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NEW PERFORMANCE-VESTED STOCK OPTION SCHEMES

AN CHEN∗, MARKUS PELGER‡, AND KLAUS SANDMANN§

Abstract. In the present paper, we advocate two effective non-traditional performance-
based stock option schemes: Parisian and Asian executives’ stock option plans. Under a
Parisian option scheme, the stock price should have outperformed a certain stock price for
a fixed length of time. Under an Asian scheme, the executives’ compensation is coupled
with the average performance of the stock price. Both schemes make the manipulation
through the executives less likely. In the Parisian scheme, it can be achieved by setting
the length of excursion sufficiently long and in the Asian scheme, by requiring the average
rate of return of the stock to exceed a relatively high fixed rate of return. We focus on
the valuation of these new performance-vested stock options and conduct some numerical
analyses based on the valuation formulae we obtain.

Keywords: Executive Stock Options, Asian Options, Parisian Options
JEL: G12, G13, G34

1. Introduction

Most of the executives’ compensations include some options. The executive stock option

(ESO) plans are usually based on the performance of the firm’s assets directly. They are

plain-vanilla call options granted with a fixed strike price equaling the stock price at the

granting date. An on-going discussion about the current executives’ stock options is that

these options can be easily manipulated by the executives. The manipulation is done by

influencing either the timing of granting or the stock price at the maturing date. The ex-

ecutives can set the timing of granting (unscheduledly) to their own benefit. They might

grant the options before an anticipated stock increase or after a stock decrease. Lie (2005)

provides a discussion on this issue. Since the executives’ bonuses are solely dependent on

the terminal stock price, the executives will try to increase the terminal value as much as

possible. Some suggest that the bonuses shall be coupled with a certain reference portfolio

such that the manipulation cannot be done so easily. But it is still a very controversial
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point. Johnson and Tian (2000) introduce a sequence of nontraditional executives’ stock

option plans, one of which is performance-vested options. These options cannot be exer-

cised unless the stock price hits a prescribed barrier (larger than the stock price at the

grant date) during the option life, which could prevent the executives from manipulation.

However, the barrier trigger only depends on a single touch of the barrier by the underlying

stock price. The executives can still manipulate the exercise of the option quite easily in

their favor.

Hambrick and Sanders (2007) study 950 companies (listed on the Standard & Poor’s

500, Mid-Cap and Small-Cap indices in 1998) from 1994 to 2000 and find that those whose

chiefs get more than half their compensations in stock options are far more likely to take

risks in more and bigger acquisitions and to spend heavily on research and equipment.

According to their study a higher payment of a CEO in stock options coincides with a

more extreme performance of the firm’s stock. The reason behind it is that ESOs allow

the CEOs to profit from the upside risk but not to suffer from downside risk. However, the

more volatile the firm’s stock price, the higher the chances there is a big loss. Given these

results it is time to reconsider executives’incentives schemes.One suggestion would be to

simply reduce the fraction of the executives’ payment in stock options. These changes

might not be popular with ambitious managers as the executives’ profits from a brilliant

move would be lower.

In the present paper, we advocate two more effective performance-based stock option

schemes that make manipulation less likely: Parisian and Asian executives’ stock option

plans. In the Parisian option scheme, the stock price should have outperformed a certain

stock price which is fixed at the granting date for a fixed length of time d. Apparently,

the longer the outperforming time needs to be, the more costly a manipulation will be.

The chance of the manipulation becomes consequently smaller. Under an Asian scheme,

the executives’ compensation is coupled with the average performance of the stock price.

If it is required that the average rate of return of the stock exceeds a fixed rate of return,

it is very unlikely that the executives can benefit from a one-time manipulation of the

stock price. In our analysis, we do not take into consideration all the special characteris-

tics of ESOs and in particular ignore the following features incorporated in these options:

early-exercise feature (see. e.g. Sircar and Xiong (2007)), non-tradable restriction (see e.g.

Carpenter (2000)), and reloading or resetting feature (see e.g. Dybvig and Loewenstein

(2003)).

Parisian options do not have a long history in the literature on exotic options. They are

introduced by Chesney et al. (1997) and subsequently developed by Moraux (2002), Ander-

luh and van der Weide (2004) and Bernard et al. (2005). In a standard Parisian up–and–in

option, the contract is knocked in if the underlying asset value remains consecutively above
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the barrier for longer than some predetermined time d before the maturity date. In the con-

text of with–profit life insurance contracts, Chen and Suchanecki (2007) apply the Parsian

barrier option framework to incorporate more realistic bankruptcy procedures (Chapter

11 bankruptcy procedure) in the market valuation of life insurance liabilities.

Asian options own a longer history. An Asian option is a financial option on the value

of the arithmetic average of some underlying asset during a prespecified time interval.

Even if the underlying asset is assumed to be log-normal, no closed-form solutions can be

obtained. A stream of literature has focused on developing numerical methods to achieve

approximation results. See e.g. Kemna and Vorst (1990), Turnbull and Wakeman (1991),

Vorst (1992), Levy (1992), Curran (1994), Rogers and Shi (1995) and Nielsen and Sand-

mann (2003), just to quote a few.

The remainder of the article is organized as follows. In Section 2, assumptions about

the underlying firm’s asset process are made and a base contract specification of ESOs is

introduced. Section 3 is dedicated to introducing performance-vested stock options with

Parisian feature. The valuation formula is derived and some numerical results (particu-

larly concerning the length of excursion and the riskiness (volatility) of a portfolio) are

conducted. Section 4 focuses on the performance-vested stock options with Asian option

schemes. Some numerical analyses are carried out as well. Finally, the results of this

article and possible further research are summarized in the conclusion.

2. Base contract

This section introduces a simple valuation framework for two contract specifications of

ESOs. To specify the underlying assets process, we start immediately with the equivalent

martingale (also risk-neutral probability) measure Q. It is assumed that under Q the price

process of the firm’s assets {S(t)}t∈[0,T ] follows a geometric Brownian motion

dS(t) = S(t)(rdt+ σdWt) (1)

in which σ denotes the deterministic volatility of the asset price process {S(t)}t∈[0,T ]. We

assume that the firm continuously rebalances its investment portfolios such that the asset

return volatility remains the same over time. Furthermore, {Wt}t∈[0,T ] in (1) is the unique

risk–neutral Q–martingale. Solving this differential equation, we obtain

S(t) = S(0) exp

{(
r − 1

2
σ2

)
t+ σWt

}
.

The benchmark contract specification is formulated immediately as a standard European

call option:

max

{
S(T )

S(0)
−K, 0

}
:=

[
S(T )

S(0)
−K

]+

(2)
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in which the bonus participation is unconstrained. Here a ratio process is used as underly-

ing, unlike in conventional formulation in which the firm’s assets serve as underlyings. Note

that multiplying the option with the initial asset value leads to the conventional formula-

tion immediately. We have chosen ratio processes because of mathematical tractability.

The arbitrage-free price of the contract payoff in (2) is

E

[
e−rT

[
S(T )

S(0)
−K

]+
]

=Φ(d1)−Ke−rT Φ(d2) (3)

d1/2 =
ln 1

Ke−rT ± 1
2
σ2T

σ
√
T

Φ(t) =

∫ t

−∞

1√
2π
e−

x2

2 dx.

3. Parisian scheme

This section mainly introduces the Parisian-type performance-vested executives’ stock

options, which are compared with the base contract specification introduced in Section 2.

In order to avoid manipulation of the managers, we assume that the bonus pays out only

when the rate of return of the underlying asset has stayed above a certain rate sufficiently

long. Mathematically speaking, it corresponds to the feature of a Parisian option1. Assume,

we are interested in the modelling of a Parisian up–and–in option. With standard Parisian

options, the underlying asset value shall stay consecutively above a certain boundary for

a time longer than some pre–specified time window d before the maturity date. In this

framework, the executives’ stock options can only be exercised when the following technical

condition is satisfied:

T+
B = inf

{
t > 0

∣∣ (t− gS
B,t

)
1{S(t)>B(t)} > d

}
< T (4)

with

gS
B,t = sup{s ≤ t|S(s) = B(s)},

where gS
B,t denotes the last time before t at which the value of the assets At hits the

barrier B(t). T+
B gives the first time at which an excursion above Bt lasts more than

d units of time. In the following we will assume an exponential barrier B(t) = B(0)egt,

i.e. the executives shall aim to increase the rate of return of the firm with a constant rate g.

1Parisian options distinguish themselves between standard and cumulative Parisian options. Only
standard Parisian options are considered here.
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Note that

gS
B,t = sup {s ≤ t : S(s) = B(s)}

= sup

{
s ≤ t : S(0) exp

{(
r − 1

2
σ2

)
s+ σWs

}
= B(0)egs

}
= sup {s ≤ t : S(0) exp {mσ s+ σWs} = B(0)}

= sup {s ≤ t : S(0) exp {σZs} = B(0)}

= sup {s ≤ t : Zs = b}

=gb,t.

with m := 1
σ
(r− g− 1

2
σ2), b := 1

σ
ln
(

B(0)
S(0)

)
and Zs := Ws +ms. {Zt}0≤t≤T is a martingale

under probability measure P , which is defined by the Radon-Nikodym density

dP

dQ

∣∣∣
FT

= exp

{
−mZT −

m2

2
T

}
.

Hence, the condition in (4) is equivalent to

T+
b := inf{t > 0|(t− gb,t)1{Zt>b} > d} < T. (5)

Hereby we transform the event, the excursion of the stock price below the exponential

barrier B(t) = B(0)egt, B(0) ≥ S(0), to the event, the excursion of the Brownian motion

Zt below a constant barrier b. This simplifies the entire valuation procedure. Under the

new probability measure P the asset price S(T ) can be expressed as

S(T ) = S(0) exp

{(
r − 1

2
σ2

)
T + σWT

}
= S(0) exp

{
σZT

}
exp{gT}

It is well known that the price of a T -contingent claim φ(S(T )) corresponds to the expected

discounted payoff under the equivalent martingale measure Q, i.e.,

E
[
e−rTφ(S(T ))1{T+

b <T}

]
=EP

[
dQ

dP

∣∣∣
FT

e−rTφ(S(T ))1{T+
b <T}

]
=e−(r+ 1

2
m2)TEP

[
φ(S(0) exp{σZT} exp{gT}) exp{mZT}1{T+

b <T}

]
where the indicator function results from the characteristic of the Parisian option. Only

when the excursion above b is longer than d, the issued options do not lose their values.

Applying this to our contract, the price of such a contract is determined by:

E

[
e−rT

[
S(T )

S(0)
−K

]+

1{T+
b <T}

]

=
e−(r−g+ 1

2
m2)T

S(0)
EP

[
exp{mZT}

[
S(0)eσZT − S(0)K e−gT

]+
1{T+

b <T}

]
Two cases are distinguished to price the above mentioned expectations because different

relation among the initial stock price, the strike and the barrier leads to different valuation
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of the parisian options with the use of inverse Laplace transformation method. In Appendix

A, the valuation formulae for both cases K < 1 and K > 1 are given in detail.

0 1 2 3 4 5
d

0.15

0.2

0.25

0.3

UaI Parisian Call

Figure 1. Up-and-in Parisian call as a function of d with parameters:

S(0) = 100;B(0) = 110;T = 10; r = 0.05; g = 0.02;K = 1.0;σ = 0.15.

With the incorporation of the Parisian feature, the executive stock options are worth

much less to the firm’s managers. This effect is substantially strengthened when the length

of excursion is set longer. As illustrated in Figure 1, the longer the length of excursion,

the lower the value of the Parisian up-and-in call. In the literature, a standard up-and-in

barrier feature (c.f. Johnson and Tian (2000)) has been built in the valuation of executive

stock options. One big disadvantage of standard barrier options is that the barrier trigger

only depends on a single touching of the barrier by the underlying price process and the

option value can be easily manipulated. Parisian feature apparently hinder such manip-

ulative behavior, because the trigger event does not depend on a single hit of the barrier

but on the time spent beyond the barrier. Thus, the longer this time period is, the more

costly a manipulation would be.

Figure 2 illustrates the effect of the volatility on the value of the Parisian up-and-in

options for different d values. As a comparison, the value of a plain vanilla call option is

plotted as a function of the volatility, too. First, it should be noted that the volatility has

a non-monotonic effect on the value of Parisian up-and-in option. But here for the given

parameters, the Parisian option value increases in volatility. Second, the incorporation of

the excursion dampens the effect of the volatility. When a longer time should be spent

above the threshold, the less effect the volatility is going to incur. It is hence less likely

to manipulate through the volatility. The value of the plain-vanilla call amounts to 0.6732
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(from 0.3946) as the volatility increases from 7.5% to 50%. In case of up-and-in Parisian

options, the magnitude of increase in the value is much less substantial, for instance for

d = 0.5, the value varies from 0.2521 to 0.4674, for d = 1 from 0.2109 to 0.3893, and for

d = 3 from 0.1338 to 0.2691.

0.1 0.2 0.3 0.4 0.5
Σ

0.2

0.3

0.4

0.5

0.6

UaI Parisian Call and BS Call

BS
d=3
d=1
d=0.5

Figure 2. Up-and-in Parisian call and plain vanilla call as a function of σ

for different d values with parameters: S(0) = 100;B(0) = 110;T = 10; r =

0.05; g = 0.02;K = 1.0.

4. Asian scheme

4.1. Contract specification 3. Here the bonus indicator depends on the periodic rates

of return: [
N−1∑
i=0

S(ti+1)

S(ti)
−K(N)

]+

with K(N) ≥ N (6)

K(N) can be eventually formulated as K(N) = N(1 + β). It can also be extended to

spreads. The basic idea is that the bonus is only paid out when the average return is

larger than a certain value. For example the average rate of return has to grow at least

linearly with a certain rate. Mathematically this payoff scheme corresponds to an Asian-

style call option. Unfortunately, a closed-form solution for the price of arithmetic Asian

options is not available. Using the methods developed in Nielsen and Sandmann (2003)

we derive lower and upper bounds for the price. As shown in their paper these bounds

perform very well.
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First note that the today’s arbitrage-free price equals the expected discounted payoff

under the risk-neutral measure Q:

CA(K,N) =E

e−rT

[
N−1∑
i=0

exp

((
r − 1

2
σ2

)
(ti+1 − ti) + σ(W (ti+1)−W (ti))

)
−K(N)

]+


with T = tN and t0 = 0.

4.1.1. Lower bound. A simple lower bound is derived by using the fact that the geometric

average is no greater than the arithmetic average.

1

N

N−1∑
i=0

S(ti+1)

Sti

≥

(
N−1∏
i=0

S(ti+1)

S(ti)

) 1
N

. (7)

Thus, we can bound the price from below by a geometric Asian-Call option.[
N−1∑
i=0

S(ti+1

S(ti)
−K

]+

≥

N (N−1∏
i=0

S(ti+1)

S(ti)

) 1
N

−K

+

.

The geometric average takes the simple form(
N−1∏
i=0

S(ti+1)

S(ti)

) 1
N

=

(
S(T )

S(t0)

) 1
N

= exp

(
1

N

(
(r − 1

2
σ2)T + σWT

))
.

Hence, the lower bound CG(K,N) is given by the price of a European type call option:

CG(K,N) =N exp

((
1

N
− 1

)
rT +

1

2

1

N
σ2T

(
1

N
− 1

))
Φ(dG)−K exp(−rT )Φ

(
dG −

σ

N

√
T
)

where

dG =
log
(

N
K

)
+ 1

N
(r − 1

2
σ2 + 1

2
σ2

N
)T

σ
N

√
T

.

A better bound can be achieved by the conditioning approach presented in Rogers and Shi

(1995) and Nielsen and Sandmann (2003). The starting point is the inequality:

E

[N−1∑
i=0

S(ti+1)

S(ti)
−K

]+
 =E

E [N−1∑
i=0

S(ti+1)

S(ti)
−K

]+ ∣∣∣∣∣Z


≥E

E [N−1∑
i=0

S(ti+1)

S(ti)
−K

∣∣∣∣∣Z
]+


:=Cl,Z(K,T )erT

where Z is an FT -measurable Gaussian random variable. Hereby we have used the prop-

erty of iterated expectation in the first step. The basic idea of the second step is that the

N stochastic variables in the arithmetic average are replaced by the projection on a single
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random variable Z. Therefore the resulting expected value will be solvable in closed form.

The higher the correlation between the arithmetic average and Z the lower the resulting

pricing error. A natural choice for Z would be the geometric average in (7). In the follow-

ing we will set Z equal to the logarithm of the geometric average as this random variable

contains the same information as the geometric average but is easier to handle.

We show in Appendix B that for a general sequence of times {ti}N
i=1 the price Cl,Z(K,T )

equals the weighted average of European style call options with different volatilities and

strike prices. Here we will present the result for the special case of equidistant time periods,

i.e. ti+1 − ti = T
N

.

Proposition 4.1. Given equidistant time periods the lower bound Cl,Z(K,T ) obtained by

the conditioning approach is

Cl,Z(K,T ) = Ner( 1
N
−1)T Φ(d1)− e−rTKΦ(d2).

with

d1 =
N log(N/K)

σ
√
T

+
r
√
T

σ
+

1

2

√
Tσ

N
d2 = d1 −

σ
√
T

N

Proof: Let Z = WT√
T

be a standard Gaussian random variable under Q. We obtain

Cl,Z(K,N) =e−rTE

E [N−1∑
i=0

exp

((
r − 1

2
σ2

)
(ti+1 − ti) + σ(W (ti+1)−W (ti))

)
−K

∣∣∣∣∣WT√
T

= z

]+


=e−rTE

[N−1∑
i=0

exp

((
r − 1

2
σ2

)(
T

N

)
+ σ(W (ti+1)−W (ti))

)
−K

∣∣∣∣∣WT√
T

= z

]+


=e−rTE

[N−1∑
i=0

exp

((
r − 1

2
σ2

)(
T

N

)
+ σ

√
T

N
z +

1

2
σ2

(
T

N
− T

N2

))
−K

]+


=e−rTE

[[
N exp

(
r

(
T

N

)
− 1

2
σ2 T

N2
+ σ

√
T

N
z

)
−K

]+]
.

From Step 2 to 3, we have used E[W (ti+1)−W (ti)|Z] =
√

T
N
Z and V ar[W (ti+1)−W (ti)|Z] =(

T
N
− T

N2

)
.
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Letting σ̄ = σ
N

and K̄ = K
N

exp
(
−rT

(
1
N
− 1
))

, we have

Cl,Z(K,N) =e−rTE

[[
N exp

(
r

(
T

N

)
− 1

2
σ̄2T + σ̄

√
Tz

)
−K

]+
]

=
(
NerT( 1

N
−1)
)
e−rTE

[[
exp

(
rT − 1

2
σ̄2T + σ̄

√
Tz

)
− K̄

]+
]

=NerT( 1
N
−1)Call(T, K̄, σ̄). �

4.1.2. Upper bound. The next step is developing an upper bound. The simplest approach

is based on the geometric average exploiting the fact that

E

[
N−1∑
i=0

S(ti+1)

S(ti)
−K

]+

≤ E

N (N−1∏
i=0

S(ti+1)

S(ti)

) 1
N

−K

+

+ E

N−1∑
i=0

S(ti+1)

S(ti)
−N

(
N−1∏
i=0

S(ti+1)

S(ti)

) 1
N

 .
Thus, the upper bound takes the form:

NCG

(
K

N
,N

)
+ e−rT

(
N−1∑
i=0

er∆ti −N exp

{
r
T

N
+

1

2

σ2

N
T

(
1

N
− 1

)})
where CG(K

N
, N) denotes the price of a geometric Asian Call option with strike K

N
. Applying

the conditioning method we can derive a sharper upper bound. Denoting the pricing error

made when applying the conditioning method by ε, the upper bound may be written as

Cu,Z(K,N) = Cl,Z(K,N) + ε (8)

As before we set Z = WT√
T
. The pricing error at time T takes the form

erT ε =E

E
[N−1∑

i=0

S(ti+1)

S(ti)
−K

]+ ∣∣∣∣∣Z
− [E [N−1∑

i=0

S(ti+1)

S(ti)
−K

∣∣∣∣∣Z
]]+

 .
In Appendix C we solve the problem for a general sequence of time periods, but here we

will only consider the simple case of constant differences between the time periods, i.e.

ti+1 − ti = T/N = ∆.

Proposition 4.2. If the time periods are equidistant, the pricing error ε is given by

ε =
e−rT

2
Φ(d)

1
2

[(
exp

(
2∆r + σ2 ∆2

T

)
Φ(d− 2σ∆)

)(
(N2 −N)

(
exp

(
−σ

2∆

T

)
− 1

)
+N

(
exp

(
σ2∆− σ2∆2

T

)
− 1

))] 1
2

with

d =
N

σ
√
T

(
log

K

N
− 1

N

(
r − 1

2
σ2

)
T

)
.
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Proof: We will show Appendix C that an upper bound on ε satisfies

ε = e−rT 1

2

(
E

[
V ar

[
N−1∑
i=0

S(ti+1)

S(ti)

∣∣∣∣∣Z = z

]
1z<d

]) 1
2

(E [1z<d])
1
2

where d is the value of z = WT√
T

for which N
(∏N−1

i=0
S(ti+1)
S(ti)

) 1
N

= K. First, we derive an

expression for the conditional variance of the sum of returns

V ar

[
N−1∑
i=0

S(ti+1)

S(ti)

∣∣∣∣∣Z
]

= E

(N−1∑
i=0

S(ti+1)

S(ti)

)2 ∣∣∣∣∣Z
− E

[
N−1∑
i=0

S(ti+1)

S(ti)

∣∣∣∣∣Z
]2

.

We introduce the notation ∆Wi = (W (ti+1)−W (ti)) and will use the fact that Cov[∆Wi,∆Wj|Z] =

∆− ∆2

T
if i = j and = −∆2

T
otherwise. The first term of the variance can be written as

E

(N−1∑
i=0

S(ti+1)

S(ti)

)2 ∣∣∣∣∣Z


=
N−1∑
i=0

N−1∑
j=0

E

[
exp

(
∆(r − 1

2
σ2) + σ∆Wi

)
exp

(
∆(r − 1

2
σ2) + σ∆Wj

)
|Z
]

=
N−1∑
i=0

N−1∑
j=0

exp

(
2∆(r − 1

2
σ2) + 2σ

∆√
T
Z +

1

2
σ2V ar(∆Wi + ∆Wj|Z)

)

=
N−1∑
i=0

N−1∑
j=0

exp

(
2∆(r − 1

2
σ2) + 2σ

∆√
T
Z +

1

2
σ2(2∆− 2

∆2

T
+ 2∆1{i=j} − 2

∆2

T
)

)

=
N−1∑
i=0

N−1∑
j=0

exp

(
2∆r + 2σ

∆√
T
Z + σ21{i=j}∆− 1

2
σ2

(
4
∆2

T

))

=(N2 −N) exp

(
2∆r + 2σ

∆√
T
Z − 2σ2 ∆2

T

)
+N exp

(
2∆r + 2σ

∆√
T
Z + σ2∆− 2σ2 ∆2

T

)
The second term takes the following form:

E

[
N−1∑
i=0

S(ti+1)

S(ti)

∣∣∣∣∣Z
]2

=
N−1∑
i=0

N−1∑
j=0

E

[
S(ti+1)

S(ti)

∣∣∣∣∣Z
]
E

[
S(tj+1)

S(tj)

∣∣∣∣∣Z
]

=
N−1∑
i=0

N−1∑
j=0

(
exp

(
∆

(
r − 1

2
σ2

)
+ σ

∆√
T
Z +

1

2
σ2

(
∆− ∆2

T

))

exp

(
∆

(
r − 1

2
σ2

)
+ σ

∆√
T
Z +

1

2
σ2

(
∆− ∆2

T

)))
=N2 exp

(
2∆r + 2σ

(
∆√
T

)
Z − σ2 ∆2

T

)
.
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Hence, the conditional variance equals

V ar

[
N−1∑
i=0

S(ti+1)

S(ti)

∣∣∣∣∣Z
]

=(N2 −N)

(
exp

(
2∆r + 2σ

∆√
T
Z − σ2 ∆2

T

)(
exp

(
−σ2 ∆2

T

)
− 1

))
+N

(
exp

(
2∆r + 2σ

∆√
T
Z − σ2 ∆2

T

)(
exp

(
σ2

(
∆− ∆2

T

))
− 1

))
.

In conclusion, the pricing error is

ε =
e−rT

2

[(
exp

(
2∆r + σ2 ∆2

T

)
Φ(d− 2σ∆)

)(
(N2 −N)

(
exp

(
−σ

2∆

T

)
− 1

)
+N

(
exp

(
σ2∆− σ2∆2

T

)
− 1

))] 1
2

Φ(d)
1
2 . �

4.1.3. Comparative Statics. With the incorporation of the arithmetic weighting feature, the

value of the ESO option (expected rate of return of the manager) decreases substantially.

As illustrated in figure 3, the more time periods are considered, the lower the value of the

Asian Call.

Figure 3. Price of 1
N

Asian calls as a function of N with parameters σ =

0.2, T = 10, r = 0.05 and K = N .

It is seen in figure 4, that the magnitude of the increase in the value caused by the

volatility is much smaller. The price of the Asian call is much less influenced by changes

in σ than the vanilla call.
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Figure 4. 1
N

Asian calls and a plain vanilla call as a function of σ with

parameters N = 20, T = 10, r = 0.05 and K = N for the Asian call and

K = 1 for the plain vanilla call.

Next, we consider the functional relationship between the price of an Asian call and a

vanilla call with respect to the strike price K. We observe that the value of the Asian call

decreases faster than the value of the corresponding plain vanilla call.

The error made by using the lower bound as an approximation for the price of an Asian

Call seems to be negligibly small. Figure 5 plots the maximal error made by using the

lower bound. In absolute terms the error ε is quite small compared to the price of the

contract. In figure 6 we use a Monte Carlo simulation to approximate the true value and

compare it with the bounds. Obviously, the lower bound performs better than the upper

bound.
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Figure 5. Difference between lower and upper bound of 1
N

Asian calls as

a function of σ with parameters N = 20, T = 10, r = 0.05 and K = N .

Figure 6. Price of 1
N

Asian call as a function of σ with parameters N = 10,

T = 10, r = 0.05 and K = N . We use 20000 Monte Carlo simulations.

Contract 3 can be extended easily. For instance, it can be extended by additionally

requiring that the terminal rate of return shall be larger than 1. The economic intuition

behind this contract is that the manager should make no losses in the last period. As

before there does not exist a closed-form solution for the price of this contract but upper

and lower bounds can be derived. We label this new payoff scheme as contract 4.

By the assumption that the contract is traded (or can at least be perfectly hedged by

traded securities) the price equals the expected discounted payoff under the equivalent

14



martingale measure Q:

CA2(K,N) = e−rTE

[N−1∑
i=0

S(ti+1)

S(ti)
−K

]+

1{
S(T )

S(tN−1)
≥1

}


with T = tN .

In figure 7 we plot the upper and lower bounds for contracts 3 and 4. For a better com-

parison we also calculate the price for the two contracts with a Monte Carlo simulation. As

expected introducing the additional restriction of contract 4 lowers the price. Surprisingly,

the price of the new contract is not monotonically increasing in σ any more. For low values

of σ an increase in the volatility can actually decrease the price. In contract 3 the payoff

was increasing in σ as only the positive effect of a higher risk was taken into consideration.

On the contrary a higher σ in contract 4 has two effects. On the one hand there is the

same positive effect on the payoff as in contract 3. On the other hand for a certain range

of σ a higher volatility makes it also more likely that the final return is below 1 and hence

the price becomes lower.

Figure 7. Price of 1
N

Asian call of contract 3 and contract 4 as a function

of σ with parameters N = 5, T = 10, r = 0.05 and K = N . We use 20000

Monte Carlo simulations.

5. Conclusion

We develop two new performance-vested executives’ stock option schemes: Parisian and

Asian scheme. Both schemes are able to effectively prevent a firm’s executives from taking

on too large risks. Furthermore, these schemes make it also less likely for the executives

to manipulate the executives’ stock options in their favor. In order to make ESO compen-

sation effective, Parisian scheme requires the executives to ensure that the rate of return

15



of the firm’s asset remains above a fixed level for at least d length of time, whereas Asian

scheme requires them to achieve a relatively high average rate of return. In the Parisian

case, we achieve closed-form valuation formulae, while in the Asian case, lower and upper

valuation bounds are developed. Under both schemes, we observe that an increase in the

risk level (volatility) does not increase the value of ESOs substantially, hence the incentives

of the executives to take large risks are effectively reduced.

Our analysis has focussed on the valuation of the ESO schemes. It would be interesting

to analyze the welfare implications in a utility based framework. Compared to the current

payoff schemes like American style and plain vanilla ESOs, can the shareholders benefit

from the new schemes?
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Appendix A. Valuation formulae of ESO under the Parisian scheme

As mentioned in the main text, different relation among the initial stock price, the

strike and the barrier leads to different valuation of the parisian options with the use of

the inverse Laplace transformation method: a) K < 1 (the option is in-the-money at the

initial time); b) K ≥ 1 (the option is at- or out-of-the money at the initial time). In both

cases, the value of Parisian up-and-in options can be calculated by using inverse Laplace

transform (c.f. Chesney et. al. (1997)). In case a), the value of Parisian up-and-in option

is given by

e−(r−g+ 1
2
m2)T

S(0)
EP

[
exp{mZT}

[
S(0)eσZT − S(0)K e−gT

]+
1{T+

b <T}

]
=
e−(r−g+ 1

2
m2)T

S(0)

∫ ∞

k

emy(S(0)eσy − S(0)Ke−gT )h2(T, y)dy

=e−(r−g+ 1
2
m2)T

∫ ∞

k

emy(eσy −Ke−gT )h2(T, y)dy

where k = 1
σ

ln(K) and h2(T, y) is described by inverting the corresponding Laplace trans-

form which is given by

ĥ2(λ, y) =
e−y

√
2λ

√
2λψ(

√
2λd)

+

√
2λdeλd

ψ(
√

2λd)

(
e−y

√
2λ
(
N

(
−
√
−2λd+

y − b√
d

)

−N(−
√
−2λd)

)
− e(y−2b)

√
2λN

(
−
√

2λd− y − b√
d

))

with λ denoting parameter of Laplace transform. In case b), the option is initially at- or

out-of-the money. The price of the Parisian up-and-in call can be determined as follows:

e−(r−g+ 1
2
m2)T

S(0)
EP

[
exp{mZT}

[
S(0)eσZT − S(0)K e−gT

]+
1{T+

b <T}

]
=e−(r−g+ 1

2
m2)T

(∫ b

k

emy(eσy −Ke−gT )h1(T, y)dy +

∫ ∞

b

emy(eσy −Ke−gT )h2(T, y)dy

)

Here h1(T, y) is also described by inverting the corresponding Laplace transform:

ĥ1(λ, y) =
e(y−2b)

√
2λψ(−

√
2λd)√

2λψ(
√

2λd)
.
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Appendix B. Contract 3: lower bound

A very good lower bound is achieved by the conditioning approach presented in Rogers

and Shi (1995) and Nielsen and Sandmann (2003). Remember the following inequality:

E

[N−1∑
i=0

S(ti+1)

S(ti)
−K

]+
 =E

E [N−1∑
i=0

S(ti+1)

S(ti)
−K

]+ ∣∣∣∣∣Z


≥E

E [N−1∑
i=0

S(ti+1)

S(ti)
−K

∣∣∣∣∣Z
]+


=Cl,Z(K,T )erT

where Z is an FT -measurable Gaussian random variable.

We show that the prize Cl,Z(K,T ) equals the weighted average of European style call

options with different volatilities and strike prices. Let Z = WT√
T

be a standard Gaussian

random variable. We obtain

Cl,Z(K,N) =e−rTE

E [N−1∑
i=0

exp

((
r − 1

2
σ2

)
∆ti + σ(W (ti+1)−W (ti))

)
−K

∣∣∣∣∣WT√
T

]+


where ∆ti = ti+1 − ti. Remember that for X being another standard Gaussian variable it

holds that

E[X|Z] = E[X] + E[XZ]/σ2
Z [Z − E[Z]]

Denote mi = E[Z(W (ti+1) −W (ti))] = ti+1−ti√
T

. Thus, using well known results for condi-

tional expectations we obtain

E[W (ti+1)−W (ti)|Z] =
ti+1 − ti

T
W (T ) = miZ

Cov[(W (ti+1)−W (ti)), (W (tj+1)−W (tj)]|Z) =

{
∆ti −m2

i if i = j

−mimj otherwise

Hence, the lower bound is given by

Cl,Z(K,N) =e−rTE

E [N−1∑
i=0

exp

(
(r − 1

2
σ2)∆ti + σ(W (ti+1)−W (ti))

)
−K

∣∣∣∣∣WT√
T

= z

]+


=e−rTE

[N−1∑
i=0

exp

(
(r − 1

2
σ2)∆ti + σmiz +

1

2
σ2(∆ti −m2

i )

)
−K

]+


=e−rTE

[N−1∑
i=0

exp

(
r∆ti −

1

2
m2

iσ
2 + σmiz

)
−K

]+


=e−rTE

[N−1∑
i=0

wi exp

(
rT − 1

2
m2

iσ
2 + σmiz

)
−K

]+

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with wi = exp(r∆ti)
exp(rT )

. As mi = ∆ti√
T
> 0 the function wi exp(rT − 1

2
m2

iσ
2 + σmiz) is strictly

increasing and convex in z, taking values from 0 to +∞. Thus

z∗ =

{
z

∣∣∣∣∣
N−1∑
i=0

wi exp(rT − 1

2
m2

iσ
2 + σmiz) = K

}
is unique. Define σ̄i = σmi√

T
and K∗

i = exp{rT − 1
2
m2

iσ
2 + σmiz

∗}. The expression for the

lower bound turns into

Cl,Z(K,N) =e−rT

N−1∑
i=0

E

[
wi

(
exp

(
rT − 1

2
m2

iσ
2 + σmiz

))
1{z≥z∗} − wiK

∗
i 1{z≥z∗}

]

=e−rT

N−1∑
i=0

wiE

[
exp

(
rT − 1

2
m2

iσ
2 + σmiz

)
1{z≥z∗} −K∗

i 1{z≥z∗}

]

=e−rT

N−1∑
i=0

wiE

[
exp

(
rT − 1

2
σ̄i

2T + σ̄iWT

)
1{z≥z∗} −K∗

i 1{z≥z∗}

]

=
N−1∑
i=0

wiCall(T,K∗
i , σ̄i).

Appendix C. Contract 3: upper bound

Applying the conditioning method we can derive a relatively sharp upper bound. De-

noting the pricing error made when applying the conditioning method by ε, the upper

bound may be written as

Cu,Z(K,N) = Cl,Z(K,N) + ε.

Denote the rescaled geometric average by G = N
(∏N−1

i=0
S(ti+1)
S(ti)

) 1
N

= N
(

S(T )
S(0)

) 1
N

. As the

geometric average is no smaller than the arithmetic average it holds that

E

[N−1∑
i=0

S(ti+1)

S(ti)
−K

]+


=E

E
[N−1∑

i=0

S(ti+1)

S(ti)
−K

]+ ∣∣∣∣∣G
1{G<K} + E

[N−1∑
i=0

S(ti+1)

S(ti)
−K

]+ ∣∣∣∣∣G
1{G≥K}


=E

E
[N−1∑

i=0

S(ti+1)

S(ti)
−K

]+ ∣∣∣∣∣G
1{G<K} + E

[[
N−1∑
i=0

S(ti+1)

S(ti)
−K

] ∣∣∣∣∣G
]

1{G≥K}

 .
As before we set Z = WT√

T
and denote by φ(.) the standard normal density function of Z.

Let d be the value of Z for which G = K, i.e.

d =
N

σ
√
T

(
log

K

N
− 1

N

(
r − 1

2
σ2

)
T

)
.
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Therefore, the pricing error at time T takes the form

erT ε =E

E
[N−1∑

i=0

S(ti+1)

S(ti)
−K

]+ ∣∣∣∣∣Z
− [E [N−1∑

i=0

S(ti+1)

S(ti)
−K

∣∣∣∣∣Z
]]+


=E

[
E

[N−1∑
i=0

S(ti+1)

S(ti)
−K

]+ ∣∣∣∣∣Z = z

1{z<d} + E

[[
N−1∑
i=0

S(ti+1)

S(ti)
−K

] ∣∣∣∣∣Z = z

]
1{z≥d}

−

[
E

[
N−1∑
i=0

S(ti+1)

S(ti)
−K

∣∣∣∣∣Z
]]+ ]

=

∫ d

−∞

E
[N−1∑

i=0

S(ti+1)

S(ti)
−K

]+ ∣∣∣∣∣Z = z

− [E [N−1∑
i=0

S(ti+1)

S(ti)
−K

∣∣∣∣∣Z = z

]]+
φ(z)dz

≤1

2

∫ d

−∞

(
V ar

(
N−1∑
i=0

S(ti+1)

S(ti)

∣∣∣∣∣Z = z

)) 1
2

φ(z)dz

=
1

2
E

(V ar [N−1∑
i=0

S(ti+1)

S(ti)

∣∣∣∣∣Z = z

]
1{z<d}

) 1
2 (

1{z<d}
) 1

2


≤1

2

(
E

[
V ar

[
N−1∑
i=0

S(ti+1)

S(ti)

∣∣∣∣∣Z = z

]
1{z<d}

]) 1
2 (
E
[
1{z<d}

]) 1
2 .

In the last step we have applied Hölder’s inequality while in the third step we made use

of the fact that for any random variable U it holds that

0 ≤E
[
U+
]
− E [U ]+

=
1

2
(E[|U |]− |E[U ]|)

≤1

2
E [|U − E[U ]|]

≤1

2
V ar[U ]

1
2 .

Hence, the pricing error ε is given by

ε = e−rT 1

2

(
E

[
V ar

[
N−1∑
i=0

S(ti+1)

S(ti)

∣∣∣∣∣Z = z

]
1{z<d}

]) 1
2 (
E
[
1{z<d}

]) 1
2 .

Now, we derive an expression for the conditional variance of the sum of returns

V ar

[
N−1∑
i=0

S(ti+1)

S(ti)

∣∣∣∣∣Z
]

= E

(N−1∑
i=0

S(ti+1)

S(ti)

)2 ∣∣∣∣∣Z
− E

[
N−1∑
i=0

S(ti+1)

S(ti)

∣∣∣∣∣Z
]2

.
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We introduce the notation ∆Wi = (W (ti+1) −W (ti)). The first term of the variance can

be written as

E

(N−1∑
i=0

S(ti+1)

S(ti)

)2 ∣∣∣∣∣Z


=
N−1∑
i=0

N−1∑
j=0

E

[
exp

(
∆ti(r −

1

2
σ2) + σ∆Wi

)
exp

(
∆tj(r −

1

2
σ2) + σ∆Wj

)
|Z
]

=
N−1∑
i=0

N−1∑
j=0

exp

(
(∆ti + ∆tj)(r −

1

2
σ2) + σ(mi +mj)Z +

1

2
σ2V ar((∆Wi + ∆Wj)|Z)

)

=
N−1∑
i=0

N−1∑
j=0

exp

(
(∆ti + ∆tj)(r −

1

2
σ2) + σ(mi +mj)Z

+
1

2
σ2(∆ti + ∆tj −m2

i −m2
j + 2∆ti1{∆ti=∆tj} − 2mimj)

)
=

N−1∑
i=0

N−1∑
j=0

exp

(
(∆ti + ∆tj)r + σ(mi +mj)Z + σ21{∆ti=∆tj}∆ti −

1

2
σ2(m2

i +m2
j + 2mimj)

)
.

The second term takes the following form:

E

[
N−1∑
i=0

S(ti+1)

S(ti)

∣∣∣∣∣Z
]2

=
N−1∑
i=0

N−1∑
j=0

(
exp

(
(∆ti(r −

1

2
σ2) + σmiZ +

1

2
σ2(∆ti −m2

i )

)

exp

(
(∆tj(r −

1

2
σ2) + σmjZ +

1

2
σ2(∆tj −m2

j)

))
=

N−1∑
i=0

N−1∑
j=0

exp

(
(∆ti + ∆tj)r + σ(mi +mj)Z −

1

2
σ2(m2

i +m2
j)

)
.

In conclusion the conditional variance equals:

V ar

[
N−1∑
i=0

S(ti+1)

S(ti)

∣∣∣∣∣Z
]

=
N−1∑
i=0

N−1∑
j=0

(
exp

(
(∆ti + ∆tj)r + σZ(mi +mj)−

1

2
σ2(m2

i +m2
j)

)

(exp
(
σ2(1{∆ti=∆tj}∆ti −mimj))− 1

))
.

Finally, the pricing error is

ε =
1

2
e−rT Φ(d)

1
2

(N−1∑
i=0

N−1∑
j=0

(
exp

(
(∆ti + ∆tj)r + σ2mimj

)
Φ(d− σ(mi +mj))

(exp
(
σ2(1{∆ti=∆tj}∆ti −mimj))− 1

))) 1
2

.
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Assume that the differences between time periods is constant, i.e. ∆ = ti+1 − ti = T/N

for all i ∈ {0, N − 1}. Under this condition the following expressions simplify to:

mi =
∆√
T

Cov(∆Wi,∆Wj|Z) =

{
∆− ∆2

T
if i = j

−∆2

T
otherwise

z∗ =
N log(K/N)

σ
√
T

− r

√
T

σ
+

1

2

√
Tσ

N

Cl,Z =NerT ( 1
N
−1)Φ

(
−z∗ + σ

√
T

N

)
− e−rTKΦ (−z∗)

ε =
e−rT

2
Φ(d)

1
2

[(
exp

(
2∆r + σ2 ∆2

T

)
Φ(d− 2σ∆)

)
(

(N2 −N)

(
exp

(
−σ

2∆

T

)
− 1

)
+N

(
exp

(
σ2∆− σ2∆2

T

)
− 1

))] 1
2
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