
Lawrence Berkeley National Laboratory
LBL Publications

Title
Quarkyonic or baryquark matter

Permalink
https://escholarship.org/uc/item/3nw8h7gg

Authors
Koch, Volker
Vovchenko, Volodymyr

Publication Date
2025-06-01

DOI
10.1016/j.jspc.2025.100025
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3nw8h7gg
https://escholarship.org
http://www.cdlib.org/


Quarkyonic or Baryquark Matter
Volker Koch, Volodymyr Vovchenko

Nuclear Science Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
Department of Physics, University of Houston, 3507 Cullen Blvd, Houston, TX, 77204, USA

A B S T R A C T

It has been proposed that at high densities nuclear matter will consist of a Fermi sea of quarks
surrounded by a small shell of confined baryon at the large momenta, so called Quarkyonic matter.
In this contribution we will discuss an alternative configuration, dubbed Baryquark matter, which
in a sense is a complement of Quarkyonic matter. Baryquark matter consists of a Fermi sea of
confined baryons surrounded by a shell of deconfined quarks. Following Ref. [12] we will show that
for certain (simplified) implementations Baryquark matter is energetically favored over Quarkyonic
matter. We will then briefly discuss how the inclusion of the quark structure of nucleons will lead to
a configuration which resembles the picture of Quarkyonic matter.

1. Introduction
The concept of quarkyonic matter [16], inspired by the

expected QCD properties in the large 𝑁𝑐 limit, is a realiza-
tion of quark-hadron duality where both degrees of freedom
appear as quasiparticles. Quarkyonic matter may be viewed
as a mixed phase in momentum space consistent with the
Pauli exclusion principle. Its main feature is that excitations
around the Fermi surface are baryonic, which is realized by
imposing a shell structure in the momentum space: a Fermi
sea of quasi-free, “deconfined” quarks surrounded by a shell
of confined baryons (see Fig. 1a).

Such a momentum shell structure may occur dynam-
ically [17]: at small baryon densities, where nuclear in-
teractions play a small role, the matter is purely baryonic
since at fixed baryon density the energy per baryon of a
free gas of nucleons is smaller than that of constituent
quarks. At higher baryon densities, however, the hard-core
repulsive interactions between nucleons become important
and eventually make the existence of a quark Fermi sea
more favorable relative to pure nucleon matter [10]. And,
as the density increases, the quark Fermi sea becomes more
and more dominant with the confined baryons residing in
an increasingly thin baryon shell [10, 17]. The resulting
equation of state exhibits a soft-hard evolution, with the
speed of sound containing a peak exceeding the conformal
limit, in line with neutron star phenomenology [1, 6, 22, 23].
Various extensions and applications of this picture were
studied in recent years [2–5, 8, 9, 20, 21, 24], as well as how
such a state of matter may emerge [13, 14, 18].

It is noteworthy, that the dynamical generation of the
momentum space structure considered in Refs. [10, 17] has
been performed under the assumption that a baryon Fermi
shell on top of a quark Fermi sea is the only possible real-
ization of the Pauli exclusion principle. However, the Pauli
exclusion principle alone also permits other momentum
space configurations and other configurations may very well
be energetically favored over quarkyonic matter. And indeed,
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Figure 1: Evolution of the momentum shell structure in
isospin symmetric (a) quarkyonic and (b) baryquark matter
as a function of baryon number density at zero temperature.
The momentum scales 𝑘𝐹 and Δ are given for baryon degrees
of freedom, i.e. for quarks they should be divided by 𝑁𝑐 . Figure
adapted from [12].

as shown in detail in Ref. [12], a complementary or opposite
configuration with baryons at low momenta surrounded by
quarks (see: 1(b)), subsequently dubbed baryquark matter,
turns out to be energetically favored over the quarkyonic
configuration. This picture is preserved also in the presence
of both attractive and repulsive nuclear interactions [19]. In
the following we will sketch the arguments and calculation
of Ref. [12] and we will discuss how a more refined treatment
of the Pauli principle leads to a quarkyonic configuration at
high densities.
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2. Baryquark matter wins
To understand why baryquark matter is energetically

favored can already be seen by considering non-interacting
quarks and nucleons which are only subject to the Pauli
exclusion principle. In the simple constituent quark picture,
the mass and momentum of a nucleon is 𝑁𝑐 times that of a
constituent quark, 𝑚𝑁 = 𝑁𝑐𝑚𝑄, 𝑝𝑁 = 𝑁𝑐𝑝𝑄 The baryon
density for a Fermi gas of nucleons with Fermi momentum
𝑝𝑓 is given by and that for quarks with Fermi momentum 𝑞𝑓
are given by

𝑛𝐵;𝑁 = 4
2𝜋2 ∫

𝑝𝑓

0
𝑘2𝑑𝑘 = 𝐷

𝑝3𝑓
3

𝑛𝐵;𝑄 = 1
𝑁𝑐

4
2𝜋2

𝑁𝑐 ∫

𝑞𝑓

0
𝑞2𝑑𝑘 = 𝐷

𝑞3𝑓
3

(1)

where 𝐷 = 4∕(2𝜋2) is an overall constant taking into
account the spin-isospin degeneracy which is the same for
quarks and nucleons. Similarly, the energy densities are
given by

𝜖𝑁 = 𝐷 ∫

𝑝𝑓

0
𝑘2𝑑𝑘

√

𝑚2
𝑁 + 𝑘2

≃ 𝑚𝑁𝑛𝐵;𝑁 +𝐷 1
2𝑚𝑁

𝑝5𝑓
5

𝜖𝑄 = 𝐷𝑁𝑐 ∫

𝑞𝑓

0
𝑞2𝑑𝑞

√

𝑚2
𝑄 + 𝑞2

≃ 𝑚𝑁𝑛𝐵,𝑄(𝑞𝑓 ) +𝐷
𝑁2

𝑐
2𝑚𝑁

𝑞5𝑓
5

(2)

Here we used that 𝑚𝑁 = 𝑁𝑐𝑚𝑄 and assumed the Fermi
momenta to be no too large.

Let us now consider a non-interacting system at a given

baryon density with nucleons only, 𝑛𝐵 = 𝐷
𝑘3𝑓
3 , where 𝑘𝑓

is the Fermi momentum of the nucleons. Next, we replace
some nucleons with quarks while keeping the baryon density
fixed. In order to get quarkyonic matter we need to replace
nucleons at the center of the Fermi sphere, whereas for
baryquark matter we need to replace them at the Fermi
surface. For a meaningful comparison of the two scenarios, it
is useful to express the energy in terms of the quark fraction,
𝑓𝑄,

𝑓𝑄 =
Δ𝑛𝐵;𝑄
𝑛𝐵

(3)

where Δ𝑛𝐵,𝑄 denotes the contribution of quarks to the
baryon density and 𝑛𝐵 = 𝐷𝑘3𝑓∕3 is the total baryon density,
which we will keep constant. Let us consider baryquark
matter first. In this case, we add quarks and remove baryons,
both on top of the Fermi sphere. Since all nucleon up to 𝑘𝑓
are occupied, we can add quarks starting at 𝑞 = 𝑘𝑓∕𝑁𝑐 .
Thus we have to leading order in Δ𝑞:

Δ𝑛𝐵;𝑄 = 𝐷 ∫

𝑘𝑓 ∕𝑁𝑐+Δ𝑞

𝑘𝑓 ∕𝑁𝑐

𝑞2𝑑𝑘 ≃ 𝐷
( 𝑘𝑓
𝑁𝑐

)2

Δ𝑞

Thus the quark fraction is

𝑓𝑄 = 3
𝑁2

𝑐

Δ𝑞
𝑘𝑓

. (4)

The corresponding shift in the energy density is then

Δ𝜖𝑄 = 𝐷𝑁𝑐 ∫

𝑘𝑓 ∕𝑁𝑐+Δ𝑞

𝑘𝑓 ∕𝑁𝑐

𝑞2𝑑𝑞
√

𝑚2
𝑄 + 𝑞2

≃ 𝑚𝑁Δ𝑛𝐵;𝑄 +𝐷
𝑁2

𝑐
2𝑚𝑁

( 𝑘𝑓
𝑁𝑐

)4

Δ𝑞

= 𝑚𝑁Δ𝑛𝐵;𝑄 + 𝐷
6𝑚𝑁

𝑘5𝑓𝑓𝑄. (5)

Next we need to remove nucleons from the Fermi surface
to ensure that the total baryon density, 𝑛𝐵 = 𝑛𝐵;𝑁 + 𝑛𝐵;𝑄,
remains the same. For given interval Δ𝑘 we have to leading
order

Δ𝑛𝐵;𝑁 = 𝐷 ∫

𝑘𝑓

𝑘𝑓−Δ𝑘
𝑘2𝑑𝑘 ≃ 𝐷𝑘2𝑓Δ𝑘 (6)

with the corresponding reduction in the energy density

Δ𝜖𝑁 = −𝐷 ∫

𝑘𝑓

𝑘𝑓−Δ𝑘
𝑘2𝑑𝑘

√

𝑚2
𝑁 + 𝑘2

≃ −
(

𝑚𝑁Δ𝑛𝐵,𝑁 + 𝐷
2𝑚𝑁

𝑘4𝑓Δ𝑘
)

. (7)

Since the total baryon density should remain unchanged we
have Δ𝑛𝐵;𝑄 − Δ𝑛𝐵;𝑁 = 0 so that

Δ𝑘 =
Δ𝑞
𝑁2

𝑐
=

𝑘𝑓
3
𝑓𝑄. (8)

As a result, the shift in the total energy density vanishes to
leading order in 𝑓𝑄

Δ𝜖 = Δ𝜖𝑄 + Δ𝜖𝑁 = 0. (9)

Next let us consider quarkyonic matter. In this case we
have to put the quarks at the center of the Fermi sphere. The
baryon density of the quarks is then

Δ𝑛𝐵;𝑄 = 𝐷 ∫

Δ𝑞

0
𝑞2𝑑𝑘 ≃ 𝐷

(Δ𝑞)3

3
, (10)

so that in this case the quark fraction is

𝑓𝑄 =
(

Δ𝑞
𝑘𝑓

)3
(11)

and the corresponding energy density

Δ𝜖𝑄 = 𝐷𝑁𝑐 ∫

Δ𝑞

0
𝑞2𝑑𝑞

√

𝑚2
𝑄 + 𝑞2

≃ 𝑚𝑁Δ𝑛𝐵;𝑄 + 𝐷
2𝑚𝑁

𝑁2
𝑐

𝑘5𝑓
5
𝑓 5∕3
𝑄 , (12)
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where Δ𝑛𝐵;𝑄 refers here to expression Eq. 10. Since the
momentum of a nucleon is 𝑁𝑐 times that of a constituent
quark inside it, 𝑝𝑁 = 𝑁𝑐𝑝𝑞 , we need to remove all nucleon
up to Δ𝑘 = 𝑁𝑐Δ𝑞. The corresponding baryon density

Δ𝑛(−)𝐵;𝑁 = 𝐷 ∫

𝑁𝑐Δ𝑞

0
𝑘2𝑑𝑘 = 𝐷

(

𝑁𝑐Δ𝑞
)3

3
> Δ𝑛𝐵;𝑄 (13)

is larger than that for the quarks replacing the nucleons. As a
consequence, we have to add additional nucleon on top of the
Fermi surface to ensure that the total baryon density remains
the same,

Δ𝑛(+)𝐵;𝑁 = Δ𝑛(−)𝐵;𝑄 − Δ𝑛𝐵;𝑄 = 𝐷

(

𝑁3
𝑐 − 1

)

(Δ𝑞)3

3

= 𝐷 ∫

𝑘𝑓+Δ𝑘(+)

𝑘𝑓
𝑘2𝑑𝑘 ≃ 𝐷𝑘2𝑓Δ𝑘

(+) (14)

Hence,

Δ𝑘(+) = 1
3
(

𝑁3
𝑐 − 1

) (Δ𝑞)3

𝑘2𝑓
= 1

3
(

𝑁3
𝑐 − 1

)

𝑘𝑓𝑓𝑄. (15)

Removing the nucleons at small momenta results in a gain
of energy

Δ𝜖(−)𝑁 = −𝐷 ∫

𝑁𝑐Δ𝑞

0
𝑘2𝑑𝑘

√

𝑚2
𝑁 + 𝑘2

≃ −
⎛

⎜

⎜

⎝

𝑚𝑁Δ𝑛(−)𝐵,𝑁 + 𝐷
2𝑚𝑁

(

𝑁𝑐𝑘𝑓
)5

5
𝑓 5∕3
𝑄

⎞

⎟

⎟

⎠

(16)

whereas adding the nucleons on top of the Fermi surface cost
energy

Δ𝜖(+)𝑁 = 𝐷 ∫

𝑘𝑓+Δ𝑘(+)

𝑘𝑓
𝑘2𝑑𝑘

√

𝑚2
𝑁 + 𝑘2

≃ 𝑚𝑁Δ𝑛(+)𝐵,𝑁 + 𝐷
2𝑚𝑁

𝑘4𝑓Δ𝑘
(+)

= 𝑚𝑁Δ𝑛(+)𝐵,𝑁 + 𝐷
6𝑚𝑁

(

𝑁3
𝑐 − 1

)

𝑘5𝑓𝑓𝑄. (17)

Thus the total shift in the energy density is

Δ𝜖 = Δ𝜖𝑄+Δ𝜖
(+)
𝑁 +Δ𝜖(−) = 𝐷

6𝑚𝑁

(

𝑁3
𝑐 − 1

)

𝑘5𝑓𝑓𝑄+(𝑓
5∕3
𝑄 )

(18)

and thus positive to leading order in the quark fraction 𝑓𝑄.
Therefore, baryquark matter is energetically favored. Adding
some mean field type of interaction which depends on the
density of the nucleons will not change the picture because
in both cases the density of the nucleons is the same by
construction. This finding is also borne out in the detailed
calculation of Ref. [12] where a hard core repulsion has
been used similar to Refs. [10, 17], as well as Ref. [19]
where an attractive mean field for nucleons was considered
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Figure 2: Dependence of the energy density in the excluded
volume (blue) quarkyonic and (red) baryquark matter on the
quark fraction 𝑛𝑄∕𝑛𝐵 at a fixed baryon density of 𝑛𝐵 = 4.8𝜌0.
The limiting nucleon density due to excluded volume in both
cases is 𝑛0 ≡ 𝑏−1 = 5𝜌0. Figure adapted from [12].

additionally to model nuclear liquid-gas transition. The re-
sulting energy density is shown in Fig. 2 with and without
the hard core repulsion. In both cases the energy density
for baryquark matter is below that for quarkyonic matter. In
Fig. 3 we also show the results for the equation of state and
speed of sound for both quarkyonic and baryquark matter.
We note that baryquark matter other than quarkyonic matter
does not need a regulator to avoid unphysical singularities
for the speed of sound (full blue line in Fig. 3).

To conclude this section, we have shown that baryquark
matter is energetically favored over quarkyonic matter, at
least if a simple mean field type of interaction is utilized
to generate the desired shell structure of the nucleon mo-
mentum distribution of quarkyonic matter. Conceptually,
of course, quarkyonic matter is arguably more appealing.
Consider the long-wavelength quark interactions, which one
would typically associate with confinement. These interac-
tions are Pauli-blocked in the Fermi sea but permitted on
the Fermi surface. One would thus identify the states in the
Fermi shell with confined baryons rather than free quarks,
as in quarkyonic matter.

One could imagine salvaging the quarkyonic picture by
introducing some kind of momentum dependent interaction.
However, as we shall discuss next there is a much more
appealing and physically well founded way which naturally
leads to a nucleon momentum space configuration as origi-
nally envisioned [16].

3. Quarkyonic strikes back
In the previous section, we have shown that using simple

interactions among nucleons leads to quarkyonic matter be-
ing energetically disfavored. However, most of these models
for quarkyonic matter account for the effect of the Pauli
principle only by not allowing nucleon in states that are
occupied by fermions and vice versa. They do not account
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Figure 3: Baryon density dependence of energy per baryon (left) and speed of sound squared (right) evaluated in excluded volume
quarkyonic (blue lines) and baryquark (red lines) matter. The excluded volume parameter in all cases corresponds to the limiting
nucleon density of 𝑛0 ≡ 𝑏−1 = 5𝜌0. The dotted blue lines correspond to quarkyonic matter with an infrared regulator Λ = 0.3 GeV
while the dash-dotted red lines depict baryquark matter with attractive nucleon mean-field, 𝑎𝑛0 = 0.1𝑚𝑁 . Figure adapted from
[11].

for the internal quark structure of the nucleon. This has been
first addressed in Ref. [7] (see also the contribution by L.
McLerran to these proceedings). There, the authors took into
account the momentum distribution 𝜙(𝑝) of quarks inside a
nucleon. They observed that above a certain density of nu-
cleons, the momentum space density of quarks at vanishing
momentum, 𝑓𝑄(𝑝 = 0) become unity, at which point the
Pauli principle does not allow to add more nucleons and
a rearrangement of the nucleons is needed. To be specific,
given the momentum distribution of quarks inside a nucleon
𝜙(𝑝), the overall momentum distribution of, 𝑓𝑄(𝑝) is related
to that of the nucleon, 𝑓𝑁 (𝑘) via

𝑓𝑄(𝑝) = ∫
𝑑3𝑘
(2𝜋)3

𝜑(|𝑝 − 𝑘∕𝑁𝑐|)𝑓𝑁 (𝑘). (19)

The Pauli principle in the quark sector requires a rearrange-
ment of the nucleons once the Fermi momentum is above a
“critical” momentum, 𝑘𝑓 > 𝑘𝑐𝑟𝑖𝑡𝐹 given by the solution of

1 = 𝑓𝑄(0) = ∫𝑘<𝑘crit𝐹

𝑑3𝑘
(2𝜋)3

𝜑(𝑘∕𝑁𝑐)𝑓𝑁 (𝑘). (20)

To get a rough idea about the magnitude of the critical
momentum, let us consider the constituent quark model. In
this case the quark wave-function is a Gaussian so that the
quark momentum distribution inside a nucleon is

𝜑gauss(𝑝) = 8𝜋3∕2𝑅3𝑒−𝑝
2𝑅2 (21)

where the “size” parameter 𝑅 is related to root mean square
radius, 𝑟𝑅𝑀𝑆 , of the nucleon by

𝑟𝑅𝑀𝑆 =
√

2
3
𝑅 (22)

Solving Eq. 20 one finds 𝑘𝑐𝑟𝑖𝑡𝐹 = 1.01 𝑘0𝐹 for 𝑟𝑅𝑀𝑆 = 1 fm
and 𝑘𝑐𝑟𝑖𝑡𝐹 = 1.3 𝑘0𝐹 for 𝑟𝑅𝑀𝑆 = 0.8 fm, with 𝑘0𝐹 = 265MeV
the Fermi momentum of ground state nuclear matter. In other
words, nuclear matter density is already very close to the

critical density where the Pauli principle of the quark sector
becomes relevant. Of course this is only a simple estimate
and, thus, should be taken with grain of salt. The actual
density when the Pauli principle becomes relevant depends,
among other things, on the detailed momentum distribution
of the quarks inside a nucleon. A recent study using realistic
models of unintegrated quark distributions found this density
to be 𝑛𝑐𝑟𝑖𝑡 = 0.17 ± 0.04 fm−3 [15]. Ultimately, however,
it may have to be determined by experiment. The authors
of Ref. [7] devised a solvable model and found that above
the critical density the Pauli blocking of the quarks leads
to a nucleon momentum distribution with exhibits a “hole”
at small momenta which increase in size as the density is
increased. Also, and not surprisingly, the Pauli principle
leads to additional repulsion for the nucleons. Indeed, Ref.
[11] showed that this repulsion may replace the conventional
repulsion from vector mesons so that nuclear matter can be
bound with reasonable values for the incompressibility with
pion and sigma exchange interactions only. In addition, the
authors showed that, even though there is a “hole” in the
nucleon distribution at low momenta, quasi-elastic scatter-
ing data can be well reproduced. If indeed nuclear matter
and thus nuclei show such a new momentum space structure
needs to be further checked by comparing with, for example,
data from (𝑒, 𝑒′𝑝) reactions as well as it implications for
nuclear structure. However, even if this is not the case it
is difficult to see how the Pauli exclusion principle cannot
be relevant at high densities such as encountered in neutron
stars.

4. Summary
We have shown that simple implementations of the con-

cept of quarkyonic matter lead to system which are not
energetically favored. To rescue them one either needs to
introduce additional interactions, such as momentum depen-
dent forces. A more appealing approach in our view is that
of Ref. [7] where the internal quark structure of nucleon
is taken into account. It naturally leads to the proposed
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shell-like momentum distribution originally envisioned for
quarkyonic matter [16] and it remains to be seen if such a
structure is already in place for ordinary nuclear matter and
nuclei.
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