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ABSTRACT OF THE DISSERTATION

Clustering: Algorithm, Optimization and Inference
by
Zhanpan Zhang
Doctor of Philosophy, Graduate Program in Appli¢akiStics
University of California, Riverside, December 2011

Dr. Xinping Cui, Co-Chairperson
Dr. Daniel R. Jeske, Co-Chairperson

Clustering is rapidly becoming a powerful data mgitechnique, and has been
broadly applied to many domains. Usually data aranged in a matrix with rows and
columns, and each cell of this matrix is a real bem This dissertation aims at
developing clustering algorithms with statisticalerence incorporated in the following
two scenarios.

First, when each cell of the data matrix is notespnted by a single numerical value
and instead contains a scatter plot, the existingtering methods are not applicable any
more. In this dissertation, we develop both hidrmal clustering and co-clustering
procedure to handle a data matrix of scatter plkaignore accurately reflect the nature of

data, we introduce a dissimilarity statistic basmud “data depth” to measure the
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discrepancy between two bivariate distributionshaiit oversimplifying the nature of the
underlying pattern. We also propose novel paintmgrics and construct heat maps to
allow visualization of the clusters. We demonsttate utility and power of our proposed
clustering methods through simulation studies andoplieation to a
microbe-host-interaction study.

Second, when spatial information is embedded indtéta matrix, the order of rows
and columns can not be changed. Model-based spatialustering has not been well
studied. In this dissertation, we develop a coteliisg method using a Generalized
Linear Mixed Model (GLMM) for spatial data. To addihe high computational intensity
associated with global optimization, we proposeearistic optimization algorithm to
search for a near optimal co-clustering. A samp8trgtegy is introduced to capture as
much of the spatial information that is availabienfi the sparse data as possible. For an
application pertinent to Integrated Pest Managen{#?t), we combine the spatial
co-clustering technique with a statistical inferemaethod to make assessment of pest
density more accurate. We demonstrate the utilitg power of our proposed pest
assessment procedure through simulation studiesajpply the procedure to a study of

the persea mitedligonychus perseae), a pest of avocado trees.
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Chapter 1

| ntroduction

Clustering is rapidly becoming a powerful data mgitechnique, and has been
broadly applied to many domains such as bioinfoiceadnd text mining. Usually data
are arranged in a matrix with rows and columns, each cell of this matrix is a real
number. A large number of clustering methods haentstudied in the literature, which
include one-dimensional clustering, co-clusteriaggd multi-dimensional clustering (for
multi-dimensional data). In addition to summarilze tlustering methods, we also briefly

review the methods of data visualization for thest#ring results in this chapter.

1.1. ONE-DIMENSIONAL CLUSTERING

One-dimensional clustering is to divide rows, olumns, into a number of groups.
For simplicity, only the row clustering is discudsia this section. Here we review two
commonly used one-dimensional clustering method®ratchical clustering and
partitioning clustering. One may see Andreopoulioale(2009) and Jiang et al. (2004)
for a survey.

Hierarchical clustering builds a hierarchy of carst based on the dissimilarity

(distance) measures among rows, such as Euclidetance and Pearson’s correlation



coefficient, whose result can be graphically présgnin a tree structure, called
dendrogram. The clustering algorithm initially redmeach row as an individual cluster,
and at each step, merges the closest pair of cusitdil all the rows are merged into one
cluster. The distance between two clusters mayebermined by different criteria. Single
linkage defines the distance between two clusteiset the minimum distance between
any pair of rows, one row from a cluster and thkeepotrow from the other cluster.
Complete linkage defines the distance between tustars to be the maximum distance
between any pair of rows, one row from a clustet e other row from the other cluster.
Average linkage defines the distance between twstets to be the average distance
between all pairs of rows, one row from a clusted the other row from the other cluster.
Some applications of hierarchical clustering cafdoed in Eisen et al. (1998), Kaplan et
al. (2004), Baehrecke et al. (2004), and Loewengtal. (2008).

Partitioning clustering, such ak -means (MacQueen 1967), divides rows into a
pre-specified number of clusters, s&y clusters, in which each row belongs to the
cluster with the nearest mean. Firkt initial cluster mean vectors (centroids) are
selected (Huang 1998), which represdft clusters. Each row is assigned to the closest
cluster whose centroid has the smallest distanme fthis row. For each cluster, the
corresponding centroid is updated with the meaallofows that belong to this cluster.

Then each row is reassigned to a new cluster basdtie updated centroids, and the



above procedure repeats. The iteration continués tine number of rows changing
clusters is below a user-specified threshold. Maaetitioning clustering methods and
applications can be found in Hochbaum & Shmoys $)9&aufman & Rousseeuw

(1987), Gasch & Eisen (2002), and Chopra et aD&20

1.2. CO-CLUSTERING

Co-clustering, also called biclustering, bivariatastering, or two-mode clustering,
has been an active area of research in recent, yeawdting in the development of a wide
variety of approaches and algorithms. Differentnfrohe one-dimensional clustering
methods that seek to identify similar rows or cahsmindependently, co-clustering
simultaneously clusters rows and columns to idgribfocks” (or “co-clusters”) of rows
and columns that show highly inter-related cohege®@r example, in gene expression
analysis, co-clustering can be used to solve tla ghoblem of identifying a set of genes
and conditions simultaneously involved in a metabpiocess, a problem that traditional
one-dimensional clustering methods cannot handlaebVver, co-clustering is desirable
over traditional one-dimensional clustering as st more informative and easily
interpretable while preserving most of the inforimatcontained in the original data; and
it allows dimensionality reduction along both ax@snultaneously and hence leads to a

much more compact representation for subsequehjisima
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Figure 1.1. Co-cluster Type: (a) constant; (b)stant rows; (c) constant columns; (d)
additive model; (e) multiplicative model; (f) commgtatus rows; (g) common order
rows; (h) common status; (i) simultaneous statangk along rows and columns.
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Figure 1.2. Co-cluster Structure: (a) one co-elystb) exclusive clustered rows and
columns; (c) checkerboard structure; (d) exclusiustered rows; (e) exclusive clustered
columns; (f) tree structure; (g) overlapping costéus.



The most common framework for co-clustering methasisto first define a
meaningful objective function to evaluate the qyadf co-clusters, and then develop an
algorithm to find the co-clusters that optimizes thbjective function. Figure 1.1
summarizes a number of co-cluster types that haen lwefined in the literature, and
Figure 1.2 shows the possible co-cluster structilvasmay exist in the data matrix.

Hartigan (1972), also known as block clusterings baen considered as one of the
earliest co-clustering papers, which used a versiosguared Euclidean distance as the
objective function minimized by a “divide and comgqudirect clustering algorithm. To
avoid the situation that each cell of the data mdtrms a co-cluster, the number of
co-clusters is usually pre-specified. The algorithptits the original data matrix into a
number of non-overlapping co-clusters as showniguirié 1.2(f), each of which follows
the co-cluster type of Figure 1.1(a).

Knowing that overlapping clusters are very naturmabiology, Cheng & Church
(2000) used a model-based squared Euclidean déstascthe objective function
minimized by a greedy iterative search. The resglto-clusters can be overlapping as
shown in Figure 1.2(g), and the type of co-clustens be any one of Figures 1.1(b)-(d).
However, the iterative insertion and deletion basagorithm causes random
perturbations to the data that may mask previodstgovered co-clusters. Also, the

algorithm identifies co-clusters one at a time ssgially rather than all at once.



Califano et al. (2000) introduced a pattern discpvalgorithm to discover
statistically significant patterns in which the we$ of each gene (row) are consistent
across a subset of columns, as shown in Figur®)L.A( optimal set of patterns is then
chosen among the statistically significant oneagisi greedy set covering algorithm.

Getz et al. (2000) proposed a coupled two-way ehugg (CTWC) analysis based on
the iterative row and column clustering combinatidmy reasonable one-dimensional
clustering method can be used within the framewaffflCTWC. The authors used a
hierarchical clustering algorithm to generate saidisters of rows and columns at each
iteration, and consequently discover a set of oastels at a time. Due to the
normalization step, the type of co-clusters caarmeone of Figures 1.1(a)-(e).

Lazzeroni & Owen (2000) introduced the plaid modath each cell in the data
matrix viewed as a sum of terms called layers ézponding to co-clusters), which
incorporates additive two-way ANOVA models within-clusters. The co-cluster type
may be any one of Figures 1.1(a)-(d). The overlagmio-cluster structure is directly
modeled in the plaid model approach, and multipteclosters can be identified
sequentially instead of simultaneously.

Using the similar objective function to that in @ge& Church (2000), Yang et al.
(2002) and Yang et al. (2003) introduced a greedyeaybased optimization algorithm

FLOC (FLexible Overlapping biClustering) that camsltaneously discover a set of



possibly overlapping co-clusters when dealing witle data with missing values.
Likewise, the co-cluster structure and the co-elusgpes identified by FLOC are same
as Cheng & Church (2000).

Ben-Dor et al. (2002) suggested looking for ordesprving submatrices (OPSMs),
in which the values of all the rows induce the sdimear ordering of columns, as shown
in Figure 1.1(g). This approach focuses on theaumiity of the relative order of columns
rather than on the uniformity of the actual valubgrefore is potentially more robust to
the stochastic nature of the observed values andheo variation caused by the
measurement process.

Busygin et al. (2002) proposed Double Conjugatedisteting (DCC) that
implements a coupled conjugated node-driven cligienethod processing the rows and
columns of the data matrix and synchronizing the spaces by means of a projection
between row-space and column-space. In this framevgelf-Organizing Maps (SOM)
is recommended, and the angle metric is used adBastyn measure. The co-cluster
structure is shown in Figure 1.2(b).

Murali & Kasif (2003) introduced a greedy algorithim find the conserved gene
expression motifs (XMOTIFS) in gene expression ysig) in which a subset of genes
(rows) are simultaneously conserved for a subsetaofiples (columns), as shown in

Figure 1.1(f). A gene (row) is conserved acrosstaoEsamples (columns) if the value of



this row for each column is within the same rardgnoted by A, B and C in Figure
1.1(f). Although many xMOTIFs may exist, the autharere only interested in the largest
XMOTIF, the one that contains the maximum numbercafserved genes (rows), as
shown in Figure 1.2(a).

For the discretized data, Sheng et al. (2003) ¢gckie co-clustering problem in the
Bayesian framework by presenting a co-clusteringtesgy based on a simple frequency
model for the pattern of a co-cluster and on Gidrmpling for parameter estimation. To
enable the detection of multiple co-clusters, ththars mask the rows (columns) that
belong to the previously discovered co-clusters, r@nun the algorithm on the rest of the
data. The algorithm discovers one co-cluster @na,tand is iterated until no co-cluster
can be found for the unmasked part of the dataixndthe co-cluster type is shown in
Figures 1.1(b)-(c), and the co-cluster structurghiswn in Figures 1.2(d)-(e).

Cho et al. (2004) and Cho & Dhillon (2008) consatetwo versions of squared
Euclidean distance that are similar to those ugdddrtigan (1972) and Cheng & Church
(2000). Two fastK -means like co-clustering algorithms were propogeddentify a
checkerboard co-cluster structure as shown in Eigu2(c), and therefore simultaneously
discover a number of co-clusters as opposed tocorduster at a time like Cheng &

Church (2000). The co-cluster type may be any driegures 1.1(a)-(d).



Rogers and Kulkarni (2005) extended the mixed-ietdoear programming model
from one-dimension clustering to co-clustering. éngtic algorithm was developed to
optimize the objective function that is a sum afsitinilarity measures from the family of
Minkowski metrics. The genetic algorithm enablassttring large-sized data, which is a
formidable challenge for many conventional algorith The co-cluster structure is
shown in Figure 1.2(b).

Reiss et al. (2006) reformulated Yang et al. (2803)-cluster model with a Markov
Chain model, which enables integration of additioimdormation as well as a prior
distribution for constraining co-cluster size amtlundancy. The authors developed an
algorithm called cMonkey with the iterative optiation conducted using Markov Chain
Monte Carlo methods. The procedure constructs orgluster at a time, and will stop
when a given number of co-clusters have been gekrar significant optimization is no
longer possible.

Pensa & Boulicaut (2008) and Pensa et al. (2018¥idered the same co-cluster
types and the same checkerboard co-cluster steuagiCho et al. (2004), and also used
the same objective functions as those in Cho gRabD4). An iterative constraint-based
co-clustering algorithm was introduced to explaseudefined constraints such as the

case that the selected rows and/or columns mustifean the same co-cluster.



Another type of objective function used in therhtieire is the Kullback-Leibler (KL)
divergence, pioneered by Dhillon et al. (2003), akhiconsidered a checkerboard
co-cluster structure, and proposed an informati@mottetic co-clustering method. The
data matrix of nonnegative values is treated asird probability distribution between
two discrete random variables. With pre-specifythg number of clusters for each
dimension, the authors aimed at finding the optiotatlustering that leads to the largest
mutual information between the clustered randonmbées, or equivalently, the one that
minimizes the difference (loss) between the muinfdrmation of the original random
variables and the mutual information of the clustierandom variables.

Banerjee et al. (2007) extended Dhillon et al. @@&0work by introducing a more
general objective function “Bregman divergence’ttimrludes both squared Euclidean
distance and KL-divergence as special cases. Nrilspucturally different co-clustering
schemes are allowed that preserve various linatistéts of the original data matrix. The
authors introduced a minimum Bregman informatioB(Mprinciple that simultaneously
generalizes the well-known maximum entropy anddsdesh least squares principles to all
Bregman loss functions, and leads to a matrix appration that is optimal among all
generalized additive models in a certain naturedp&ter space.

A connection between data matrices and graph yheas been also established in the

literature. Dhillon (2001) introduced a bipartiteagh model to pose the co-clustering

10



problem as a graph partitioning problem. An undedcbipartite graph is a triple
G=(D,W,E) with D corresponding to the set of rowsy the set of columns, and
E the undirected edges between rows and columns.a$beciation of a row with a
column cluster is measured by the sum of the edgghis of this row to all columns in
the column cluster, and similarly the associatibra @olumn with a row cluster can be
measured. Thus each row cluster is determined dogdlumn clustering, and in turn the
row clustering determines each column cluster. dutbor presented a spectral algorithm
to find the optimal co-clustering that correspotmls partitioning of the graph such that
the crossing edges between partitions have mininvaight.

Tanay et al. (2002) introduced SAMBA (Statisticdg@rithmic Method for Bicluster
Analysis) that combines graph theoretic and stesistonsiderations. The data matrix is
modeled as a bipartite graph with two sets of gegticorresponding to rows and columns,
and edges representing significant value changes.alithors presented two statistical
models of the resulting graph, and showed how sigasweights to the vertex pairs of
the bipartite graph so that heavy sub-graphs qoores to significant co-clusters. The
co-cluster type is shown in Figures 1.1(h)-(i).

More co-clustering methods and applications cariobed in Kluger et al. (2003),
Ihmels et al. (2004), Aguilar-Ruiz & Divina (200%3a0 et al. (2005), Kung et al. (2005),

Long et al. (2005), Madeira & Oliveira (2005), Paret al. (2005), Abdullah & Hussain

11



(2006), Lonardi et al. (2006), Deodhar & Ghosh @20QMivina & Aguilar-Ruiz (2007),

Yoon et al. (2007), Cai et al. (2008), Kerr et @008), Puolamaki et al. (2008), and
Rocci & Vichi (2008). Furthermore, Madeira & Olivai(2004), Mechelen et al. (2004),
Prelic et al. (2006), Busygin et al. (2008), andekjel et al. (2009) provided detailed

reviews on co-clustering.

1.3. MULTI-DIMENSIONAL CLUSTERING

When researchers are interested in measurementsrave than two dimensions,
the data can be arranged in a multi-way continggable with each cell being a real
number. Some recent literature reflects effortgyémeralize co-clustering methods to
multi-dimensional contexts so that all the dimensioan be clustered simultaneously.

Bekkerman et al. (2005) extended Dhillon (2003)sfoimation-theoretic
co-clustering to multi-dimensional clustering, aedtablished a connection between
multi-way contingency tables and undirected graphith pairwise interaction. By
treating each dimension as a random variable, bifective function to be maximized is
defined as the sum of the weighted pairwise mutufakrmation between the clustered
random variables, in which the prior knowledge i&orporated by adjusting the
corresponding weights. An algorithm was developex discover the optimal

multi-dimensional clustering, which interleaves glmmerative (top-down) clustering of

12



some variables and agglomerative (bottom-up) dlungjeof the other variables, with a
local optimization correction routine. Taking in&xcount that top-down clustering is
efficient and bottom-up clustering leads to meafuihgesults, the authors argued the
benefit from combining both clustering procedures.

Chiaravalloti et al. (2006) pointed out that themay not be enough knowledge to
precisely set the weights in the objective functioat is a linear combination of losses in
the pairwise mutual information. Instead of usingra-fixed weighting scheme, the
authors introduced a notion of agreement to reptesesort of optimal “compromise”
among minimizing all the losses in the pairwise waltinformation. A specific data
structure, called “star-structure”, is considenedyhich one dimension is treated as the
central dimension, and the other dimensions asulé@iary dimensions that are pairwise
independent and are all correlated with the cemtiraension. The authors proposed the
AD-HOCC (to solve the High-Order Co-Clustering bgngputing Agreements for
contrasting Domain objective functions) algorithmmcompute the optimal agreement.

Sun et al. (2006) extended Dhillon (2003)’s infotimia-theoretic co-clustering to the
three-way contingency table and proposed cubeeasingt By using multi-information, a
multivariate generalization of the mutual infornaatibetween two random variables, the
objective function is defined to be the loss betw#® multi-information of the original

random variables and the multi-information of thastered random variables, therefore

13



minimizing the objective function leads to the opdi cube-clustering. The authors also
applied cube-clustering to the clickthrough datamprove the web search performance

in a collaborative manner.

1.4. DATAVISUALIZATION

The result obtained from the hierarchical clusigiof rows can be displayed in a tree
structure, called dendrogram, based on which ttws f the original data matrix can be
reordered. Eisen et al. (1998) introduced a grabhmapresentation method to color the
reordered data matrix as a heat map, in which leogéiguous patches of color represent
groups of rows that share similar patterns oveuroois.

To visualize the result obtained from the partiti@nclustering of rows, dimension
reduction techniques such as principal componealysis (PCA) and multidimensional
scaling are needed to display the rows in a lowedisional space.

Pison et al. (1999) developed the CLUSPLOT packageenote rows by a set of
points in a two-dimensional space, which is comgoskthe first principal component
and the second principal component from PCA. Eaatter is then denoted by an ellipse
that covers all the rows belonging to this cludteraddition, a segment between any pair
of ellipse centers can be drawn and its lengthgiheses the dissimilarity between the

corresponding pair of clusters.

14



Rasmussen & Karypis (2004) provided a 3D mount&nalization, which is based
on multidimensional scaling and produces a colonedntain-like terrain. Each cluster is
denoted by a peak with the peak height being ptopw to the internal cluster
similarity (for example, the average pairwise santly between rows that belong to this
cluster), and the distance between a pair of peakihe plane representing the relative
dissimilarity between the corresponding pair ostdus.

To visualize the co-clustering results, Barkow kt(a006) developed the BIicAT
package to display the co-clusters obtained fromumber of co-clustering methods,
which provides both heat map and profile visualoratin profile visualization, each row
within the co-cluster is denoted by a colored finat connects the values corresponding
to different columns, with columns included in tteecluster marked with upright bars.

More data visualization methods can be found in(2004), Ultsch & Morchen

(2005), and Zhou et al. (2008).

1.5. OPEN ISSUES

Co-clustering has proved successful in various iegigbn domains such as
simultaneous clustering of genes and experimerdgabitions (or tissue samples) in
bioinformatics, words and documents in text minimgd image or video features.

Despite its success in the above domains, espeamalinalyzing gene expression data,

15



co-clustering has not found its way into medicaldgy applications until recent work on
large-scale data sets where it has been demonkttatit can be a very powerful tool
for mining medical data (Yoon et al. 2007).

In system biology, one may be interested in noy tablogical variables themselves,
but also the interactions between these biologiaghbles. For example, consider a set
of row variables and a set of column variables. &ach pair of row and column, a
number of observations may be obtained that simetiasly measure different levels of
row variable and column variable, which leads tascatter plot characterizing the
relationship between them. It is of interest tostén rows and/or columns to identify
groups of individual relationships that have simpatterns because large assemblages of
individual relationships with similar patterns magint toward those that have increased
importance. However, when each cell of the dataim#t not represented by a single
numerical value and instead contains a scatter ilet existing clustering methods are
not applicable any more. In Chapter 2 and 3, weeldgvboth hierarchical clustering and
co-clustering procedure to handle a data matrixsa#tter plots. To more accurately
reflect the nature of data, we introduce a dissirityl statistic based on “data depth” to
measure the discrepancy between two bivariateitlisions without oversimplifying the
nature of the underlying pattern. We also propa®echpainting metrics and construct

heat maps to allow visualization of the clustere &#émonstrate the utility and power of
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our proposed clustering methods through simulatstndies and application to a
microbe-host-interaction study.

Another situation is that spatial information isledded in the data matrix. In this
case, the order of rows and columns of a data xnesém not be changed. None of the
literature has proposed a spatial co-clusteringrtegie that co-clusters data such that
any co-cluster only contains a set of spatially semutive rows and columns.
Furthermore, there is very little literature abautdel-based co-clustering. In Chapter 4,
we develop a co-clustering method using a Genedllznear Mixed Model (GLMM)
for spatial data. Specifically, to avoid the higbmputational intensity associated with
global optimization, we propose a heuristic optiatian algorithm to search for a near
optimal co-clustering. A sampling strategy is inlmoed to capture as much of the spatial
information that is available from the sparse datgossible. For an application pertinent
to Integrated Pest Management (IPM), we combinespiaial co-clustering technique
with a statistical inference method to make assesswof pest density more accurate. We
demonstrate the utility and power of our proposedt@ssessment procedure through
simulation studies and apply the procedure to dystf the persea miteD{igonychus

perseae), a pest of avocado trees.
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Chapter 2

Clustering Scatter Plots Using Data Depth Measures

2.1. INTRODUCTION

Microorganisms play a variety of important roles hmman biology. They are
involved in critical aspects of normal host (e.pyman being) physiology and
development, and have been associated with a &iugerof disease processes including
obesity, autoimmunity, gastric ulcers and cancé&wnbaugh et al. 2007). Despite these
findings, the nature and breadth of interactionsvben microorganisms and humans is
not well understood, and attempting to clarify theslationships is an ongoing challenge
in system biology. Commonly used ordination methedsh as principal component
analysis (PCA) can only assess microbial and/ot fiasables independently for their
ability to group hosts by their physiological osease status. While canonical correlation
analysis (CCA) attempts to identify relationshipgviieen microbial and host variables,
its drawbacks lie in the difficulty interpretingehmeaning of the results and the inherent
restriction to identifying linear relationships.aur research, ordination methods are not
appropriate because we are interested in idengifygnoups of similar associations
between microbial and host variables, rather thaifding disease discriminators from

the combined set of microbial and host variablgste&8n biologists hold the point of
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view that larger groups resulting from this proclease increased importance in the sense
that the constituent microbes and host variablesrare likely to play important roles in
the disease process.

In cluster analysis, usually data are arranged nma&ix with each cell being a real
number. To avoid confusion, we call this matrix €'tldata matrix of scalars”. Two
one-dimensional clustering methods are commonlyd.useor the row clustering,
hierarchical clustering builds a hierarchy of ctustbased on the dissimilarity measures
among rows whose results can be graphically predemt a tree structure, called
dendrogram. Partitioning clustering, such idismeans, divides rows into a pre-specified
number of clusters in which each row belongs todhster with the nearest mean. One
may see Andreopoulos et al. (2009) and Jiang €2@0D4) for a survey.

However, when each cell of the data matrix isnepresented by a single numerical
value and instead contains a scatter plot, thetiegisclustering methods are not
applicable any more. One may think of using a singkasure, say Pearson correlation
coefficients, to characterize the scatter plotacivthen reduces the data matrix of scatter
plots to a data matrix of scalars. Current clustgenmethods can then be applied to
analyze the associations between row variablescahainn variables. However, the use
of Pearson correlation coefficients is not alwayHigent since it is only a measure of

linear association and is very sensitive to outlidrherefore, similarity measurements
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among scatter plots based on such coefficients hirlder the power of discovering
clusters of scatter plots with nonlinear pattenmd/ar clusters with outliers.

In this chapter we introduce a hierarchical clustgprocedure that is able to handle
a data matrix of scatter plots. In Section 2.2ntwe accurately reflect the nature of data,
we introduce a dissimilarity statistic based onté&ddepth” to measure the discrepancy
between two bivariate distributions without overgiitying the nature of the underlying
pattern. We then combine hypothesis testing widranchical clustering to cluster rows
and columns of the data matrix of scatter plotse Ppbwer of our proposed hierarchical
clustering method is demonstrated through simulasitmudies in Section 2.3. In Section
2.4, we propose novel painting metrics and constraat maps to allow visualization of
clusters. In Section 2.5, we apply our proposedahihical clustering method to a

microbe-host-interaction study.

22.METHODOLOGY

2.2.1. Clustering Procedure

Consider M row variables {X, X,,---, X,} and N column variables
{Y, Y, -+, Y.} . For each pair of row variable and column variableandom sample of

observations are taken that can be drawn as @&spé#it in the Cartesian plane as shown
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in Figure 2.1, in which each square contains atescatot. Our goal is to cluster both

rows and columns based on thesex N independent scatter plots.

|4 Y i
Xy
X Fi
XJ’ ij
XM

Figure 2.1. Data Structure: A Data Matrix of Seailots

To obtain the distance matrix for performing thesdwierarchical clustering, we have
to calculate the distance between any two rowssidenthei™ row and the j™ row,
we would like to measure how similar these two roave to each other based on
comparing the correspondinty pairs of scatter plots. For each column, say kffe
column, the pair of scatter plots can be thoughtasfthe samples taken from two
independent bivariate distribution§, and F, , respectively, as shown in Figure 2.1.
As a result, the problem of comparing the pair cdtter plots can be formulated as

testing the following hypothesis:

Ho:Fy =F, vs.H, F, #F,. (2.1)
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Denote by p.,, the p-value for testing the above hypothesis. Jieller the p-value,

i(k)
the less similar the pair of scatter plots to eather. By testing the same kind of
hypotheses for all theN columns, we define the dissimilarity (distancejween the

i™ row and the j™ row as

dist; = i(l_ Pigo) - (2.2)

k=1

Then the distance matrix for ronfdist;} (i,j=1,2;-- M, and # |) is inputted to the
regular hierarchical clustering algorithm, whichitisdly regards each row as an
individual cluster, and at each step, merges thsest pair of clusters until all the rows
are merged into one cluster. In doing this, hidrmal clustering creates a hierarchy of
row clusters that can be represented in a treetateicalled dendrogram.

The same clustering procedure can be applied ltores as well. Therefore, rows
and columns in the original data matrix of scafots (Figure 2.1) are reordered
according to the row dendrogram and the column wgmdm, respectively, which
produces a new data matrix of scatter plots th&d as the output of our proposed

clustering procedure.

2.2.2 Hypothesis Testing
Liu & Singh (1993) proposed a multivariate rank suest for the hypothesis

Hy:F=F, vs.H, R, #F, where F, and F, are the distribution functions of
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two independent populations. Specifically, the &stistic is based on a quality index

that measures the overall “outlyingness” of popafatF, relative to populationF,,
Q(Fy Fi) =P(D(F:U)< D(F:V) U ~F, V ~F,), (2.3)
where D(F,;[) is an affine-invariant data depth function witlspect to F, that could
be Mahalanobis depth, Tukey (Half-space) depth,Zintplicial depth, etc., as shown in
Section 2.2.3.
Given two samples J,,---,Us} from F, and {V,,---,V;} from F,, Q(F.F,)
can be estimated by
1 =
Q(Fiks,':fk)=;; R(FVL), (2.4)
where F¢ and Fj are the empirical distributionsR(F,$;V,) is the proportion of
U/s with D(F;U.)<D(FSV), and D(FS;[) is the empirical data depth with
respect toF,°. From Liu & Singh (1993) and Zuo & He (2006), wavk
Q(F¢, F)—1/2~AN(0,(1/S+ 1T )/12 (2.5)
under H,:F, =F, for many commonly used data depth functions (ungemeral

regularity conditions).

Notice that the overall “outlyingness” of, relative to F;, can be also measured
by a quality index

Q(Fy. R = P(D(ij;\7)s D(F;:U)IV ~F, U ~Fn<) ' (2.6)
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where D(F;;[} is an affine-invariant data depth function witsgect to F,, . Likewise,

Q(Fy, F) may be estimated by

Fio Fe)= Z R(F;:U, 2.7)

where R(F]k,U ) is the proportion of\/s with D(ij,V)< D(F]k,U ), and D(ij,[ﬂ
is the empirical data depth with respectffgi .

As Section 2.2.4 showsQ(F,,, F,) is not directly related toQ(F,, F; ) . However,
to obtain the p-value for testing hypothesis (2Mig would like to have a unique
parameter to measure the difference between twohdiSons, either comparing=, to
Fo, or F, to F,. Under H,:F, =F,, Q(F,,F,)=Q(F,,F,)=1/2. With the
location shift and/or scale change betweép and F, , either Q(F,,F,) or
Q(F;, Fy), or both, would deviate from 1/2 significantly. &rlefore, to avoid having one

distribution as the reference distribution, we e a new quality index, calle@S, to

measure the overall “difference” betwedf) and F;,

QFi Fiif [Q(F i) =1/2>[QF, Fi)-1/4;
TS= (2.8
Q(ij’ |k) if ‘Q( ik lk) l/q ‘Q (Flk’ |k) 1/¢ .
The test statistic for testing hypothesis (2.thesestimate ofTS,
~ (Ek’FJk) If ‘Q( ik ? Jk) 1/4 ‘Q(FJk ’F'k )_ ll% !
TS= (2.9
QL F)if QR Fl)-1/4 <[Q(F] F)-1/2.
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Then p.,, is calculated by the following permutation testqedure:

(k)

1) Pool two samplesy,,---,U.}and {V,,--- V.. }.

2) Take a sample of siz& without repIacementL@:,---,U;} from the pooled sample,
and the remaining is\{*,---,\z }, which are called two permutation samples.

3) Estimate Q(F,.F,) and Q(F.F,) by Q(F:Fi) and Q(Fi.FS) ,
respectively, based on the permutation samplesnaotan Step 2.

4) Set TS to be equal toQ'(FS, Fr) if ‘Q*(Fiks,FJl)—llq >‘Q* Fr Fo)- 1/2?; and
equal to Q' (F;,F/7) otherwise.

5) Repeat the above steps (Step 2 - StepB4)times to yield B values of'I/'é*,
denoted by -I/-éb (b=12,--B ), whose distribution estimates the sampling
distribution of the test statisti@S under Ho Fy =F.

6) Let p,. be the proportion oi{'fé;} o, Wwith 'I/'§L<'I/'§, and p,,. the proportion

of {TS} > with TS, >TS. Hence Bico = 2XMiN(Poue » Pupper ) -

2.2.3. Data Depth
Let F be a probability distribution indJ® with p>1 and X a pointin O°. The
data depth atx with respect toF is denoted byD(F;X), which measures how deep

(or central) the pointx is with respect toF . The larger D(F;X), the deeper (or more
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central) the pointx with respect toF . Some commonly used data depth functions are

listed as follows.
1) Mahalanobis depth (Mahalanobis 1936):
MD(F; %) =1/[1+ (X = [ ) 5 (X = /& )],
where g and 2. are the mean and variance-covariance matrix Fof,
respectively. The sample version &, D(F;X) is obtained by replacingz. and
2 Wwith their sample estimates.
2) Tukey depth / Half-space depth (Tukey 1974):
TD(F; X) =ir|14f{ P.(H): His a closed half-space in” nptainingX }.
The sample version offD(F;X) is TD(F,;X) where F, is the empirical
distribution.
3) Simplicial depth (Liu 1990):

SD(F; %) = P. (X is inside the closed simplex whosatices are X, ++ X,.,; })
where {Xl,---,ip+1} is a random sample fronF . The sample version of
SD(F;X) is the fraction of the sample random simplexedaiomg the pointX.

It is easy to compute Mahalanobis depth that studihe elliptical structure of a

multivariate distribution. Rousseeuw & Ruts (1986@§ressed the computation issues for

Tukey depth and Simplicial depth that are more sbliban Mahalanobis depth. More

data depths can be found in Liu et al. (1999).
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2.24. Q(F,G) vs. Q(G,F)
Consider two independent distributio’s and G, and two variablesX ~F and
Y ~G. We present three examples to show the relatipnbetweenQ(F,G) and
Q(G,F). For simplicity, univariate normal distributionsxda Mahalanobis depth are
adopted here.
Example 1: ForF = N(4,,0%), G=N(4,,07), and g >a?, we have
Q(F,G)=P((X =) 1022 (Y - ,)* 1 02) <1/ 2,
Q(G,F)=P((Y -’ 1o} = (X =) 1al)>1]2,
and Q(F,G)+Q(G,F)=1.
Example 2: ForF = N(,,0%), G=N(u,0%),and g, # 4, we have
Q(F,G) =P((X~ )" 1 o5 2 (Y~ t4)* 1 05) <1/ 2,
QG.F)=P((Y = 14)" 1052 (X =) 75) <1/ 2,
and Q(F,G)=Q(G,F).
Example 3: ForF = N(4,,0%), G=N(u,07), U, # i, and a; >a?, we have
Q(F,G)=P((X -, 102 = (Y- u,)*1al)<1l2,

and QG F =P~ loy2 K- lo7]
< 1/2= 1/2,00 1/2.
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2.3. SSIMULATION STUDY

We performed a simulation study to investigategbeer of our proposed clustering

method. The basic procedure is as follows:

1)

2)

3)

4)

Specify a “checkerboard” data pattern with a satef clusters and column clusters,
and specify a bivariate distribution for the celishin each block.

Generate random samples based on the given bealistributions in Step 1, which
creates a data matrix of scatter plots.

Apply our proposed clustering method to this datdrix of scatter plots, and check
whether the original data pattern can be retriemedot. That is, we check whether
rows within the same block are still close to eattiter compared to other rows in the
row dendrogram, and columns as well; or equivayemthether there exists a cutting
of row dendrogram such that the generated brartcireexactly same as the original
set of row clusters, and columns as well;

Repeat Step 2 - Step 3 a number of times, anddehersuccess rate, the proportion
of times that we succeed in retrieving the origidata pattern, which acts as the
power measurement for our proposed clustering ndetho

Intuitively, the total number of rows and columrike( size of the data matrix of

scatter plots, or the data size), the number osramd columns within each block (the
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block size), and the number of blocks would affdtd success rate. Therefore, we

considered three data pattern settings shown uré&ig.2.

(a) “R2C2" (b) “2*R2C2" (C) "RAC

Figure 2.2. Three Data Pattern Settings: (a) “R2@zere are 2x2 blocks (2 row

clusters and 2 column clusters), each of which aioat2x2 cells, thus the data size is
4x4. (b) “2*R2C2": the block size is doubled in tHR2C2” setting, thus the data size is
8x8. (c) “R4C4": there are 4x4 blocks (4 row clustand 4 column clusters), each of
which contains 2x2 cells, thus the data size is 8x8

For each setting, we specified a class of bivarrairmal distributions for blocks,
which only differ in location. Specifically, thex—coordinate of the mean increases
equidistantly along the row direction ranging frdimwith the y-coordinate of the
mean remaining same; whereas tiie-coordinate of the mean increases equidistantly
along the column direction ranging from 0O with the-coordinate of the mean

remaining same. For example, with a location gifift, the mean of the top left bivariate

29



0 1
normal distribution in “R2C2” and “2*R2C2” i{oj, the top right[oJ, the bottom left

0 1
[J, and the bottom righ(J. Furthermore, 50 data points were generated foh ea

scatter plot, Mahalanobis depth was adopted, 5688nmpling times were taken for the
permutation test, and the average linkage method @hsen for the hierarchical
clustering procedure. We performed 500 simulatifumseach setting. The relationship

between the success rate and the location sh#finsmarized in Figure 2.3, where the

0
solid lines stand for the variance-covariance ma{réz) 2) specified for the bivariate

2 1
normal distributions, and the dashed lines Eolr 2) with the correlation coefficient

p =0.5.
From Figure 2.3, we may observe the following:

1) By comparing the solid line with the dashed line éach setting, the correlation in
the bivariate normal distribution improves the ssscrate.

2) By comparing “R2C2” with “2*R2C2” both having a &l number of blocks, with a
relatively large location shift, the larger the d¢hosize, the higher the success rate;
with a relatively small location shift, the smaltbée block size, the higher the success

rate. That is, more scatter plots with larger distabetween blocks improves the
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3)

4)

chance of capturing the pattern. However, moretescalots with smaller distance
between blocks introduces a higher chance for nitige clustering.

By comparing “2*R2C2” with “R4C4” both having a #xl data size, the smaller the
number of blocks, the higher the success rate,immeans it is harder to do a more
delicate job (more row clusters and column clujters

By comparing “R2C2” with “R4C4” both having a fixddock size, with a relatively
small location shift, the smaller the number ofdide the higher the success rate;
with a relatively large location shift, the largée number of blocks, the higher the
success rate. The reason is similar to what weiqusly discussed in the comparison

of “R2C2” with “2*R2C2".

1.0

Success Rate
0.6 0.8
|

0.4

0.0

0.5 1.0 1.5 2.0
Location Shift

Figure 2.3. Success Rate versus Location Shift
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2.4. DATAVISUALIZATION

Data visualization is an important aspect in thuestering technique. In the traditional
hierarchical clustering application in which cetiisa data matrix are scalars, the original
data can be rearranged according to the dissityilacores between rows (or columns).
The smaller the dissimilarity score between two sqer columns), the closer the two
rows (or columns). A graphical representation & tearranged data matrix, called heat
map, can be created where cells are painted witéreint colors based on their scalar
values. Obviously, we would expect cells in clogexpnity to each other to have a
similar color.

To apply the above painting strategy to a datairmaft scatter plots, we introduce a
painting metric, called Overall Quality Index (OQId graphically represent the scatter
plots so that similar scatter plots are paintechvatsimilar color whereas dissimilar

scatter plots are painted with different colorsl. tAe MN scatter plots are pooled as a

single scatter plot that is thought of as a sanfigen the bivariate distributionF

pool *
Consider a scatter plot that is regarded as a safmmin the bivariate distributiorf .

The OQI value is the estimated value of the quahtex Q(F_,F). However, as we

pool ?
discuss below, it is unlikely that using a singl@inting metric for the scatter plot is

sufficient. Therefore, we introduce three additiofiaer painting metrics to further

characterize the scatter plot.
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1)

2)

3)

Center Deviation Index (CDI): For any scatter pe define its center to be the
point that maximizes the empirical data depth fo¢F;0l. Then the CDI for a scatter
plot is the distance between its center and theéecari the pooled scatter plot. For
example, in Figure 2.4(a), the length of red segmenthe CDI measuring the
deviation of the scatter plot consisting of bluanp® from the pooled scatter plot
consisting of black points.

Center Deviation Direction Index (CDDI): By takitige center of the pooled scatter
plot as the origin of a new Cartesian coordinastesy, the CDDI for a scatter plot is
the magnitude of the angle formed by the vectomftbe origin to its center and the
positive x—axis, which ranges from-77 to 7. The CDDI depicts the relative
location of a scatter plot with respect to the pdo$catter plot, and then the relative
locations among the scatter plots. For exampldsigure 2.4(b), the CDDI for the
blue scatter plot is the degree of the angle forbmetivo red vectors.

Dispersion Index (DI): Moving a scatter plot sublattits center and the center of the
pooled scatter plot coincide produces a shiftetteicplot that is regarded as a sample

from a new bivariate distributiorF'. The DI for the original scatter plot is the

estimation of the quality indexQ(F_,,F"), which accounts for the difference

pool ?

between the original scatter plot and the pooledtscplot excluding the effect due

to the location shift. For example, in Figure 2)4¢be DI for the blue scatter plot is
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the estimated quality index of the red scatter pbdittained from moving the blue

scatter plot) with respect to the pooled scattet. pl

(a) CDI (b) CDDI

Figure 2.4. Painting Metrics

Figure 2.5.

can reveal clusters whereas CDDI and DI can not.

o [0)(2 O
(o o
o [0)(2 0
RO

(a) OQ

(b) CDI

(@)

Painting Example 1: OQI can reveaktdts. Also, the bivariate normal
distributions only differ by location and are asyetnt about the origin, therefore CDI
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(a) OQ (b) CDI (c) CDDI (@)

Figure 2.6. Painting Example 2: OQI can not rewhasters. Also, the bivariate normal
distributions only differ by location and are syntrieeabout the origin, therefore CDDI
can reveal clusters whereas CDI and DI can not.

2(0)(16 0
(o}{o 2
o [0)(4 O
“(o}lo 4

(a) OQ! (b) CDI (c) CDDI (@)

Figure 2.7. Painting Example 3: OQI can reveaktgts. Also, the bivariate normal
distributions only differ by scale, therefore Dihcieeveal clusters whereas CDI and CDDI
can not.
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o (-1 (16 0
“GHo 19
o [4) (4 0
(aflo o

(a) OQ (b) CDI (c) CDDI (@)

Figure 2.8. Painting Example 4: OQI has poor pernce to reveal clusters. Also, the
bivariate normal distributions differ by both loat and scale and asymmetric about the
origin, therefore CDI, CDDI and DI can all reveaisters.

To illustrate the utility of the above painting tmes, we present four painting
examples. In each example, &x8 matrix of scatter plots (each scatter plot corgtain
100 data points) was generated with the top #ft4, top right 4x 4, bottom left 4x 4
and bottom right4x 4 scatter plots following the four different distuiions specified in
the top panel of Figures 2.5-2.8. We then obtai@e®B matrices of OQI, CDI, CDDI
and DI, based upon which four heat maps can bergiieas shown in the bottom panel
of Figures 2.5-2.8, where the “yellow” heat mappased on OQI, the “red” heat map on
CDI, the “blue” heat map on CDDI, the “green” hea&p on DI, and the “black” color
stands for the minimum index value in all the ftnat maps. For simplicity, we used

Mahalanobis depth in all the examples discusseel her
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The painting examples illustrate that OQI captutes overall effect due to both
location shift and scale change of a scatter pltsten OQI can distinguishes two scatter
plots from each other, one may further investigaitd, CDDI, and DI to see the details
of how these two scatter plots differ. Also, wheQI@an not distinguish two scatter plots

from each other, one may want to see if any of @PI, and DI can distinguish them.

2.5.APPLICATION
2.5.1. Mativation

Identifying causative microbial and host variablesnulti-factorial diseases remains
a considerable challenge. For example, considecdke of inflammatory bowel disease
(IBD). IBD etiology appears to involve several fa, including genetics, lifestyle and
intestinal bacteria. Traditionally, investigaticetsempting to identify variables associated
with complex diseases such as IBD have used ordimahethods such as principle
component analysis (PCA) to define host phenotypesevels of the microorganisms
and/or host variables (proteome, transcriptome, étshortcoming of this approach is
that it does not account for upstream events sadheaphysical or chemical interactions
between the microorganisms and the host, nor teeada of events that likely connect
these interactions to host phenotype. Here, weritbes@n alternative experimental

approach that begins to address this shortcomifgchwis to first analyze upstream
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events — the physical or chemical interactions betwthe microorganisms and the host,
which are represented by the relationships in tater plots — and then assess if and
how those relationships (and/or the variables wewlin those relationships) are linked to

host phenotype. More biological hypothesis willdigcussed in Chapter 3.

2.5.2. Results

To identify putatively important microbe-host iraetions, Li et al. (2010) recently
examined the amounts of bacteria and proteins icosal luminal interface samples from
IBD and healthy subjects. Two datasets were gesifabm the experiment. “Microbe”
data were arranged as a data matrix with 81 rowsW& containing missing values are
excluded) standing for samples, 15 columns for oties, and each cell being a single
numerical value recording the level of a microbeaisample. “Protein” data were also
arranged as a data matrix with 81 rows standingh®isame set of samples, 440 columns
for proteins, and each cell being a single numexialue recording the level of a protein
in a sample. To identify associations between kewélthe microbes and proteins, we
combined the above two data matrices of scalarpdiyng up the columns (one from
“Microbe” data, the other from “Protein” data) atrdating each81x 2 array of data as

bivariate data with thex—axis being microbe level and thg—axis being protein

38



level. This process leads to a data matrix of scaiots as shown in Figure 2.1 where
M =440, N =15, and each scatter plot contains 81 data points.

Considering the scatter plots as independent smnple applied our proposed
clustering method to the 440x15 data matrix of tecgtlots, and cluster both proteins
(rows) and microbes (columns). We used Mahalandéph as the data depth measure,
B =500 resampling times for the permutation test, andaberage linkage method to
perform the hierarchical clustering.

We then cut the “Protein” dendrogram at the heigh®, which generates eighty
protein branches/clusters. The proteins withindame branch are more similar to each
other, or show more similar microbe-protein patsethan those in other branches. From
the eighty protein clusters, we only selected thometaining at least twenty proteins,
which leads to five protein clusters. We also gatezt four microbe clusters by cutting
the “Microbe” dendrogram at the height of 430, aeteécted those containing at least five
microbes. One pair of the selected protein cluated microbe cluster is depicted in
Figure 2.9, where the heat map with the OQI pagntimetric is shown. The promise of
these results is demonstrated by the fact that mwio#te identified proteins have been
previously associated with IBD as in Ahrenstedale{1990), Broed! et al. (2007), Foell

et al. (2003), Greenstein et al. (1992), Hansexl. ¢2009), and Larsson et al. (2006).
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7201.2

8164.8, complement C3

Figure 2.9. Heat Map with the OQI Painting Metric

Examining such relationships will have utility fareveral purposes. First, by

clustering relationships of various microbial arastvariables, one can identify groups

of relationships that have similar and/or dissimédasociations by visually examining the
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heat maps. Large assemblages of individual relstiips with similar associations may
point toward those that have increased importabeeause they indicate organisms
having a greater impact on the host, or vice veksaemblages with similar associations
might also be used to identify different taxa wgimilar functions as well as direct
decisions concerning which of the myriad of unidesd variables should be examined
further. This latter feature addresses the nat@irdata generated in this “omics era,”
where most of the variables cannot be identifiedinyple database searches, but instead
require procedures consuming considerable amotdintsme and effort. Lastly, dissimilar
relationships could provide key information, foraexple, in identifying relationships

between host defense molecules and the bacteyidaiget.

2.6. CONCLUSION

Our proposed method showed a significant utilibg gower in handling a data
matrix of scatter plots. More importantly, this sering procedure can be easily extended
to the high dimensional case when one or more cdfetsiriables needs to be analyzed.
Moreover, the novel painting metrics we proposedh d&e easily extended to
multi-dimensional clusters of multivariate plots.

Co-clustering is desirable over traditional oneeinsional clustering as it is more

informative and easily interpretable while presegvimost of the information contained
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in the original data; and it allows dimension reiitut along both axes simultaneously
and hence leads to a much more compact representafi the original data for
subsequent analysis. In Chapter 3, we will devel@p-clustering method to deal with a
data matrix of scatter plots.

Finally, although these methods were developeahtdyze microbe-host interactions,
we anticipate that this general approach will hawdity for a wide range of
investigations, including those examining relatlips among gene expression profiles,

metabolites, genes and epigenetic parameters.
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Chapter 3

Co-clustering Scatter Plots Using Data Depth M easures

3.1. INTRODUCTION

Co-clustering, also called biclustering, bivariatastering, or two-mode clustering,
has been broadly applied to many domains such @sf@@imatics and text mining.
Different from the one-dimensional clustering methaohat seek to identify similar rows
or columns independently, co-clustering simultasgpwlusters rows and columns to
identify “blocks” (or “co-clusters”) of rows and konns that show highly inter-related
coherence. For example, in gene expression anabeislustering can be used to solve
the dual problem of identifying a set of genes aodditions simultaneously involved in
a metabolic process, a problem that traditionaldineensional clustering methods can
not handle. Madeira & Oliveira (2004), Mechelerakt(2004), Prelic et al. (2006), and
Busygin et al. (2008) provided detailed reviewscorclustering.

In this chapter we introduce a co-clustering procedhat is able to handle a data
matrix of scatter plots. In Section 3.2, to moreunately reflect the nature of data, we
introduce a dissimilarity statistic based on “daipth” to measure the discrepancy
between two bivariate distributions without overgiitying the nature of the underlying

pattern. We then combine hypothesis testing wibkaching algorithm to simultaneously
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cluster rows and columns of the data matrix oftscatlots. The power of our proposed
co-clustering method is demonstrated through sitimmastudies in Section 3.3. In
Section 3.4, we propose novel painting metrics aodstruct heat maps to allow
visualization of co-clusters. In Section 3.5, welggour proposed co-clustering method

to a microbe-host-interaction study.

3.2. METHODOLOGY

3.2.1. Co-clustering Procedure

Consider M row variables {X, X, ---, X,,} and N column variables
{Y, Y, -, Y.} . For each pair of row variable and column varialblegandom sample of
observations are taken that can be drawn as @&spé#it in the Cartesian plane as shown
in Figure 3.1, in which each square contains aescplot. By regarding a scatter plot as a

sample from a bivariate distribution, a co-clussedefined to be the union of a subset of

row variables and a subset of column variables,, X, ,---, X, } U Y, Y, -5 Y} with
{i, i} 04 - M and {j,-- jg L s N , within which each pair of row
variable and column variable follows the commonabiate distribution. Our goal is to

identify all the co-clusters based on theBex N independent scatter plots.
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Figure 3.1. Data Structure: A Data Matrix of Seailots

In many cases, one would not expect all the ronsimns being investigated to be
involved in the obtained co-clusters since somesraw columns may not share the
common pattern with other rows or columns and floeeedo not belong to any co-cluster.
Also, some rows or columns may belong to two or enoo-clusters simultaneously.
Moreover, one would allow co-clusters to be ovarlag, which means scatter plots may
belong to two or more different co-clusters simuodteusly. We next propose a
co-clustering procedure to identify all the hiddeo-clusters that satisfy the above
properties. Notice that a single scatter plot iteghy be a co-cluster. To avoid this, we
specify the minimum co-cluster size to ligxc,, in which r, is the minimum number

of rows and ¢, the minimum number of columns.
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Starting with one column, say thk™ column, we apply the one-dimensional
hierarchical row clustering (Zhang et al. 2010)he correspondingM scatter plots, for
which we have to calculate the distance betweernpairyof scatter plots as a measure of
how similar they are to each other. Consider tHescatter plot (row) and thg™
scatter plot (row) that can be thought of as themas taken from two independent
bivariate distributionsF, and F, , respectively. The problem of comparing the péair o
scatter plots is then formulated as testing thieiohg hypothesis:

Ho R =F) vs.H, R #F,. (3.1)

Denote by p.,, the p-value for testing the above hypothesis. 3meller the p-value,

i (k)
the less similar the pair of scatter plots to eattier. We define the dissimilarity (distance)
between thei™ scatter plot (row) and thg™ scatter plot (row) as

dist; ) =1 Pjgo- (3.2)
Then the distance matrixdist;,} (i,j=12;- M, andi#j) is inputted to the
regular hierarchical clustering algorithm, whiclitiadly regards each scatter plot as an
individual cluster, and at each step, merges tbgest pair of clusters until all the scatter
plots are merged into one cluster. In doing thistdrchical clustering creates a hierarchy
of clusters that can be represented in a treetateucalled dendrogram. We cut the

dendrogram at a prespecified height,, and select those branches containing at least

r, scatter plots.
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The scatter plots within a particular branch areeramilar to each other than the
scatter plots between different branches. Spedifjaathe complete linkage method was
used when constructing the dendrogram, then thalyevior testing any pair of scatter
plots within that branch is greater thar-d_,. For example, suppose we cut the
dendrogram at the heighd, =0.95. Within each branch, the maximum distance
between any pair of scatter plots is less than.OH#nce, the minimum p-value for
testing any pair of scatter plots is greater tard_, = 0.05.

Defining the subset of row variables correspondm@ selected branch as a “seed”,

which acts as the row part in a potential co-cluste next identify the column part of

this co-cluster. For each seed, sayX,, X, .-, X;} of size r with
{i, i, 1} 02, - M}, we pool all the data points contained in the espondingr
scatter plots, which can be regarded as the safmgtea common bivariate distribution
Few - Suppose all the otheN -1 columns are potentially included in the co-cluster
Moving to another column, say thg')" column, we test the hypothesis

Hy:F =Fyy VS. H, R 2 Fy (3.3)
for each i'O{i, i, -1}, where F,. is the distribution that the scatter plot for ti(i¢)"
row and the (k)" column follows. The (k)" column will be excluded from the
potential co-cluster if any of the abowe null hypotheses is rejected (using a suitable

multiple comparisons adjusted test procedure asugsed in Section 3.2.2). We continue
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this exclusion process to reduce the column patti@potential co-cluster until we finish
scanning all the columns. The resulting co-clustélrbe reported if it contains at least
C, column variables. This may be implemented for1,2,-- N. Therefore, starting
with each of the original columns, we can identfi/the co-clusters hidden in the data
matrix of scatter plots.

We illustrate the proposed co-clustering procedwrgresenting an example with a
set of row variableg X, X,, ---, X,4 and column variablegY, Y,,---, Y3 as shown in
Figure 3.2, in which each square represents aesqatit. The minimum co-cluster size is
set to be3x 3. Starting with the columny,, we apply the hierarchical row clustering to
the corresponding 10 scatter plots across the rows.seeds are obtained by cutting the
dendrogram ato_,, {X, X, X, X3 denoted by the blue solid line afqX,, X, X4
by the red solid line. For the sedX, X, X, X}, we pool all the observations
contained in the four scatter plot§éX,,Y,), (X;,Y). (X,.Y,), and (X,,Y,), which
leads to a pooled scatter plot. Moving to anotl@uron, sayY,, we compare each of
the four scatter plots corresponding to the se@d,.Y,), (X.,Y,), (X,.,Y,), and
(Xs,Y,), with the pooled scatter plot. The columfy will be excluded from the
potential co-cluster if any of the above scattatpldoes not share the same bivariate
distribution as the pooled scatter plot. After stag all the columns, we finish building

the potential co-cluster and check if it satisties minimum co-cluster size. For example,
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the reported co-cluster i§X,, X, X, X3 U Y, Y, Y} as shown in Figure 3.2. Likewise,
the reported co-cluster i§X,, X, Xg LY, Yg Y, Yy for the seed{ X,, X, X3 . Notice
that these two co-clusters are not overlapping,dvew the columnsy, and Y, belong
to both co-clusters simultaneously. Starting wlereof the other columns, we repeat the

above procedure and may identify all the hiddewrlosters.

Yl Y2 Y3 Y4 Y5 Y6 Y7 YE

X

X, |

X1 b

X1 b

X |

Xs

X el g ]
SEmEE
X, [LI [T I
X1

Figure 3.2. A Co-clustering Example

3.2.2. Hypothesis Testing

In this section, we introduce hypothesis testingcpdures to test (3.1), which is

needed to compute the distance matrix, and tq3e3f which is used to determine which
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columns are included in a co-cluster. In regardesting hypothesis (3.1), we adopt the

permutation test procedure discussed in ChapteioBtain p,,, -

In regards to testing hypothesis (3.3), we tré&g}, as a reference distribution since
the seed is the starting point for building a castgr. Hence, we only focus on the quality
index Q(F..Fy) that measures the overall “outlyingness” Bf. relative to F_, .
Assuming the scatter plot corresponding fg. contains N, data points and the
pooled scatter plot corresponding €., contains N, data points, we estimate
Q(F.y,Fy) by Q(F = ,F.*). From Liu & Singh (1993) and Zuo & He (2006), we
have

Q(Fla FEN¥)-1/2~AN (0,(1/N_, + 1N, )/12 (3.4)

under H,:F, =F,, for many commonly used data depth functions (urgksmeral

regularity conditions). Therefore, the p-value testing hypothesis (3.3) is equal to

2xP(Z >|Q(F N Fi*)=1/3 1 /Ny + TN, )/13 where Z ~N(0,1).

For a seed{X,, X,---, X} of size r with {i,i,--i} 2 - M} that is
generated from the hierarchical clustering of tkie column, we test hypothesis (3.3)
for each i’ {i, i, ---,i,} and all the columns other thak to identify the column part
of a potential co-cluster. Here, Holm’s method (#Hol979) is used to adjust these
r(N-1) p-values. Specifically, we sont(N -1) p-values in ascending order. If the

smallest p-value is less tham, /[r(N —-1)] with a, being a pre-specified overall type |
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error, we reject the corresponding null hypothesisgd check whether the smallest

p-value among the remaining(N —1)—1 ones is less thamr, /[r(N —-1) —1] or not. We

continue the above sequential comparison until rthié hypothesis with the smallest

p-value among the remaining ones is not rejected a& that point, all the remaining null

hypotheses are not rejected.

3.3. SSIMULATION STUDY

To evaluate our proposed co-clustering method icti@e 3.2, we performed the

following simulation study:

1)

2)

3)

For a set of rows and columns, specify a numbecatlusters and a bivariate
distribution for the cells within each of the casfers. Additionally, specify a
bivariate distribution for each of the remainingisdhat are not contained in a
co-cluster.

Generate random samples based on the given bealistributions in Step 1, which
creates a data matrix of scatter plots. Apply goppsed co-clustering method to this
data matrix of scatter plots, and identify the agsters.

For each sub-block of sizenxn (m=1---,M, n=1---,N, and mn>1), we
check whether it belongs to any of the true cotehssand any of the identified

co-clusters (Since co-clustering aims at groupiogsr and columns, we check
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sub-blocks with at least two rows or two columr®)is sub-block is defined to be
“consistent” if it simultaneously belongs to somme®f the true co-clusters and some
one of the identified co-clusters, or it neitheloogs to any of the true co-clusters nor
any of the identified co-clusters. For eaclm,(n), the number of consistent
sub-blocks is denoted by, ..

4) Repeat Step 2-3 a number of times, daytimes, and accumulate the valuesdy, .

M N
The probability of consistencyd’ > d,, /{L[(2" -1)(2" -1)-MN]}, acts as the

=
measure to evaluate the proposed co-clusteringadeth
We considered a data pattern setting as shown guréi 3.3, in which two
overlapping co-clusters were specified irBa 6data matrix. The two co-clusters are:
Co-cluster 1:{X,, X, X, XgU Y, YgV}, ;

Co-cluster 2:{ X, Xo, Xg U Yz Y, Y} .

The scatter plots within each of the two co-clustéollow the bivariate normal

0 1 05
distribution N(Z)((Oj,(o c 1)). The grey cells in Figure 3.3 represent cells that

not belong to the two co-clusters. The scatterspfot those cells follow a hierarchical
bivariate distribution specified as follows: i) abtional on (X ,X,,Y..,Y,), X and
Y are independent with distributiondnif (X, ,X,) and Unif(Y_,Y,), respectively,

and ii) (X_,X,,Y.,Y,) are independent with distributiongnif (-4,0), Unif (0,4),
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Unif (-4,0), Unif (0,4), respectively. Furthermore, 100 data points weneegated for
each scatter plot, Mahalanobis depth was adopt#lyé&sampling times were taken for
the permutation test, and the complete linkage atktlias chosen for the hierarchical

clustering.
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Figure 3.3. Co-cluster Specification
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We specified the minimum co-cluster size to Bx3 and performed 500
simulations. The results are summarized in Figu#® &om which we notice the

probability of consistency is pretty high for diféat scenarios of(d.,,a,), which

demonstrates the power of our proposed co-clugtenethod.

3.4. DATAVISUALIZATION

Data visualization is an important aspect in thestdring technique. In the traditional
co-clustering application in which cells of a dataatrix are scalars, a graphical
representation of the data matrix, called heat map,be created where cells are painted
with different colors based on their scalar vallRainting provides a visualization of the
relative homogeneity within co-clusters. Obviouslye would expect cells in close
proximity to each other to have a similar colorthdugh it is usually impossible to
display all the co-clusters in a single heat magheco-cluster would still show a color
pattern when we investigate all the co-clusters lop@ne. For example, by defining a
co-cluster to be the union of a subset of rows arsdibset of columns within which all
the scalars are similar to each other, each cderlugould be represented by a block of

cells that have similar colors.
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2 (0)(1 O 2 (0)(1 O
Co-cluster IN* |( ||, Co-cluster 2N |(_ | |,
4){0 1 1)(0 1

X ~Unif (X_, X, ),X, ~Unif (-12,0)X, ~Unif (0,12):
1Y ~Unif (Y_,Y, )Y, ~Unif (-16,0)Y, -~Unif (0,8)X OY

. [x
Noise:
Y

IEE| KN

(a) OQ (b) CDI (c) CDDI d)(DI

Figure 3.5. Painting Example 1: OQI can distinguso co-clusters from each other.
Also, the bivariate normal distributions followed bwo co-clusters only differ by
location, and both means are located above thaotigerefore CDI can distinguish them
from each other whereas CDDI and DI can not.

2 (2)(1 O o (~2)(1 0O
Co-cluster IN* |(_| |, Co-cluster 2N |( ,
2)\{0 1 -2)(0 1

X ~Unif (X, X, ), X, ~Unif (-8,0),X, ~Unif (0,8);
1Y ~Unif (Y_,Y,),Y, ~Unif (-8,0)Y, ~Unif (0,8)X OY

X

Noise:

(a) OQI (b) CDI (c) CDDI d)(DI

Figure 3.6. Painting Example 2: OQI can not daitish two co-clusters from each
other. Also, the bivariate normal distributionsld@ated by two co-clusters only differ by
location, and are symmetric about the origin, tfeeeeCDDI can distinguish them from

each other whereas CDI and DI can not.
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Figure 3.7. Painting Example 3: OQI can distinguso co-clusters from each other.
Also, the bivariate normal distributions followeg two co-clusters only differ by scale,
therefore DI can distinguish them from each othkergas CDI and CDDI can not.

Noise:(

o (~2)(1 0O @ (~4)(5 0
Co-cluster IN* |( , Co-cluster 2N* |( ,
-2)(0 1 4)\0 5

X X ~Unif (X, X, ), X, ~Unif (-8,0),X, ~Unif (0,16);
Y LY ~Unif (Y_,Y,),Y, ~Unif (-14,0)Y, ~Unif (0,10)X OY

(a) OQI (b) CDI (c) CDDI d)(DI

Figure 3.8. Painting Example 4: OQI can distinguso co-clusters from each other.
Also, the bivariate normal distributions followed/ bwo co-clusters differ by both
location and scale, and are asymmetric about tiggnptherefore CDI, CDDI and DI can
all distinguish them from each other.

Noise:(
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We use the same painting metrics discussed in €hapb graphically represent the
co-clusters of scatter plots so that similar scattets are painted with a similar color
whereas dissimilar scatter plots are painted witferént colors. To illustrate the utility
of painting metrics, we present four painting exéap In each example, 42x12
matrix of scatter plots (each scatter plot contdi®@ data points) was generated, and two
non-overlapping co-clusters were specified as fezdto

Co-cluster 1:{X,, X5 X, Xg Xg UL Y, Yo Y, Y Yk S

Co-cluster 2:{Xg Xo, X, U Yy Y Y Y, Yo Yo Y oYL
Data was generated for each scatter plot in thelusiers by following the distributions
shown in the first row of the top panel of FiguB5-3.8. Data for the remaining scatter
plots in the matrix of scatter plots was generdteth the noise distributions shown in
the second row of the top panel in these figures.thén obtainedl2x 12 matrices of
OQlI, CDI, CDDI and DI, based upon which four heap® can be generated as shown in
the bottom panel of Figures 3.5-3.8, where theltyél heat map is based on OQI, the
“red” heat map on CDI, the “blue” heat map on CDik “green” heat map on DI, and
the “black” color stands for the minimum index valin all the four heat maps. For
simplicity, we used Mahalanobis depth in all tharaples discussed here.

The painting examples illustrate that OQI captuites overall effect due to both

location shift and scale change of a scatter pltsten OQI can distinguishes two scatter
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plots from each other, one may further investigaiid, CDDI, and DI to see the details
of how these two scatter plots differ. Also, wheQI@an not distinguish two scatter plots

from each other, one may want to see if any of @PI, and DI can distinguish them.

3.5.APPLICATION
3.5.1. Results

We revisit the microbe-host-interaction study dgsad in Chapter 2. Two datasets
were generated from the experiment (Li et al. 20t0)dentify putatively important
microbe-host interactions. “Microbe” data were aged as a data matrix with 81 rows (3
rows containing missing values are excluded) stapdor samples, 15 columns for
microbes, and each cell being a single numeridalevieecording the level of a microbe in
a sample. “Protein” data were also arranged aga rdatrix with 81 rows standing for
the same set of samples, 590 columns for protaimgeach cell being a single numerical
value recording the level of a protein in a sampteidentify associations between levels
of the microbes and proteins, we combined the altewedata matrices of scalars by
pairing up the columns (one from “Microbe” datae thther from “Protein” data) and
treating each81x 2 array of data as bivariate data with thle-axis being microbe

level and the y —axis being protein level. This process leads to a das#ix of scatter
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plots as shown in Figure 3.1 wheiM =590, N =15, and each scatter plot contains 81
data points.

Considering the scatter plots as independent sample applied our proposed
co-clustering method to th&90x 15 data matrix of scatter plots. We used Mahalanobis
depth as the data depth measuBes 500 resampling times for the permutation test, and
the complete linkage method in the hierarchicalstglting to generate the seeds.
Furthermore, we assumed the minimum co-cluster sz20x5 (20 proteins and 5
microbes), and prespecified_,, =0.8 and a,=0.2.

Nine co-clusters were obtained, one of which isiaed in Figure 3.9, where the
heat map with the OQI painting metric is shown. Tgremise of these results is
demonstrated by the fact that many of the idemtifgoteins have been previously
associated with IBD as in Ahrenstedt et al. (192@)sson et al. (2006), Ripollés Piquer
et al. (2006), and Fagerberg et al. (2007).

The proteins and microbes in the other eight idiedtico-clusters that have been
previously associated with IBD are listed in TaBlé. Apolipoprotein levels (c-ii and
c-iii but not c-i) in blood have been shown to bseful biomarkers of IBD disease
activity (Ripollés Piquer et al. 2006). S100A12¢acium binding protein produced by
granulocytes, has been associated with IBD (Foelhle 2003, Foell et al. 2009).

Increased levels of both complement C3 and C4 Hmeen detected in IBD patients

59



(Ahrenstedt et al. 1990, Halstensen & Brandtzae€dj 1Blalstensen et al. 1992, Laufer et
al. 2000, Ueki et al. 1996)n vitro studies of epithelial cells have also shown that
complement factors open tight junctions (Conyeralefi990), which is consistent with
various IBD theories involving barrier dysfunctioD patients often exhibit elevated
levels of serum amyloid a (Ripollés Piquer et &0&), which is a protein involved in
systemic AA amyloidosis (Lachmann et al. 2007).n&thyretin levels in serum were
lower in Crohn’s disease subjects than healthy rotmt(Reimund et al. 2005).
Haptoglobin has been shown to be a marker forisotit mouse models (Larsson et al.
2006, Torrence et al. 2008) and its precursor wasws to increase intestinal
permeability in mice (Tripathi et al. 2009) and gga variants have been associated with
Crohn’s disease (Papp et al. 2007). Chromogranievéls were higher in IBD subjects
than controls (Sciola et al. 2009, Yamaguchi e2@09). Inter-alpha trypsin inhibitor has
been associated with human IBD (de la Motte eR@03) as well as a mouse model of
IBD (Bandyopadhyay et al. 2008). Beta-2-microglamubsteopontin, and platelet basic
protein have been shown to be reliable marker8 (Agnholt et al. 2007, Kruidenier
et al. 2006, Zissis et al. 2001). PubMed (NCBI)skes did not identify reports linking
the following proteins with IBD: amyloid beta a4erhoglobin subunit beta (beta-globin),
neurosecretory protein vgf, c-c motif chemokine &8¢retogranin-1, and proactivator

polypeptide. Finally, based on analyses using BLASTBI) (Altschul et al. 1997), only
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two of the 13 bacterial phylotypes have been prslpo associated with IBD:
Clostridium 12 (Presley et al. 2011) and Faecatdraom 2994 phylotype (Baumgart et

al. 2007, Martinez-Medina et al. 2006, Sokol et2809, Swidsinski et al. 2008, Willing

et al. 2009).
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8604.99*, complement c4-a
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Figure 3.9. Heat Map with the OQI Painting Metric
(* indicates the immune system molecules.)
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Table 3.1.

Proteins and Microbes in the Identifémdclusters

Protein Microbe Protein Microbe
Co-cluster 1 Co-cluster 2
8165.06*, complement | Clostridium 12 7572.22, hemoglobin AllIBac

c3 frag
7933.18, hemoglobin
subunit beta
14315.2, transthyretin
9294.05*, platelet basic
protein
7040.59, transthyretin
11710.9, serum amyloid

Ruminococcus 246
Ruminococcus 312
Ruminococcus 323
Clostridium 501
Roseburia 575
Clostridium 603
Eubacterium 2766

subunit alpha
9456.62, apolipoprotein
c-ii
14315.2, transthyretin
10441.2*, protein
s100-al12
8320.13*, complement c3
frag

Escherichia 8
Ruminococcus 246
Ruminococcus 312
Ruminococcus 323
Roseburia 575
Eubacterium 2766

a protein 9166.42, haptoglobin
10484.3*, protein 10484.3*, protein
s100-al2 s100-al12
8587.68*, complement 11346.6, serum amyloid a
c4-a frag protein
14272.2, transthyretin 8604.99*%, complement
8604.99* complement c4-a frag,
c4-a frag, complement
complement c4-a
c4d-a 8134.06*, complement c3
8949.0, apolipoprotein frag
a-ii 6231.41, secretogranin-1
6231.41, secretogranin{l frag
frag 10333.4, proactivator
7741.71*, osteopontin polypeptide
frag
Co-cluster 3 Co-cluster 4

11259.5, serum amyloid
a protein
15861.0, hemoglobin
subunit beta
9308.28*, c-c motif
chemokine 13
13887.0, transthyretin
11979.7, beta-2-
microglobulin
10892.5, serum amyloid
a protein
15780.6, haptoglobin
8604.99*, complement
c4-a frag,
complement
cd-a
10831.0*, protein
s100-a8

Ruminococcus 3
Clostridium 12
Bacteroides 832
Eubacterium 2766
Faecalibacterium
2994

3895.27, chromogranin-a
frag

8182.49, apolipoprotein
c-ii frag

9166.42, haptoglobin

3961.47, neurosecretory
protein vgf frag

15846.2, hemoglobin
subunit beta

8967.25, apolipoprotein
a-ii

3699.01, neurosecretory
protein vgf frag

Ruminococcus 3
Clostridium 12
Bacteroides 832
Eubacterium 2766
Faecalibacterium
2994
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Table 3.1 (Continued).

Proteins and Microbes eltentified Co-clusters

Protein

Microbe

Protein

Microbe

Co-cluster 5

Co-cluster 6

3979.21, inter-alpha-
trypsin
inhibitor
heavy chain
h4 frag

2166.26, amyloid beta
a4 protein

6614.87, apolipoprotein
C-i

14272.2, transthyretin

15846.2, hemoglobin
subunit beta

14240.7, transthyretin

11607.3, serum amyloid
a protein

14040.3, transthyretin

Clostridium 12
Ruminococcus 246
Ruminococcus 312
Ruminococcus 323
Roseburia 575
Clostridium 603
Eubacterium 2766

4793.06, neurosecretory
protein vgf frag
11677.0, serum amyloid 4
protein
8182.49, apolipoprotein
c-ii frag
6646.61, apolipoprotein
C-i
6898.5, transthyretin
4807.93, neurosecretory
protein vgf frag
3699.01, neurosecretory
protein vgf frag

Clostridium 12
Ruminococcus 246
n Ruminococcus 312
Ruminococcus 323
Roseburia 575
Clostridium 603
Eubacterium 2766

Co-cluster 7

Co-cluster 8

11259.5, serum amyloid
a protein
7933.18, hemoglobin
subunit beta
11979.7, beta-2-
microglobulin
9294.05*, platelet basic
protein
6417.37, apolipoprotein
c-i frag,
apolipoprotein
C-i
apolipoprotein
a-ii
6628.66, apolipoprotein
C-i

8949.0,

Escherichia 8
Ruminococcus 246
Ruminococcus 312
Ruminococcus 323
Roseburia 575
Eubacterium 2766
Faecalibacterium
2994

15861.0, hemoglobin
subunit beta
10814.5*, protein s100-ad
9456.62, apolipoprotein
c-iii
11979.7, beta-2-
microglobulin
8134.06*, complement c3
frag
10831.0%, protein s100-ad
10333.4, proactivator
polypeptide

Clostridium 12
Ruminococcus 246
8 Ruminococcus 312
Ruminococcus 323
Clostridium 501
Roseburia 575
Clostridium 603
Eubacterium 2766

* indicates the immune system molecules.

Using our proposed co-clustering method, 22.6%hef proteins with a database

match were immune system molecules, compared {0la¥o, 12% and 9% for the other
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methods (nearest shrunken centroids, RCCA, and ANOMspectively (see Presley et
al. 2011 for other method values). These molecales induced by a host immune
response initiated by contact with microorganismd their products, and as such are
indicators of intimate host-microbe interplay octuy in the habitat under investigation.
In contrast, the most predominant proteins idesdifby the other statistical methods (e.g.,
transthyretin, hemoglobin and serum amyloid) wegh labundance proteins commonly
and non-specifically associated with many settimjstissue injury. We therefore
anticipate that our proposed co-clustering meth@&y tyield new and important clues
regarding upstream host-microbe interplay assatmith IBD, enhancing investigations

of causal relationships in IBD and other multi-tacl disease etiologies.

3.5.2. Biological Hypothesis

We hypothesize that this approach will provide areneffective strategy for
identifying causative variables associated withtifattorial diseases such as IBD. For
example, consider a multi-factorial disease in Whooe important factor is the increased
production of a host immune molecule in response goowing population of a particular
microorganism. Because a direct physical or chenintaraction between the microbe
and the immune molecule exists, the relationshipvéen these variables will be tightly

linked and relatively easy to detect. However, dejpgy on the etiological complexity of
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the disease, the levels of the microbe or immundecnte might not be strongly
correlated to disease status. In general, as tiebeu of factors contributing to an
etiology increases, the strength of the linkagevbeh the levels of any one specific
variable and disease status decreases. Moreoeelinkage between the levels of these
variables and disease status will probably flugudirough cycles of remission and
disease activity. However, in both cases, theiogiahips between the microbial and host
variables will likely remain the same, and therefdetectable using our approach.

In a further attempt to elucidate cause from effecir approach will also enable
analysis of the strength and numbers of microbe-halationships. New technologies
have provided the ability to measure and analymgelaumbers of variables, but most of
these variables are not likely contributing to @dios. Instead, differences in their levels
are simply a response to environmental changemidy the causative factors. Using
our approach, one can identify and focus on thomeoarganisms having the strongest
and/or the most numerous relationships with the Iposteins. We theorize that such
microorganisms are more likely to be involved iditect physical or chemical interaction

with the host, and therefore have a higher proligluf being causative agents.

65



3.6. CONCLUSION

Our proposed co-clustering method showed a sigmificutility and power in
handling a data matrix of scatter plots. The idehirtd this co-clustering procedure can
be applied to the higher dimensional clusteringmbee or more sets of variables needs
to be analyzed. Moreover, the novel painting metwe proposed can be easily extended
to multidimensional clusters of multivariate plots.

Tukey depth and Simplicial depth are more robusiuitiers than Mahalanobis depth.
The computation complexity associated with thesgttde under the framework of our
proposed co-clustering method will be addressddture work.

Finally, although these methods were developeah#byae microbe-host interactions,
we anticipate that this general approach will hawdity for a wide range of
investigations, including those examining relatlips among gene expression profiles,

metabolites, genes and epigenetic parameters.
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Chapter 4
Co-clustering Spatial Data Using a Generalized Linear Mixed

Model With Application to the Integrated Pest M anagement

4.1. INTRODUCTION

Integrated Pest Management (IPM) is a sustaingigpeoach to managing pests by
combining biological, cultural, physical and cheati¢dools in a way that minimizes
economic losses, while simultaneously reducing huimealth and environmental risks.
An important characteristic of an IPM program, whige focus on in this chapter, is the
ability to accurately assess pest density levekxeRt literature has shown that pest
density levels are influenced by spatial populatdynamics. For example, spatial
analyses have been applied in studies of agriailpests of attacking lentils (Schotzko
& O’Keeffe 1989), corn and alfalfa (Williams et 41992), cotton (Gozé et al. 2003), and
grapes (Ifoulis & Savopoulou-Soultani 2006, Ramidgwila & Porcayo-Camargo 2008).
However, spatial analyses were usually conductedrdnysforming the count data to
approximately satisfy the normality assumption (@wot & Stroup 1997). Generalized
Linear Mixed Models (GLMMs) (Breslow & Clayton 19p&an directly incorporate
spatial correlation in count data, and have beed asross multiple scientific disciplines,

including ecological studies of pest populationar(ia et al. 2003, Bennett et al. 2008,
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Bianchi et al. 2008, Candy 2000, Elias et al. 2@06ton et al. 2001, Paterson & Lello
2003, Takakura 2009).

Traditional pest assessment applications usuadlly igpotheses about a parameter
@ that reflects the pest density within the wholehard, such as the mean or median
number of pests on each trekt,: < 6. vs.H, :8> 4., where &, is a critical economic
threshold for which the cost of treatment is equmlthe cost of no treatment. Not
rejecting H, would indicate no treatment intervention is regdjr whereas rejecting
H, would call for treatment in an attempt to ward séfrious crop loss (e.g., spraying
pesticides or the release of natural enemies feir gntrol).

Often only specific areas of an orchard need treatnbecause many pest species
exhibit clumped distributions, and it is within #ee“hotspots” where pest densities are
high enough to warrant treatment. In this situgtiamder the present mode of operation
pesticides may be applied to an entire orchard wihestment is required, including
regions of the orchard that do not need treatntéemce, within an IPM framework that
is working to reduce unnecessary pesticide apphicat a more sophisticated analytical
procedure is desired to define localized regionth viigh pest infestations within an
orchard for treatment.

There is very little literature about model-basemictustering, and none of the

literature has proposed a spatial co-clusteringrtegie that co-clusters data such that
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any co-cluster only contains a set of spatially semutive rows and columns. In this
chapter, we combine a spatial co-clustering teammigith a statistical inference method
to make pest assessments more reflective of thaturally occurring clumped
distributions. In Section 4.2, we introduce a sggaBLMM to fit count data that exhibits
spatial correlation within co-clusters. To avoide tthigh computational intensity
associated with global optimization, we proposeearistic optimization algorithm to
search for a near optimal co-clustering. A sampé$itrgtegy is developed to maintain as
much of the spatial information that is availableni the data as possible, and the effect
of sample size is studied. In Section 4.3, comigiritme heuristic optimization with the
statistical inference, we develop a procedure taarassessment of pest density more
accurate. We demonstrate the utility and power wf proposed procedure through
simulation studies and apply the procedure to dysti assessing the density of persea

mite (Oligonychus perseae) in Section 4.4.

42. METHODOLOGY
4.2.1. Spatial GLMM
4.2.1.1. Model Definition
Consider an rxc spatial grid with rows (R,R,,---,R) and columns

(C,C,,---,C.), in which each grid point is a potential samplsitg. Co-clustering both
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rows and columns, or simultaneously dividing baitvg and columns into a number of
contiguous and disjoint groups of rows and columms,may obtain a “checkerboard”
structure in the spatial grid, within which eacld! is referred to as a co-cluster. For a
given co-clustering withn groups of rows andm groups of columns as shown in
Figure 4.1, we use the term “design” to represeatspecific row and column groupings

that is denoted by

{Ry- RMR .z R ) R e R}
Gy - CCag €1 )y (€ a .Gy D

or more simply by the number of rows and columngiwi row groups and column
groups respectively(iy, i, =i, i, =i )% ()~ T Jm— Ime1)- We also use the term
“nomenclature” to represent the corresponding nurobeow groups and column groups
and denote the nomenclature lmyxm. Notice that there is a one-to-one mapping
between “co-clusterings” and “designs”, that is¢che@o-clustering corresponds to one
and only one design, and vice versa. However, tlegists a many-to-one mapping
between “designs” and “nomenclatures”, that isfed#nt designs may share the same
nomenclature, but different nomenclatures mustespond to different designs.
The spatial GLMM for Figure 4.1 is defined to be:
Yii |§irjij Negative Binomial @ «), i=1,2,--,nm, j=12;--n;
log(8) = u+s; (4.1)

$=(8,S,*+Sm) ~MVN (0,071 ,,,,);
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where Y, is the count number from thg"™ sampling unit in thei™ co-cluster, n is
the number of sampling units in thé co-cluster, § is the conditional (ons) mean
associated with thé™ co-cluster, x quantifies the amount of overdispersion (relative
to the Poisson distribution) for the Negative Binaimdistribution (with x =

corresponding to no overdispersiony, is the fixed intercept effects is a random

effect associated with theé" co-cluster, andl ,_ is the identity matrix of sizenm.

Column Index

Toojy jyt Loy jptle o j o j o+ Lo o

2
Row Index i, +1

I
'n—1+1

()

Figure 4.1. “Checkerboard” Co-cluster Structure
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4.2.1.2. Likdihood and Parameter Estimation

The log-likelihood function corresponding to (4cBn be derived as:
| (u,0° k)
=1og[][ [ 1, 5)0(5)]
= ilog_
i1

IRIADIION

=3'log I_le f (Vi 19)F (55 )}

_m i w N [‘(yj(i)+K) ( P jk[ exp(,u+$) jyj(i)
=3
gogjwn(r(ym)ﬂ)rm) exp+s Jtk ) \ expi+s )}k
£xpes (7)) }
N 2mo? ;
ziilog( ip *4) J+

i=1 r(yj(i) +1) (x)

nm K iyj(i) 2 2
5 10g I_Z{ K j [ exp(+s ) j expts’ (20%)) o |

4.2
explu+s)tk) \ expl+s y« 270° (

i=1

where Y, :(yl(i)’yz(i)"“!yq(i))"
Equation (4.2) involvesnm one-dimensional integrals, each of which can be

approximated as a weighted sum by the method o§&Hermite quadrature:

I(,U.O’Z,K):iilog[ "B+ ]+

i=1 =1 C(Yj +D ()

f o i K ™ expu++ 27°x,) ;yj(i) W, 4.3)
i e X, )+ K expfi++/ X, FK Jrr ||
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where x,'s and w,'s d =1,2;-- D | are the quadrature nodes and weights, respectively
Quadrature with D =30 is usually enough for a good degree of approxiomati
(McCulloch et al. 2008). Then (4.3) can be maxirdiremerically to obtain the MLEs of

(u,0°%,k), denoted as(j1,5°,K).

4.2.2. Model-based Co-clustering
4.2.2.1. Global Optimization
We define the optimal co-clustering to be the o the maximum log-likelihood
among all the possible co-clusterings. To avoictlesters that are too small, we specify
the minimum co-cluster size to bgxc, (r,>1 and ¢,>1), in which r, is the
minimum number of rows and, is the minimum number of columns within the
co-cluster. The global optimization algorithm isfalows:
1) Select a nomenclature and for each design assdoate the nomenclature, fit the
corresponding spatial GLMM and evaluak&z, 62 ,k).
2) Repeat Step 1 for all the possible nomenclatures.
3) The global optimal co-clustering is the design witthe maximum value of
|(&,6%,K).
In the global optimization algorithm, the numberpafssible co-clusterings that are

evaluated can be shown to be:
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1+ij{ j*n_l{(‘l)m i ( (11+J2I 1+ji)—1]}

- (4.4)

ol [(e=1) mt (m) e (c—(j,Fj, e+ )1
" 1+mz=2{(m‘1j+i=1{(_l)(ijJI,J;Jiﬂ( m-i-1 }H

| I |

Proof of (4.4):

Consider anr xc spatial grid, and let the minimum co-cluster $eer, xc,. Given

r-1
a specific number of row groups (2<n<|r/r,|), there are(n J ways to obtain

n row groups fromr rows without considering the minimum co-clustezesi

In the situation that the minimum co-cluster siz riot satisfied, there are

& (T (*ip+e+i)-1 . . .
z noil1 ways to split n row groups into two parts|
iz =1 —=

(1<i<n-1) specific row groups that do not satisfy the miaimco-cluster size, and the

other n—i row groups that may or may not satisfy the minimewrcluster size. Also,

n . . :
there are(,} ways to choose the abowe specific row groups. However, summing up
[

the groupings through all the possiblerow groups duplicates the groupings that exact
i" (i">i) row groups do not satisfy the minimum co-clugteze. Therefore, the total

number of row groupings that do not satisfy the imum co-cluster size is

n-1 i n -l r—(jl+j2+--~+ji)—1
i:l|:(_1) (ijh,iz,z-,n:l[ n-i-1 H
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It is trivial that there is only one row groupingrfn=1. Hence the number of

possible row groupings for all<n<|r/r, | is

L] r-1 n-1 n -1 r_(j1+j2+"'+ji)_1
1+nz=;‘ {(n‘l}é{(_ﬂ(ijh,jz;z',ji:l[ n-i-1 H}

The number of possible column groupings can belaityiderived as

&l (c-1 = (m)y & (e=(fjy e t)-l
1+mz=2{(m‘1j+;{(_l)l(i jjl,j;,jsl( m-i-1 H}

Therefore, the number of possible co-clusterings is

-1

i Lriv ) r-1 n-1 n = r—(j1+j2+---+ji)—1_
_1+n2:; {(n—lj” izl{(_l)(i]im;,iﬁl( n-i-1 ]_H
[ KLY c—-1 m-1 (m &1 C_(j1+j2+...+ji)—1

" _l+mz=2 {(m_1j+;{(—l) (i jjl,jz;z,ji:l( m-i-1 }H ’

Table 4.1. Number of Co-clusterings for Global i@ytation
l,=C,=6 h=¢c=8 | r,=¢,=10 | r,=c,=12

r=c=20 256 36 4 1
r=c=25 3,025 196 49 9
r=c=30 38,416 1,936 169 64
r=c=35 470,596 14,161 1,444 169
r=c=40 | 5,769,604 119,025 7,921 1,089
r=c=45 | 71,014,329| 940,900 47,961 6,084
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Some numerical examples that illustrate the fornul@.4) are shown in Table 4.1,
from which we notice the number of possible co4gtings may be largely reduced by
increasing r, and c,, however, it still increases dramatically asand c increase.
For a relatively large spatial grid such as onesiaé 80x% 80, the number of possible
co-clustering is 382,241,601 given that the minimzo¥cluster size isl2x 12. Therefore,

exhaustively searching for the optimal co-clusigigusually not feasible in practice.

4.2.2.2. Heuristic Optimization
To avoid the extremely high computational intensigsociated with global

optimization, we propose the following heuristidiopzation algorithm:

1) Starting with the original spatial grid, fit thercesponding spatial GLMMs for all the
designs associated with the nomenclatudes2 and 2x1, and record the
co-clustering with the maximunh(/z,4°,K) as the “Current Optimal Co-clustering”
whose log-likelihood is denoted bl (j7,6° ,k) .

2) Starting with the “Current Optimal Co-clusterindfit the corresponding spatial
GLMMs for all the designs with the nomenclaturet thas either one more row group
or one more column group than the “Current Opti@aiclustering”, and record the
co-clustering with the maximuml(i,d°,k) as the “Potential Optimal

Co-clustering” whose log-likelihood is denoted bY(/, 67 ,k).
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3) If 1°(i1,6%,k)>1"(1,6%,k), replace the “Current Optimal Co-clustering” withe
“Potential Optimal Co-clustering” and repeat Stepotherwise, stop the procedure
and report the “Current Optimal Co-clustering” las heuristic optimal co-clustering.
With the minimum co-cluster size not considere, tlumber of co-clusterings that

are evaluated in the heuristic optimization aldpmitis

[r+c-1-(n"+m)/2](n +m -1),

where n' xm is the nomenclature for the heuristic optimal agstering.

4.2.2.3. Efficiency of Heuristic Optimization Algorithm
To study the efficiency of our proposed heuristiptimization algorithm, we

performed a simulation study to compare it to tihabgl optimization algorithm. The

simulation study is as follows:

1) Specify a nomenclature and a specific design.

2) Simulate count data for the spatial grid associated the design selected in Step 1
using specified parameters.

3) Apply both the global optimization algorithm anek theuristic optimization algorithm
to the spatial grid, and for each algorithm, chedlether the original design and
nomenclature can be retrieved or not. That is, neck whether the corresponding

design and nomenclature of the reported optimatlgstering from both the global
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optimization algorithm and the heuristic optimipatialgorithm are same as the true

design and nomenclature respectively.

4) Repeat Step 2—-3 a number of times, and for eadrithio, record the success rates
for the reported optimal design and nomenclatuee, the proportions of times that
we succeed in retrieving the original design anch@aclature.

For all the simulation studies in this chapter, eomsidered a40x 40 spatial grid
using the design(10,17,13k (13,15,1: and hence the nomenclatuBx 3, specified the
minimum co-cluster size to be xc, =10x12, and performed 1000 simulations for each
setting. Based on the model fitting analyses dsedisn Section 4.4, we chose=6
and different scenarios fo¢x,o?). Throughout this chapter, the number of nodes irsed
the Gauss-Hermite quadrature was selected t®@Be30. The results are summarized in
Figure 4.2, in which Figure 4.2(a) shows the susgases for the reported design and
nomenclature for the differen{x,o?) scenarios whenk =1, and Figure 4.2(b)
similarly shows the success rates for the case3.

In this simulation study, the number of co-clusigs evaluated in the global
optimization algorithm is 2937, whereas the numtiieco-clusterings evaluated in the
heuristic optimization algorithm is around 85 oremage. From either Figure 4.2(a) or
Figure 4.2(b), we may notice the success rate efddsign or nomenclature for the

heuristic optimization algorithm is not that mucbwer than that for the global
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optimization algorithm. Also, the success ratehaf tlesign or nomenclature increases as

g

increases giveny and «, which indicates that greater difference among tru

co-clusters improves the chance of retrieving the tesign or nomenclature. Comparing

Figure 4.2(a) to Figure 4.2(b), we notice the sasamte of the design or nomenclature

increases as« increases giveryy and o°, meaning that less variability within true

co-clusters also improves the chance of captutiegrue design or nomenclature.

Success Rate

0.4 0.6 0.8 1.0

0.2

0.0

Global Nomenclature
Heuristic Nomenclature
Global Design
Heuristic Design

0.5 1.0 1.5 2.0
0_2
@ k=1
Figure 4.2.
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4.2.2.4. Heuristic Optimization with Non-Exhaustive Samples

T T T
1.0 1.5 20

2
o)

(b) =3

Heuristic Optimization vs. Global Gpization

Concerning time and the cost of human resourcestiponers usually sample less

than 100% of the grid points from the spatial ghléxt we develop a sampling strategy
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for this case, and study how the sample size afféet success rates for the reported
design and nomenclature.

First note that if we randomly sample a subsetraf goints from the spatial grid, it
is very likely that specific areas of the spatiatigvill not be represented in the sample,
especially when the sampling fraction is smalltHis case, we can anticipate that some
of the resulting co-clusters will not have been glath and in some applications, such as
the one we discuss in Section 4.3, this can leatbge of precision in subsequent

inference procedures.

Column {y) Column {1y

O L THT 1} T THT T BT U L H . ii T
| I Ll st H E! | I
©omiie e lie el e
SES e R R R e wiiifd
i TR T
S HEEHHE R
(a) Even Sampling Scheme (b) Shiftachgling Scheme

Figure 4.3. Sampling Strategy
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Recall that the minimum co-cluster sizefigxc,. To ensure at least one grid point is
taken from each co-cluster, we may start with treg §rid point (the grid point located in
the first row and the first column), and sampleid goint every r, rows along the row
dimension and every, columns along the column dimension. By doing dbtre
sampled grid points are evenly distributed acrbesdpatial grid such that anyxc,
sub-grid contains at least one sampled grid pamihown in Figure 4.3(a) in which the
spatial grid is of size40x 40, the minimum co-cluster size i6x 6, and 49 sampled grid
points are denoted by the black dots. Mathemayichl taking the row dimension as
x—axis, the column dimension asy—axis, and row and column indices as
X — coordinates andy —coordinates respectively, the positions of the dachgrid points
in the Cartesian plane are the intersections ofitles x=ir,+1 (i =0,1,-- |_ t-1 /r0_|)
and the linesy = jc,+1 (j=0,1-- | €-1)/c, |).

However, for a co-clustering with a row separatioe or a column separation line
located in the gap between the sampled grid pomtsjing around this separation line
within the gap will not change the log-likelihoodrfthe corresponding spatial GLMM.
For example, consider two desigiis0,14,16x (12,13,1f and (10,14,16X% (12,14,1¢
for Figure 4.3(a), the only difference between \ahig a column separation line, one is
between the25" and 26" column, and the other is between t26" and 27"

column. Both designs lead to the same log-likelthemce there is no sampled grid point
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coming from the 26" column. Therefore, the reported optimal co-clusteris not
unique.

To increase the chance of retrieving the true desige propose an alternative
sampling strategy as shown in Figure 4.3(b), inciwlgach sampled grid point in Figure
4.3(a) is shifted one more row than the previossignpled grid point along the column
dimension, and shifted one more column than theiguely sampled grid point along the
row dimension. Mathematically, the positions of faenpled grid points in the Cartesian
plane are the intersections of the segmextsi (i=1,2,--r; I<y<c) and the lines
y=C(x=jrp=D+j+1 (j=[-(c=1)/(rc,=1)|, [ =1)/(r,c,~1)]). By using
this sampling strategy, not only does any<c, sub-grid contain at least one sampled
grid point, but also the sampled grid points oueraflect as much of the spatial
information embedded in the spatial grid as possMlhen the sampling fraction is small,
it is still possible (though less likely) that mogirow or column separation lines within a
gap does not change the log-likelihood in the pssad heuristic optimization algorithm.
In this case, the heuristic optimization algoritpnoceeds to further steps by randomly
choosing from the alternatives that have the samdikelihood.

Based on the minimum co-cluster size, the proposaupling strategy would
provide the minimum sample size required for castdung. For example, the minimum

sample size in Figure 4.3(b) is 46. When practdisncan afford to sample more grid
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points, we may increase the sample size by regacgjnwith a smaller “row step”r’
(1<r” <r,) and ¢, with a smaller “column stept (1<c <c,) such that anyr’ xc
sub-grid contains at least one sampled grid p&iot.example,r’ =c =4 leads to 108

sampled grid points in Figure 4.3(b) for the shifsampling strategy.
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Figure 4.4. Success Rate of Design vs. Sample Size

We performed a simulation study to evaluate howstiraple size affects the success
rate of the design. Here, we specifigd=6, « =3 and different values fow”. For
each scenario ofu,0?,k), we sampled grid points based on both the everplgagn
strategy and the shifted sampling strategy, angelifferent values ofr’,c ) to reach

the corresponding sample sizes. The results arenauized in Figure 4.4, in which
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Figure 4.4(a) shows the relationship between theress rate of the design and the
sample size foro® =0.2 and Figure 4.4(b) foro® =1. From either Figure 4.4(a) or
Figure 4.4(b), we notice the success rate of thegdeincreases as the sample size
increases givenu, o® and x, and the success rate of the design for the dhifte
sampling strategy is much higher than that forethen sampling strategy givepy, o?,

k and the sample size. Comparing Figure 4.4(a) ¢urEi 4.4(b), we may notice the

success rate of the design increasewasincreases givery/, x and the sample size.

4.3. APPLICATION TO PEST DENSITY ASSESSMENT
4.3.1. Proposed Methodology

Here we consider an application to assess orchafrdsuit-bearing trees for a
potential pest problem. Our goal is to identify ihéested regions within orchards that
require treatment such as spraying pesticides Iternatively, the release of natural
enemies. Trees within orchards are frequently orgahin a grid of rows and columns.
Treating an orchard as a spatial grid, we firsetaksample of trees (grid points) from the
orchard based on the sampling strategy discuss&agtion 4.2.2.4, and count pests of
each sampled tree. Applying our proposed heurgitonization algorithm to this spatial
grid, we obtain the heuristic optimal co-clusterofghe orchard. We then further analyze

each co-cluster, as follows, to determine whetleatient is required or not.
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For each co-cluster of the heuristic optimal costdung, we use the model in (4.1)
to predict its conditional mea® =expu+s) (i =1,2,-- ,nm) using the Best Linear
Predictor (BLP)

8 =BLP(8)

n
expu+o’ 12)(expf? y 1Dy, + exp@+ @ W+ exp(+o’ [2)
_ =

= 5 5 5 . (4.5
expu+ I 12)Ik+ Bn expi+o” [2)(exp(” ) 1)
The Mean Square Error (MSE) cﬁ; is
2 2 2
MSE@ )= exp(Zu+o”)(expg” ) Dexp+ 8" /24 + 1) (4.6)

expu+ I? 12)Ik+ ¥n expu+o’ 2)(exmt® 3 1

Proof of (4.5) and (4.6):
It is trivial to show that
E(6)=E(expu+s)) = expu+o® /2.
Var (8)=Var (exp+s5)) = exp(+0” )(expg® ¥ 1.
For j=1,2,--n,we have
E(y,i)) =E{E(vjpIs)} =E(expu+s ) = exppu+a? /2.
Cov(expl+5 )y, )
=E{Cov(exp(,u+§),yj(i) |§)}+COV{E(expg+§ )5) E(v,0 15)}

=0+Cov(exp+s ), expfi+s )
=exp(2u+0o?)(expb? » 1).
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Thus
E(y;) =exp+0o® /2)1,,
Cov(exp(u+s)y,) = exp(+0’ )(exng® ¥ UL, (4.7)
where ¥, = (Yyg)s Yoy Yo o)) » @nd i\ is the n, -tuple column vector of all 1’s.
For j,j'=12;--n and j#j',we have
Var (ym)) {Var (ym) |3)} +Var{E(yj(i) |5)}

=E( exp(2+ € W+ exp(+s )¥Var( expts ))
= exp(2+ @ W+ exp(+o’ /D) exp2o® )@w?)-1).

COV(ym) Yy (.)) {COV(me Yi |5)}+C°V{E(yj<i> |3) ’E(yj'm |5)}
®Cov( exp(+s ).exptrs ))
expf2+o’® )(exp{ -) 1).

Thus

Var (y,) = (exp(2u+ & ) Ik + expft+o® 120, + exp@+o’® )expC¢ -) O,

and Var™ §. )= 1
' exp(2u+ D?) Ik + explt+o? 12) 48
| exp+o’ 12)(expg” ) 1) “o
" expu+ B2 12)Ik+ B expl+o? [2)exa 1)” '

where I, is the identity matrix of sizen and J, is the n-by-n matrix with all

1's.

86



Hence, from (4.7) and (4.8), we have

g =E()+Cov(8.y,) Ver*(y,) [y, ~E(7)))
=E(expl+s )+Cov( expl+s )y,)Var(y,)0y, -E ¥, )

=expl+o° [ 2) exp(g+o° )(exg(” ) I, ljexp(2/1+ D*)Ik+ expli+o* 12

|- exp+a® /2)(expb’ ;- 1) ]
" oexp+ % 12)/k+1+n expu+o’ 12)(expg’ ¥ 1"

[ﬂyi —expi+0’ 121, )

n
exp+0o® [2)(expb® » Dy, *+ exp(@+ @ W+ exp(+o® [2)
=1
expu+ I? 12) Ik + Bn expu+o’ [2)(exmt> ¥ 1)

MSE(§) =Var (§-4)

=Var (6)~Cov(8 y,)Var™(y; ) [Cov (6 ¥;)
= exp(z+0” )exp® ) B expro® e -) O)

1
Dexp(2/1+ D) Ik + expli+o® 12)
|- expu+o’ 12)(exp6’ ) 1) 3
" oexp+ P 12)Ik+ Bn expi+o’ 12)(expt® ) 1)"

Oexp@+o® )expt -) @,

__exp(u+o®)(expb’ )y D(expi+ 8° 2+ 1)
exp+ 37 12) Ik + B n expu+o’/2)(expo’ ) 1)

With (u,0% k) replaced with the MLEs(i,6%,k) in (4.5) and (4.6), the
empirical Best Linear Predictor (eBLP) @ is
§ =eBLP@)

n
exp(r+6° 12)(expf® » Dy, + exp@+ @ M+ exp(+d’ /2)
j=1
exp(i+ B° 12)Ik+ n expli+d* 12)(exg@” 3 1)

(4.9
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and the estimated MSE o is

I\W—S\E(é): eXp(ZU+ )(expé-2 )_ 1)(9)(9'-(1"' 32 /2)/?+ 1) (4 10)
Voexp(@+ 37 12)Ik+ B n exp+d? 2)(ex@’ Y 1 '

Define U, =(§| —Q)/JI\WS\E(Q) and let U, be the 100(1-a )" conditional
percentile of U, given S. Then al1l00(1-a )% lower conditional prediction bound of
6 given S is

L, = max( 04 -U, ./ MSE@ )) (4.11)

For a pre-specified threshold,, the decision of “Treat” is made it, , >4, ; otherwise

the decision of “Do Not Treat” is made. The valdield, , in (4.11) can be approximated

from the following parametric bootstrap procedure:

1) Generate anr xc spatial grid based on the heuristic optimal cet@ng, with
insect counts from trees in the co-clusters havimgependent distributions of
Negtive Binomial (é,/?) (i=1,2,-- ,nm).

2) Fit the spatial GLMM based on the sampled treetlona to estimate(y,o?,x) as

(7,67 ,K). With (@1,6%,k) replaced with (i7',6°,K) in (4.9) and (4.10),

calculate § =eBLP@) and MSE (@), and thenU’ = 6'* 8 / JMSE @):.

3) Repeat Step 1-2 a number of times, fytimes, to obtainy®, U@ ... U(®),

and approximatel, , by the 100(1-a )" percentile of U@ U@ ... U;®).
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When the number of co-clusters of the heuristidnagit co-clustering is relatively
large, we may adjust the significance level to form the simultaneous lower
conditional prediction bounds of the conditionalame for co-clusters, such as by the

method of Bonferroni correction or Sidak correct{@iejnik et al. 1997).

4.3.2. Coverage Probability
In Section 4.3.1, for each co-cluster of the heirigptimal co-clustering, we may

also use the model in (4.1) to predict the co-elusffect 5 (i =1,2,-- ,nm) using the

Best Linear Predictor (BLP)
§ =BLP(s)
n
JZ(Z Yioy =N exp(/,1+02 /2)j
j=1

= . . — (4.12
expu+ I 12)Ik+ Bn expi+o” [2)(exp(” } 1)
The Mean Square Error (MSE) &f is
4 2
MSE® )= 0? - o exp+o 12) — (413)
expu+I° 12)Ik+ Bn expl+o° /2)(expl” 3 1
Proof of (4.12) and (4.13):

For j=1,2,--,n, we have

Cov(a ,yj(i))z E{Cov(s Vi |s)}+Cov{E(s Is) ,E(ym) |$)}

= ®Cov(s .exp(+s ))
=og® exp(+o® [2).
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Thus
Cov(s.y,) =0’ expu+o?® [ 2)T, , (4.14)
where ¥, = (Yyg)s Yag) Yo o)) » @nd i\ is the n, -tuple column vector of all 1’s.
Hence, from (4.8) and (4.14), we have

§ =E(s)+Cov(s.y,)War(y,) Iy, - E(¥,))

=~ 1
=0+0° expu+o® 1201 3
Pl M exp(2u+ °) Ik + expft+o® 12)

| expu+a® 12)(expg’ ;- 1) 3
Y oexp+ P 12)Ik+ Bn expi+o’ 12)(expt’ ) 1)"

[@yi — exp +0? IZfI“)
n
JZ[Z Yio) ™N eXIO(U+02 /2)j
_ =1
expu+ I? 12)Ik+ ¥n expu+o’ 12)(exmt’ ¥ 1)

MSE(S) =Var (5 =)
=Var (5)-Cov(s y;)Var™(y,) oV (s ;)

; 1
= 2 _ 42 2 / ] D
or-o” explro 12), exp(2u+ ° ) Ik + expfi+ o’ 12)
| - exp+a® /2)(expb’ > 1) 3
“oexp+ PP 12)Ik+ Bn ep(u+o’l2)(expe’ )1 "

&2 exp(+o® |2},
_ 2 no'expu+o’ /2)
expu+ I? 12) Ik + Bn expu+o® [2)(expt> 3 1)
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With (u,0%,k) replaced with the MLEs(i7,6°,k) in (4.12) and (4.13), the

empirical Best Linear Predictor (eBLP) of is

§ =eBLP(s )
n
52(2 Yo~ exp(i+o? /2)}
= = (4.1F
exp(@+ B° 12)Ik+ Bn expi+d* 12)(ex@® § 1) '
and the estimated MSE &§ is
~4 ~ A2

MSE( )= 6% - o exp+o” /2) (4.16)

exp(@+ J° 12)Ik+ ¥n expi+d° 2)(ex@® 3 1
Define V, =(§—§)/\II\TS\E(§) and let V., be the 100(1-a )" conditional

—

percentile of V, given S. Then a 100(1-a )% two-sided conditional prediction

interval of s given S is

(é _Vi,alz\ll\WS\E(s ), é _Vi,1—a/2\/ MgEG )) (4.17)

Intuitively, we may predict the conditional meath =exp(u+s ) using é, = exp([1+§ ).

And a 100(1-a )% two-sided conditional prediction interval @@ given S can be

constructed to be

0§V, VISES )| expir+§ Vi, MSE( ). (418)

The value ofV,,, andV, ., in (4.17) and (4.18) can be approximated from the

PI°, = (exp

following parametric bootstrap procedure:
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1) Generate anr xc spatial grid based on the heuristic optimal cet@ing, with
insect counts from trees in the co-clusters havimgependent distributions of
Negtive Binomial (exp(ir+§ )& ) (i =1,2;-- ,nm).

2) Fit the spatial GLMM based on the sampled treetlona to estimate(y,o?,x) as
(7,67 ,K). With (i1,6°,k) replaced with (7,6 ,K) in (4.15) and (4.16),
calculate § =eBLP(s) and MSE &), and thenV, :(§ —é)/\/I\TS\E E);-

3) Repeat Step 1-2 a number of times, daytimes, to obtain (@ V'@ ... V),
and approximateV,,, and V,,, by the 100(-a /2f" and 100(@ /2}"
percentile of Y@ V'@ ... V(8 ) respectively.

From Section 4.3.1, 400(1-a )% two-sided conditional prediction interval @

given S can be constructed to be

PIf, = (0 ~U,,\MSE@), §-U,,, MSEG )) - (4.19)
To compare the coverage probability of (4.18) tattlof (4.19), we performed a
simulation study as follows:
1) Specify a design for the heuristic optimal co-austg and set of model parameters.

Generate the true co-cluster effedss (i=1,2,-- M, where M is the number of

co-clusters of the heuristic optimal co-clusteringhd record the true conditional

means of co-clusterg) ’s.
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2) Generate a spatial grid based on the heuristiongptico-clustering, with insect
counts from trees in the co-clusters having inddpah distributions of
Negtive Binomial (8,«) (i =1,2,-- M).

3) Calculate both PI°, and PI°, for each co-cluster, and check whether the
corresponding true conditional mean is capturegiodr That is, we check whethed
fallsin PI’, and/or PI?,.

4) Repeat Step 2-3 a number of times, and the coveragability of Plf’a and PI?,
for each co-cluster may be measured as the propasfitimes thatP1’, and PI,

capture the corresponding true conditional me&anrespectively.

Table 4.2. Coverage Probability for =1

g 2407 | 254 | 2646 | 2439 | 725 46 109 266 400

Plfa 90.9% | 92.5%| 91.9% | 91.9% | 93.1% | 95.6% | 94.1% | 92.0% | 91.9%

Pl°, | 35.9%| 39.9% | 36.3% | 35.1% | 42.7% | 36.8% | 37.4% | 48.9% | 44.6%

Table 4.3. Coverage Probability for =5

8 2407 | 254 | 2646 | 2439 | 725 46 109 266 400

Phi, 96.1% | 93.9% | 94.6% | 95.0% | 93.1% | 94.2% | 93.1% | 95.0% | 92.8%

P>, | 17.5%| 23.8% | 17.1%| 17.5% | 20.5% | 16.8% | 18.9% | 70.3% | 23.6%
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Here, we considered a desigid0,17,13k (13,15,1: for the heuristic optimal
co-clustering. We specifieqz=6, ¢°=2 and different values fox. @ =0.10 was
used for the conditional prediction interval, af=1000 resampling times were taken
for the parametric bootstrap procedure. Table #@wvs the coverage probabilities of

PI’

ia

and PI°, for k=1, and Table 4.3 forx =5. We notice that the coverage
probabilities of PI’, are satisfactorily close to nominal that is 90%gveas most of the
coverage probabilities oPI’, are pretty small. The histograms for the width I%Iff’a

and PI?°, are also shown in Figure 4.5 and Figure 4.6, framich we notice there is a

very large variation for the width oPI°,. Overall, PI/

ia

performs better tharPI?, .

4.3.3. Simulation Sudy
To evaluate the proposed pest assessment procedtieed in Section 4.3.1, we

performed a simulation study as follows:

1) Simulate count data for an orchard based on a fgmaesign and set of model
parameters, and record the conditional means efdouclustersg’s (i =1,2,-- ,M,),
where M, is the number of true co-clusters.

2) Take a sample from the orchard based on the prdpem@pling strategy. Apply the
heuristic optimization algorithm to the orchardsearch for the optimal co-clustering,

and calculate 8, and I\WS\E(éj) for each co-cluster of the heuristic optimal
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3)

4)

5)

co-clustering ( =1,2,-- ,M ), where M is the number of co-clusters of the heuristic
optimal co-clustering that may be different froM, .

By comparing 8’s (i =1,2,-- ,M,) with a pre-specified threshold,, the true status
of trees within thei" true co-cluster is set to be “Treat” & >6., and “Do Not
Treat” otherwise. By comparingd.; ,'s (j =1,2,-- M) with §,, the decision status
of trees within the | co-cluster of the heuristic optimal co-clusterisgset to be
“Treat” if L, ,>6,, and “Do Not Treat” otherwise.

Investigate each tree of the orchard for consistedoetween its true status and
decision status, and assign it into the correspmndombination of categories in a
confusion matrix shown in Table 4.4. Count the namtf trees ¢,,,d,,,d,,,d ) in
the confusion matrix.

Repeat Step 1-4 a number of times, and updateotifasion matrix by accumulating

the values of ¢,,,d,,,d,.,d ).

Table 4.4. Confusion Matrix

Decision
Do Not Treat Treat
Do Not Treat d, d,
Truth
Treat d,, d,,
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The probabilities of making correct decision may a&the measures to evaluate the
pest assessment procedure:

B = P(Correct decision|Truth is "Do Not Tréatd,,/(d,,+d ) ;
P, = P(Correct decision|Truth is "Treat)d,, d{+d,, ;
P, = P(Correct decision¥ d;,+d,, )/d,+d +d,+d,,.

The same simulation set-up as in Section 4.2.2.4 uwsed here. Based on the
analyses discussed in Section 4.4, a critical evanthreshold was set afl, =500. For
this study, a =0.05 was considered for the prediction bound, ami=1000
resampling times were taken for the parametric sicap procedure. The results are
summarized in Figure 4.7, from which we noticeddllFy, B, and P, increase as the
sample size increases givem, o° and x, and increase ag’ increases givenu,

k and the sample size. Recall that previously wel tilse success rate of the design to
evaluate the performance of heuristic optimizatiatgorithm, which is a very
conservative measure. For example, a co-clustevogd be counted as a failure even if
only one row or column is mistakenly assigned tooecluster that this row or column
does not belong to. Figure 4.7 shows that the dvprabability of making correct
decision, P,, is relatively high, even for a small sample s@el small o° such as
0®=0.2, which further demonstrates the practical utilitf§ our proposed pest

assessment procedu re.
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Figure 4.7. Probabilities of Correct Decision

4.4 EXAMPLE

Persea mite@ligonychus perseae) is an avocado leaf feeding pest that is native to
Mexico and is a serious invasive pest in Califorf&A), Costa Rica, Israel, and Spain
(Hoddle 2005). When pest populations build to sidfitly high densities leaves begin to
drop from trees. To avoid premature leaf droppiome type of control procedure may
be warranted (e.g., pesticide applications, orasde of commercially available natural
enemies, like predatory mites that eat the pest).

Mite counts were determined during the Summer 6B2@om sampled trees in three

commercial avocado orchards located in Califortd®A. Trees in the orchards were
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planted on relatively flat terrain according to adgsystem consisting of rows and
columns. Sampled trees from orchard A were arraiogea 5x12 grid, from orchard B
on a 5x6 grid, and from orchard C on &x6 grid. Eight leaves were collected from
each tree, and summing up the number of mites geova pest count for each sampled
tree.

Applying the heuristic optimization algorithm tochiard A, we obtained the heuristic
optimal co-clustering as shown in Figure 4.8(a)wimch four co-clusters are separated
by the solid lines. Here the minimum co-clusteesias set to ba, xc, =2x 3. We then
compared the 95% lower conditional prediction boohdhe conditional mean for each

co-cluster to an established threshold §f=500 (see Maoz et al. 2011). Figure 4.8(b)

shows three (shaded) co-clusters that requirenteat

(1192) (0) (2568) (97¢€

20000
H : ‘ l,

(a) Heuristic Optimal Co-clustering ) Best Treatment Decision
Figure 4.8. Pest Assessment for Orchard A (THeevan parentheses next to each

co-cluster is the corresponding lower conditione¢diction bound of the conditional
mean.)
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Applying the same pest assessment procedure taror&) we obtained the heuristic
optimal co-clustering as shown in Figure 4.9(a)wimch four co-clusters are separated
by the solid lines and none of them requires treatmSimilarly, the heuristic optimal
co-clustering for orchard C is shown in Figure B)9(n which four co-clusters are

separated by the solid lines and none of them regjtrieatment.

(12) (0) (285) (285
20000 . 20000
1000 - 1000
500 500

100 - 100
0 . 0

(0) (0) (285) (28t
(a) Orchard B (b) Orchard C
Figure 4.9. Pest Assessment for Orchards B andT@e value in parentheses next to

each co-cluster is the corresponding lower conutioprediction bound of the
conditional mean.)

The analyses shown in Figure 4.8 and Figure 4.9vatet us to anticipate which
regions should be identified as infested if we wierenerge orchards A, B and C and
analyze them as one larger orchard. By combinicgamds A, B and C with orchard A

being on the top, orchard B on the bottom left arahard C on the bottom right, we built
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a synthetic integrated orchard, called orcharchBt tontains 120 trees onl®x 12 grid.
Applying the pest assessment procedure to orchardelobtained the heuristic optimal
co-clustering as shown in Figure 4.10(a), in whigte co-clusters are separated by the
solid lines. The pest treatment decision was thadarthat the two shaded co-clusters
located within orchard A require treatment as shawnFigure 4.10(b), which is
consistent with the results from analyzing orchakd® and C one at a time. Again we

specified the minimum co-cluster size to bgxc, =2x 3, and usedd, =500.

20000
1000
_ ] 500

100

B 0
(a) Heuristic Optimal Co-clustering @@st Treatment Decision

Figure 4.10. Pest Assessment for Orchard D (lategrOrchard)

4.5. DISCUSSION

Our proposed model-based co-clustering method sthaaveignificant utility and

power in searching for the optimal co-clusteringaogpatial grid. Combining the spatial
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co-clustering technique with a statistical inferemeethod, our proposed pest assessment
procedure also showed an excellent performancedentifying the infested regions
within orchards. Only treating the infested regianstead of the whole orchard can
reduce pest management costs and minimize potemiizards to the environment.
Although these methods were developed to analyzedikt data collected from perennial
tree orchards (i.e., avocado orchards), we anteiffat this general approach will have

utility for a wide range of investigations involgrspatial information.

3 Spatial Grid
1
5 4
6 7 5
5
3 1 2 3 4 8
6 1
(a) Spatial Grid Representation Ti®e Representation

Figure 4.11. *“Tree” Co-cluster Structure

In this chapter, we considered the spatial GLMMhgbrrelation within co-clusters,

and all the co-clusters are independent to eacér.oftithough this assumption makes
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much practical sense with our application, we fuither consider a spatial GLMM with
both correlation within co-clusters and correlatimiween co-clusters as future work.
Furthermore, more flexible co-cluster structurel e investigated for the spatial
grid in future work, such as the “tree” co-clusstructure. An example of the “tree”
co-cluster structure is illustrated in Figure 4.l which the spatial grid contains eight
co-clusters that can reproduce the original spgtial through a sequence of leaf-to-root
combinations as shown in Figure 4.11(b). The “Tree:cluster structure has been
applied to the voting data in Hartigan (1972), whis considered the first co-clustering

paper.
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Chapter 5

Discussion

Clustering is rapidly becoming a powerful data mghtechnique. In Chapter 2 and 3,
our proposed hierarchical clustering and co-clusgeprocedure showed a significant
utility and power in handling a data matrix of seaplots. In Chapter 4, we developed a
model-based co-clustering method for spatial d&pecifically, the proposed pest
assessment procedure that combines the spatidlsteing with a statistical inference
makes assessment of pest density more accurate.

Furthermore, extensive literature has shown a tyaokclustering methods and their
applications in many domains. Depending on how degaorganized and how a cluster is
defined, more clustering techniques may be potintiaveloped in the future to satisfy

various needs in applications.

5.1. VECTOR-BASED CLUSTERING
In Chapter 2 and 3, the difference between a gacatter plots is directly measured
by a quality index between the pair of correspogduvariate distributions. Another

possibility is to characterize scatter plots indually such that a scatter plot can be
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represented by a vector of characteristics. Therdibsimilarity among scatter plots can
be measured by comparing the corresponding vectaisaracteristics.

Consider a scatter plot that is regarded as thepleafrom a bivariate distribution
followed by (X,Y)". Usually, it is insufficient to use a single chamistic such as the
Pearson correlation coefficient, which only measuhe strength and direction of a linear
relationship betweenX and Y. Functional models offer an attractive tool that i
flexible enough to capture a wide variety of narelr association. The simplest function
model is polynomial regression model and we ustoritillustration purpose for the
discussion below.

For each scatter plot, a low-order polynomial maday be fit:

Y =Byt B+ BX +BX+E,
where y, is the value ofY for the i" observation,x is the value of X for the i"

iid
observation, andg, is the error term withg, ~N(0,0%) (i =1,2,-- ,n, where n is the

number of observations).

To achieve the optimal fitting, we sequentially ttethree null hypotheses
H,:8;,=0, H,:6,=0,and Hy: 8,=0. That is, we test each null hypothesis only if
we do not reject the preceding one. All the possitdses are illustrated in Figure 5.1,
each of which would produce an estimate of theareg® = (B,.B8.,B,.8;) that act as

characteristics of the relationship betwe&n and Y . For example, in the case shown in
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Figure 5.1(c), we do not rejedt,,:3,=0 but reject H,,:5,=0. Then we fit a
second-order polynomial regression model to es@ntla¢ parameters3,, 5 and f,
by /3"0, /3’1 and /3’2, respectively. Therefore, the vecta@ﬁ’o, Bl, /3"2,0)( can be used to

characterize this scatter plot.

V|
X »
B, 0 BB # 0 By B, 0
BBy B % 0
B=B,=B,=0  B=p=0 B,=0 Ao PP P
@ (b) © )

Figure 5.1. Polynomial Regression Model

If polynomial regression models do not fit the datall, a nonparametric approach
may be used. For example, we divide the plottirggore (such as the space covering all
the possible values oX and Y, i.e., the space with borders at positions Xf,, ,

X Y., and Y as shown in Figure 5.2) into a number of subpdoid count the

max ?

number of observations within each subplot. An gxamvith 4 subplotsQ,, Q,, Q,

and Q, is presented in Figure 5.2, in which the centethefplotting region is used for
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dividing the plotting region along both axes. Byndgng the number of observations

within the subplotQ by d (i =1,2,3,4), the relationship betweerX and Y is then

characterized by the vectal =(d,,d,,d,,d,) .

Y max Ql i QZ
.o. * o’i .° ¢
Y min Q3 i Q4
X min X may

Figure 5.2. A Nonparametric Approach

To cluster the data matrix of scatter plots, weyndafine a one-dimensional or
multi-dimensional objective function based on vestof characteristics, eithef or d,
to measure the quality of a specific clustering] #me optimal clustering would be the
one that optimizes this objective function. Theteebdased clustering method will be
further investigated in future work. A straightfawl approach could be to define a
one-dimensional objective function that can be ipocated into the current clustering

methods.
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5.2. EXTENSION TO MULTI-DIMENSIONAL CLUSTERING

To obtain a greater understanding of gene expnessegulation, host-microbe
interactions, and to track and predict infectioisedse outbreakd,will be necessary to
identify many of the associations among differeatiables. Consider the data that are
arranged in a multi-way contingency table with eaeh being a real number, for which
we would like to simultaneously cluster all the éimsions. Some recent literature reflects
efforts to extend co-clustering methods to multrensional contexts. However,
multi-dimensional clustering has not been well sdd

Information-theoretic clustering is a statisticalbased clustering technique with
apparent flexibility to be applied in complicateses such as multi-dimensional contexts.
To extend the information-theoretic co-clusteriongtite general multi-dimensional case,
we have to define mutual information for cases witbre than two random variables.
Consider three variableX, Y and Z. Several generalizations of two-way mutual
information have been proposed, which are listeidlésns:

1) Total Correlation (Watanabe 1960):

L(X:Y:Z ' p(X,Y,2)
(XViZ)= 2,22, Py 2Nog o

2) Mutual Information (Yeung 1991):

LY Z) = HOGY) = (XY 1 Z) = 1 (XY) = E, 1 (X;Y) ] Z]

-YYY {p(X’ . 2)log PP 2)P(y,2) }

P(X) p(Y) P(2) p(X, Y, 2)
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3) Interaction Information (McGill 1954):

1 (X;Y;Z) = 1(X;Y [ Z)= 1 (X;Y) = E,[1 (X;Y) | Z]- 1 (X:Y)

_ V.2) p(x)p(y)p(z)p(x,y,z)}
2@2%“ V2o V)P, 2)p(y.2)

Notice that I,(X;Y;Z) is identical to I,,(X;Y;Z) except for a change in sign.
Therefore, we only focus on multi-dimensional cdustg using eitherl.(X;Y;Z) or
I (X;Y;Z) in the following discussion.

It is trivial to prove 1.(X;Y;Z)=0. By using |, the optimal three-dimensional
clustering is the one that leads to the largestuaiuinformation among the cluster
random variables,lc()z;\?;ﬁ), or equivalently, one that minimizes the differer{toss)
between the mutual information among the origirmldom variables and the mutual
information among the cluster random variablés(X;Y;Z) - IC(>A(;\?; 2) .

I, (X;Y;Z) may be negative, whose interpretation is thatrtheual information
between any two of the random variabl®s, Y and Z increases when the other
random variable is given, that is, any one of theadom variablesX, Y and Z
affects the dependency between the other two randanables. By usingl,,, the
optimal three-dimensional clustering is the ond thanimizes the difference (absolute
value) between the mutual information among theioal random variables and the

mutual information among the cluster random vagapl|l,, (X;Y;Z)-1,, ()2;\?; 2) :

110



Our preliminary examples have shown that neither nor |,, performs
consistently better than the other one. In somengies we have seen,, is able to
achieve the real optimal clustering wherelas has not ever been able to do that yet. An
example for which bothl, and I,, fail to achieve the real optimal clustering is
illustrated below. Figure 5.3 shows a joint proligbdistribution p(x,y,z) among X,

Y and Z each taking three levels of values, whexXe, Y and Z are pairwise
independent but not mutually independent. Suppasectusters are to be obtained for
each dimension. By observing the data pattern,réfaé optimal clustering should be
x={{0¢{ % %}, vy={vi{v. ¥} and 2={{z.{ z, 4 } . However, by using either
lc or I,, the obtained optimal clustering i&={{x}.{ %, %}, ¥={{y, V3.{ %}

and z={{z}.{ 2, 3 }.

0.06/ 0.03/ 0.03
Zi 0.06 / 0.06 / 0.06
0.12 /0.09 / 0.09

0.01 /0.015/ 0.015
L 0.03 /0.015/0.015
0.04 /0.03 /0.03

0.01 /0.015/ 0.015 X
0.03 /0.015/0.015 x
0.04 /0.03 /0.03 AN

X X2 X3

Figure 5.3. A Three-dimensional Example
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H(Y|X,Z)

IY(Z XN ) Iy X(WZ5)

Figure 5.4. Information-theoretic Measures

Since the performance of existing definitions ofitirway mutual information is not
consistent, we are led to seek other informationasues to carry out
information-theoretic multi-dimensional clusterifgnalogous to Venn Diagrams in set
theory, information-theoretic measures can be gé&doraly represented for the
three-dimensional case as shown in Figure 5.4 (yYel®91), which may be used to
motivate alternative information-theoretic measunesluding for example, the following

alternative measure of mutual information:

I, OGY;Z)=10GY | Z)HTOGZIY)+HIYZ X))+, (XY s2Z2)

[p(x Yy, 2)]?
= |
X,Zy;z{p tyzlg p(X, y)p(x,Z)p(y,Z)}

It is easy to provel,(X;Y;Z)=0. By adopting the associated criterion for definthg

optimal clustering, a three-dimensional clustemmgthod can be studied in future work.
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