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ABSTRACT OF THE DISSERTATION 
 
 

Clustering: Algorithm, Optimization and Inference 
 

by 
 

Zhanpan Zhang 
 

Doctor of Philosophy, Graduate Program in Applied Statistics 
University of California, Riverside, December 2011 

Dr. Xinping Cui, Co-Chairperson 
Dr. Daniel R. Jeske, Co-Chairperson 

 

Clustering is rapidly becoming a powerful data mining technique, and has been 

broadly applied to many domains. Usually data are arranged in a matrix with rows and 

columns, and each cell of this matrix is a real number. This dissertation aims at 

developing clustering algorithms with statistical inference incorporated in the following 

two scenarios. 

First, when each cell of the data matrix is not represented by a single numerical value 

and instead contains a scatter plot, the existing clustering methods are not applicable any 

more. In this dissertation, we develop both hierarchical clustering and co-clustering 

procedure to handle a data matrix of scatter plots. To more accurately reflect the nature of 

data, we introduce a dissimilarity statistic based on “data depth” to measure the 



 vii  

discrepancy between two bivariate distributions without oversimplifying the nature of the 

underlying pattern. We also propose novel painting metrics and construct heat maps to 

allow visualization of the clusters. We demonstrate the utility and power of our proposed 

clustering methods through simulation studies and application to a 

microbe-host-interaction study. 

Second, when spatial information is embedded in the data matrix, the order of rows 

and columns can not be changed. Model-based spatial co-clustering has not been well 

studied. In this dissertation, we develop a co-clustering method using a Generalized 

Linear Mixed Model (GLMM) for spatial data. To avoid the high computational intensity 

associated with global optimization, we propose a heuristic optimization algorithm to 

search for a near optimal co-clustering. A sampling strategy is introduced to capture as 

much of the spatial information that is available from the sparse data as possible. For an 

application pertinent to Integrated Pest Management (IPM), we combine the spatial 

co-clustering technique with a statistical inference method to make assessment of pest 

density more accurate. We demonstrate the utility and power of our proposed pest 

assessment procedure through simulation studies and apply the procedure to a study of 

the persea mite (Oligonychus perseae), a pest of avocado trees. 
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Chapter 1 

Introduction 

 

Clustering is rapidly becoming a powerful data mining technique, and has been 

broadly applied to many domains such as bioinformatics and text mining. Usually data 

are arranged in a matrix with rows and columns, and each cell of this matrix is a real 

number. A large number of clustering methods have been studied in the literature, which 

include one-dimensional clustering, co-clustering, and multi-dimensional clustering (for 

multi-dimensional data). In addition to summarize the clustering methods, we also briefly 

review the methods of data visualization for the clustering results in this chapter. 

 

1.1. ONE-DIMENSIONAL CLUSTERING 

 One-dimensional clustering is to divide rows, or columns, into a number of groups. 

For simplicity, only the row clustering is discussed in this section. Here we review two 

commonly used one-dimensional clustering methods: hierarchical clustering and 

partitioning clustering. One may see Andreopoulos et al. (2009) and Jiang et al. (2004) 

for a survey. 

Hierarchical clustering builds a hierarchy of clusters based on the dissimilarity 

(distance) measures among rows, such as Euclidean distance and Pearson’s correlation 
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coefficient, whose result can be graphically presented in a tree structure, called 

dendrogram. The clustering algorithm initially regards each row as an individual cluster, 

and at each step, merges the closest pair of clusters until all the rows are merged into one 

cluster. The distance between two clusters may be determined by different criteria. Single 

linkage defines the distance between two clusters to be the minimum distance between 

any pair of rows, one row from a cluster and the other row from the other cluster. 

Complete linkage defines the distance between two clusters to be the maximum distance 

between any pair of rows, one row from a cluster and the other row from the other cluster. 

Average linkage defines the distance between two clusters to be the average distance 

between all pairs of rows, one row from a cluster and the other row from the other cluster. 

Some applications of hierarchical clustering can be found in Eisen et al. (1998), Kaplan et 

al. (2004), Baehrecke et al. (2004), and Loewenstein et al. (2008). 

Partitioning clustering, such as K -means (MacQueen 1967), divides rows into a 

pre-specified number of clusters, say K  clusters, in which each row belongs to the 

cluster with the nearest mean. First K  initial cluster mean vectors (centroids) are 

selected (Huang 1998), which represent K  clusters. Each row is assigned to the closest 

cluster whose centroid has the smallest distance from this row. For each cluster, the 

corresponding centroid is updated with the mean of all rows that belong to this cluster. 

Then each row is reassigned to a new cluster based on the updated centroids, and the 
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above procedure repeats. The iteration continues until the number of rows changing 

clusters is below a user-specified threshold. More partitioning clustering methods and 

applications can be found in Hochbaum & Shmoys (1985), Kaufman & Rousseeuw 

(1987), Gasch & Eisen (2002), and Chopra et al. (2008). 

 

1.2. CO-CLUSTERING 

Co-clustering, also called biclustering, bivariate clustering, or two-mode clustering, 

has been an active area of research in recent years, resulting in the development of a wide 

variety of approaches and algorithms. Different from the one-dimensional clustering 

methods that seek to identify similar rows or columns independently, co-clustering 

simultaneously clusters rows and columns to identify “blocks” (or “co-clusters”) of rows 

and columns that show highly inter-related coherence. For example, in gene expression 

analysis, co-clustering can be used to solve the dual problem of identifying a set of genes 

and conditions simultaneously involved in a metabolic process, a problem that traditional 

one-dimensional clustering methods cannot handle. Moreover, co-clustering is desirable 

over traditional one-dimensional clustering as it is more informative and easily 

interpretable while preserving most of the information contained in the original data; and 

it allows dimensionality reduction along both axes simultaneously and hence leads to a 

much more compact representation for subsequent analysis. 
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Figure 1.1.  Co-cluster Type: (a) constant; (b) constant rows; (c) constant columns; (d) 
additive model; (e) multiplicative model; (f) common status rows; (g) common order 
rows; (h) common status; (i) simultaneous status change along rows and columns. 

 

 

                   (a)              (b)               (c) 

 

(d)               (e)               (f)              (g) 

Figure 1.2.  Co-cluster Structure: (a) one co-cluster; (b) exclusive clustered rows and 
columns; (c) checkerboard structure; (d) exclusive clustered rows; (e) exclusive clustered 
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The most common framework for co-clustering methods is to first define a 

meaningful objective function to evaluate the quality of co-clusters, and then develop an 

algorithm to find the co-clusters that optimizes the objective function. Figure 1.1 

summarizes a number of co-cluster types that have been defined in the literature, and 

Figure 1.2 shows the possible co-cluster structures that may exist in the data matrix. 

Hartigan (1972), also known as block clustering, has been considered as one of the 

earliest co-clustering papers, which used a version of squared Euclidean distance as the 

objective function minimized by a “divide and conquer” direct clustering algorithm. To 

avoid the situation that each cell of the data matrix forms a co-cluster, the number of 

co-clusters is usually pre-specified. The algorithm splits the original data matrix into a 

number of non-overlapping co-clusters as shown in Figure 1.2(f), each of which follows 

the co-cluster type of Figure 1.1(a). 

Knowing that overlapping clusters are very natural in biology, Cheng & Church 

(2000) used a model-based squared Euclidean distance as the objective function 

minimized by a greedy iterative search. The resulting co-clusters can be overlapping as 

shown in Figure 1.2(g), and the type of co-clusters can be any one of Figures 1.1(b)-(d). 

However, the iterative insertion and deletion based algorithm causes random 

perturbations to the data that may mask previously discovered co-clusters. Also, the 

algorithm identifies co-clusters one at a time sequentially rather than all at once. 
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Califano et al. (2000) introduced a pattern discovery algorithm to discover 

statistically significant patterns in which the values of each gene (row) are consistent 

across a subset of columns, as shown in Figure 1.1(b). An optimal set of patterns is then 

chosen among the statistically significant ones using a greedy set covering algorithm. 

Getz et al. (2000) proposed a coupled two-way clustering (CTWC) analysis based on 

the iterative row and column clustering combination. Any reasonable one-dimensional 

clustering method can be used within the framework of CTWC. The authors used a 

hierarchical clustering algorithm to generate stable clusters of rows and columns at each 

iteration, and consequently discover a set of co-clusters at a time. Due to the 

normalization step, the type of co-clusters can be any one of Figures 1.1(a)-(e). 

Lazzeroni & Owen (2000) introduced the plaid model with each cell in the data 

matrix viewed as a sum of terms called layers (corresponding to co-clusters), which 

incorporates additive two-way ANOVA models within co-clusters. The co-cluster type 

may be any one of Figures 1.1(a)-(d). The overlapping co-cluster structure is directly 

modeled in the plaid model approach, and multiple co-clusters can be identified 

sequentially instead of simultaneously. 

Using the similar objective function to that in Cheng & Church (2000), Yang et al. 

(2002) and Yang et al. (2003) introduced a greedy move-based optimization algorithm 

FLOC (FLexible Overlapping biClustering) that can simultaneously discover a set of 
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possibly overlapping co-clusters when dealing with the data with missing values. 

Likewise, the co-cluster structure and the co-cluster types identified by FLOC are same 

as Cheng & Church (2000). 

Ben-Dor et al. (2002) suggested looking for order-preserving submatrices (OPSMs), 

in which the values of all the rows induce the same linear ordering of columns, as shown 

in Figure 1.1(g). This approach focuses on the uniformity of the relative order of columns 

rather than on the uniformity of the actual values, therefore is potentially more robust to 

the stochastic nature of the observed values and to the variation caused by the 

measurement process. 

Busygin et al. (2002) proposed Double Conjugated Clustering (DCC) that 

implements a coupled conjugated node-driven clustering method processing the rows and 

columns of the data matrix and synchronizing the two spaces by means of a projection 

between row-space and column-space. In this framework, Self-Organizing Maps (SOM) 

is recommended, and the angle metric is used as similarity measure. The co-cluster 

structure is shown in Figure 1.2(b). 

Murali & Kasif (2003) introduced a greedy algorithm to find the conserved gene 

expression motifs (xMOTIFs) in gene expression analysis, in which a subset of genes 

(rows) are simultaneously conserved for a subset of samples (columns), as shown in 

Figure 1.1(f). A gene (row) is conserved across a set of samples (columns) if the value of 
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this row for each column is within the same range, denoted by A , B  and C  in Figure 

1.1(f). Although many xMOTIFs may exist, the authors were only interested in the largest 

xMOTIF, the one that contains the maximum number of conserved genes (rows), as 

shown in Figure 1.2(a). 

For the discretized data, Sheng et al. (2003) tackled the co-clustering problem in the 

Bayesian framework by presenting a co-clustering strategy based on a simple frequency 

model for the pattern of a co-cluster and on Gibbs sampling for parameter estimation. To 

enable the detection of multiple co-clusters, the authors mask the rows (columns) that 

belong to the previously discovered co-clusters, and rerun the algorithm on the rest of the 

data. The algorithm discovers one co-cluster at a time, and is iterated until no co-cluster 

can be found for the unmasked part of the data matrix. The co-cluster type is shown in 

Figures 1.1(b)-(c), and the co-cluster structure is shown in Figures 1.2(d)-(e). 

Cho et al. (2004) and Cho & Dhillon (2008) considered two versions of squared 

Euclidean distance that are similar to those used by Hartigan (1972) and Cheng & Church 

(2000). Two fast K -means like co-clustering algorithms were proposed to identify a 

checkerboard co-cluster structure as shown in Figure 1.2(c), and therefore simultaneously 

discover a number of co-clusters as opposed to one co-cluster at a time like Cheng & 

Church (2000). The co-cluster type may be any one of Figures 1.1(a)-(d). 
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Rogers and Kulkarni (2005) extended the mixed-integer linear programming model 

from one-dimension clustering to co-clustering. A genetic algorithm was developed to 

optimize the objective function that is a sum of dissimilarity measures from the family of 

Minkowski metrics. The genetic algorithm enables clustering large-sized data, which is a 

formidable challenge for many conventional algorithms. The co-cluster structure is 

shown in Figure 1.2(b). 

Reiss et al. (2006) reformulated Yang et al. (2003)’s δ -cluster model with a Markov 

Chain model, which enables integration of additional information as well as a prior 

distribution for constraining co-cluster size and redundancy. The authors developed an 

algorithm called cMonkey with the iterative optimization conducted using Markov Chain 

Monte Carlo methods. The procedure constructs one co-cluster at a time, and will stop 

when a given number of co-clusters have been generated, or significant optimization is no 

longer possible. 

Pensa & Boulicaut (2008) and Pensa et al. (2010) considered the same co-cluster 

types and the same checkerboard co-cluster structure as Cho et al. (2004), and also used 

the same objective functions as those in Cho et al. (2004). An iterative constraint-based 

co-clustering algorithm was introduced to exploit user-defined constraints such as the 

case that the selected rows and/or columns must (not) be in the same co-cluster. 
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Another type of objective function used in the literature is the Kullback-Leibler (KL) 

divergence, pioneered by Dhillon et al. (2003), which considered a checkerboard 

co-cluster structure, and proposed an information-theoretic co-clustering method. The 

data matrix of nonnegative values is treated as a joint probability distribution between 

two discrete random variables. With pre-specifying the number of clusters for each 

dimension, the authors aimed at finding the optimal co-clustering that leads to the largest 

mutual information between the clustered random variables, or equivalently, the one that 

minimizes the difference (loss) between the mutual information of the original random 

variables and the mutual information of the clustered random variables. 

Banerjee et al. (2007) extended Dhillon et al. (2003)’s work by introducing a more 

general objective function “Bregman divergence” that includes both squared Euclidean 

distance and KL-divergence as special cases. Multiple structurally different co-clustering 

schemes are allowed that preserve various linear statistics of the original data matrix. The 

authors introduced a minimum Bregman information (MBI) principle that simultaneously 

generalizes the well-known maximum entropy and standard least squares principles to all 

Bregman loss functions, and leads to a matrix approximation that is optimal among all 

generalized additive models in a certain natural parameter space. 

 A connection between data matrices and graph theory has been also established in the 

literature. Dhillon (2001) introduced a bipartite graph model to pose the co-clustering 
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problem as a graph partitioning problem. An undirected bipartite graph is a triple 

( , , )G D W E=  with D  corresponding to the set of rows, W  the set of columns, and 

E  the undirected edges between rows and columns. The association of a row with a 

column cluster is measured by the sum of the edge-weights of this row to all columns in 

the column cluster, and similarly the association of a column with a row cluster can be 

measured. Thus each row cluster is determined by the column clustering, and in turn the 

row clustering determines each column cluster. The author presented a spectral algorithm 

to find the optimal co-clustering that corresponds to a partitioning of the graph such that 

the crossing edges between partitions have minimum weight. 

Tanay et al. (2002) introduced SAMBA (Statistical-Algorithmic Method for Bicluster 

Analysis) that combines graph theoretic and statistical considerations. The data matrix is 

modeled as a bipartite graph with two sets of vertices corresponding to rows and columns, 

and edges representing significant value changes. The authors presented two statistical 

models of the resulting graph, and showed how to assign weights to the vertex pairs of 

the bipartite graph so that heavy sub-graphs correspond to significant co-clusters. The 

co-cluster type is shown in Figures 1.1(h)-(i). 

More co-clustering methods and applications can be found in Kluger et al. (2003), 

Ihmels et al. (2004), Aguilar-Ruiz & Divina (2005), Gao et al. (2005), Kung et al. (2005), 

Long et al. (2005), Madeira & Oliveira (2005), Pensa et al. (2005), Abdullah & Hussain 
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(2006), Lonardi et al. (2006), Deodhar & Ghosh (2007), Divina & Aguilar-Ruiz (2007), 

Yoon et al. (2007), Cai et al. (2008), Kerr et al. (2008), Puolamaki et al. (2008), and 

Rocci & Vichi (2008). Furthermore, Madeira & Oliveira (2004), Mechelen et al. (2004), 

Prelic et al. (2006), Busygin et al. (2008), and Kriegel et al. (2009) provided detailed 

reviews on co-clustering. 

 

1.3. MULTI-DIMENSIONAL CLUSTERING 

When researchers are interested in measurements over more than two dimensions, 

the data can be arranged in a multi-way contingency table with each cell being a real 

number. Some recent literature reflects efforts to generalize co-clustering methods to 

multi-dimensional contexts so that all the dimensions can be clustered simultaneously. 

Bekkerman et al. (2005) extended Dhillon (2003)’s information-theoretic 

co-clustering to multi-dimensional clustering, and established a connection between 

multi-way contingency tables and undirected graphs with pairwise interaction. By 

treating each dimension as a random variable, the objective function to be maximized is 

defined as the sum of the weighted pairwise mutual information between the clustered 

random variables, in which the prior knowledge is incorporated by adjusting the 

corresponding weights. An algorithm was developed to discover the optimal 

multi-dimensional clustering, which interleaves conglomerative (top-down) clustering of 
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some variables and agglomerative (bottom-up) clustering of the other variables, with a 

local optimization correction routine. Taking into account that top-down clustering is 

efficient and bottom-up clustering leads to meaningful results, the authors argued the 

benefit from combining both clustering procedures. 

Chiaravalloti et al. (2006) pointed out that there may not be enough knowledge to 

precisely set the weights in the objective function that is a linear combination of losses in 

the pairwise mutual information. Instead of using a pre-fixed weighting scheme, the 

authors introduced a notion of agreement to represent a sort of optimal “compromise” 

among minimizing all the losses in the pairwise mutual information. A specific data 

structure, called “star-structure”, is considered, in which one dimension is treated as the 

central dimension, and the other dimensions as the auxiliary dimensions that are pairwise 

independent and are all correlated with the central dimension. The authors proposed the 

AD-HOCC (to solve the High-Order Co-Clustering by computing Agreements for 

contrasting Domain objective functions) algorithm to compute the optimal agreement. 

Sun et al. (2006) extended Dhillon (2003)’s information-theoretic co-clustering to the 

three-way contingency table and proposed cube-clustering. By using multi-information, a 

multivariate generalization of the mutual information between two random variables, the 

objective function is defined to be the loss between the multi-information of the original 

random variables and the multi-information of the clustered random variables, therefore 
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minimizing the objective function leads to the optimal cube-clustering. The authors also 

applied cube-clustering to the clickthrough data to improve the web search performance 

in a collaborative manner. 

 

1.4. DATA VISUALIZATION 

 The result obtained from the hierarchical clustering of rows can be displayed in a tree 

structure, called dendrogram, based on which the rows of the original data matrix can be 

reordered. Eisen et al. (1998) introduced a graphical representation method to color the 

reordered data matrix as a heat map, in which large contiguous patches of color represent 

groups of rows that share similar patterns over columns. 

To visualize the result obtained from the partitioning clustering of rows, dimension 

reduction techniques such as principal component analysis (PCA) and multidimensional 

scaling are needed to display the rows in a low dimensional space. 

Pison et al. (1999) developed the CLUSPLOT package to denote rows by a set of 

points in a two-dimensional space, which is composed of the first principal component 

and the second principal component from PCA. Each cluster is then denoted by an ellipse 

that covers all the rows belonging to this cluster. In addition, a segment between any pair 

of ellipse centers can be drawn and its length designates the dissimilarity between the 

corresponding pair of clusters. 
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Rasmussen & Karypis (2004) provided a 3D mountain visualization, which is based 

on multidimensional scaling and produces a colored mountain-like terrain. Each cluster is 

denoted by a peak with the peak height being proportional to the internal cluster 

similarity (for example, the average pairwise similarity between rows that belong to this 

cluster), and the distance between a pair of peaks on the plane representing the relative 

dissimilarity between the corresponding pair of clusters. 

To visualize the co-clustering results, Barkow et al. (2006) developed the BicAT 

package to display the co-clusters obtained from a number of co-clustering methods, 

which provides both heat map and profile visualization. In profile visualization, each row 

within the co-cluster is denoted by a colored line that connects the values corresponding 

to different columns, with columns included in the co-cluster marked with upright bars. 

More data visualization methods can be found in Li (2004), Ultsch & Morchen 

(2005), and Zhou et al. (2008). 

 

1.5. OPEN ISSUES 

Co-clustering has proved successful in various application domains such as 

simultaneous clustering of genes and experimental conditions (or tissue samples) in 

bioinformatics, words and documents in text mining, and image or video features. 

Despite its success in the above domains, especially in analyzing gene expression data, 
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co-clustering has not found its way into medical biology applications until recent work on 

large-scale data sets where it has been demonstrated that it can be a very powerful tool 

for mining medical data (Yoon et al. 2007). 

In system biology, one may be interested in not only biological variables themselves, 

but also the interactions between these biological variables. For example, consider a set 

of row variables and a set of column variables. For each pair of row and column, a 

number of observations may be obtained that simultaneously measure different levels of 

row variable and column variable, which leads to a scatter plot characterizing the 

relationship between them. It is of interest to cluster rows and/or columns to identify 

groups of individual relationships that have similar patterns because large assemblages of 

individual relationships with similar patterns may point toward those that have increased 

importance. However, when each cell of the data matrix is not represented by a single 

numerical value and instead contains a scatter plot, the existing clustering methods are 

not applicable any more. In Chapter 2 and 3, we develop both hierarchical clustering and 

co-clustering procedure to handle a data matrix of scatter plots. To more accurately 

reflect the nature of data, we introduce a dissimilarity statistic based on “data depth” to 

measure the discrepancy between two bivariate distributions without oversimplifying the 

nature of the underlying pattern. We also propose novel painting metrics and construct 

heat maps to allow visualization of the clusters. We demonstrate the utility and power of 
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our proposed clustering methods through simulation studies and application to a 

microbe-host-interaction study. 

Another situation is that spatial information is embedded in the data matrix. In this 

case, the order of rows and columns of a data matrix can not be changed. None of the 

literature has proposed a spatial co-clustering technique that co-clusters data such that 

any co-cluster only contains a set of spatially consecutive rows and columns. 

Furthermore, there is very little literature about model-based co-clustering. In Chapter 4, 

we develop a co-clustering method using a Generalized Linear Mixed Model (GLMM) 

for spatial data. Specifically, to avoid the high computational intensity associated with 

global optimization, we propose a heuristic optimization algorithm to search for a near 

optimal co-clustering. A sampling strategy is introduced to capture as much of the spatial 

information that is available from the sparse data as possible. For an application pertinent 

to Integrated Pest Management (IPM), we combine the spatial co-clustering technique 

with a statistical inference method to make assessment of pest density more accurate. We 

demonstrate the utility and power of our proposed pest assessment procedure through 

simulation studies and apply the procedure to a study of the persea mite (Oligonychus 

perseae), a pest of avocado trees. 
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Chapter 2 

Clustering Scatter Plots Using Data Depth Measures 

 

2.1. INTRODUCTION 

Microorganisms play a variety of important roles in human biology. They are 

involved in critical aspects of normal host (e.g., human being) physiology and 

development, and have been associated with a wide range of disease processes including 

obesity, autoimmunity, gastric ulcers and cancers (Turnbaugh et al. 2007). Despite these 

findings, the nature and breadth of interactions between microorganisms and humans is 

not well understood, and attempting to clarify these relationships is an ongoing challenge 

in system biology. Commonly used ordination methods such as principal component 

analysis (PCA) can only assess microbial and/or host variables independently for their 

ability to group hosts by their physiological or disease status. While canonical correlation 

analysis (CCA) attempts to identify relationships between microbial and host variables, 

its drawbacks lie in the difficulty interpreting the meaning of the results and the inherent 

restriction to identifying linear relationships. For our research, ordination methods are not 

appropriate because we are interested in identifying groups of similar associations 

between microbial and host variables, rather than building disease discriminators from 

the combined set of microbial and host variables. System biologists hold the point of 
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view that larger groups resulting from this process have increased importance in the sense 

that the constituent microbes and host variables are more likely to play important roles in 

the disease process. 

In cluster analysis, usually data are arranged in a matrix with each cell being a real 

number. To avoid confusion, we call this matrix “the data matrix of scalars”. Two 

one-dimensional clustering methods are commonly used. For the row clustering, 

hierarchical clustering builds a hierarchy of clusters based on the dissimilarity measures 

among rows whose results can be graphically presented in a tree structure, called 

dendrogram. Partitioning clustering, such as K -means, divides rows into a pre-specified 

number of clusters in which each row belongs to the cluster with the nearest mean. One 

may see Andreopoulos et al. (2009) and Jiang et al. (2004) for a survey. 

 However, when each cell of the data matrix is not represented by a single numerical 

value and instead contains a scatter plot, the existing clustering methods are not 

applicable any more. One may think of using a single measure, say Pearson correlation 

coefficients, to characterize the scatter plots, which then reduces the data matrix of scatter 

plots to a data matrix of scalars. Current clustering methods can then be applied to 

analyze the associations between row variables and column variables. However, the use 

of Pearson correlation coefficients is not always sufficient since it is only a measure of 

linear association and is very sensitive to outliers. Therefore, similarity measurements 
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among scatter plots based on such coefficients will hinder the power of discovering 

clusters of scatter plots with nonlinear patterns and/or clusters with outliers. 

In this chapter we introduce a hierarchical clustering procedure that is able to handle 

a data matrix of scatter plots. In Section 2.2, to more accurately reflect the nature of data, 

we introduce a dissimilarity statistic based on “data depth” to measure the discrepancy 

between two bivariate distributions without oversimplifying the nature of the underlying 

pattern. We then combine hypothesis testing with hierarchical clustering to cluster rows 

and columns of the data matrix of scatter plots. The power of our proposed hierarchical 

clustering method is demonstrated through simulation studies in Section 2.3. In Section 

2.4, we propose novel painting metrics and construct heat maps to allow visualization of 

clusters. In Section 2.5, we apply our proposed hierarchical clustering method to a 

microbe-host-interaction study. 

 

2.2. METHODOLOGY 

2.2.1. Clustering Procedure 

 Consider M  row variables 1 2{ , , , }MX X X⋯  and N  column variables 

1 2{ , , , }NY Y Y⋯ . For each pair of row variable and column variable, a random sample of 

observations are taken that can be drawn as a scatter plot in the Cartesian plane as shown 
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in Figure 2.1, in which each square contains a scatter plot. Our goal is to cluster both 

rows and columns based on these M N×  independent scatter plots. 

 

Figure 2.1.  Data Structure: A Data Matrix of Scatter Plots 

 

To obtain the distance matrix for performing the row hierarchical clustering, we have 

to calculate the distance between any two rows. Consider the thi  row and the thj  row, 

we would like to measure how similar these two rows are to each other based on 

comparing the corresponding N  pairs of scatter plots. For each column, say the thk  

column, the pair of scatter plots can be thought of as the samples taken from two 

independent bivariate distributions ikF  and jkF , respectively, as shown in Figure 2.1. 

As a result, the problem of comparing the pair of scatter plots can be formulated as 

testing the following hypothesis: 

0 :   vs.  : .ik jk a ik jkH F F H F F= ≠                    (2.1) 
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Denote by ( )ij kp  the p-value for testing the above hypothesis. The smaller the p-value, 

the less similar the pair of scatter plots to each other. By testing the same kind of 

hypotheses for all the N  columns, we define the dissimilarity (distance) between the 

thi  row and the thj  row as 

( )( )
1

1
N

ij ij k
k

dist p
=

= −∑ .                      (2.2) 

Then the distance matrix for rows { }ijdist  ( , 1,2, , ,  and i j M i j= ≠⋯ ) is inputted to the 

regular hierarchical clustering algorithm, which initially regards each row as an 

individual cluster, and at each step, merges the closest pair of clusters until all the rows 

are merged into one cluster. In doing this, hierarchical clustering creates a hierarchy of 

row clusters that can be represented in a tree structure called dendrogram. 

 The same clustering procedure can be applied to columns as well. Therefore, rows 

and columns in the original data matrix of scatter plots (Figure 2.1) are reordered 

according to the row dendrogram and the column dendrogram, respectively, which 

produces a new data matrix of scatter plots that acts as the output of our proposed 

clustering procedure. 

 

2.2.2 Hypothesis Testing 

Liu & Singh (1993) proposed a multivariate rank sum test for the hypothesis 

0 :   vs.  :ik jk a ik jkH F F H F F= ≠  where ikF  and jkF  are the distribution functions of 
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two independent populations. Specifically, the test statistic is based on a quality index 

that measures the overall “outlyingness” of population jkF  relative to population ikF , 

( )( , ) ( ; ) ( ; ) | ~ , ~ ,ik jk ik ik ik jkQ F F P D F U D F V U F V F= ≤
� � � �

          (2.3) 

where ( ; )ikD F ⋅  is an affine-invariant data depth function with respect to ikF  that could 

be Mahalanobis depth, Tukey (Half-space) depth, and Simplicial depth, etc., as shown in 

Section 2.2.3. 

Given two samples { 1, , SU U
� �
⋯ } from ikF  and { 1, , TV V

� �
⋯ } from jkF , ( , )ik jkQ F F  

can be estimated by 

1

1
( , ) ( ; ),

T
S T S

ik jk ik t
t

Q F F R F V
T =

= ∑
�

                     (2.4) 

where S
ikF  and T

jkF  are the empirical distributions, ( ; )S
ik tR F V
�

 is the proportion of 

'ssU
�

 with ( ; ) ( ; )S S
ik s ik tD F U D F V≤
� �

, and ( ; )S
ikD F ⋅  is the empirical data depth with 

respect to S
ikF . From Liu & Singh (1993) and Zuo & He (2006), we have 

( , ) 1/ 2 ~ (0, (1/ 1/ ) /12)S T
ik jkQ F F AN S T− +               (2.5) 

under 0 : ik jkH F F=  for many commonly used data depth functions (under general 

regularity conditions). 

Notice that the overall “outlyingness” of ikF  relative to jkF  can be also measured 

by a quality index 

( )( , ) ( ; ) ( ; ) | ~ , ~ ,jk ik jk jk jk ikQ F F P D F V D F U V F U F= ≤
� � � �

         (2.6) 
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where ( ; )jkD F ⋅  is an affine-invariant data depth function with respect to jkF . Likewise, 

( , )jk ikQ F F  may be estimated by 

1

1
( , ) ( ; ),

S
T S T
jk ik jk s

s

Q F F R F U
S =

= ∑
�

                    (2.7) 

where ( ; )T
jk sR F U
�

 is the proportion of 'stV
�

 with ( ; ) ( ; )T T
jk t jk sD F V D F U≤
� �

, and ( ; )T
jkD F ⋅  

is the empirical data depth with respect to T
jkF . 

As Section 2.2.4 shows, ( , )jk ikQ F F  is not directly related to ( , )ik jkQ F F . However, 

to obtain the p-value for testing hypothesis (2.1), we would like to have a unique 

parameter to measure the difference between two distributions, either comparing ikF  to 

jkF , or jkF  to ikF . Under 0 : ik jkH F F= , ( , ) ( , ) 1/ 2ik jk jk ikQ F F Q F F= = . With the 

location shift and/or scale change between ikF  and jkF , either ( , )ik jkQ F F  or 

( , )jk ikQ F F , or both, would deviate from 1/2 significantly. Therefore, to avoid having one 

distribution as the reference distribution, we propose a new quality index, called TS , to 

measure the overall “difference” between ikF  and jkF , 

( , ), if  ( , ) 1/ 2 ( , ) 1/ 2 ;
               (2.8)

( , ), if  ( , ) 1/ 2 ( , ) 1/ 2 .

ik jk ik jk jk ik

jk ik ik jk jk ik

Q F F Q F F Q F F
TS

Q F F Q F F Q F F

 − > −= 
− < −

 

The test statistic for testing hypothesis (2.1) is the estimate of TS , 

�
( , ), if  ( , ) 1/ 2 ( , ) 1/ 2 ;

               (2.9)
( , ), if  ( , ) 1/ 2 ( , ) 1/ 2 .

S T S T T S
ik jk ik jk jk ik

T S S T T S
jk ik ik jk jk ik

Q F F Q F F Q F F
TS

Q F F Q F F Q F F

 − > −= 
− < −
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Then ( )ij kp  is calculated by the following permutation test procedure: 

1) Pool two samples { 1, , SU U
� �
⋯ } and { 1, , TV V

� �
⋯ }. 

2) Take a sample of size S  without replacement {
1

* *, , SU U
� �
⋯ } from the pooled sample, 

and the remaining is {
1

* *, ,
T

V V
� �
⋯ }, which are called two permutation samples. 

3) Estimate ( , )ik jkQ F F  and ( , )jk ikQ F F  by * ( , )S T
ik jkQ F F  and * ( , )T S

jk ikQ F F , 

respectively, based on the permutation samples obtained in Step 2. 

4) Set �
*

TS  to be equal to * ( , )S T
ik jkQ F F  if * *( , ) 1/ 2 ( , ) 1/ 2S T T S

ik jk jk ikQ F F Q F F− > − ; and 

equal to * ( , )T S
jk ikQ F F  otherwise. 

5) Repeat the above steps (Step 2 - Step 4) B  times to yield B  values of �
*

TS , 

denoted by �
*

bTS  ( 1,2,b B= ⋯ ), whose distribution estimates the sampling 

distribution of the test statistic �TS  under 0 : ik jkH F F= . 

6) Let lowerp  be the proportion of �
*

1{ } B
b bTS =  with � �

*

bTS TS< , and upperp  the proportion 

of �
*

1{ } B
b bTS =  with � �

*

bTS TS> . Hence ( ) 2 ( , )ij k lower upperp min p p= × . 

 

2.2.3. Data Depth 

 Let F  be a probability distribution in pℜ  with 1p ≥  and x
�

 a point in pℜ . The 

data depth at x
�

 with respect to F  is denoted by ( ; )D F x
�

, which measures how deep 

(or central) the point x
�

 is with respect to F . The larger ( ; )D F x
�

, the deeper (or more 
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central) the point x
�

 with respect to F . Some commonly used data depth functions are 

listed as follows. 

1) Mahalanobis depth (Mahalanobis 1936): 

   1( ; ) 1/ [1 ( ) ( )]h F F FM D F x x xµ µ−′= + − ∑ −� � � � �
, 

where Fµ�  and F∑  are the mean and variance-covariance matrix of F , 

respectively. The sample version of ( ; )hM D F x
�

 is obtained by replacing Fµ�  and 

F∑  with their sample estimates. 

2) Tukey depth / Half-space depth (Tukey 1974): 

   ( ; ) inf{ ( ) :  is a closed half-space in  containing }.p
FTD F x P x

Η
= Η Η ℜ� �

 

The sample version of ( ; )TD F x
�

 is ( ; )nTD F x
�

 where nF  is the empirical 

distribution. 

3) Simplicial depth (Liu 1990): 

   1 1( ; ) (  is inside the closed simplex whose vertices are { , , }),F pSD F x P x X X +=
� �� �
⋯  

where 1 1{ , , }pX X +

� �
⋯  is a random sample from F . The sample version of 

( ; )SD F x
�

 is the fraction of the sample random simplexes containing the point x
�

. 

 It is easy to compute Mahalanobis depth that studies the elliptical structure of a 

multivariate distribution. Rousseeuw & Ruts (1996) addressed the computation issues for 

Tukey depth and Simplicial depth that are more robust than Mahalanobis depth. More 

data depths can be found in Liu et al. (1999). 
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2.2.4. ( , )Q F G  vs. ( , )Q G F  

Consider two independent distributions F  and G , and two variables ~X F  and 

~Y G . We present three examples to show the relationship between ( , )Q F G  and 

( , )Q G F . For simplicity, univariate normal distributions and Mahalanobis depth are 

adopted here. 

Example 1: For 2
0 0( , )F N µ σ= , 2

0 1( , )G N µ σ= , and 2 2
1 0σ σ> , we have 

2 2 2 2
0 0 0 0( , ) (( ) / ( ) / ) 1/ 2Q F G P X Yµ σ µ σ= − ≥ − < , 

2 2 2 2
0 1 0 1( , ) (( ) / ( ) / ) 1/ 2Q G F P Y Xµ σ µ σ= − ≥ − > , 

and  ( , ) ( , ) 1Q F G Q G F+ = . 

Example 2: For 2
0 0( , )F N µ σ= , 2

1 0( , )G N µ σ= , and 0 1µ µ≠ , we have 

2 2 2 2
0 0 0 0( , ) (( ) / ( ) / ) 1/ 2Q F G P X Yµ σ µ σ= − ≥ − < , 

2 2 2 2
1 0 1 0( , ) (( ) / ( ) / ) 1/ 2Q G F P Y Xµ σ µ σ= − ≥ − < , 

and  ( , ) ( , )Q F G Q G F= . 

Example 3: For 2
0 0( , )F N µ σ= , 2

1 1( , )G N µ σ= , 0 1µ µ≠ , and 2 2
1 0σ σ> , we have 

2 2 2 2
0 0 0 0( , ) (( ) / ( ) / ) 1/ 2Q F G P X Yµ σ µ σ= − ≥ − < , 

2 2 2 2
1 1 1 1and  ( , ) (( ) / ( ) / )

                     1/ 2,  1/ 2,  or 1/ 2.

Q G F P Y Xµ σ µ σ= − ≥ −
< = >

. 
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2.3. SIMULATION STUDY 

 We performed a simulation study to investigate the power of our proposed clustering 

method. The basic procedure is as follows: 

1) Specify a “checkerboard” data pattern with a set of row clusters and column clusters, 

and specify a bivariate distribution for the cells within each block. 

2) Generate random samples based on the given bivariate distributions in Step 1, which 

creates a data matrix of scatter plots. 

3) Apply our proposed clustering method to this data matrix of scatter plots, and check 

whether the original data pattern can be retrieved or not. That is, we check whether 

rows within the same block are still close to each other compared to other rows in the 

row dendrogram, and columns as well; or equivalently, whether there exists a cutting 

of row dendrogram such that the generated branch set are exactly same as the original 

set of row clusters, and columns as well; 

4) Repeat Step 2 - Step 3 a number of times, and record the success rate, the proportion 

of times that we succeed in retrieving the original data pattern, which acts as the 

power measurement for our proposed clustering method. 

Intuitively, the total number of rows and columns (the size of the data matrix of 

scatter plots, or the data size), the number of rows and columns within each block (the 
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block size), and the number of blocks would affect the success rate. Therefore, we 

considered three data pattern settings shown in Figure 2.2. 

 

(a) “R2C2”        (b) “2*R2C2”             (c) “R4C4” 

Figure 2.2.  Three Data Pattern Settings: (a) “R2C2”: there are 2×2 blocks (2 row 
clusters and 2 column clusters), each of which contains 2×2 cells, thus the data size is 
4×4. (b) “2*R2C2”: the block size is doubled in the “R2C2” setting, thus the data size is 
8×8. (c) “R4C4”: there are 4×4 blocks (4 row clusters and 4 column clusters), each of 
which contains 2×2 cells, thus the data size is 8×8. 

 

 For each setting, we specified a class of bivariate normal distributions for blocks, 

which only differ in location. Specifically, the coordinatex −  of the mean increases 

equidistantly along the row direction ranging from 0 with the coordinatey −  of the 

mean remaining same; whereas the coordinatey −  of the mean increases equidistantly 

along the column direction ranging from 0 with the coordinatex −  of the mean 

remaining same. For example, with a location shift of 1, the mean of the top left bivariate 
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normal distribution in “R2C2” and “2*R2C2” is 
0

0

 
 
 

, the top right 
1

0

 
 
 

, the bottom left 

0

1

 
 
 

, and the bottom right 
1

1

 
 
 

. Furthermore, 50 data points were generated for each 

scatter plot, Mahalanobis depth was adopted, 500 resampling times were taken for the 

permutation test, and the average linkage method was chosen for the hierarchical 

clustering procedure. We performed 500 simulations for each setting. The relationship 

between the success rate and the location shift is summarized in Figure 2.3, where the 

solid lines stand for the variance-covariance matrix 
2 0

0 2

 
 
 

 specified for the bivariate 

normal distributions, and the dashed lines for 
2 1

1 2

 
 
 

 with the correlation coefficient 

0.5ρ = . 

 From Figure 2.3, we may observe the following: 

1) By comparing the solid line with the dashed line for each setting, the correlation in 

the bivariate normal distribution improves the success rate. 

2) By comparing “R2C2” with “2*R2C2” both having a fixed number of blocks, with a 

relatively large location shift, the larger the block size, the higher the success rate; 

with a relatively small location shift, the smaller the block size, the higher the success 

rate. That is, more scatter plots with larger distance between blocks improves the 
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chance of capturing the pattern. However, more scatter plots with smaller distance 

between blocks introduces a higher chance for noise in the clustering. 

3) By comparing “2*R2C2” with “R4C4” both having a fixed data size, the smaller the 

number of blocks, the higher the success rate, which means it is harder to do a more 

delicate job (more row clusters and column clusters). 

4) By comparing “R2C2” with “R4C4” both having a fixed block size, with a relatively 

small location shift, the smaller the number of blocks, the higher the success rate; 

with a relatively large location shift, the larger the number of blocks, the higher the 

success rate. The reason is similar to what we previously discussed in the comparison 

of “R2C2” with “2*R2C2”. 

 

 

Figure 2.3.  Success Rate versus Location Shift 
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2.4. DATA VISUALIZATION 

Data visualization is an important aspect in the clustering technique. In the traditional 

hierarchical clustering application in which cells of a data matrix are scalars, the original 

data can be rearranged according to the dissimilarity scores between rows (or columns). 

The smaller the dissimilarity score between two rows (or columns), the closer the two 

rows (or columns). A graphical representation of the rearranged data matrix, called heat 

map, can be created where cells are painted with different colors based on their scalar 

values. Obviously, we would expect cells in close proximity to each other to have a 

similar color. 

 To apply the above painting strategy to a data matrix of scatter plots, we introduce a 

painting metric, called Overall Quality Index (OQI), to graphically represent the scatter 

plots so that similar scatter plots are painted with a similar color whereas dissimilar 

scatter plots are painted with different colors. All the MN  scatter plots are pooled as a 

single scatter plot that is thought of as a sample from the bivariate distribution poolF . 

Consider a scatter plot that is regarded as a sample from the bivariate distribution F . 

The OQI value is the estimated value of the quality index ( , )poolQ F F . However, as we 

discuss below, it is unlikely that using a single painting metric for the scatter plot is 

sufficient. Therefore, we introduce three additional finer painting metrics to further 

characterize the scatter plot. 
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1) Center Deviation Index (CDI): For any scatter plot, we define its center to be the 

point that maximizes the empirical data depth for ( ; )D F ⋅ . Then the CDI for a scatter 

plot is the distance between its center and the center of the pooled scatter plot. For 

example, in Figure 2.4(a), the length of red segment is the CDI measuring the 

deviation of the scatter plot consisting of blue points from the pooled scatter plot 

consisting of black points. 

2) Center Deviation Direction Index (CDDI): By taking the center of the pooled scatter 

plot as the origin of a new Cartesian coordinate system, the CDDI for a scatter plot is 

the magnitude of the angle formed by the vector from the origin to its center and the 

positive axisx − , which ranges from π−  to π . The CDDI depicts the relative 

location of a scatter plot with respect to the pooled scatter plot, and then the relative 

locations among the scatter plots. For example, in Figure 2.4(b), the CDDI for the 

blue scatter plot is the degree of the angle formed by two red vectors. 

3) Dispersion Index (DI): Moving a scatter plot such that its center and the center of the 

pooled scatter plot coincide produces a shifted scatter plot that is regarded as a sample 

from a new bivariate distribution F ′ . The DI for the original scatter plot is the 

estimation of the quality index ( , )poolQ F F ′ , which accounts for the difference 

between the original scatter plot and the pooled scatter plot excluding the effect due 

to the location shift. For example, in Figure 2.4(c), the DI for the blue scatter plot is 
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the estimated quality index of the red scatter plot (obtained from moving the blue 

scatter plot) with respect to the pooled scatter plot. 

 

 

(a)  CDI             (b)  CDDI              (c)  DI 

Figure 2.4.  Painting Metrics 
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(a) OQI         (b) CDI        (c) CDDI         (d) DI 

Figure 2.5.  Painting Example 1: OQI can reveal clusters. Also, the bivariate normal 
distributions only differ by location and are asymmetric about the origin, therefore CDI 
can reveal clusters whereas CDDI and DI can not. 
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(a) OQI         (b) CDI        (c) CDDI         (d) DI 

Figure 2.6.  Painting Example 2: OQI can not reveal clusters. Also, the bivariate normal 
distributions only differ by location and are symmetric about the origin, therefore CDDI 
can reveal clusters whereas CDI and DI can not. 
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(a) OQI         (b) CDI        (c) CDDI         (d) DI 

Figure 2.7.  Painting Example 3: OQI can reveal clusters. Also, the bivariate normal 
distributions only differ by scale, therefore DI can reveal clusters whereas CDI and CDDI 
can not. 
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(2) 3 1 0
( , )
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   
   −   

 (2) 4 4 0
( , )

4 0 4
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   
   
   

 

 

(a) OQI         (b) CDI        (c) CDDI         (d) DI 

Figure 2.8.  Painting Example 4: OQI has poor performance to reveal clusters. Also, the 
bivariate normal distributions differ by both location and scale and asymmetric about the 
origin, therefore CDI, CDDI and DI can all reveal clusters. 

 

 To illustrate the utility of the above painting metrics, we present four painting 

examples. In each example, an 8 8×  matrix of scatter plots (each scatter plot contains 

100 data points) was generated with the top left 4 4× , top right 4 4× , bottom left 4 4×  

and bottom right 4 4×  scatter plots following the four different distributions specified in 

the top panel of Figures 2.5-2.8. We then obtained 8 8×  matrices of OQI, CDI, CDDI 

and DI, based upon which four heat maps can be generated as shown in the bottom panel 

of Figures 2.5-2.8, where the “yellow” heat map is based on OQI, the “red” heat map on 

CDI, the “blue” heat map on CDDI, the “green” heat map on DI, and the “black” color 

stands for the minimum index value in all the four heat maps. For simplicity, we used 

Mahalanobis depth in all the examples discussed here. 
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 The painting examples illustrate that OQI captures the overall effect due to both 

location shift and scale change of a scatter plot. When OQI can distinguishes two scatter 

plots from each other, one may further investigate CDI, CDDI, and DI to see the details 

of how these two scatter plots differ. Also, when OQI can not distinguish two scatter plots 

from each other, one may want to see if any of CDI, CDDI, and DI can distinguish them. 

 

2.5. APPLICATION 

2.5.1. Motivation 

Identifying causative microbial and host variables in multi-factorial diseases remains 

a considerable challenge. For example, consider the case of inflammatory bowel disease 

(IBD). IBD etiology appears to involve several factors, including genetics, lifestyle and 

intestinal bacteria. Traditionally, investigations attempting to identify variables associated 

with complex diseases such as IBD have used ordination methods such as principle 

component analysis (PCA) to define host phenotypes by levels of the microorganisms 

and/or host variables (proteome, transcriptome, etc). A shortcoming of this approach is 

that it does not account for upstream events such as the physical or chemical interactions 

between the microorganisms and the host, nor the cascade of events that likely connect 

these interactions to host phenotype. Here, we describe an alternative experimental 

approach that begins to address this shortcoming, which is to first analyze upstream 
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events – the physical or chemical interactions between the microorganisms and the host, 

which are represented by the relationships in the scatter plots – and then assess if and 

how those relationships (and/or the variables involved in those relationships) are linked to 

host phenotype. More biological hypothesis will be discussed in Chapter 3. 

 

2.5.2. Results 

To identify putatively important microbe-host interactions, Li et al. (2010) recently 

examined the amounts of bacteria and proteins in mucosal luminal interface samples from 

IBD and healthy subjects. Two datasets were generated from the experiment. “Microbe” 

data were arranged as a data matrix with 81 rows (3 rows containing missing values are 

excluded) standing for samples, 15 columns for microbes, and each cell being a single 

numerical value recording the level of a microbe in a sample. “Protein” data were also 

arranged as a data matrix with 81 rows standing for the same set of samples, 440 columns 

for proteins, and each cell being a single numerical value recording the level of a protein 

in a sample. To identify associations between levels of the microbes and proteins, we 

combined the above two data matrices of scalars by pairing up the columns (one from 

“Microbe” data, the other from “Protein” data) and treating each 81 2×  array of data as 

bivariate data with the axisx −  being microbe level and the axisy −  being protein 
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level. This process leads to a data matrix of scatter plots as shown in Figure 2.1 where 

440M = , 15N = , and each scatter plot contains 81 data points.  

 Considering the scatter plots as independent samples, we applied our proposed 

clustering method to the 440×15 data matrix of scatter plots, and cluster both proteins 

(rows) and microbes (columns). We used Mahalanobis depth as the data depth measure, 

500B =  resampling times for the permutation test, and the average linkage method to 

perform the hierarchical clustering. 

 We then cut the “Protein” dendrogram at the height of 6, which generates eighty 

protein branches/clusters. The proteins within the same branch are more similar to each 

other, or show more similar microbe-protein patterns, than those in other branches. From 

the eighty protein clusters, we only selected those containing at least twenty proteins, 

which leads to five protein clusters. We also generated four microbe clusters by cutting 

the “Microbe” dendrogram at the height of 430, and selected those containing at least five 

microbes. One pair of the selected protein cluster and microbe cluster is depicted in 

Figure 2.9, where the heat map with the OQI painting metric is shown. The promise of 

these results is demonstrated by the fact that most of the identified proteins have been 

previously associated with IBD as in Ahrenstedt et al. (1990), Broedl et al. (2007), Foell 

et al. (2003), Greenstein et al. (1992), Hansen et al. (2009), and Larsson et al. (2006). 
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Figure 2.9.  Heat Map with the OQI Painting Metric 

 

 Examining such relationships will have utility for several purposes. First, by 

clustering relationships of various microbial and host variables, one can identify groups 

of relationships that have similar and/or dissimilar associations by visually examining the 
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heat maps. Large assemblages of individual relationships with similar associations may 

point toward those that have increased importance, because they indicate organisms 

having a greater impact on the host, or vice versa. Assemblages with similar associations 

might also be used to identify different taxa with similar functions as well as direct 

decisions concerning which of the myriad of unidentified variables should be examined 

further. This latter feature addresses the nature of data generated in this “omics era,” 

where most of the variables cannot be identified by simple database searches, but instead 

require procedures consuming considerable amounts of time and effort. Lastly, dissimilar 

relationships could provide key information, for example, in identifying relationships 

between host defense molecules and the bacteria they target. 

 

2.6. CONCLUSION 

 Our proposed method showed a significant utility and power in handling a data 

matrix of scatter plots. More importantly, this clustering procedure can be easily extended 

to the high dimensional case when one or more sets of variables needs to be analyzed. 

Moreover, the novel painting metrics we proposed can be easily extended to 

multi-dimensional clusters of multivariate plots. 

 Co-clustering is desirable over traditional one-dimensional clustering as it is more 

informative and easily interpretable while preserving most of the information contained 
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in the original data; and it allows dimension reduction along both axes simultaneously 

and hence leads to a much more compact representation of the original data for 

subsequent analysis. In Chapter 3, we will develop a co-clustering method to deal with a 

data matrix of scatter plots. 

 Finally, although these methods were developed to analyze microbe-host interactions, 

we anticipate that this general approach will have utility for a wide range of 

investigations, including those examining relationships among gene expression profiles, 

metabolites, genes and epigenetic parameters. 
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Chapter 3 

Co-clustering Scatter Plots Using Data Depth Measures 

 

3.1. INTRODUCTION 

Co-clustering, also called biclustering, bivariate clustering, or two-mode clustering, 

has been broadly applied to many domains such as bioinformatics and text mining. 

Different from the one-dimensional clustering methods that seek to identify similar rows 

or columns independently, co-clustering simultaneously clusters rows and columns to 

identify “blocks” (or “co-clusters”) of rows and columns that show highly inter-related 

coherence. For example, in gene expression analysis, co-clustering can be used to solve 

the dual problem of identifying a set of genes and conditions simultaneously involved in 

a metabolic process, a problem that traditional one-dimensional clustering methods can 

not handle. Madeira & Oliveira (2004), Mechelen et al. (2004), Prelic et al. (2006), and 

Busygin et al. (2008) provided detailed reviews on co-clustering. 

In this chapter we introduce a co-clustering procedure that is able to handle a data 

matrix of scatter plots. In Section 3.2, to more accurately reflect the nature of data, we 

introduce a dissimilarity statistic based on “data depth” to measure the discrepancy 

between two bivariate distributions without oversimplifying the nature of the underlying 

pattern. We then combine hypothesis testing with a searching algorithm to simultaneously 



 44 

cluster rows and columns of the data matrix of scatter plots. The power of our proposed 

co-clustering method is demonstrated through simulation studies in Section 3.3. In 

Section 3.4, we propose novel painting metrics and construct heat maps to allow 

visualization of co-clusters. In Section 3.5, we apply our proposed co-clustering method 

to a microbe-host-interaction study. 

 

3.2. METHODOLOGY 

3.2.1. Co-clustering Procedure 

Consider M  row variables 1 2{ , , , }MX X X⋯  and N  column variables 

1 2{ , , , }NY Y Y⋯ . For each pair of row variable and column variable, a random sample of 

observations are taken that can be drawn as a scatter plot in the Cartesian plane as shown 

in Figure 3.1, in which each square contains a scatter plot. By regarding a scatter plot as a 

sample from a bivariate distribution, a co-cluster is defined to be the union of a subset of 

row variables and a subset of column variables, 
1 2 1 2

{ , , , } { , , , }
r ci i i j j jX X X Y Y Y⋯ ∪ ⋯  with 

1{ , , } {1, , }ri i M⊂⋯ ⋯  and 1{ , , } {1, , }cj j N⊂⋯ ⋯ , within which each pair of row 

variable and column variable follows the common bivariate distribution. Our goal is to 

identify all the co-clusters based on these M N×  independent scatter plots. 
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Figure 3.1.  Data Structure: A Data Matrix of Scatter Plots 

 

In many cases, one would not expect all the rows or columns being investigated to be 

involved in the obtained co-clusters since some rows or columns may not share the 

common pattern with other rows or columns and therefore do not belong to any co-cluster. 

Also, some rows or columns may belong to two or more co-clusters simultaneously. 

Moreover, one would allow co-clusters to be overlapping, which means scatter plots may 

belong to two or more different co-clusters simultaneously. We next propose a 

co-clustering procedure to identify all the hidden co-clusters that satisfy the above 

properties. Notice that a single scatter plot itself may be a co-cluster. To avoid this, we 

specify the minimum co-cluster size to be 0 0r c× , in which 0r  is the minimum number 
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Starting with one column, say the thk  column, we apply the one-dimensional 

hierarchical row clustering (Zhang et al. 2010) to the corresponding M  scatter plots, for 

which we have to calculate the distance between any pair of scatter plots as a measure of 

how similar they are to each other. Consider the thi  scatter plot (row) and the thj  

scatter plot (row) that can be thought of as the samples taken from two independent 

bivariate distributions ikF  and jkF , respectively. The problem of comparing the pair of 

scatter plots is then formulated as testing the following hypothesis: 

0 :   vs.  : .ik jk a ik jkH F F H F F= ≠                     (3.1) 

Denote by ( )ij kp  the p-value for testing the above hypothesis. The smaller the p-value, 

the less similar the pair of scatter plots to each other. We define the dissimilarity (distance) 

between the thi  scatter plot (row) and the thj  scatter plot (row) as 

( ) ( )1 .ij k ij kdist p= −                             (3.2) 

Then the distance matrix ( ){ }ij kdist  ( , 1,2, ,i j M= ⋯ , and i j≠ ) is inputted to the 

regular hierarchical clustering algorithm, which initially regards each scatter plot as an 

individual cluster, and at each step, merges the closest pair of clusters until all the scatter 

plots are merged into one cluster. In doing this, hierarchical clustering creates a hierarchy 

of clusters that can be represented in a tree structure called dendrogram. We cut the 

dendrogram at a prespecified height seedδ  and select those branches containing at least 

0r  scatter plots.  
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The scatter plots within a particular branch are more similar to each other than the 

scatter plots between different branches. Specifically, if the complete linkage method was 

used when constructing the dendrogram, then the p-value for testing any pair of scatter 

plots within that branch is greater than 1seedδ− . For example, suppose we cut the 

dendrogram at the height 0.95seedδ = . Within each branch, the maximum distance 

between any pair of scatter plots is less than 0.95. Hence, the minimum p-value for 

testing any pair of scatter plots is greater than 1 0.05seedδ− = . 

Defining the subset of row variables corresponding to a selected branch as a “seed”, 

which acts as the row part in a potential co-cluster, we next identify the column part of 

this co-cluster. For each seed, say 
1 2

{ , , , }
ri i iX X X⋯  of size r  with 

1 2{ , , , } {1,2, , }ri i i M⊂⋯ ⋯ , we pool all the data points contained in the corresponding r  

scatter plots, which can be regarded as the sample from a common bivariate distribution 

seedF . Suppose all the other 1N −  columns are potentially included in the co-cluster. 

Moving to another column, say the ( )thk′  column, we test the hypothesis 

0 :   vs.  :i k seed a i k seedH F F H F F′ ′ ′ ′= ≠                  (3.3) 

for each 1 2{ , , , }ri i i i′∈ ⋯ , where i kF ′ ′  is the distribution that the scatter plot for the ( )thi′  

row and the ( )thk′  column follows. The ( )thk′  column will be excluded from the 

potential co-cluster if any of the above r  null hypotheses is rejected (using a suitable 

multiple comparisons adjusted test procedure as discussed in Section 3.2.2). We continue 
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this exclusion process to reduce the column part of the potential co-cluster until we finish 

scanning all the columns. The resulting co-cluster will be reported if it contains at least 

0c  column variables. This may be implemented for 1,2, ,k N= ⋯ . Therefore, starting 

with each of the original columns, we can identify all the co-clusters hidden in the data 

matrix of scatter plots. 

We illustrate the proposed co-clustering procedure by presenting an example with a 

set of row variables 1 2 10{ , , , }X X X⋯  and column variables 1 2 8{ , , , }Y Y Y⋯  as shown in 

Figure 3.2, in which each square represents a scatter plot. The minimum co-cluster size is 

set to be 3 3× . Starting with the column 1Y , we apply the hierarchical row clustering to 

the corresponding 10 scatter plots across the rows. Two seeds are obtained by cutting the 

dendrogram at seedδ , 2 3 4 5{ , , , }X X X X  denoted by the blue solid line and 7 8 9{ , , }X X X  

by the red solid line. For the seed 2 3 4 5{ , , , }X X X X , we pool all the observations 

contained in the four scatter plots, 2 1( , )X Y , 3 1( , )X Y , 4 1( , )X Y , and 5 1( , )X Y , which 

leads to a pooled scatter plot. Moving to another column, say 2Y , we compare each of 

the four scatter plots corresponding to the seed, 2 2( , )X Y , 3 2( , )X Y , 4 2( , )X Y , and 

5 2( , )X Y , with the pooled scatter plot. The column 2Y  will be excluded from the 

potential co-cluster if any of the above scatter plots does not share the same bivariate 

distribution as the pooled scatter plot. After scanning all the columns, we finish building 

the potential co-cluster and check if it satisfies the minimum co-cluster size. For example, 
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the reported co-cluster is 2 3 4 5 1 4 6{ , , , } { , , }X X X X Y Y Y∪  as shown in Figure 3.2. Likewise, 

the reported co-cluster is 7 8 9 1 3 4 8{ , , } { , , , }X X X Y Y Y Y∪  for the seed 7 8 9{ , , }X X X . Notice 

that these two co-clusters are not overlapping, however, the columns 1Y  and 4Y  belong 

to both co-clusters simultaneously. Starting with each of the other columns, we repeat the 

above procedure and may identify all the hidden co-clusters. 

 

 

Figure 3.2.  A Co-clustering Example 

 

3.2.2. Hypothesis Testing 

In this section, we introduce hypothesis testing procedures to test (3.1), which is 

needed to compute the distance matrix, and to test (3.3) which is used to determine which 
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columns are included in a co-cluster. In regards to testing hypothesis (3.1), we adopt the 

permutation test procedure discussed in Chapter 2 to obtain ( )ij kp . 

In regards to testing hypothesis (3.3), we treat seedF  as a reference distribution since 

the seed is the starting point for building a co-cluster. Hence, we only focus on the quality 

index ( , )seed i kQ F F ′ ′  that measures the overall “outlyingness” of i kF ′ ′  relative to seedF . 

Assuming the scatter plot corresponding to i kF ′ ′  contains i kN ′ ′  data points and the 

pooled scatter plot corresponding to seedF  contains seedN  data points, we estimate 

( , )seed i kQ F F ′ ′  by ( , )seed i kN N
seed i kQ F F ′ ′

′ ′ . From Liu & Singh (1993) and Zuo & He (2006), we 

have 

( , ) 1/ 2 ~ (0, (1/ 1/ ) /12)seed i kN N
seed i k seed i kQ F F AN N N′ ′

′ ′ ′ ′− +           (3.4) 

under 0 : i k seedH F F′ ′ =  for many commonly used data depth functions (under general 

regularity conditions). Therefore, the p-value for testing hypothesis (3.3) is equal to 

( )2 ( , ) 1/ 2 / (1/ 1/ ) /12seed i kN N
seed i k seed i kP Z Q F F N N′ ′

′ ′ ′ ′× > − +  where ~ (0,1)Z N . 

For a seed 
1 2

{ , , , }
ri i iX X X⋯  of size r  with 1 2{ , , , } {1,2, , }ri i i M⊂⋯ ⋯  that is 

generated from the hierarchical clustering of the thk  column, we test hypothesis (3.3) 

for each 1 2{ , , , }ri i i i′∈ ⋯  and all the columns other than k  to identify the column part 

of a potential co-cluster. Here, Holm’s method (Holm 1979) is used to adjust these 

( 1)r N −  p-values. Specifically, we sort ( 1)r N −  p-values in ascending order. If the 

smallest p-value is less than 0 / [ ( 1)]r Nα −  with 0α  being a pre-specified overall type I 
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error, we reject the corresponding null hypothesis, and check whether the smallest 

p-value among the remaining ( 1) 1r N − −  ones is less than 0 / [ ( 1) 1]r Nα − −  or not. We 

continue the above sequential comparison until the null hypothesis with the smallest 

p-value among the remaining ones is not rejected, and at that point, all the remaining null 

hypotheses are not rejected. 

 

3.3. SIMULATION STUDY 

To evaluate our proposed co-clustering method in Section 3.2, we performed the 

following simulation study: 

1) For a set of rows and columns, specify a number of co-clusters and a bivariate 

distribution for the cells within each of the co-clusters. Additionally, specify a 

bivariate distribution for each of the remaining cells that are not contained in a 

co-cluster. 

2) Generate random samples based on the given bivariate distributions in Step 1, which 

creates a data matrix of scatter plots. Apply our proposed co-clustering method to this 

data matrix of scatter plots, and identify the co-clusters. 

3) For each sub-block of size m n×  ( 1, ,m M= ⋯ , 1, ,n N= ⋯ , and 1mn > ), we 

check whether it belongs to any of the true co-clusters and any of the identified 

co-clusters (Since co-clustering aims at grouping rows and columns, we check 
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sub-blocks with at least two rows or two columns). This sub-block is defined to be 

“consistent” if it simultaneously belongs to some one of the true co-clusters and some 

one of the identified co-clusters, or it neither belongs to any of the true co-clusters nor 

any of the identified co-clusters. For each (,  m n ), the number of consistent 

sub-blocks is denoted by mnd . 

4) Repeat Step 2-3 a number of times, say L  times, and accumulate the values of mnd . 

The probability of consistency, 
     

1, 1
  1

 / {  [(2 1)(2 1) ]}
M N

M N
mn

m n
mn

d L MN
= =

>

− − −∑∑ , acts as the 

measure to evaluate the proposed co-clustering method. 

We considered a data pattern setting as shown in Figure 3.3, in which two 

overlapping co-clusters were specified in a 8 6× data matrix. The two co-clusters are: 

Co-cluster 1: 2 3 4 5 2 3 4{ , , , } { , , }X X X X Y Y Y∪ ; 

Co-cluster 2: 4 5 6 3 4 5{ , , } { , , }X X X Y Y Y∪ . 

The scatter plots within each of the two co-clusters follow the bivariate normal 

distribution (2) 0 1 0.5
( , )

0 0.5 1
N

   
   
   

. The grey cells in Figure 3.3 represent cells that do 

not belong to the two co-clusters. The scatter plots for those cells follow a hierarchical 

bivariate distribution specified as follows: i) conditional on ( , , , )L U L UX X Y Y , X  and 

Y  are independent with distributions ( , )L UUnif X X  and ( , )L UUnif Y Y , respectively, 

and ii) ( , , , )L U L UX X Y Y  are independent with distributions ( 4,0)Unif − , (0,4)Unif , 
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( 4,0)Unif − , (0,4)Unif , respectively. Furthermore, 100 data points were generated for 

each scatter plot, Mahalanobis depth was adopted, 500 resampling times were taken for 

the permutation test, and the complete linkage method was chosen for the hierarchical 

clustering. 

 

 

Figure 3.3.  Co-cluster Specification 

 

 

Figure 3.4.  Probability of Consistency 
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We specified the minimum co-cluster size to be 3 3×  and performed 500 

simulations. The results are summarized in Figure 3.4, from which we notice the 

probability of consistency is pretty high for different scenarios of 0( , )seedδ α , which 

demonstrates the power of our proposed co-clustering method. 

 

3.4. DATA VISUALIZATION 

Data visualization is an important aspect in the clustering technique. In the traditional 

co-clustering application in which cells of a data matrix are scalars, a graphical 

representation of the data matrix, called heat map, can be created where cells are painted 

with different colors based on their scalar values. Painting provides a visualization of the 

relative homogeneity within co-clusters. Obviously, we would expect cells in close 

proximity to each other to have a similar color. Although it is usually impossible to 

display all the co-clusters in a single heat map, each co-cluster would still show a color 

pattern when we investigate all the co-clusters one by one. For example, by defining a 

co-cluster to be the union of a subset of rows and a subset of columns within which all 

the scalars are similar to each other, each co-cluster would be represented by a block of 

cells that have similar colors. 
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(2) 0 1 0
Co-cluster 1: ( , )

4 0 1
N

   
   
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1 0 1
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   
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(a) OQI          (b) CDI         (c) CDDI         (d) DI 

Figure 3.5.  Painting Example 1: OQI can distinguish two co-clusters from each other. 
Also, the bivariate normal distributions followed by two co-clusters only differ by 
location, and both means are located above the origin, therefore CDI can distinguish them 
from each other whereas CDDI and DI can not. 
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(a) OQI          (b) CDI         (c) CDDI         (d) DI 

Figure 3.6.  Painting Example 2: OQI can not distinguish two co-clusters from each 
other. Also, the bivariate normal distributions followed by two co-clusters only differ by 
location, and are symmetric about the origin, therefore CDDI can distinguish them from 
each other whereas CDI and DI can not. 
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(2) 0 1 0
Co-cluster 1: ( , )

1 0 1
N

   
   
   

 (2) 0 5 0
Co-cluster 2: ( , )

1 0 5
N

   
   
   

 

~ ( , ), ~ ( 12,0), ~ (0,12);
Noise: ,

~ ( , ), ~ ( 12,0), ~ (0,12), .
L U L U

L U L U

X Unif X X X Unif X UnifX

Y Unif Y Y Y Unif Y Unif X YY

− 
  − ⊥  

 

 

(a) OQI         (b) CDI          (c) CDDI         (d) DI 

Figure 3.7.  Painting Example 3: OQI can distinguish two co-clusters from each other. 
Also, the bivariate normal distributions followed by two co-clusters only differ by scale, 
therefore DI can distinguish them from each other whereas CDI and CDDI can not. 
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(a) OQI         (b) CDI          (c) CDDI         (d) DI 

Figure 3.8.  Painting Example 4: OQI can distinguish two co-clusters from each other. 
Also, the bivariate normal distributions followed by two co-clusters differ by both 
location and scale, and are asymmetric about the origin, therefore CDI, CDDI and DI can 
all distinguish them from each other. 
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We use the same painting metrics discussed in Chapter 2 to graphically represent the 

co-clusters of scatter plots so that similar scatter plots are painted with a similar color 

whereas dissimilar scatter plots are painted with different colors. To illustrate the utility 

of painting metrics, we present four painting examples. In each example, a 12 12×  

matrix of scatter plots (each scatter plot contains 100 data points) was generated, and two 

non-overlapping co-clusters were specified as follows: 

Co-cluster 1: 2 3 4 5 6 2 3 4 5 6{ , , , , } { , , , , }X X X X X Y Y Y Y Y∪ ; 

Co-cluster 2: 8 9 10 4 5 6 7 8 9 10 11{ , , } { , , , , , , , }X X X Y Y Y Y Y Y Y Y∪ . 

Data was generated for each scatter plot in the co-clusters by following the distributions 

shown in the first row of the top panel of Figures 3.5-3.8. Data for the remaining scatter 

plots in the matrix of scatter plots was generated from the noise distributions shown in 

the second row of the top panel in these figures. We then obtained 12 12×  matrices of 

OQI, CDI, CDDI and DI, based upon which four heat maps can be generated as shown in 

the bottom panel of Figures 3.5-3.8, where the “yellow” heat map is based on OQI, the 

“red” heat map on CDI, the “blue” heat map on CDDI, the “green” heat map on DI, and 

the “black” color stands for the minimum index value in all the four heat maps. For 

simplicity, we used Mahalanobis depth in all the examples discussed here. 

 The painting examples illustrate that OQI captures the overall effect due to both 

location shift and scale change of a scatter plot. When OQI can distinguishes two scatter 
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plots from each other, one may further investigate CDI, CDDI, and DI to see the details 

of how these two scatter plots differ. Also, when OQI can not distinguish two scatter plots 

from each other, one may want to see if any of CDI, CDDI, and DI can distinguish them. 

 

3.5. APPLICATION 

3.5.1. Results 

We revisit the microbe-host-interaction study discussed in Chapter 2. Two datasets 

were generated from the experiment (Li et al. 2010) to identify putatively important 

microbe-host interactions. “Microbe” data were arranged as a data matrix with 81 rows (3 

rows containing missing values are excluded) standing for samples, 15 columns for 

microbes, and each cell being a single numerical value recording the level of a microbe in 

a sample. “Protein” data were also arranged as a data matrix with 81 rows standing for 

the same set of samples, 590 columns for proteins, and each cell being a single numerical 

value recording the level of a protein in a sample. To identify associations between levels 

of the microbes and proteins, we combined the above two data matrices of scalars by 

pairing up the columns (one from “Microbe” data, the other from “Protein” data) and 

treating each 81 2×  array of data as bivariate data with the axisx −  being microbe 

level and the axisy −  being protein level. This process leads to a data matrix of scatter 
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plots as shown in Figure 3.1 where 590M = , 15N = , and each scatter plot contains 81 

data points. 

Considering the scatter plots as independent samples, we applied our proposed 

co-clustering method to the 590 15×  data matrix of scatter plots. We used Mahalanobis 

depth as the data depth measure, 500B =  resampling times for the permutation test, and 

the complete linkage method in the hierarchical clustering to generate the seeds. 

Furthermore, we assumed the minimum co-cluster size is 20 5×  (20 proteins and 5 

microbes), and prespecified 0.8seedδ =  and 0 0.2α = .  

Nine co-clusters were obtained, one of which is depicted in Figure 3.9, where the 

heat map with the OQI painting metric is shown. The promise of these results is 

demonstrated by the fact that many of the identified proteins have been previously 

associated with IBD as in Ahrenstedt et al. (1990), Larsson et al. (2006), Ripollés Piquer 

et al. (2006), and Fagerberg et al. (2007). 

The proteins and microbes in the other eight identified co-clusters that have been 

previously associated with IBD are listed in Table 3.1. Apolipoprotein levels (c-ii and 

c-iii but not c-i) in blood have been shown to be useful biomarkers of IBD disease 

activity (Ripollés Piquer et al. 2006). S100A12, a calcium binding protein produced by 

granulocytes, has been associated with IBD (Foell et al. 2003, Foell et al. 2009). 

Increased levels of both complement C3 and C4 have been detected in IBD patients 
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(Ahrenstedt et al. 1990, Halstensen & Brandtzaeg 1991, Halstensen et al. 1992, Laufer et 

al. 2000, Ueki et al. 1996). In vitro studies of epithelial cells have also shown that 

complement factors open tight junctions (Conyers et al. 1990), which is consistent with 

various IBD theories involving barrier dysfunction. IBD patients often exhibit elevated 

levels of serum amyloid a (Ripollés Piquer et al. 2006), which is a protein involved in 

systemic AA amyloidosis (Lachmann et al. 2007). Transthyretin levels in serum were 

lower in Crohn’s disease subjects than healthy controls (Reimund et al. 2005). 

Haptoglobin has been shown to be a marker for colitis in mouse models (Larsson et al. 

2006, Torrence et al. 2008) and its precursor was shown to increase intestinal 

permeability in mice (Tripathi et al. 2009) and genetic variants have been associated with 

Crohn’s disease (Papp et al. 2007). Chromogranin A levels were higher in IBD subjects 

than controls (Sciola et al. 2009, Yamaguchi et al. 2009). Inter-alpha trypsin inhibitor has 

been associated with human IBD (de la Motte et al. 2003) as well as a mouse model of 

IBD (Bandyopadhyay et al. 2008). Beta-2-microglobulin, osteopontin, and platelet basic 

protein have been shown to be reliable markers in IBD (Agnholt et al. 2007, Kruidenier 

et al. 2006, Zissis et al. 2001). PubMed (NCBI) searches did not identify reports linking 

the following proteins with IBD: amyloid beta a4, hemoglobin subunit beta (beta-globin), 

neurosecretory protein vgf, c-c motif chemokine 13, secretogranin-1, and proactivator 

polypeptide. Finally, based on analyses using BLAST (NCBI) (Altschul et al. 1997), only 
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two of the 13 bacterial phylotypes have been previously associated with IBD: 

Clostridium 12 (Presley et al. 2011) and Faecalibacterium 2994 phylotype (Baumgart et 

al. 2007, Martinez-Medina et al. 2006, Sokol et al. 2009, Swidsinski et al. 2008, Willing 

et al. 2009). 

 

 

Figure 3.9.  Heat Map with the OQI Painting Metric 
(* indicates the immune system molecules.) 
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Table 3.1.  Proteins and Microbes in the Identified Co-clusters 

Protein Microbe Protein Microbe 

Co-cluster 1 Co-cluster 2 
 
8165.06*, complement  

c3 frag 
7933.18, hemoglobin 

  subunit beta 
14315.2, transthyretin 
9294.05*, platelet basic 

   protein 
7040.59, transthyretin 
11710.9, serum amyloid 

  a protein 
10484.3*, protein 

  s100-a12 
8587.68*, complement 

c4-a frag 
14272.2, transthyretin 
8604.99*, complement  

c4-a frag, 
complement  
c4-a 

8949.0, apolipoprotein 
a-ii 

6231.41, secretogranin-1 
frag 

7741.71*, osteopontin  
frag  

 
Clostridium 12 
Ruminococcus 246 
Ruminococcus 312 
Ruminococcus 323 
Clostridium 501 
Roseburia 575 
Clostridium 603 
Eubacterium 2766 
 

 
7572.22, hemoglobin  

subunit alpha 
9456.62, apolipoprotein  

c-iii 
14315.2, transthyretin 
10441.2*, protein  

s100-a12 
8320.13*, complement c3  

frag 
9166.42, haptoglobin 
10484.3*, protein  

s100-a12 
11346.6, serum amyloid a 

 protein 
8604.99*, complement  

c4-a frag,  
complement 
c4-a 

8134.06*, complement c3  
frag 

6231.41, secretogranin-1  
frag 

10333.4, proactivator 
polypeptide 

 
AllBac 
Escherichia 8 
Ruminococcus 246 
Ruminococcus 312 
Ruminococcus 323 
Roseburia 575 
Eubacterium 2766 
 

Co-cluster 3 Co-cluster 4 
 
11259.5, serum amyloid  

a protein 
15861.0, hemoglobin  

subunit beta 
9308.28*, c-c motif  

chemokine 13 
13887.0, transthyretin 
11979.7, beta-2- 

microglobulin 
10892.5, serum amyloid  

a protein 
15780.6, haptoglobin 
8604.99*, complement  

c4-a frag, 
  complement  

c4-a 
10831.0*, protein  

s100-a8  

 
Ruminococcus 3 
Clostridium 12 
Bacteroides 832 
Eubacterium 2766 
Faecalibacterium 

2994 
 

 
3895.27, chromogranin-a  

frag 
8182.49, apolipoprotein  

c-ii frag 
9166.42, haptoglobin 
3961.47, neurosecretory  

protein vgf frag 
15846.2, hemoglobin  

subunit beta 
8967.25, apolipoprotein  

a-ii 
3699.01, neurosecretory  

protein vgf frag 

 
Ruminococcus 3 
Clostridium 12 
Bacteroides 832 
Eubacterium 2766 
Faecalibacterium 

2994 
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Table 3.1 (Continued).  Proteins and Microbes in the Identified Co-clusters 

Protein Microbe Protein Microbe 

Co-cluster 5 Co-cluster 6 
 
3979.21, inter-alpha- 

trypsin  
inhibitor  
heavy chain  
h4 frag 

2166.26, amyloid beta 
 a4 protein 

6614.87, apolipoprotein 
c-i 

14272.2, transthyretin 
15846.2, hemoglobin  

subunit beta 
14240.7, transthyretin 
11607.3, serum amyloid  

a protein 
14040.3, transthyretin 
 

 
Clostridium 12 
Ruminococcus 246 
Ruminococcus 312 
Ruminococcus 323 
Roseburia 575 
Clostridium 603 
Eubacterium 2766 
 

 
4793.06, neurosecretory  

protein vgf frag 
11677.0, serum amyloid a 

 protein 
8182.49, apolipoprotein  

c-ii frag 
6646.61, apolipoprotein  

c-i 
6898.5,  transthyretin 
4807.93, neurosecretory  

protein vgf frag 
3699.01, neurosecretory  

protein vgf frag 

 
Clostridium 12 
Ruminococcus 246 
Ruminococcus 312 
Ruminococcus 323 
Roseburia 575 
Clostridium 603 
Eubacterium 2766 
 

Co-cluster 7 Co-cluster 8 
 
11259.5, serum amyloid 

a protein 
7933.18, hemoglobin  

subunit beta 
11979.7, beta-2- 

microglobulin 
9294.05*, platelet basic  

protein 
6417.37, apolipoprotein 

c-i frag, 
apolipoprotein  
c-i 

8949.0,  apolipoprotein 
a-ii 

6628.66, apolipoprotein  
c-i  

 
Escherichia 8 
Ruminococcus 246 
Ruminococcus 312 
Ruminococcus 323 
Roseburia 575 
Eubacterium 2766 
Faecalibacterium 

2994 

 
15861.0, hemoglobin  

subunit beta 
10814.5*, protein s100-a8 
9456.62, apolipoprotein  

c-iii 
11979.7, beta-2- 

microglobulin 
8134.06*, complement c3  

frag 
10831.0*, protein s100-a8 
10333.4, proactivator 
        polypeptide 

 
Clostridium 12 
Ruminococcus 246 
Ruminococcus 312 
Ruminococcus 323 
Clostridium 501 
Roseburia 575 
Clostridium 603 
Eubacterium 2766 

* indicates the immune system molecules. 

 

Using our proposed co-clustering method, 22.6% of the proteins with a database 

match were immune system molecules, compared to only 14%, 12% and 9% for the other 
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methods (nearest shrunken centroids, RCCA, and ANOVA), respectively (see Presley et 

al. 2011 for other method values). These molecules are induced by a host immune 

response initiated by contact with microorganisms and their products, and as such are 

indicators of intimate host-microbe interplay occurring in the habitat under investigation. 

In contrast, the most predominant proteins identified by the other statistical methods (e.g., 

transthyretin, hemoglobin and serum amyloid) were high abundance proteins commonly 

and non-specifically associated with many settings of tissue injury. We therefore 

anticipate that our proposed co-clustering method may yield new and important clues 

regarding upstream host-microbe interplay associated with IBD, enhancing investigations 

of causal relationships in IBD and other multi-factorial disease etiologies.   

 

3.5.2. Biological Hypothesis 

We hypothesize that this approach will provide a more effective strategy for 

identifying causative variables associated with multi-factorial diseases such as IBD. For 

example, consider a multi-factorial disease in which one important factor is the increased 

production of a host immune molecule in response to a growing population of a particular 

microorganism. Because a direct physical or chemical interaction between the microbe 

and the immune molecule exists, the relationship between these variables will be tightly 

linked and relatively easy to detect. However, depending on the etiological complexity of 
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the disease, the levels of the microbe or immune molecule might not be strongly 

correlated to disease status. In general, as the number of factors contributing to an 

etiology increases, the strength of the linkage between the levels of any one specific 

variable and disease status decreases. Moreover, the linkage between the levels of these 

variables and disease status will probably fluctuate through cycles of remission and 

disease activity. However, in both cases, the relationships between the microbial and host 

variables will likely remain the same, and therefore detectable using our approach.   

In a further attempt to elucidate cause from effect, our approach will also enable 

analysis of the strength and numbers of microbe-host relationships. New technologies 

have provided the ability to measure and analyze large numbers of variables, but most of 

these variables are not likely contributing to causation. Instead, differences in their levels 

are simply a response to environmental changes driven by the causative factors. Using 

our approach, one can identify and focus on those microorganisms having the strongest 

and/or the most numerous relationships with the host proteins. We theorize that such 

microorganisms are more likely to be involved in a direct physical or chemical interaction 

with the host, and therefore have a higher probability of being causative agents. 
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3.6. CONCLUSION 

Our proposed co-clustering method showed a significant utility and power in 

handling a data matrix of scatter plots. The idea behind this co-clustering procedure can 

be applied to the higher dimensional clustering when one or more sets of variables needs 

to be analyzed. Moreover, the novel painting metrics we proposed can be easily extended 

to multidimensional clusters of multivariate plots. 

Tukey depth and Simplicial depth are more robust to outliers than Mahalanobis depth. 

The computation complexity associated with these depths under the framework of our 

proposed co-clustering method will be addressed in future work. 

Finally, although these methods were developed to analyze microbe-host interactions, 

we anticipate that this general approach will have utility for a wide range of 

investigations, including those examining relationships among gene expression profiles, 

metabolites, genes and epigenetic parameters. 

 

 



 67 

Chapter 4 

Co-clustering Spatial Data Using a Generalized Linear Mixed  

Model With Application to the Integrated Pest Management 

 

4.1. INTRODUCTION 

Integrated Pest Management (IPM) is a sustainable approach to managing pests by 

combining biological, cultural, physical and chemical tools in a way that minimizes 

economic losses, while simultaneously reducing human health and environmental risks. 

An important characteristic of an IPM program, which we focus on in this chapter, is the 

ability to accurately assess pest density levels. Recent literature has shown that pest 

density levels are influenced by spatial population dynamics. For example, spatial 

analyses have been applied in studies of agricultural pests of attacking lentils (Schotzko 

& O’Keeffe 1989), corn and alfalfa (Williams et al. 1992), cotton (Gozé et al. 2003), and 

grapes (Ifoulis & Savopoulou-Soultani 2006, Ramírez-Dávila & Porcayo-Camargo 2008). 

However, spatial analyses were usually conducted by transforming the count data to 

approximately satisfy the normality assumption (Gotway & Stroup 1997). Generalized 

Linear Mixed Models (GLMMs) (Breslow & Clayton 1993) can directly incorporate 

spatial correlation in count data, and have been used across multiple scientific disciplines, 

including ecological studies of pest populations (Barchia et al. 2003, Bennett et al. 2008, 
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Bianchi et al. 2008, Candy 2000, Elias et al. 2006, Elston et al. 2001, Paterson & Lello 

2003, Takakura 2009). 

Traditional pest assessment applications usually test hypotheses about a parameter 

θ  that reflects the pest density within the whole orchard, such as the mean or median 

number of pests on each tree: 0 :  . :c a cH vs Hθ θ θ θ≤ > , where cθ  is a critical economic 

threshold for which the cost of treatment is equal to the cost of no treatment. Not 

rejecting 0H  would indicate no treatment intervention is required, whereas rejecting 

0H  would call for treatment in an attempt to ward off serious crop loss (e.g., spraying 

pesticides or the release of natural enemies for pest control). 

Often only specific areas of an orchard need treatment because many pest species 

exhibit clumped distributions, and it is within these “hotspots” where pest densities are 

high enough to warrant treatment. In this situation, under the present mode of operation 

pesticides may be applied to an entire orchard when treatment is required, including 

regions of the orchard that do not need treatment. Hence, within an IPM framework that 

is working to reduce unnecessary pesticide applications, a more sophisticated analytical 

procedure is desired to define localized regions with high pest infestations within an 

orchard for treatment. 

There is very little literature about model-based co-clustering, and none of the 

literature has proposed a spatial co-clustering technique that co-clusters data such that 
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any co-cluster only contains a set of spatially consecutive rows and columns. In this 

chapter, we combine a spatial co-clustering technique with a statistical inference method 

to make pest assessments more reflective of their naturally occurring clumped 

distributions. In Section 4.2, we introduce a spatial GLMM to fit count data that exhibits 

spatial correlation within co-clusters. To avoid the high computational intensity 

associated with global optimization, we propose a heuristic optimization algorithm to 

search for a near optimal co-clustering. A sampling strategy is developed to maintain as 

much of the spatial information that is available from the data as possible, and the effect 

of sample size is studied. In Section 4.3, combining the heuristic optimization with the 

statistical inference, we develop a procedure to make assessment of pest density more 

accurate. We demonstrate the utility and power of our proposed procedure through 

simulation studies and apply the procedure to a study of assessing the density of persea 

mite (Oligonychus perseae) in Section 4.4. 

 

4.2. METHODOLOGY 

4.2.1. Spatial GLMM 

4.2.1.1. Model Definition 

Consider an r c×  spatial grid with rows 1 2( , , , )rR R R⋯  and columns 

1 2( , , , )cC C C⋯ , in which each grid point is a potential sampling site. Co-clustering both 
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rows and columns, or simultaneously dividing both rows and columns into a number of 

contiguous and disjoint groups of rows and columns, we may obtain a “checkerboard” 

structure in the spatial grid, within which each block is referred to as a co-cluster. For a 

given co-clustering with n  groups of rows and m  groups of columns as shown in 

Figure 4.1, we use the term “design” to represent the specific row and column groupings 

that is denoted by 

1 1 2 1

1 1 2 1

1 1 1

1 1 1

   {( , , ),( , , ), , ( , , )}

{( , , ),( , , ), , ( , , )},
n n

m m

i i i i i

j j j j j

R R R R R R

C C C C C C
−

−

+ +

+ +×

⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯
 

or more simply by the number of rows and columns within row groups and column 

groups respectively, 1 2 1 1 1 2 1 1( , , , ) ( , , , )n n m mi i i i i j j j j j− −− − × − −⋯ ⋯ . We also use the term 

“nomenclature” to represent the corresponding number of row groups and column groups 

and denote the nomenclature by n m× . Notice that there is a one-to-one mapping 

between “co-clusterings” and “designs”, that is, each co-clustering corresponds to one 

and only one design, and vice versa. However, there exists a many-to-one mapping 

between “designs” and “nomenclatures”, that is, different designs may share the same 

nomenclature, but different nomenclatures must correspond to different designs. 

The spatial GLMM for Figure 4.1 is defined to be: 

( ) | ~  ( , )
ind

j i iY Negative Binomial θ κs
�

, 1,2, , ,i nm= ⋯  1,2, , ;ij n= ⋯  

log( ) ;i isθ µ= +                            (4.1) 

2
1 2( , , , ) ~ (0, );nm nms s s MVN σ′=s I

�
⋯  
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where ( )j iY  is the count number from the thj  sampling unit in the thi  co-cluster, in  is 

the number of sampling units in the thi  co-cluster, iθ  is the conditional (on is ) mean 

associated with the thi  co-cluster, κ  quantifies the amount of overdispersion (relative 

to the Poisson distribution) for the Negative Binomial distribution (with κ = ∞  

corresponding to no overdispersion), µ  is the fixed intercept effect, is  is a random 

effect associated with the thi  co-cluster, and nmI  is the identity matrix of size nm . 

 

 

Figure 4.1.  “Checkerboard” Co-cluster Structure 
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4.2.1.2. Likelihood and Parameter Estimation 

The log-likelihood function corresponding to (4.1) can be derived as: 
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where 'sdx  and 's ( 1,2, , )dw d D= ⋯  are the quadrature nodes and weights, respectively. 

Quadrature with 30D =  is usually enough for a good degree of approximation 

(McCulloch et al. 2008). Then (4.3) can be maximized numerically to obtain the MLEs of 

2( , , )µ σ κ , denoted as 2 ˆˆ ˆ( , , )µ σ κ . 

 

4.2.2. Model-based Co-clustering 

4.2.2.1. Global Optimization 

We define the optimal co-clustering to be the one with the maximum log-likelihood 

among all the possible co-clusterings. To avoid co-clusters that are too small, we specify 

the minimum co-cluster size to be 0 0r c×  ( 0 1r >  and 0 1c > ), in which 0r  is the 

minimum number of rows and 0c  is the minimum number of columns within the 

co-cluster. The global optimization algorithm is as follows: 

1) Select a nomenclature and for each design associated with the nomenclature, fit the 

corresponding spatial GLMM and evaluate 2 ˆˆ ˆ( , , )l µ σ κ . 

2) Repeat Step 1 for all the possible nomenclatures. 

3) The global optimal co-clustering is the design with the maximum value of 

2 ˆˆ ˆ( , , )l µ σ κ . 

In the global optimization algorithm, the number of possible co-clusterings that are 

evaluated can be shown to be: 
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It is trivial that there is only one row grouping for 1n = . Hence the number of 

possible row groupings for all 01 /n r r≤ ≤     is 
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Table 4.1.  Number of Co-clusterings for Global Optimization 

 0 0 6r c= =  0 0 8r c= =  0 0 10r c= =  0 0 12r c= =  

20r c= =  256 36 4 1 

25r c= =  3,025 196 49 9 

30r c= =  38,416 1,936 169 64 

35r c= =  470,596 14,161 1,444 169 

40r c= =  5,769,604 119,025 7,921 1,089 

45r c= =  71,014,329 940,900 47,961 6,084 
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Some numerical examples that illustrate the formula in (4.4) are shown in Table 4.1, 

from which we notice the number of possible co-clusterings may be largely reduced by 

increasing 0r  and 0c , however, it still increases dramatically as r  and c  increase. 

For a relatively large spatial grid such as one of size 80 80× , the number of possible 

co-clustering is 382,241,601 given that the minimum co-cluster size is 12 12× . Therefore, 

exhaustively searching for the optimal co-clustering is usually not feasible in practice. 

 

4.2.2.2. Heuristic Optimization 

To avoid the extremely high computational intensity associated with global 

optimization, we propose the following heuristic optimization algorithm: 

1) Starting with the original spatial grid, fit the corresponding spatial GLMMs for all the 

designs associated with the nomenclatures 1 2×  and 2 1× , and record the 

co-clustering with the maximum 2 ˆˆ ˆ( , , )l µ σ κ  as the “Current Optimal Co-clustering” 

whose log-likelihood is denoted by * 2 ˆˆ ˆ( , , )l µ σ κ . 

2) Starting with the “Current Optimal Co-clustering”, fit the corresponding spatial 

GLMMs for all the designs with the nomenclature that has either one more row group 

or one more column group than the “Current Optimal Co-clustering”, and record the 

co-clustering with the maximum 2 ˆˆ ˆ( , , )l µ σ κ  as the “Potential Optimal 

Co-clustering” whose log-likelihood is denoted by 0 2 ˆˆ ˆ( , , )l µ σ κ . 
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3) If 0 2 * 2ˆ ˆˆ ˆ ˆ ˆ( , , ) ( , , )l lµ σ κ µ σ κ> , replace the “Current Optimal Co-clustering” with the 

“Potential Optimal Co-clustering” and repeat Step 2; otherwise, stop the procedure 

and report the “Current Optimal Co-clustering” as the heuristic optimal co-clustering. 

With the minimum co-cluster size not considered, the number of co-clusterings that 

are evaluated in the heuristic optimization algorithm is  

* * * *[ 1 ( ) / 2]( 1)r c n m n m+ − − + + − , 

where * *n m×  is the nomenclature for the heuristic optimal co-clustering. 

 

4.2.2.3. Efficiency of Heuristic Optimization Algorithm 

To study the efficiency of our proposed heuristic optimization algorithm, we 

performed a simulation study to compare it to the global optimization algorithm. The 

simulation study is as follows: 

1) Specify a nomenclature and a specific design. 

2) Simulate count data for the spatial grid associated with the design selected in Step 1 

using specified parameters. 

3) Apply both the global optimization algorithm and the heuristic optimization algorithm 

to the spatial grid, and for each algorithm, check whether the original design and 

nomenclature can be retrieved or not. That is, we check whether the corresponding 

design and nomenclature of the reported optimal co-clustering from both the global 
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optimization algorithm and the heuristic optimization algorithm are same as the true 

design and nomenclature respectively. 

4) Repeat Step 2–3 a number of times, and for each algorithm, record the success rates 

for the reported optimal design and nomenclature, i.e., the proportions of times that 

we succeed in retrieving the original design and nomenclature. 

For all the simulation studies in this chapter, we considered a 40 40×  spatial grid 

using the design (10,17,13) (13,15,12)×  and hence the nomenclature 3 3× , specified the 

minimum co-cluster size to be 0 0 10 12r c× = × , and performed 1000 simulations for each 

setting. Based on the model fitting analyses discussed in Section 4.4, we chose 6µ =  

and different scenarios for 2( , )κ σ . Throughout this chapter, the number of nodes used in 

the Gauss-Hermite quadrature was selected to be 30D = . The results are summarized in 

Figure 4.2, in which Figure 4.2(a) shows the success rates for the reported design and 

nomenclature for the different 2( , )κ σ  scenarios when 1κ = , and Figure 4.2(b) 

similarly shows the success rates for the case 3κ = . 

In this simulation study, the number of co-clusterings evaluated in the global 

optimization algorithm is 2937, whereas the number of co-clusterings evaluated in the 

heuristic optimization algorithm is around 85 on average. From either Figure 4.2(a) or 

Figure 4.2(b), we may notice the success rate of the design or nomenclature for the 

heuristic optimization algorithm is not that much lower than that for the global 
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optimization algorithm. Also, the success rate of the design or nomenclature increases as 

2σ  increases given µ  and κ , which indicates that greater difference among true 

co-clusters improves the chance of retrieving the true design or nomenclature. Comparing 

Figure 4.2(a) to Figure 4.2(b), we notice the success rate of the design or nomenclature 

increases as κ  increases given µ  and 2σ , meaning that less variability within true 

co-clusters also improves the chance of capturing the true design or nomenclature. 

 

 

(a) 1κ =                               (b) 3κ =  

Figure 4.2.  Heuristic Optimization vs. Global Optimization 

 

4.2.2.4. Heuristic Optimization with Non-Exhaustive Samples 

Concerning time and the cost of human resources, practitioners usually sample less 

than 100% of the grid points from the spatial grid. Next we develop a sampling strategy 
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for this case, and study how the sample size affects the success rates for the reported 

design and nomenclature. 

First note that if we randomly sample a subset of grid points from the spatial grid, it 

is very likely that specific areas of the spatial grid will not be represented in the sample, 

especially when the sampling fraction is small. In this case, we can anticipate that some 

of the resulting co-clusters will not have been sampled and in some applications, such as 

the one we discuss in Section 4.3, this can lead to loss of precision in subsequent 

inference procedures. 

 

 

(a) Even Sampling Scheme              (b) Shifted Sampling Scheme 

Figure 4.3.  Sampling Strategy 
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Recall that the minimum co-cluster size is 0 0r c× . To ensure at least one grid point is 

taken from each co-cluster, we may start with the first grid point (the grid point located in 

the first row and the first column), and sample a grid point every 0r  rows along the row 

dimension and every 0c  columns along the column dimension. By doing so, all the 

sampled grid points are evenly distributed across the spatial grid such that any 0 0r c×  

sub-grid contains at least one sampled grid point, as shown in Figure 4.3(a) in which the 

spatial grid is of size 40 40× , the minimum co-cluster size is 6 6× , and 49 sampled grid 

points are denoted by the black dots. Mathematically, by taking the row dimension as 

axisx − , the column dimension as axisy − , and row and column indices as 

x − coordinates and y − coordinates respectively, the positions of the sampled grid points 

in the Cartesian plane are the intersections of the lines 0 1x ir= +  ( 00,1, , ( 1) /i r r= −  ⋯ ) 

and the lines 0 1y jc= +  ( 00,1, , ( 1) /j c c= −  ⋯ ). 

However, for a co-clustering with a row separation line or a column separation line 

located in the gap between the sampled grid points, moving around this separation line 

within the gap will not change the log-likelihood for the corresponding spatial GLMM. 

For example, consider two designs (10,14,16) (12,13,15)×  and (10,14,16) (12,14,14)×  

for Figure 4.3(a), the only difference between which is a column separation line, one is 

between the 25th  and 26th  column, and the other is between the 26th  and 27th  

column. Both designs lead to the same log-likelihood since there is no sampled grid point 
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coming from the 26th  column. Therefore, the reported optimal co-clustering is not 

unique. 

To increase the chance of retrieving the true design, we propose an alternative 

sampling strategy as shown in Figure 4.3(b), in which each sampled grid point in Figure 

4.3(a) is shifted one more row than the previously sampled grid point along the column 

dimension, and shifted one more column than the previously sampled grid point along the 

row dimension. Mathematically, the positions of the sampled grid points in the Cartesian 

plane are the intersections of the segments x i= ( 1,2, , ;  1 )i r y c= ≤ ≤⋯  and the lines 

0 0( 1) 1y c x jr j= − − + +  ( 0 0( 1) / ( 1) ,j c r c= − − −   0 0 0, ( 1) / ( 1)c r r c− −  ⋯ ). By using 

this sampling strategy, not only does any 0 0r c×  sub-grid contain at least one sampled 

grid point, but also the sampled grid points overall reflect as much of the spatial 

information embedded in the spatial grid as possible. When the sampling fraction is small, 

it is still possible (though less likely) that moving row or column separation lines within a 

gap does not change the log-likelihood in the process of heuristic optimization algorithm. 

In this case, the heuristic optimization algorithm proceeds to further steps by randomly 

choosing from the alternatives that have the same log-likelihood. 

Based on the minimum co-cluster size, the proposed sampling strategy would 

provide the minimum sample size required for co-clustering. For example, the minimum 

sample size in Figure 4.3(b) is 46. When practitioners can afford to sample more grid 
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points, we may increase the sample size by replacing 0r  with a smaller “row step” *r  

( *
01 r r≤ ≤ ) and 0c  with a smaller “column step” *c  ( *

01 c c≤ ≤ ) such that any * *r c×  

sub-grid contains at least one sampled grid point. For example, * * 4r c= =  leads to 108 

sampled grid points in Figure 4.3(b) for the shifted sampling strategy. 

 

 

(a) 2 0.2σ =                            (b) 2 1σ =  

Figure 4.4.  Success Rate of Design vs. Sample Size 

 

We performed a simulation study to evaluate how the sample size affects the success 

rate of the design. Here, we specified 6µ = , 3κ =  and different values for 2σ . For 

each scenario of 2( , , )µ σ κ , we sampled grid points based on both the even sampling 

strategy and the shifted sampling strategy, and chose different values of * *( , )r c  to reach 

the corresponding sample sizes. The results are summarized in Figure 4.4, in which 
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Figure 4.4(a) shows the relationship between the success rate of the design and the 

sample size for 2 0.2σ =  and Figure 4.4(b) for 2 1σ = . From either Figure 4.4(a) or 

Figure 4.4(b), we notice the success rate of the design increases as the sample size 

increases given µ , 2σ  and κ , and the success rate of the design for the shifted 

sampling strategy is much higher than that for the even sampling strategy given µ , 2σ , 

κ  and the sample size. Comparing Figure 4.4(a) to Figure 4.4(b), we may notice the 

success rate of the design increases as 2σ  increases given µ , κ  and the sample size. 

 

4.3. APPLICATION TO PEST DENSITY ASSESSMENT 

4.3.1. Proposed Methodology 

Here we consider an application to assess orchards of fruit-bearing trees for a 

potential pest problem. Our goal is to identify the infested regions within orchards that 

require treatment such as spraying pesticides or, alternatively, the release of natural 

enemies. Trees within orchards are frequently organized in a grid of rows and columns. 

Treating an orchard as a spatial grid, we first take a sample of trees (grid points) from the 

orchard based on the sampling strategy discussed in Section 4.2.2.4, and count pests of 

each sampled tree. Applying our proposed heuristic optimization algorithm to this spatial 

grid, we obtain the heuristic optimal co-clustering of the orchard. We then further analyze 

each co-cluster, as follows, to determine whether treatment is required or not. 
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For each co-cluster of the heuristic optimal co-clustering, we use the model in (4.1) 

to predict its conditional mean exp( )i isθ µ= +  ( 1,2, ,i nm= ⋯ ) using the Best Linear 

Predictor (BLP) 

2 2 2 2
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Proof of (4.5) and (4.6): 

 It is trivial to show that 
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Thus 
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��
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where 
inI  is the identity matrix of size in  and 

inJ  is the in -by- in  matrix with all 

1’s .  
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Hence, from (4.7) and (4.8), we have 
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With 2( , , )µ σ κ  replaced with the MLEs 2 ˆˆ ˆ( , , )µ σ κ  in (4.5) and (4.6), the 

empirical Best Linear Predictor (eBLP) of iθ  is 

2 2 2 2
( )

1

2 2 2

ˆ eBLP( )

ˆˆ ˆ ˆ ˆ ˆ ˆ ˆexp( / 2)(exp( ) 1) exp(2 2 ) / exp( / 2)

   ,    (4.9)
ˆˆ ˆ ˆ ˆ ˆexp( 3 / 2) / 1 exp( / 2)(exp( ) 1)

i

i i

n

j i
j

i

y

n

θ θ

µ σ σ µ σ κ µ σ

µ σ κ µ σ σ
=

=

+ − ⋅ + + + +
=

+ + + + −

∑

ɶ

 



 88 

and the estimated MSE of iθɶ  is 

�
2 2 2

2 2 2

ˆˆ ˆ ˆ ˆ ˆexp(2 )(exp( ) 1)(exp( 3 / 2) / 1)
MSE( )

ˆˆ ˆ ˆ ˆ ˆexp( 3 / 2) / 1 exp( / 2)(exp( ) 1)i
in

µ σ σ µ σ κθ
µ σ κ µ σ σ

+ − + +=
+ + + + −

ɶ .      (4.10) 

Define ( ) �ˆ MSE( )i i i iU θ θ θ= −ɶ ɶ  and let ,iU α  be the 100(1 )thα−  conditional 

percentile of iU  given s
�

. Then a 100(1 )%α−  lower conditional prediction bound of 

iθ  given s
�

 is 

�( ), ,
ˆmax 0, MSE( )i i i iL Uα αθ θ= −ɶ ɶ .                   (4.11) 

For a pre-specified threshold cθ , the decision of “Treat” is made if ,i cL α θ> ; otherwise 

the decision of “Do Not Treat” is made. The value of ,iU α  in (4.11) can be approximated 

from the following parametric bootstrap procedure: 

1) Generate an r c×  spatial grid based on the heuristic optimal co-clustering, with 

insect counts from trees in the co-clusters having independent distributions of 

ˆ ˆ ( , )iNegtive Binomial θ κɶ  ( 1,2, ,i nm= ⋯ ). 

2) Fit the spatial GLMM based on the sampled tree locations to estimate 2( , , )µ σ κ  as 

* 2* *ˆˆ ˆ( , , )µ σ κ . With 2 ˆˆ ˆ( , , )µ σ κ  replaced with * 2* *ˆˆ ˆ( , , )µ σ κ  in (4.9) and (4.10), 

calculate *ˆ eBLP( )i iθ θ=ɶ  and �
*

MSE ( )iθɶ , and then ( ) �
*

* *̂ ˆ MSE ( )i i i iU θ θ θ= −ɶ ɶ ɶ ;. 

3) Repeat Step 1–2 a number of times, say B  times, to obtain ( *(1) *(2) *( ), , , B
i i iU U U⋯ ), 

and approximate ,iU α  by the 100(1 )thα−  percentile of ( *(1) *(2) *( ), , , B
i i iU U U⋯ ). 
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When the number of co-clusters of the heuristic optimal co-clustering is relatively 

large, we may adjust the significance level α  to form the simultaneous lower 

conditional prediction bounds of the conditional means for co-clusters, such as by the 

method of Bonferroni correction or Sidak correction (Olejnik et al. 1997). 

 

4.3.2. Coverage Probability 

In Section 4.3.1, for each co-cluster of the heuristic optimal co-clustering, we may 

also use the model in (4.1) to predict the co-cluster effect is  ( 1,2, ,i nm= ⋯ ) using the 

Best Linear Predictor (BLP) 

2 2
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The Mean Square Error (MSE) of isɶ  is 
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Proof of (4.12) and (4.13): 

For 1,2, , ij n= ⋯ , we have 
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Thus 

              ( ) 2 2, exp( / 2)
ii i nCov s σ µ σ ′= + ⋅y 1
��

,                    (4.14) 

where 1( ) 2( ) ( )( , , , )
ii i i n iy y y ′=y

�
⋯ , and 

in1
�

 is the in -tuple column vector of all 1’s. 

Hence, from (4.8) and (4.14), we have 
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With 2( , , )µ σ κ  replaced with the MLEs 2 ˆˆ ˆ( , , )µ σ κ  in (4.12) and (4.13), the 

empirical Best Linear Predictor (eBLP) of is  is 

2 2
( )

1

2 2 2

ˆ eBLP( )

ˆ ˆ ˆexp( / 2)

   ,                    (4.15)
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and the estimated MSE of isɶ  is 

�
4 2

2
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ˆˆ ˆ ˆ ˆ ˆexp( 3 / 2) / 1 exp( / 2)(exp( ) 1)
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Define ( ) �ˆ MSE( )i i i iV s s s= −ɶ ɶ  and let ,iV α  be the 100(1 )thα−  conditional 

percentile of iV  given s
�

. Then a 100(1 )%α−  two-sided conditional prediction 

interval of is  given s
�

 is 

� �( ), /2 ,1 /2
ˆ ˆMSE( ),   MSE( )i i i i i is V s s V sα α−− −ɶ ɶ ɶ ɶ .              (4.17) 

Intuitively, we may predict the conditional mean exp( )i isθ µ= +  using 
ˆ̂ ˆˆexp( )i isθ µ= + ɶ . 

And a 100(1 )%α−  two-sided conditional prediction interval of iθ  given s
�

 can be 

constructed to be 

�( ) �( ), , /2 ,1 /2
ˆ ˆˆ ˆexp MSE( ) ,   exp MSE( )s

i i i i i i iPI s V s s V sα α αµ µ −
 = + − + − 
 

ɶ ɶ ɶ ɶ .   (4.18) 

The value of , /2iV α  and ,1 /2iV α−  in (4.17) and (4.18) can be approximated from the 

following parametric bootstrap procedure: 
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1) Generate an r c×  spatial grid based on the heuristic optimal co-clustering, with 

insect counts from trees in the co-clusters having independent distributions of 

ˆ ˆˆ (exp( ), )iNegtive Binomial sµ κ+ ɶ  ( 1,2, ,i nm= ⋯ ). 

2) Fit the spatial GLMM based on the sampled tree locations to estimate 2( , , )µ σ κ  as 

* 2* *ˆˆ ˆ( , , )µ σ κ . With 2 ˆˆ ˆ( , , )µ σ κ  replaced with * 2* *ˆˆ ˆ( , , )µ σ κ  in (4.15) and (4.16), 

calculate *ˆ eBLP( )i is s=ɶ  and �
*

MSE ( )isɶ , and then ( ) �
*

* *̂ ˆ MSE ( )i i i iV s s s= −ɶ ɶ ɶ ;. 

3) Repeat Step 1–2 a number of times, say B  times, to obtain ( *(1) *(2) *( ), , , B
i i iV V V⋯ ), 

and approximate , /2iV α  and ,1 /2iV α−  by the 100(1 / 2)thα−  and 100( / 2)thα  

percentile of ( *(1) *(2) *( ), , , B
i i iV V V⋯ ), respectively. 

From Section 4.3.1, a 100(1 )%α−  two-sided conditional prediction interval of iθ  

given s
�

 can be constructed to be 

� �( ), , /2 ,1 /2
ˆ ˆMSE( ),   MSE( )i i i i i i iPI U Uθ

α α αθ θ θ θ−= − −ɶ ɶ ɶ ɶ .         (4.19) 

To compare the coverage probability of (4.18) to that of (4.19), we performed a 

simulation study as follows: 

1) Specify a design for the heuristic optimal co-clustering and set of model parameters. 

Generate the true co-cluster effects is ’s ( 1,2, ,i M= ⋯ , where M  is the number of 

co-clusters of the heuristic optimal co-clustering), and record the true conditional 

means of co-clusters iθ ’s. 
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2) Generate a spatial grid based on the heuristic optimal co-clustering, with insect 

counts from trees in the co-clusters having independent distributions of 

 ( , )iNegtive Binomial θ κ  ( 1,2, ,i M= ⋯ ). 

3) Calculate both ,iPIθ
α  and ,

s
iPI α  for each co-cluster, and check whether the 

corresponding true conditional mean is captured or not. That is, we check whether iθ  

falls in ,iPIθ
α  and/or ,

s
iPI α . 

4) Repeat Step 2–3 a number of times, and the coverage probability of ,iPIθ
α  and ,

s
iPI α  

for each co-cluster may be measured as the proportion of times that ,iPIθ
α  and ,

s
iPI α  

capture the corresponding true conditional mean iθ , respectively. 

 

Table 4.2.  Coverage Probability for 1κ =  

iθ  2407 254 2646 2439 725 46 109 266 400 

,iPIθ
α  90.9% 92.5% 91.9% 91.9% 93.1% 95.6% 94.1% 92.0% 91.9% 

,
s
iPI α  35.9% 39.9% 36.3% 35.1% 42.7% 36.8% 37.4% 48.9% 44.6% 

 

Table 4.3.  Coverage Probability for 5κ =  

iθ  2407 254 2646 2439 725 46 109 266 400 

,iPIθ
α  96.1% 93.9% 94.6% 95.0% 93.1% 94.2% 93.1% 95.0% 92.8% 

,
s
iPI α  17.5% 23.8% 17.1% 17.5% 20.5% 16.8% 18.9% 70.3% 23.6% 
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(a) ,iPIθ
α  

 

 

(b) ,
s
iPI α  

Figure 4.5.  Histogram of Conditional Prediction Interval Width for 1κ =  
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(a) ,iPIθ
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Figure 4.6.  Histogram of Conditional Prediction Interval Width for 5κ =  
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Here, we considered a design (10,17,13) (13,15,12)×  for the heuristic optimal 

co-clustering. We specified 6µ = , 2 2σ =  and different values for κ . 0.10α =  was 

used for the conditional prediction interval, and 1000B =  resampling times were taken 

for the parametric bootstrap procedure. Table 4.2 shows the coverage probabilities of 

,iPIθ
α  and ,

s
iPI α  for 1κ = , and Table 4.3 for 5κ = . We notice that the coverage 

probabilities of ,iPIθ
α  are satisfactorily close to nominal that is 90%, whereas most of the 

coverage probabilities of ,
s
iPI α  are pretty small. The histograms for the width of ,iPIθ

α  

and ,
s
iPI α  are also shown in Figure 4.5 and Figure 4.6, from which we notice there is a 

very large variation for the width of ,
s
iPI α . Overall, ,iPIθ

α  performs better than ,
s
iPI α . 

 

4.3.3. Simulation Study 

To evaluate the proposed pest assessment procedure outlined in Section 4.3.1, we 

performed a simulation study as follows: 

1) Simulate count data for an orchard based on a specified design and set of model 

parameters, and record the conditional means of true co-clusters iθ ’s ( 01,2, ,i M= ⋯ ), 

where 0M  is the number of true co-clusters. 

2) Take a sample from the orchard based on the proposed sampling strategy. Apply the 

heuristic optimization algorithm to the orchard to search for the optimal co-clustering, 

and calculate ˆ
jθɶ  and �MSE( )jθɶ  for each co-cluster of the heuristic optimal 
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co-clustering ( 1,2, ,j M= ⋯ ), where M  is the number of co-clusters of the heuristic 

optimal co-clustering that may be different from 0M . 

3) By comparing iθ ’s ( 01,2, ,i M= ⋯ ) with a pre-specified threshold cθ , the true status 

of trees within the thi  true co-cluster is set to be “Treat” if i cθ θ> , and “Do Not 

Treat” otherwise. By comparing ,jL α ’s ( 1,2, ,j M= ⋯ ) with cθ , the decision status 

of trees within the thj  co-cluster of the heuristic optimal co-clustering is set to be 

“Treat” if ,j cL α θ> , and “Do Not Treat” otherwise. 

4) Investigate each tree of the orchard for consistency between its true status and 

decision status, and assign it into the corresponding combination of categories in a 

confusion matrix shown in Table 4.4. Count the number of trees ( 11 12 21 22, , ,d d d d ) in 

the confusion matrix. 

5) Repeat Step 1–4 a number of times, and update the confusion matrix by accumulating 

the values of (11 12 21 22, , ,d d d d ). 

 

Table 4.4.  Confusion Matrix 

Decision 
 

Do Not Treat Treat 

Do Not Treat 11d  12d  

Truth 
Treat 21d  22d  
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The probabilities of making correct decision may act as the measures to evaluate the 

pest assessment procedure: 

1 11 11 12(Correct decision|Truth is "Do Not Treat") / ( )P P d d d= = + ; 

2 22 21 22(Correct decision|Truth is "Treat") / ( )P P d d d= = + ; 

0 11 22 11 12 21 22(Correct decision) ( ) / ( )P P d d d d d d= = + + + + . 

The same simulation set-up as in Section 4.2.2.4 was used here. Based on the 

analyses discussed in Section 4.4, a critical economic threshold was set at 500cθ = . For 

this study, 0.05α =  was considered for the prediction bound, and 1000B =  

resampling times were taken for the parametric bootstrap procedure. The results are 

summarized in Figure 4.7, from which we notice all of 0P , 1P  and 2P  increase as the 

sample size increases given µ , 2σ  and κ , and increase as 2σ  increases given µ , 

κ  and the sample size. Recall that previously we used the success rate of the design to 

evaluate the performance of heuristic optimization algorithm, which is a very 

conservative measure. For example, a co-clustering would be counted as a failure even if 

only one row or column is mistakenly assigned to a co-cluster that this row or column 

does not belong to. Figure 4.7 shows that the overall probability of making correct 

decision, 0P , is relatively high, even for a small sample size and small 2σ  such as 

2 0.2σ = , which further demonstrates the practical utility of our proposed pest 

assessment procedure. 
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(a) 2 0.2σ =                             (b) 2 1σ =  

Figure 4.7.  Probabilities of Correct Decision 

 

4.4. EXAMPLE 

Persea mite (Oligonychus perseae) is an avocado leaf feeding pest that is native to 

Mexico and is a serious invasive pest in California (USA), Costa Rica, Israel, and Spain 

(Hoddle 2005). When pest populations build to sufficiently high densities leaves begin to 

drop from trees. To avoid premature leaf dropping some type of control procedure may 

be warranted (e.g., pesticide applications, or releases of commercially available natural 

enemies, like predatory mites that eat the pest).  

Mite counts were determined during the Summer of 2009 from sampled trees in three 

commercial avocado orchards located in California, USA. Trees in the orchards were 
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planted on relatively flat terrain according to a grid system consisting of rows and 

columns. Sampled trees from orchard A were arranged on a 5 12×  grid, from orchard B 

on a 5 6×  grid, and from orchard C on a 5 6×  grid. Eight leaves were collected from 

each tree, and summing up the number of mites provided a pest count for each sampled 

tree. 

Applying the heuristic optimization algorithm to orchard A, we obtained the heuristic 

optimal co-clustering as shown in Figure 4.8(a), in which four co-clusters are separated 

by the solid lines. Here the minimum co-cluster size was set to be 0 0 2 3r c× = × . We then 

compared the 95% lower conditional prediction bound of the conditional mean for each 

co-cluster to an established threshold of 500cθ =  (see Maoz et al. 2011). Figure 4.8(b) 

shows three (shaded) co-clusters that require treatment. 

 

 

(a) Heuristic Optimal Co-clustering              (b) Pest Treatment Decision 

Figure 4.8.  Pest Assessment for Orchard A  (The value in parentheses next to each 
co-cluster is the corresponding lower conditional prediction bound of the conditional 
mean.) 
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Applying the same pest assessment procedure to orchard B, we obtained the heuristic 

optimal co-clustering as shown in Figure 4.9(a), in which four co-clusters are separated 

by the solid lines and none of them requires treatment. Similarly, the heuristic optimal 

co-clustering for orchard C is shown in Figure 4.9(b), in which four co-clusters are 

separated by the solid lines and none of them requires treatment. 

 

 

(a) Orchard B                        (b) Orchard C 

Figure 4.9.  Pest Assessment for Orchards B and C  (The value in parentheses next to 
each co-cluster is the corresponding lower conditional prediction bound of the 
conditional mean.) 

 

The analyses shown in Figure 4.8 and Figure 4.9 motivate us to anticipate which 

regions should be identified as infested if we were to merge orchards A, B and C and 

analyze them as one larger orchard. By combining orchards A, B and C with orchard A 

being on the top, orchard B on the bottom left and orchard C on the bottom right, we built 
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a synthetic integrated orchard, called orchard D, that contains 120 trees on a 10 12×  grid. 

Applying the pest assessment procedure to orchard D, we obtained the heuristic optimal 

co-clustering as shown in Figure 4.10(a), in which nine co-clusters are separated by the 

solid lines. The pest treatment decision was then made that the two shaded co-clusters 

located within orchard A require treatment as shown in Figure 4.10(b), which is 

consistent with the results from analyzing orchards A, B and C one at a time. Again we 

specified the minimum co-cluster size to be 0 0 2 3r c× = × , and used 500cθ = . 

 

 

(a) Heuristic Optimal Co-clustering            (b) Pest Treatment Decision 

Figure 4.10.  Pest Assessment for Orchard D (Integrated Orchard) 

 

4.5. DISCUSSION 

Our proposed model-based co-clustering method showed a significant utility and 

power in searching for the optimal co-clustering on a spatial grid. Combining the spatial 
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co-clustering technique with a statistical inference method, our proposed pest assessment 

procedure also showed an excellent performance in identifying the infested regions 

within orchards. Only treating the infested regions instead of the whole orchard can 

reduce pest management costs and minimize potential hazards to the environment. 

Although these methods were developed to analyze the pest data collected from perennial 

tree orchards (i.e., avocado orchards), we anticipate that this general approach will have 

utility for a wide range of investigations involving spatial information. 

 

(a) Spatial Grid Representation                 (b) Tree Representation 

Figure 4.11.  “Tree” Co-cluster Structure 

 

In this chapter, we considered the spatial GLMM with correlation within co-clusters, 

and all the co-clusters are independent to each other. Although this assumption makes 
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much practical sense with our application, we will further consider a spatial GLMM with 

both correlation within co-clusters and correlation between co-clusters as future work. 

Furthermore, more flexible co-cluster structures will be investigated for the spatial 

grid in future work, such as the “tree” co-cluster structure. An example of the “tree” 

co-cluster structure is illustrated in Figure 4.11, in which the spatial grid contains eight 

co-clusters that can reproduce the original spatial grid through a sequence of leaf-to-root 

combinations as shown in Figure 4.11(b). The “Tree” co-cluster structure has been 

applied to the voting data in Hartigan (1972), which is considered the first co-clustering 

paper. 
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Chapter 5 

Discussion 

 

Clustering is rapidly becoming a powerful data mining technique. In Chapter 2 and 3, 

our proposed hierarchical clustering and co-clustering procedure showed a significant 

utility and power in handling a data matrix of scatter plots. In Chapter 4, we developed a 

model-based co-clustering method for spatial data. Specifically, the proposed pest 

assessment procedure that combines the spatial co-clustering with a statistical inference 

makes assessment of pest density more accurate. 

Furthermore, extensive literature has shown a variety of clustering methods and their 

applications in many domains. Depending on how data are organized and how a cluster is 

defined, more clustering techniques may be potentially developed in the future to satisfy 

various needs in applications. 

 

5.1. VECTOR-BASED CLUSTERING 

In Chapter 2 and 3, the difference between a pair of scatter plots is directly measured 

by a quality index between the pair of corresponding bivariate distributions. Another 

possibility is to characterize scatter plots individually such that a scatter plot can be 
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represented by a vector of characteristics. Then the dissimilarity among scatter plots can 

be measured by comparing the corresponding vectors of characteristics. 

Consider a scatter plot that is regarded as the sample from a bivariate distribution 

followed by ( , )X Y ′ . Usually, it is insufficient to use a single characteristic such as the 

Pearson correlation coefficient, which only measures the strength and direction of a linear 

relationship between X  and Y . Functional models offer an attractive tool that is 

flexible enough to capture a wide variety of non-linear association. The simplest function 

model is polynomial regression model and we use it for illustration purpose for the 

discussion below. 

For each scatter plot, a low-order polynomial model may be fit: 

2 3
0 1 2 3i i i i iy x x xβ β β β ε= + + + + , 

where iy  is the value of Y  for the thi  observation, ix  is the value of X  for the thi  

observation, and iε  is the error term with 2~ (0, )
iid

i Nε σ  ( 1,2, ,i n= ⋯ , where n  is the 

number of observations). 

To achieve the optimal fitting, we sequentially test three null hypotheses 

01 3: 0H β = , 02 2: 0H β = , and 03 1: 0H β = . That is, we test each null hypothesis only if 

we do not reject the preceding one. All the possible cases are illustrated in Figure 5.1, 

each of which would produce an estimate of the vector 0 1 2 3( , , , )β β β β β ′=
�

 that act as 

characteristics of the relationship between X  and Y . For example, in the case shown in 
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Figure 5.1(c), we do not reject 01 3: 0H β =  but reject 02 2: 0H β = . Then we fit a 

second-order polynomial regression model to estimate the parameters 0β , 1β  and 2β  

by 0β̂ , 1̂β  and 2β̂ , respectively. Therefore, the vector 0 1 2
ˆ ˆ ˆ( , , ,0)β β β ′  can be used to 

characterize this scatter plot. 
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Figure 5.1.  Polynomial Regression Model 

 

If polynomial regression models do not fit the data well, a nonparametric approach 

may be used. For example, we divide the plotting region (such as the space covering all 

the possible values of X  and Y , i.e., the space with borders at positions of minX , 

maxX , minY , and maxY  as shown in Figure 5.2) into a number of subplots and count the 

number of observations within each subplot. An example with 4 subplots 1Q , 2Q , 3Q  

and 4Q  is presented in Figure 5.2, in which the center of the plotting region is used for 

Y                 Y                 Y                  Y 

X                X                 X                  X 
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dividing the plotting region along both axes. By denoting the number of observations 

within the subplot iQ  by id  ( 1,2,3,4i = ), the relationship between X  and Y  is then 

characterized by the vector 1 2 3 4( , , , )d d d d d ′=
�

. 

 

 

Figure 5.2.  A Nonparametric Approach 

 

 To cluster the data matrix of scatter plots, we may define a one-dimensional or 

multi-dimensional objective function based on vectors of characteristics, either β
�

 or d
�

, 

to measure the quality of a specific clustering, and the optimal clustering would be the 

one that optimizes this objective function. The vector-based clustering method will be 

further investigated in future work. A straightforward approach could be to define a 

one-dimensional objective function that can be incorporated into the current clustering 

methods. 

 

 Q 1           Q 2 

Q 3           Q 4 

X min               X max 

Y max 

 
 

 

Y min 



 109

5.2. EXTENSION TO MULTI-DIMENSIONAL CLUSTERING 

To obtain a greater understanding of gene expression regulation, host-microbe 

interactions, and to track and predict infectious disease outbreaks, it will be necessary to 

identify many of the associations among different variables. Consider the data that are 

arranged in a multi-way contingency table with each cell being a real number, for which 

we would like to simultaneously cluster all the dimensions. Some recent literature reflects 

efforts to extend co-clustering methods to multi-dimensional contexts. However, 

multi-dimensional clustering has not been well studied. 

Information-theoretic clustering is a statistically based clustering technique with 

apparent flexibility to be applied in complicated cases such as multi-dimensional contexts. 

To extend the information-theoretic co-clustering to the general multi-dimensional case, 

we have to define mutual information for cases with more than two random variables. 

Consider three variables X , Y  and Z . Several generalizations of two-way mutual 

information have been proposed, which are listed as follows: 

1) Total Correlation (Watanabe 1960): 

( , , )
( ; ; ) ( , , )

( ) ( ) ( )C
x y z

p x y z
I X Y Z p x y z log

p x p y p z
=∑∑∑  

2) Mutual Information (Yeung 1991): 

( ; ; ) ( ; ) ( ; | ) ( ; ) [ ( ; ) | ]

( , ) ( , ) ( , )
( , , )

( ) ( ) ( ) ( , , )

M Z

x y z

I X Y Z I X Y I X Y Z I X Y E I X Y Z

p x y p x z p y z
p x y z log

p x p y p z p x y z

= − = −

 
=  

 
∑∑∑
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3) Interaction Information (McGill 1954): 

( ; ; ) ( ; | ) ( ; ) [ ( ; ) | ] ( ; )

( ) ( ) ( ) ( , , )
( , , )

( , ) ( , ) ( , )

I Z

x y z

I X Y Z I X Y Z I X Y E I X Y Z I X Y

p x p y p z p x y z
p x y z log

p x y p x z p y z

= − = −

 
=  

 
∑∑∑               

 

Notice that ( ; ; )II X Y Z  is identical to ( ; ; )MI X Y Z  except for a change in sign. 

Therefore, we only focus on multi-dimensional clustering using either ( ; ; )CI X Y Z  or 

( ; ; )MI X Y Z  in the following discussion. 

It is trivial to prove ( ; ; ) 0CI X Y Z ≥ . By using CI , the optimal three-dimensional 

clustering is the one that leads to the largest mutual information among the cluster 

random variables, ˆ ˆ ˆ( ; ; )CI X Y Z , or equivalently, one that minimizes the difference (loss) 

between the mutual information among the original random variables and the mutual 

information among the cluster random variables, ˆ ˆ ˆ( ; ; ) ( ; ; )C CI X Y Z I X Y Z− . 

( ; ; )MI X Y Z  may be negative, whose interpretation is that the mutual information 

between any two of the random variables X , Y  and Z  increases when the other 

random variable is given, that is, any one of the random variables X , Y  and Z  

affects the dependency between the other two random variables. By using MI , the 

optimal three-dimensional clustering is the one that minimizes the difference (absolute 

value) between the mutual information among the original random variables and the 

mutual information among the cluster random variables, ˆ ˆ ˆ( ; ; ) ( ; ; )M MI X Y Z I X Y Z− . 
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Our preliminary examples have shown that neither CI  nor MI  performs 

consistently better than the other one. In some examples we have seen, MI  is able to 

achieve the real optimal clustering whereas CI  has not ever been able to do that yet. An 

example for which both CI  and MI  fail to achieve the real optimal clustering is 

illustrated below. Figure 5.3 shows a joint probability distribution ( , , )p x y z  among X , 

Y  and Z  each taking three levels of values, where X , Y  and Z  are pairwise 

independent but not mutually independent. Suppose two clusters are to be obtained for 

each dimension. By observing the data pattern, the real optimal clustering should be 

{ }1 2 3ˆ { },{ , }x x x x= , { }1 2 3ˆ { },{ , }y y y y=  and { }1 2 3ˆ { },{ , }z z z z= . However, by using either 

CI  or MI , the obtained optimal clustering is { }1 2 3ˆ { },{ , }x x x x= , { }1 2 3ˆ { , },{ }y y y y=  

and { }1 2 3ˆ { },{ , }z z z z= . 
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Figure 5.3.  A Three-dimensional Example 
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Figure 5.4.  Information-theoretic Measures 

 

Since the performance of existing definitions of multi-way mutual information is not 

consistent, we are led to seek other information measures to carry out 

information-theoretic multi-dimensional clustering. Analogous to Venn Diagrams in set 

theory, information-theoretic measures can be geometrically represented for the 

three-dimensional case as shown in Figure 5.4 (Yeung 1991), which may be used to 

motivate alternative information-theoretic measures, including for example, the following 

alternative measure of mutual information: 

2

, ,

( ; ; ) ( ; | ) ( ; | ) ( ; | ) ( ; ; )

[ ( , , )]
                  ( , , )

( , ) ( , ) ( , )

D M

x y z

I X Y Z I X Y Z I X Z Y I Y Z X I X Y Z

p x y z
p x y z log

p x y p x z p y z

= + + +

 
=  

 
∑

 

It is easy to prove ( ; ; ) 0DI X Y Z ≥ . By adopting the associated criterion for defining the 

optimal clustering, a three-dimensional clustering method can be studied in future work. 

 
                                                  ( )                ( | , )

            ( ; | )                                                   ( ; | )

( | , )                      ( )         
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