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Abstract

Purpose

The role of insulin resistance (IR) in developing postmenopausal breast cancer has not

been thoroughly resolved and may be confounded by lifestyle factors such as obesity. We

examined whether genetically determined IR is causally associated with breast cancer risk.

Methods

We conducted Mendelian randomization (MR) analyses using individual-level data from our

previous meta-analysis of a genome-wide association study (GWAS) (n = 11,109 non-His-

panic white postmenopausal women). Four single-nucleotide polymorphisms were associated

with fasting glucose (FG), 2 with fasting insulin (FI), and 6 with homeostatic model assess-

ment–IR (HOMA-IR) but were not associated with obesity. We used this GWAS to employ

hazard ratios (HRs) for breast cancer risk by adjusting for potential confounding factors.

Results

No direct association was observed between comprising 12 IR genetic instruments and

breast cancer risk (HR = 0.93, 95% CI: 0.76–1.14). In phenotype-specific analysis, geneti-

cally elevated FG was associated with reduced risk for breast cancer (main contributor of

this MR-effect estimate: G6PC2 rs13431652; HR = 0.59, 95% CI: 0.35–0.99). Genetically

driven FI and HOMA-IR were not significantly associated. Stratification analyses by body

mass index, exercise, and dietary fat intake with combined phenotypes showed that geneti-

cally elevated IR was associated with greater breast cancer risk in overall obesity and inac-

tive subgroups (single contributor: MTRR/LOC729506 rs13188458; HR = 2.21, 95% CI:

1.03–4.75).

PLOS ONE | https://doi.org/10.1371/journal.pone.0218917 June 27, 2019 1 / 10

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Jung SY, Mancuso N, Papp J, Sobel E,

Zhang Z-F (2019) Post genome-wide gene-

environment interaction study: The effect of

genetically driven insulin resistance on breast

cancer risk using Mendelian randomization. PLoS

ONE 14(6): e0218917. https://doi.org/10.1371/

journal.pone.0218917

Editor: Qingyi Wei, Duke Cancer Institute, UNITED

STATES

Received: January 18, 2019

Accepted: June 13, 2019

Published: June 27, 2019

Copyright: © 2019 Jung et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Data is available in

accordance with policies developed by the NHLBI

and WHI in order to protect sensitive participant

information and approved by the Fred Hutchinson

Cancer Research Center, which currently serves as

the IRB of record for the WHI. Data requests may

be made by emailing helpdesk@WHI.org.

Funding: This study was supported by the National

Institute of Nursing Research of the National

Institutes of Health under Award Number

http://orcid.org/0000-0002-0513-1830
https://doi.org/10.1371/journal.pone.0218917
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0218917&domain=pdf&date_stamp=2019-06-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0218917&domain=pdf&date_stamp=2019-06-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0218917&domain=pdf&date_stamp=2019-06-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0218917&domain=pdf&date_stamp=2019-06-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0218917&domain=pdf&date_stamp=2019-06-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0218917&domain=pdf&date_stamp=2019-06-27
https://doi.org/10.1371/journal.pone.0218917
https://doi.org/10.1371/journal.pone.0218917
http://creativecommons.org/licenses/by/4.0/
mailto:helpdesk@WHI.org


Conclusions

We found complex evidence for causal association between IR and risk of breast cancer,

which may support the potential value of intervention trials to lower IR and reduce breast

cancer risk.

Introduction

Postmenopausal women have an increased risk of developing breast cancer. Eighty percent of

new breast cancer cases occur in women aged 50 and older, and obesity is a well-established

risk factor for postmenopausal breast cancer [1–3]. The obesity–insulin resistance (IR) con-

nections have been considered potential factors for cancer development. IR, leading to glucose

intolerance, characterized by elevated fasting level of homeostatic model assessment–insulin

resistance (HOMA-IR), hyperglycemia, and compensatory hyperinsulinemia, is thought to be

crucial for the development of obesity-relevant cancers including postmenopausal breast can-

cer [4–6]. Mechanisms proposed for these associations include overexpression of insulin and

insulin-like growth factor receptors [4,5,7] and dysregulation of multiple IR-signaling path-

ways [5,8–10], resulting in the enhanced anabolic state necessary for tumor growth and devel-

opment. IR, thus may be associated with carcinogenesis.

The results of previous epidemiologic studies for the association between IR and postmeno-

pausal breast cancer are inconsistent: rate ratio of HOMA-IR and glucose = 1.50 (95% confi-

dence intervals [CIs]: 1.03–2.02 and 1.14–2.32, respectively) in a nested case-control study

[11], hazard ratio (HR) of insulin = 2.40 (95% CI: 1.39–3.53 in a multicentric randomized con-

trolled trial [12], and 95% CI: 1.30–4.41 in a case-cohort study [13]); and marginal [14] or no

associations [15,16]. Those inconsistent findings may be partly due to potential selection bias,

confounding effects by obesity and obesity-related lifestyle factors, short time exposures to bio-

markers, measurement inconsistencies (e.g., different assays used to measure biomarkers), and

reverse confounding or causation.

A Mendelian randomization (MR) analysis may be a better method to address these chal-

lenges. It has been used to analyze genetic variants as an instrumental variable to evaluate the

effect of an exposure (e.g., IR) on an outcome (e.g., breast cancer risk) [17]. This genetic

approach may help establish a relatively unbiased causal relationship between IR and breast

cancer outcomes because MR reduces potential bias and confounding by random assortment

of alleles at the time of gamete formation, resulting in a random assignment of exposure

[17,18]. In addition, MR may eliminate short time exposure by incorporating a lifelong expo-

sure to an allele (i.e., genetic variation randomly assigned at meiosis) [18]. MR can also prevent

reverse causation because the random assignment of alleles precedes the phenotype and clini-

cal outcomes [18,19].

In this study, we conducted MR analysis by using our previous genome-wide association

study (GWAS) data to test the hypothesis that genetically determined IR has a potential causal

effect on postmenopausal breast cancer risk.

Materials and methods

Data sources and selection of candidate instrumental variables

We used data from our previous meta-analysis of a genome-wide gene-environment (G�E)

interaction study [20], which included 11,109 non-Hispanic white postmenopausal women
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enrolled in the Women’s Health Initiative (WHI) Harmonized and Imputed GWASs. Detailed

rationale and design of the studies have been described elsewhere [21,22]. Briefly, the WHI

study included postmenopausal women enrolled between 1993 and 1998 at 40 clinical centers

across the US. Eligible women were 50–79 years old, postmenopausal, expected to live near the

clinical centers for at least 3 years after enrollment, and able to provide written informed con-

sent. The Harmonized and Imputed studies involved 6 GWASs. The genotyped data collected

from the 6 GWASs were normalized to the reference panel GRCh37, and genotype imputation

was performed using 1,000 genome reference panels [22]. Single-nucleotide polymorphisms

(SNPs) with R̂2 � 0:6 imputation quality were included in the G�E GWAS meta-analysis. The

study was approved by the institutional review boards of each participating clinical center of

the WHI and the University of California, Los Angeles.

Using the meta-analysis of G�E GWAS for IR and breast cancer risk, we identified IR-asso-

ciated SNPs at genome-wide significance (p< 5 x 10−8) as instrumental variables and pruned

the list of such SNPs by linkage disequilibrium (LD) (r2 < 0.1). For each SNP, we employed

results obtained from this GWAS in multiple Cox regression analysis for breast cancer risk by

adjusting for covariates. The covariates were selected for their association with IR and breast

cancer from stepwise regression analyses: age, education, family income, family history of

breast cancer, depressive symptoms, smoking, exercise, alcohol intake, percentage of calories

from saturated fatty acids, body mass index (BMI), waist-to-hip ratio, hysterectomy, ages at

menarche and menopause, use of oral contraceptives, exogenous estrogen only, and estrogen

plus progestin.

Of the 58 SNPs associated with IR phenotypes in the women overall or the women stratified

by obesity, physical activity, and high-fat diet, we finally identified 4 independent SNPs associ-

ated with fasting glucose (FG; 1 in overall, 2 in active, and 1 in high-fat diet groups); 2 indepen-

dent SNPs associated with fasting insulin (FI; 1 in obese and 1 in inactive groups); and 6

independent SNPs associated with HOMA-IR (2 in overall, 2 in low-fat diet, and 2 in high-fat

diet groups).

Statistical analysis

Before conducting our MR analyses, we checked whether our data met basic assumptions

required for valid inference. MR analysis typically assumes that genetic instruments are not

weak (i.e., little explaining of the relevant phenotype). We estimated a sum of the T-squared

statistics across phenotype-specific SNPs, assessing whether our SNP instruments were well

powered for downstream MR analysis. With a threshold of 10, which is commonly used [23],

we considered our SNPs as having sufficient strength (sum of the T-squared statistics: FG,

94.7; FI, 38.0; HOMA-IR, 126.1; and overall, 363.5). We also estimated the variance (%) of

each trait explained by its associated variants (FG, 0.11%; FI, 0.28%; HOMA-IR, 5.05%; and

overall, 5.45%).

MR studies may be confounded when modeled SNPs exhibit biological pleiotropy, or when

SNPs independently affect breast cancer risk through intermediate traits other than IR. To

determine the extent of pleiotropic signal in our study we conducted the following analyses. 1)

Given obesity’s established role for breast cancer risk, we interrogated for the possible associa-

tion of obesity [24] with the identified SNPs to exclude from the MR analysis; no SNPs showed

evidence of pleotropic association with obesity; and 2) We performed a MR-Egger regression

analysis [25] to test for directional pleiotropy, where the pleiotropic effect across SNPs on out-

come is skewed in one direction rather than being balanced; no significant directional pleiot-

ropy for any of the tested associations was observed.

Breast cancer and IR: Mendelian randomization study
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Having demonstrated that our genetic instruments are predictive for respective phenotypes

and unlikely to be confounded by pleiotropic effects, we performed MR analysis using the

inverse-variance weighted method [26]. This quantifies the genetically determined association

between IR and breast cancer risk. We took into consideration a correlation that could occur

when exposure and outcome were assessed within the same population; thus, the MR estimates

were adjusted for Spearman correlation between each IR phenotype and breast cancer risk.

For the individual instrumental effects of IR on breast cancer risk, we calculated the ratio of β
coefficients (= βbreastcancer / βIR) [18]. The results were reported as risk ratios and 95% CIs for

the change in breast cancer risk per unit increase in log-odds of IR (i.e., the change in relative

cancer risk [exponentiation of β] for women with IR compared with that for women without

IR).

The heterogeneity of the MR estimate, which is additional evidence of pleiotropy, was eval-

uated by using Cochran’s Q test. A 2-tailed P value< 0.05 was considered statistically signifi-

cant. A multiple-comparison adjustment was conducted by using the Benjamini-Hochberg

method [27]. R3.5.1 was used.

Results

The 12 IR SNPs identified for the different subgroups in our previous G�E GWAS are pre-

sented in Table 1. Of note is that G6PC rs13431652 of the FG SNPs and PABPC1P2
rs77772624 and LINC00460 rs17254590 of the HOMA-IR SNPs were observed at genome-

wide significance in the overall and the high-fat diet groups.

An MR analysis for the association between individual genetic instruments for each pheno-

type (FG, FI, and HOMA-IR) and breast cancer risk (adjusted by covariates) identified 2 SNPs

whose genetically driven IR phenotype was associated with breast cancer outcome (Table 2

and Fig 1): in the overall analysis, G6PC rs13431652 (HR = 0.59, 95% CI: 0.35–0.99); and in the

inactive subgroup, MTRR/LOC729506 rs13188458 (HR = 2.21, 95% CI: 1.03–4.75). After a

multiple-testing correction, MTRR/LOC729506 rs13188458 remained statistically significant

(p value after a multiple-comparison adjustment = 0.043). In the MR analysis of the combined

effects of genetic instruments on breast cancer risk by phenotype (Table 2), the pooled estimate

of genetically predicted FG was associated with decreased breast cancer risk (HR = 0.63, 95%

CI: 0.50–0.79, p value after a multiple-comparison adjustment = 0.036), whereas those of

genetically driven FI and HOMA-IR were not significantly associated.

We also performed subgroup analyses (Fig 1) stratified by BMI, exercise, and dietary fat

intake. In the overall obesity (BMI� 30) and inactive (metabolic equivalent [MET] < 10) sub-

groups, genetically elevated IR was associated with increased risk for breast cancer, while in

the active subgroup (MET� 10), genetically raised IR was associated with reduced risk for

breast cancer, although the relationship in this active subgroup was not statistically significant.

By combining all the IR-related SNPs, we performed an overall pooled MR analysis (Fig 2) and

observed no evidence of a genetically predicted association between IR and breast cancer risk

(HR = 0.93, 95% CI: 0.76–1.14).

We performed an MR-Egger test to detect potential directional pleiotropy and found no

significant evidence of apparent directional pleiotropy across the tested associations. We fur-

ther conducted a sensitivity test for the association between genetic instrumental variables for

IR and breast cancer risk by replacing current HRs for breast cancer with HRs that were

adjusted for age and 10 genetic principal components only; similar results were observed and

no evidence of apparent directional pleiotropy was observed.
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Table 1. Characteristics of SNPs for the effect of IR on breast cancer risk.

Gene SNP Chr Position Allele Alternative allele frequency IR Breast cancer risk

Ref/Alt Controls

(n = 10,520)

Breast cancer

(n = 589)

OR P Q HR (95% CI) P

Fasting glucose

G6PC2� rs13431652 2 169753415 T / C 0.30 0.33 0.79 6.99E-09 0.706 1.13 (1.00–1.28) 0.047

G6PC2§ rs13431652 2 169753415 T / C 0.30 0.33 0.77 1.08E-09 0.775 1.13 (1.00–1.29) 0.059

MKLN1† rs117911989 7 130969793 G / A 0.05 0.05 1.98 3.97E-08 0.209 0.74 (0.44–1.24) 0.250

NKX2-2† rs7273292 20 21473362 T / C 0.01 0.0001 3.37 4.35E-08 0.148 0.66 (0.25–1.77) 0.407

Fasting insulin

NR5A2¶ rs10919774 1 199907716 G / A 0.95 0.95 1.98 2.53E-08 0.726 1.34 (0.83–2.15) 0.226

MTRR/LOC729506€ rs13188458 5 8127831 G / T 0.75 0.77 1.33 3.21E-08 0.435 1.25 (1.01–1.56) 0.043

HOMA-IR

PABPC1P2� rs77772624 2 147499474 A / C 0.002 0.002 29.65 4.96E-09 0.634 0.61 (0.09–4.36) 0.623

PABPC1P2§ rs77772624 2 147499474 A / C 0.002 0.002 28.92 9.36E-09 0.711 0.61 (0.09–4.34) 0.620

MSC¥ rs13277245 8 72606942 A / G 0.18 0.17 29.57 4.92E-08 N/A 0.87 (0.48–1.60) 0.661

DOCK1¥ rs113847670 10 128874679 C / T 0.03 0.04 9.18 2.85E-08 0.571 0.49 (0.12–2.00) 0.320

LINC00460� rs17254590 13 107037344 G / C 0.02 0.0004 2.52 2.40E-08 0.620 1.00 (0.55–1.83) 0.999

LINC00460§ rs17254590 13 107037344 G / C 0.02 0.0004 2.67 8.86E-09 0.882 1.09 (0.60–1.98) 0.784

Alt, alternative allele; Chr, chromosome; CI, confidence interval; HOMA-IR, homeostatic model assessment–insulin resistance; HR, hazard ratio; IR, insulin resistance;

N/A, not available; OR, odds ratio; Q, Cochran’s Q; Ref, reference allele; SNP, single–nucleotide polymorphism. Numbers in bold face are statistically significant.

� SNPs at genome-wide level identified in overall analysis.

§ SNPs at genome-wide level in subgroup analysis: identified in high-fat diet group (calories from saturated fatty acids [SFA]� 7.0%).

† SNPs at genome-wide level in subgroup analysis: identified in active group (metabolic equivalent [MET]� 10).

¶ SNPs at genome-wide level in subgroup analysis: identified in obese group (body mass index� 30.0 kg/m2).

€ SNPs at genome-wide level in subgroup analysis: identified in inactive group (MET < 10).

¥ SNPs at genome-wide level in subgroup analysis: identified in low-fat diet group (calories from SFA < 7.0%).

https://doi.org/10.1371/journal.pone.0218917.t001

Table 2. Mendelian randomization analysis of the effect of IR on breast cancer risk.

Subgroup Fasting glucose SNP Fasting insulin SNP HOMA-IR SNP

HR (95% CI) ¶� P Phat n HR (95% CI) ¶� P Phat n HR (95% CI) ¶ P Phat n

Overall 0.59 (0.35–0.99) 0.047 N/A 1 0.92 (0.37–2.30) 0.460 0.747 2

BMI� 30 1.53 (0.77–3.06) 0.226 N/A 1

Active group (MET� 10) 0.67 (0.37–1.24) 0.077 0.865 2

Inactive group (MET < 10) 2.21 (1.03–4.75) 0.043 N/A 1

Calories from SFA < 7.0% 0.94 (0.35–2.50) 0.565 0.406 2

Calories from SFA� 7.0% 0.62 (0.38–1.02) 0.059 N/A 1 0.96 (0.22–4.23) 0.807 0.591 2

Pooled estimate 0.63 (0.50–0.79) 0.012 0.931 4 1.80 (0.18–18.06) 0.190 0.494 2 0.94 (0.81–1.08) 0.236 0.851 6

BMI, body mass index; CI, confidence interval; HOMA-IR, homeostatic model assessment–insulin resistance; HR, hazard ratio; IR, insulin resistance; MET, metabolic

equivalent; SFA, saturated fatty acids; SNP, single–nucleotide polymorphism. Numbers in bold face are statistically significant. Note: Phat was estimated on the basis of

Cochran’s Q.

¶ The Mendelian randomization HR has been estimated by adjusting for Spearman correlation between each phenotype and breast cancer risk within the same

population.

� The Mendelian randomization effect of single SNPs on breast cancer risk has been estimated via the ratio of β coefficients (= βbreastcancer / βIR) (18).

https://doi.org/10.1371/journal.pone.0218917.t002
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Discussion

We conducted genetic analyses for IR phenotypes in relation to postmenopausal breast cancer

risk in an MR framework, which could establish potential causality. If genetic instruments are

Fig 1. Forest plot of the MR effects of IR on breast cancer risk in overall group and subgroups. For each of non-

pleiotropic IR SNPs, the plot shows the effects of genetically elevated IR (FG, FI, or HOMA-IR) on breast cancer risk in

the overall group and subgroups, presented as the 95% CIs (indicated with red lines) of the estimates and the inverse-

variance weights (percentages proportional to the size of the blue squares). BMI, body mass index; CI, confidence

interval; FG, fasting glucose; FI, fasting insulin; HOMA-IR, homeostatic model assessment–insulin resistance; HR,

hazard ratio; IR, insulin resistance; MET, metabolic equivalent; MR, Mendelian randomization; SFA, saturated fatty

acids; SNP, single–nucleotide polymorphism.

https://doi.org/10.1371/journal.pone.0218917.g001

Fig 2. The effect of individual genetic instrumental variables for IR on breast cancer risk. Each black dot reflects a

genome-wide IR-elevating genetic variant. The blue lines indicate regression and 95% CIs of IR on breast cancer risk

(HR = 0.93, 95% CI: 0.76–1.14). CI, confidence interval; HR, hazard ratio; IR, insulin resistance.

https://doi.org/10.1371/journal.pone.0218917.g002
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not linked to the outcomes through any alternative pathway, the results of an MR study could

resemble those of randomized clinical trials [17] and provide a robust causal inference. The

key point of our study is the inclusion of nonoverlapping IR and obesity/obesity-lifestyle

genetic variants, suggesting the pleiotropic exclusion. MR study also reflects lifelong exposures,

providing the long-standing effect of IR on breast cancer risk, and it is less subject to reverse

causality than an observational study. Although our MR study was not designed to elaborate

biological mechanisms, our findings indicate that lifetime exposure to IR is likely to influence

the development of breast cancer in postmenopausal women.

Particularly, in the phenotype-specific analysis, genetically elevated FG was associated with

a reduced risk for breast cancer. Previous prospective [14] and MR studies [17] showed no

association between FG and risk of breast cancer, explaining that FG reflects glycogenolysis

activity in hepatic insulin sensitivity and represents a relatively short-term phenomenon of IR.

In contrast, 2-hour glucose levels are associated with a greater risk of breast cancer, reflecting

beta cell function and skeletal muscle insulin sensitivity, thus representing relatively long-term

exposure to IR. In our MR analysis, G6PC2 rs13431652 was the main contributor of the MR

effect estimate of FG on breast cancer. G6PC2 encodes the glucose-6-phosphatase catalytic 2

subunit. It regulates glycemia by opposing the action of glucokinase in pancreatic beta cells,

thus modulating glycolytic flux and glucose-stimulated insulin secretion [28]. Individuals with

this genetic mutation (related to type 2 diabetes [T2DM]) have mild hyperglycemia from birth

onwards, and the early diagnosis of the pre-diabetic condition leads to the treatment of other

potential cancer risk factors, such as hypercholesterolemia, thus conferring additional protec-

tion against breast cancer later in life [29].

In addition, our MR analysis of individual genetic instruments of FI indicated that

rs13188458 in an intergenic region of MTRR/LOC729506 was a strong contributor to the effect

of genetically driven FI on increased risk of breast cancer; this association was observed only

in the subgroup of inactive women. Mutations in MTRR can induce IR and T2DM in adipose

tissue by provoking endoplasmic reticular stress, resulting in inhibited insulin signaling [30].

Previous studies reported the association of this genetic mutation with lung and colorectal can-

cers [31,32], but not with breast cancer; this suggests that the incorporation of obesity-related

lifestyle factors (e.g., physical activity) in the analysis is critical.

Our study results should be interpreted with caution because of unmeasured confounding

factors that could have introduced bias. MR analysis requires several assumptions, such as LD

(i.e., SNP instruments may not be correlated with another SNP), weak genetic instruments,

pleiotropy, and population structure (i.e., results biased due to tagged environmental factors)

[33]. In the current analysis, we properly addressed LD and weak genetic instruments by prun-

ing correlated genetic variants and including only those with strong association signal for phe-

notype. Next we reduced pleiotropic effect driven by obesity in two ways. First, in our previous

GWA G�E analysis for IR and breast cancer risk, we conducted stratification analyses by obe-

sity and related lifestyle factors, so the effects of such modifiers were removed before we per-

formed this MR analysis. Second, by using HRs for breast cancer that were adjusted by lifestyle

and reproductive factors, our MR analysis examined the effect of genetically driven IR on

breast cancer risk adjusted by those potential confounding factors. Nevertheless, residual con-

founding may have affected our study results. Further, if obesity acts upstream of IR, so the

effect that mediates between IR and breast cancer via obesity is substantial, excluding obesity

could make the MR estimates (i.e., the direct effect of IR on breast cancer risk) less reliable.

Finally, we reduced the potential for population structure bias since we adjusted for the corre-

lation between IR and breast cancer risk using individual-level exposure and outcome data

from the same study population.
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MR analysis might also be subject to nonlinearity between exposure and outcome. The

association between genetically driven IR and cancer risk may be influenced by the feedback

mechanism (canalization), resulting in nonlinear processes, but such canalization tends to bias

MR estimates toward the null, so it is unlikely to alter the statistical directions or significance

[34]. Our study could have overfit the analysis because the data on exposure and outcome

were gathered from the same population. Finally, our findings should not be extrapolated to

other populations because our study population was limited to non–Hispanic white postmeno-

pausal women.

In conclusion, we quantified the potential causal relationship between genetically elevated

IR and risk of breast cancer and found complex evidence that lifetime exposure to IR is likely

to influence the development of breast cancer in postmenopausal women. Further biologic

research into this complicated association of IR with breast cancer by incorporating different

behavior types may help clarify the mechanisms underlying the associations observed in our

study. Nonetheless, our findings may provide additional evidence for conducting intervention

trials to lower IR, thus reducing breast cancer risk.
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