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Abstract of the Thesis

Optimization Framework For Improved Comfort &

Efficiency

by

Ashish Yadav

Master of Science in Electrical Engineering and Computer Science

University of California, Merced, 2019

Professor Alberto E. Cerpa, Chair

The Internet of things (IoT) is the extension of Internet connectivity into physical

devices and everyday objects. Embedded with electronics, Internet connectivity, and

other forms of hardware (such as sensors), these devices can communicate and interact

with others over the Internet, and they can be remotely monitored and controlled

[Wik19].

The term internet of things has evolved by many fold due to convergence of multi-

ple technologies like machine learning, embedded systems, wireless-sensors, real-time

analytics, etc. A growing number of IoT devices are being developed for consumer

use, including connected vehicles, home automation, wearable technology, connected

health, and remote monitoring devices. We want to apply some of these technologies

and techniques to make commercial spaces smarter.

Buildings are responsible for a significant portion of energy consumption in the

US, accounting for more than 40% of US primary energy consumption. Heating,

ventilation and air-conditioning (HVAC) accounts for nearly 50% of that use. Con-

ditioning buildings is important since people spend 87% of their time in the place

they live (residential) and the place they work (commercial). Despite this massive

expense, many users are dissatisfied with the thermal conditions in buildings. Savings

xii



made in HVAC systems therefore have a major impact in energy consumption and

cost, together with reduction of greenhouse emissions for the nation. Equally critical

is to provide thermal quality of service to their users, so people are comfortable in

the place they reside and work.

In this thesis, we explore the trade off between commercial building HVAC energy

consumption and the quality of thermal conditioning provided to users. We argue

that optimal HVAC control cannot be achieved due to lack of critical information,

namely where the users are inside the building,what do they want with respect to

thermal comfort and how each zone responds to thermal changes. In this work we

present OFFICE,a model predictive control (MPC) framework for smart building

HVAC control. The framework has several components that help addressing the

current HVAC control systems shortcomings, including

1. occupancy sensing in real-time

2. occupancy prediction models based on historical occupancy data

3. human-in-the-loop comfort feedback

4. data-driven thermodynamic building models, and

5. weather forecasting data

All these components provide the necessary input to our model predictive control

optimization framework that minimizes monetary costs in energy use while maintain-

ing quality comfort bounds for the building’s users based on real-time user’s feedback.

We developed a large system that involves all the above components, replacing the

Building Management System control algorithms, taking over full control of the HVAC

system. We tested our framework OFFICE in a real LEED Gold certified university

building with over 20 workers performing their daily tasks for 4 weeks, and we showed

that we could obtained monetary costs savings of more than 10% while at the same

xiii



time reducing the users’ dissatisfaction levels with thermal comfort from 25% to 0%

dissatisfaction, significantly improving the quality of thermal service provided to the

building’s users.
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CHAPTER 1

Introduction

Buildings are an essential piece of our daily lives and individuals invest 87% of their

energy inside buildings [KNO01]. To keep up the thermal comfort in buildings, a lot

of vitality is utilized to condition these spaces. In the US buildings represent 40% of

energy utilization [Adm] and of that half of energy goes to heating, ventilation, and

cooling (HVAC) [D12] Figure 1.1.

The goal of conditioning office spaces is largely missed since 75% of occupants

report that they are dissatisfied with their thermal comfort [EC12]. In addition to

uncomfortable occupants, a common issue is that spaces are conditioned whilst they

may be unoccupied, or not ventilated appropriately based on the real quantity of

occupants inside the room, losing enormous energy.

In the US, 88% of the large commercial building stock has centralized HVAC

systems [D12]. The most prevalent HVAC system is the single duct terminal reheat,

which is composed by an Air Handler Unit (AHU) that is a big fan (usually located

on the building’s roof) and heating and cooling coils that can modify the air’s tem-

perature, and Variable Air Volume (VAV) boxes that take this pre-conditioned air

from the main duct, heat it if necessary (thus the terminal reheat), and control the

air flow provided to its controlled zone. The air is mixed in each zone and excess air

is returned by the return duct (which may have an additional fan). In many instal-

lations, the returned air goes to an economizer, which decides to recirculate a certain

percentage of the air in order to save energy. Figure 1.2 shows the basic HVAC system

architecture.
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Figure 1.1: Energy consumption in a building: 2017 (US)

It is vital to point out that the principal intention of HVAC systems is to provide

thermal comfort to its occupants, and doing it in an energy efficient way that min-

imizes power cost. So there is a clear trade-off in this situation, where in order to

satisfy user thermal comfort requirements, the system must spend energy, which we

ultimately want to minimize. If the only goal is to reduce energy consumption, the

solution to this problem is simple, since we would simply turn off the HVAC system

completely. We would also like to point out that by controlling both air flow and air

temperature, the VAV achieves thermal comfort in each zone. Given the initial condi-

tions (zone temperature) and the zone’s thermodynamic model, the VAVś objective

is to achieve a potentially new zone temperature in a finite amount of time. This

goal can be achieved in many ways, and the set of possible solutions can be depicted

by a line in the air flow and temperature two-dimensional space, where any point in

the line provides a viable solution to the problem. For example, if a zone is too cold

for user comfort and we need to increase the zone temperature, a possible solution

could be providing a small value of air flow, but with an air temperature much hotter

2
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Figure 1.2: HVAC System Architecture

than the zone goal temperature, such that after the hot supply air provided and the

zone’s air is mixed, the zone’s temperature will increase and reach our goal temper-

ature. Another solution could be to supply air that is only slightly hotter than our

goal temperature, but increase the air flow significantly, achieving the same result.

To make matters a little more complicated, zones are also controlled for ventilation

requirements, which means that the variable air flow is also restricted by minimum

flow requirements to remove the buildup of CO2 in the zone.

In this thesis, we argue that we need three pieces of information currently missing

in all HVAC systems to design a system that minimizes energy costs subject to comfort

constraints:

(a) the distribution of occupants in all the zones/rooms (both real-time and fu-

ture),

(b) the thermal preferences of the occupants, and

(c) the thermodynamic model of each zone.

In other words, we need to know where users are (and will be), what users want,

and how each zone responds to changes. Currently, this information does not exist or

is not available to HVAC engineers defining the operational control rules of the HVAC

3



systems. The state-of-the-art in building control is to make certain assumptions to

fill this gap. First, occupancy is assumed to be homogeneous in all zones to maximum

occupancy, so adequate ventilation levels can be set during the building “occupied

hours”. Second, what constitutes a comfortable temperature range is defined by the

facility manager in an arbitrary way during “occupied hours”, and those bounds are

relaxed during the rest of the time (“unoccupied hours”). Finally, the HVAC control

rules do not take advantage of any knowledge of the zone dynamics (e.g. loads,

external walls insulation, solar gain, etc.), and they assume that the VAV boxes have

been properly sized and configured at commissioning time when the building was

constructed, and no changes to walls or internal space configuration have happened.

Clearly, many of these assumptions are violated in practice, which leads to users being

uncomfortable and building energy bills being higher than they should be.

It is not enough to know whether a room is occupied or not as previously explained

in [ECC11], but rather it is critical to also know the actual number of occupants.

This is because we can control the ventilation rate if we know the actual occupancy

count based on ASHRAE 62.1 standard [ASH07b] and we can provide better thermal

conditioning strategies with this information. In addition, since the time it takes to

condition a room may be orders of magnitude larger that the time it take users to

move from one zone to another one, we need to predict the movement of building’s

users in order to do pre-conditioning ahead of time. In our work, we leverage previous

work in occupancy sensing [BEC13] and occupancy prediction [ECC14] to solve the

answer to the question where users are (and will be).

In addition, we also leverage previous work related to human-in-the-loop feed-

back [EC12,WBE16] in order to get real-time estimation of users comfort requirements

to address the question what users want. Note that by catering to any comfort needs

of any user, we expect our solution to satisfy their quality of service requirements at

the expense of potentially increasing energy use and cost.

Finally, we developed an online data-driven system identification process that

4



constantly collects data from building to find the optimum parameters of a gray-box

model approach based on physical thermodynamic principles and model parameters

from the data to answer the question of how each zone responds to changes.

OFFICE integrates all the above data together with weather prediction data into

a MPC framework. Our system minimizes the cost of HVAC energy subject to the

physical limitations of the HVAC system, the thermodynamic model learned from the

system identification procedure, the user’s real-time and predictive occupancy, the

user’s real-time comfort feedback and the current and predictive weather to achieve

the best energy efficiency cost subject to the thermal comfort constraints of the user.

We would like to highlight the main contributions of our work as follows:

1. We develop a novel model predictive control (MPC) framework that optimally

manages the trade off between energy cost and quality of comfort to the building

users, by including input data from where users are (and will be), what users

want, how zones react to changes, and current and forecast weather data.

2. We develop a novel data-driven system identification process together with a

gray-box thermodynamic model, that it is simple enough to run in a control

loop, yet powerful enough to permit sensible control decisions of the thermal

zone.

3. We evaluate the system under realistic conditions in a LEED Gold certified

building1 [Cou17], which is being used by 20+ users in their daily tasks. We

compare our results with the best control strategies designed by experienced

building HVAC engineers, showing a significant improvement in both quality of

thermal comfort to the users and overall energy cost.

To our knowledge, this is the first work that combines occupancy sensing and

1LEED: an acronym for Leadership in Energy and Environmental Design. The U.S. Green Build-
ing Council’s LEED green building program is the preeminent program for the design, construction,
maintenance and operations of high-performance green buildings in the U.S.
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prediction, human comfort feedback, data-driven thermodynamic models and weather

forecasting into a holistic framework for HVAC building control.

The rest of my thesis is organized as follows: Chapter 2 shows the related work,

Chapter 3 explains the main components that feed into our framework. Chapter 4

explains in detail the model predictive control framework, and Chapter 5 discusses

system implementation details including the building communication interface for

sensing and actuation. Then, Chapter 6 explains the conditions of the experiments,

and Chapter 7 presents the results of the performance evaluation. Chapter 8 discusses

the results and limitations of the system, and finally Chapter 9 concludes.

6



CHAPTER 2

Related Work

The use of MPC for HVAC control has been explored in the literature before [KMB13a,

MKD12, KB11, MMB15, SGM16, CAN14, SFC18]. MPC is a very popular model be-

cause it provides opportunities for optimal energy management in HVAC control,

being suitable in situations of conflicting constraints and objectives, such as physical

constrains of the building, and indoor comfort ranges. However, most of this work has

been done from a theoretical control theory point of view, with the experimentation

mostly done in simulation.

In addition to traditional MPC models, work has been done in [MB12, PVR13,

PMV13] to build a stochastic model predictive control. These efforts focus on un-

certainty of occupancy and thermal load predictions and minimization the time the

system falls outside the comfort ranges while optimizing the energy use. None of

these systems do occupancy detection but consider occupancy as part of the load of

the system, even though greater savings can be achieved with demand-response ven-

tilation when occupancy is taken in consideration. In our work, we use deterministic

MPC, i.e., whenever we have probability distribution functions to model our system

inputs and constraints, we take the most likely value instead of using the full distribu-

tion of values. However, as we mentioned above, we consider a wider range of inputs

into our MPC framework than this related work, including real-time and predictive

occupancy, real-time user comfort feedback, data-drive thermodynamic zone models

and weather forecasting to solve the optimization problem. While we could have used

the more powerful stochastic MPC framework in our formulation, we decided to leave

7



Figure 2.1: OFFICE System Overview

this for future work.

2.1 Occupancy Detection & Prediction

Due to its importance for the MPC, suitable approaches for occupancy estimation and

forecast were studied extensively [ECC11,MCM12,EAC13,BEC13,ECC14,SAS17].

In [KJD09], the authors explore the use of cameras to estimate occupancy. They do

not, however, address how cumulative error can affect estimates of occupancy. Even

a single error will cause error to propagate forward, as mentioned above. The total

ground truth for different times of the day was also limited to a total of 4 hours.

Cameras are also used as optical turnstiles by the authors of [EAC]. In order to

measure occupancy for several areas, they mount multiple strategically placed cam-

eras in hallways. Unlike [KJD09], however, they discuss cumulative error reduction

strategies. To estimate the error, they impose maximum occupancy limits and use a

8



particle filter with a live data occupancy model. However, since their approach uses a

model, their approach also requires a non-trivial amount of ground truth occupancy

data (2 weeks), collected using webcams. The occupancy RMSE achieved was 1.83

persons, more than 5 times the ThermoSense’s [BEC13] error.

In [BLT10], occupant counts are achieved by counting peaks within the his-

tograms, as well as PIR sensors in order to detect occupancy for certain areas and

elderly people are tracked using Imote2 motes with Enalab cameras and utilizing a

motion histogram for a period of 1 week. Since the camera has to continually poll

the room to generate the histograms of motion, the power consumption will be high

during occupancy periods. This system also has the privacy issue ; cameras need to

be placed directly in the room.

The authors of [SBK11] use active radio frequency identification (RFID) tags to

determine occupancy instead of relying on PIR sensors alone. The limitation of this

strategy is that each occupant must have an RFID tag and that tag must be co-located

with the occupant at all times.

The papers [LSS10, ABD11] describe methods that uses door sensors with PIR

sensors to obtain a binary measurement of occupancy. They minimize instances in

which overly still occupants become invisible to the PIR sensor by adding door sensors.

Although this technique improves binary occupancy measurement, these systems do

not provide an accurate estimate of occupancy.

The papers [LHD09,MMC11] estimates occupancy by measuring a variety of pa-

rameters.For 5 and 1 week deployments, they collected ground-truth data using video

camera and a voluntary electronic tally counter for the user to measure room occu-

pancy. In these deployments, they utilize multiple sensors to estimate occupancy;

CO2, CO, lighting, temperature, humidity, motion, and acoustics. They define mul-

tiple feature vectors for each parameter, which are then used to estimate occupancy

with multiple models. While this multi-sensor approach works well for occupancy es-

timates alone, when combined with a ventilation strategy, this approach will not work

9



well. They assume that room occupancy estimates will not be affected by ventilation.

However, as ventilation will affect CO2 and humidity levels and therefore occupancy

estimates, ventilation rates based on occupancy estimates from this system are likely

to result in wild fluctuations in ventilation actuation and underventilation periods. In

this case, even with the known calibration and response time problems [FFS06], ven-

tilation is better controlled directly by CO2 sensors. Essentially, if CO2 or humidity

is used as a sensory input, either you can control ventilation or estimate occupancy,

not both at once.

The work in [GIB12] was the first attempt to quantify the inclusion of occupancy

data with an MPC control strategy, showing its great potential via simulations. This

was followed by [BC14], which used a very specific occupancy sensor infrastructure

to provide real-time occupancy in an MPC formulation to provide additional energy

savings. In our approach, we take into consideration not only real-time occupancy, but

predicted occupancy as well. Perhaps more importantly, our work includes real-time

user’s comfort feedback as well as a data-driven thermodynamic model of each zone

to guide the MPC optimization process. So in our work, we use the model developed

in [ECC11,ECC14] in order to predict future occupancy based on real-time data.

2.2 Occupant Comfort

Thermal comfort is critical as the main goal of an HVAC system is to provide quality

of thermal comfort to the building users. However, it is difficult to establish objective

models of comfort that represent human preferences. This issue has been debated for a

long time because of its somehow subjective definition. The first work addressing this

issue was Fanger’s seminal work on Predictive Mean Vote (PMV) [Fan70]. However,

this model is subject to significant differences observed across gender, age, clothing

preferences, physical fitness, as recent studies and experiments in built environments

have proved it recently [RVL15,WPL19]. In order to cope with this model limitations,

10



many systems have been designed to include the human-in-the-loop and ask users to

provide their real-time thermal preferences.

Previous work have also used building occupants as participatory sensors [RES10].

These systems collect thermal comfort information from building occupants by bring-

ing humans into the loop [EC, BTG13, JB12, Bur14, Rob14], and then use PMV to

determine temperature setpoints to improve comfort. These works conclude that col-

lecting sensation data like ”Feeling Too Cold” improves usability because users can

not determine their ideal temperature. All studies resulted in savings in energy and

enhanced satisfaction. In addition to PMV, a multi-arm bandit framework [MJK13]

and an optimization model [HW13] were used to identify enhanced temperature set-

points based on voting patterns.

Comfy [Rob14] is a system which also gives users the ability to vote for their

comfort. They take votes in the form of Hot, Comfy, Cold. They were able to reduce

HVAC cost by 22.95% by doing additional strategies such as expanded the heating

and cooling setpoints to have a larger deadband. This is similar to our methods, but

the algorithm used for saving energy is not stated.

Including human-in-loop is done mostly by a voting platform, as it has been the

case of many systems in the literature [EC12,PKJ13,JGB13,WBE16]. Participatory

sensing with a human-in-the-loop system has many advantages, including more precise

information of specific users’ thermal preferences, more democratic thermal consensus

when multiple user sharing a zone have different thermal preferences, and overall

energy efficiencies by conditioning the spaces based on what the users actually want

instead of trying to guess the comfort range by a subjective decision taken by a facility

manager. In our paper we include the feedback mechanisms to motivate a user to

vote and to keep them engaged.

Research carried out in [YAL14] investigates the use of various feedback mecha-

nisms to improve an occupant’s office space’s energy efficiency by reminding / enabling

the occupant to disable unnecessary equipment (lights, computers, etc.) when the

11



user is not in the office. In our work, we wish to reduce the energy consumption

of the HVAC system while it conditions the user’s space. For this reason, we must

leverage energy savings against occupant comfort. We included a physical feedback

mechanism which a voter can feel as soon as he/she votes from the vents in the room.

In our work, we leverage these techniques and use the ThermoVote system [EC12]

as our comfort app for OFFICE. Furthermore, we use the drift control strategy pre-

viously developed in [WBE16].

In summary, we believe our work is the first attempt in the literature to holistically

combine real-time and predictive occupancy, real-time thermal user feedback, data-

driven thermodynamic models and weather forecast into a model predictive control

framework in order to optimally control the tradoff between energy use and comfort.
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CHAPTER 3

System Requirements

Figure 2.1 depicts a high-level overview of the our system. When the system is

installed, occupants within the space are given access to a thermal comfort voting

application, which allows each user to vote for their comfort in their working space

as frequently as they like. In addition, a wireless network of low-power occupancy

sensors are installed overhead to track the distribution of occupants across the space

during operation. As the HVAC system runs its control strategy and daily operation

occurs in the space, we collect votes from the occupants and track their movement

using the overhead sensors. In addition, as the HVAC system runs, we periodically

(every 2 minutes) sample the current values of temperature air flow in each zone

and the main loop via the BACNet communication protocol, as later explained in

Section 5. With this data collected, we have a clear understanding of the recent and

current thermal conditions of the space, occupancy distribution, and comfort.

Every 5 minutes, our systems processing pipeline is started, which first retrieves all

recent votes, occupancy distribution, and building data samples from the databases

where they are stored. With the recent comfort votes from the users across the space,

the system chooses the appropriate heating and cooling set points for each zone,

such that the occupants will remain comfortable. Using the current distribution of

occupants, the system identifies unoccupied or under-occupied zones, candidates for

reduced conditioning for energy savings. Using a blended Markov chain [ECC11]

trained on historical occupancy data from the running building, the current occu-

pancy is sampled from the model to statistically predict the occupancy in the near
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Figure 3.1: Comfort voting page (left) and feedback (right)

future. Finally, local weather prediction is queried from the public Wunderground

API [wun19] to determine expected weather trends.

Finally, we maintain a gray-box thermodynamic model of the building using data-

driven system identification, which will later be used to predict how the thermal state

of the building will respond to a given control sequence. These collected data samples

and models are all then used to define, initialize, and solve a model predictive control

optimization problem that finds the building actuations minimizing system operation

costs subject to occupant comfort constraints based on their voting feedback. These

optimized actuations are then communicated with the building and applied for each

zone and the main AHU loop. After sufficient time has passed, the processing pipeline

will be run again, accounting for any new conditions that have been sensed in the

space for future control.
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3.1 Human Thermal Comfort

3.1.1 Conditions of the occupant study

To better understand the initial environment and the human factor particularities

we run a pre-study survey. This study is approved by the IRB (Institutional Review

Board), and the participants were selected to be those who work in the space chosen

as the location for our predictive thermal control. The subjects in our study are from

a large range of ages from 21 to 60 years old, with a 37% female population from a

total of 16 people. From this study we found that 75% of them work between 31 and

40 hours per week from 6AM to 7PM, being exposed to different thermal conditions

across the workday. 31.25% have a private office and the rest of them shares a space

with few other colleagues. When asked how their thermal preferences compare with

their colleagues, 31.25% of the volunteers answered that they prefer a warmer room

and 31.25% specified that they prefer a colder room. 56.25% of the people that took

this pre-survey answered that they have contacted the facilities team regarding the

temperature conditions up to 8 times per person in the last 12 months. 12.50% of

them found their thermostat as ineffective and 75% of them do not have a thermostat

to control the room temperature. 37.50% of them reported that room temperature

enhances their ability to work and 25% believe that it interferes with their ability to

work. 37.50% said that they avoided their office because of thermal discomfort and

80% of the total population did clothing adjustment (more or less clothes) when it

was necessary. This supports the hypothesis that the thermal comfort has a great

impact on the self reported productivity in office spaces, in addition to personal

satisfaction. We asked questions related to a new control such as how quickly they

would expect their space to be conditioned after adjusting the thermostat and 56.25%

answered that they expect to be done in more than 10 minutes. Asking the study’s

participants about their satisfaction previous to the new building control, we found

that 25% of them felt dissatisfied. With this image in mind, we designed a system to
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Figure 3.2: Comfort Voting page in web format

better suit the occupants’ preferences, which thrives in dynamic thermal conditions

and is built on a modern infrastructure including open source frameworks.

3.1.2 Comfort App Design

To facilitate user interaction with our system, we designed an application in a web for-

mat(website) Figure 3.2 distributed to the occupants for iOS and Android platforms,

with credentials. It is based on HTML5 and with this feature, content changes in one

place are automatically propagated on the mobile phone versions, without passing

through the AppStore or Google Play for updates. The app “look and feel” is shown

in Figure 3.1. In the left side is the page with the vote buttons whilst in the right side

is the page with the green feedback, designed to help the user understand their energy

footprint in relatable terms, such as how many hours an electric car could travel or

how many hours a building could be powered. Once a vote is issued by a user it is

stored in a MySQL database, from where the system incorporates the average vote

per zone to find the temperature bounds for that specific zone which will be input
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Figure 3.3: Drift strategy setpoints to save energy

into the MPC as constraints.

In our experiments, we allow the bounds to start drifting apart by 1/2◦F every 30

minutes, but remaining between 68 and 76◦F for occupied space and between 55 and

90◦F for unoccupied zone, according to the policies chosen by the building managers.

This drift begins when 1 hour has passed since the last issued vote in a zone and

makes possible energy savings by allowing the temperature to “float” between these

expanding bounds. In normal usage, heating/cooling setpoints are chosen based on

occupant voting patterns. However, if these bounds are held unnecessarily tightly,

extra energy will be consumed. An example of using drift strategy is shown in Figure

3.3. This figure illustrates that the bounds have started to relax at 12:00 when

people go for lunch and in the vote’s absence, at 13:00 they reached the occupied

limits (provided by the facility management team) and after 17:00, since the building

was empty, the bounds exceeded the previous limits to go closer to the ones for the

unoccupied schedule. The zone temperature is not correlated with the bounds values

but it is important to remain within the limits. The way the bounds are changing

with the drift is retrieved from [WBE16], using the constants mentioned there for the
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Figure 3.4: Actuated flow (CFM) as occupancy changes

Fanger formulation (PMV) [Fan70]. In practice, we receive votes from the users that

describe how they feel on a scale from cold to hot as in Figure 3.1. By taking the

average of all recent votes in the zone as an actual mean vote (AMV) and setting

equal to the PMV formulation, we find new bounds values for use in control.

3.2 Occupancy Detection & Prediction

In order to truly condition a building efficiently, it is necessary to be able to reli-

ably detect the distribution of occupants throughout the space. A system can save

significant energy based on occupancy, as both ventilation and conditioning codes
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Figure 3.5: GridEye Sensor before deployment

are explicitly defined based on occupancy levels as defined by ASHRAE standards

[ASH07b] [ole73]. In an unoccupied zone, ventilation can be set to a minimum level

based on the square footage of the zone, and as occupancy increases, ventilation must

increase proportionally to prevent buildup of CO2 and other undesired contaminants

produced by the occupants as demonstrated in Figure 3.4. We can see in the figure

that as the mean occupancy increases, the ventilation tends to closely follow, and that

when occupancy goes to zero, ventilation holds steady at a minimum level based on

the square footage to be code compliant. Thermal conditioning of the air exhausted

into the space, however, changes based on the 0/1 boundary of occupancy. If there

are no occupants in the space, the air blown into the zone does not need to be con-

ditioned, saving a significant amount of energy. However, if at least one occupant

is present, the temperature of the zone must be maintained to keep the occupants

comfortable within the space.

For the our system to consider occupancy in its control decisions, we wish to have

both occupancy measurement and prediction for the building. For occupancy mea-
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Figure 3.6: 8x8 thermal array sensing an occupant

surement, we employ a wireless sensor network of occupancy sensors with Panasonic

PIR and Grideye sensors as proposed by [BEC13] and shown in Figure 3.7 and Fig-

ure 3.5. The installed devices periodically poll the PIR sensor for recent movement,

and if necessary the Grideye captures a thermal image Figure 3.6. Using an expo-

nential weighted moving average to maintain a background of the space, background

subtraction is used to find active regions in a new frame based on the standard devia-

tion of temperature values for each pixel. Then, running an 8-connected components

algorithm, we identify the distinct active “blobs” in the frame, which identify the

unique heat sources in the frame. As demonstrated in [BEC13], we use a linear re-

gressor trained on historical data that maps the size of the largest active blob, the

number of blobs, and the number of total active pixels in the image to the predicted

number of people in the frame, which we have found to work well in practice. The

number of people output by the regressor is then stored in a database to be used later

in the processing pipeline.
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To allow occupancy prediction, we use a blended markov chain as introduced

in [ECC11]. This model is trained with historical data traces of occupancy in this

building, and maintains transition matrices for occupancy distribution specific to the

time-of-day. This allows our system to query the model with the current distribution

of occupants throughout the space and get the predicted future sequence of occu-

pancy, with states in the model occurring closest to the current time-of-day being

most heavily considered. Since we only consider states observed in the training data

as opposed to observable states, there might be states that are not available in a

transition matrix for that specific time of day. Suppose we are predicting occupancy

for hour Hx. After 3600 steps, we are in some state S, the hours changes from H

to Hx, and the model will switch to Hx hourly transition matrix. It is possible the

transition matrix for hour Hx for occupancy state S has no probability. This hap-

pens when state S never occurs in the Hx training data. Even though in reality the

state S can occur in hour Hx, if S does not occur in hour Hx of the training data,

then we cannot calculate the transition probabilities for S. This can not be solved

by introducing a small probability value of transition to another state as the next

selected state may not be represented in the transition matrix as well. The markov

chain becomes a random walk until the observed data set captures a particular state.

Also, sink state can occur if the next transition matrix does not contain a probabil-

ity for the current state. To tackle these issues, rather than considering the closest

distance transitions we linearly combine the different transition matrices to obtain

blended transition matrix to include all observed states. This increases the number

of preferred states available for transition and decreases the chance to select states

outside the slot boundaries completely.

Specifically, this type of model will learn time-specific behaviors and sequences,

such as occupants morning influx when business hours start, or noontime lunch move-

ment. With the ability to predict future occupancy, our system will be able to consider

future movement of people and pre-condition the space accordingly.
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Figure 3.7: Occupancy sensors before deployment

3.3 System Identification

In optimization, we must consider how the building will react to system inputs such as

zone flow and temperature adjustment. As shown in [KMB13b], a resistor-capacitor

model can be used to model the thermodynamics of a building where the capaci-

tance represents the heat storage capacity of each zone, analogous to room size, and

resistance represents how insulated the zones are from each other (i.e. thickness of

walls/doors). In this way, we model zone temperature dynamics as follows with model

variables enumerated in Table 3.1:

Mn
d

dt
Tzn = (Tsn − Tzn)cpmzn +Qn + (To − Tzn) /Rn,o (3.1)

Here, the three terms on the right side represent heat flow from the HVAC system

through the vents into the zone, the load due to equipment or machinery, and heat

flow from the outside of the building into the zone, respectively. In addition, the

Mn term on the left hand side denotes the capacitance of the zone, impacting the

rate at which the zone’s thermal status can be changed. While there may be heat

exchange between zones as well, temperature conditions between two indoor zones will
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very similar in general, making the heat transfer negligible. In addition, by including

these terms, the model becomes highly non-linear, making optimization significantly

more difficult.

Before this thermal model can be used, we must estimate values for each zone’s

capacity (M), thermal load (Q), and thermal resistance to the outside of the building

(R). In practice, the load within each zone and resistance to the outside are difficult

to estimate accurately by simply observing the space; factors that contribute to load

may be difficult to observe, such as electronic equipment whose heat varies over time

depending on usage, appliances in the space that are not constantly running, etc.

Similarly, the resistance to the outside of the building is dependent on the insulative

abilities of the walls, windows, and doors of the external walls and the area each

covers the wall. In contrast, the capacitance of each zone in the building will be

directly proportional to the amount of air that can be stored in the zone, which can

be determined through most standard floor plans of the indoor space. We note that

while this estimate will not consider the space occupied by furniture and people,

we consider it a fairly close approximation. In this way, we compute the M values

directly, reducing the number of unknown parameters that must be fit from data in

the next step.

The remaining parameters, R and Q, are learned periodically using thermal data

traces collected within the building. In this way, our model will maintain its relative

accuracy over time, as these conditions may be changing based on equipment and

personnel usage of the space. To estimate the resistance and load parameters of our

system, we use our thermodynamic model of Equation 3.1 and data traces of the

system in operation in a least squares analysis to find the values of Q and R that

minimize the error of the model given those parameters. This operation is run daily

in our system to ensure the model will adapt to changing conditions in the space, such

as movement of equipment between zones (printers, computers) or changing working

hours of the occupants.
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Type Symbol Description

Constants Mn Capacity of a zone

cp Heat capacity of air

Rn,i Resistance between zone i and zone n

Rn,o Resistance between zone n and outside

ηc, ηh Cooling and heating efficiency

rg Monetary cost of gas per kwh

re Monetary cost of electricity per kwh

τ , N Number of time steps and zones

Tc,min(t) Min cooling temperature

Ts,max(t) Max heating temperature

Ro Required ventilation per occupant

Ran
Required ventilation for an area

An Area of a zone

Variable Tzn(t) Zone Temperature

Tsn(t) Supply air temperature to a zone

Tc(t) Cooled air temp from AHU

Tm(t) Mixed Air Temperature

D(t) Damper position for outside air

Tr(t) Return temperature

mzn(t) Mass flow into a zone

ms(t) Total mass flow of all zones

ρu,n(t), ρl,n(t) Upper/lower comfort penalty

φp Penalty coefficient

t, n Time, Zone

Given or To(t) Outside air temperature

Pre-calculated Q Thermal load

On(t) Occupancy

Vmin,n(t) Min ventilation required for a zone

T+
zn(t), T−

zn(t) Upper and lower comfort bounds

Table 3.1: MPC variables and descriptions

24



As with any process where parameters must be fit to data, it is important that

the datapoints used are well-distributed, representing the full data space [Ram69]. In

other words, if all datapoints have the same or similar values, a bad parameter fit is

likely. For example, if we use temperature values from a conditioned space, the value

of load and resistance won’t be reasonable. We use least squares regression to choose

the best parameters for our chosen model using the data traces from the building.

In our application, during building operation the indoor temperature conditions are

relatively constant. For this reason, we require homogeneous distribution of input

points on the entire temperature range. We have found that it is best to use data from

the mornings when the HVAC system first conditions the space, and nights/weekends

when the HVAC system is turned off and the interior temperature drifts due to load

and external conditions only.
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CHAPTER 4

Model Predictive Control

4.1 Optimization Constraints

To constrain the system, we first must include the thermodynamic model as intro-

duced in Equation 3.1:

Constraint 1: Thermal Model of Equation 3.1

The remaining optimization constraints are based on the physical properties of

the system, building regulations that the HVAC system must follow, and comfort

constraints. In addition, in cases where zone temperatures are outside of comfort

ranges as initial conditions for optimization, an upper and lower penalty is added

as well to prevent the optimization from becoming infeasible, but guide the zone

temperature into a comfortable range as quickly as possible.

Constraint 2: Tc(t) ≤ Tm(t) – The cooling coil can only cool the air received from

the economizer.

Constraint 3: Tc(t) ≥ Tc,max – Cooling capacity of cooling coil.

Constraint 4: Ts(t) ≥ Tc(t) – Heating coils can only increase the temperature of the

air supplied by the AHU.

Constraint 5: Ts(t) ≤ Ts,max – Max capacity of heating coil.

Constraint 6: mzn(t) ≥ Vmin,n(t) – The zone’s minimum ventilation required for oc-

cupants.
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Constraint 7: mzn(t) ≤ mmaxn – The VAV’s maximum ventilation capacity.

Constraint 8: 0 ≤ D(t) ≤ 1 – Physical damper constraint.

Constraint 9: D(t) ≥ Dmin – Minimum outside air requirement.

Constraint 10:
N∑
n=1

mzn(t) ≤ AHUmax – The fan’s maximum ventilation capacity.

Constraint 11: ρun(t) + T+
zn ≥ Tzn(t) ≥ T−zn − ρun(t) – Comfort bound

Constraint 12: ρun(t) ≥ 0, ρln(t) ≥ 0 – Penalty functions can only increase cost

By honoring these system constraints, the model predictive control will respect the

requirements and limitations of the physical HVAC system when considering potential

actuations.

4.2 Objective function

To choose the best actuation sequences possible, we create the objective function

such that the cost of system operation is minimized. In our HVAC system, the three

primary energy consumers are AHU ventilation and cooling (both electricity) and

heating (gas). While there are further consumers such as water pumps for heating

and cooling, these are more minor consumers, and are not considered in our model.

Similarly to the thermodynamic model previously presented in Section 3.3, we can use

the temperature values before and after heating and cooling to compute the amount

of energy that has been transferred. For instance, we can compute the energy used

for cooling at times t ∈ 1 . . . τ as

Pc =
cp
ηc

τ∑
t=1

ms(t)(Tm(t)− Tc(t)) (4.1)

where Tm(t) is the warmer mixed air, Tc(t) is the cooler output, ms(t) is the mass flow

rate, cp is the heat capacity of air, and ηc is the efficiency of the air conditioner. With

temperature units in Kelvin and mass flow in kilograms per second and other values as
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defined in Table 3.1, this equation will provide the kWh consumed in heating, which

can then be multiplied into the cost of electricity re to convert to monetary value.

The mixed air temperature Tm is a mixture of the return temperature Tr and the

outside temperature (To), the ratio of which is controlled by the economizer damper

position D(t). At D(t) = 1, 100% of the mixed air is recirculated, and at D(t) = 0,

100% of the air comes from the outside.

Tm(t) = D(t)Tr(t) + (1−D(t))To(t) (4.2)

While fresh air is required to prevent buildup of gases in the space, more re-circulation

allows the system to save energy, as the re-circulated air has already been conditioned

to roughly the desired temperature. The return temperature, then, is a mixture of

outgoing air temperature from each zone, weighted by that zone’s mass air flow:

Tr(t) =

N∑
n=1

mzn(t)Tzn(t)

ms(t)
(4.3)

The technique to measure energy consumed for heating is similar to that of cooling.

We consider the temperature increase across the heating coil in each zone and the

mass flow of air to get

Ph =
cp
ηh

N∑
i=1

τ∑
t=1

mzi(t)(Tsi(t)− Tc(t)) (4.4)

where mzi is the mass flow for zone i, Tsi is zone i’s supply temperature into the

room, and Tc(t) is the cool air temperature in the main loop. Finally, we consider the

cost of the fan, which was found to be a squared increase with respect to mass flow

in [KMB13b] with an efficiency factor of ηf :

Pf =
τ∑
t=1

ηfms(t)
2 (4.5)

Considering the differing costs for gas and electricity, the minimization problem can

be written as follows where re and rg are the dollar costs per kWh for electricity

and gas, respectively. In our locale, these pricing figures are .018 $/kWh for gas and
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.108 $/kWh for electricity. In our deployment, this means the optimized actuations

will prefer to provide more gas heating due to the cheaper costs, but under different

pricing conditions OFFICE will find the appropriate control that will minimize costs

for any pricing.

min
mn(t),Tzn (t),Tsn (t),Tc(t),D(t)

t∈1...τ,n∈1...N

re(Pc + Pf ) + rg(Ph) + Cs

subject to: Constraints 1-12

(4.6)

As the objective function and constraints are nonlinear with respect to the optimiza-

tion variables, the optimization problem as written is non-convex which may cause the

optimized solutions to be local and not global optima. Future work may consider the

process of model linearization, but analysis must be done to ensure model accuracy

is not substantially reduced. In practice, our system models the thermodynamics of

the 8 zones of our test building (N = 8) 1 hour into the future, at 10 minute inter-

vals (τ = 6). Despite model non-convexity, a solution is found in seconds using the

Julia [BEK14] optimization framework’s IPOPT solver for our test building.

When optimization is finished, it returns the optimal setpoints of discharge tem-

perature and mass flow for each VAV in the system, damper position in the econo-

mizer, and temperature setpoint for cooling in the AHU for the next hour into the

future at 10 minute intervals. In addition, for each of these discrete timesteps, the

optimization provides the state of the system subject to the optimal control, as pre-

dicted by the thermodynamic model. In practice, although optimization considers

the evolution of the system for a time window of 1 hour into the future, when opti-

mization is finished only the first set of actuations (i.e. actuations at t = 0) are sent

to the building for actuation. Then, 10 minutes in the future, all data is queried and

optimization is completed again to correct for any error in prediction that may have

occurred.
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CHAPTER 5

System Implementation

Our system has several modules that require data gathering capabilities, as discussed

in Sections 5 and 4. In this section we explain the building interaction with various

modules that form this system, and practical considerations in its design. Figure 5.1

provides a detailed view of the system architecture, along with the backbone storage

systems that maintain the large amount of data required in processing. Due to the

different types of data we maintain for our processing pipeline, we maintain two

distinct databases; for data sources that are periodic such as building sensor data, a

time-series data called Influx [inf13] is used, and for data that is not time-series is

stored in a relational MySQL [MyS95] database.

Building control is not easy. Incorrect actuation commands can result in discom-

fort to the occupants in the space, reduction of hardware lifetime through an unex-

pectedly high number of physical cycles, or even direct damage of HVAC equipment.

This is especially risky due to the reliance of the system on high data quality from

the various data sources in the space. In our experience, it is common for embedded

sensors within the building equipment to become miscalibrated or simply fail, and

similarly we have found actuators that will not obey a request to change states. For

these reasons, the highly modularized structure of our system has been instrumental

to maintaining a high quality of control. To ensure system operation, a number of

fail safes have been implemented; features within the Influx time-series database have

allowed us to create custom alarms to sense when sensors have not provided data for

a period of time, allowing us to detect and correct issues in our deployments, and

30



Figure 5.1: OFFICE System Architecture

modules in the processing pipeline add a layer of redundancy on actuation requests

to ensure our model predictive control output can never exceed pre-defined minimum

and maximum values for control.

The Influx database manages real-time data arriving from periodic data sources.

Sensor data is collected by the Building Management System (BMS) periodically

throughout the day (every 2 minutes). This sensor data is gathered from sensors

such as flow and temperature sensors throughout the HVAC system. While the BMS

collects high-resolution data of all points, limitations in the WebCTRL system cause

it to severely slow down when third-party applications fetch this data in bulk. As

this is a critical system to the facilities management crews on campus, we circum-

vent this limitation by fetching this data directly from the devices themselves using a

data communication protocol for Building Automation and Control Networks called

BACnet [LHM12], and stored in the Influx time series database. In addition, the dis-

tributed network of occupancy sensors introduced in Section 3.2 periodically sample

and transmit occupancy data to a network-enabled border router in the space, where
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it is relayed to Influx as well. In contrast, the relational MySQL database manages

non-periodic data. For instance, as the thermal comfort application introduced in

Section 3.1 receives votes from the users, they are recorded and stored in MySQL

to maintain the source of the vote, associated zone for conditioning, etc. To facili-

tate easy use of this database, the comfort voting application has WEB and Mobile

applications built on top of Django(Python) with better support for MySQL.

The time-series database is critical after optimization as well. When the model

predictive control finds an optimal solution, it provides a set of setpoints that must

be conveyed to the building, and these actuations are all stored in Influx. Once

the actuations are validated, a separate module fetches these points from influx and

initiates communication with the building. Although the actuations can be set via

the Bacnet protocol directly to the actuators in the system, this will cause issues

when WebCTRL tries to overwrite the setpoints using its own strategy. Instead, our

system communicates with the WebCTRL service’s SOAP API as a middleman and

overwrites the WebCTRL setpoints, which prevents the interference of the WebCTRL

control strategy and allows the facilities techs familiar with the WebCTRL system to

have full visibility of the control decisions of the OFFICE system.

As building actuation is done on the scale of minutes, the time it takes to solve for

a single optimization problem is less than 5 seconds. Once the optimizer solves the

problem, a set of control inputs is obtained, such as the mass flow, discharge tempera-

ture, damper positions and supply temperature which is saved in Influx database. The

predicted values as explained in section [4] are also saved in the same database.Once

everything is in place, we run an actuation script every 5 minutes to read the actu-

ation points from database and these control set points are then transmitted to the

BMS using BMS’s SOAP based API, which then uses its own built-in PID loops to

achieve the set points passed to the building’s equipment.

An example of how we control would be setting the point for the mass flow. Our

solution contains the flow for each zone which can then be set as required mass flow
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Figure 5.2: OFFICE Grafana Node Map

via the BMS. We only adjust the set-point, and the building is capable of changing

the supply fan’s speed and damper position for each zone to meet the needs of all the

zones. Every actuation period the points we set include all zones’ mass flow, zones’

supply temperature, discharge temperature at building level. In order to utilize the

return air from HVAC system we modify the outside air damper position which help

us to conserve energy as the amount of air that needs to be reheated reduces and less

energy is spent on reheating the air going in.

Integration with the actual BMS is done in a such way that if the facility manage-

ment team would like to take control over, it is possible to make an instantly switch

from our strategy to the BMS control strategy. As a final layer of oversight, the

OFFICE system features monitoring and dashboarding visualization to be used by

the facilities techs. We used Grafana [Gra14] and a web application build on NodeJS

to integrate a visual monitoring and dashboaring system with our Influx Database to

keep track of active wireless sensors for occupancy detection, as well as email alerts

in case of a failures, or if a certain zone is not behaving as expected, etc. Figure 5.2
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Figure 5.3: OFFICE Zone Temperature Plots

gives an overall picture of the mean number of occupants in a particular room based

on a mote and Figure 5.3 provide a historical picture of zone temperature of all the

zone. In case a zone temperature goes beyond set bounds, the team gets an email

notification with a a visual notification on the dashboard.

In the case that the OFFICE system does something incorrect, we provide the

facilities techs with a “kill switch” that immediately terminates OFFICE control and

returns to the WebCTRL strategy. To date this feature has not been used.

34



CHAPTER 6

Case Study

6.1 Environmental Conditions

To perform a comparison of our system against state-of-the-art building control, it is

deployed in a LEED Gold certified building housing the facilities management crew

and various administrative staff of our university Figure 6.1. The region within the

building under our control is approximately 5000 square feet, and is controlled by 1 air

handler unit divided into 8 zones, each provided by a variable air volume (VAV) unit.

The HVAC system is controlled by a WebCTRL building management system. In

total, the zones cover 4 offices, around 20 cubicles, a conference room, a break room,

and an open hallway occupied by two receptionist desks, with each type having its

own pattern of usage.

As the university is maintained by the department of facilities and its occupants,

our occupants have abnormal hours. Maintenance personnel arrive as early as 5 am

and cleaning staff frequently use the building until midnight. In all, there are 18

full-time staff members and several part-time student workers in the building, with

more coming in and out as a central operating base. The system was evaluated for

a total of 4 weeks ; as the building management system is inactive on weekends, our

system analysis includes 20 days of operation on weekdays.
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Figure 6.1: 3-D Model of building

6.2 Performance Metrics

To determine the merit of the our system, we launch it in our building for 20 days, and

compare its operation with the baseline WebCTRL strategy with respect to several

metrics. In practice, it is infeasible to run the two control strategies at the same

time, so it is difficult to compare them under identical conditions; for instance, the

outdoor weather changes daily, so the control sequences will change as well. To make

sure we have as fair a comparison as possible, for each day of operation under the

system, we take the day’s 24-hour outdoor temperature profile, and compare it to our

data under WebCTRL operation. When we find the WebCTRL day with the most

similar temperature trend, we use it to compare to our system operation. We note

that in some cases, more than one day may map to the same WebCTRL day, leading

to repeated trends for analysis in WebCTRL data.

The primary purpose of the building management system is to make the indoor en-

vironment comfortable for the building occupants. To compare comfort under the two

systems, we perform a pre and post-study survey with each occupant in the building

to understand how their thermal conditions are under the existing baseline strategy,
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Figure 6.2: Temperature prediction versus ground truth

and how they change under the control of our system. This provides us the clearest

view into the comfort provided by the system to this building’s occupants. In addi-

tion, to provide a more quantitative analysis on the more general population, we use

Fanger’s formula for PMV [Fan70] to estimate comfortable temperature bounds for

the “standard” occupant within the current seasonal conditions. With these bounds

in mind, we can step through all data from a system’s operation, and any time the

zone temperature goes outside the bounds, we add the distance from the bound to a

sum.By conducting this analysis on both systems, we can directly compare how well

in the more general sense the two systems can maintain comfortable conditions.

In addition to comfort, it is critical to the managers of these buildings that the
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Figure 6.3: Model error characteristics for each zone

control strategy costs as little money and consumes as little energy as possible. Al-

though minimizing system operational costs and consumed energy are not equivalent

goals, we wish to reduce both energy consumption and costs in comparison to the

baseline strategies. While we do not have access to direct measurement of energy con-

sumption or costs in the running system, we can use the energy and cost equations

derived in Section 4.2 to compute the energy consumed in heating, cooling, and AHU

fan using the data trends from the OFFICE system and its most similar weather day

under the WebCTRL strategy. While these equations describe the “ideal” energy

transfer in the system and will not include energy losses due to heat dissipation or

other inevitable sources of loss, it provides us the ability to compare these systems in

exactly the same way for comparison.

6.3 Model Accuracy

As our system runs its control within the test building, the model predictive con-

trol framework is optimizing control actuations based on the model describing the
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Figure 6.4: Zone 1: Temperature prediction versus ground truth

expected building reaction. To determine whether the thermodynamic model is cap-

turing the effects within the building, we can compare MPC’s predicted temperature

at time t = +10m to the ground truth temperature that actually occurred at time

t = +10m. For instance, Figure 6.2 demonstrates the ground truth zone temperature

in Zone 5, against the temperature predicted by the model 10 minutes earlier. We

can see in this specific example that the predicted values closely follow the true ones,

but that at some times (i.e. 07:00) the model predicts temperatures to increase too

quickly, or others (i.e. 19:00) the model predicts the temperature will decrease too

quickly.

For a more general and quantitative understanding of the model’s ability to predict
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future conditions, the distribution of errors across our 20 days of deployment is shown

for each zone in the system in Figure 6.3. In this figure, the center line within each

box is the median error for that zone, the upper and lower ends of the boxes define

quartiles 1 and 3, the whiskers denote extreme data not considered outliers, and the

crosses represent outliers. We can see here that with the exception of zones 1 and 3,

the median error for all zones is below 1 degree Fahrenheit, with outliers exceeding

2 degrees. While we believe this is reasonable performance in the more general case,

it is clear that the model had difficulty making accurate predictions for zones 1 and

3. Zone 1 is a break room in the building, and has many characteristics that make

prediction difficult. As a break room, occupancy patterns were found to be very

sporadic and appliances (1 fridge, 2 vending machines, 1 printer) cause irregular

thermal load in the room that was difficult to model. Zone 1’s error in prediction

can be seen in Figure 6.4. Zone 3, an open cubicle area, had the main door to the

outside, which resulted in a large influx of outside air every time somebody entered

or exited the building. It is important to note that while some zones have higher

modeling error, the OFFICE framework will be able to provide control as long as

the model predicts future states in the direction of the ground truth. In these cases,

OFFICE’s periodic re-solve of control optimization with corrected initial conditions

will guide the solution towards the desired state, even if it is sub-optimal w.r.t. cost.

To demonstrate this point, Section 7 will show that the OFFICE system is capable of

improved occupant comfort and energy savings despite this challenge in modelling.
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CHAPTER 7

Results

For our analysis, we want to compare the state-of-art building control that is op-

erational in the top of the line green buildings with our OFFICE control strategy.

We think this is valid baseline comparison as this represents the best strategy that

is implemented in current top quality building stock in the U.S. As mentioned in

Section 6.2, we are interested in comparing both the quality of thermal comfort and

the energy use/cost results between the two systems.

7.1 Thermal Comfort Analysis

Table 7.1 shows the results from the pre-survey and the post-survey. The first thing

to notice is that the satisfaction level in the pre-survey for the WebCTRL baseline

strategy is very good. Only 25% of users are dissatisfied, with 50% of all users being

satisfied or somewhat satisfied. Previous work has shown that the percentage of users

Satisfaction level Pre-survey Post-survey

Satisfied or very satisfied 25.0% 30.0%

Somewhat satisfied 25.0% 50.0%

Neutral 25.0% 20.0%

Somewhat dissatisfied 18.75 % 0.0%

Dissatisfied 6.25% 0.0%

Table 7.1: Room thermal satisfaction survey report
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Figure 7.1: Example of thermal comfort for all zones in WebCTRL

Total Sum No of Days Average

WebCTRL 3543.3 84 42.2

OFFICE 459.8 20 23.0

Table 7.2: Quality of Thermal Comfort

dissatisfied was in general much larger, varying from 50% to 75% [EC12, WBE16].

This is not completely surprising though, as the building went through LEED Gold

certification process and two very experienced HVAC engineer tuned up the control

routines in the building to make them as efficient as possible, debugging comfort

issues with users in the process. In the post-survey column, we see the results of

the post-survey after running the OFFICE system. The level of dissatisfaction is zero

percent, and 80% of the users were satisfied or somewhat satisfied, with the remaining

20% being neutral.

We want to take a closer look as to why WebCTRL has significantly worse quality
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of thermal comfort than OFFICE. Figure 7.1 shows an example of thermal comfort for

all the zones when running WebCtrl for a single day. As mentioned in Section 6.2, we

use Fanger’s formula for the Predictive Mean Vote (PMV) [Fan70] to estimate com-

fortable temperature bounds for the “standard” occupant within the current seasonal

conditions, as defined by ASHRAE standard 55 [ASH07a]. Office-like environments

do not require special thermal needs, so they are considered Class C environments

according to the classification scheme included in ISO 7730 [Iso05]. The maximum

high/low end of the comfort range for Class C environments has PMV values of +/-

0.7, which we determined to be a temperature range between 70◦F and 76◦F. From

Figure 7.1 we see that over the course of the day, many zones get close to the the tem-

perature limits, and specifically zones 1 and 3 exceeds the low and high limits several

times during the day. The figure shows clearly that WebCTRL exceeds the comfort

temperature bounds and would tend to provide poor quality of thermal comfort to

its occupants. In order to provide more quantitative results over the course of many

more days, we step through all data from both WebCTRL and OFFICE, and any time

the zone temperature goes outside the bounds, we add the distance from the bound

to sum, i.e. we calculate the L1 distance when bounds are exceeded. The results are

shown in Table 7.3. From the table, we see that WebCTRL produces a significantly

larger distance when comfort bounds are violated, with an average distance across all

zones of 42.2/day versus OFFICE 23.0/day, an 83.5% decrease in quality of comfort

by WebCTRL compared to OFFICE.

Figure 7.2 shows the thermal preferences vote distribution for all the users in our

building. We see that ∼41% of all the users’ votes were on the hot/warm side of

the scale, with ∼32% of all the users’ votes on the cold/cool side, and ∼27% of all

users’ vote being neutral. This figure provides an indication that temperatures might

be on the warmer side for the majority of the zones. To verify this intuition based

on the users thermal preferences, we plot in Figure 7.3 the zone average temperature

variation from all zones across different times of the day for a sample experimental day.
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Figure 7.2: Thermal preferences vote distribution for the users in our building. Values

[-3,-2,-1,0,1,2,3] corresponds to [Cold, Cool, Slightly Cool, Neutral, Slightly Warm,

Warm, Hot] in our comfort app.

Figure 7.3: Zone temperature variation across the day for all zones for a selected day
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Average Cost(USD) Average Energy(Kwh)

WebCTRL 9.235 112.106487

OFFICE 8.242 107.161204

Table 7.3: Savings

We see from the figure that the majority of the zones experienced warm temperatures,

except in the mornings and except zone 3 across most of the day. Since voting patterns

may be changing across the day depending on the zone temperature, we plot the

voting data for cold, warm and neutral values as a function of the time of the day in

Figure 7.4. The data was binned at the beginning of the time slot, so a vote indicated

at noon could have occurred at anytime since 12:00pm to 12:59pm and so forth for the

rest of the hours during the day. We see that there is a clear pattern from the figure

where most of the cold votes occur in the morning across all days, while the majority

of the warm votes occur in the afternoon. A peculiar thing we noticed is that a large

concentration of votes occur between 12:00 and 12:59pm. This time also coincides

with the lunch break for the majority of users. We hypothesize that this may be the

effect of the temperature transitions that occur in the majority of the zones, from

the colder mornings to the warmer afternoon, and the transitions may motivate users

to vote more to protect their “thermal well-being”. Another explanation might be

that users may have more time during the lunch break for tasks other than work,

and they may pay more attention to thermal comfort and use the comfort app more

often. However, more investigation is required as to the reasons why this happens.

7.2 Cost and Energy Analysis

Our other primary metrics of success are the cost and energy profiles of the running

system. As discussed in Chapter 4, the optimization problem will minimize the cost

of operation, but as the occupants of the building have the opportunity to influence
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Figure 7.4: Votes distribution in our comfort app as a function of the time of the day.

the control routines by voting for comfort in their space, the OFFICE system may

have more restrictive temperature setpoints, potentially increasing these metrics. As

discussed in Chapter 6, to perform a comparison of the OFFICE and WebCTRL

control strategies, each day of OFFICE operation is matched to the closest day of

WebCTRL operation with respect to hourly outdoor weather trends, allowing us to

compare the two systems, even when they aren’t operational at the same time.

The energy consumption of the two buildings is compared in Figure 7.6, where

the solid color bars represent the energy profile under the OFFICE system, and the

corresponding hatched bar represents the energy profile of WebCTRL’s most similar

day. In addition, each bar is broken into the separate heating and cooling costs,

stacked on top of each other. We can see here that a bit more energy is spent in

cooling the air, which is expected due to the slightly warmer outdoor temperature

of the spring season. It may be counter-intuitive that both heating and cooling is

occurring in this system, but this is expected of a terminal reheat system such as
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Figure 7.5: Operation cost of OFFICE vs WebCTRL

this; the cooling is done at the AHU level, bringing the air to a cool temperature to

be distributed to the building, and then terminal reheat at the VAV level warms the

air to the temperature required for the space. In our system in particular, each zone

may have differing discharge air requirements due to occupant preference and voting,

so this terminal reheat is common to meet these demands.

7.2.1 Cost Analysis —& Energy Analysis

Figure 7.5 shows the cost comparison between the OFFICE and WebCTRL systems

across the 20 days of deployment. The reason Figures 7.6 and 7.5 are not directly

proportional is due to the differences in energy cost from gas and electrical sources.

As electricity costs approximately 5x more than gas, the majority of costs are due to

electrical usage in building cooling. In terms of cost, the OFFICE system required

8.24$ per day vs WebCTRL’s 9.23$ per day, a 10.8% overall savings.

As shown in Figure 7.6, the OFFICE system consumed an average 107.16kWh

per day vs WebCTRL’s 112.11kWh per day, a 4.4% savings in energy consumption

under the OFFICE system.
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Figure 7.6: Energy consumption of OFFICE vs WebCTRL
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CHAPTER 8

Discussion

In this section, we discuss some of our experiences and observations while controlling

a building’s HVAC system using our OFFICE framework.

There are several limitations to our systems that were essentially discovered only

after extensive experimentation. The first issue is that buildings have faulty sen-

sor and equipment, and no control strategy can replace good maintenance and fault

detection and diagnostic of the building. For example, in very specific zones we ob-

served days when the zone discharge temperature was 10◦F higher than the zone

temperature, but the zone failed to heat up. Misaligned sensors make our thermo-

dynamic model appear incorrect, when in fact the issue is faulty hardware. Another

example was the change in the connection polarity of an actuator in the economizer.

When instructing the system to use 100% outside air, the system when into full re-

circulation with not outside air and vice-versa. We were able to debug the system in

the initial trial runs and we fixed the problem in our software framework by simply

inverting the logic without changing the hardware, but on large systems developers

should be aware of these type of problems. Another limitation of the system is in

our gray-box approach for the thermodynamic model. We decided to use a simple

enough model that could be used in optimization control loop, but powerful enough

to get the “derivative right” even at the expense of some amplitude error in some

corner cases. In Section 6.3 we explored in detail our model accuracy, explaining

some of the reasons whey we have larger model errors for zone 1 (breakout room with

appliances) and zone 3 (open area with cubicles exposed to a door being frequently
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opened). We think there is room for improvement here, and perhaps we should ex-

plore thermodynamic models that are able to cope better with variable loads and wall

(door) resistant parameters that expect certain levels of dynamics.

In addition to this, we note that MPC makes the assumption that the changing of

flow and temperature setpoints in the system occur very fast relative to our actuation

frequency of 10 minutes. In running the system, however, we found that adjustment

to temperatures and flows at the AHU level often took several minutes, which will

cause the model’s prediction to be inaccurate immediately after changes are made to

the setpoints as the changes are taking effect.

Another point worth mentioning is that the quality of the weather forecasting

data is highly dependent on the station location. During the experiment we compared

outside temperature using a temperature thermometer with the weather data from

the forecasting API [wun19]. Although the difference was not significant, having the

actual outside temperature the building is exposed to, would increase the accuracy

of the optimization results. For future work, we could consider deploying our own

sensor near the outside input vent of the main AHU loop.
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CHAPTER 9

Conclusion

In this thesis, we covered several topics with a goal to balances the tradeoff between

energy cost and user comfort in the operation of HVAC systems in commercial build-

ings. We collect missing information from current HVAC systems, namely

a) real-time and predictive occupancy using wireless sensor nodes,

b) human-in-the-loop comfort data gathered through mobile comfort apps,

c) develop a data-driven gray-box model where the parameters of the model are

learned from the building operational data.

Together with weather forecast information, this data is fed into OFFICE to min-

imize the energy cost while satisfying user comfort constraints. We tested our system

for over 4 weeks in a LEED Gold certified building, which was recently optimized by

two experienced HVAC engineers for optimal operation, where 20+ users in 8 zones

do their daily tasks. We showed a significant reduction in dissatisfaction, going from

25% with the baseline strategy to 0% dissatisfaction with OFFICE. Despite this im-

provement in quality of thermal comfort, we were able to also show a decrease of the

energy cost by more than 10% compared with the baseline strategy.

There are many avenues to be taken for future work on the basis of this work.

The optimization problem developed in the end can be further expanded to take ad-

ditional elements into consideration such as non-constant thermal load. As discussed

in Chapter 8, extra sensors can be deployed to get accurate measurement of weather

data to make the system more efficient.
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