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Key Points 

 Decomposition of InSAR data reveals spatial variations of uplift rates on folds in the 

foreland of the Tian Shan and Pamir in NW China 

 Piece-wise linear fits to geodetic and geologic uplift rates constrain temporal 

evolutions of uplift rates on five active folds 

 Our observations confirm propagation of deformation from the Tian Shan and Pamir 

mountain fronts into the Tarim Basin 
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Abstract 

Understanding the evolution of continental deformation zones relies on quantifying spatial 

and temporal changes in deformation rates of tectonic structures. Along the eastern boundary 

of the Pamir-Tian Shan collision zone, we constrain secular variations of rock-uplift rates for 

a series of five Quaternary detachment- and fault-related folds from their initiation to the 

modern day. When combined with GPS data, decomposition of interferometric synthetic 

aperture radar time-series constrains the spatial pattern of surface- and rock-uplift on the 

folds deforming at decadal rates of 1-5 mm/y. These data confirm the previously proposed 

basinward propagation of structures during the Quaternary. By fitting our geodetic rates and 

previously published geologic uplift rates with piecewise-linear functions, we find that 

gradual rate changes over >100 ky can explain the InSAR observations where changes in 

average uplift rates are greater than ~1 mm/y among different time-intervals (~10
1
, 10

4-5
, 10

5-

6
 y). 

1 Introduction 

Deformation rates along individual tectonic structures underpin our understanding of the 

dynamics of continental deformation zones and their seismic hazards. Whereas the mechanics 

for many types of folds and faults are well understood [Suppe, 1983; Suppe and Medwedeff, 

1990; Epard and Groshong Jr, 1995; Poblet and McClay, 1996; Allmendinger, 1998; Li et 

al., 2013; Yan et al., 2016], commonly unknown temporal and spatial differences in 

deformation rates complicate the reconstruction of the kinematic history of deformation 

zones. After initiation, faults and folds tend to lengthen with annual rates of lateral 

propagation ranging from a few millimeters to several centimeters [Burbank et al., 1996; 

Jackson et al., 2002; Chen et al., 2007], until they encounter barriers that pin the tips of the 

structure [Dawers et al., 1993; Manighetti et al., 2001; Amos et al., 2010]. Commonly, a near 

block-like pattern of incremental (or instantaneous) slip is assumed with spatially constant 

slip rate along the structure, rapidly decreasing to zero at the tips [Manighetti et al., 2001; 

Amos et al., 2010]. Nonetheless, block-like incremental slip is not necessary and spatially 

varying deformation rates have been shown to occur, for example, along laterally tilting folds 

[Li et al., 2013], propagating structures [Amos et al., 2010] or segmented ones [Dawers et al., 

1993; Anders and Schlische, 1994; Davis et al., 2005]. In addition to spatial variations of slip 

rates, deformation varies temporally. Changes in the distribution of strain across fault zones 

and mountain ranges [Thompson et al., 2002; Oskin et al., 2007], foreland propagation of 
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deformation [Hubert-Ferrari et al., 2007; Heermance et al., 2008], propagation of asperities 

along structures [Hilley and Arrowsmith, 2008], loading or unloading of the crust by water or 

ice [Hampel et al., 2007], or reorganization of strain across plate boundaries [Friedrich et al., 

2003; Allen et al., 2004; Sobel et al., 2006; Molnar and Stock, 2009; Clark, 2012] can cause 

decadal to million-year variations in slip rates. Moreover, stochastic or cyclic temporal 

variations in deformation rates can occur due, for example, to the clustering of strain release 

[Grant and Sieh, 1994; Marco et al., 1996; Friedrich et al., 2003; Meade and Hager, 2004; 

Dolan et al., 2007; Oskin et al., 2008], seasonal water loading [Bettinelli et al., 2008], or 

changes throughout a seismic cycle [Thatcher, 1984; Cattin and Avouac, 2000; Hilley et al., 

2009]. 

Slip-rate variations of single structures on geologic timescales are inferred from rate 

measurements across multiple time-intervals and, in the absence of additional evidence, are 

commonly described as step-like changes [Hubert-Ferrari et al., 2007; Oskin et al., 2007; 

Heermance et al., 2008; Gold and Cowgill, 2011; Gold et al., 2017]. Whereas measuring 

gradual rate-changes requires a data density that is commonly not available [Gunderson et 

al., 2014], an assumed functional form can typically be fitted to existing measurements 

[Gourmelen et al., 2011]. 

From a decomposition of interferometric synthetic aperture radar (InSAR) time-series 

and GPS data, we constrain patterns of surface-uplift rates for a series of Quaternary 

contractional structures along the rapidly deforming eastern boundary of the Pamir-Tian Shan 

collision zone. Assuming uplift of sparsely eroded surfaces to be equivalent to rock uplift, 

these data are then compared with geologic rates. In addition to fitting temporal changes in 

uplift rates with step functions, we impose piece-wise linear functions of temporal uplift-rate 

changes and explore a range of possible alternative velocity variations with a Monte Carlo 

model . 

2 Geologic setting 

The Pamir and Tian Shan jointly accommodate 20-25 mm/y: nearly 50% of the total Indo-

Asian shortening rate [Abdrakhmatov et al., 1996; Zubovich et al., 2010] (Fig. 1). About 

11±3 mm/y of present-day shortening is taken up across the ~70±10-km-wide boundary 

between the two orogens (Figs. 1a, b). At the eastern edge of the Pamir, deformation along 

the Main Pamir Thrust appears to have mostly ceased [Chen et al., 2011; Sobel et al., 2011; 

Thompson et al., 2015] and stepped northward, where it interferes with the southern Tian 
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Shan (Fig. 1c). Here, the Pamir Frontal Thrust (PFT), the Mingyaole fold, and the Mushi fold 

accommodate a total Late Quaternary shortening of ~6-7 mm/y [Li et al., 2012; 2013; 2015]. 

To the east of the PFT, deformation along the Tarim basin-Tian Shan boundary has stepped 

southward from the South Tian Shan thrust into the Kashi foreland basin over the past 25 My, 

causing the initiation, growth, and abandonment of a series of southward-younging structures 

(Fig. 1c) [Heermance et al., 2008]. Modern deformation occurs on a series of anticlines: the 

Kashi, Atushi, and Mutule folds (Fig. 1c) that have each accommodated >2-3 mm/y of 

shortening since their initiation 1-2 My ago [Scharer et al., 2004; Chen et al., 2007]. 

Structures to the north of these folds, such as the Keketamu and Tashipisake anticlines, lack 

deformed Late Quaternary surfaces and appear to be mostly inactive [Heermance et al., 

2008]. 

3 Methods and data 

InSAR time-series analysis of Envisat-ASAR data from two ascending tracks (55 and 284) 

and two descending tracks (191 and 420) was performed using the Stanford Method for 

Persistent Scatterers (StaMPS) [Hooper et al., 2004; 2012] (Fig. S1, Table S1). 

Interferograms from the Envisat scenes acquired between 2003-2010 were generated using 

the ROI_PAC [Rosen et al., 2004] and DORIS [Kampes and Usai, 1999] packages, 

topography was removed with a 90-m-resolution SRTM digital elevation model [Farr et al., 

2007], and atmospheric phase delays were corrected with the Toolbox for Reducing 

Atmospheric InSAR Noise (TRAIN) [Dee et al., 2011; Bekaert et al., 2015a; 2015b] (Figs. 

S2-4). An interpolated northward velocity field from published GPS data [Zubovich et al., 

2010], together with ascending and descending InSAR time-series, was then used to reference 

the InSAR velocities to stable Eurasia and to decompose the geodetic data into eastward and 

vertical components (Figs. S3-4) [Hussain et al., 2016a; 2016b] (see Text S1 for additional 

detail). In the remainder of the analysis, we use only the decomposed vertical velocity field as 

a measure of absolute decadal surface-uplift rates. Peak decadal surface-uplift rates were 

measured on 10-km-wide swath profiles plotted approximately perpendicular to the strike of 

thrust faults and/or the trend of fold axes (Figs. S5-7, Table S2). The weighted arithmetic 

means and corresponding standard errors were calculated in 1-km bins along the length of the 

10-km-wide swath profiles. Decadal peak-uplift rates were then specified as the maximum of 

the binned InSAR velocities across each structure. Where the InSAR data are coherent, 

significant erosion or sedimentation is unlikely. Therefore, the resulting decadal surface-
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uplift rates of major tectonic structures are assumed to largely reflect absolute rates of rock 

uplift with respect to stable Eurasia.  

We compiled published initiation ages (0.4-1.6 My) and measured total structural relief 

(0.6-5.0 km) on published structural cross sections for the Mingyaole [Chen et al., 2005; Li et 

al., 2015], Kashi [Chen et al., 2007], Atushi [Scharer et al., 2004; Heermance et al., 2008], 

Mushi [Li et al., 2013; Thompson, 2013], and Mutule [Bufe et al., in revision] folds (Table 

S3, Fig. S8). As an exception, initiation of the Mutule fold, was estimated from the published 

initiation age of the Atushi fold to the west [Chen et al., 2002; Scharer et al., 2004; 

Heermance et al., 2008] on the basis of interference between the two structures (Table S3). 

To account for uncertainties in the position of the outermost hinges and strata thickness, we 

assign a 2σ uncertainty of ±500 m to all measurements of total structural relief estimated 

from geologic cross-sections (Table S3, Fig. S8). For each structure, total rock uplift was then 

divided by the initiation age to obtain an average uplift rate since initiation of growth (Table 

S3). Finally, we compiled published ages (8.5-80 ky) and heights above the modern river (15-

130 m) for uplifted Late Quaternary fluvial deposits that are largely unaffected by erosion 

and can be assumed equivalent to record both rock and surface uplift [Heermance et al., 

2008; Li et al., 2012; Li et al., 2013; Thompson, 2013; Li et al., 2015; Bufe et al., in revision] 

(Table S3). For terraces with ages obtained through both fine-grained quartz optically 

stimulated luminescence [Li et al., 2012] and cosmogenic radionuclide (CRN) dating 

[Thompson, 2013], we used the CRN dates, because they have been shown to be more 

reliable in this region [Thompson, 2013].  

A comparison of uplift rates among multiple structures assumes a common base level. 

Geologic uplift rates of thrust faults and folds are calculated, where possible, with respect to 

the surrounding basins (e.g. Fig. S8). Modern rivers serve as a references for river-terrace 

heights used to estimate uplift rates of folds at kiloyear timescales. These references are 

assumed to be equivalent to the reference of the modern river. In turn, InSAR vertical 

velocities have to be recalculated with respect to the basins in the study area. To this end, we 

estimate the vertical motions of these basins with respect to stable Eurasia using swath 

profiles drawn perpendicular to the strike of major structures (Figs. S6-7). The estimated 

background uplift rate of 1.5±0.5 mm/y is fairly consistent across the study area and is 

subtracted from the InSAR rates when they are compared to geologic uplift rates (Table S2).  
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4 Results 

The decomposition of the InSAR time series clearly resolves 10- to 20-km-wide zones of 

surface uplift centered along nearly all structures in the study area that are interpreted or 

known to have been active during the Quaternary (Fig. 2). These vertical velocities on active 

structures are smooth across track boundaries (Fig. 2) and consistent with a recent 

independently-published decomposition of InSAR in the region [Qiao et al., 2017]. 

Systematic correlation between InSAR velocities and topography can arise from atmospheric 

phase delays. The lack of correlation of vertical InSAR velocities with many major 

topographic features (Figs. 3, S6-7), however, supports the interpretation of a tectonic origin 

for those structures that do show elevated surface-uplift rates. The large, elliptical uplift 

signal along the eastern part of the Keketamu anticline north of Atushi (Fig. 2) is present in 

only one track (Figs. S3-4) and could arise from atmospheric phase delays. Alternatively, the 

signal could be linked to water injection into the Akmomu gas field (Fig. 2). Significant 

subsidence centered on the cities of Kashi and Shule (Fig. 2) is probably due to groundwater 

withdrawal.  

We find surface-uplift rates are highest along the Pamir Frontal Thrust (PFT), the Mushi 

anticline, and the Kashi anticline (Fig. 2). Our data might indicate ongoing uplift along the 

South Tian Shan Thrust, but the Main Pamir Thrust, as well as the Tian Shan foreland north 

and east of the Atushi fold (including the Mutule fold), appear to be inactive (Fig. 2). Modest 

earthquakes (M ≤5) that occurred between 2003-2010 and depths of 9-10 km (Fig. 2) are 

neither known, nor expected to have produced surface displacements larger than the 

sensitivity of the InSAR (>4-10 cm over 7 years) [Bonilla, 1982; Biasi and Weldon, 2006]. 

Whereas slip-rate variations during a seismic cycle could introduce uncertainties [Thatcher, 

1984; Cattin and Avouac, 2000; Hilley et al., 2009], the observed uplift pattern is consistent 

with constraints on longer-term geologic uplift rates (Fig. 3), as well as inferred basinward 

propagation of the deformation front over the past 25 My [Heermance et al., 2008; Chen et 

al., 2011; Thompson et al., 2015].  

Six-km-wide swaths aligned along the axis of each active structure reveal significant 

spatial variations in decadal surface-uplift rates (Fig. 3). The Kashi and Atushi folds show a 

broad, bow-shaped pattern with peak rates close to their centers (Fig. 3). Surface-uplift rates 

decrease at the tips of the folds with a tip-zone spanning 10-25% of the length of the 

structure. Similar to these two structures, the Mushi fold also shows peak surface-uplift rates 

close to its center, but the peak is narrower and higher. Whereas post-seismic effects from the 
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nearby 1985 M7.4 Wuqia earthquake to the west of Mushi (Fig. 2) cannot be ruled out, the 

gradual decrease of surface-uplift rates toward the eastern tip of the fold is consistent with 

observed lateral tilting of fluvial terraces since at least 130 ka [Li et al., 2013]. In contrast to 

these well-defined patterns, spatial surface variations of uplift rate along the PFT and the 

Mingyaole fold are more complex. Uncertainties in the InSAR data, interference of 

structures, and fault segmentation could cause these variations. Thus, possibly, the tips of the 

Mingyaole fold uplift faster due to interference with the Kashi fold (to the east) and the PFT 

(to the west).  

Assuming that peak decadal surface-uplift rates on major structures are dominated by 

rock-uplift, as described above, we find that average rock-uplift rates measured (1) since 

fold-initiation, (2) across the last 10-80 ky, and (3) across a 7-year (InSAR) interval have 

either stayed constant or have increased along frontal structures: the PFT and the Mushi and 

Kashi folds (Figs. 4, S9). In contrast, rock-uplift rates on the more hinterland Mutule and 

Atushi folds have decreased (Figs. 4, S9). Such spatial patterns are consistent with basinward 

propagation of peak strain rates [Heermance et al., 2008; Thompson et al., 2015].  

5 Monte Carlo modeling of gradually changing rock-uplift rates 

Changes in average rock-uplift rate measured across different time intervals, that are each 

long enough to average across several earthquakes, are commonly obtained by linearly 

connecting single measurements of cumulative rock-uplift  [e.g. Gold and Cowgill, 2011] 

(Fig. S10a). Such fits result in step-like changes in instantaneous uplift rates (Fig. S10b). 

Sometimes, abrupt velocity changes can be linked to climatic or geologic triggers [Hampel et 

al., 2007; Gold et al., 2017]. Even if such changes occurred, however, their precise timing is 

difficult to capture where few sample ages exist. Moreover, gradual changes in deformation 

velocity of single structures can occur [Gourmelen et al., 2011], for example, from the lateral 

propagation of a structure with instantaneous rock-uplift rates that drop smoothly to zero 

toward the tip (Figs. 3a, c-d, S10c-d). Even structures lacking propagating tips might 

accelerate after initiation and decelerate toward the cessation of deformation [Gourmelen et 

al., 2011] or vary in a complex sequence of accelerations and decelerations [Chevalier et al., 

2005; Gunderson et al., 2014]. Such gradual changes can only be detected in high-resolution 

uplift-rate datasets obtained, for example, from well-dated terraces [Bourgois et al., 2007].  

An unlimitied number of functions can be fit to discrete rock-uplift data calculated across 

different time-intervals (Fig. S10a). Therefore, in addition to fitting step functions to our data, 
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we explore the range of plausible gradual uplift-rate evolutions for five selected structures by 

imposing a geologically reasonable piecewise-linear function with an initial phase of 

velocities increasing from zero (v3 = 0) at the time of initiation (t3) to an intermediate value 

(v2) at some unknown time (t2) (Fig. 4a), followed by a time of steady velocities (v1 = v2), and 

either an increase or decrease at time (t1) to the final velocity (v0) at the modern day (t0 = 0) 

(Fig. 4a). Using a Monte Carlo approach, we randomly pick a parameter set for each of at 

least 10
5
 iterations (Fig. 4, Table S4) and evaluate the goodness of fit of the resulting uplift-

rate scenario to the geologic data (See text S2 for additional details). We note, that t1 and t2 

are each allowed to be zero, equal to t3, or equal to each other, which includes a range of 

scenarios such as step functions (Fig. 4b). However, only one time-period is allowed across 

which velocities are constant, and functions with more complex step-changes cannot be fit 

with our approach. This limit may bias the model toward fitting gradual rate changes in 

situations for which the three, mean uplift rates define inconsistent rate changes through time, 

e.g., a velocity increase followed by a decrease (Fig. 4f) or vice versa (Fig. 4g).   

For all folds, curves within 95% of the maximum probability show a variety of likely 

uplift-rate scenarios (Fig. 4, S11). For structures for which average rock-uplift rates 

calculated across different time-intervals are similar in magnitude (within <~1 mm/y), near 

step-like functions of instantaneous uplift rates yield the best fits, but initial acceleration 

periods of a few 10s-100s of kiloyears are not unlikely (Central Kashi: Fig. 4e, Fig. S12a). In 

contrast, where average uplift rates measured across Late Quaternary timescales have 

increased compared to the rate since initiation of the structure, a more gradual change in 

uplift rate through time is predicted by a higher fraction of model solutions (Mushi, 

Mingyaole, Eastern Kashi: Figs. 4c-d, 4f, S12b). Finally, where uplift rates have decreased 

significantly over time, a rapid increase in velocities, followed by a gradual decrease are 

among the best solutions of the model (Atushi-Mutule: Figs. 4g-i, S12c).  

6 Discussion 

In this study, decomposition of InSAR data resolves surface-uplift rates of individual, ≤10-

km-wide structures over the past decade along the Tian Shan-Pamir interface in 

unprecedented detail. The correlation of decadal surface-uplift rates with geologic outlines of 

the structures, the absence of a strong correlation between elevation and InSAR velocities, 

the consistency of peak surface-uplift rates across track boundaries, and their smooth 

variation along the structure support the interpretation of a tectonic origin for the InSAR 
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signal on the PFT, and the Mushi, Mingyaole, Kashi, Atushi, and Mutule folds (Fig. 2). The 

consistency between the broad spatial patterns of geologic and geodetic uplift rates on the 

structures (Fig. 3) suggests that large-scale (>10s of kms) patterns of decadal velocities can 

inform longer-term trends, although it remains problematic to assess the effects of short term 

velocity variations due, for example, to changes across an earthquake cycle, with such a 

simple rate comparison. Our data confirm previous findings of the basinward propagation of 

tectonic activity and lend further support to the assumed, but debated, inactivity of the Main 

Pamir Thrust [Sobel et al., 2011; Li et al., 2012; Thompson et al., 2015] and of the northern 

Tian Shan foreland [Heermance et al., 2008].  

The background surface uplift rate of 1.5±0.5 mm/y (Figs. 2, S6-7) arises from tying the 

InSAR data to the stable Eurasian reference frame using GPS data (Text S1).  Because the 

rate is within uncertainties of the GPS vertical velocities (>2 mm/y), its significance remains 

unknown. Here, for all analyses, the background rate is subtracted from the InSAR 

measurements and does not affect the comparison between InSAR and geologic rates. 

The arc-shaped spatial pattern of decadal surface- and rock-uplift rates along the Kashi, 

Atushi, and Mushi folds with “tip zones” in which vertical velocities are smoothly dropping 

to zero (Fig. 3) is inconsistent with a pure block-shape model of incremental surface uplift 

[Manighetti et al., 2001]. Instead, it favors interpretations in which uplift rates change more 

gradually along strike (Fig. S10). Where such gradual, along strike changes occur, lateral 

propagation of “tip zones” can lead to temporal changes of instantaneous uplift rates for any 

point through which the tip propagates (Fig. S10c-d). Lateral propagation rates of ~40 and 

~50 mm/y have been inferred for the tips of the Kashi and Atushi folds, respectively [Scharer 

et al., 2004; Chen et al., 2007]. Thus, with a tip zone length of 10±5 km and assuming that 

this spatial pattern was constant through time, a point on the Kashi or Atushi fold would be 

expected to accelerate for at least 200±100 ky or 250±130 ky, respectively. Such time scales 

of acceleration are consistent with the modeled uplift-rate scenarios (Fig. 4), although some 

of the most probable fits to the Atushi data predict shorter periods of acceleration (Figs. 4f-g).  

Where structures interfere (Mingyaole fold), are segmented (PFT), or tilt laterally (Mushi 

fold), the spatial pattern of decadal uplift rates is more complicated (Fig. 3) and such 

complexity makes the interpretation of a “representative” modern velocity challenging. 

Moreover, with only three data points for uplift rates across a time interval of 0.5-1.6 My on 

any given fold, considerable uncertainties remain on a fold’s temporal uplift-rate evolution. 

Nevertheless, our modeling framework yields ranges of probable temporal variations in 
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uplift-rates that are distinct for different structures and can constrain a range of likely 

kinematic evolution of contractional structures. 

7 Conclusions 

With a decomposition of InSAR data, we obtain insights into the spatial patterns of decadal 

surface- and rock-uplift rates along rapidly deforming contractional structures at the Tian 

Shan-Pamir interface and observe spatial patterns of fold uplift that are inconsistent with 

block-like deformation patterns. We compile published geologic uplift rates and use step-

wise and piecewise-linear fitting of geodetic and geologic uplift rates to reveal temporal 

patterns of deformation in the study area. Our observations confirm the propagation of 

deformation away from the mountain fronts and into the Tarim Basin over the past 2 My.  
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9 Figures 

 

Figure 1: Overview of the study area. (a) Regional map of the Pamir and Tian Shan with 

horizontal GPS velocities [Zubovich et al., 2010]. (b) Northward component of the GPS 

velocity in the 400 km-wide swath along A-A’. (c) Digital elevation model of the study area 

showing a series of faults and folds in the foreland of the Tian Shan and Pamir. Late 

Quaternary activity of structures (black and white lines) is based on geologic evidence 

published in previous studies [Chen et al., 2007; Heermance et al., 2008; Li et al., 2012; Li et 

al., 2013; Li et al., 2015; Thompson et al., 2015]. Earthquake locations are from the USGS 

earthquake catalog except for the Wuqia event [Feng, 1994] and the Kashi event [Kulikova, 

2015]. A: Anticline; T: Thrust.  
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Figure 2: Decadal uplift rates from InSAR time-series analysis of Envisat data for two 

ascending, and two descending tracks. PFT: Pamir Frontal Thrust; MPT: Main Pamir Thrust; 

MaT: Mayikake Thurst; MuT: Muziduke Thrust; STST: South Tian Shan Thrust. A: 

Anticline.   
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Figure 3: Along-strike changes in rock-uplift rates. (a-e) Six-km-wide swath profiles along 

strike of the study area’s major active structures show decadal vertical velocities and 

associated topography. Mean and standard error of the InSAR velocities are calculated in 1-

km bins (approximate spacing of points in the InSAR velocity map). Yellow horizontal bars 

mark background uplift rate of 1.5±0.5 (±2σ) mm/y (see text and Figs. S6-7). Peak geodetic 

uplift rates (±2σ) were measured on these same swaths (Figs. S6-7). Yellow and green points 

are geologic uplift rates compiled from the published literature (Table S3). For illustration 

purposes, the background uplift rate in the InSAR velocity field was added to the geologic 

rates (Table S3). (f) Overview map with profile locations and locations where geologic uplift 

rates were calculated. A: Anticline; T: Thrust.  
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Figure 4: Results from uplift-rate modeling on Mingyaole, Mushi, Kashi, Atushi, and 

Mutule. (a) Conceptual sketch showing all model parameters. (b) Examples of functional 

forms allowed by the model. (c-i) Results from modeling showing all scenarios with 

probabilities within 5% of the maximum probability (black lines). The single most likely 

scenario is shown in red. The next nine most likely scenarios are shown in white. A step-

function fitS10 is shown in blue. Green and yellow data points are average geologic rock-

uplift rates from the published literature (Table S3), blue data points are average geodetic 

rock-uplift rates from this InSAR study (Table S2). All average rates are plotted at the time 

equivalent to the length of the averaging period. Ntotal is the total number of iterations run and 

N95% is the number of iterations within the 95% confidence interval. The yellow bar ranging 

to 130 ky denotes the range of the Late Quaternary. All model fits can also be plotted as 

cumulative displacement versus time (Fig. S11).   
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