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LETTER Communicated by Kendrick Kay

Spatial Attention Enhances Crowded Stimulus Encoding
Across Modeled Receptive Fields by Increasing
Redundancy of Feature Representations

Justin D. Theiss
theissjd@berkeley.edu
Joel D. Bowen
joel_bowen@berkeley.edu
Michael A. Silver
masilver@berkeley.edu
University of California, Berkeley, CA 94720, U.S.A.

Any visual system, biological or artificial, must make a trade-off between
the number of units used to represent the visual environment and the spa-
tial resolution of the sampling array. Humans and some other animals are
able to allocate attention to spatial locations to reconfigure the sampling
array of receptive fields (RFs), thereby enhancing the spatial resolution of
representations without changing the overall number of sampling units.
Here, we examine how representations of visual features in a fully con-
volutional neural network interact and interfere with each other in an
eccentricity-dependent RF pooling array and how these interactions are
influenced by dynamic changes in spatial resolution across the array. We
study these feature interactions within the framework of visual crowd-
ing, a well-characterized perceptual phenomenon in which target objects
in the visual periphery that are easily identified in isolation are much
more difficult to identify when flanked by similar nearby objects. By sep-
arately simulating effects of spatial attention on RF size and on the den-
sity of the pooling array, we demonstrate that the increase in RF density
due to attention is more beneficial than changes in RF size for enhancing
target classification for crowded stimuli. Furthermore, by varying target/
flanker spacing, as well as the spatial extent of attention, we find that
feature redundancy across RFs has more influence on target classification
than the fidelity of the feature representations themselves. Based on these
findings, we propose a candidate mechanism by which spatial attention
relieves visual crowding through enhanced feature redundancy that is
mostly due to increased RF density.

1 Introduction

The cerebral cortex is composed of a hierarchy of processing areas, each con-
taining overlapping neuronal receptive fields (RFs) that tile the visual field
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Crowded Stimulus Encoding Across Modeled Receptive Fields 191

at different spatial scales. The visual systems of humans and other animals
use spatial attention to dynamically reconfigure the size and density of RFs
(Klein, Harvey, & Dumoulin, 2014; Womelsdorf, Anton-Erxleben, Pieper, &
Treue, 2006) to enhance sampling of stimuli (Anton-Erxleben & Carrasco,
2013) and perception (Carrasco, 2011) at attended locations.

Physiologically, directing spatial attention to one of multiple objects
within a single RF can bias responses in favor of the attended object (Desi-
mone & Duncan, 1995). Specifically, attending to a preferred object reduces
the suppressive effect of simultaneous presentation of a nonpreferred object
in the RF, whereas attending to a nonpreferred object enhances its suppres-
sive effect (Reynolds, Chelazzi, & Desimone, 1999). Such attentional effects
have been observed at the single-cell level as a scaling of neuronal responses
to an attended stimulus by a gain factor (McAdams & Maunsell, 1999), as
well as a shrinking of the neuronal RF around an attended stimulus (Anton-
Erxleben, Stephan, & Treue, 2009).

In an fMRI study in humans, Vo, Sprague, and Serences (2017) found that
attention-related shifts in RF position were more important than changes in
RF size for population-level encoding of fine spatial information. Reynolds
and Heeger (2009) provided a unifying model of attention in which the
neuronal responses to a stimulus are normalized by a suppressive popu-
lation response and multiplied by a spatial attention field. In addition to
predicting neuronal responses, the model also accounts for the observed
changes in RF properties with spatial attention in both humans and mon-
keys (Klein et al., 2014; Womelsdorf et al., 2006) by modeling attention as a
gaussian multiplication of an attention field with individual RFs. The nor-
malization model of attention therefore provides a computational frame-
work for studying the effects of spatial attention on RF properties, stimulus
encoding, and task performance.

Reconfiguration of RFs by spatial attention is perhaps more relevant to
stimulus encoding in the visual periphery, where RFs are larger and less
densely arranged compared to foveal RFs (Gattass, Gross, & Sandell, 1981;
Gattass, Sousa, & Gross, 1988). As such, limits on the size and density of RFs
have been theorized to contribute to the perceptual phenomenon known as
visual crowding (Levi, 2008; Whitney & Levi, 2011; Rosenholtz, 2016), in
which target objects in the visual periphery that are easily identified in iso-
lation are more difficult to identify when flanked by similar nearby objects.
Interestingly, flanking stimuli that are presented more peripherally, relative
to a target stimulus location, crowd more than those that are presented more
foveally (Banks, Bachrach, & Larson, 1977; Petrov & Meleshkevich, 2011),
which suggests that target and flanker features encoded in larger RFs may
be spatially overintegrated. Indeed, visual crowding has been modeled as
a pooling mechanism in which relative spatial information of features is
discarded (Balas, Nakano, & Rosenholtz, 2009; Freeman & Simoncelli, 2011;
Van den Berg, Roerdink, & Cornelissen, 2010; Keshvari & Rosenholtz, 2016).
However, there are additional aspects of crowding that cannot be explained
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192 J. Theiss, J. Bowen, and M. Silver

by a simple pooling model, such as substitution errors in which subjects re-
port one of the flankers instead of the target (Hanus & Vul, 2013; Ester, Klee,
& Awh, 2014; Coates, Bernard, & Chung, 2019), categorical target/flanker
effects (Reuther & Chakravarthi, 2014), global/contextual effects (Manassi,
Sayim, & Herzog, 2012; Herzog, Sayim, Chicherov, & Manassi, 2015), and
holistic effects (Farzin, Rivera, & Whitney, 2009).

It has further been shown that pre-cueing spatial attention to the tar-
get location can relieve crowding in humans (Scolari, Kohnen, Barton, &
Awh, 2007; Yeshurun & Rashal, 2010; Albonico, Martelli, Bricolo, Frasson,
& Daini, 2018) and improve performance on other peripheral visual tasks
(Yeshurun & Carrasco, 1998; Yeshurun, Montagna, & Carrasco, 2008; Barbot
& Carrasco, 2017). Conceptually, these effects of attention can be viewed as
changing the spatial extent of a “perceptual window” (Sun, Chung, & Tjan,
2010) or as an attraction of RFs (Baruch & Yeshurun, 2014) to enhance stim-
ulus encoding, similar to the gaussian attention field that has been used to
account for modulation of RF properties by attention (Klein et al., 2014;
Womelsdorf et al., 2006). Moreover, similar studies have shown that the
size of an attention cue has a significant impact on performance on periph-
eral tasks (Yeshurun & Carrasco, 2008; Albonico et al., 2018). In addition,
He, Wang, and Fang (2019) recently demonstrated that following percep-
tual learning, decreases in RF size of individual fMRI voxels in cortical area
V2 correlated with improved performance on a crowding task. However, a
mechanistic account of how spatial attention alleviates visual crowding has
not yet been established.

When flanker and target features are within the same set of RFs, this
should result in greater competition for processing compared to cases in
which the flanker and target are not in the same set of RFs. We define two
metrics, fidelity and redundancy, to characterize this competition and its
contributions to performance on a crowding task. Feature fidelity is the sim-
ilarity of the encoded features of an isolated target compared to those of a
target crowded by flankers. Feature redundancy is the average number of RFs
that sample a target feature in a crowded stimulus, regardless of its fidelity.

There are multiple ways that structural properties of an array of RFs
might enhance encoding or performance on a visual crowding task. At
one extreme, signals from individual small and minimally overlapping RFs
could have strong feature fidelity within individual RFs due to low levels of
competition between target and flanker features, which would be expected
to result in good performance. At the other extreme, signals from large and
highly overlapping RFs could have poor fidelity at the level of individ-
ual RFs, but when combined, they might maintain a high-quality encoding
based on redundant representation of features across pools of RFs, which
would also lead to good performance. Although multiple studies have
described the effects of spatial attention on RF properties, it is currently
unclear how changes in feature fidelity and redundancy due to spatial at-
tention may affect downstream processing and perception.
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Crowded Stimulus Encoding Across Modeled Receptive Fields 193

In this study, we extend the conceptual framework of the normalization
model of attention (Reynolds & Heeger, 2009) to investigate how attention-
dependent changes in RF size and position relate to the fidelity and redun-
dancy of feature representations and to downstream processing of crowded
stimuli. Specifically, we simulated a visual crowding task in which a target
stimulus in the peripheral visual field was surrounded by various flank-
ing stimuli. We measured target classification accuracy, feature fidelity, and
feature redundancy over a range of target/flanker spacings and spatial
extents of a 2D gaussian attention field. Using a novel technique for simu-
lating cortical RFs within a convolutional neural network (CNN), we char-
acterized the independent contributions of feature fidelity and redundancy
to perception of crowded stimuli. Following the conventions proposed by
Kording, Blohm, Schrater, and Kay (2020), we aimed to create a computa-
tional model that inspires experiments and provides macroscopic realism.
We discuss and interpret our findings within the context of previous neu-
rophysiological, psychophysical, and computational modeling studies.

2 Materials and Methods

2.1 Model Description.

2.1.1 Theoretical Framework. Following the normalization model of atten-
tion (Reynolds & Heeger, 2009), we assume that changes in position and size
of RFs reflect changes in the responses of populations of neurons. As such,
we used a dynamic RF pooling mechanism in order to model attention-
dependent effects on visual processing and representations. Furthermore,
in order to assess performance on a target identification task, we defined a
selection mechanism that simulated a population of neurons that process
RF outputs via gaussian “cortical” weights. Finally, the pooling mechanism
in our model is based on the assumption that competition for processing
within and across RFs is the driving force of crowding. However, we ac-
knowledge there are other aspects of crowding, such as global or context
effects (Manassi & Whitney, 2018) that are not addressed in our model.

2.1.2 Convolutional Neural Network Model. We trained a three-layer fully
convolutional feedforward neural network to classify grayscale handwrit-
ten digits (28 × 28 pixels; MNIST: LeCun, Bottou, Bengio, & Haffner, 1998).
Each convolutional layer in the neural network takes an image (or stack of
images) as input and decomposes it into a set of feature maps, with each
pixel in the feature map indicating the relative presence or absence of that
feature. These feature maps are then passed through a nonlinear activation
function (rectified linear unit (ReLU) or softmax; see Table 1). Finally, a pool-
ing operation is applied to reduce the image size of the feature maps. Typi-
cally, this involves taking the maximum value within subsets of pixels (e.g.,
2 × 2 subsets of pixels to reduce image height and width by 50%).
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194 J. Theiss, J. Bowen, and M. Silver

Table 1: Model Architecture Used for Training.

Input Output Conv Activation Pool

1 32 5 × 5 ReLU Max 2 × 2
32 64 5 × 5 ReLU Max 2 × 2
64 10 4 × 4 Softmax None

Although max-pooling is commonly used in the machine learning liter-
ature, it is worth noting that it is unlikely to be an optimal pooling mech-
anism used by populations of visual cortical neurons (Chen, Geisler, &
Seidemann, 2006; Simoncelli & Olshausen, 2001). Instead, Chen et al. (2006)
determined that an optimal pooling mechanism would have spatial antago-
nism (e.g., center-surround) in RFs in order to decorrelate neural responses.
However, given substantial differences between the number of neurons
in a given visual cortical area and the number of pixels in a given layer
of a CNN representing a portion of the visual field, it is unclear how to
implement a center-surround pooling mechanism within 2 × 2 subsets of
pixels.

We trained our model for 10 epochs (10 full passes through a training set
of 60,000 images), with a mini-batch size of 10, using supervised learning for
digit classification with backpropagation (stochastic gradient descent with
a learning rate of 0.001 and momentum of 0.9). The trained model achieved
a test set error rate of 0.96% (100 − classification accuracy) on a held-out
test set of 10,000 images. Table 1 shows the number of channels, activation
functions, and pooling operations for each layer used during training.

The trained model was then used to extract features to be studied in
crowding experiments in which multiple digits are simultaneously pre-
sented. In order to simulate peripheral vision for these crowding experi-
ments and therefore provide the model with macroscopic realism (Kording
et al., 2020), we replaced the max-pooling function in the second layer with
an RF pooling array (see Figure 1, described below). We chose the second
layer for this because the weights in this layer are more likely to represent
unique fragments of the target digit that are shared across different dig-
its, compared to the first-layer weights (which convolve over an area much
smaller than a digit) and the third-layer weights (which convolve over an
entire digit). Therefore, the second-layer weights better reflect competition
between features within RFs. By training the model on individual 28 × 28
pixel digits without the RF pooling array, we ensured that only the size
and density of RFs would affect stimulus encoding during the crowding
experiments.

2.1.3 Receptive Field Pooling. Unlike a typical max-pooling layer, RF pool-
ing occurs within RFs of variable size. As shown in Figure 1 for an example
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Crowded Stimulus Encoding Across Modeled Receptive Fields 195

Figure 1: The three-layer fully convolutional neural network was trained to
classify handwritten digits, with the softmaxed values in the output vector sig-
nifying the confidence of the classification for each digit. Flanking digits (red)
were presented at various locations around the central target digit (blue). To
model peripheral visual processing, we implemented a pooling operation on
an RF array that simulates the eccentricity dependence of RFs in human visual
cortex (here, eccentricity increases from left to right, with the fovea centered on
the left edge of the input image). Feature maps in the second layer were spatially
pooled within each RF separately (as shown for the highlighted example RF).
Target (blue) and flanker (red) features compete within each RF, and the maxi-
mum value (shown here in white) in each masked feature map is retained while
all other pixels were set to zero. In order to classify the target, the second-layer
features in each RF were proportionately weighted based on the RF’s cortical
distance from the target (see equation 2.3), simulating 2D gaussian connections
to a third-layer population of neurons that is centered on the target digit. Values
within the brackets for the given RF indicate estimates of the relative presence
or absence of the respective feature representations shown in the figure.

RF, responses in the second-layer feature maps are pooled separately per
RF to obtain the maximum response per channel within the RF. In order to
pool across each individual RF, we define an array with shape (receptive
fields × height × width) that contains a mask that represents the center lo-
cation (μ) and size (σ ) for each RF (i.e., a value of 1 for pixels corresponding
to the RF and 0 elsewhere). An input of shape (batch × channels × height
× width) can then be masked by the pooling array to obtain the responses
for each RF separately, with a resulting shape of (batch × channels × recep-
tive fields × height × width). We then retain only the pixel with the maxi-
mum value within each channel of the RF, maintaining its spatial location,
while setting all other pixels within each channel to zero (see Figure 1). The
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196 J. Theiss, J. Bowen, and M. Silver

output of this RF pooling operation is therefore a sparse array of feature
maps, with each feature map containing a single value per RF. As a result,
features within the same RF compete for processing within, but not across,
channels. The RF pooling step is followed by a typical max-pooling oper-
ation to obtain a subsampled output that matches the output size of the
original layer used during training (i.e., 2 × 2 max-pooling, Table 1).

Using this approach, we maintain the spatial organization of the feature
maps while pooling information with variable spatial resolution across the
image. This allows us to separately examine the outputs across RFs (to as-
sess redundancy of stimulus encoding) as well as the interactions within
individual RFs (to assess fidelity of stimulus encoding). Finally, since each
RF is defined by its μ and σ values, the RF array can be dynamically up-
dated by allocation of attention to change the center positions and/or sizes
of each RF using equation 2.4 (described in section 2.2).

2.1.4 Spatial Organization of the RF Pooling Array. The RF pooling array
is organized into concentric rings that expand from a central point (fovea;
left edge of Input image in Figure 1), with the circular RFs in each ring in-
creasing exponentially in size as a function of eccentricity. Each RF center μ

and size σ is determined by the following equations:

μ =
(

1 + s
1 − s

)
en−1 ·

(
cos(θ )
sin(θ )

)
, σ =

(
1 + s
1 − s

)
en−1 ∗ s (2.1)

where θ is the polar angle of the RF with respect to a reference axis expand-
ing from the fovea, en−1 is the eccentricity of the radially adjacent and more
foveal RF, and s is the eccentricity-based scaling factor. For our model, the
scaling factor is 0.2, based on fMRI population-level RF measurements from
human visual cortical area V2 (Wandell & Winawer, 2015). However, we do
not assume or require a one-to-one relationship between feature maps in
our model and neural responses in visual cortex. In our model, increasing
the scaling factor would simply lead to an increase in size and a decrease in
density of RFs as a function of eccentricity.

We presented stimuli at different locations in the visual periphery by
applying a horizontal or vertical offset of the RF pooling array (see Figure
1). Specifically, we shifted the RF pooling array by 60 pixels in the image
space, resulting in a target eccentricity of 3 degrees of visual angle (DVA),
with 1 DVA defined as 20 pixels, or the approximate width of an MNIST
digit. In order to reduce bias related to the initial organization of RFs in
the pooling array, we randomly rotated the RFs about the fovea (maximum
rotation was half the angle between two eccentrically adjacent RFs), and
we randomly jittered the input image (maximum jitter was 5 pixels, or 0.25
DVA) for each stimulus image.
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Crowded Stimulus Encoding Across Modeled Receptive Fields 197

2.1.5 Weighting of RF Features for Digit Classification. In order to simulate
peripheral vision while maintaining spatial relationships among features in
image space, we weighted RF features based on their respective locations
in “cortical space” (see Figure 1). This weighting procedure simulates a se-
lection mechanism in which pooled features in one location are enhanced
relative to pooled features from other locations in the image, allowing the
model to selectively classify a target object among flanking objects. To con-
vert from eccentricity eimage and polar angle θimage values in image space to
eccentricity ecortical and polar angle θcortical values in cortical space, we used
the following relationships, which are derived from the inversion of the ex-
ponential expansion in equation 2.1:

ecortical = 1
ln

( 1+s
1−s

) ∗ ln
(
eimage

)
,

θcortical = 1
ecortical

∗ θimage

θring
, (2.2)

where θring is the polar angle between the centers of adjacent RFs in the same
ring. Note that in image space, the arc length between adjacent RFs in a more
peripheral ring is larger than the arc length between RFs in a more foveal
ring, but in cortical space, these arc lengths are independent of eccentricity.

With this approach, we assume that the third convolutional layer rep-
resents a population of neurons centered on the target digit location and
has 2D gaussian connections (in cortical space) to the second-layer RF out-
puts. Specifically, we computed digit classification by first passing a stimu-
lus image through the first two convolutional layers of the model and the
RF pooling array. We then weighted the outputs of each RF by a 2D gaussian
in cortical space (see Figure 1):

wRF (x, y) = 1
2πσ 2

w

exp
(

− (x − xw )2 + (y − yw )2

2σ 2
w

)
(2.3)

where x and y are the cortical space coordinates for a given RF center, xw

and yw represent the cortical space coordinates of the 2D gaussian weight-
ing function, and σw represents the size of the weighting function in cortical
space. We set the values of xw and yw to be the target location (in cortical
space) and σw to 1. The weighted features were then passed through the
third layer of the network, and we computed target classification by select-
ing the feature class with the greatest value across the image space in the
output layer (also known as global max pooling). This approach provides
three benefits: (1) it is a mechanism of selection of the target digit that could
be employed in visual cortex, (2) it does not require additional training or
manipulation of the data set, and (3) it facilitates comparison of equivalently

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/34/1/190/1977782/neco_a_01447.pdf by R
am

ona M
archand on 06 January 2022



198 J. Theiss, J. Bowen, and M. Silver

weighted RFs across experiments that vary target/flanker spacing and the
spatial extent of attention (see section 3).

2.1.6 Model Summary. In summary, a fully convolutional neural network
(see Table 1) was first trained to classify 28 × 28 individual MNIST digits,
and the learned weights were then fixed for all experiments. To simulate pe-
ripheral vision, we created an eccentricity-dependent RF pooling array (see
Figure 1) with an eccentricity scaling factor of 0.2 and a horizontal or vertical
offset. For all experiments, the RF pooling array replaced the max-pooling
operation after the second convolutional layer (see Table 1). Although the
exponential nature of the RF pooling array is important for accurately simu-
lating peripheral vision, the specific values of the eccentricity scaling factor
and the pooling operation are not important factors for studying the effects
of crowding on task performance in our model.

In order to simulate a target-identification task in the periphery (e.g., In-
put in Figure 1), we used a 2D gaussian weighting function in cortical space
as a selection mechanism to classify the target among flanking digits. The
use of cortical weighting in our model is similar to asking a human partic-
ipant to report the identity of the central digit as opposed to the flankers.
Therefore, we weighted values pooled by RFs inversely proportional to the
cortical distance from the target (i.e., RFs closer to the target had greater
weights than RFs farther from the target). Importantly, we used the same
weights for all experiments (i.e., we did not recalculate the weights follow-
ing attentional modulation of RF properties) to ensure that any changes in
the model’s ability to classify a target digit were driven primarily by the
structural properties of the RF pooling array. The weighted features were
then passed through the final convolutional layer, and we computed target
classification by selecting the feature class with the greatest value across the
image space in the output layer.

2.2 Experimental Design and Statistical Analyses.

2.2.1 Visual Crowding Experiment. Inspired by stimuli used in perceptual
experiments on visual crowding, we employed a classification task in which
the target object is closely surrounded by flanking objects. We constructed
crowded stimuli from a balanced test set of 10,000 MNIST digits that were
not used during training. We randomly chose target digits and placed them
at the center of the stimulus image, and we randomly chose flankers from
nontarget classes. Target/flanker spacing was measured center-to-center.
Figure 2 illustrates the four configurations we used in this study (outlined
by colored boxes). In this example, the RF pooling array is offset horizon-
tally. The inner (yellow), outer (blue), and radial (green) configurations have
flankers at different eccentricities than the target, and the tangential (red)
configuration has flankers at approximately the same eccentricity as the
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Crowded Stimulus Encoding Across Modeled Receptive Fields 199

Figure 2: Left: Examples of crowded stimuli (target/flanker spacing = 1.5
DVA). The fixation point in this example is three DVA to the left of the cen-
tral target digit (i.e., the left edge of the image). Gray circles show locations and
sizes of individual RFs, and colored boxes outline the four unique configura-
tions. Right: Target classification accuracy as a function of target/flanker spac-
ing for each configuration. Line and symbol colors correspond to the box col-
ors on the left. The black line indicates accuracy for targets presented without
flankers. Chance performance is 0.1 (1 out of 10 possible digits). Error bars are
bootstrapped 95% confidence intervals.

target. Note that the RFs that sample the peripheral flanking digit are larger
and the RFs that sample the foveal flanking digit are smaller.

We offset the RF pooling array relative to the stimulus image so that
the location of the target at the center of the image corresponds to 3 de-
grees eccentricity. Additionally, we averaged all results over the simulated
right and left horizontal meridians (an array offset horizontally to the left
or right, respectively) and the lower and upper vertical meridians (an array
offset vertically up or down, respectively) to account for asymmetries in the
handwritten MNIST digits.

2.2.2 Attentional Modulation of RF Properties. We simulated spatial atten-
tion in our model by modifying the center locations (μ) and sizes (σ ) of the
RFs in the array. Following the normalization model of attention (Reynolds
& Heeger, 2009), Klein et al. (2014) demonstrated that multiplying a 2D
gaussian attention field by a 2D gaussian population-level (single fMRI
voxel) RF provides a good model of the effects of spatial attention on voxel
RF locations and sizes in human visual cortex. Specifically, they modeled
the effects of spatial attention as changes in the σ s and μs for the set of
voxel RFs within a given cortical region:
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200 J. Theiss, J. Bowen, and M. Silver

Figure 3: Left: RF pooling array at the minimum attention field extent. Middle:
RF pooling array at the maximum attention field extent. Black cross indicates the
attended target location. A 1D slice of the gaussian attention field is displayed
above the RF array for both 1 and 3 DVA examples. Right: Target classification
accuracy as a function of the spatial extent of the attention field for the four
target/flanker configurations. The “infinity” point corresponds to no attention
field applied to the RF array. Target/flanker spacing was fixed at 1 DVA. The
black line indicates accuracy for targets presented without flankers. Error bars
are bootstrapped 95% confidence intervals.

μ = μRFσ 2
AF + μAFσ 2

RF

σ 2
AF + σ 2

RF

, σ 2 = σ 2
RFσ 2

AF

σ 2
RF + σ 2

AF

, (2.4)

where AF and RF index the attention field and RF kernels, respectively. De-
creases in the spatial extent of the attention field (i.e., smaller values of σAF)
cause RFs to become smaller and more densely packed around the center of
the attention field (see the left and center panels of Figure 3). To study the ef-
fects of this simulated attentional allocation, we empirically varied the size
of σAF and computed new values of σRF and μRF for each RF in the pooling
array via the gaussian multiplication described above. However, we do not
assume the range or scale of σAF used in our experiments has a one-to-one
relationship with the full range of attentional modulation in humans.

2.2.3 Redundancy and Fidelity Metrics. For crowded visual displays, RFs
containing target representations often also contain flanker representations,
leading to competition within individual RFs. RFs with a strong target rep-
resentation might contribute to target classification because they provide a
high-fidelity signal for target features. On the other hand, individual RFs
with corrupted target representations might still contribute to target classi-
fication by sampling the target features in a manner that is redundant with
other RFs. For simplicity, we call these two types of target feature interac-
tions fidelity and redundancy, respectively.
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Crowded Stimulus Encoding Across Modeled Receptive Fields 201

We used the outputs of the RF pooling array to obtain vectorized sets
of the pooled features for each target-containing RF when the target was
presented alone ut , when the flankers were presented alone u f , and when
the target was crowded by flankers u(t+ f ). In order to make comparisons
across changes in attentional allocation using the same RFs, the indices of
the target-containing RFs for these metrics were calculated from the base-
line condition with no attention (equivalent to infinite attention field ex-
tent). For the fidelity metric, we measured how similar the target signal was
in the absence of flankers compared to when it was corrupted by the flanker
features for each RF. Specifically, we defined feature fidelity (F) as the cosine
similarity between the uncorrupted (no flankers) target features ut and the
corrupted target features u(t+ f ) − u f , concatenated across target-containing
RFs,

F = 〈ut, (u(t+ f ) − u f )〉
‖ut‖2‖(u(t+ f ) − u f )‖2

, (2.5)

where ‖ · ‖2 is the Euclidean norm and 〈·, ·〉 represents the dot product of
two vectors. Fidelity values closer to one indicate that the pooled target fea-
tures were less corrupted by flanker features across target-containing RFs.

For the redundancy metric, we computed the average number of RFs
that represented the corrupted target features u(t+ f ) − u f . We first selected
the activated (i.e., nonzero) target features for each RF using an indicator
function that sets the value of each element in the vector to one if it is greater
than zero and to zero otherwise:

aRF = 1X>0(u(t+ f ) − u f ),

where 1X>0(X ) =
{

1, if x > 0

0, otherwise
∀x ∈ X. (2.6)

Then we computed the average number of RFs per activated target fea-
ture from the corrupted target signal:

a =
NRF∑

aRF,

R = 1
‖a‖0

Na∑
a, (2.7)

where ‖ · ‖0 returns the number of nonzero values in a vector, and Na repre-
sents the number of features in the pooling layer (i.e., 64). Larger redun-
dancy scores indicate that, on average, more RFs represent an activated
target feature within the corrupted target signal.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/34/1/190/1977782/neco_a_01447.pdf by R
am

ona M
archand on 06 January 2022



202 J. Theiss, J. Bowen, and M. Silver

2.2.4 Statistical Procedures. In order to obtain 95% confidence intervals
for our estimates, we used 1000 iterations of bootstrap resampling of the
data with replacement. For statistical comparisons between two distribu-
tions, we first centered each distribution’s mean at the combined mean of
the two distributions and then bootstrap resampled (again with 1000 iter-
ations) from the centered distributions. We report p-values as the propor-
tion of observed mean differences that were greater than the original mean
difference (Efron & Tibshirani, 1994). Additionally, to measure the unique
variance in target classification accuracy that was explained by feature fi-
delity or redundancy, we performed multiple linear regression for fidelity
and redundancy combined as well as for each factor alone. The difference in
variance explained between the linear model that included both factors and
the single-factor model is the unique variance explained by the excluded
factor.

2.2.5 Code/Software. We implemented all training and computation in
PyTorch (Paszke et al., 2017) as well as custom Python and C++ code. The
code used to produce the results described in this letter is available on
request.

3 Results

3.1 Replication of Visual Crowding Effects. Unlike visual acuity,
which is typically limited by representations of single features, visual
crowding can occur as a result of mixing of high-contrast features within
the crowded stimulus, making it difficult to match objects with the individ-
ual features that comprise them (Whitney & Levi, 2011).

We examined how representations of features of crowded stimuli in-
teract within the RFs of the pooling array. Both targets and flankers were
grayscale handwritten digits (MNIST; LeCun et al., 1998). We compared tar-
get classification accuracy (see section 2) for crowded stimuli over a range of
nine target/flanker spacings (equally spaced between 1 and 2 DVA). If por-
tions of multiple objects that are represented within individual RFs lead to
feature interference, then increasing target/flanker spacing should relieve
crowding (i.e., increase target classification accuracy).

We manipulated spacing for four unique target/flanker configurations
(inner, outer, radial, and tangential; see Figure 2). In humans, crowding
is influenced by target/flanker configuration: a single inner flanker pre-
sented foveally to the target causes less crowding than the same outer
flanker presented peripherally to the target (Banks et al., 1977). Addition-
ally, crowding is anisotropic: flankers presented on either side of the target
along a radial axis emanating from the fovea cause more crowding than
flankers presented along a tangential axis that is perpendicular to the ra-
dial axis (Toet & Levi, 1992; Chen et al., 2014). In the current experiment,
we measured target classification accuracy in each of these target/flanker
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configurations to determine if our simple (relative to previous models, e.g.,
Nandy & Tjan, 2012; Chaney, Fischer, & Whitney, 2014) model of RF pool-
ing could reproduce the effects observed in the literature that are described
above.

Figure 2 shows that for all four configurations, target classification ac-
curacy increased as a function of target/flanker spacing and that, at large
target/flanker spacings, all four configurations approached accuracy levels
observed in the target-alone condition (black line). Generally crowding is
greatest for target/flanker spacings that are less than one-half of the target
eccentricity (in our model, 3 DVA; Bouma, 1970). We also found that accu-
racy was lower for the radial configuration than for the tangential configu-
ration for spacings at or below 1.5 DVA (green and red lines; bootstrapped
p-value [1000 samples] = 0.), consistent with previously reported
anisotropies of crowding in human subjects (Toet & Levi, 1992). Moreover,
accuracy was lower for the outer configuration compared to the inner con-
figuration for spacings at or below 1.5 DVA (blue and yellow lines; boot-
strapped p-value [1000 samples] = 0.), again consistent with asymmetries
that have been reported in human subjects (Banks et al., 1977).

3.1.1 Smaller Attention Field Extent Relieves Visual Crowding. In the pre-
vious section, we showed that our model reproduced known effects of tar-
get/flanker spacing and configuration on human visual crowding. In this
experiment, we fixed the target/flanker spacing at 1 DVA and applied a
spatial attention field (2D gaussian centered on the target) that modified
the sizes (σ ) and center locations (μ) of RFs in the pooling array. Specifi-
cally, we calculated the product of this spatial attention field with each of
the RFs in the pooling array (see equation 2.4). Although modulating RFs in
this way effectively describes how spatial attention influences visual repre-
sentations in the brain (Klein et al., 2014; Womelsdorf et al., 2006), it is not
known how these effects of attention influence feature interference in visual
crowding. If decreasing the size of the attention field at the target location
increases the spatial resolution of the target representation at that location,
this should relieve crowding.

We varied the spatial extent of the attention field from 1 to 3 DVA, result-
ing in the RF pooling arrays depicted in Figure 3. Specifically, the gaussian
attention field acts to pull RF locations toward its center and to reduce their
size. We chose a minimum attention field extent that was large enough to
ensure that all flanking stimuli were still completely covered by the RF pool-
ing array after gaussian multiplication. The maximum attention field extent
that we used roughly corresponds to the point at which target classification
accuracy no longer decreased significantly with increases in the spatial ex-
tent of attention. We picked this range of attention field extents to examine
the relative performance across the full range of attentional modulation in
our model; however, it likely does not have a one-to-one relationship with
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the full range of attentional modulation in human psychophysics (i.e., from
pre-cueing the target location).

As expected, more precise attention (smaller spatial extent) centered at
the target location resulted in greater target classification accuracy for every
target/flanker configuration (see Figure 3). Moreover, the effect of increas-
ing attention field extent on target classification decayed exponentially. Fur-
thermore, the relationships among the four configurations remained the
same as observed in Figure 2, with outer/radial having lower target classi-
fication accuracy than inner/tangential configurations.

3.1.2 Substitution Errors Occur at Above-Chance Levels When Crowding Is
Strong. Both increasing target/flanker spacing (see Figure 2) and decreas-
ing the attention field extent (see Figure 3) had positive effects on our
model’s ability to correctly classify the target digit. These increases in per-
formance are consistent with what has been shown in previous human
studies. However, target classification is not the only metric that has been
used to study visual crowding in human subjects. Substitution errors—the
phenomenon of incorrectly reporting the flanker’s identity instead of the
target’s at an above-chance rate—is an additional metric used to charac-
terize target/flanker interactions in crowding (Ester et al., 2014; Hanus &
Vul, 2013; Coates et al., 2019). In this experiment, we analyzed the results
from the same target/flanker spacings and attention field extents as before.
However, instead of reporting target classification accuracy, we present the
number of flanker responses for each configuration as a proportion of in-
correct trials (i.e., trials in which the target was not reported). Under strong
crowding conditions, RFs that contain both target and flanker features will
exhibit competition and therefore have feature interference. This interfer-
ence should lead to the identities of the flankers being reported at above-
chance levels on incorrect trials, compared to all other nontarget digits.

Figure 4 shows that under the strongest crowding conditions (left: 1 DVA
spacing; right: 3 DVA extent), the proportion of trials in which the flankers
were identified for each configuration was significantly above chance (black
lines). Furthermore, the rate of incorrectly reporting the flanker decreased
as the target/flanker spacing increased and the attention field extent de-
creased. Interestingly, the outer flanker was reported more often than the
inner flanker across the majority of target/flanker spacings and attention
field extents, and this asymmetry was observed both when the inner/outer
flankers were presented as a single flanker with the target (solid yellow
and blue lines, respectively) as well as when they were presented as pairs
of flankers in the inner radial/outer radial conditions (dashed yellow and
blue lines, respectively). These results suggest that when there is substan-
tial crowding, representations of the identities of the specific flankers are
stronger than those of the identities of all other nontarget classes. Further-
more, these findings indicate that in our model, crowding is due to compe-
tition between representations of target and flanker features.
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Figure 4: Proportion of incorrect trials for which the flanker digit was erro-
neously reported as a function of (left) target/flanker spacing and (right) at-
tention field extent. The same four configurations were used as before. The
radial/tangential configurations each had two possible flanker choices (In-
ner/Outer Radial and Tangential 1/2, respectively). Tangential 1/2 correspond
to the perpendicular flankers placed below and above the radial axis in Figure
2, respectively. Black lines indicate chance probability for incorrectly reporting
a nontarget digit (one out of nine possible digits). Error bars are bootstrapped
95% confidence intervals.

3.1.3 Increases in Target Classification Accuracy Depend Largely on RF Po-
sition Shifts. We have shown that reconfiguration of the RF pooling array
by attention modifies both RF locations and sizes in our model (see Figure
3). In this experiment, we limited the effects of attention to changes in ei-
ther the positions or the sizes of the RFs in our pooling array by separately
applying updates to either μ or σ from equation 2.4, respectively. Previous
fMRI research in humans indicates that shifts in RF position by attention
are more important than changes in RF size for population-level encoding
of fine spatial information (Vo et al., 2017). This suggests that shifting RFs
in our pooling array toward the attended target location, without changing
their size should increase target classification accuracy more than decreas-
ing the sizes of RFs without changing their positions.

We employed the same target/flanker configurations and range of atten-
tion field extents as before (see Figure 3), but here we applied attention ef-
fects separately for RF position and size. Target/flanker spacing was fixed
at 1 DVA for this experiment. Figure 5 shows an example RF pooling ar-
ray for updated position (top left) and size (top right). As expected, shifts
in fixed-size RFs toward the target location with attention increased tar-
get classification accuracy (see Figure 5; the black solid line indicates the
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Figure 5: Changes in RF position with more focused spatial attention increase
the density of RFs at the attended target location, indicated by the black cross
(top left), whereas changes in RF size alone decrease RF density (top right). Tar-
get classification accuracy and feature redundancy (see equation 2.7) both in-
crease with attention-related position changes but decrease with size changes
(bottom left). In contrast, the fidelity of feature representations (as measured
by cosine similarity; see equation 2.5) increases with more focused attention for
both RF location and size changes (bottom right). Note that each of the y-axes
has been scaled so that the corresponding metric is plotted relative to the value
obtained for that metric following changes in both RF position and size with an
attention field extent of 1 DVA (left gray star in each bottom panel) and infinity
(i.e., “no attention”; right gray star in each bottom panel). All metrics depicted
were averaged across the four target/flanker configurations (see Figure 2). Error
bars are bootstrapped 95% confidence intervals.

average across configurations). Interestingly, decreasing the size of sta-
tionary RFs with attention decreased target classification accuracy (black
dashed line). Note that allowing attention to affect both RF position and
size together resulted in greater target classification accuracy (i.e., the value
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of 0.56 indicated by the gray stars at 1 DVA in the bottom panels of Figure
5) than either position or size changes alone.

In the second part of this experiment, we characterized the effects of
shifts in RF position and size by attention on the redundancy and fidelity
of feature representations. As described in section 2.2.3, we define redun-
dancy as the average number of RFs that represent an activated target
feature when corrupted by the flankers and fidelity as a measure (cosine
similarity) of how corrupted the target features are by the flanker features.
In order to visualize the relationships among these variables with each other
and with target classification accuracy, we plotted each metric in Figure 5
relative to the same metric obtained for changes in both RF size and posi-
tion for an attention field extent at infinity (“no attention”) and at 1 DVA.
Each metric is therefore relative to these matched points, which are shown
as gray stars in the bottom panels of Figure 5.

Shifts in the positions of RFs toward the target location increased the
density of target-containing RFs (and therefore the redundancy of feature
representations; see Figure 5, top left panel), whereas reductions in the size
of RFs decreased redundancy (see Figure 5, top right panel). We found that
feature redundancy (salmon lines) was tightly coupled with target classi-
fication accuracy (black lines) for both RF position and size changes (see
Figure 5, bottom left panel) across a range of attention field extents, sug-
gesting that RF density at the target location (i.e., feature redundancy) is
strongly related to downstream effects on target classification accuracy.

Fidelity of feature representations (magenta lines) increased both when
the positions of fixed-size RFs were shifted toward the target location and
when stationary RFs shrank with attention (see Figure 5, bottom right
panel). Decreasing RF size results in less competition for processing be-
tween the target and flankers within a single RF, and this is reflected by
increased feature fidelity values for smaller spatial extents of attention (ma-
genta dashed line). However, attention field size has a very different rela-
tionship with feature fidelity than it has with target classification accuracy,
which is worse for smaller attention field size (and therefore for smaller
RFs; black dashed line). Together, these results suggest that target classifi-
cation is more closely related to feature redundancy than it is to the fidelity
of feature representations.

3.1.4 Feature Redundancy Has Greater Influence than Feature Fidelity on Tar-
get Classification. As demonstrated by the results of the previous exper-
iment, attentional modulation of RF properties has divergent effects on
feature redundancy and fidelity. Intuitively, redundancy of feature repre-
sentations correlates strongly with RF density (the amount of overlap of
RFs), with shifts in RF location toward the attended location increasing
redundancy and reductions in RF size decreasing it. In contrast, feature fi-
delity increases with more focused attention, and this occurs for both effects
of attention: RFs moving toward the attended location and shrinking in size.
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Figure 6: Target classification accuracy plotted with feature redundancy (left;
equation 2.7) or feature fidelity (right; see equation 2.5) for a diagonal cross-
section of the combined factors of attention field extent and target/flanker
spacing. Target classification accuracy is much more closely related to feature
redundancy than it is to feature fidelity. All metrics plotted here were averaged
across the four target/flanker configurations. Error bars are bootstrapped 95%
confidence intervals.

Although these results indicate a stronger relationship between target
classification accuracy and feature redundancy compared to the relation-
ship with feature fidelity (see Figure 5, bottom panels), interactions between
features are dependent on both RF sampling and the relative distance be-
tween the target and flanker. In the previous experiment, all results were
obtained with a target/flanker spacing of 1 DVA. We therefore conducted
an additional experiment to more fully characterize the effects of feature
redundancy and fidelity on target classification accuracy.

We selected a subsample of 1000 test images (from the original 10,000)
for each combination of attention field extent and target/flanker spacing
values used in the previous experiments. This enabled us to characterize
the effects of both of these factors on the full range of observed variation
in target classification accuracy that we studied. As shown in Figure 6,
both redundancy and fidelity were highly correlated with target classifi-
cation accuracy (R2 = 0.96, R2 = 0.69, respectively). We then computed the
unique variance explained by each factor with multiple linear regression
and found that the unique variance explained by redundancy was substan-
tially greater than the unique variance explained by fidelity (R2 = 0.28 ver-
sus R2 = 4.96 × 10−3, bootstrapped p-value of the difference in explained
variance [1000 samples] = 0). These results indicate that redundancy of
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target feature representations is likely to be more important than fidelity
for target classification in visual crowding.

Taken together, the results of all of our experiments provide a fuller un-
derstanding of the mechanistic relationships among feature redundancy,
fidelity, and target classification for crowded stimuli. Specifically, spatial
attention enhances target classification accuracy by increasing the redun-
dancy of sampling of the corrupted target signal, and this greater re-
dundancy is mostly due to increased RF density resulting from position
shifts.

4 Discussion

Inspired by the normalization model of attention (Reynolds & Heeger,
2009), we constructed a model with a dynamic pooling array of RFs that
were modulated by spatial attention in order to characterize how feature
redundancy and fidelity relate to downstream target classification during
a visual crowding task. Our model reproduced patterns of target classifica-
tion for different target/flanker spacings and configurations that have been
reported in psychophysical visual crowding experiments (Whitney & Levi,
2011). Next, by separately manipulating the effects of spatial attention on RF
size and location, we demonstrated a plausible mechanism by which visual
crowding is relieved by position shifts in RFs that increase their density
at the attended target location. Finally, by varying target/flanker spacing
and the spatial extent of attention, we revealed that feature redundancy ex-
plained far more unique variance in target classification accuracy than was
explained by feature fidelity (see Figure 6).

4.1 A Model of Spatial Attention Effects on Downstream Processing
and Perception. In our model, spatial attention increases RF density at the
attended target location, resulting in an increase in feature redundancy
across populations of RFs that improves target classification in crowded
stimuli (see Figure 5, bottom left panel). Our model does not explicitly con-
tain a metric of response amplitude per se but instead quantifies feature
representations in individual RFs. Therefore, we did not explore the effects
of attention on response gain in our study. However, our model is concep-
tually compatible with literature demonstrating gain modulation by spa-
tial attention (Moran & Desimone, 1985). The RF pooling operation in our
model encodes information in a lossy manner relative to the total informa-
tion available in the second-layer feature maps. However, more informa-
tion is preserved with the smaller and more densely organized RFs that are
produced by attention, demonstrating an increase in information gain with
more precise attention. This is similar to the effect of attention on feature
fidelity observed in the bottom right panel of Figure 5, in which spatial at-
tention directed toward the target digit increased the fidelity of the encoded
target signal.
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Similar to Vo, Sprague, and Serences (2017) and Baruch and Yeshurun
(2014), we found that shifts in RF position with attention are more im-
portant than changes in RF size for improving feature representations. In-
terestingly, we found that at the minimum attention field extent, target
classification accuracy based only on changes in RF position was consid-
erably lower than what would be predicted by its relationship with feature
redundancy (see Figure 5, bottom left panel). This discrepancy may be ex-
plained by differences in the effects of feature redundancy measured across
partially versus completely overlapping RFs. In our model, as RFs approach
complete spatial overlap, they are more likely to represent the same pixel
locations for a given feature, which does not provide any benefits for target
classification. Indeed, Nigam, Pojoga, and Dragoi (2019) demonstrated that
synergistic connections within a cortical column in V1 (i.e., connections be-
tween nearby neurons sharing very similar RFs) allow for greater decoding
of stimulus information than do redundant connections. This physiologi-
cal result is consistent with our interpretation of our modeling results that
feature redundancy across partially overlapping RFs is more beneficial for
perception than redundancy within highly overlapping RFs.

4.2 RF Models of Visual Crowding. Other models have also utilized
biologically-plausible RF pooling arrays to model peripheral vision (Deza
& Eckstein, 2016; Deza, Jonnalagadda, & Eckstein, 2019; Volokitin, Roig, &
Poggio, 2017), and these types of models have also been shown to repro-
duce known effects of both target/flanker spacing (Freeman & Simoncelli,
2011) and configuration (Nandy & Tjan, 2012; Chaney et al., 2014; Chen,
Roig, Isik, Boix, & Poggio, 2017). Nandy and Tjan (2012) theorized that the
radial/tangential anisotropy in crowding is caused by a radial bias in image
statistics that is attributable to patterns of eye movements that occur dur-
ing natural vision throughout development. Chaney et al. (2014), inspired
by the finding that primate V4 RFs have elliptical shapes that reflect V1 cor-
tical magnification (Motter, 2009), observed a radial/tangential anisotropy
in crowding in their model that is based on a bias in the orientation and
length of elliptical RFs that have a major axis in the radial direction. In con-
trast to this previous work, the radial/tangential anisotropy in our model
arises from an RF array with eccentricity-dependent and concentric organi-
zation that is based on the known properties of human visual cortical area
V2 (Wandell & Winawer, 2015). These simple RF organizing principles can
also be applied to the study of other visual cortical areas and to encoding
of any feature dimension.

One noteworthy challenge for visual crowding models is to incorporate
a biologically-plausible method for prioritizing selection of the target over
the flankers. Chen et al. (2017) implemented eccentricity-dependent pool-
ing within a CNN by creating a “multiscale input” from crops that had
different sizes but identical resolution. However, the authors specifically
note that their model did not include a procedure for explicitly selecting
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target over flanker features. Instead, they computed classification accuracy
for crowded digits by using odd MNIST digits as targets and even digits
as flankers. In an alternative approach, Chaney et al. (2014) trained a differ-
ent classifier for each target/flanker configuration and spacing based on the
outputs of the final layer of a neural network model. Unlike these previous
approaches, our model contains a direct target selection mechanism that is
based on weighting the pooled features from the RF array as a function of
their distance from the target location in cortical space. Because we trained
a single classifier only once for all of our experiments, as opposed to mul-
tiple classifiers for each experimental condition, our model takes less time
to implement, is easily scalable for the study of more complex tasks and
stimuli, and avoids possible biases that can occur when employing multi-
ple classifiers (e.g., variability in initial parameter values, local minima in
the loss surface).

More recently, Lonnqvist, Clarke, and Chakravarthi (2020) reported a
study of visual crowding in deep neural networks. Although the authors
observed striking differences between the pattern of visual crowding ob-
served in CNNs and what has typically been observed in human studies,
there are important differences between their study and ours. Lonnqvist
et al. (2020) logarithmically downsampled images in order to simulate
peripheral vision, whereas our model used eccentricity-dependent RF
pooling of feature maps. However, downsampling the image simulates
peripheral visual input rather than peripheral visual processing, and it is
inconsistent with the interpretation of visual crowding as a high-contrast
mixing of stimulus features. Additionally, Lonnqvist et al. (2020) did not in-
corporate a selection mechanism for classifying target objects separate from
flankers but instead trained their model to classify a single object at a target
location, followed by testing with both target and flanking objects. It is pos-
sible that their inability to observe increased performance as a function of
target/flanker spacing (see our Figure 2, right panel) was due to overfitting
during the target-alone training procedure in their model. These differences
highlight the importance of eccentricity-dependent pooling and selection
mechanisms for successfully modeling visual crowding.

4.3 Computational Models of Attention. Many existing models have
studied spatial attention in the context of bottom-up saliency (Itti, Koch, &
Niebur, 1998). While such models have been useful for characterizing which
aspects of visual features attract attention, our model instead focuses on
how attention affects feature representations. Jia, Huang, and Darrell (2012)
and Cheung, Weiss, and Olshausen (2016) both used an approach that is
similar to our RF pooling mechanism by sampling images with a mutable
array of RFs. However, in both of these studies, spatial information was
disregarded following the pooling operation. In contrast, we believe that
our model will more effectively generalize to other tasks by maintaining
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spatial information after RF pooling, since this allows the pooling operation
to occur at any level of a CNN.

In Jia et al. (2012), the spatial organization of RFs was learned in order
to optimize image classification, which in the context of our study can be
viewed as optimizing covert spatial attention (directing attention to a pe-
ripheral visual field location without eye movements). On the other hand,
Cheung et al. (2016) employed overt attention (shifts of attention that are
accompanied by eye movements to the attended location) during a visual
search task to learn an optimal sampling lattice. Interestingly, they found
that the optimal lattice for target classification contains a foveated region
that is similar to that observed in the human retina. A strength of our RF
pooling method is that the attention field or RF parameters can be learned
through gradient descent, which future researchers can use to explore sim-
ilar hypotheses regarding optimal biological structures and mechanisms.
Moreover, the specific pooling operation (e.g., max-pooling) in our model
can be changed to better reflect biological mechanisms, such as a stochas-
tic pooling operation to study how noise might interact with the effects of
spatial attention.

Our model’s RF reconfiguration by attention is probably most similar to
the attentional attraction field (AAF) model described by Baruch and Yeshu-
run (2014). They showed that attraction of RFs toward an attended location
accounts for a number of known spatial and temporal aspects of attention,
such as enhanced resolution, gain modulation, and biased competition. We
build from the results of the AAF model by quantitatively characterizing
the differential contributions of changes in RF size and position to per-
formance on a perceptual task and the redundancy and fidelity of feature
representations.

There are also several models in which spatial attention has been im-
plemented through enhanced responses (Olshausen, Anderson, & Van Es-
sen, 1993; Mozer & Sitton, 1998; Hamker, 2004). For instance, Deco and Lee
(2002) used a set of gaussian weights similar to our cortical weighting mech-
anism (see section 2.1.5) to enhance responses within an attended region.
However, our model uses cortical weighting as a method for selecting target
features for classification, not for gain modulation.

Increasingly, attention has been implemented in deep neural networks
(Sabour, Frosst, & Hinton, 2017; Vaswani et al., 2017) to selectively sam-
ple and enhance information in a task-agnostic manner. This is an im-
portant challenge in machine learning, since it is notoriously difficult to
train neural networks to generalize to multiple tasks without a significant
decrease in performance on the original task for which the network was
trained (French, 1999). However, humans can dynamically change the rel-
ative weights of feature representations for a given task via spatial and/or
feature-based attention. In our model, gaussian multiplication is an effec-
tive implementation of a circular “spotlight” of spatial attention. However,
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it currently does not allow updating of RF properties for more complex at-
tention fields (e.g., curved contours, shapes, or objects; Somers, Dale, Seif-
fert, & Tootell, 1999). Perhaps the effects of more complex attention fields
on RF properties would be similar to object detection techniques that are
commonly used in machine learning (Ren, He, Girshick, & Sun, 2015), in
which the appropriate resolution is dictated by the current task and/or lo-
cal features. Therefore, future research could treat the size, position, and
other parameters of the attention field used in this study as parameters that
could be adapted for specific tasks. Our modeling approach is very com-
patible with this direction, as the parameters of the attention field could
be directly optimized during the neural network training process. Such an
approach could be used to make predictions of RF changes measured via
fMRI for perceptual tasks in which greater spatial resolution of attention
can paradoxically lessen performance (Yeshurun & Carrasco, 1998; Barbot
& Carrasco, 2017). In this way, combining predictions made by our model
with experimental data could provide further insights into the adaptability
of spatial attention and its consequences for perception.
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