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Abstract 

This paper presents an application of voting geometry to 
individual decision making.  We demonstrate that a number 
of decision anomalies can arise as a natural consequence of 
the aggregation of preferences of different neural systems. We 
present a proof of existence of a set of voting procedures that 
can account for the attraction effect, the similarity effect and 
the compromise effect, and provide an example of one such 
procedure in the form of a modified Borda count. The result is 
an original closed form computational model of 
multialternative choice.  

Keywords: Voting theory; decision-making; Borda count; 
multilaternative choice; 

Introduction 
For nearly 50 years, psychologists have been cataloguing 

violations of the standard assumptions of economic theory: 
that humans exhibit rational, stable, and ordered 
preferences.  As the field has come to a consensus that the 
rational model is a poor descriptor of human behavior, 
researchers have moved from documenting anomalies to 
attempting to model them. 

 To date, the most successful attempt to model decision 
anomalies has been Decision Field Theory (DFT), 
introduced by Busemeyer and Townsend (1993).  Using a 
sequential sampling approach, DFT can account for three of 
the most puzzling decision anomalies: compromise effects, 
attraction effects, and similarity effects. Busemeyer and his 
colleagues have proven that there exists no weighting 
function for a utility model that can effectively capture all 
three of these phenomena (Roe, Busemeyer, Townsend, 
2001). While DFT remains the premier computational 
approach for multi-attribute choice, recent criticism about 
the biological plausibility of the model (Usher & 
McClelland, 2004) has led researchers to try and account for 
the "big three" decision anomalies using different 
techniques.  

  In this paper we propose a model for multi-attribute 
choice derived from the principles of voting geometry.  We 
assume a number of neural systems within an individual's 
brain (i.e. "agents"), which differentially respond to 
different attributes of choice.  For example, some agents 

may attempt to maximize payoff while others prefer to 
minimize risk.  We argue that the "big three" decision 
anomalies come about as a natural consequence of 
aggregating preferences across different agents. 
 
The Big Three 
A very simple laboratory example will be used to represent 
human decision-making in real life (c.f. Roe et al., 2001). In 
this example, the choice set includes a limited number of 
choice options that vary on two attributes. This 
representation simplifies the demonstration of the anomalies 
and makes it easier to analyze decision-outcomes, but the 
findings are applicable to more complex real-life choice 
problems as well (Roe et al., 2001). The choice options are 
represented in terms of different pairs of shoes that vary on 
two attribute dimensions: comfort and style. The ideal shoe 
would be closest to the upper right hand corner of the 
diagram, where the shoes are most stylish and at the same 
time most comfortable. Figure 1 represents the “shoe” - 
choice set, which will be used throughout the entire paper. 
 

 
 

Figure 1: The choice set 
 
Figure 1 provides a geometric representation of a 

hypothetical choice set. Options A, S, and D are in the upper 
left hand corner, which means that they are high on the style 
attribute but low on comfort. D is completely dominated by 
A, while S is similar to A but slightly better in style and 
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slightly worse in comfort. Option C lies exactly between A 
and B and is thus a compromise of the two dimensions. 
Choice B is high on comfort but low on the style attribute.  
 
Attraction effect: The attraction effect, introduced to the 
literature by Huber, Payne and Pluto (1982), occurs when a 
choice set of two dissimilar options receives a new 
alternative that is completely dominated by one of the two 
options.  This increases the attractiveness of the dominant 
option (Simonson, 1989). Consider, for instance, that a new 
brand is introducing a pair of stylish but uncomfortable 
shoes on the market. This new choice option D (Figure 1) is 
completely dominated by option A, which is both more 
stylish and more comfortable than D. In this case the 
probability of choosing the dominant option A will increase 
after D is added to {A, B} (Roe et al., 2001). Thus, the 
introduction of an asymmetrically dominated decoy leads to 
the following preference inconsistency: Pr[A|{A,B}] < 
Pr[A|{A, D, B}]. This violates the principle of regularity: 
that the preference for one option cannot be increased by the 
introduction of a new option (Simonson, 1989).  
 
Compromise effect:  The compromise effect (Simonson, 
1989) occurs when a new option is introduced into a choice 
set of two dissimilar options, and falls in between those two 
options on all relevant dimensions, thus acting as a 
“compromise” option. Typically, the probability of choosing 
the compromise option is greater than the probability of 
choosing either of the extremes. Consider the introduction 
of a shoe that is moderately stylish and comfortable, 
represented as C in Figure 1.  When all three options A, B, 
and C are available, the probability of choosing the 
compromise option C is greater than the probability of 
choosing either of the two extremes: Pr[A|{A, B}] = 
Pr[A|{A, C}] = Pr[B|{B, C}] but Pr[C|{A, B, C}] > 
Pr[A|{A, B, C}] and Pr[C|{A, B, C}] > Pr[B|{A, B, C}] 
(Roe et a., 2001). Thus, the attractiveness of option C is 
enhanced by the presence of A and B.  
 
Similarity effect: The similarity effect, first noted by 
Tversky (1972), occurs when a new option is introduced to a 
choice set containing two dissimilar options. This new 
option is very similar to one of the original options but 
neither dominates it, nor is dominated by it. In the case of 
the two options A and B in Figure 1, the similarity effect is 
produced by the introduction of option S. Shoe S closely 
resembles A, but it is better on the style attribute and worse 
on the comfort attribute. The decision-maker has to decide 
between the stylish yet uncomfortable shoes A and S and 
the very comfortable, but unstylish shoe B. The empirical 
finding in this case is that the introduction of the shoe S will 
take away more buyers from shoe A than from shoe B. This 
can lead to the following preference reversal: Pr[A|{A, B}] 
> Pr[B|{A, B}] but Pr[B|{A, S, B}] > Pr[A|{A, S, B}] (Roe 
et al., 2001). This is an anomaly because the preference 
order of options A and B should be independent from the 
presence of option S.  

 
Voting Theory 

 
Basic characteristics 
Just as different neurons and neural systems in the visual 
system can preferentially respond to stimuli of a particular 
shape or orientation, we posit that different neurons and 
neural systems in the frontal cortex (and other decision 
centers; a.k.a. “agents”) might prefer different attributes 
among a set of options.  Some may attempt to reduce risk, 
others might respond to the maximum possible payoff, etc. 
The decision outcome for the organism as a whole depends 
on the aggregation and evaluation of the preferences of the 
individual agents.  The collection of this information from 
multiple, non-dominant agents can be modeled using voting 
geometry (Saari, 1995). There are an infinite number of 
different procedures for the aggregation of preferences, but 
voting geometry can constrain the space of possible 
procedures and explain how individually rational agents can 
lead to election outcomes that correspond to decision-
making anomalies.  
 
Procedure Lines 
With a choice set of three choices A, B, and C, there are six 
possible preference profiles for each agent:  

1. A > B > C 
2. A > C > B 
3. C > A > B 
4. C > B > A 
5. B > A > C 
6. B > C > A 

These profiles can be represented geometrically in a 
triangle, with each vertex representing a choice option. The 
triangle can then be divided into six equally large regions, 
which represent the specific profiles.  
 

 
Figure 2: Geometrical representation of profiles 

 
Procedure lines are the geometrical representation of 

voting outcomes when employing different aggregation 
procedures for a set of preference profiles (Saari, 1995). A 
positional election with the three candidates A, B, and C is 
defined by the voting vector 
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10 !! s . For a given voting procedure, each choice option 
receives a number of points reflecting its ranking. For 
example, the plurality vector assigns one point to the top 
ranked choice, and no points to any other option: 
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but the lowest ranked option: 

! 

W
AP

3
= (1,1,0).  For voting 

procedures which allow fractional points to middle options 
(e.g. the Borda Count), voting vectors are normalized (Saari, 
1995). 

The procedure line – a geometric representation of the 
possible outcomes that can be generated across all voting 
procedures for a given preference distribution – is defined 
by the line segment connecting the plurality vector and the 
antiplurality vector. Intuitively, since the plurality and 
antiplurality procedures represent the two extremes 
(antiplurality gives full credit to the 2nd place option while 
plurality gives none), every other procedure will lie in 
between those two points.  

Consider an example in which 1/2 of the voters prefer A > 
B > C, 1/3 prefer B > C > A and 1/6 prefer B > A > C. The 
plurality vote assigns one point to the top-ranked choice, 
which is A in the first profile and B in the second and third 
profiles. C does not receive any points. The points are 
multiplied with the fraction of votes received by the choice 
option, thus yielding the following normalized plurality 
vector: 
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computed in the same way, but by assigning half a point to 
all the options except for the bottom ranked one. Thus, the 
normalized antiplurality vector in this case is 
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developed by Saari (1995) to compute the procedure line is 
(1 – 2s) (plurality vector) + 2s (antiplurality vector), with s 
∈ [0, ½]. This yields a line that can be geometrically 
represented inside the triangle represented in Figure 2. The 
voting regions crossed by the procedure line reflect all the 
possible voting outcomes employing different procedures. 
Using the computational approach of procedure lines, it is 
now possible to look at the different predictions of the 
voting model for the similarity, attraction, and compromise 
effects, depending on the voting procedure. 

 
Procedure line reflecting the attraction effect: Consider 
the choice set A, B, and D in Figure 1. A and D are similar 
but A is a dominant alternative.  Thus, no matter what 
dimension an agent cares about, A will always be preferred 
to D. The attraction effect refers to the fact that the 
introduction of D will increase the probability of choosing 
A. For simplicity and clarity, in this demonstration it is 
assumed that the two profiles A > B and B > A are equi-
probable (although the logic holds even without this 
assumption). The introduction of D into choice set {A, B} 
will divide the agents who previously had the preference A 
> B into two groups: A > B > D and A > D > B. The agents 
that had the previous profile B > A only have one possible 
profile: B > A > D, and consequently all the agents that 
chose B > A will now choose B > A > D. This is because A 
dominates D and therefore the profile B > D > A is 
impossible because D > A will never be chosen. This leads 
to the following preference distribution: 

 

1. ¼ A > D > B 
2. ¼ A > B > D 
3. ½ B > A > D 

This yields the plurality vector: 
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plurality outcome lies exactly between A and B on the edge 
of the triangle (Figure 3).  

 
Figure 3: Procedure line for the attraction effect 

 
This indicates that, depending on the voting procedure 

employed, the outcome will be either A ~ B > D or A > B > 
D. The procedure line (Figure 3) indicates that with the 
plurality procedure, A and B will be chosen equally often, 
whereas with any other procedure, the outcome of the vote 
will be A > B > D, which is the preference structure of the 
attraction effect. Thus, the attraction effect arises naturally 
from a voting model, nearly independent of the voting 
procedure adopted.  

 
Procedure line reflecting the compromise effect: Now 
consider the choice set A, B, and C in Figure 1. C lies 
exactly between options A and B, reflecting the fact that it is 
a compromise between the two. Although C is inferior to 
one of the other options in each attribute, according to the 
characteristics of the compromise effect, the probability of 
choosing C should be higher than the probability of 
choosing either A or B.  

The presence of C in choice set {A, B, C) will divide the 
previous two preference profiles A > B and B > A in the 
following way: The agents that preferred A > B care more 
about the “style” dimension than the “comfort” dimension.  
Since C is greater than B on style, those agents will always 
prefer C to B.  Agents that strongly prefer style to comfort 
will prefer A to C and will now have the profile A > C > B 
while others will prefer a balance of style and comfort and 
will have the profile C > A > B. The analog occurs for 
agents that had preferred B > A: the two possible profiles 
are B > C > A and C > B > A. The most conservative 
approach to this demonstration is to consider an equal 
number of agents that value each dimension. This 
distribution leads to the following preference profiles:  

1. 1/3 A > C > B 
2. 1/3 B > C > A 
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3. 1/6 C > A > B 
4. 1/6 C > B > A 

The plurality vector is 
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 The plurality outcome lies at the barycenter of the 
triangle, thus yielding the outcome A ~ B ~ C (indifference). 
The antiplurality outcome indicates that C > A ~ B. The line 
segment representing all the different election outcomes lies 
on the midline between A and B (Figure 4). 

 
Figure 4: Procedure line for the compromise effect 

 
Thus, if the voting model employs plurality vote, then the 

outcome will be complete indifference between the three 
choice options, and each of them will get selected equally 
often. With any other voting procedure, the outcome is C > 
A ~ B, which is the preference structure of the compromise 
effect. Thus, the compromise effect also arises naturally 
from a voting model, nearly independent of voting 
procedure adopted. 

 
Procedure line reflecting the similarity effect: Finally, 
consider the choice set A, S, and B (Figure 1). A and S are 
both very similar, but A is better than S on the comfort 
attribute and S is better than A on the style attribute. 
According to the definition of the similarity effect, the 
introduction of S in the choice set {A, B} should decrease 
the probability of choosing A relative to the probability of 
choosing B. The introduction of S to choice set {A, B} will 
divide the agents who previously had the profile A > B into 
two groups: A > S > B and S > A > B. The fraction of votes 
received by each of these profiles depends on the distance 
between A and S. For simplification, it will be assumed that 
the votes are split evenly between them. The agents who 
previously had the profile B > A will be split into B > A > S 
and B > S > A, reflecting the fact that A and S are very 
similar to each other. This leads to the following preference 
distribution among the agents: 

1. 1/4 A > S > B 
2. 1/4 S > A > B 
3. 1/4 B > A > S 
4. 1/4 B > S > A 

The plurality vector is 
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The plurality outcome is B > A ~ S and the antiplurality 
outcome is A ~ S > B.  The procedure line lies on the 
midline between A and S, thus indicating that no matter 
what procedure employed, the votes will be evenly split 
between these two options (Figure 5). This makes sense, 
since A and S are very similar.  

 

 
Figure 5: Procedure line for the similarity effect 

 
The plurality vote is better at representing the fact that the 

introduction of choice option S into the choice set {A, B} 
will take away votes from A, but will not affect votes for B. 
The votes for A would thus be split in half by the 
introduction of S, and therefore the preference profile B > A 
~ S best reflects the similarity effect. 
 
An example voting procedure: Modified Borda 
Count 

The exploration of the procedure line not only allows an 
intuitive visualization of different voting outcomes across 
procedures, but also provides a valuable mathematical tool 
to determine what type of preference aggregation can 
account for the three decision-making anomalies. For 
example, a voting model cannot use a plurality vote, since 
the plurality procedure cannot account for the attraction or 
compromise effects. A Borda count procedure, which 
assigns 2 points to the top option, 1 point to the middle 
option and 0 point to the bottom option, seems to be well 
suited for the attraction and compromise effects, but it 
cannot fully account for the similarity effect. However a 
procedure that lies between Borda count and plurality vote 
will be able to account for the big three anomalies.  

One such procedure would be a modification of the Borda 
count, assigning 3 points to the top ranked option (instead of 
2 as in Borda count), 1 point to the middle-ranked option, 
and 0 points to the lowest ranked option. This procedure 
assures that the second-ranked option still receives points, 
but that the distribution places more emphasis on the top-
ranked choice option. Looking at the procedure lines, this 
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modified Borda count can account for the three anomalies of 
decision-making. The procedure lies between the Borda 
count and a plurality vote, because it assigns more weight to 
the top-ranked option than Borda count, but not as much 
weight to the top option as the plurality vote (which does 
not give any points to the second-ranked option at all). Of 
course, this procedure is only one example of an infinite 
number of aggregation processes lying between Borda count 
and plurality.  However, this procedure will serve as a 
demonstration of how voting models can account for the 
three effects.  
 
How Voting Theory accounts for the Attraction effect: 
Consider the choice set A, D, and B (Figure 1) with the 
three possible profiles A > D > B, B > A > D, and A > B > 
D. These profiles reflect the fact that A always dominates D. 
As discussed earlier the preference distribution for this case 
is as follows: 
 

Borda  1/4 1/4 1/2 
3 A A B 
1 D B A 
0 B D D 

 
For n agents, the modified Borda Count procedure yields 

2n points for option A (.25*3+.25*3+.5*1), 1.75n points for 
option B (.5*3+.25*1+.25*0), and .25n points for D 
(.25*1+.25*0+.5*0). This shows that the presence of D 
increases the attractiveness of option A in contrast to B. 
Thus, Pr[A|{A,B}] < Pr[A|{A,B,D}], characteristic of the 
attraction effect, which violates the principle of regularity.  
 
How Voting Theory accounts for the Compromise effect: 
Now, consider the choice set A, B, and C in Figure 1, with 
C being the compromise option between A and B. The 
profiles in this case are A > C> B, C > A > B, C > B > A 
and B > C > A. As discussed earlier, the preference 
distribution among the four possible profiles is as follows: 
 

Borda 1/3 1/6 1/6 1/3 

3 A C C B 
1 C A B C 
0 B B A A 

  
Assuming that there are n agents contributing to the 

decision outcome, the voting procedure using the modified 
Borda count will assign 7/6n points to options A and B 
(0*1/3+0*1/6+1*1/6+3*1/3, for each) and 10/6n points to 
option C (1*1/3+1*1/3+3*1/6+3*1/6), reflecting the fact 
that C will get chosen more often than either A or B. The 
profiles also reflect the fact that in the absence of option C, 
options A and B will receive the same amount of points. 
Thus, the organism is not biased toward either one of the 
options at the beginning of the vote, so Pr[A|{A, B}] = 
Pr[A|{A, C}] = Pr[B{B, C}] but Pr[A{A, B, C}] < Pr[C{A, 

B, C}] and Pr[B|{A, B, C}] < Pr[C{A, B, C}]. This 
violation of the independence of irrelevant alternatives 
(Tversky & Simonson, 1993) is characteristic of the 
compromise effect.  

The fractions of agents representing each profile were 
chosen in the most conservative way possible.  However, 
their manipulation will allow us to make predictions about 
the behavior of the compromise effect when those fractions 
change. In the case when A and B move farther away from 
C, the relative fraction of agents representing C should 
increase as well. The increase in distance between the 
extreme options will thus lead to a stronger compromise 
effect. This is the opposite prediction of multialternative 
decision field theory (Roe et al., 2001) and suggests an 
empirical method for dissociating the models. 
 
How Voting Theory accounts for the Similarity effect: 

Finally, consider the choice set A, B and S (Figure 1), 
with S being very similar to A. The possible profiles in this 
case are A > S > B, S > A > B, B > A > S  and B > S > A. 
As discussed earlier, the preference distribution among the 
four possible profiles is as follows: 

 
Borda 1/4 1/4 1/4 1/4 

3 A S B B 

1 S A A S 

0 B B S A 

 
Assuming n agents, the modified Borda count procedures 

will assign 5/4n points to options A and S 
(3*1/4+1*1/4+1*1/4+0*1/4, for each), and 6/4n to option B 
(3*1/4+3*1/4+0*1/4+0*1/4). This vote reflects the 
characteristics of the similarity effect: the introduction of S 
into the choice set {A, B} takes away points from A and 
thus creates the following preference reversal: Pr[B|{A, S, 
B}] > Pr[A|{A, S, B}]. The modified Borda count procedure 
unlike the traditional Borda count is thus able to model the 
similarity effect accurately.  

When a compromise option such as option C (discussed 
previously) moves in the direction of one of the two options 
and thus becomes more similar to it, the compromise effect 
turns into the similarity effect, as the two similar options 
will have to share the votes. Thus, moving an option from 
position C to position S (Figure 1) cancels out the 
compromise effect. B will receive more points than either A 
or S, as shown here. The fractions of agents representing 
each profile were chosen in the most conservative way 
possible for the present demonstration and the results tend 
to be robust across preference ratios. However, their 
manipulation will allow us to make predictions about 
exactly when a compromise option becomes similar enough 
to another option to cease invoking the compromise effect.  
By analyzing the fraction of agents representing a profile 
and the influence of manipulating distances on this fraction, 
it is possible to model the transition between different 

With n agents: 
A = 2 n 
B = 7/4 n 
D =1/4 n 

With n agents: 
A = 7/6 n 
B = 7/6 n 
C = 10/6 n 

With n agents: 
A = 5/4 n 
B = 6/4 n 
S = 5/4 n 

639



effects and make predictions about the decision strategies 
employed. In other words, voting models can be used to 
make novel predictions about the boundary conditions and 
relationships between different decision anomalies. 
 
Conclusion 
The mathematical analysis of procedure lines proved the 
existence of voting procedures that can account for the 
attraction, the similarity and the compromise effect. One 
example, a modified Borda Count has been presented here. 
Voting geometry provides a novel approach to individual 
decision-making and is attractive for various reasons. First, 
a connectionist model based on voting geometry seems 
plausible from a biological perspective. The assumption of 
multiple independent agents parallels the literature on multi-
agent systems, which have been broadly applied to a 
number of problems of cognition (e.g. Sun, 2001). 
Additionally, the theory is easily extendable and could 
accordingly provide explanations for other phenomena, such 
as the employment of different decision-making strategies 
under time constraints.  

Consider for example the procedure line representing the 
compromise effect (Figure 4).  Decision Field Theory 
predicts that the difference of choice probability between 
the compromise option C and the extreme options A and B 
increases with deliberation time (Roe et al., 2001). In other 
words, the longer one deliberates, the stronger the 
preference of C over A and B. This effect can be modeled 
by moving toward option C on the procedure line in Figure 
4, which means that the procedure employed becomes more 
and more like the antiplurality vote. In other words, under 
strong time constraints, only an agent’s top choice is 
considered; as more time is spent in deliberation, secondary 
options are given more weight.  This logic provides a 
computational account of the model and empirical findings 
of Payne, Bettman, and Johnson’s (1993) notion of the 
adaptive decision maker.  

Future extensions of the model could come in many 
forms.  Currently the model has no way to take into account 
memories of previous preference states.  Additionally, 
implementations of this model should consider the 
stochastic nature of choice (Busemeyer & Townsend, 1993).  
Ideally the model would predict probability distribution 
across choices as opposed to simply determining the most 
frequently chosen option.   It would also be worthwhile to 
look at additional anomalies aside from the big three, and 
see if there might be further constraints on the space of 
possible voting procedures that could account for human 
decision making.  Future research might also focus on 
exploring the effects of different assumptions about the 
distributions of preferences of agents, and considering 
alternative voting procedures.   

Although the present voting model is very simplified, it 
can nonetheless account for the three main anomalies found 
in decision-making. The next step in the exploration of the 
voting model would thus be to construct a connectionist 
model of the voting procedure and to look at the predictions 

made by the model for other phenomena, such as strategy 
switching and the evolution of decision-outcomes over time.  
Future work should also attempt to empirically tease apart 
the predictions of a voting model and those from other 
computational approaches to multi-attribute choice (Roe et 
al, 2001; Usher & McClelland, 2004).   
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