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BACKGROUND: Phthalates are commonly used endocrine-disrupting chemicals that are ubiquitous in the general population. Prenatal phthalate expo-
sure may alter placental physiology and fetal development, leading to adverse perinatal and childhood health outcomes.
OBJECTIVE:We examined associations between prenatal phthalate exposure in the second and third trimesters and the placental transcriptome at birth,
including genes and long noncoding RNAs (lncRNAs), to gain insight into potential mechanisms of action during fetal development.
METHODS: The ECHO PATHWAYs consortium quantified 21 urinary phthalate metabolites from 760 women enrolled in the CANDLE study
(Shelby County, TN) using high-performance liquid chromatography–tandem mass spectrometry. Placental transcriptomic data were obtained using
paired-end RNA sequencing. Linear models were fitted to estimate separate associations between maternal urinary phthalate metabolite concentration
during the second and third trimester and placental gene expression at birth, adjusted for confounding variables. Genes were considered differentially
expressed at a Benjamini-Hochberg false discovery rate (FDR) p<0:05. Associations between phthalate metabolites and biological pathways were
identified using self-contained gene set testing and considered significantly altered with an FDR-adjusted p<0:2.

RESULTS: We observed significant associations between second-trimester phthalate metabolites mono (carboxyisooctyl) phthalate (MCIOP), mono-2-
ethyl-5-carboxypentyl phthalate, and mono-2-ethyl-5-oxohexyl phthalate and 18 genes in total, including four lncRNAs. Specifically, placental
expression of NEAT1 was associated with multiple phthalate metabolites. Third-trimester MCIOP and mono-isobutyl phthalate concentrations were
significantly associated with placental expression of 18 genes and two genes, respectively. Expression of genes within 27 biological pathways was
associated with mono-methyl phthalate, MCIOP, and monoethyl phthalate concentrations.
DISCUSSION: To our knowledge, this is the first genome-wide assessment of the relationship between the placental transcriptome at birth and prenatal
phthalate exposure in a large and diverse birth cohort. We identified numerous genes and lncRNAs associated with prenatal phthalate exposure. These
associations mirror findings from other epidemiological and in vitro analyses and may provide insight into biological pathways affected in utero by
phthalate exposure. https://doi.org/10.1289/EHP8973

Introduction
Phthalates are ubiquitous chemicals used as plasticizers in numer-
ous consumer products, leading to pervasive human exposure
(Ferguson et al. 2014; Sathyanarayana 2008). Parent phthalate
compounds undergo hydrolysis to monoesters, which are then are
transformed into secondary metabolites depending upon on their
chemical structure and molecular weight, overall resulting in a
variety of different metabolites that the fetus and placenta are
exposed to during pregnancy and are detectable in urine
(Domínguez-Romero and Scheringer 2019). Prenatal phthalate

exposure is associated with adverse perinatal outcomes and preg-
nancy complications (Martínez-Razo et al. 2021), including
decreased gestational length (Boss et al. 2018; Wolff et al. 2008),
decreased anogenital distance, and hydrocoele (Sathyanarayana
et al. 2017; Swan et al. 2005). Recent studies also suggest
increased odds of negative childhood outcomes, including ec-
zema development, asthma development in males (Adgent et al.
2020), decreased mental and motor development scores and
increased internalizing behaviors (Whyatt et al. 2012), social
impairment characteristics (Day et al. 2021), and deficits in intel-
lectual development (Factor-Litvak et al. 2014) in relation to pre-
natal phthalate exposure. In combination, these observational
studies suggest that phthalate exposure during the prenatal period
may program alterations in the in utero environment that have
lasting effects on developing children from infancy into middle
childhood.

The placenta is a crucial regulator of the in utero environ-
ment, impacting fetal development and health, as reviewed by
Myatt (2006). This ephemeral fetal organ regulates gas exchange,
transports nutrients and waste, provides immunological defense,
and is involved in maternal–fetal communication via maternal de-
cidual tissue (Burton and Jauniaux 2015). It produces a variety of
neuropeptides, growth factors, and steroid hormones, which are
released into the maternal circulation (Mesiano 2009). The pla-
centa has a distinct transcriptome that includes genes not
expressed in other human organs (Saben et al. 2014). The placen-
tal transcriptome is dynamic (Sitras et al. 2012) and responds to
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cues from the maternal environment (Cox et al. 2015). Changes
to the placental transcriptome are associated with adverse birth
outcomes, including preterm birth (Brockway et al. 2019; Eidem
et al. 2015; Paquette et al. 2018) and birthweight (Deyssenroth
et al. 2017). The generation and analysis of omics data from key
tissues, such as the placenta, is a valuable tool for quantifying
how environmental perturbations influence the developing fetus,
as reviewed by Everson and Marsit (2018).

Phthalates are endocrine-disrupting chemicals (EDCs) that
impact hormone function through direct and indirect mechanisms
of action, as reviewed by Mariana et al. (2016). EDCs interact
directly with a class of transcription factors known as nuclear
hormone receptors, acting as antagonists or agonists, resulting in
changes in synthesis and signaling of downstream genes (Hall
and Greco 2019). Phthalates may disrupt several nuclear hor-
mone receptors, including peroxisome proliferator-activated
receptors (PPARs) (Hurst and Waxman 2003) and sex steroid
hormone receptors (estrogen receptors and the androgen receptor)
(Takeuchi et al. 2005). PPARS are a family of nuclear transcrip-
tion factors that play a critical role in regulating lipid metabolism,
as reviewed by Gervois et al. (2000). The placenta metabolizes
and transfers lipids to the developing fetus, where they are used
as essential building blocks for a number of developmental proc-
esses (Herrera et al. 2006). Primary phthalate metabolite mono-2-
ethylhexyl phthalate (MEHP) can bind to and modulate activity
of PPARs (Desvergne et al. 2009). Both MEHP and monobenzyl
phthalate, a primary metabolite of butylbenzyl phthalate, induce
the expression of PPAR target genes in liver and adipocyte cell
lines (Hurst and Waxman 2003). Phthalate metabolites mono-
n-butyl phthalate (MNBP), monobenzyl phthalate, and MEHP
can also induce expression of PPAR-c in primary placental cells
(Adibi et al. 2017). Phthalates can also disrupt immune function
by activating pro-inflammatory cytokine tumor necrosis factor
alpha (TNF-a) in macrophages/monocytes (Hansen et al. 2015).
Activation of inflammatory processes is linked to a number of
pregnancy complications, including preterm labor (Romero et al.
2014). Although these specific gene and pathway targets have
been identified within in vitro systems, a broader understanding
of how phthalate exposure impacts fetal development is needed.

Phthalates induce molecular changes within the placenta that
may alter its function, as demonstrated through a number of in vitro
and in vivo studies, as reviewed by Strakovsky and Schantz
(2018). Prenatal exposure to monoethyl phthalate (MEP), a pri-
mary metabolite of diethyl phthalate (DEP), has been associated
with reduced placental weight (Mustieles et al. 2019). Di-2-
ethylhexyl phthalate (DEHP) and its primary metabolite MEHP
negatively impact placental differentiation and invasion and impair
key placental functions, including nutrient transport and endocrine
signaling (Martínez-Razo et al. 2021). Prenatal DEHP treatment
has resulted in the down-regulation of genes essential for placental
angiogenesis and reductions in microvessel density in the placental
labyrinth in mice (Yu et al. 2018). DEHP treatment resulted in sig-
nificant changes in the expression of 112 genes in trophoblast stem
cell lines from rhesus monkey blastocysts, which was quantified
through RNA sequencing (Midic et al. 2018). Candidate gene
assessments of noncoding genes in human studies revealed asso-
ciations between in utero phthalate exposure and placental
microRNAs (miRNAs) (LaRocca et al. 2016) and long noncod-
ing mRNAs (lncRNAs) (Machtinger et al. 2018). These non-
coding RNA molecules act as posttranscriptional regulators of
gene expression. Phthalates have been shown to induce apopto-
sis and oxidative stress in placental cell lines through miRNA
signaling (Meruvu et al. 2016a, 2016b). Together, the genera-
tion and analysis of transcriptomics data through in vitro
experiments, in vivo experiments, and human studies provide a

valuable tool for quantifying perturbations that influence
genomic regulation and physiological activity, giving insight
into underlying biological mechanisms of fetal development.

Transcriptomic studies of phthalate exposure within placental
cell lines have primarily focused on assessing gene expression
related to known mechanisms, including steroid metabolism
(Adibi et al. 2010) and PPAR-c activity (Adibi et al. 2017; Gao
et al. 2017). Only one genome-wide assessment of the first-
trimester placental transcriptome and expression patterns associ-
ated with total urinary phthalate measurements has been reported
(involving 16 individuals) (Grindler et al. 2018). The timing of
assessment is critical because the placental transcriptome changes
across pregnancy. Herein, we sought to characterize associations
between the placental expression of protein-coding genes and
lncRNAs at birth and phthalate metabolites measured in urine
during the second and third trimester of pregnancy. We elected to
analyze the relationship between each individual phthalate
metabolite and placental gene expression to gain the most com-
prehensive understanding of these distinct relationships. This
study represents, to our knowledge, the first comprehensive
assessment of the placental transcriptome at birth in association
with phthalate metabolites quantified in maternal urine during
pregnancy.

Methods

Study Participants
Placental tissue was collected during delivery from 937 women en-
rolled in the Conditions Affecting Neurocognitive Development
and Learning in Early Childhood (CANDLE) study. The
CANDLE study is a prospective pregnancy cohort study set in
Shelby County, Tennessee, which enrolled women between 2006
and 2011, and has been described in detail previously (Sontag-
Padilla et al. 2015). This study represents a subset of the
CANDLE population (n=760) with complete transcriptomic data,
phthalate measurements in the second or third trimester, and child-
hood health outcomes (criteria from the parent study). Exclusion
criteria included confirmed clinical chorioamnionitis, oligohy-
dramnios, placental abruption, infarction or previa, and fetal chro-
mosomal abnormalities. Covariate data—including maternal race,
maternal age, and maternal education—were self-reported from a
demographic survey conducted during the enrollment visit, and fe-
tal sex and birthing method (labor type) were ascertained from
medical record abstraction by a registered nurse, as described in
the CANDLE methodological overview (Sontag-Padilla et al.
2015). Data represented in the present study include only partici-
pants with no missing data. All research activities for the
CANDLE cohort were approved by the institutional review board
(IRB) of the University of Tennessee Health Sciences Center.
Analyses were conducted as part of the Environmental influences
on Child Health Outcomes (ECHO) PATHWAYS study and were
approved by the University of Washington IRB.

Collection of Maternal Urine and Quantification of
Phthalate Metabolite Concentrations
Detailed methods of phthalate measurements within this cohort
have been described previously (Adgent et al. 2020). Maternal
urine was collected using phthalate-free polypropylene containers
from women during two clinical visits that occurred in the second
and third trimester (Sontag-Padilla et al. 2015). Samples were
processed and stored at −80�C in the study repository of the
University of Tennessee Health Science Center Department of
Pathology. Samples were analyzed for 21 metabolites using solid-
phase extraction and high-performance liquid chromatography–
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tandem mass spectrometry. Process and instrument blanks were
included for quality control. Specific gravity was determined using
a handheld refractometer. Phthalate measurements were adjusted
for specific gravity, and the log concentration (in nanograms per
milliliter) was used in our models, as was described previously
(Adgent et al. 2020). For samples below the limit of detection
(LOD), the concentration was reported as the LOD divided by the
square root of 2. We included phthalate metabolites where >70%
of sampleswere above the LOD. Final analyses included 16metab-
olites in the second trimester and 14metabolites in the third trimes-
ter, as well as DEHP concentration. DEHP was calculated as the
molar sum of five metabolites: MEHP, mono-2-ethyl-5-oxohexyl
phthalate (MEOHP), mono-2-ethyl-5-hydroxyhexyl phthalate
(MEHHP), mono-2-ethyl-5-carboxypentyl phthalate (MECPP),
and mono 2-(carboxymethyl) hexyl phthalate (MCMHP). A sub-
set of 155 participants (21% of the third-trimester samples) had
two urine measurements within the third trimester (range of vis-
its: 2.5–12.6 wk; median visit difference: 5.2 wk). For these indi-
viduals, we calculated the mean value for each phthalate
metabolite from both measurements. We identified one partici-
pant as an outlier whose urinary measurements of MECPP,
MEHHP, MEOHP, and DEHP were six standard deviations
(SDs) from the median value and four SDs from the second low-
est value. This participant’s second-trimester measurements
were removed from the analysis. Urine collected from these two
clinical visits was also used to quantify urinary cotinine, which
was also adjusted by specific gravity, as previously described (Ni
et al. 2021). Maternal cotinine >200 ng=dL at either urine collec-
tion time point was used as a marker of maternal smoking given
that this cutoff is commonly used to define smokers (Schick et al.
2017).

Placental Sample Processing and RNA Sequencing
Within 15 min of delivery, a piece of placental villous tissue in
the shape of a rectangular prism with approximate dimensions of
2× 0:5× 0:5 cm was dissected from the placental parenchyma
and cut into four ∼ 0:5-cm cubes. The tissue cubes were placed
in a 50-mL tube with 20 mL of RNAlater and refrigerated at 4°C
overnight (≥8 h but≤24 h). Each tissue cube was transferred to
an individual 1:8-mL cryovial containing fresh RNAlater. The
cryovials were stored at −80�C, and the fetal villous tissue was
manually dissected and cleared of maternal decidua. Following
dissection, the fetal samples were placed into RNAlater and stored
at −80�C. Approximately 30 mg of fetal villous placental tissue
was used for RNA isolation. The tissue was homogenized in tubes
containing 600 lL of Buffer RLT Plus with b-mercaptoethanol
using a TissueLyser LT instrument (Qiagen). RNA was isolated
using the AllPrep DNA/RNA/miRNA Universal Kit (Qiagen)
according to the manufacturer’s recommended protocol. RNA pu-
rity was assessed by measuring optical density ratios (OD260=230
and OD280=260) with a NanoDrop 8000 spectrophotometer
(Thermo Fischer Scientific). RNA integrity was determined with a
Bioanalyzer 2100 using RNA 6000 Nanochips (Agilent). Only
RNA samples with an RNA integrity number (RIN) of >7 were
sequenced.

RNA sequencing was performed at the University of
Washington Northwest Genomics Center (NWGC). Total RNA
was poly A enriched and complementary DNA libraries were
prepared using the TruSeq Stranded mRNA kit (Illumina). Each
library was uniquely barcoded and subsequently amplified by 13
cycles of polymerase chain reactions. Library concentrations
were quantified using Qubit Quant-it dsDNA high sensitivity
assay fluorometric quantitation (Life Technologies). Average
fragment size and overall quality were evaluated by the
DNA1000 assay on an Agilent 2100 Bioanalyzer. Each library

was sequenced to an approximate depth of 30 million reads on an
Illumina HiSeq 4000 instrument. De-multiplexed BAM files
were converted to FASTQ format using Samtools bam2fq. RNA
sequencing quality control was performed using both the
FASTX-toolkit (version 0.0.13; ILRI Research Computing) and
FastQC (version 0.11.2; ILRI Research Computing) (Brown et al.
2017). Transcript abundances were estimated by aligning to the
GRCh38 transcriptome (Gencode version 33) using Kallisto
(Bray et al. 2016), then collapsed to the gene level using the
Bioconductor tximport package, scaling to the average transcript
length (Soneson et al. 2015). Only protein-coding genes, proc-
essed pseudogenes, and lncRNAs were included in this analysis.

Identification of Differentially Expressed Genes
Differentially expressed mRNAs were identified using the
limma-voom pipeline (Law et al. 2014). Gene counts were scaled
to library size (normalized using a trimmed mean of M-values)
(Robinson and Oshlack 2010) and converted to log counts/mil-
lion (log CPM). After filtering to remove unreliably expressed
genes (defined as average log-CPM <0), observation-level
weights were computed based on the relationship between the
mean and variance of the log-CPM values. Comparisons were
then made using conventional weighted linear models. We
adjusted for multiple comparisons using the Benjamini-Hochberg
approach (Benjamini and Hochberg, 1995). Genes were consid-
ered statistically significant at a false discovery rate (FDR)
adjusted p<0:05. We selected potential confounders a priori by
reviewing covariate data that was associated with phthalates and
placental transcriptomics. These models included the following
confounding variables: a) RNA sequencing batch; b) birthing
method/labor type (labor vs. no labor); c) fetal sex; d) maternal
race (Black vs. other); e) maternal age (continuous); and f) mater-
nal education (college or above vs. high school or less). Separate
models were run for the second and third trimester. Maternal race
was dichotomized because of the small sample size (<5%) of
specific race groups (multiple race, Asian, or other). We per-
formed this analysis in all infants with complete data at each tri-
mester, and we also performed a stratified analysis in only female
and only male infants. In our stratified analysis, we did not adjust
for fetal sex, but we did adjust for all other confounders. A com-
plete overview of the sample collection and a directed acyclic
diagram are provided in Figure S1.

Pathway Enrichment Analysis
To identify pathways with significant associations between gene
expression and each individual phthalate metabolite, we applied a
self-contained gene set test. We specifically used the FRY
method (Giner and Smyth 2016), which is a technical improve-
ment over the commonly used Roast method (Wu et al. 2010).
The FRY method evaluates whether the average t-statistic for
each gene set is larger than expected under the null hypothesis.
We included all Kyoto Encyclopedia of Genes and Genomes
(KEGG) Pathways (Kanehisa et al. 2016) except disease path-
ways (KEGG release 98.1). Because this was an exploratory
analysis, pathways were considered statistically significant at
FDR-adjusted p<0:2. Individual pathways were visualized using
the Bioconductor Pathview package (Luo and Brouwer 2013).

Results
Maternal urine samples were collected at clinic visits in the sec-
ond trimester (13–26 wk, N =594 samples) and the third trimes-
ter (26–38 wk, N =735 samples) to quantify phthalate
metabolites. A total of 570 placental samples collected at birth
had matched urinary phthalate measurements at both time points,
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and 760 placental samples had urinary phthalate measurements at
either time point. The time between the second and third visit
ranged from 4 to 20 wk, with a median time between visits of 10
wk. Complete covariate data from individuals at each time point
are shown in Table 1. The majority of individuals in this cohort
identified as Black (58% of samples with second-trimester phthal-
ate measurements and 56% of samples with third-trimester
phthalate measurements). Most of the remaining participants
(“other”) identified as White (37.5% of participants with urine
collected in the second trimester and 38.37% of participants with
urine collected in the third trimester). The rest of the participants
(<5%, also grouped into the “other” category) identified as either
multiple race, Asian, or other. Most participants underwent labor
(81%), and the distribution of sex across placental samples was
similar. Approximately 8% of participants in this cohort had coti-
nine measurements >200 ng=dL at either time point and were
considered smokers based on this criterion. We identified a num-
ber of identification of differentially expressed genes (DEGs)
associated with our a priori–selected confounding variables,
including race, birthing method/labor type, fetal sex, maternal
education, maternal age, maternal smoking status, and RNA
sequencing batch, using a cutoff of FDR-adjusted p<0:05 (Table
1). Covariates with the highest number of genes associated with
placental gene expression at each trimester were maternal race
(Black vs. all others) and maternal education (some college edu-
cation or above vs high school or less).

A summary of phthalate metabolite concentrations is shown in
Figure 1 and described in Table 2. A different number of phthalate
metabolites were analyzed at each trimester (16 in the second tri-
mester and 14 in the third trimester) due to differences in the num-
ber of samples above the LOD at each time point (Table S1). The
molar sum of DEHP metabolites was included in both trimesters.

The urinary concentrations of five metabolites were significantly
correlated between time points, based on a Pearson correlation coef-
ficient >0:4 and p<0:05 (Table S2). The correlations of different
phthalate concentrations with each other within each time point are
shown in Figure S2. MEHP, MEHHP, MEOHP, MECPP, and
MCMHP were strongly correlated given that these phthalates are
derivatives of the parent compound, DEHP. We observed other cor-
relations between phthalates that are derived from phthalic acid,
including MCMHP. Mono (carboxyisooctyl) phthalate (MCIOP)
and mono (carboxyisononyl) phthalate (MCINP) were strongly cor-
related, which is reflective of the fact that MCINP can be converted
to MCIOP, although they are primarily derived from different parent
compounds (Saravanabhavan and Murray 2012).

Results from linear models fully adjusted for maternal race,
maternal age, maternal education, labor status, fetal sex, RNA
sequencing batch, and maternal smoking are presented in Table
3. Second-trimester urinary MEOHP concentrations were associ-
ated with increased placental expression of 17 genes, including
four lncRNAs. Second-trimester urinary MECPP concentrations
were associated with increased expression of one gene (LUC7
like 3 pre-mRNA splicing factor, LUC7L3) and two lncRNAs.
Second-trimester urinary concentrations of MCIOP were associ-
ated with decreased expression of one gene (carboxypeptidase Z,
CPZ) and one lncRNA (nuclear paraspeckle assembly transcript
1, NEAT1). The gene LUC7L3 and the long noncoding RNAs
NEAT1 and MUC20-OT1 were positively associated with urinary
concentrations of both MECPP and MEOHP (Table 3; Figure
S3), which is likely related to the positive correlations between
the metabolites and the fact that they are derived from the same
parent compound (DEHP). NEAT1 was also negatively associated
with urinary concentrations of MCIOP. Third-trimester urinary
concentrations of MCIOP were associated with increased

Table 1. Continuous and categorical information about CANDLE cohort participants (N =760 total), recruited from Shelby County, Tennessee, from 2006 to
2011.

Categorical/Continuous variables

Second trimester urine samples with matched
placental data (N =594)

Third trimester urine samples with matched
placental data (N =735)

N/Median %/Range (Min-Max) Number of DEGsa N/Median %/Range (Min-Max) Number of DEGsa

Categorical Variables
Maternal Race (Binary)
Black 342 57.6% Ref 408 55.5% Ref.
Other 252 42.4% 3,725 327 44.5% 4,460

Birthing Method (Labor Type)
Labor 484 81.5% Ref 595 81.0% Ref
No Labor 110 18.5% 1,527 140 19.0% 2,286

Fetal Sex
Female 296 49.8% Ref 375 51.0% Ref
Male 298 50.2% 1,137 360 49.0% 1,319

RNA Sequencing Batch
Batch 1 120 20.2% 8,211 143 19.5% 8,543
Batch 2 14 2.4% 4,198 22 3.0% 5,928
Batch 3 192 32.3% 7,752 230 31.3% 8,067
Batch 4 268 45.1% Ref 340 46.3% Ref

Maternal Education
High School or Less 271 45.6% 1,934 351 47.8% 2,736
College or Above 323 54.4% Ref 384 52.2% Ref

Maternal Smoking Status:
Cotinine >200 ng=dL
No 545 91.8% Ref 676 92.0% Ref
Yes 49 8.2% 1 59 8.0% 18

Continuous Variables
Maternal Age (Years) 26.76 16–40 218 27 16–40 464
Gestational Age at Birth (weeks) 39.28 26.85–41.85 1,496 39.29 31.7–41.9 1,378

Note: This analysis included only participants with complete covariate data, so there are no missing data. Placental expression was quantified in placentas following delivery, but we
constructed two data sets based on which samples had matched urine collected from the second or third trimester. The number reported here represents the number of genes that were
considered statistically significant with an false discovery rate adjusted p < 0:05. CANDLE, Conditions Affecting Neurocognitive Development and Learning in Early Childhood;
DEG, differentially expressed gene; max, maximum value; min, minimum value; Ref, reference group.
ap-Values were derived from conventional univariate logistic regression models (for categorical data) or univariate linear regression models (for continuous data) with observation-
level weights for mean/variance relationships and adjusted for multiple comparisons using the Benjamini-Hochberg approach.
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placental expression of 13 genes and decreased expression of five
genes. Three of these genes were lncRNAs. Mono-isobutyl
phthalate (MIBP) concentration quantified in the third trimester
was associated with increased expression of one gene (fat
storage-inducing transmembrane protein 2, FITM2) and
decreased expression of one gene (Golgin A8 family member B,
GOLGA8B).

We performed a stratified analysis of male and female placen-
tal samples and prenatal phthalate exposure in the second and
third trimester (Table S3). In males, we identified positive associ-
ations between the expression of 14 genes and urinary phthalate
concentrations of DEHP and its metabolites MECPP, MEHHP,
MEHP, and MEOHP. Most of the DEGs (12) were associated
with the primary DEHP metabolite, MEHP. Three genes
[NEAT1, pleckstrin homology like domain family B member 2
(PHLDB2), and long intergenic non-protein coding RNA 2327
(LINC02327)] were associated with multiple metabolites of
DEHP (Figure S4). In female samples, 12 genes were associated
with prenatal phthalate metabolite concentrations in the second
trimester. Ten of these genes were associated with urinary con-
centrations of MIBP. We observed decreased expression of two
genes in males [melanophilin (MLPH) and alkB homolog 1, his-
tone H2A dioxygenase (ALKBH1)] in association with urinary

concentrations of MCIOP in the third trimester. In female sam-
ples, we observed a positive association between the expression
of GATA zinc finger domain containing 2B (GATAD2B) and uri-
nary concentrations of MCIOP, and a positive association
between tRNA methyltransferase 12 homolog (TRMT12) and uri-
nary concentrations of MECPP. Of all the genes significantly
associated with phthalate exposure in this stratified analysis, only
one [MORC family CW-type zinc finger 4 (MORC4)] was
located on the X or Y chromosome, and the rest were autosomal.
There were no overlapping DEGs associated with any phthalate
metabolite between male and female placental samples, or any
overlaps between sex-specific DEGS associated with phthalate
metabolites in either male or female samples between the second
and third trimester. Of the 30 total DEGs identified in this sex-
stratified analysis, 2 were also statistically significant in our main
model, where males and females were combined. NEAT1 was
significantly positively associated with MEHP expression in the
main model, with stronger and more significant relationships
in male placentas. MCIOP concentrations in the third trimester
were significantly negatively associated with placental MLPH
expression in our main model, but this effect was stronger and
more statistically significant in male placentas. Overall, we
observed fewer sex-specific relationships between placental
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Figure 1. Box plot depicting concentrations of phthalate metabolites in CANDLE participants detectable in urine in the second (N =594) and third trimester
(N =735). In this box plot, the box represents the 25th to 27th percentile (i.e., 50% of the data), with the horizontal line in the box representing the median
expression (50th percentile). The whiskers represent the minimum and maximum values that do not exceed 1.5 times the interquartile range, with the remaining
values plotted as outlier dots. Note: CANDLE, Conditions Affecting Neurocognitive Development and Learning in Early Childhood; MBP, monobutyl phthal-
ate; MBZP, monobenzyl phthalate; MCINP, monocarboxy isononyl phthalate; MCIOP, mono (carboxyisooctyl) phthalate; MCMHP, mono[2-(carboxymethyl)
hexyl] phthalate; MCPP, mono-3- carboxypropyl phthalate; MECPP, mono-2-ethyl-5-carboxypentyl phthalate; MEHHP, mono-2-ethyl-5-hydroxyhexyl phthal-
ate; MEHP, mono-2-ethylhexyl phthalate; MEOHP, mono-2-ethyl-5-oxohexyl phthalate; MEP, monoethyl phthalate; MHPP, mono(4-hydroxypentyl) phthalate;
MHXP, mono-n-hexyl phthalate; MIBP, mono-isobutyl phthalate; MINP, mono-isononyl phthalate; MMP, mono-methyl phthalate; M.W., molecular weight.
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expression and metabolite concentrations in the third trimester
vs. the second trimester.

Gene set testing of KEGG pathways was performed for ex-
ploratory pathway analysis, revealing a total of 27 biological
pathways that were perturbed in association with phthalate
metabolites, using a threshold of FDR-adjusted p<0:2, as shown
in Table S4 and in Figure 2. Second-trimester maternal urinary
MCIOP concentrations were associated with increased gene
expression within seven biological pathways. Third-trimester
MCIOP concentrations were associated with decreased expres-
sion of one pathway and increased expression of six biological

pathways. MCIOP concentration in both trimesters was associ-
ated with overall increased expression of genes within the adhe-
rens junction pathway (Figure S5) and the sphingolipid signaling
pathway (Figure S6). Second-trimester urinary concentrations
of mono-methyl phthalate (MMP) were associated with the
increased expression of three pathways and the decreased expres-
sion of 16 pathways. The cortisol synthesis and secretion path-
way, adherens junction pathway, longevity regulation pathway
(multiple species), and growth hormone synthesis, secretion, and
action pathway were all significantly associated with MCIOP and
MMP, but in opposing directions (Figure 2). Third-trimester

Table 3. Significant associations between phthalate metabolites in the second (N =594) and third trimester (N =735) and placental gene expression in
CANDLE participants.

Phthalate Gene Ensembl gene ID Complete gene name (type) Effect estimate FDR-adjusted p-value

Second trimester
MCIOP CPZ ENSG00000109625 Carboxypeptidase Z −0:165 4:15× 10−2

NEAT1 ENSG00000245532 Nuclear paraspeckle assembly transcript 1
(LncRNA)

−0:087 4:15× 10−2

MECPP LUC7L3 ENSG00000108848 LUC7 like 3 pre-mRNA splicing factor 0.052 4:38× 10−2

MUC20-OT1 ENSG00000242086 MUC20 overlapping transcript (LncRNA) 0.131 4:38× 10−2

NEAT1 ENSG00000245532 Nuclear paraspeckle assembly transcript 1
(LncRNA)

0.226 4:38× 10−2

MEOHP ACIN1 ENSG00000100813 Apoptotic chromatin condensation inducer 1 0.045 4:69× 10−2

AJ009632.2 ENSG00000229425 LncRNA 0.207 2:14× 10−2

ANKRD10 ENSG00000088448 Ankyrin repeat domain 10 0.121 3:60× 10−2

AP1G2 ENSG00000213983 Adaptor related protein complex 1 subunit
gamma 2

0.082 2:56× 10−2

ARGLU1 ENSG00000134884 Arginine and glutamate rich 1 0.069 2:14× 10−2

CCNL1 ENSG00000163660 Cyclin L1 0.086 2:14× 10−2

CLK1 ENSG00000013441 CDC like kinase 1 0.095 2:95× 10−2

LENG8 ENSG00000167615 Leukocyte receptor cluster member 8 0.091 3:82× 10−2

LUC7L3 ENSG00000108848 LUC7 like 3 pre-mRNA splicing factor 0.055 7:34× 10−3

MUC20-OT1 ENSG00000242086 MUC20 overlapping transcript (LncRNA) 0.121 2:56× 10−2

NEAT1 ENSG00000245532 Nuclear paraspeckle assembly transcript 1
(LncRNA)

0.228 2:14× 10−2

NPIPB4 ENSG00000185864 Nuclear pore complex interacting protein fam-
ily member B4

0.121 2:56× 10−2

PSMA3-AS1 ENSG00000257621 PSMA3 antisense RNA 1 0.074 4:85× 10−2

RBM6 ENSG00000004534 RNA binding motif protein 6 0.060 2:95× 10−2

SON ENSG00000159140 SON DNA and RNA binding protein 0.053 4:95× 10−2

SRSF11 ENSG00000116754 Serine and arginine rich splicing factor 11 0.050 4:39× 10−2

TUBGCP6 ENSG00000128159 Tubulin gamma complex associated protein 6 0.077 2:14× 10−2

Third trimester
MCIOP MLPH ENSG00000115648 Melanophilin −0:121 4:47× 10−2

AC018638.5 ENSG00000243679 LncRNA −0:071 4:47× 10−2

KRT10 ENSG00000186395 Keratin, type I cytoskeletal 10 −0:056 4:47× 10−2

ADPRM ENSG00000170222 Manganese-dependent ADP-ribose/CDP-alco-
hol diphosphatase

−0:041 4:47× 10−2

LINC01578 ENSG00000272888 LncRNA −0:040 4:47× 10−2

RNF4 ENSG00000063978 E3 ubiquitin-protein ligase RNF4 0.021 4:47× 10−2

NOP9 ENSG00000196943 Nucleolar protein 9 0.022 4:47× 10−2

CTDSP2 ENSG00000175215 Carboxy-terminal domain RNA polymerase II
polypeptide A small phosphatase 2

0.034 4:47× 10−2

IP6K1 ENSG00000176095 Inositol hexakisphosphate kinase 1 0.035 4:47× 10−2

RAPGEF1 ENSG00000107263 Rap guanine nucleotide exchange factor 1 0.039 4:47× 10−2

BCL9L ENSG00000186174 B-cell CLL/lymphoma 9-like protein 0.040 4:47× 10−2

ZNF616 ENSG00000204611 Zinc finger protein 616 0.044 4:47× 10−2

KIAA1522 ENSG00000162522 Uncharacterized protein KIAA1522 0.046 4:47× 10−2

PRRC2B ENSG00000130723 Protein PRRC2B 0.047 3:29× 10−2

AMOTL1 ENSG00000166025 Angiomotin-like protein 1 0.047 4:44× 10−2

SOCS7 ENSG00000274211 Suppressor of cytokine signaling 7 0.056 4:47× 10−2

MT-ND5 ENSG00000198786 NADH-ubiquinone oxidoreductase chain 5 0.058 4:47× 10−2

AP003119.3 ENSG00000261578 LncRNA 0.082 4:47× 10−2

MIBP GOLGA8B ENSG00000215252 Golgin subfamily A member 8B −0:210 3:40× 10−2

FITM2 ENSG00000197296 Fat storage-inducing transmembrane protein 2 0.063 3:40× 10−2

Note: The log fold change and p-values were derived from conventional linear models with observation-level weights for mean/variance relationships, and adjusted for multiple com-
parisons using the Benjamini-Hochberg approach. All models were adjusted for confounders including RNA sequencing batch, labor method, fetal sex, maternal race, maternal age,
and maternal education. We included only participants with complete data in this analysis. Genes were considered statistically significant with an false discovery rate adjusted
p<0:05. CANDLE, Conditions Affecting Neurocognitive Development and Learning in Early Childhood; ID, identifier; FDR, false discovery rate; lncRNA, long noncoding ribonu-
cleic acid; MCIOP, mono (carboxyisooctyl) phthalate; MECPP, mono-2-ethyl-5-carboxypentyl phthalate; MEOHP, mono-2-ethyl-5-oxohexyl phthalate; MIBP, mono-isobutyl phthal-
ate; NADH, nicotinamide adenine dinucleotide plus hydrogen.
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maternal urinary concentrations of MEP were associated with the
decreased expression of genes within six pathways.

Discussion
The main findings of the present study were a) identification of
42 significant associations between urinary concentrations of four
phthalate metabolites and placental expression of 38 genes; b)
unique associations identified in relation to phthalate metabolites

MCIOP and MIBP, concentrations of which have increased in
the general population in recent years and are not well studied in
previous literature; and c) identification of 27 KEGG pathways
with altered placental gene expression in association with phthal-
ate metabolites MCIOP, MMP, and MEP. These findings provide
unique insight into how prenatal phthalate exposure might influ-
ence placental function, potentially impacting fetal development.
To our knowledge, this study represents the most comprehensive

Apoptosis multiple species

Cholinergic synapse

Dopaminergic synapse

Fatty acid biosynthesis

FoxO signaling pathway

Glycosaminoglycan biosynthesis heparan sulfate/heparin

Lipoic acid metabolism

Mineral absorption

mTOR signaling pathway

Neurotrophin signaling pathway

Notch signaling pathway

Proximal tubule bicarbonate reclamation

Starch and sucrose metabolism

Steroid biosynthesis

TGF−beta signaling pathway

Vasopressin−regulated water reabsorption

Wnt signaling pathway

AMPK signaling pathway

Cortisol synthesis and secretion

Fanconi anemia pathway

Growth hormone synthesis, secretion and action

Hedgehog signaling pathway

Longevity regulating pathway

Longevity regulating pathway multiple species

Other types of O−glycan biosynthesis

Sphingolipid signaling pathway

Adherens junction

2nd Trimester−MMP 2nd Trimester−MCIOP 3rd Trimester−MCIOP 3rd Trimester−MEP

Figure 2. Modified dot plot of KEGG pathways that were significantly enriched for genes associated with maternal urinary concentrations of phthalate metabolites
in CANDLE participants in the second (N =594) and third trimester (N =735). p-Values were derived using FRY gene set testing, which evaluates whether the t
statistic for a gene set (i.e., KEGG pathway) is larger than expected under the null using the t-statistics derived from the conventional linear models. These models
were adjusted for confounders including RNA sequencing batch, labor method, fetal sex, maternal race, maternal age, and maternal education. We only included
participants with complete data in this analysis. We adjusted for multiple comparisons at the pathway level using the Benjamini-Hochberg approach, and pathways
were considered statistically significant with an false discovery rate adjusted p<0:2 value. Blue downward pointing triangles indicate pathways with decreased
expression, and orange upward pointing triangles indicate pathways with increased expression. The size of the dot corresponds to the −log p-value, (i.e., a larger
point represents greater significance). Full results are presented in Table S4. Note: AMPK, AMP-activated protein kinase; CANDLE, Conditions Affecting
Neurocognitive Development and Learning in Early Childhood; KEGG, Kyoto Encyclopedia of Genes and Genomes; MCIOP, mono (carboxyisooctyl) phthalate;
MEP, monoethyl phthalate; monoethyl phthalate; MMP, mono-methyl phthalate; mTOR, mammalian target of rapamycin; TGF, transforming growth factor.
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analysis of the relationship between urinary phthalate metabolites
and the placental transcriptome within a large and diverse birth
cohort (N =760), enhancing generalizability beyond that of pre-
vious studies. To our knowledge, this is also the first study to
perform transcriptome-wide analysis of maternal phthalate ex-
posure in relation to placental gene expression at birth, a criti-
cal time point for perinatal outcomes, with adjustment for many
key covariates. Our findings (such as associations with phthal-
ate metabolites and NEAT1 expression) mirror those of previ-
ous epidemiological studies and other in vitro analyses
(Grindler et al. 2018; Machtinger et al. 2018), providing data
supporting proposed mechanisms of action linking prenatal
exposures with fetal development.

The present study stands apart from other placental transcrip-
tomics investigations because of the comprehensive quantifica-
tion of multiple phthalate metabolites derived from different
parent compounds. We observed the largest number of associa-
tions between placental gene expression and prenatal exposure to
MEOHP (a secondary metabolite of DEHP) and MCIOP [a sec-
ondary metabolite of diisononyl phthalate (DINP)]. Both MCIOP
and MEOHP are secondary oxidized metabolites of their parent
compound, and for high-molecular weight phthalate monoesters
with five or more carbons, the oxidized metabolite is the main
metabolite detectable in urine because the primary metabolite is
rapidly metabolized during phase 1 metabolism and does not bio-
accumulate, as reviewed by Saravanabhavan and Murray (2012).
Thus, we may detect associations within the placental transcrip-
tome related to these specific phthalate metabolites because the
secondary oxidized metabolites are more likely to bioaccumulate
compared with the primary metabolite. Previous studies have
mainly investigated DEHP and its metabolites, or lower-
molecular weight compounds, including monobutyl phthalate
(MBP) or MEP (Adibi et al. 2010, 2017; Gao et al. 2017;
LaRocca et al. 2016; Machtinger et al. 2018; Meruvu et al.
2016a, 2016b; Wang et al. 2013). The present analysis includes
many metabolites not previously investigated in prior studies in
animals or in vitro as reviewed by Strakovsky and Schantz
(2018). We observed the largest number of associations between
placental gene expression and maternal urinary concentrations of
the phthalate metabolite MCIOP quantified during the second
and third trimester. MCIOP is a secondary oxidative metabolite
of DINP (Silva et al. 2006) but may also be formed by the metab-
olism of di-iso-decylphthalate (see Table 2). To our knowledge,
only this study and one other (Grindler et al. 2018) have exam-
ined the influence of MCIOP on the placental transcriptome.
Although the levels of the phthalate derivatives of DEHP in the
US population decreased between 2001 and 2010, the levels of
DINP metabolites increased within the same time frame, based
on data collected within five cycles of the National Health and
Nutrition Examination Survey—a representative survey of the ci-
vilian, noninstitutionalized population of the United States that is
conducted by the Centers for Disease Control and Prevention
(Zota et al. 2014). This analysis suggests that DINP metabolites
influence the placental transcriptome, and more mechanistic anal-
ysis of the influence of DINP and its metabolites on placental
function is warranted. In addition, future studies may consider
applying summarized measures of phthalate metabolite concen-
trations, which may reveal additional insight.

We examined associations between the placental transcrip-
tome and phthalate exposure quantified in mid and late preg-
nancy, contributing to the understanding of phthalate disruption
of the placental transcriptome in these specific developmental
windows. We observed a larger number of more unique genes
associated with phthalates measured at the third trimester (20
genes) compared with the second trimester (18 genes), and there

was no overlap between genes whose placental expression was
altered at each trimester. In the second trimester, most genes
were associated with DEHP and its metabolite MECPP, but in
the third trimester, genes were associated with the phthalate
metabolites MIBP and MCIOP. Other studies have found similar
patterns following phthalate exposure later in pregnancy and fetal
developmental outcomes. For example, maternal urinary DEHP
levels in the third trimester (but not the first) were associated
with preterm birth in The Infant Development and the
Environment Study (TIDES) cohort—a prospective birth cohort
conducted within San Francisco, California; Rochester, New
York; Minneapolis, Minnesota; and Seattle, Washington, and this
relationship was modified by whether a mother was exposed to
one or more psychosocial stressors during pregnancy (Ferguson
et al. 2019). This may be reflective of developmental processes
happening within these specific windows. The significance of
these windows of susceptibility to exposure is particularly rele-
vant based on the link between phthalate exposure and neurode-
velopmental changes in early childhood. Studies linking prenatal
phthalate exposure to neurodevelopment have revealed associa-
tions between urinary phthalate metabolites measured during the
third trimester (Factor-Litvak et al. 2014; Whyatt et al. 2012).
There are distinct neurodevelopmental events occurring between
the second trimester (neurite outgrowth, synaptogenesis) and the
third trimester (neural network formation and functioning), which
suggests that the timing of exposure to phthalates may differen-
tially impact these processes (Courchesne et al. 2019).
Associations between the placental transcriptional landscape and
phthalates may serve as a reflection of perturbations in other fetal
tissues. Animal models have revealed that the timing of exposure
to phthalates is significant because it relates to placental function
itself, particularly when assessing epigenetic end points, such as
imprinting in early pregnancy (Strakovsky and Schantz 2018).
Herein, we collected data from the placenta at the end of gesta-
tion, hence our transcriptome profiling may not reflect the gene
expression levels of the placenta in mid pregnancy. In the human
body, phthalates have a relatively short half-life of ∼ 12 h
(Hoppin et al. 2002), so our measurements may not be reflective
of a woman’s longer-term chronic or cumulative exposure.
Ongoing work in experimental systems may reveal more insight
into the role of timing during sensitive developmental windows.

We identified seven lncRNAs associated with different
phthalate metabolites. LncRNAs are untranslated mRNA mole-
cules <200 nucleotides in length that may be involved in a vari-
ety of transcriptional and posttranscriptional gene regulation
functions through binding to DNA, RNA, and proteins (Wang
and Chang 2011). These mRNA molecules can act as both regu-
lators of health and disease but also as biomarkers associated
with a variety of environmental exposures in different tissues,
and they functionally interact with a number of different environ-
mental factors (Karlsson and Baccarelli 2016). A pilot study of
candidate lncRNAs in 20 placental samples identified positive
associations between prenatal urinary phthalate concentration
and placental expression of a number of lncRNAs (Machtinger
et al. 2018). This study reported that NEAT1 placental expression
was negatively associated with urinary MMP concentrations. In
our analysis, NEAT1 placental expression was positively associ-
ated with urinary concentrations of MEOHP and MECPP, and
negatively associated with MCIOP concentration in the second
trimester. NEAT1 is involved the formation of paraspeckles
(Clemson et al. 2009), which could lead to retention of mRNAs
and perturbed transcriptional regulation within the placenta.
NEAT1 has also been positively associated with intrauterine
growth restriction (Gremlich et al. 2014), suggesting that it may
be related to functional changes in the placenta that influence
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developing infants. Differences in placental lncRNA concentra-
tions have been associated with other prenatal exposures and out-
comes, such as prenatal cadmium concentrations and birthweight
(Hussey et al. 2020), implicating lncRNA perturbations as a
potential molecular mechanism for toxicity. More work is needed
to understand how changes in lncRNA expression may impact
placental function and fetal development.

We identified a number of genes whose placental expression
was only associated with phthalate exposure in male or female
samples. We observed the largest number of associations
between DEHP and the metabolites MECPP, MEHHP, MEHP,
and MEOHP in the second trimester and gene expression in male
placentas. We observed significant associations between MIBP
metabolite concentration in the second trimester and gene expres-
sion in female placentas. This suggests that individual phthalate
metabolites may influence placental gene expression of male and
female placentas differently. Sex differences in the relationship
between prenatal phthalate exposure and pregnancy-related varia-
bles are consistent with previous work. We previously identified a
negative association between MBP concentrations during preg-
nancy and total free testosterone in women carrying female fetuses
as a significant positive association between total testosterone and
MBP in women carrying male fetuses (Sathyanarayana et al.
2014). These molecular differences in relation to phthalate expo-
sure may be reflective of the different growth strategies of male
and female fetuses. Male fetuses grow faster and have a relatively
smaller placental size, which is thought to be more efficient but
also leaves them less able to adapt to perturbations (Eriksson et al.
2010). Fetal sex may serve as a moderator of the relationship
between exposure to environmental toxins and developmental
defects (DiPietro and Voegtline 2017). The differences in placental
expression in association with phthalate exposure observed in male
and female placentas may reflect increased signaling required for
adaptation and responses to environmental changes.

A number of the genes associated with prenatal phthalate expo-
sure in females are important regulators of placental growth, and
they can be modified by estrogen signaling, including signal trans-
ducer and activator of transcription 3 (STAT3), tumor protein p63
(TP63), and DNA (cytosine-5-)-methyltransferase 1 (DMNT1).
STAT3 is a component of the STAT protein family that is activated
after phosphorylation by Janus kinases. In the placenta, STAT3
promotes the invasive phenotype of trophoblast cells (Poehlmann
et al. 2005). Activation of STAT3 signaling can be suppressed by
17-beta-estradiol (E2) in breast cancer cells (Yamamoto et al.
2000), but this has not been established in the placenta. TP63 is
also a transcription factor involved in placental growth given that
TP63 inhibits the invasion of trophoblasts and promotes a prolifer-
ative state (Li et al. 2014). Estradiol decreases TP63 expression in
breast cancer cells via miRNA signaling (Kim et al. 2013). In the
present study, MIBP was also associated with decreased expres-
sion of DNMT1 in females, which encodes an important enzyme
responsible for catalyzing the transfer of methyl groups in the
process of DNA methylation. Appropriate placental DNA
methylation is essential for fetal and placental growth
(Koukoura et al. 2012). DNMT1 expression has been positively
associated with placental and birth weight in female placentas,
but not male placentas, indicating a sex-specific role in fetal
growth (Mukhopadhyay et al. 2016). Dibutyl phthalate (DnBP)
caused increased liver expression of DNMT1 in rats (Urbanek-
Olejnik et al. 2016). Changes in expression of DNA methyl-
transferases may be related to downstream perturbations in
DNA methylation induced by phthalates (Grindler et al. 2018).
More work is needed to understand the complex relationship
between phthalates modulation of estrogen signaling in the pla-
centa and placental gene expression.

Pathway enrichment analysis was used for exploratory,
hypothesis-generating purposes and to contextualize these differ-
ences in gene expression associated with phthalate exposure
because many of the individual genes that were statistically sig-
nificant in our work have not been extensively investigated.
Different phthalate metabolites (i.e., MCIOP, MMP, and MEP)
were associated with distinct biological pathways, which may
reflect differing biological mechanisms. We observed broad asso-
ciations within the adherens junction, with decreased expression
of these genes associated with MMP in the second trimester, but
increased expression in relation to MCIOP in the second and
third trimester. Human placental vesicles contain tight junctions
throughout their structure, with the exception of terminal villus
microvesicles (Leach et al. 2000), which form a crucial compo-
nent to the maternal fetal barrier and are involved in the transfer
of key nutrients and signaling molecules. The adherens junction
is influenced by phthalates given that exposure to MEHP caused
gaps in this junction within rat Sertoli cells (Yao et al. 2010), and
DnBP treatment during pregnancy altered the formation of
Sertoli cell tight junctions in offspring in mice (Hutchison et al.
2008). The effect of phthalates and their metabolites on the adhe-
rens junction in the developing placenta remain unclear, but
given the crucial role of the maternal–fetal interface in the trans-
port of nutrients and signals between the mother and fetus,
phthalate-induced alterations of genes within this pathway could
impact fetal development. Moreover, we hypothesize that com-
promises in tight junctions may allow other exogenous factors to
enter the placenta more easily. In this way, pathway enrichment
analysis has generated new hypotheses related to phthalate expo-
sure in utero.

We observed associations in placental gene expression and
phthalate exposure in pathways that have been previously shown
to be influenced by phthalate exposure. In the present study,
genes within the forkhead box O1 (FOXO1) signaling pathway
and apoptosis pathway had decreased expression in association
with MMP. Treatment with other phthalate metabolites has been
shown to induce oxidative stress and apoptosis in placental cell
lines (Meruvu et al. 2016a, 2016b). We observed associations in
placental gene expression related to phthalate metabolites in path-
ways related to PPAR-c, including the sphingolipid metabolism
pathway (in association with MCIOP) and the fatty acid biosyn-
thesis pathway (in association with MEP). PPAR-c regulates the
initial steps in sphingolipid generation by transcriptional regula-
tion of serine palmitoyl transferase and by initiating the synthesis
of acyl-CoA synthesis (Wang et al. 2020). The placenta trans-
ports essential long-chain fatty acid derivatives (including those
from sphingolipids) from the maternal to the fetal circulation and
helps metabolize these enzymes along the way. Fatty acids are
critical to fetal development and growth because they are essen-
tial components of membrane lipids and intracellular mediators
of gene expression, and they are also major contributors of
energy required for the placenta itself, as reviewed by Duttaroy
(2009). Differences in specific fatty acid profiles have been iden-
tified in umbilical venous plasma from infants experiencing intra-
uterine growth restriction (Alvino et al. 2008; Gomez-Lopez
et al. 2021). The developing fetus may be particularly vulnerable
to perturbations in lipid levels during late pregnancy given that
this stage involves rapid brain growth (Schepanski et al. 2018),
which is highly dependent upon the availability of lipid precur-
sors (Clandinin et al. 1980). Prostaglandin, which is produced by
the placenta and play key roles in parturition (Thorburn, 1991), is
also formed from lipid precursors. Previous studies on candidate
phthalate-related genes have primarily focused on PPARs (Adibi
et al. 2017; Gao et al. 2017; Huang et al. 2018) because they are
known targets of EDCs. PPARs are nuclear hormone receptors

Environmental Health Perspectives 097003-10 129(9) September 2021



that respond to fatty acids and other lipophilic hormones, and
they are considered primary sensors of lipid signaling. Binding of
phthalate metabolites to the PPAR receptor leads to the activation
of genes involved in lipid transport, lipogenesis, fatty acid oxida-
tion, and fatty acid transport (Maradonna and Carnevali 2018).
Although we did not observe significant associations between
phthalate exposure and expression of genes within the KEGG
PPAR signaling pathway itself, we did observe significant gene
associations within pathways that are directly downstream.
Overall, our work indicates that phthalates may alter fatty acid
synthesis and metabolism within the placenta, which may disrupt
the placentas key function of transporting and providing these
essential building blocks for fetal development, thus potentially
impairing long-term fetal growth.

Our results should be interpreted in light of limitations in
RNA sequencing analysis. We captured the placental transcrip-
tome at birth, which is a snapshot of a highly regulated and tem-
poral process. Expression was quantified using bulk RNA
sequencing data, so our findings may be confounded by different
cell types collected within each sample, which is a well-
established challenge in this field (Breton et al. 2017).
Alternatively, differences in cellular proportions could be influ-
enced by phthalates, thus the associations we observed related to
phthalate exposure may not reflect gene expression differences
but, instead, indicate differences in the number and type of cells.
Our ability to adequately address this was limited by a lack of
single cell data available for the placenta and a lack of reference-
free approaches for transcriptomic analyses (Konwar et al. 2019).
Nevertheless, there is a long-standing precedent for using bulk
RNA sequencing data sets in the context of environmental expo-
sures research (Clarkson-Townsend et al. 2020; Everson and
Marsit 2018; Hussey et al. 2020; Lesseur et al. 2014). Based on
the limited number of DEGs and the fact that most of the top
DEGs were not well studied, we performed pathway analysis to
identify associations between phthalate exposure and placental
gene expression in established KEGG biological pathways using
self-contained gene set testing. Because this was meant to be a
hypothesis-generating approach, we used a less stringent statisti-
cal cutoff (FDR-adjusted<0:2) to identify associations in biologi-
cal pathways. Our analysis is also limited by our understanding
of the true concentrations of prenatal phthalate exposure because
we collected single spot samples of maternal urine, as previously
discussed (Adgent et al. 2020). We elected not to adjust for gesta-
tional length in our analyses, which could confound our results,
given associations between the placental transcriptome and pre-
term birth (Brockway et al. 2019; Eidem et al. 2015; Paquette
et al. 2018). There is emerging evidence from human studies that
prenatal phthalate exposure is associated with preterm birth
(Boss et al. 2018; Ferguson et al. 2014, 2019), indicating a com-
plex relationship between prenatal phthalate exposure, the pla-
cental transcriptome, and gestational length that is beyond the
scope of this present work. Finally, we observed confounding by
maternal race because maternal race was associated with a high
number of differentially expressed genes in our data set (Table
1). It is challenging for us to further address this confounding
because self-reported race reflects both genetic ancestry and
social factors and is associated with differences in many expo-
sures and experiences, including socioeconomic adversity, differ-
ences in environmental exposures, and experiences of racism,
and it is challenging to capture the antecedents of the biological
differences we observe (Borrell et al. 2021). The vast majority of
CANDLE participants (∼ 95%) reported their race as either
Black or White, so this cohort is not diverse enough to adjust for
race in a nondichotomous way or to analyze exposure–outcome
relationships of other racial groups. Future research thoughtfully

designed to study these issues may advance understanding of the
relations studied here.

Our study has a number of unique strengths. We quantified
placental gene expression at the end of gestation, whereas prior
transcriptome-wide studies have investigated this association in
placental tissue collected solely during the first trimester
(Grindler et al. 2018). We identified more associations between
urinary phthalate measurements in the third trimester and the pla-
cental transcriptome at birth, revealing the importance of the tim-
ing of exposure–outcome relationships. To our knowledge, this is
the largest placental transcriptomic data set published to date,
containing data from a diverse population of women, and our
detailed covariate data allowed adjustment for confounding varia-
bles. In addition, our cohort of subjects was more diverse, with
∼ 50% Black participants, and is thus more generalizable to the
overall population. We used a self-contained gene set test, which
is an improvement over first generation overrepresentation analy-
ses (Khatri et al. 2012) that require an input list of genes based
on a predefined threshold or competitive tests such as gene set
enrichment analyses (Subramanian et al. 2005), for which statisti-
cal significance is derived through permutation testing or ranked
genes and which can result in bias related to intergene correla-
tions. Finally, our study is among the most comprehensive stud-
ies in terms of the number of metabolites quantified, including
several phthalate metabolites that have not yet been studied in
relation to the placental transcriptome.

Prenatal phthalate exposure has been linked to pregnancy
complications and longer-term pediatric health outcomes. Our
work in this large human cohort suggests that phthalates may dis-
rupt placental function via the placental transcriptome, which
may represent a mechanism by which phthalates could influence
fetal development. We identified a number of genes, including
lncRNAs, that were significantly associated with the maternal
urinary concentration of specific phthalate metabolites across the
second and third trimester. These genes were enriched within
pathways important to placenta function, such as the adherens
junction, sphingolipid metabolism, and fatty acid biosynthesis.
MCIOP, a secondary oxidative metabolite of DINP, had the
strongest associations with the placental transcriptome in our
study, based on the overall number of significant genes and path-
ways. More work is needed to understand the potential underly-
ing mechanisms, including how phthalate exposure might disrupt
the underlying transcription and how changes in the placental
transcriptome disrupt placental function.
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