This finding suggests 

that alterations in those key pathways likely contribute to MDS.  
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 It is also important to point out that all splicing factors may also have independent 

splicing functions. For example, it has been demonstrated that SRSF2 plays a critical role 

in maintaining genome stability (Xiao et al. 2007), and recent studies also showed its 

direct activity in transcriptional control (Mo et al. 2013). A recent study also revealed that 

U2AF1 and SF3B1 are part of the BRCA-DNA damage response complex (Savage et al. 

2014). These observations raise the possibility that mutations in these splicing factors 

may employ both splicing-dependent and -independent mechanisms to cause MDS. 

 Interestingly, RASL-seq identified that the U2AF1 mutation program has the 

same consensus sequence change at the 3’ acceptor site as the changed consensus 

sequence in U2AF1 mutated AML cohorts detected by RNA-seq, even though the 

individual events identified in the two studies are different. We also confirmed the 

previous on cellular and animal models that mutations in SRSF2 altered its RNA binding 

preference for CCNG and GGNG motifs (Kim et al. 2015; Zhang et al. 2015). These 

findings further validate RASL-seq as an effective tool for analyzing functional 

alternative splicing in patients. 

 The newly developed Coxnet approach enables the identification of critical events 

associated with disease prognosis (Pellagatti et al. 2013). We applied this bioinformatics 

approach in the current study to identify a panel of 11 events (MDS-PGx) associated with 

clinical outcomes of the disease. As a prognostic feature independent of the IPSS, the 

MDS-PGx classifier efficiently differentiated patients into good, intermediate and poor 

prognosis tertiles, but also improved prognostication of patients in the IPSS int-1 and int-

2 groups, which may further improve treatment allocation for these patients. As MDS-

PGx is derived from a training model, which utilizes patient survival as the endpoint, 



Jinsong Qiu 

 

23

there is a risk of overfitting its prognostic power to our cohort. To examine the 

performance of the MDS-PGx on a context for which it was not specifically selected, we 

applied the classifier to another disease related and biologically relevant endpoint, the 

MDS-to-AML transformation rate. The MDS-PGx characterized several patients as 

having higher and lower risk with regard to AML transformation, even when the IPSS 

predicted them to have lower and higher risk, respectively. This argues that MDS-PGx is 

not grossly overfit to a single disease feature. However, the classifier requires validation 

in an independent cohort.  

 The performance of the MDS-PGx may reflect a pathogenic role in disease 

progression for the underlying splicing events measured in the signature. Six out of the 

11 events in MDS-PGx are either out-of-frame or in frame within a functional protein 

domain (Supplemental Table S14). Included in the 11 events that form the MDS-PGx are 

BCAS3, which is related to progression of other tumor types (Gururaj et al. 2006), 

PROM1, which is involved in stem cell maintenance (Sompallae et al. 2013), MBTD1 

and CDCA2, which regulate chromosome structure, while CDCA2 also served as 

prognostic marker for synovial sarcomas (Lagarde et al. 2013; Luo et al. 2013). ABI2 and 

TAF4B are known to regulate hematopoietic cell function (Dai and Pendergast 1995). 

CSNK1E is a member of the casein kinase I protein family, whose members have been 

implicated in the control of cytoplasmic and nuclear processes, including DNA 

replication and repair. The stabilization of components of cytokines and Wnt signaling by 

CSNK1E might be critical for hematopoietic cell self-renewal (Okamura et al. 2004). 

Interestingly, mutations in a related casein kinase, CSNK1A1, are prevalent in MDS with 

del(5q), suggesting a role of this gene family in MDS pathogenesis (Schneider et al. 
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2014; Heuser 2015). This functional information suggests that RASL-seq has captured 

splicing events with discriminatory power as well as clinical significance with novel 

insights into the pathogenic mechanisms underlying the development of MDS.  
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Materials and Methods 

Patient samples 

 Bone marrow (BM) and/or peripheral whole blood (PB) samples were collected 

from 112 MDS patients at the time of enrollment in clinical trials at Hannover Medical 

School (Hannover, Germany), investigating the efficacy of all-trans-retinoic acid, 

antithymocyte globulin, deferasirox, lenalidomide, or thalidomide for treatment of MDS. 

Healthy blood and BM donors also provided cells for RNA extraction: peripheral blood 

mononuclear cells from 18 blood donors, sorted cell populations from PB from 5 blood 

donors (CD66b+CD15+ granulocytes, CD14+CD66b-CD3-CD56- monocytes, CD19+ B-

cells, CD8-CD56-CD3+CD4+ T-cells), BM mononuclear cells from 6 donors and two 

BM RNAs purchased from Biochain and Clontech, CD34+ cells from 6 donors, common 

myeloid progenitor cells (CMP) (Lin-CD34+CD38+CD123lowCD45Ra-) from 2 donors, 

and stem cell (Lin-CD34+CD38-) from one donor (Fig.1A, Supplemental Table S1). Cell 

samples were collected and clinical data were recorded after MDS patients and healthy 

donors were given informed consent in accordance with the Declaration of Helsinki and 

with the Institutional Review Board (IRB) approval (ethical vote 2467).  

 

Cytogenetic and molecular analysis 

 Cytogenetic analysis was performed by G- and R-banding. Mutational analysis 

was performed as described previously (Damm et al. 2010). Mononuclear cells from 

patient samples were enriched by Ficoll density gradient centrifugation and stored in 

liquid nitrogen until use. Genomic DNA was extracted from each sample using the All 

Prep DNA/RNA Kit (Qiagen). Mutational analysis of each sample was performed for 
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ASXL1, DNMT3A, IDH1, IDH2, RUNX1, NPM1, SF3B1, SRSF2, U2AF1, and ZRSR2 as 

described previously (Thol et al. 2012). PCR fragments were sequenced by Sanger 

sequencing and analyzed using Mutation Surveyor software (SoftGenetics, State College, 

PA). 

 

Isolation of lineage-specific cells by flow cytometry 

 Lineage-specific cells, including CD34+ BM, CMP, granulocytes, monocytes, B 

cells and T cells, were purified by flow cytometry according to the markers and related 

antibodies listed in Supplemental Table S1. The CD34 microbead kit was purchased from 

Miltenyi Biotech (Bergisch-Gladbach, Germany). All antibodies used were from BD 

Biosciences (Heidelberg, Germany). 

 

RASL-seq profiling of alternative splicing and data analysis 

 Total RNAs were purified from collected cells by using the RNeasy Kit (Qiagen) 

according to the manufacturer’s instruction.  For RASL-seq, a pool of oligonucleotides 

was prepared, which targets 5502 alternative splicing events in the human genome, as 

previously described (Pandit et al. 2013). The pool interrogates a variety of splicing 

modes, including alternative transcription start, alternative transcription termination, 

cassette exon (single or multiple), mutually exclusive exons, alternative 5′ splice sites, 

and alternative 3′ splice sites (Supplementary, Table S2). For each splicing event, probe 

sets were designed to specifically target two (or more than two in certain cases) annotated 

isoforms with unique exon sequences (Li et al. 2012). 
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 We initially designed oligos to include alternative splicing events conserved in 

human and mouse based on Yeo and Burge (Yeo et al. 2005), and Ares and Haussler 

(Sugnet et al. 2004).  In addition, we searched PubMed using key words, 

aberrant/abnormal splicing, splicing signature, tissue-specific splicing, and human 

disease, to identify reported disease (including cancer)-, tissue-, and differentiation-

associated splicing events, resulting in a total number of 995. Together, the current RASL 

oligo pool contains 5502 annotated alternative events from 3758 genes plus 19 internal 

controls (total=5521).  

 By using specific oligonucleotides to target junction sequences (step 1), paired 

oligonucleotides annealed on mRNA can be selected by biotinylated oligo-dT 

immobilized on beads (step 2). Upon selection and ligation, only specifically targeted 

oligonucleotide pairs can be converted to amplicons (step 3), and upon PCR using a pair 

of universal primers, the products from each sample are bar-coded (step 4).  We routinely 

pool up to 30 RASL-seq libraries for deep sequencing in one lane of an Illumina 

HiSeq2500 sequencer (step 5). The sequencing information permits assigning reads to 

anticipated pairs of oligonucleotides on specific mRNA isoforms and we require a higher 

than 70% accurate mapping rate for each sample. As not all genes or isoforms are 

sufficiently expressed in a given cell type, we require a minimum of 5 counts per isoform 

in both isoforms from a gene to compute the isoform ratio, and derive the ratio change 

according to a pipeline that has been detailed in our recently published studies (Zhou et 

al. 2012b; Pandit et al. 2013).  

 Because not all mRNAs or their isoforms were expressed in all cell types, we first 

filtered detectable splicing events by requiring the sequencing reads for both expressed 
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isoforms in each event to be present in at least 1/3 of samples in our cohort. A total of 

1956 splicing events met such criteria in the current study. To define the change in each 

splicing event, a splicing index was determined as the ratio of read counts between short 

and long isoform. Such splicing index for each event was scaled according to the average 

index of all samples, and log2 transformed. This sample isoform ratio versus average 

isoform ratio (across all samples) approach eliminates intrinsic biases of oligonucleotide 

probes in hybridization and ligation. 
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SSi: Splicing Score for the splicing event in sample i 

CSi, CLi: Read Counts of short isoform, long isoform in sample i 

ASi, ALi: Oligo Annealing Coefficient of short isoform, long isoform in sample i 

n: Total number of samples 

 To search for potential splicing signatures associated with different cell types 

from healthy individuals and patients with MDS, we first reduced the dimensionality of 

splicing features in a specific cohort into ten major components by Principal Component 

Analysis (PCA), as previously described (Zhou et al. 2012a). We next employed a 

supervised multiple logistic regression model with LASSO penalty as a classification 

machine to train samples with interesting labels. After ten-fold cross-validation, a robust 

regression model for the classification could be established. By summarizing the rotation 

matrix and coefficient matrix of the model, we finally selected top ranked contributors 

(p<0.05) of splicing events as a signature for each classification model. Hierarchical 

clustering was performed as previously described (Khan et al. 2001). 
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 For hierarchical clustering, we used 1-PCC (Pearson’s Correlation Coefficient) as 

distance metric and the ward’s method in R’s hclust package to calculate the clustering 

linkage. 

 To determine the potential splicing signatures correlated with overall survival of 

MDS patients, we established a survival model based on the all splicing events by Coxnet 

algorithm as previously described (Pellagatti et al. 2013) with minor modifications. 

Briefly, the Coxnet predictor was established by supervised lasso penalized Cox 

proportional hazards regression based on the all the splicing events and overall survival 

years of MDS samples. After ten-fold cross validation, a converged model with a stable 

subset of 11 splicing events were identified. 

 

RT-PCR validation 

 Total RNA (5 to 10 ng) from individual healthy or patient samples was used to 

perform RT-PCR using the One-Step RT-PCR kit (Qiagen). Primers used for validation 

are listed in Supplemental Table S3. RT-PCR products were resolved on a 2% agarose 

gel and signals analyzed by ImageJ64.  

 

Statistical analysis of clinical characteristics 

 Overall survival (OS) end points, measured from the date of initial sample 

collection, were death (failure) or alive at the last follow-up (censored). Time to AML 

progression was measured from the date of initial sample collection to the time of AML 

diagnosis. Progression to AML was defined according to the 2008 WHO classification. 

Primary analysis was performed on OS and time to AML progression. The Kaplan-Meier 
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method, log-rank test, and Cox proportional hazards models were used to estimate the 

distribution of OS and time to AML progression and to compare differences between 

survival curves, respectively. Pairwise comparisons were performed by median test or the 

Student t test for continuous variables and by 2-sided χ2 tests for categorical variables. 

Variables considered for model inclusion were International Prognostic Scoring System 

(IPSS) risk score, transfusion dependence, age (below versus above median), sex, 

hemoglobin levels (<8 g/dl vs. 8 to <10 g/dl vs. ≥ 10 g/dl), bone marrow blasts (<5% vs. 

5-10% vs. >10-20%), cytogenetic risk according to IPSS (low vs intermediate vs. high), 

mutation status in genes ASXL1, RUNX1, IDH1, IDH2, DNMT3A, SF3B1, SRSF2, 

U2AF1, and ZRSR2. The 2-sided level of significance was set at p<0.05. The uni- and 

multivariate statistical analyses were performed with the statistical software package 

SPSS Version 22.0 (IBM Corporation, Armonk, NY). 

 

Analysis of pathways, functions, and protein domains 

 Pathway analysis was performed using Ingenuity Pathways Knowledge Base-v8.8 

(Ingenuity Systems, content version 17199142, release date Sept 17, 2013). We used 

3182 expressed genes (reads detectable in at least 20% samples) as the background 

control for IPA analysis. Protein interaction networks were constructed using String9.1 

and Cytoscape. In- and out-of-frame analysis was performed on cassette exons based on 

the length of the cassette exon dividable by 3. The location of a cassette exon relative to a 

known protein domain was manually curated on UCSC genome browser, NCBI Refseq, 

and EMBL-EBI’s InterPro. 
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Table 1. Multivariate Cox regression model using MDS--�PGx, IPSS, and Age as predictors 

 

 

Comparator    Odds Ratio(OR)  95% CI (OR) Pr(>|z|) LRT 

good risk    <.001 
   intermediate risk            1.7 [0.61,4.73] 0.308  
   poor risk  12.65 [4.55,35.16] <.001  

IPSS low risk    0.007 
intermediate risk1  1.21 [0.49,2.97] 0.684  
intermediate risk2  1.72 [0.68,4.32] 0.251  

   high risk  7.24 [2.39,21.89] <.001  

Age < 67    0.039 
  ≥ 67  2 [1.02,3.90] 0.043  

LRT: likelihood ratio test 

Variables with more than 2 categories: Odds ratios greater than or less than 1 indicate 

an increased or decreased risk, respectively, of an event for the category listed 

compared to the category listed in the first row of each variable, which has a OR of 1.0. 

Variables with 2 categories: Odds ratios greater than or less than 1 indicate an increased 

or decreased risk, respectively, of an event for the first category listed. 
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Table 2. Uni- and multi-variate analysis of Time to AML by MDS-PGx 

 Time to AML                 Time to AML 
         Uni-variate analysis          Multi-variate analysis 

      HR    95% CI P      HR    95% CI P 
MDS-PGx 3 group 

classifier$ 

   

<.001 

   

     0.003 

Good risk 1 - -       1 - - 
Intermediate risk       2.71  0.83-8.82 0.098     1.15   0.3-4.41      0.83 
Poor risk       9.71   3.1-30.4 <.001     5.63 1.49-21.23      0.011 

IPSS risk$ 
  <.001        0.002 

Low       1 - - 1 - - 
Intermediate-1      2.24  0.67-7.47 0.19 0.98  0.26-3.71 0.97 
Intermediate-2      4.37 1.38-13.84 0.012 2.65  0.74-9.45 0.13 
High      13.2 3.73-46.67 <.001 9.04 2.09- 0.003 

 

 
Hazard ratios (HR) greater than or less than 1 indicate an increased or decreased risk, 

respectively, of an event for the category listed compared to the category listed in the 

first row of each variable, which has a HR of 1.0. 
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Figure Legends 

Figure 1. Characterization of lineage commitment and disease status by alternative 

splicing. RASL-seq was applied to 115 MDS samples and 54 samples from healthy 

volunteers to assess global pre-mRNA splicing. (A) Pie chart showing type and origin of 

investigated samples. BM: bone marrow, PB: peripheral blood. CMP: common myeloid 

progenitor cells. SC: stem cell. (B) RT-PCR validation of four events across multiple 

samples with different sample origins, different splicing factor mutations from MDS 

patients, and healthy volunteers. Top: Heatmap view of RASL-seq data, bottom: 

corresponding RT-PCR products for validation. (C) Scatter plot of RASL-seq vs. RT-

PCR validated data. S: short isoform; L: long isoform. (D) Global view of RASL-seq data 

[normalized Log2 (short isoform/long isoform)] using unsupervised hierarchical 

clustering. (MC: monocyte, GC: granulocyte, BM, bone marrow). Light grey, grey, and 

dark grey colored bars represent three separate sample cohorts.  

 

Figure 2. Characterization of hematopoietic lineage-defining splicing programs. (A) 

Principal component analysis (PCA) represents the results of regression analysis that 

identified a splicing program that differentiates between normal hematopoietic cell 

lineages (Hemo-SP panel). (B) Unsupervised hierarchical clustering of normal 

hematopoietic cell samples using the 200-event cell lineage-specific panel (Hemo-SP). A 

code was assigned to each lineage. Unsupervised hierarchical clustering of MDS blood 

samples with fixed 200-event panel as used. (C) A demonstration tree of hematopoietic 

lineages. Hematopoietic stem cell (HSC); Bone marrow progenitor cells (BMPC); bone 

marrow (BM); common myeloid progenitor cell (CMP); Granulocyte (GC); Monocyte 
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(MC); B-lymphocyte (B); T-lymphocyte (T); peripheral blood (PB). As CMP and SC 

were very well correlated across all events, and each group had limited sample numbers, 

we combined these two groups together as CMP. (D). Canonical pathways identified by 

Ingenuity IPA analysis of the hematopoietic lineage-specific panel (Hemo-SP). (E) 

Segregation of MDS samples from different cell types from healthy controls based on 

Hemo-SP by PCA. 

 

Figure 3. Characterization of MDS-defining splicing programs. (A) PCA identified a 

204-event panel (MDS-Dx) that differentiates MDS from healthy samples (both bone 

marrow and peripheral blood were included, while healthy lineage sorted samples were 

excluded). (B) Unsupervised hierarchical clustering of MDS and healthy samples with the 

MDS-Dx panel. (C) Pathway analysis of the MDS-Dx panel using Ingenuity IPA.  

 

Figure 4. Network analysis of key altered splicing events in MDS. (A) Protein network 

analysis of MDS-Dx by String9.1 and Cytoscape. Line connections represent the 

evidence supported association. Components in the two concentrated networks are listed 

at the bottom. (B) List of genes involved in cell cycle control and DNA damage repair. 

(C) List of RNA binding splicing regulators. (D) Analysis of the effect of MDS-Dx 

alternative splicing (cassette exon) on the reading frame of gene transcripts. Fisher’s 

exact test was used to compare in-/out-of-frame events of MDS-Dx, and its disease 

pathway-related events with overall and detectable events. (*p<0.05, **p< 0.01). For in-

frame events in enriched pathways in MDS-Dx, the in- / out- of the protein domain was 

further analyzed.  
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Figure 5. Splicing factor mutations in MDS affect distinct splicing programs but the 

affected genes converge in similar dysregulated pathways. (A) Unsupervised hierarchical 

clustering using the SRSF2 mutation-related splicing program. (B) Unsupervised 

hierarchical clustering using the U2AF1 mutation-related splicing program. (C) 

Unsupervised hierarchical clustering using the SF3B1 mutation-related splicing program. 

(D). Venn-diagram of regression model-identified splicing programs associated with 

SRSF2, U2AF1, and SF3B1 mutations, and their relationships. (E) The overlap of SRSF2, 

U2AF1, and SF3B1 mutation-related programs with the MDS-Dx panel. No SF mut: 

Samples without SRSF2, U2AF1, SF3B1, or ZRSR2 mutations.  

 

Figure 6. A critical splicing signature linked to MDS prognosis. (A) Kaplan-Meier curve 

for overall survival demonstrating how application of the MDS-PGx score efficiently 

stratifies MDS patients into 3 distinct risk groups. (B) Overall survival curves for the 

same patients stratified by the IPSS show substantial overlap in the intermediate risk 

groups. (C) IPSS Intermediate-1 and Intermediate-2 risk patients (from B.) were further 

stratified by the MDS-PGx score. (D) Time to AML transformation is shown for MDS 

patients stratified by the MDS-PGx score. (E) Time to AML transformation is shown for 

MDS patients stratified by their IPSS risk group. (F) Time to AML transformation of 

IPSS Intermediate-1 and Intermediate-2 risk patients (from E) reclassified by the MDS-

PGx score. 
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