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Abstract

Deep learning has been the biggest success story in the past decade. It is now part of nearly every facet

of our lives. Along with growth in popularity, deep learning has also seen growth in terms of model and data

sizes and the scale of their training. The introduction of transformer architecture a few years ago has proved

to be an inflection point and foundation models have taken off since then. The large vision and language

models of today contain hundreds of billions of parameters, are trained on trillions of tokens on thousands

of GPUs. They are also being deployed at a scale never seen before, including in real-time and safety critical

applications. Very soon, each person could have their own customized LLM model to act as their virtual self.

The big improvements in performance of these models also comes with bigger demands in terms of en-

ergy, compute, memory and resources both at the training and inference stages. The general purpose nature

of foundation models also implies that they need to be continuously updated on new data. Thus, ‘training

is a one and done process’ cannot be a justification for their huge demands. The training and use of these

models also comes with a huge carbon footprint, and can have adverse impact on the environment. Thus,

there is both a huge opportunity and a need to develop more efficient models.

There are multiple perspectives to efficiency in deep learning, with compute/energy, speed, memory,

data and hardware/resources being the most important ones. Their fates are often intertwined, for instance,

smaller models require lesser data and computations and are thus faster and can be run on less expensive

hardware. The scale of models can also be a limiting factor in many real-time applications. Making them

nimble can unlock a host of new applications.

My goal here is to design and develop such efficient deep learning systems, primarily for computer

vision applications, increasing their positive impacts and accessibility. My focus will be on the compute

and memory efficiency of models with an eye on their robustness and reliability. I present solutions that

reduce the training time and hardware requirements of self-supervised representation learning methods of

vision and an easy way to distill them to smaller networks. On the memory front, my work includes a

way to effectively fine-tune large vision and language models for a specific downstream task with a tiny

fraction of the original model as additional parameters. Ideas from fine-tuning can also be easily adopted

in active learning and is part of my future work. Similarly, I also target a recent groundbreaking approach
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for novel view synthesis, reducing its memory bottleneck by compressing it. I intend to extend these works

to similarly improve the training and inference times of diffusion models for image generation. While

most of my research is on making methods more efficient, it is also necessary to stop and analyse their

robustness. My work on adversarial attack on efficient transformers opens up new avenues for research to

try and develop better attacks and defenses that target the efficiency of these models. I hope that my work

contributes to democratizing AI and has a net positive impact on the planet.
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CHAPTER 1

Introduction

Deep learning has grown from being state-of-the-art solution on narrow problems to being ubiquitous in

nearly every field in a matter of a few years. Large multi-modal models are poised to take over the world and

essentially alter the way humans live. Nearly every problem in computer vision, from image segmentation

to 3D reconstruction to motion tracking, now relies on deep neural networks. It is employed in real-time and

safety critical applications like autonomous navigation for vehicles, medical imaging and quality control in

manufacturing in aerospace and electronics.

Scale is all you need: This surge in popularity and effectiveness of deep learning models is thanks in

large part to their scale. The models are ever larger, trained longer on more and more data and dedicated

hardware. In what seems like ages ago, AlexNet [170] showed the impact of scale by training one of the

earliest deep convolutional networks on ImageNet dataset to achieve a step change in computer vision. This

‘ImageNet moment’ was then achieved and surpassed in the field of natural language processing with the ad-

vent of transformer architecture. In their seminal work [306], Vaswani et al. showed that transformers could

outperform state-of-the-art recurrent and convolutional neural networks on the task of language translation.

The architecture is simple, easy to parallelize and can be scaled to large number of parameters. Building on

top of this, the generative pretrained transformer (GPT) series of models by OpenAI showed that scale is

the key to unlock the potential of deep networks, resulting in surprising emergent properties [318]. Model

sizes have grown from a few million parameters in AlexNet to trillions of parameters [63] in the latest large

language models (LLMs). Figure 1.1(left) [211] shows the model parameter count over the years. The

growth of model size is considered to be a new Moore’s law, with the rate exceeding even that of the growth

in semiconductors. LLMs and their multi-modal variants are now named based on their size, with even the

smallest of models containing a few billion parameters.

1



2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
YEAR

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

1e+08

1e+09

Tr
ai

ni
ng

 C
om

pu
te

 (P
FL

OP
s)

Transformer:
Moore's Law:

750x / 2 yrs
2x / 2 yrs

Seq2Seq

AlexNet

VGG

ResNet

InceptionV3

Xception

ResNext

DenseNet

Wav2Vec 2.0

MoCo ResNet50

ELMo

Transformer
GPT-1

BERT

Megatron LM

Microsoft T-NLG

GPT-3

XLNet

Training FLOPs Scaling for SOTA Models

Figure 1.1. Growth in model size (left) and compute (right). Both the parameter counts of large lan-
guage models and the compute required to train them has grown exponentially in the last few years,
outpacing the Moore’s law prediction for semiconductors! Figures from [211](left) and [96](right).

Despite its impact, model size is just one part of the deep learning success story. Another equally impor-

tant contributor is the scale of datasets used in the training of these models. ImageNet [65] was one of the

first large scale datasets in computer vision with more than a million labelled images. The growth of photo

sharing via internet and social media in the recent times has resulted in datasets like YFCC100M [292], Pub-

lic Multimodal Dataset (PMD) [272], LAION-5B [268] with orders of magnitude higher number of samples.

Similarly, large datasets like Common Crawl [1] and RefinedWeb [288], mostly obtained by scraping the

web, have been instrumental in the development of LLMs.

Although the size of datasets has grown, it is important to note that these are not carefully curated and

can thus be extremely noisy. Many of them, especially image and videos datasets, are also weakly annotated.

In such a scenario, self-supervised and semi-supervised learning approaches play a pivotal role in obtain-

ing effective models. Contrastive learning based approaches [106, 119, 228] vastly improved representation

learning from unannotated image collections. These approaches relied on a simple idea of mapping similar

samples in image space to similar regions in the latent space and to push apart dissimilar images in the la-

tent space. In the absence of supervised labels, similar images can be obtained by augmenting images with

operations such as cropping and blurring. Although simple in principle, these methods have been highly

effective, nearly matching supervised training performance on ImageNet classification! These techniques

have also been adapted to semi-supervised and few-shot learning set-ups, achieving similar improvements.

Another line of work uses masked auto-encoding (e.g. MAE [118]) to inpaint images as a way of repre-

sentation learning. Analogously, LLMs use next word (token) prediction from given context as the primary

objective for training. Datasets for this can be easily constructed without extra annotations by masking parts

of the text.
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While the large scale of models and datasets comes with the obvious benefits, it also has significant

drawbacks. Training costs of these models has also been increasing exponentially (refer Figure 1.1 right)

and can have far reaching impacts on the environment. For instance, Meta LLaMA 3 [4], a recent open-

source LLM from Meta has model variants with around 8, 70 and 400 billion parameters and is trained on

15 trillion tokens. The 400B parameter model training would require more than 1025 flops. The estimated

carbon footprint for training just the two smaller variants is 2290 tonnes of CO2eq. The models were trained

on custom-built 24000 GPU clusters adding up to millions of GPU hours. Large vision and language models

thus require huge amounts of resources in terms of hardware and electricity to train and can have noticeable

impact on the environment. More energy and resources will also need to be dedicated to run inference on

these models, especially if they are scaled to the tasks of web search. The huge financial costs required to

train and run these models have also limited their accessibility. Unlike a few years ago, most of the state-of-

the-art models are now from the industry and not academia. One might need a small GPU cluster just to run

inference on some of the larger LLMs while it can take a few seconds on a GPU to generate a single image

using diffusion. It is thus extremely important to consider various approaches to make them more efficient.

Efficiency in deep learning: Efficiency in deep learning has five primary aspects - compute, speed,

memory, data and resources. They are often tied, and making a model more efficient on one of them usually

has a positive effect on one or more of the rest. A distinction is also made between these properties at

training and inference stages as they may not always be correlated. Reduction in model size often has the

biggest impact on all these and is thus well studied in the literature. Model pruning, knowledge distillation

and quantization are some common techniques to reduce model size and thus, compute and memory.

In this thesis, we focus on compute and memory efficient solutions for diverse computer vision tasks.

For compute efficiency, we look at knowledge distillation [218] and a more efficient self-supervised learn-

ing [219] approach. Both these methods are set in the low/no-labeled data regime. Furthermore, they reduce

the GPU memory requirement during training and help democratize AI. This is particularly important since

it allowed the training of state-of-the-art representation learning models on consumer grade hardware. Ad-

ditionally, our work Genie [159] also focuses on few-shot learning settings but with a data perspective,

employing an off-the-shelf image generation network that alleviates the need for large amounts of data.

For memory efficiency, we focus on reducing model size. In Compact3D [217], we compress a specific

novel view synthesis method to make it nearly 40× smaller and twice faster. In NOLA [157], we propose

a new parameter efficient fine-tuning method to fine-tune large language and vision models on task-specific

datasets. Our solution can reduce the parameter count of the fine-tuned module by as much as 95% on
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LLMs without compromising the performance. This enables running inference with not just one but tens of

thousands of LLM variants on a single GPU!

Finally, we also analyse the robustness of a class of compute efficient algorithms. Adversarial at-

tacks [103] have famously shown that deep convolutional networks are susceptible to carefully designed

imperceptible perturbations in input images. However, most of the works on adversarial attacks target the

model performance on a given task. Here [216], we attack the compute efficiency of adaptive inference

networks. These networks adaptively process an input, avoiding the processing of unimportant regions in an

image and thus saving compute. Our attack forces them to pay attention to all parts of the image, thus mak-

ing them inefficient. As the scale of networks and data grow, so will the development of efficient solutions.

Our work highlights the need for further studies on efficiency adversarial attacks and design of defenses to

make them more robust.
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CHAPTER 2

Compute Efficiency in Computer Vision in Training and Inference

Here, we consider the training and inference efficiency of self-supervised representation learning (SSL)

methods. For efficient training, we design an approach (Constrained Mean Shift) that needs lesser compute

per iteration and also has a faster convergence. The approach can be generalized to work well in settings

with vastly diverse availability of labeled data, going from completely self-supervised to fully supervised

settings. The method also makes it feasible to train self and semi-supervised approaches with lesser hard-

ware requirements, increasing their accessibility. For efficient inference, we consider knowledge distillation

from a large teacher network to a smaller student network. Our work, SimReg, shows that a simple regres-

sion based knowledge distillation for self-supervised representation learning is on par with state-of-the-art

approaches.

2.1 Constrained Mean Shift for Representation Learning

We are interested in representation learning in self-supervised, supervised, and semi-supervised settings.

Some recent self-supervised learning methods like mean-shift (MSF) cluster images by pulling the embed-

ding of a query image to be closer to its nearest neighbors (NNs). Since most NNs are close to the query by

design, the averaging may not affect the embedding of the query much. On the other hand, far away NNs

may not be semantically related to the query. We generalize the mean-shift idea by constraining the search

space of NNs using another source of knowledge so that NNs are far from the query while still being seman-

tically related. We show that our method (1) outperforms MSF in SSL setting when the constraint utilizes a

different augmentation of an image from the previous epoch, and (2) outperforms PAWS in semi-supervised

setting with less training resources when the constraint ensures that the NNs have the same pseudo-label as

the query. Our code is available here: https://github.com/UCDvision/CMSF

2.1.1 Introduction

Recently, we have seen great progress in self-supervised learning (SSL) methods that learn rich repre-

sentations from unlabeled data. Such methods are important since they do not rely on manual annotation

5
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2.1. CONSTRAINED MEAN SHIFT FOR REPRESENTATION LEARNING

of data, which can be costly, biased, or ambiguous. Hence, SSL representations may perform better than

supervised ones in transferring to downstream visual recognition tasks.

Figure 2.1. Accuracy vs. training compute on ImageNet with ResNet50: We report the total train-
ing FLOPs for forward and backward passes through the CNN backbone. (Left) Self-supervised: All
methods are for 200 epochs. CMSFself achieves competitive accuracy with considerably lower compute.
(Right) Semi-supervised: Circle radius is proportional to the number of GPUs/TPUs used. The results
are on ImageNet with 10% labels. In addition to being compute efficient, CMSF is trained with an order
of magnitude lower resources, making it more practical and accessible. * methods use self-supervised
pre-training and finetuning on the labeled set.

Figure 2.2. Our method (CMSF): We augment an image twice and pass them through online and target
encoders followed by ℓ2 normalization to get u and v. Mean-shift [162] encourages v to be close to both
u and its nearest neighbors (NN). To make NNs diverse, we constrain the NN search space based on
additional knowledge in the form of NNs of the previous augmentation in self-supervised setting or the
labels or pseudo-labels in semi or fully supervised settings. These constraints encourages the query to be
pulled towards semantically related NNs that are farther away from the target embedding. See Fig 2.3 for
constructing the constrained set.

Most recent SSL methods, e.g., MoCo [120] and BYOL [107], pull the embedding of a query image to

be closer to its own augmentation compared to some other random images. Follow-up works have focused
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2.1. CONSTRAINED MEAN SHIFT FOR REPRESENTATION LEARNING

on improving the positive pairs through generating better augmentations [177, 252, 296] and the negative

set by increasing the set size [120] or mining effective samples [143, 147, 311], but have largely ignored

possibility of utilizing additional positive images. More recently, [15, 73, 162] expand the positive set using

nearest neighbors. Inspired by classic mean-shift algorithm, MSF [162] generalizes BYOL to group similar

images together. MSF pulls a query image to be close to not only its augmentation, but also the top-k nearest

neighbors (NNs) of its augmentation.

We argue that the top-k neighbors are close to the query image by construction, and thus may not

provide a strong supervision signal. We are interested in choosing far away (non-top) neighbors that are

still semantically related to the query image. This cannot be trivially achieved by increasing the number of

NNs since the purity of retrieved neighbors decreases with increasing k (See Fig. 2.4 and Fig. 2.5). Purity is

defined as the percentage of the NNs belonging to the same category as the query image.

We generalize MSF [162] method by simply limiting the NN search to a smaller subset that we believe

is reasonably far from the query but still semantically related to it. We define this constraint to be (1) the

nearest neighbors of another augmentation of the query in SSL setting and (2) images sharing the same

label or pseudo-label as the query in supervised and semi-supervised settings. While we aim to obtain

distant samples of the same category, note that we group only a few neighbors (k in our method) from

the constrained subset instead of grouping the whole subset together. This is in contrast to cross-entropy

supervised learning, where we pull all images of a category to form a cluster or be on the same side of a

hyper-plane. Our method can benefit from this relaxation by preserving the latent structure of the categories

and also being robust to noisy labels.

Our experiments show that the method outperforms the various baselines in all three settings with same

or less amount of computation in training (refer Fig. 2.1). It outperforms MSF [162] in SSL, cross-entropy

in supervised (with clean or noisy labels), and PAWS [14] in semi-supervised settings. Our main novelty

is in developing a simple but effective method for searching for far away but semantically related NNs and

in generalizing it to work across the board from self-supervised to semi-supervised and fully supervised

settings. To summarize,

(1) We propose constrained mean-shift (CMSF), a generalization of MSF [162], to utilize additional

sources of knowledge to constrain the NN search space.

(2) We develop methods to select the constraint set in self-, semi- and fully supervised settings. The

retrieved samples are empirically shown to be far away in the embedding space but semantically

related to the query image, providing a stronger training signal compared to MSF.

7



2.1. CONSTRAINED MEAN SHIFT FOR REPRESENTATION LEARNING

(3) CMSF achieves non-trivial gains in performance over self-supervised MSF and a direct extension

of MSF to semi-supervised version. CMSF outperforms SOTA methods with comparable compute

in self- and semi-supervised settings.

2.1.2 Related Work

Self-supervised learning (SSL): Earlier works on SSL focused on solving a pretext task that does not

require additional labeling. Examples of pretext tasks include colorization [352], jigsaw puzzle [224],

counting [225], and rotation prediction [98]. Another class of SSL methods is based on instance discrimi-

nation [72]. The idea is to classify each image as its own class. Some methods adopt the idea of contrastive

learning for instance discrimination [37, 38, 39, 48, 120]. BYOL [107] proposes a non-contrastive approach

by removing the negative set and simply regressing one view of an image from another.

Several recent works aim to find a larger positive sample set to improve learning. In LA [360], samples

are clustered using k-means and samples within a cluster are brought closer together compared to cross-

cluster samples. MSF [162] and MYOW [15] generalize BYOL by regressing target view and its NNs.

NNCLR [73] extends SimCLR to use NNs as positives. CLD [315] integrates grouping using instance-

group discrimination. Affinity diffusion [141] uses strongly connected nodes in a graph constructed using

embeddings to find positive samples. Unlike these methods, we focus on grouping together far away neigh-

bors that are semantically similar. We show quantitatively and qualitatively the diversity and purity of

retrieved neighbors and improved performance over MSF. We generalize the idea in MSF [162] to use an

additional source of knowledge to constrain the NN search space for the target view. CoCLR [113] and

Cl-InfoNCE [302] also use additional information sources in the form of additional modality and auxiliary

labels respectively to improve performance. However, we focus on self- and semi-supervised classification

settings and design methods to obtain and use the additional information as a constraint in NN search space.

Supervised learning: A drawback of Cross-entropy is its lack of robustness to noisy labels [278,354]. [214,

282, 301, 334] address the issue of hard labeling, e.g., (one-hot labels) with label smoothing, [18, 91, 130]

replace hard labels with prediction of pre-trained teacher, and [344,349] propose an augmentation strategy to

train on combination of instances and their labels. Another line of work [100,263] is to learn representations

with good kNN performance. SupCon [152] and [326] improve upon [100] by changing the distance to inner

product on ℓ2 normalized embeddings. We include the supervised setting to better understand the effect of

using constrained NNs, particularly in the noisy label setting.

8



2.1. CONSTRAINED MEAN SHIFT FOR REPRESENTATION LEARNING

Semi-supervised learning: Several methods combine self-supervised and supervised learning to form semi-

supervised methods. S4L [348] uses rotation prediction based loss on the unlabeled set along with cross-

entropy loss on the labeled set. Similarly, SuNCEt [13] combines SimCLR [48] and SwAV [38] methods

with supervised contrastive loss. Pseudo-labeling is frequently used in semi-supervised learning. In Pseudo-

Label [174], the network is trained with cross-entropy loss using supervised data on the labeled examples

and pseudo-labels on the unlabeled ones. In SimCLR-v2 [49], a teacher network is pre-trained using Sim-

CLR [48] and fine-tuned with supervised labels. The teacher is then distilled to a student network using

pseudo-labels on the unlabeled set. FixMatch [276] uses pseudo-labels obtained using a weakly augmented

image to train a strongly augmented version of the same image. UDA [330] leverages strong data augmenta-

tion techniques in enforcing this consistency in pseudo-labels across augmentations. MPL [241] optimizes

a student network using pseudo-labels from a teacher network, while the teacher is optimized to maximize

the student’s performance on the labeled set. PAWS [14] uses consistency based loss on soft pseudo-labels

obtained in a non-parametric manner. Our method too uses pseudo-labels to train the unlabeled samples.

However, we use the labels as a constraint in MSF [162] and do not directly optimize samples using cross-

entropy loss.

Metric learning: The goal of metric learning is to train a representation that puts two instances close in

the embedding space if they are semantically close. Two important methods in metric learning are: triplet

loss [58, 267, 320] and contrastive loss [30, 275]. Metric learning methods perform well on tasks like image

retrieval [324] and few-shot learning [274, 309]. Prototypical networks [274] is similar to a contrastive

version of our method with top-all.

2.1.3 Method

Similar to MSF [162], given a query image, we are interested in pulling its embedding closer to the

mean of the embeddings of its nearest neighbors (NNs). However, since top NNs are close to the target

itself, they may not provide a strong supervision signal. On the other hand, far away (non-top) NNs may

not be semantically similar to the target image. Hence, we constrain the NN search space to include mostly

far away points with high purity. The purity is defined as the percentage of the selected NNs being from the

same ground truth category as the query image. We use different constraint selection techniques to analyze

our method in supervised, self- and semi-supervised settings.

Following MSF and BYOL, we use two embedding networks: a target encoder f (.) with parameters θ f

and an online encoder g(.)with parameters θg. The online encoder is directly updated using backpropagation

9



2.1. CONSTRAINED MEAN SHIFT FOR REPRESENTATION LEARNING

Figure 2.3. CMSFself: The indices of the NNs of the previous epoch’s memory bank M′ are used to
construct the constrained set C from the current memory bank M.

while the target encoder is updated as a slowly moving average of the online encoder: θ f ← mθ f +(1−m)θg
where m is close to 1. We add a predictor head h(.) [107] to the end of the online encoder so that pulling

the embeddings together encourages one embedding to be predictable by the other one and not necessarily

encouraging the two embeddings to be equal. In the experiments, we use a two-layer MLP for h(.).

Given a query image xi, we augment it twice with transformations T1(.) and T2(.), feed them to the two

encoders, and normalize them with their ℓ2 norm to get ui = f (T1(xi))

∣∣ f (T1(xi))∣∣2
and vi = h(g(T2(xi)))

∣∣h(g(T2(xi)))∣∣2
. We add ui to

the memory bank M and remove the oldest entries to maintain a fixed size M. We select the constraint set

Ci as a subset of M. Constraint set selection is explained in detail in Sections 2.1.3.1, 2.1.3.2, and 2.1.3.3.

We then find the set S i of top-k nearest neighbors of ui in Ci including ui itself. Finally, we update g(.) by

minimizing:

L =
n

∑
i=1

1
∣S i∣
∑
z∈S i

vT
i z

where n is the size of mini-batch and ∣S i∣ is the size of set S i, e.g., k in top-k. Finally, we update f (.) with

the momentum update. In the top-all variation of our method, number of neighbors k is set equal to the size

of Ci, i.e., S i = Ci. Note that since ui itself is included in the nearest neighbor search, the method will be

identical to BYOL [107] when k = 1 and to self-supervised mean-shift [162] when the constraint is fully

relaxed (Ci = M). Our method covers a larger spectrum of algorithms by defining the constrained set. Below

we discuss the selection of constrained set in various settings.

2.1.3.1 Self-Supervised Setting

In addition to M, we maintain a second memory bank M′ that is exactly the same as M but contains

features from a different (3rd) augmentation of the image xi fed through target encoder f (.). We assume

wi ∈ M′ and ui ∈ M are two embeddings corresponding to the same image xi. Then, we find NNs of wi in M′

10
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and use their indices to construct the search space Ci from M (See Fig. 2.3). Note that although the NNs of

wi in M′ are already close to each other, their corresponding elements in M may not be close to each other

since M contains different augmentations ui of the same images. As a result, Ci will maintain good purity

while containing distant NNs (refer to Table 2.1-Right and Fig. 2.5).

Since it is expensive to embed a 3rd augmentation of each image, we embed only two augmentations as

in MSF and BYOL and cache the embeddings from the previous epoch, keeping the most recent embedding

for each image. The cached embedding will be still valid after one epoch since the target encoder is updated

slowly using the momentum update rule (similar to MoCo). Since cache size is equal to the dataset size, we

store it in the CPU memory and maintain the auxiliary memory bank M′ by loading the corresponding part

of it to the GPU memory for each mini-batch. Caching of features is not essential for CMSF to work and is

only used to reduce computational cost. We performed experiments with an actual 3rd augmentation instead

and found the results to be similar to our method except that it was nearly 30% slower due to forwarding an

additional augmentation. Table 2.1-Right shows that in the intermediate stages of learning, the top elements

of Ci are spread apart in M with higher median ranks, and get closer to the top elements of M as the learning

progresses. Note that we use wi instead of ui in finding the NNs in M′ since both wi and M′ use an older

target model, so are more comparable.

Since CMSF adds farther NNs only for stronger supervision, we additionally employ MSF loss calcu-

lated on the unconstrained M. Then, in the self-supervised setting, the total loss is an equally weighted sum

of MSF and CMSF losses.

Our method can be extended to cross-modal self-supervised setting where the constraint can use NNs in

a different modality rather than the 3rd augmentation of the same modality. We report the details and some

preliminary experiments on this setting in the supplementary.

2.1.3.2 Supervised Setting

While supervised setting is not our primary novelty or motivation, we study it to provide more insights

into our constrained mean-shift framework. With access to the labels of each image, we can simply construct

Ci as the subset of M that shares the same label as the query xi. This guarantees 100% purity for NNs.

Note that most supervised methods, including cross-entropy loss, try to group all examples of a category

together on the same side of a hyper-plane while remaining categories are on the other side. However, our

method pulls the target to be close to only those examples of the same category that are already close to the

target. This results in a supervised algorithm that may keep the latent structure of each category which can

11
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be useful for pre-training on coarse-grained labels. Moreover, as shown in the experiments (Fig. 2.6), our

method is more robust to label noise since most mis-labeled images will be far from the target embedding,

thus ignored in learning. This motivates applying our method to semi-supervised setting where the limited

supervision provides noisy labels.

2.1.3.3 Semi-Supervised Setting

In this setting, we assume access to a dataset with a small labeled and a large unlabeled subset. We train

a simple classifier using the current embeddings of the labeled data and use the classifier to pseudo-label

the unlabeled data. Then, similar to the supervised setting, we construct Ci to be the elements of M that

share the pseudo-label with the target embedding. Again, this method increases the diversity of Ci while

maintaining high purity. To keep the purity high, we enforce the constraint only when the pseudo-label is

very confident (the probability is above a threshold.) For the samples with non-confident pseudo-label, we

relax the constraint resulting in regular MSF loss (i.e., Ci = M.) Moreover to reduce the computational

overhead of pseudo-labeling, we cache the embeddings of labeled examples throughout the epoch and train

a 2-layer MLP classifier using the frozen cached features and their groundtruth labels in the middle and end

of each epoch.

2.1.4 Experiments

Implementation details: We use PyTorch for all our experiments. Unless specified, we use the same

hyper-parameter values in self-, semi- and fully supervised settings. All models are trained on ImageNet-

1k (IN-1k) for 200 epochs with ResNet-50 [121] backbone and SGD optimizer (learning rate=0.05, batch

size=256, momentum=0.9, and weight decay=1e-4) with cosine scheduling for learning rate. While we

focus on single crop setting in most of our experiments, we also report the results for multiple crop inputs

in the SSL setting. Following SwAV [38], we use four additional crops of 96x96 resolution as input. These

are used as inputs only to the online encoder and not the target encoder. The momentum value of CMSF

for the moving average key encoder is 0.99. The 2-layer MLP architecture for CMSFsemi is as follows:

(linear (2048x4096), batch norm, ReLU, linear (4096x512)). The default memory bank size is 128k. Top-k

is set to 10 in the semi- and fully supervised settings and 5 in the self-supervised setting. Additional details

are provided in the supplementary. Our main CMSF experiment with 200 epochs takes nearly 6 days on

four NVIDIA-2080TI GPUs. The overhead in training time due to NN search is negligible compared to the
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Figure 2.4. Nearest neighbor selection on constrained memory bank: First row shows top-5 NNs of
target in constrained set C and their corresponding rank in the unconstrained memory bank M obtained
using an intermediate checkpoint (epoch 100). While they are not the closest samples to the target (higher
rank index), they are semantically similar to the target. This shows that the constraint can capture far
away samples with similar semantic as the target. The second row depicts images from memory bank with
one rank lower than the corresponding image in the first row. These images contain incorrect category
retrievals. Distant neighbors cannot be trivially obtained by increasing the number of NNs. Examples are
chosen randomly.

forward and backward passes through the network (that is also done in BYOL): the increase in time is 0.7%

for MSF [162] and 2.1% for CMSFself.

Recent SSL methods are usually computationally expensive leading to worse environmental impact

and exclusion of smaller research labs. While our experiments are more efficient and accessible than most

SOTA methods, e.g., PAWS, we limit our training length to 200 epochs due to resource constraints. We do

not empirically verify whether the improvements observed over SOTA approaches at lower epochs (200) are

persistent with longer training (e.g., 800 or 1000 epochs).

Evaluation: We evaluate the pre-trained models using linear evaluation (Linear IN-1k) in both ImageNet

classification and transfer settings. The model backbone parameters are fixed and a single linear layer is

trained atop them following the setting in CompRess [160]. Additionally, we report k-nearest neighbor

(k = 1,20) evaluation for the SSL setting as in [160]. The transfer performance is evaluated on the following

datasets: Food101 [28], SUN397 [327], CIFAR10 [166], CIFAR100 [166], Cars196 [163], Aircraft [203],

Flowers (Flwrs102) [221], Pets [233], Caltech-101 (Calt101) [83], and DTD [59] (additional details in

supplementary material.)

2.1.4.1 Self-Supervised Learning (CMSFself)

To reduce the GPU memory footprint, we cache the previous augmentation embedding of each sample in

the dataset in the CPU. The cached features corresponding to the current mini-batch are retrieved from CPU

memory to maintain memory bank M′ with previous augmentations. This cache is updated using the oldest

features in M that we remove from M after each iteration.

Results on ImageNet: Results of CMSFself are shown in Table 2.1. CMSFself outperforms MSF base-

line with a larger memory bank, which we believe is due to pulling together far yet semantically similar

13
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Table 2.1. Left: Evaluation on full ImageNet: We compare our model with other SOTA methods
in Linear (Top-1 Linear) and Nearest Neighbor (1-NN,20-NN) evaluation. We use a memory bank of
size 128K for CMSF and provide comparison with both 256K and 1M memory bank versions of MSF.
Since CMSFself uses NNs from two memory banks, it is comparable to MSF (256K) in memory and
computation overhead. Both single crop and multi-crop versions of our method outperform other SOTA
methods, including MSF, with similar compute. Right: Histogram of constrained sample ranks: We
consider the 5th NN in the constrained set C and obtain its rank in the unconstrained memory bank M. The
histogram of these ranks are shown up to rank 100 for different train stages of CMSFself. Also, the median
of these ranks are shown in Figure 2.5. A large number of distant neighbors are included in the constrained
set in the early stages of training while there is a higher overlap between constrained and unconstrained
NN sets towards the end of training.

Method Ref. Batch Epochs Sym. Loss Multi-Crop Top-1 NN 20-NN
Size 2x FLOPS Training Linear

Supervised [9] 256 100 - - 76.2 71.4 74.8

Random-init - - - - - 5.1 1.5 2.0
SeLa-v2 [339] [38] 4096 400 ✓ ✗ 67.2 - -
SimCLR [48] [48] 4096 1000 ✓ ✗ 69.3 - -
SwAV [38] [38] 4096 400 ✓ ✗ 70.1 - -
DeepCluster-v2 [37] [38] 4096 400 ✓ ✗ 70.2 - -
SimSiam [53] [53] 256 400 ✓ ✗ 70.8 - -
MoCo v2 [120] [51] 256 800 ✗ ✗ 71.1 57.3 61.0
CompRess [160] [160] 256 1K+130 ✗ ✗ 71.9 63.3 66.8
InvP [310] 256 800 ✗ ✗ 71.3 - -
BYOL [107] [107] 4096 1000 ✓ ✗ 74.3 62.8 66.9
SwAV [38] [38] 4096 800 ✓ ✓ 75.3 - -
NNCLR [73] 4096 1000 ✗ ✗ 75.4 - -

SimCLR [48] [53] 4096 200 ✓ ✗ 68.3 - -
SwAV [38] [53] 4096 200 ✓ ✗ 69.1 - -
MoCo v2 [120] [53] 256 200 ✓ ✗ 69.9 - -
SimSiam [53] [53] 256 200 ✓ ✗ 70.0 - -
NNCLR [73] [73] 4096 200 ✗ ✗ 70.7 - -
BYOL [107] [53] 4096 200 ✓ ✗ 70.6 - -
SwAV [38] [53] 256 200 ✓ ✓ 72.7 - -
Truncated Triplet [311] [311] 832 200 ✓ ✗ 73.8 - -
OBoW [97] [97] 256 200 ✗ ✓ 73.8 - -
CMSFself (128K) - 256 200 ✗ ✓ 74.4 62.3 66.2

MoCo v2 [120] [51] 256 200 ✗ ✗ 67.5 50.9 54.3
CO2 [317] [317] 256 200 ✗ ✗ 68.0 - -
BYOL-asym [107] [162] 256 200 ✗ ✗ 69.3 55.0 59.2
ISD [290] [290] 256 200 ✗ ✗ 69.8 59.2 62.0
MSF (1M) [162] [162] 256 200 ✗ ✗ 72.4 62.0 64.9
MSF (256K) [162] [162] 256 200 ✗ ✗ 72.2 62.1 65.1
CMSFself (128K) - 256 200 ✗ ✗ 73.0 63.2 66.4

samples (Fig. 2.4). We use MSF with 2x larger memory bank for fair comparison. CMSFself also achieves

state-of-the-art performance on both NN and Linear metrics when compared with approaches with similar

computational budget. We compare our method to other state-of-the-art approaches with 200 epochs of

training in Fig. 2.1. We observe a good trade-off in terms of accuracy and compute for CMSFself. Our best

performance is obtained with the multi-crop version but at the cost of increased compute.

Evaluation on ImageNet subsets: Following [48,125], we evaluate the pre-trained models on the ImageNet
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Table 2.2. Transfer learning evaluation: Our supervised CMSF model at just 200 epochs outperforms
all supervised baselines on transfer learning evaluation. Our SSL model outperforms MSF, the comparable
state-of-the-art approach, by 1.2 points on average over 10 datasets. We get the results for MoCo v2, MSF,
and BYOL-asym from [162], SimCLR and Xent (1000 epoch) from [48], and BYOL from [107].

Method Epoch Food CIFAR CIFAR SUN Cars Air- DTD Pets Calt. Flwr Mean Linear
101 10 100 397 196 craft 101 102 Trans IN-1k

Supervised Models
Xent 200 67.7 89.8 72.5 57.5 43.7 39.8 67.9 91.8 91.1 88.0 71.0 77.2
Xent 90 72.8 91.0 74.0 59.5 56.8 48.4 70.7 92.0 90.8 93.0 74.9 76.2
ProtoNW 200 73.3 93.2 78.3 61.5 65.0 57.6 73.7 92.2 94.3 93.7 78.3 76.0
SupCon 200 72.5 93.8 77.7 61.5 64.8 58.6 74.6 92.5 93.6 94.1 78.4 77.5
Xent 1000 72.3 93.6 78.3 61.9 66.7 61.0 74.9 91.5 94.5 94.7 78.9 76.3
CMSFsup top-all 200 73.7 94.2 78.7 62.1 71.7 64.1 73.4 92.5 94.5 95.8 80.1 75.7
CMSFsup top-10 200 74.9 94.4 78.7 62.7 70.8 63.4 73.8 92.2 94.9 95.6 80.1 76.4

Self-Supervised Models
SimCLR 1000 72.8 90.5 74.4 60.6 49.3 49.8 75.7 84.6 89.3 92.6 74.0 69.3
MoCo v2 800 72.5 92.2 74.6 59.6 50.5 53.2 74.4 84.6 90.0 90.5 74.2 71.1
BYOL 1000 75.3 91.3 78.4 62.2 67.8 60.6 75.5 90.4 94.2 96.1 79.2 74.3
MoCo v2 200 70.4 91.0 73.5 57.5 47.7 51.2 73.9 81.3 88.7 91.1 72.6 67.5
BYOL-asym 200 70.2 91.5 74.2 59.0 54.0 52.1 73.4 86.2 90.4 92.1 74.3 69.3
MSF 200 72.3 92.7 76.3 60.2 59.4 56.3 71.7 89.8 90.9 93.7 76.3 72.1
CMSFself 200 73.0 92.2 77.2 61.0 60.6 58.4 74.1 91.1 92.0 94.5 77.4 73.0

classification task with limited labels. We report results with 1% and 10% labeled subsets of ImageNet (Ta-

ble 2.4). CMSFself outperforms MSF on top-1 accuracy in both 1% and 10% settings and is comparable to

existing approaches that require significantly higher training time.

Transfer learning: We follow the procedure in [48,107] for transfer evaluation (refer to Table 2.2). Hyper-

parameters for each dataset are tuned independently based on the validation set accuracy and final accuracy

is reported on the held-out test set (more details in supplementary). CMSFself achieves SOTA average per-

formance among methods trained for 200 epochs.

Purity of constrained samples: In CMSFself, we depend on information from previous augmentations to

constrain NN search in the current memory bank. Our goal is to improve learning by using distant samples

with a good purity. We observe that the top-k samples from constrained memory bank C have higher rank

in M, so are far neighbors of the target (see Table 2.1-Right and Fig. 2.5). Also, as shown in Fig. 2.5, those

samples maintain almost the same purity as the top-k samples from unconstrained memory bank M. As a

result, C maintains good purity while being diverse.

Effect of k′: In CMSFself, we first calculate top-k′ samples (the first k′ NNs of the target) from the secondary

memory bank M′. We then use those indices to constrain NN search space in the primary memory bank M

and select top-k for optimization. We varied the value of k′ in CMSFself to explore its effect, keeping k

fixed to 5. We observe that increasing k′ (relaxing the constraint) will decrease the accuracy of the model.
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Table 2.3. Effect of k′ in sampling NN from M′: In CMSFself, we constrain top-k NN search space in M
with top-k′ samples from M′. (Left) Increasing k′ results in a drop in accuracy. The k in top-k is set to 5
for all values of k′. (Right) Histogram of the constrained sample ranks at epoch 50. The histogram shifts
left, i.e., overlap between constrained and unconstrained NN sets increases with increasing value of k′.

k′ 5 10 20 40 80

NN 63.2 62.9 62.7 62.3 61.7
20-NN 66.4 66.1 65.9 65.6 65.0

As observed in Table 2.3-right, the overlap between constrained and unconstrained NN set increases with

increasing value of k′. Note that in a case where k′ = ∞, CMSFself will be identical to the MSF baseline.

2.1.4.2 Supervised Learning

Evaluation: Unlike cross-entropy (Xent [22,180,258]) baseline, SupCon [152], ProtoNW [274] and CMSF

do not train a linear classifier during the pre-training stage. Thus, we use the pre-training dataset ImageNet-

1k (IN-1k) for linear evaluation of the frozen features as done in SSL. For Xent, we use the linear classifier

trained during pre-training. We use the same settings and datasets as self-supervised for transfer learning

evaluation.

Results: Results on IN-1k dataset are shown in Table 2.2. In top-all variation of our method, k is equal to the

total size of C. SSL inspired methods like CMSF and SupCon significantly outperform Xent when trained

for similar number of epochs. We observe that improvements in ImageNet performance do not always

translate to transfer performance. Interestingly, CMSF performs the best on transfer evaluation, particularly

on fine-grained datasets like Cars196 and Aircraft. We believe that the absence of explicit cross-entropy

based optimization using the supervised labels preserves the multi-modal distribution of categories improv-

ing fine-grained performance. Supervised CMSF uses class labels only as a constraint for MSF during

pre-training and does not explicitly optimize on the classification task. Superior performance of CMSFsup

top-10 demonstrates the importance of using distant yet semantically related neighbors as positives.

Noisy Labels: In the noisy setting, we use random i.i.d. noise to corrupt the labels (change the label

randomly) of a percentage of images. We consider, 5%, 10%, 25%, and 50% label corruption (noise) rates.

For faster experiments, we report results on the ImageNet-100 dataset [293] (Fig. 2.6). We observe a sig-

nificantly higher degradation in performance of Xent baseline and CMSFsup top-all compared to CMSFsup

top-10 at high noise levels. The gap between the approaches is larger on transfer learning. These observa-

tions indicate that NN based methods like CMSF are better suited for noisy constraint settings compared
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Table 2.5. Supervised learning on coarse grained ImageNet: We train on the coarse grained version of
ImageNet (93 super categories) and perform linear evaluation on the original ImageNet-1k validation set
with fine-grained labels (1000 categories).

Train Dataset ImageNet-1k Validation Set
Xent SupCon CMSFsup top-all CMSFsup top-10

ImageNet-1k 77.2 77.5 75.7 76.4
ImageNet-coarse 61.4 58.7 67.0 74.2

to approaches utilizing all samples of a class as positives. This robustness to label noise motivates our

application of CMSF to self- and semi-supervised settings where pseudo-labels or the NNs of previous

augmentations may be noisy.

Coarse-grained ImageNet: CMSF groups together only top-k neighbors and thus can help in preserving

the latent structure of the data compared to top-all. To verify this, we consider a dataset with coarse-grained

labels where this difference is pronounced. Based on the WordNet hierarchy, we merge each category in

the ImageNet dataset to its parent class. We further ensure that no two classes are in the same path in

the graph by merging the descendant into the ancestor class. The total number of classes is thus reduced

from 1000 in ImageNet-1k to 93 in our ImageNet-coarse. We train CMSF and the baseline approaches

in a supervised manner using the coarse labels and then evaluate on the fine-grained / original labels on

ImageNet-1k validation set. In Table 2.5 we compare the top-all and top-k variants on the coarse grained

version of ImageNet. CMSFsup top-k sees a minor drop in performance compared to training on ImageNet-

1k. However, methods in which all samples in a class are explicitly brought closer - CMSFsup top-all,

cross-entropy and supervised contrastive - see a huge drop in accuracy. More details on coarse-grained

ImageNet are in the supplementary.

2.1.4.3 Semi-Supervised Learning

Implementation Details: We train a 2-layer MLP atop the cached target features of supervised set for

pseudo-labeling. The pseudo-label training is performed twice per epoch (takes 40 seconds per training)

and the label assignment is done in an online fashion for each mini-batch. The confidence threshold for

pseudo-labeling is set to 0.85. We use the same optimizer settings as in self-supervised CMSF for the

pre-training stage. Similar to S4L [348], we perform two stages of fine-tuning with supervised and pseudo-

labels. We fine-tune the backbone network with two MLPs (as in PAWS [14]) on the 10% labeled set for

20 epochs and pseudo-label the train set. Samples above confidence threshold (nearly 30% of dataset) are
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Table 2.6. Semi-supervised learning on ImageNet dataset with 10% labels: FLOPs denotes the total
number of FLOPS for forward and backward passes through ResNet-50 backbone while batch size denotes
the sum of labeled and unlabeled samples in a batch. CMSFsemi-mix precision is compute and resource
efficient, achieving SOTA performance at comparable compute. PAWS requires large number of GPUs
to be compute efficient and its performance drastically drops with 4/8 GPUs. † Trained with stronger
augmentations like RandAugment [62]. * TPUs are used.

Method Epochs Batch GPUs FLOPs Top-1
Size (x1018)

Self-supervised Pre-training
Mean Shift [162] 200 256 4 4 67.4
BYOL [107] 1000 4096 512* 40 68.8
SwAV [38] 800 4096 64 37 70.2
SimCLRv2 [49] 800 4096 128* 16 68.4

Semi-supervised Pre-training
SimCLRv2 (+Self Dist) [49] 1200 4096 128* 20 70.5
UDA† [330] 800 15872 64* 10 68.1
FixMatch† [276] 300 6144 32* 7 71.5
MPL† [241] 800 2048 - 30 73.9
PAWS (support=6720) [14] 300 4096 64 21 75.5
PAWS (support=1680) [14] 100 256 8 15 70.2
PAWS (support=400) [14] 100 256 4 7 62.9
CMSFsemi-basic 200 256 4 4 68.6
CMSFsemi 200 256 4 4 69.9
CMSFsemi-mix precision 200 768 4 4 70.5

combined with supervised set to fine-tune again for 20 epochs (more details in suppl.). The second fine-

tuning is equivalent to 5 epochs with full data and is a small increase in our total compute. This is needed

since we do not directly optimize cross-entropy loss in pre-training as in [241, 276, 330].

Evaluation: The final epoch parameters are used to perform evaluation. We report top-1 accuracy on the

ImageNet validation set. We additionally report the total number of FLOPs for forward and backward passes

(backward is 2× forward) through ResNet-50 backbone and the number of GPUs/TPUs used by each method

in the pre-training stage (more details in suppl.).

Baselines: We compare the proposed approach (CMSFsemi) with self- and semi-supervised approaches.

CMSFsemi-basic minimizes unconstrained MSF loss on the unlabeled examples (no pseudo-labeling) and

CMSF loss on the labeled examples only. We provide comparison of PAWS method with different support

set sizes. We train PAWS on 4x 16GB GPUs with maximum possible support set size (200 classes, 2

images/class) using code provided by the authors. We also report results using mixed precision training

(CMSFsemi-mix precision) as in PAWS [14] with a higher batch size of 768 since it has lower memory

requirement.

Results: CMSFsemi-mix precision achieves comparable performance to most methods with significantly less

training and without the use of stronger augmentation schemes like RandAugment [62] (Table 2.6, Fig. 2.1).
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PAWS with a support set size of 6720 outperforms other approaches. However, this requires significantly

higher compute (4.8× FLOPs) and resources (64 GPUs) compared to CMSFsemi-mix precision (4 GPUs).

Since PAWS requires a large support set, it does not scale well to lower resource (4/8 GPUs) settings even

if the total compute remains the same. When trained on only 4 GPUs, CMSF outperforms PAWS by 7.6%

points. Additional ablations and results on ImageNet-100 dataset are in supplementary.

2.1.5 Conclusion

MSF is a recent SSL method that pulls an image towards its nearest neighbors. We argue that the model

can benefit from more diverse yet pure neighbors. Hence, we generalize MSF method by constraining

the NN search. This opens the door to using the mean-shift idea to various settings of self-supervised,

supervised, and semi-supervised. To construct the constraint, our SSL method uses cached augmentations

from the previous epoch while the supervised and semi-supervised settings use labels or pseudo-labels. We

show that our method outperforms SOTA approaches like MSF in SSL, PAWS in semi-supervised, and

supervised contrastive in transfer-learning evaluation of supervised settings.
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2.2 SimReg: Regression as a Simple Yet Effective Tool for Self-supervised

Knowledge Distillation

Feature regression is a simple way to distill large neural network models to smaller ones. We show that

with simple changes to the network architecture, regression can outperform more complex state-of-the-art

approaches for knowledge distillation from self-supervised models. Surprisingly, the addition of a multi-

layer perceptron head to the CNN backbone is beneficial even if used only during distillation and discarded

in the downstream task. Deeper non-linear projections can thus be used to accurately mimic the teacher

without changing inference architecture and time. Moreover, we utilize independent projection heads to si-

multaneously distill multiple teacher networks. We also find that using the same weakly augmented image as

input for both teacher and student networks aids distillation. Experiments on ImageNet dataset demonstrate

the efficacy of the proposed changes in various self-supervised distillation settings.

2.2.1 Introduction

There has been a tremendous improvement in deep learning methodologies and architectures in the

last few years. While this has lead to significant improvements in performance on various computer vi-

sion tasks, it has also resulted in complex and deep networks that require high compute during infer-

ence [121, 140, 142, 346]. Various specialized architectures [134, 144, 265, 285] have been proposed to

minimize the inference time and memory requirements of the model to be deployed. Knowledge distilla-

tion [34,130] has been proposed as an effective technique to compress information from larger but effective

models (teachers) to lighter ones (students).

With availability of large scale unlabeled datasets, self-supervised learning (SSL) has received great

attention in recent times. Several SSL methods achieve close to supervised performance on the benchmark

ImageNet object classification task [37, 107]. Unlike supervised models, the outputs of a self-supervised

network are latent feature vectors and not class probabilities. An additional module is generally trained atop

the pretrained SSL models using supervision to perform the downstream task. Conventional knowledge

distillation methods proposed for supervised classification are thus not applicable for distillation from self-

supervised networks. A simple way to handle this is to directly regress the teacher latent features. Recent

works [79, 161] have proposed more complex solutions that try to capture the structure of the teacher latent

space and are shown to outperform the regression baselines.
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Figure 2.7. Proposed distillation pipeline: We propose a simple modification of using a MLP prediction
module during distillation. The module is discarded during inference. Surprisingly, performance of back-
bone features fs is better than those from MLP output, f ′s , though f ′s more closely matches the teacher. A
deeper MLP helps improve distillation performance.

Use of a multi-layer perceptron (MLP) head atop CNN backbone model has been shown to help self-

supervised models prevent overfitting to the SSL task and generalize better to downstream applications [48,

52, 54, 107]. Such modules are used only during SSL pre-training and are not part of inference network. In

this work, we consider the task of distilling self-supervised models. We employ a similar prediction head

atop the student backbone network to effectively mimic the teacher. As in SSL, the prediction module is

discarded after distillation and thus, there is no change in the time and memory required during inference

(refer Fig. 2.7). We empirically demonstrate that doing so does not hurt classification performance. Counter-

intuitively, we observe that the features from the backbone network outperform those from the final layer of

the prediction head though the final layer best matches the teacher. Unlike in SSL, overfitting to the training

task (i.e, exactly mimicking the teacher) benefits distillation [25] and it is not clear why generalization could

be better at intermediate layers where the similarity with teacher is reduced. Our finding suggests that we

require a deeper analysis to understand how well the student models mimic the teacher in general and how

knowledge distillation works. Crucially, it also enables us to use a deeper prediction head to achieve lower

train and test error leading to better downstream performance without increasing the student capacity.

We empirically show that the above observation generalises to distillation with different teacher and stu-

dent settings and to other self-supervised distillation technique. Our simple regression model with a MLP

prediction head outperforms complex state-of-the-art approaches that require the use of memory banks and

tuning of temperature parameter. Our work serves as an important benchmark for future self-supervised
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distillation works. The use of MLP heads also facilitates effective distillation from multiple SSL teacher

networks. Additionally, we demonstrate that using the same augmented image with weak augmentation for

both student and teacher networks results in better student models. Since aggressive augmentation is nec-

essary for effective self-supervised learning [48, 52] but hurts their ability to generalize [243], our approach

could be used to learn better SSL models. To summarize, our contributions are simple changes to architec-

ture and augmentation strategy of distillation networks that not only achieve state-of-the-art performance on

SSL model distillation but also question our current understanding of knowledge distillation.

2.2.2 Related Works

Supervised knowledge distillation: Bucilua et al. [34] and Hinton et al. [130] pioneered the use of

knowledge distillation for compressing information. The methods used the teacher prediction logits as soft-

labels in addition to the supervised label to regularize the student model. [234] minimizes the divergence

between the student and teacher probability distributions. Several works ( [128,155,257]) utilize intermedi-

ate teacher outputs in distillation. FitNets [257] match both the final and intermediate teacher representations

while [155] transfers knowledge from the attention maps of the teacher. RKD [231] transfers mutual rela-

tions instead of instance wise distillation. [312] proposes directly regressing the final teacher features with

a modified loss function that strictly matches the direction of the features but allows flexibility in terms of

feature magnitude.

Self-supervised representation learning (SSL): Earlier works on SSL ( [37, 69, 98, 224, 225, 237]) learn

effective representations by solving pretext tasks that do not require supervised labels. Recently, works

based on contrastive learning ( [17, 38, 48, 52, 120, 209, 294]) have gained focus. In contrastive learning, the

distances between representations of positive pairs are minimized while those between negative pairs are

maximized. The positive and negative pairs are generally constructed by utilizing multiple augmentations

of each image. BYOL [107] is closer to knowledge distillation, where the distance between teacher and

student representations are minimized. The inputs to the two networks must be different augmentations of

the same image and the teacher network is obtained as a moving average of the student. Similar to our

work, [107] employs MLP head atop the student network to predict the teacher features.

Distillation of self-supervised models: In [226], the student mimics the unsupervised cluster labels pre-

dicted by the teacher. CRD [295] maximizes a lower bound of the mutual information between the teacher
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and student networks. However, it additionally uses supervised loss for optimization. CompRess [161] and

SEED [79] are specifically designed for compressing self-supervised models. In both these works, student

mimics the relative distances of teacher over a set of anchor points. Thus, they require maintaining large

memory banks of anchor features and tuning temperature parameters. As in regression, proposed prediction

heads can also be used to improve CompRess and SEED.

2.2.3 Knowledge Distillation

We first consider the supervised model distillation formulation proposed in [130]. The teacher is trained

on the task of object classification from images. Let X be the set of images, Y the set of corresponding class

labels and c the total number of classes. Consider a teacher network with ft = T(x), ft ∈ Rc as the output

vector (logits) corresponding to input image x. The predicted class probabilities can be obtained by applying

softmax operation σ(.) atop the vector ft.

(2.1) ŷt = σ( ft; τt) =
e ft/τt

∑i e f i
t /τt

where f i
t is the ith dimensional output of the feature vector and τt is the temperature parameter. The teacher

network is trained using the image-label pairs in a supervised fashion with standard cross-entropy loss. The

trained teacher network is to be distilled to a student network. Once trained, the teacher network parameters

are frozen during the distillation process. Let be the student network, fs = S (x), fs ∈ Rc the feature

vector corresponding to input image x and ŷs = σ( fs; τs) the predicted class probability vector. Knowledge

distillation loss is given by

(2.2) LKD(ŷt, ŷs) =
c

∑
j=1

ŷ j
t log(ŷ j

s)

The student is trained using a combined objective function involving supervised cross entropy loss on student

features LCE and distillation loss LKD:

(2.3) L = λLCE + (1 − λ)τ2s LKD

where λ is a hyperparameter that determines the relative importance of each loss term. Since τt is generally

set to 1, KD loss is multiplied by a factor of τ2s to match the scale of gradients from both loss terms.
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2.2.3.1 Distillation of Self-supervised Models

The value of λ in Eq. 2.3 can be set to 0 if the class labels are not available during student distillation.

However, the formulation cannot be directly employed to distill from self-supervised teacher networks since

the teacher outputs are latent representations and not logits or class probability vectors. Thus, to distill from

such teachers, we simply regress the final feature vector of the teacher. Let ft = T(x), ft ∈ Rd and fs = S (x),

fs ∈ Rm. Since it is not necessary for the student and teacher representation dimensions to be the same, we

use a linear projection of the student feature to match the dimensions.

(2.4) f ′s =WT fs + b; W ∈ Rm ×Rd, b ∈ Rd

The distillation objective is then given by L = Lreg = d( ft, f ′s) where d(.) is a distance metric. Here, we

consider squared Euclidean distance of l2 normalized features as the metric.

2.2.3.2 Prediction Heads for Regression Based Distillation

For a more effective matching of the teacher latent space, we propose a non-linear prediction head

g(.) atop the student backbone network in place of the linear projection in Eq. 2.4. During training, the

student feature is then obtained as f ′s = g( fs) where g(.) is modeled using a multi-layer perceptron (MLP).

Each layer in g(.) is given by a linear layer with bias followed by batch-normalization and a non-linear

activation function (we use ReLU non-linearity in all our experiments). The number of such layers is a

hyperparameter to be optimized. The dimension of the last layer output matches that of the teacher. There

is no non-linearity in the final layer to prevent constraining the output space of the student network. During

inference, the prediction head g(.) is removed and the output of the student network is obtained as fs = S (x)

(refer Fig. 2.7). Thus, there is no change in the architecture or the number of parameters of the model to

be deployed. In our experiments, we demonstrate that the use of such MLP heads plays a crucial role in

improving downstream performance. Surprisingly, we also observe that preserving the prediction heads

during inference is not necessarily beneficial and might result in reduction in performance.

2.2.3.3 Multi-teacher Distillation

The prediction heads are particularly beneficial in distillation from multiple teacher networks. Inde-

pendent deep non-linear projections of the student backbone features can be employed during distillation

to match each of the teachers. Let f k
t be the output vector of the kth teacher and f k

s = gk( fs) that of the

corresponding student prediction head gk(.). The multi-teacher distillation objective for K teachers is given
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by:

(2.5) L = 1
K
∑
k

d( f k
t , f

k
s )

The prediction heads are trained by the loss term from corresponding teachers while the backbone S is

trained using the summation in Eq. 2.5.

2.2.4 Experiments

We consider distillation of pretrained self-supervised models. We consider four such methods for

teacher networks - MoCo-v2 [52], BYOL [107], SwAV [37] and SimCLR [48]. We use the official pub-

licly released models for all the teacher networks (details in suppl.). We also use a ResNet-50 model trained

with supervised labels (provided by PyTorch in [7]) as a teacher. All teacher training and student distillation

is performed on the train set of ImageNet. We consider different teacher and student backbone network

architectures. For the prediction head, we experiment with linear, 2 and 4 layer MLPs. Let the dimension

of the student backbone output be m and that of teacher d. Similar to the prediction head in [107], the MLP

dimensions are (m,2m,m,2m,d).

Implementation details: We use SGD optimizer with cosine scheduling of learning rate and momentum of

0.9. Initial learning rate is set to 0.05. As in [161] the networks are trained for 130 epochs with batch size

of 256. Cached teacher features are utilized for faster distillation in experiments with SimCLR, BYOL and

SwAV teachers. We publicly release the code*.

Datasets: We primarily evaluate the performance of distilled networks on ImageNet [259] classification

task. Additionally, for transfer performance evaluation, we consider the following datasets: Food101 [29],

CIFAR10 [167], CIFAR100 [167], SUN397 [328], Cars [164], Aircraft [204], DTD [60], Pets [232], Caltech-

101 [84] and Flowers [222]. We train a single linear layer atop the frozen backbone network for transfer

evaluation.

Metrics: We use k-nearest neighbour (k-NN) and linear evaluation on all tasks. We also report mean

squared error (MSE) between the student and teacher features over the test set. For k-NN evaluation, k=1

and 20 are considered and cosine similarity is used to calculate NNs. We employ FAISS [3] GPU library to

*Code is available at https://github.com/UCDvision/simreg
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Table 2.7. Role of MLP Heads. We train three models with varying number of layers in prediction head
and use the features from final MLP layer of each prediction model for evaluation. Deeper models more
closely match the teacher (lower MSE) and achieve better classification performance (1 and 20 Nearest
Neighbour and Linear evaluation).

Train and Inference Arch 1-NN 20-NN Linear MSE

MobileNet-v2+4L-MLP 54.5 58.7 68.5 0.090
MobileNet-v2+2L-MLP 54.0 58.0 67.9 0.097
MobileNet-v2+Linear 50.8 55.1 58.3 0.149

Table 2.8. Effect of MLP Heads on inference. We train a single model with 4 layer MLP head and
perform evaluation using features from different layers (pre-MLP, intermediate MLP layer and MLP out-
put). Since the final layer outputs are trained to mimic the teacher, MSE with teacher features is lowest
at 4L-MLP while that at 2L-MLP is extremely high (dimension of BB and teacher are different, hence
MSE is not reported). However, features from backbone and intermediate layer (+2L-MLP) outperform
those from final layer (+4L-MLP) on classification, contrary to the notion that features with lower MSE
generalize better.

Train Backbone(BB)+4L-MLP
Inference Backbone(BB) BB+2L-MLP BB+4L-MLP

Metric 1-NN Linear MSE 1-NN Linear MSE 1-NN Linear MSE

ResNet-18 55.3 65.7 - 56.0 66.4 1.99 53.4 65.2 0.1

perform fast k-NN evaluation. For linear evaluation, a single linear layer is trained atop the features from

the network to be evaluated. As in [161], the inputs to the linear layer are normalized to unit l2 norm and

then each dimension is shifted and scaled to have unit mean and zero variance. The layer is trained for 40

epochs using SGD with learning rate of 0.01 and momentum of 0.9.

2.2.4.1 Baseline Approaches

Regression: In addition to proposed MLP prediction head based regression (termed SimReg-MLP), we

consider two additional regression baseline methods proposed in [161] termed ‘Regress’ and ‘Regress-BN’.

While Regress distills from unnormalized teacher features, Regress-BN uses batch-norm layer atop the final

student and teacher features during distillation. Unlike Regress-MLP, both these approaches use a linear

prediction head.

CompRess: CompRess [161] is designed to distill specifically from self-supervised models. Given a set

of anchor points, the student is encouraged to have the same similarities with the anchors as that of the

teacher. The anchor point features can either be common features from a teacher memory bank (CompRess-

1q) or features from individual memory banks for teacher and student (CompRess-2q). We additionally

implement CompRess with our MLP prediction head, termed CompRess-1q-MLP and CompRess-2q-MLP.
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Table 2.9. Comparison of SSL distillation methods on ImageNet classification. Our regression method
with MLP head (SimReg-4L-MLP) is comparable to or better than the complex state-of-the-art ap-
proaches, especially on the linear evaluation metric. We also observe that CompRess-1q and 2q are im-
proved when MLP heads are utilized. Interestingly, regression gets a significantly higher boost compared
to CompRess upon addition of MLP layers. Note that the MLPs are used only during training and the
inference network architecture remains the same for all approaches making the comparison fair. * metrics
from CompRess [161].

Teacher MoCo-v2 ResNet-50 MoCo-v2 ResNet-50 SimCLR ResNet-50x4
Student MobileNet-v2 ResNet-18 ResNet-50

Method 1-NN Linear 1-NN Linear 1-NN Linear

Teacher* 57.3 70.8 57.3 70.8 64.5 75.6
Supervised* 64.9 71.9 63.0 69.8 71.4 76.2

Regress* 38.6 48.0 41.7 52.2 - -
Regress-BN* 48.7 62.3 47.3 58.2 - -
CC [226]* 50.2 59.2 51.1 61.1 55.6 68.9
CRD [295]* 36.0 54.1 43.7 58.4 - -
CompRess-2q [161]* 54.4 63.0 53.4 61.7 63.0 71.0
CompRess-1q [161]* 54.8 65.8 53.5 62.6 63.3 71.9

CompRess-2q-4L-MLP 56.3 67.4 54.4 64.0 62.5 73.5
CompRess-1q-4L-MLP 55.5 67.1 54.9 64.6 60.9 72.9
SimReg-4L-MLP 55.5 69.1 54.8 65.1 60.3 74.2

SEED [79] proposes similarity based distillation similar to [161] but uses pre-trained teacher models with

significantly lower number of training epochs and performance. Further, it requires access to the projection

heads used atop teacher networks used only during SSL training and not inference, These parameters are

generally not publicly released, making the setting less replicable. Thus we provide comparisons with only

CompRess [161].

Contrastive Representation Distillation (CRD): CRD [295] uses a contrastive formulation to bring corre-

sponding teacher and student features closer while pushing apart those from unrelated pairs. While the paper

considered a supervised setup and loss term utilizing labels, we use the formulation with just the contrastive

loss as proposed in [161].

Cluster Classification (CC): In CC [226], the student predicts unsupervised labels obtained by clustering

samples using teacher features. We report metrics for CC and CRD from [161].

2.2.5 Results

Role of Prediction Head: A deeper prediction head results in a student with higher representational

capacity and thus a model that better matches the teacher representations. Table 2.7 shows results for models

with a common MobileNet-v2 [265] backbone and different prediction head architectures. The prediction
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head is used during both student training and evaluation. We observe that a deeper model has lower MSE

with teacher features and better classification performance. However, a deeper model also implies greater

inference time and memory requirements. The student architecture is fixed based on deployment needs

and thus requirement of larger model goes against the very essence of distillation. To analyze performance

at different layers of the prediction head, we train a single ResNet-18 [121] student with all intermediate

dimensions of MLP equal to that of the output. Surprisingly, a model trained with MLP prediction head

performs well on downstream task even when the prediction head is discarded during inference (Table 2.8).

The performance using features from backbone network is slightly better than that from the final layer out-

puts whenever a MLP head is used (more results in suppl.). More importantly, this observation enables us

to use deeper prediction heads for distillation in place of linear layers without any concerns about altering

the student architecture or increasing inference time.

Comparison with existing approaches: In all the remaining experiments, we use SimReg-4L-MLP with

the prediction head used only during distillation. We compare the proposed regression method with other

baselines and self-supervised distillation methods in tables 2.9 and 2.10. Surprisingly, our simple regres-

sion performs comparably or even outperforms the state-of-the-approaches on all settings and metrics. On

linear evaluation, we outperform previous methods (without MLP) by 3.3, 2.5 and 2.3 points respectively

on MobileNet-v2, ResNet-18 and ResNet-50 students. Our observation generalizes to similarity based dis-

tillation too. Use of MLP prediction head also consistently improves the classification performance of both

the CompRess variants (table 2.9). Note that the linear metrics of our student model on MobileNet-v2

and ResNet-50 are just 1.7 and 1.4 points below the corresponding teacher accuracies. Our ResNet-50

model distilled from SimCLR teacher outperforms a ResNet-50 model trained from scratch using SimCLR

(69.3% [48]) by 4.9 points.

Transfer Learning: Since an important goal of self-supervised learning is to learn models that generalize

well to new datasets and tasks, we evaluate the transfer learning performance of our distilled networks.

The results in table 2.11 suggest that the regression model transfers as well as or better than the state-

of-the-approaches on most datasets. Among CompRess variants, CompRess-2q-MLP is generally better

on ImageNet classification (table 2.9) but transfers poorly (table 2.11) compared to CompRess-1q-MLP.

However, the same SimReg model performs comparably or outperforms them both in ImageNet and transfer

tasks.
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Table 2.10. ImageNet Evaluation with different teacher networks. We distill from two pretrained
ResNet-50 SSL models, BYOL and SwAV to ResNet-18 students. When distilled from these stronger
teacher networks, SimReg is significantly better than both CompRess variants on all metrics. Both SimReg
and CompRess contain MLP head only during training.

Teacher BYOL ResNet-50 SwAV ResNet-50

Method 1-NN 20-NN Linear 1-NN 20-NN Linear

Teacher 62.8 66.8 74.3 60.7 64.8 75.6

CompRess-2q-4L-MLP 56.0 60.6 65.2 53.2 58.1 63.9
CompRess-1q-4L-MLP 55.4 60.0 65.2 52.4 57.1 63.4
SimReg-4L-MLP 56.7 61.6 66.8 54.0 59.3 65.8

Table 2.11. Transfer learning results on multiple classification tasks. Since the teacher networks are
self-supervised, generalization of learnt features to other datasets is important. SimReg is significantly
better than CompRess-2q and comparable to CompRess-1q on most datasets. All methods employ 4 layer
MLP heads only during distillation.

Arch ResNet-50 MobileNet-v2 ResNet-18
Method Teacher Comp-2q Comp-1q SimReg Comp-2q Comp-1q SimReg

-4L-MLP -4L-MLP -4L-MLP -4L-MLP -4L-MLP -4L-MLP

Food 72.3 71.4 72.5 73.1 61.7 65.9 65.4
CIFAR10 92.2 90.3 90.4 91.2 87.3 89.3 88.6
CIFAR100 75.1 73.9 74.5 76.1 68.4 71.9 70.2

SUN 60.2 58.0 58.1 59.4 54.3 56.0 57.1
Cars 50.8 60.3 63.1 62.4 37.2 44.1 42.3

Aircraft 53.5 57.7 59.7 58.7 42.3 47.8 45.8
DTD 75.1 71.7 71.3 74.5 69.3 71.2 70.9
Pets 83.6 86.7 86.3 85.6 84.0 84.4 83.9

Caltech 89.3 91.1 91.5 91.7 87.3 90.1 89.2
Flowers 91.3 94.3 95.4 95.1 86.4 91.3 90.9

Mean 74.3 75.5 76.3 76.8 67.8 71.2 70.4

In addition to transfer learning on different datasets on the classification task, we consider the task of

object detection. We distill a ResNet-50 teacher to multiple ResNet-18 student networks with different MLP

heads. The MLP heads are not part of the model fine-tuned for detection. Following [120], we use Faster-

RCNN [255] with R18-C4 backbone architecture for the detection task. All methods are trained on the VOC

trainval07+12 and tested on test07 subsets of the PASCAL VOC [76] dataset using the code from [6].

We report the standard AP50, AP(COCO-style) and AP75 metrics in table 2.12. Unlike in classification

tasks, we find that the use of deeper MLP heads during distillation does not aid detection performance. The

performance of different distillation architectures is nearly identical on the detection task.
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Table 2.12. Transfer learning for object detection on Pascal VOC dataset. Student models with dif-
ferent MLP head architectures are used to perform distillation on ImageNet dataset and the backbone with
R18-C4 architecture is fine-tuned on PASCAL VOC. Unlike in classification tasks, the performance of
different distillation architectures is nearly identical.

Method AP50 AP AP75

SimReg-4L-MLP 74.0 45.4 47.8
SimReg-2L-MLP 74.2 45.5 47.4
SimReg-Linear 73.6 45.1 47.9

Table 2.13. Role of augmentation strength: During distillation either the ‘same’ augmented image or
two ‘different’ augmentations of a single image are used as inputs to the teacher and student networks. The
augmentations strength is varied for both the settings. We find that the performance is best when the same
image with weak augmentation is used. This is significant since using different and stronger augmentations
improve classification performance of SSL models but decrease their generalizability [243].

Aug Type Aug Strength ImageNet Transfer
Teacher Student 1-NN 20-NN Linear Linear

Same Weak Weak 54.8 59.9 65.1 70.4
Same Strong Strong 53.4 59.0 64.3 70.3

Different Weak Weak 54.7 59.8 64.6 70.0
Different Weak Strong 51.1 56.5 62.0 68.9
Different Strong Strong 50.3 56.0 61.4 68.7

Effect of Data Augmentation: As shown in SEED [79] and CompRess [161], for a given student archi-

tecture, distillation from larger models trained using a particular method is better than directly training the

student using the same method. Use of different and strong augmentations in contrastive SSL approaches has

been shown to hurt generalization performance [243]. Here, we show that when distilling models, the best

performance is obtained when the same augmented image with a weaker augmentation (details in suppl.) is

used as input to both teacher and student networks (table 2.13). This suggests that our method can be used

to improve generalizability of SSL models.

Multi-teacher Distillation: We train a single student model from multiple teacher networks trained with

different SSL methods. Regression with a 4 layer MLP head significantly outperforms one with linear pre-

diction (table 2.14).

Distillation of Supervised Teacher: All the previous teacher networks were trained in a self-supervised

manner. We additionally analyze the distillation from a teacher trained with supervision (table 2.15). Note

that the distillation remains unsupervised and only the backbone CNN features of the teacher are regressed.
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Table 2.14. Multi-teacher distillation on ImageNet. We train a single student model (ResNet-18) from
multiple SSL teacher networks (ResNet-50) using a common backbone network and a separate prediction
head for each teacher. Networks with 4 layer prediction heads can better match each of the teachers and
thus vastly outperform those with a linear head on both k-NN and linear evaluation metrics.

Training ResNet-18+Linear ResNet-18+4L-MLP
Inference ResNet-18 ResNet-18

MoCo-v2 BYOL SwAV 1-NN 20-NN Linear 1-NN 20-NN Linear

✓ ✓ 50.9 56.5 62.6 56.4 61.3 66.3
✓ ✓ 49.9 55.6 61.8 55.1 60.4 65.4

✓ ✓ 52.0 57.7 64.8 56.5 61.4 67.0
✓ ✓ ✓ 51.1 56.7 63.2 56.5 61.6 66.9

Table 2.15. Distillation of supervised teacher. Here, we analyze the role of MLP heads when distilling
the features of a teacher trained using supervision. Note that the distillation remains unsupervised and
only the backbone CNN features are regressed. Similar to distillation of SSL teachers, we observe that the
use of a deep MLP head during training significantly improves classification performance on ImageNet
classification task.

Teacher Student Arch Prediction 1-NN 20-NN Linear
(Inference) Head (Train)

Supervised ResNet-50 MobileNet-v2
Backbone

4L-MLP 63.77 67.87 73.5
2L-MLP 64.7 69.3 73.5
Linear 55.4 62.0 67.5

Similar to distillation of self-supervised teachers, we observe that the use of a deep MLP head during training

significantly improves performance on the ImageNet classification task.

2.2.6 Conclusion

Distilling knowledge with deeper student networks leads to better downstream performance. We sur-

prisingly find that intermediate layer outputs of a distilled student model have better performance compared

to the final layer, though final layer is trained to mimic the teacher representations. Thus, we use a pre-

diction MLP head only for optimizing the distillation objective and achieve boosts in performance with

just the backbone network during inference. We believe studying the reasoning for this effect is an inter-

esting future work. Our work also serves as an improved benchmark for future self-supervised distillation

works. Additionally, we show that using the same weakly augmented image for both teacher and student

aids distillation.
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Figure 2.5. Purity of constrained samples: During training of CMSFself , we plot purity of the top-5
samples in unconstrained set M (in black) and that of the top-5 samples in constrained set C (in red). The
red curve is not significantly below the black one suggesting that the purity is not dropped by increasing
the distance of the NNs. To show that elements in C may be far from the target u, we choose the 5th

element in C and find its rank in the set M. We calculate the median of this rank as m. The purity of the
top-m elements of set M (green curve) is consistently lower than that of top-5 elements of the constrained
set C (red curve). This suggests that one cannot maintain high purity by simply considering more NNs
using a larger k.

Table 2.4. Evaluation on small labeled ImageNet
: We compare our model to MSF and other baselines
on ImageNet 1% and 10% linear evaluation bench-
marks. “Fine-tuned” refers to fine-tuning the entire
backbone network instead of a single linear layer.
CMSFself outperforms MSF on top-1 metric in both
1% and 10% settings.

Method Fine- Epochs Top-1 Top-5
tuned 1% 10% 1% 10%

Supervised ✓ 25.4 56.4 48.4 80.4
PIRL [210] ✓ 800 - - 57.2 83.8
CO2 [317] ✓ 200 - - 71.0 85.7
SimCLR [48] ✓ 1000 48.3 65.6 75.5 87.8
InvP [310] ✓ 800 - - 78.2 88.7
BYOL [107] ✓ 1000 53.2 68.8 78.4 89.0
SwAV [38] ✓ 800 53.9 70.2 78.5 89.9

MoCo v2 [51] ✗ 800 51.5 63.6 77.6 86.1
BYOL [107] ✗ 1000 55.7 68.6 80.0 88.6
CompRess [160] ✗ 1K+130 59.7 67.0 82.3 87.5

MoCo v2 [51] ✗ 200 43.6 58.4 71.2 82.9
BYOL-asym ✗ 200 47.9 61.3 74.6 84.7
ISD [290] ✗ 200 53.4 63.0 78.8 85.9
MSF [162] ✗ 200 55.5 66.5 79.9 87.6
CMSFself ✗ 200 56.4 67.5 79.8 87.7

Figure 2.6. Noisy supervised setting on
ImageNet-100: Our method is more robust to
noisy annotation compared to Xent and SupCon.
Also, using top-all degrades the results since all
images from a single category are not guaranteed
to be semantically related due to noisy labels.
Mean Transfer Accuracy is the average over 10
transfer datasets.
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CHAPTER 3

Memory Efficiency of Models in 3D, Vision and NLP Applications

Here, we focus our attention on reducing storage memory of models for diverse tasks - novel view syn-

thesis, generative tasks for large language models (LLM) and image classification. For the task of novel

view synthesis, we consider 3D Gaussian splatting [151], a recent technique which achieves stellar recon-

structions at real-time speeds. In our work Compact3D, we address its shortcoming related to model size

by compressing the model parameters through vector quantization. For LLM and image classification tasks,

we develop NOLA, a novel parameter efficient fine tuning (PEFT) method based on LoRA. LoRA provides

a way to use a small number of parameters to fine-tune large vision and language models. NOLA further

reduces the size of the fine-tuned model and makes it feasible to run tens of thousands of LLM variants on

a single GPU.

3.1 CompGS: Smaller and Faster Gaussian Splatting with Vector Quanti-

zation

3D Gaussian Splatting (3DGS) is a new method for modeling and rendering 3D radiance fields that

achieves much faster learning and rendering time compared to SOTA NeRF methods. However, it comes

with a drawback in the much larger storage demand compared to NeRF methods since it needs to store the

parameters for several 3D Gaussians. We notice that many Gaussians may share similar parameters, so we

introduce a simple vector quantization method based on K-means to quantize the Gaussian parameters while

optimizing them. Then, we store the small codebook along with the index of the code for each Gaussian.

We compress the indices further by sorting them and using a method similar to run-length encoding. More-

over, we use a simple regularizer to encourage zero opacity (invisible Gaussians) to reduce the storage and

rendering time by a large factor through reducing the number of Gaussians. We do extensive experiments on

standard benchmarks as well as an existing 3D dataset that is an order of magnitude larger than the standard

benchmarks used in this field. We show that our simple yet effective method can reduce the storage cost

for 3DGS by 40× to 50× and rendering time by 2× to 3× with a very small drop in the quality of rendered

images. Our code is available here: https://github.com/UCDvision/compact3d
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Figure 3.1. Inference speed vs. memory comparison. All methods except INGP achieve comparable
PSNR that are reported in Table 3.1. CompGS, our compressed version of 3DGS, maintains the speed
and performance of 3DGS while reducing its size to the levels of NeRF based approaches. We achieve
around 45× compression and 2.5× inference speed up with little drop in performance (CompGS-32K). A
bit quantized version of this (Ours-BitQ) compresses it further to a total compression of 65× with hardly
noticeable difference in quality.

3.1.1 Introduction

Recently, we have seen great progress in radiance field methods to reconstruct a 3D scene using multiple

images captured from multiple viewpoints. NeRF [208] is probably the most well-known method that

employs an implicit neural representation to learn the radiance field using a deep model. Although very

successful, NeRF methods are very slow to train and render. Several methods have been proposed to solve

this problem; however, they usually come with some cost in the quality of the rendered images.

The Gaussian Splatting method (3DGS) [151] is a new paradigm in learning radiance fields. The idea

is to model the scene using a set of Gaussians. Each Gaussian has several parameters including its position

in 3D space, covariance matrix, opacity, color, and spherical harmonics of the color that need to be learned

from multiple-view images. Thanks to the simplicity of projecting 3D Gaussians to the 2D image space and

rasterizing them, 3DGS is significantly faster to both train and render compared to NeRF methods. This

results in real-time rendering of the scenes on a single GPU (ref. Fig. 3.1). Additionally, unlike the implicit

representations in NeRF, the 3D structure of the scene is explicitly stored in the parameter space of the

Gaussians. This enables many operations including editing the 3D scene directly in the parameter space.

One of the main drawbacks of the 3DGS method compared to NeRF variants is that 3DGS needs at

least an order of magnitude more parameters compared to NeRF. This increases the storage and commu-

nication requirements of the model and its memory at the inference time, which can be very limiting in

34



3.1. COMPGS: SMALLER AND FASTER GAUSSIAN SPLATTING WITH VQ

Figure 3.2. Overview of CompGS vector quantization: We compress 3DGS using vector quantization
of the parameters of the Gaussians. The quantization is performed along with the training of the Gaussian
parameters. Considering each Gaussian as a vector, we perform K-means clustering to represent the N
Gaussians in the model with k cluster centers (codes). Each Gaussian is then replaced by its corresponding
code for rendering and loss calculation. The gradients wrt centers are copied to all the elements in the
corresponding cluster and the non-quantized versions of the parameters are updated. Only the codebook
and code assignments for each Gaussian are stored and used for inference. To further reduce the storage
and inference time, we regularize opacity in the loss to encourage fully transparent Gaussians. CompGS
maintains the real-time rendering property of 3DGS while compressing it by an order of magnitude.

many real-world applications involving smaller devices. For instance, the large memory consumption may

be prohibitive in storing, communicating, and rendering several radiance field models on AR/VR headsets.

We are interested in compacting 3DGS representations without sacrificing their rendering speed to en-

able their usage in various applications including low-storage or low-memory devices and AR/VR headsets.

Our main intuition is that several Gaussians may share some of their parameters (e.g. covariance matrix).

Hence, we simply vector-quantize parameters while learning and store the codebook along with the index

for each Gaussian. This can result in a huge reduction in the storage. Also, it can reduce the memory foot-

print at the rendering time since the index can act as a pointer to the correct code freeing the memory needed

to replicate those parameters for all Gaussians.

To this end, we use simple K-means algorithm to vector quantize the parameters at the learning time.

Inspired by various quantization-aware learning methods in deep learning [248], we use the quantized model

in the forward pass while updating the non-quantized model in the backward pass. To reduce the compu-

tation overhead of running K-means, we update the centroids in each iteration, but update the assignments

less frequently (e.g., once every 100 iterations) since it is costly. Moreover, since the Gaussians are a set of

non-ordered elements, we compress the representation further by sorting the Gaussians based on one of the
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quantized indices and storing them using the Run-Length-Encoding (RLE) method. Furthermore, we em-

ploy a simple regularizer to promote zero opacity (essentially invisible Gaussians), resulting in a significant

reduction in storage and rendering time by reducing the number of Gaussians. Our final model is 40× to

50× smaller and 2× to 3× faster during rendering compared to 3DGS.

3.1.2 Related Work

Novel-view synthesis methods: Early deep learning techniques for novel-view synthesis used CNNs

to estimate blending weights or texture-space solutions [87, 123, 256, 291, 359]. However, the use of

CNNs faced challenges with MVS-based geometry and caused temporal flickering. Volumetric repre-

sentations began with Soft3D [239], and subsequent techniques used deep learning with volumetric ray-

marching [127, 273]. Mildenhall et al. introduced Neural Radiance Fields (NeRFs) [208] to improve the

quality of synthesized novel views, but the use of a large Multi-Layer Perceptron (MLP) as the backbone

and dense sampling slowed down the process a lot. Successive methods sought to balance quality and speed,

with Mip-NeRF360 achieving top image quality [19]. Recent advances prioritize faster training and render-

ing via spatial data structures, encodings, and MLP adjustments [55, 88, 93, 124, 213, 253, 284, 325, 340].

Notable methods, like InstantNGP [213], use hash grids and occupancy grids for accelerated computation

with a smaller MLP, while Plenoxels [88] entirely forgo neural networks, relying on Spherical Harmonics

for directional effects. Despite impressive results, challenges in representing empty space, limitations in

image quality, and rendering speed persist in NeRF methods. In contrast, 3DGS [151] achieves superior

quality and faster rendering without implicit learning [19]. However, the main drawback of 3DGS is its

increased storage compared to NeRF methods which may limit its usage in many applications such as edge

devices. We are able to keep the quality and fast rendering speed of 3DGS method while providing reduced

model storage by applying a vector quantization scheme to Gaussian parameters.

Bit quantization: Reducing the number of bits to represent each parameter in a deep neural network is a

commonly used method to quantize models [112,146,165] that result in smaller memory footprints. Repre-

senting weights in 64 or 32-bit formats may not be crucial for a given task, and a lower-precision quantiza-

tion can lead to memory and speed improvements. Dettmers et al. [66] show 8-bit quantization is sufficient

for large language models. In the extreme case, weights of neural networks can be quantized using binary

values. XNOR [249] examines this extreme case by quantization-aware training of a full-precision network

that is robust to quantization transformations.

36



3.1. COMPGS: SMALLER AND FASTER GAUSSIAN SPLATTING WITH VQ

Vector quantization: Vector quantization (VQ) [75, 95, 101, 105] is a lossy compression technique that

converts a large set of vectors into a smaller codebook and represents each vector by one of the codes

in the codebook. As a result, one needs to store only the code assignments and the codebook instead of

storing all vectors. VQ is used in many applications including image compression [61], video and audio

codec [178, 205], compressing deep networks [57, 101], and generative models [108, 250, 304]. We apply a

similar method to compressing 3DGS models.

Deep model compression. Model compression tries to reduce the storage size without changing the accu-

racy of original models. Model compression techniques can be divided to 1) model pruning [110, 112, 305,

322] that aims to remove redundant layers of neural networks; 2) weight quantization [146,165,223], and 3)

knowledge distillation [16,41,130,160,242], in which a compact student model is trained to mimic the orig-

inal teacher model. Some works have applied these techniques to volumetric radiance fields [64, 184, 340].

For instance, TensoRF [40] decompose volumetric representations via low-rank approximation.

Compression for 3D scene representation methods. Since NeRF relies on dense sampling of color values

and opacity, the computational costs are significant. To increase efficiency, methods adopt different data

structures such as trees [314, 340], point clouds [238, 333], and grids [40, 88, 213, 269, 279, 284]. With grid

structures training iterations can be completed in a matter of minutes. However, dense 3D grid structures

may require substantial amounts of memory. Several methods have worked on reducing the size of such vol-

umetric grids [40, 213, 284, 286]. Instant-NGP [213] uses hash-based multi-resolution grids. VQAD [284]

replaces the hash function with codebooks and vector quantization. Another line of work decomposes

3D grids into lower dimensional components, such as planes and vectors, to reduce the memory require-

ments [40, 138, 286]. Despite reducing the time and space complexity of the 3D scenes, their sizes are still

larger than MLP-based methods. VQRF [183] compresses volumetric grid-based radiance fields by adopt-

ing the VQ strategy to encode color features into a compact codebook.

While we also employ vector quantization, we differ from the above approaches in the method employed

for novel view synthesis. Unlike the NeRF based approaches described above, we aim to compress 3DGS

which uses a collection of 3D Gaussians to represent the 3D scene and does not contain grid like structures

or neural networks. We also achieve a significant amount of compression by regularizing and pruning the

Gaussians based on their opacity.

Concurrent works: Some very recent works developed concurrently to ours [78, 99, 176, 212, 220] also

propose vector quantization and pruning based methods to compress 3D Gaussian splat models. Light-

Gaussian [78] uses importance based Gaussian pruning and distillation and vector quantization of spherical
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harmonics parameters. Similarly, CGR [176] masks Gaussians based on their volume and transparency to

reduce the number of Gaussians and uses residual vector quantization for scale and rotation parameters.

In CGS [220], highly sensitive parameters are left non-quantized while the less sensitive ones are vector

quantized.

3.1.3 Method

Here, we briefly describe the 3DGS [151] method for learning and rendering 3D scenes and explain our

vector quantization approach for compressing it.

Overview of 3DGS: 3DGS models a scene using a collection of 3D Gaussians. A 3D Gaussian is parame-

terized by its position and covariance matrices in the 3D space. G(x) = e−
1
2 (x−µ)

TΣ−1(x−µ) where x − µ is the

position vector, µ is the position, and Σ is the 3D covariance matrix of the Gaussian. Since the covariance

matrix needs to be positive definite, it is factored into its scale (S ) and rotation (R) matrices as Σ = RS S T RT

for easier optimization. In addition, each Gaussian has an opacity parameter σ. Since the color of the Gaus-

sians may depend on the viewing angle, the color of each Gaussian is modeled by a Spherical Harmonics

(SH) of order 3 in addition to a DC component.

Given a view-point, the collection of 3D Gaussians is efficiently rendered in a differentiable manner to

get a 2D image by α-blending of anisotropic splats, sorting, and using a tile-based rasterizer. Color of a

pixel is given by C = ∑i ciαi∏i−1
j=1(1 − α j) where ci is the color of the ith Gaussian and αi is the product of

the value of the Gaussian at that point and its learned opacity σi. At the training time, 3DGS minimizes the

loss between the groundtruth and rendered images in the pixel space. The loss is ℓ1 loss plus an SSIM loss in

the pixel space. 3DGS initializes the optimization by a point cloud achieved by a standard SfM method and

iteratively prunes the ones with small opacity and adds new ones when the gradient is large. 3DGS paper

shows that it is extremely fast to train and is capable of real-time rendering while matching or outperforming

SOTA NeRF methods in terms of rendered image quality.

Compression of 3DGS:

We compress the parameters of 3DGS using vector quantization aware training and reduce the number

of Gaussians by regularizing the opacity parameter.

Vector quantization: 3DGS requires a few million Gaussians to model a typical scene. With 59 param-

eters per Gaussian, the storage size of the trained model is an order of magnitude larger than most NeRF

approaches (e.g., Mip-NeRF360 [19]). This makes it inefficient for some applications including edge de-

vices. We are interested in reducing the number of parameters. Our main intuition is that many Gaussians
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may have similar parameter values (e.g., covariance). Hence, we use simple vector quantization using K-

means algorithm to compress the parameters. Fig. 4.1 provides an overview of our approach.

Consider a 3DGS model with N Gaussians, each with a d dimensional parameter vector. We run K-

means algorithm to cluster the vectors into K clusters. Then, one can store the model using K vectors of

size d and N integer indices (one for each Gaussian). Since N >> K, this method can result in a large

compression ratios. In a typical scene, N is a few millions while K is a few thousands.

However, clustering the model parameters after training results in performance degradation, hence, we

perform quantization aware training to ensure that the parameters are amenable to quantization. In learning

3DGS, we store the non-quantized parameters. In the forward pass of learning 3DGS, we quantize the

parameters and replace them with the quantized version (centroids) to do the rendering and calculate the

loss. Then, we do the backward pass to get the gradients for the quantized parameters and copy the gradients

to the non-quantized parameters to update them. We use straight-through estimator proposed in STE [24].

After learning, we discard the non-quantized parameters and keep only the codebook and indices of the

codes for Gaussians.

Since the number of Gaussians N is typically in millions, cost of performing K-means at every iteration

of training can be prohibitively high. K-means has two steps: updating centroids given assignments, and

updating assignments given centroids. We note that the latter is more expensive while the former is a simple

averaging. Hence, we update the centroids after each iteration and update the assignments once every t

iterations. We observe that the modified approach works well even for values of t as high as 500. This is

crucial in limiting the training time of the method.

Performing a single K-means for the whole d dimensional parameters requires a huge codebook since

the different parameters of the Gaussian are not necessarily correlated. Hence, we group similar types of

parameters, e.g., all rotation matrices, together and cluster them independently to learn a separate codebook

for each. This requires storing multiple indices for each Gaussian. In our main method, we quantize DC

component of color, spherical harmonics, scale, and rotation parameters separately, resulting in 4 codebooks.

We do not quantize opacity parameter since it is a single scalar and do not quantize the position of the

Gaussians since sharing them results in overlapping Gaussians.

Since the indices are integer values, we use fewer number of bits compared to the original parameters

to store each. Moreover, 3DGS models the scene as a set of order-less Gaussians. Hence, we sort the

Gaussians based on one of the indices, e.g., rotation, so that Gaussians using the same code appear together

in the list. Then, for that index, instead of storing n integers, we store how many times each code appears in
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the list, reducong the storage from n integers to k integers. This is similar to run-length-encoding for data

compression.

Opacity Regularization: Some parameters like position of the Gaussians cannot be quantized easily, so

as shown in Table 3.6 after quantization, they dominate the memory(more than 80% of memory). This

means quantization cannot improve the compression any further. One way to compress 3DGS more is

to reduce the number of Gaussians. Interestingly, this reduction comes with a bi-product that is increase

in inference speed. We know that very small values of opacity (σ) correspond to transparent or nearly

invisible Gaussians. Hence, inspired by training sparse models, we add ℓ1 norm of the opacity to the loss

as a regularizer to encourage zero values for opacity. Therefore, the final loss becomes: L = L3DGS +

λreg∑N
i σi, where L3DGS is the original loss of 3DGS with or without quantization and λreg controls the

sparsity of opacity. Finally, similar to the original 3DGS, we remove the Guassians with opacity smaller

than a threshold, resulting in significant reduction in storage and inference time.

3.1.4 Experiments

Implementation details: For all our experiments, we use the publicly available official code repository [5]

of 3DGS [151] provided by its authors. There are no changes in the hyperparameters used for training com-

pared to 3DGS. The Gaussian parameters are trained without any vector quantization till 20K iterations and

K-means quantization is used for the remaining 10K iterations. A standard K-means iteration involves dis-

tance calculation between all elements (Gaussian parameters) and all cluster centers followed by assignment

to the closest center. The centers are then updated using new cluster assignments and the loop is repeated.

We use just 1 such K-means iteration in our experiments once every 100 iterations till iteration 25K and

keep the assignments constant thereafter till the last iteration, 30K. The K-means cluster centers are updated

using the non-quantized Gaussian parameters after each iteration of training. The covariance (scale and rota-

tion) and color (DC and harmonics) components of each Gaussian is vector quantized while position (mean)

and opacity parameters are not quantized. Additional results with different parameters being quantized are

provided in Table 3.9. Unless mentioned differently, we use a codebook of size 4096 for the color and 16384

(CompGS 16K) for the covariance parameters. The scale parameters of covariance are quantized before ap-

plying the exponential activation on them. Similarly, quaternion based rotation parameters are quantized

before normalization. For opacity regularization, we use λreg = 10−7 from iterations 15K to 20K along with

opacity based pruning every 1000 iterations and remove regularization thereafter. All experiments were run

on a single RTX-6000 GPU.
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Table 3.1. Comparison with SOTA methods for novel view synthesis. 3DGS [151] performs compa-
rably or outperforms the best of the NeRF based approaches while maintaining a high rendering speed
during inference. Trained NeRF models are significantly smaller than 3DGS since NeRFs are parame-
terized using neural networks while 3DGS requires storage of parameters of millions of 3D Gaussians.
CompGS is a vector quantized version of 3DGS that maintains the speed and performance advantages
of 3DGS while being 40× to 50× smaller. CompGS 32K BitQ is the post-training bit quantized version
of CompGS 32K, in which position parameters are 16-bits, opacity is 8 bits, and the rest are 32 bits.
∗Reproduced using official code. † Reported from 3DGS [151]. Our timings for 3DGS and CompGS are
reported using a RTX6000 GPU while those with † used A6000 GPU. We boldface entries for emphasis.
Please see the Appendix for results on Deep Blending dataset.

Mip-NeRF360 Tanks&Temples

Method SSIM↑ PSNR↑ LPIPS↓ FPS
Mem
(MB)

Train
Time(m) SSIM↑ PSNR↑ LPIPS↓ FPS

Mem
(MB)

Train
Time(m)

Plenoxels† [88] 0.626 23.08 0.463 6.79 2,100 25.5 0.719 21.08 0.379 13.0 2300 25.5
INGP-Base† [213] 0.671 25.30 0.371 11.7 13 5.37 0.723 21.72 0.330 17.1 13 5.26
INGP-Big† [213] 0.699 25.59 0.331 9.43 48 7.30 0.745 21.92 0.305 14.4 48 6.59
M-NeRF360† [19] 0.792 27.69 0.237 0.06 8.6 48h 0.759 22.22 0.257 0.14 8.6 48h
3DGS † [151] 0.815 27.21 0.214 134 734 41.3 0.841 23.14 0.183 154 411 26.5
3DGS ∗ [151] 0.813 27.42 0.217 149 778 21.6 0.844 23.68 0.178 206 433 12.2
LigthGaussian [78] 0.805 27.28 0.243 209 42 - 0.817 23.11 0.231 209 22 -
CGR [?] 0.797 27.03 0.247 128 29.1 - 0.831 23.32 0.202 185 20.9 -
CGS [?] 0.801 26.98 0.238 - 28.8 - 0.832 23.32 0.194 - 17.28 -
CompGS 16K 0.804 27.03 0.243 346 18 22.8 0.836 23.39 0.200 479 12 15.6
CompGS 32K 0.806 27.12 0.240 344 19 29.4 0.838 23.44 0.198 475 13 20.6
CompGS 32K BitQ 0.797 26.97 0.245 344 12 29.4 0.832 23.35 0.202 475 8 20.6

Datasets: We primarily show results on three challenging real world datasets - Tanks&Temples [154], Deep

Blending [123] and Mip-NeRF360 [19] containing two, two and nine scenes respectively. Also, we provide

results on a subset of the recently released DL3DV-10K dataset [?] which contains 140 scenes. DL3DV-

10K [?] is an annotated dataset with 10,510 real-world scene-level videos. Out of these, 140 scenes have

been used to create a novel-view synthesis (NVS) benchmark, making it an order of magnitude larger than

the typical NVS benchmarks. We use this NVS benchmark in our experiments. Additionally, we provide

results on a subset of the large scale ARKit [21] dataset, called ARKit-200, which contains 200 scenes.

Details of this dataset is presented in the Appendix.

Baselines: As we propose a method (termed CompGS) for compacting 3DGS, we focus our comparisons

with 3DGS and different baseline methods for compressing it. We consider bit quantization (denoted as

Int-16/8/4 in results) and 3DGS without the harmonic components for color (denoted as 3DGS-No-SH)

as alternative parameter compression methods. Bit-quantization is performed using the standard Absmax

quantization [66] technique. Similarly, we consider several alternative approaches to reduce the number of

Gaussians. Densification process in 3DGS increases the Gaussian count and is controlled by the gradient

threshold (termed grad thresh) parameter and the frequency (freq) and iterations (iters) until densification is
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performed. The opacity threshold (min opacity) controls the pruning of transparent Gaussians. We modify

these parameters in 3DGS to compress the model with as little drop in performance as possible. Addition-

ally, Table 3.1 shows comparison with state-of-the-art NeRF approaches [19, 88, 213]. Mip-NeRF360 [19]

achieves high performance comparable to 3DGS while Plenoxels [88] and InstantNGP [213] have high

frame-rate for rendering and very low training time. InstantNGP and Mip-NeRF360 are also comparable in

model size to our compressed model.

Evaluation: For a fair comparison, we use the same train-test split as Mip-NeRF360 [19] and 3DGS [151]

and directly report the metrics for other methods from 3DGS [151]. We also report our reproduced metrics

for 3DGS since we observe slightly better results compared to the ones in [151]. We report the standard

evaluation metrics of SSIM, PSNR and LPIPS along with memory or compression ratio, rendering FPS and

training time. The common practice is to report the average of PSNR across a set of images and scenes.

However, this metric may be dominated by very accurate reconstructions (smaller errors) since it is based

on the geometric average of the errors due to the log operation in PSNR calculation. Hence, for the larger

ARKit dataset, we also report PSNR-AM for which we average the error across all images and scenes before

calculating the PSNR. In comparing model sizes, we normalize all methods by dividing them by the size of

our method to obtain compression ratio.

Results: Comparison of our results with SOTA novel view synthesis approaches is shown in Table 3.1.

Our vector quantized method has a comparable performance to the non-quantized 3DGS with a small drop

on MipNerf-360 and TandT datasets and a small improvement on the DB dataset. We additionally report

results with post-training bit quantization of our model (CompGS BitQ) where the position and opacity

parameters are quantized to 16 bits and 8 bits respectively. The model memory footprint drastically reduces

for CompGS compared to 3DGS , making it comparable to NeRF approaches. Our models are 65× and

54× smaller than 3DGS models on MipNerf-360 and TandT datasets respectively. This reduces a big

disadvantage of 3DGS models and makes them more practical. The compression achieved by CompGS

is impressive considering that more than two-thirds of its memory is due to the non-quantized position and

opacity parameters (refer table 3.6). Additionally CompGS maintains the other advantages of 3DGS such

as low inference memory usage and training time. while also increasing its already impressive rendering

FPS by 2× to 3×. A limitation of CompGS compared to 3DGS is the overhead in compute and training

time introduced by the K-means clustering algorithm. This is compensated in part by the reduced compute

and time due to the decrease in Gaussian count. CompGS 16K variant requires marginally more time than

3DGS while CompGS 32K needs 1.4× to 1.7×more training time. However, this is still orders of magnitude
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Table 3.2. Comparison of parameter compression methods for 3DGS. We evaluate different baseline
approaches for compressing the parameters of 3DGS without any reduction in the number of Gaussians.
All memory values are reported as a ratio of the method with our smallest model. Our K-Means based
vector quantization performs favorably compared to all methods both in terms of novel view synthesis per-
formance and compression. Not quantizing the position values (Int-x no-pos) is crucial in bit quantization.
Since harmonics constitute 76% of each Gaussian, 3DGS-no-SH achieves a high level of compression. But
CompGS with only quantized harmonics achieves similar compression with nearly no loss in performance
compared to 3DGS .

Mip-NeRF360 Tanks&Temples Deep Blending
Method SSIM PSNR LPIPS SSIM PSNR LPIPS SSIM PSNR LPIPS Mem

3DGS 0.813 27.42 0.217 0.844 23.68 0.178 0.899 29.49 0.246 20.0
3DGS-No-SH 0.802 26.80 0.229 0.833 23.16 0.190 0.900 29.50 0.247 4.8
Post-train K-means 4K 0.768 25.46 0.266 0.803 22.12 0.226 0.887 28.61 0.268 1.7
K-means 4K Only-SH 0.811 27.25 0.223 0.842 23.57 0.183 0.902 29.60 0.246 4.8
K-means 4K 0.804 26.97 0.234 0.836 23.31 0.194 0.904 29.76 0.248 1.7
K-means 32K 0.808 27.16 0.228 0.840 23.47 0.188 0.903 29.75 0.247 1.8

Int16 0.804 27.25 0.223 0.836 23.56 0.185 0.900 29.49 0.247 10.0
Int8 no-pos 0.812 27.38 0.219 0.843 23.67 0.180 0.900 29.47 0.247 5.8
Int8 0.357 14.41 0.629 0.386 12.37 0.625 0.709 21.58 0.457 5.0
Int4 no-pos 0.489 17.42 0.525 0.488 12.94 0.575 0.746 19.90 0.446 3.4
3DGS-No-SH Int16 0.789 26.59 0.237 0.826 23.04 0.198 0.900 29.50 0.248 2.4
K-means 4K, Int16 0.796 26.83 0.239 0.830 23.21 0.199 0.904 29.76 0.248 1.0

smaller than the high-quality NeRF based approaches like MipNerf-360. Per-scene evaluation metrics are in

Appendix. Note that there are large differences in reproduced results for 3DGS across various works in the

literature. We observe a median standard deviation of 0.05dB for PSNR when the experiment is repeated

20 times with several scenes having differences more than 0.4dB across runs (refer Appendix). One must

be careful when analyzing as these variations are often comparable to differences in performance between

methods.

We decouple our compression method into parameter and Gaussian count compression components and

perform ablations on each of them.

Comparison of parameter compression methods: In Table 3.2, we compare the proposed vector quan-

tization based compression against other baseline approaches for compressing 3DGS. Since the spherical

harmonic components used for modeling color make up nearly three-fourths of all the parameters of each

Gaussian, a trivial compression baseline is to use a variant of 3DGS with only the DC component for color

and no harmonics. This baseline (3DGS-No-SH ) achieves a high compression with just 23.7% of the orig-

inal model size but has a drop in performance. Our K-Means approach outperforms 3DGS-No-SH while

using less than half its memory. We also consider a variant of CompGS with a single codebook for both SH
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Figure 3.3. Qualitative comparison of novel view synthesis approaches. We visualize images from
different scenes across datasets for SOTA NeRF, 3DGS, our CompGS and the No-SH variant of 3DGS .
All methods based on 3DGS have better reconstruction of finer details like spokes of the bicycle wheel
compared to NeRF approaches. Both compressed versions CompGS and 3DGS-No-SH are similar in
appearance to 3DGS with no additional visually apparent errors.

and DC parameters (termed SH+DC) with a larger codebook of size of 4096. This has a marginal decrease

in both memory and performance compared to default CompGS suggesting that correlated parameters can

be combined to reduce the number of indices to be stored.

Fig. 3.3 shows qualitative comparison of CompGS across multiple datasets with both SOTA approaches

and compression methods for 3DGS . Both CompGS and 3DGS-No-SH are visually similar to 3DGS, pre-

serving finer details such as the spokes of the bike and bars of dish-rack. Among NeRF approaches, Mip-

NeRF360 is closest in terms of quality to 3DGS while InstantNGP trades-off quality for inference and

training speed.

All the above approaches are trained using 32-bit precision for all Gaussian parameters. Post-training bit

quantization of 3DGS to 16-bits reduces the memory by half with very little drop in performance. However,

reducing the precision to 8-bits results in a huge degradation of the model. This drop is due to the quan-

tization of the position parameters of the Gaussians. Excluding them from quantization (denoted as Int8

no-pos) results in a model comparable to the 32-bit variant. However, further reduction to 4-bits degrades

the model even when the position parameters are not quantized. Note that bit quantization approaches offer
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Table 3.3. Reducing number of Gaussians in 3DGS. We evaluate different baseline approaches for
compressing 3DGS by reducing the number of Gaussians. Gaussian count is proportional to model size.
CompGS performs favorably compared to all methods both in terms of novel view synthesis performance
and compression.

Mip-NeRF360 Tanks&Temples Deep Blending
Method SSIM PSNR LPIPS #Gauss SSIM PSNR LPIPS #Gauss SSIM PSNR LPIPS #Gauss

3DGS 0.813 27.42 0.217 3.30M 0.844 23.68 0.178 1.83M 0.899 29.49 0.246 2.80M
Min Opacity 0.802 27.12 0.244 1.46M 0.833 23.44 0.204 780K 0.902 29.50 0.255 1.01M
Densify Freq 0.794 26.98 0.255 1.07M 0.832 23.36 0.206 709K 0.902 29.76 0.258 844K
Densify Iters 0.780 27.02 0.267 1.12M 0.835 23.55 0.194 810K 0.896 29.42 0.264 795K
Grad Thresh 0.769 26.57 0.292 809K 0.825 23.31 0.217 578K 0.900 29.49 0.260 1.01M
Opacity Reg 0.813 27.42 0.227 845K 0.844 23.71 0.188 520K 0.905 29.73 0.249 554K

Table 3.4. Comparison on ARKit-200 dataset. It contains 200 scenes from the ARKit [20] indoor
scene understanding dataset (see the Appendix for details.). We report results for just the vector quantized
version of CompGS. (left) CompGS achieves a high level of compression with nearly identical metrics for
view synthesis. (right) 3DGS-No-SH fails to reconstruct well in several images while CompGS is nearly
identical to 3DGS with a large reduction in model size.

Method SSIM PSNR PSNR-AM LPIPS Mem

3DGS 0.909 25.76 20.73 0.226 20.0
3DGS-No-SH 0.905 25.31 20.11 0.234 4.8
CompGS 0.909 25.70 20.73 0.229 1.7

DL3DV-140
Method SSIM↑ PSNR↑ PSNR-AM↑ LPIPS↓ FPS Mem(MB)

3DGS * 0.905 29.06 27.37 0.134 282 291
CompGS 32K 0.895 28.42 26.97 0.149 566 10

Table 3.5. Results on the 140 scenes NVS benchmark of DL3DV-10K [?] dataset. Similar to the results
on the smaller benchmarks, CompGS compresses 3DGS by nearly 30 times with a small drop in recon-
struction quality. * is our reproduced results.

significantly lower compression compared to CompGS and they are a subset of the possible solutions for

our vector quantization method. Similar to 3DGS, CompGS has a small drop in performance when 16-bit

quantization is used.

Comparison of Gaussian count compression methods: In Table 3.3, we compare the proposed opacity

regularization method for reducing the Gaussian count with baselines. In these baselines, we modify the

3DGS parameters to decrease densification and increase pruning and thus reduce the number of Gaussians.

We report the best metrics for each baseline here (refer Appendix for ablation). Our opacity regularization

results in 3.5× to 5× reduction in Gaussian count with nearly identical performance as the larger models.
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Similar level of compression is achieved only by the gradient threshold baseline that reduces densification.

However, it results in a large drop in performance.

Results on ARKit and DL3DV datasets: Table 3.4 shows the quantitative and qualitative results on our

large-scale ARKit benchmark. Our compressed model achieves nearly the same performance as 3DGS with

ten times smaller memory. Unlike CompGS , the 3DGS-No-SH method suffers a significant drop in quality.

We also report PSNR-AM as the PSNR calculated using arithmetic mean of MSE over all the scenes in

the dataset to prevent the domination of high-PSNR scenes. Similarly, Table 3.5 shows the performance

of CompGS with both KMeans quantization and opacity regularization. CompGS achieves nearly 30×

compression compared to 3DGS with a small drop in performance.

3.1.4.1 Ablations

We analyze our design choices and the effect of various hyperparameters on reconstruction performance

and model size.

Memory break-down of CompGS: In Table 3.6, we show the contribution of various components to the

final memory usage of CompGS . Out of 59 parameters of each Gaussian, we quantize 55 parameters of

color and covariance while the 3 position and 1 opacity parameters are used as is. However, the bulk of the

stored memory (68% and 81% for 16- and 32-bits) is due to the non-quantized parameters. For the quantized

parameters, nearly all the memory is used to store the cluster assignment indices with less than 2% used for

the codebook.

Trade-off between performance, compression, and training time: Compressing the Gaussian parameters

comes with a trade-off, particularly between performance and training time. In our method, the size of

Table 3.6. Breakdown of memory usage in CompGS.
We observe that just 4 non-quantized values of the to-
tal 59 values per Gaussian contribute to 68% and 81%
of the total memory in our 16-bit and 32-bit variants re-
spectively. For the quantized parameters, nearly the en-
tire memory is used to store the indices.

Non Quant
Quant

Num Params 4 55
Mem (16bit) 68% 32%
Mem (32bit) 81% 19%

k-Means Quantization
Index Codebook

99% 1%
98% 2%

Table 3.7. Compression-performance
tradeoff. Gaussian count decreases
drastically with heavy regularization but
also results in some drop in performance
on Mip-NeRF360 dataset. We choose
λ = 10−7 as default.

λreg(×10−7) SSIM PSNR LPIPS #Gauss

0.5 0.808 27.17 0.234 1.21M
1.0 0.806 27.12 0.240 845K
2.0 0.801 26.98 0.253 536K
3.0 0.794 26.83 0.266 390K

46



3.1. COMPGS: SMALLER AND FASTER GAUSSIAN SPLATTING WITH VQ

Table 3.8. Performance and training
time trade-off. Depending on user’s
needs, it is possible to obtain models
with fast training or high performance.
The hyperparameters of vector quanti-
zation - number of K-Means iterations
(iters), K-Means frequency (freq) and
codebook size (#codes) can be varied to
obtain the desired point on the curve.
They offer a good trade-off, with huge
decrease in training time with minor
changes in performance. Results are
shown on MipNerf-360.

Iters Freq #Codes SSIM PSNR Time

1 100 8K 0.802 26.94 19.3
3 100 8K 0.802 26.94 20.9
5 100 8K 0.802 26.95 22.5
10 100 8K 0.802 26.95 26.5

5 50 8K 0.803 27.00 28.7
5 200 8K 0.799 26.76 19.4
5 500 8K 0.783 26.15 18.1

5 100 4K 0.800 26.84 19.6
5 100 16K 0.804 27.05 28.9
5 100 32K 0.806 27.12 42.4

Table 3.9. Effect of quantization on different Gaussian
parameters. Each Gaussian in 3DGS is parameterized using
position (pos), scale, rotation (rot) and color (DC and har-
monics SH). We analyze the effect of quantizing combina-
tions of these parameters on the view synthesis performance.
SH+DC denotes that a single codebook is used for both SH
and DC. Position values cannot be quantized without greatly
affecting model performance. The rest of the parameters can
be simultaneously combined to obtain a high degree of com-
pression without much loss in quality.

Quantized Train Truck
Params SSIM↑ PSNR↑ SSIM↑ PSNR↑ Mem

3DGS 0.811 21.99 0.878 25.38 20.0
3DGS-No-SH 0.798 21.40 0.871 24.92 4.8

Variants of CompGS

Pos 0.673 19.81 0.730 21.65 19.0
SH 0.809 21.88 0.876 25.27 4.8
SH, DC 0.806 21.68 0.875 25.24 3.8
Rot(R) 0.808 21.83 0.876 25.32 18.7
Scale(Sc) 0.809 21.79 0.877 25.30 19.0
SH,R 0.805 21.67 0.874 25.20 3.5
SH,Sc 0.806 21.63 0.875 25.18 3.8
SH,Sc,R 0.801 21.64 0.872 25.02 2.6
SH+DC,Sc,R 0.797 21.41 0.868 24.89 1.6
SH,DC,Sc,R 0.801 21.64 0.871 24.97 1.7
SH,DC,Sc,R Int16 0.790 21.49 0.869 24.93 1.0

codebook, frequency of code assignment and number of iterations in code computation control this trade-

off. Similarly, regularization strength can be modified in Gaussian count reduction to obtain a trade-off

between performance and compression. We show ablations on these hyperparameters in Tables 3.7 and 3.8.

CompGS offers great flexibility, with different levels of compression and training time without sacrificing

much on performance.

Parameter selection for quantization: Table 3.9 shows the effect of quantizing different subsets of the

Gaussian parameters on the Tanks&Temples dataset. Quantizing the position parameters significantly re-

duces the performance on both the scenes. We thus do not quantize position in any of our other experi-

ments. Quantizing only the harmonics (SH) of color parameter is nearly identical in size to the no-harmonics

(3DGS-No-SH ) of 3DGS . Our SH has very little drop in metrics compared to 3DGS while 3DGS-No-SH

is much worse off without the harmonics. As more parameters are quantized, the performance of CompGS

slowly reduces. The combination of all color and covariance parameters still results in a model with good

qualitative and quantitative results.
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Figure 3.4. Effect of codebook length. We vary
codebook length independently for the four (SH,
DC, Rotation, Scale) parameters by quantizing just
one of them.

Dataset Mip-NeRF360
Method SSIM↑ PSNR↑ LPIPS↓

3DGS 0.815 27.21 0.214
3DGS ∗ 0.813 27.42 0.217
CompGS 4k 0.804 26.97 0.234
CompGS Shared Codebook 0.797 26.64 0.242

Figure 3.5. Effect of shared codebook.
A frozen codebook trained on one scene
(‘Counter’ scene) generalizes well to all other
scenes in MipNerf-360 dataset. Only code
assignments are learnt during training.

Effect of codebook size: Fig. 3.4 shows the effect of codebook size for quantization of different Gaussian

parameters on the Tanks&Temples dataset. The DC component of color has the smallest drop in performance

upon quantization and achieves results similar to the non-quantized version with as few as 128 cluster

centers. The harmonics (SH) components of color lead to a much bigger drop at lower number of clusters and

improve as more clusters are added. Note that CompGS with only SH components is nearly the same size

as 3DGS-No-SH but has better performance (23.43 for ours vs. 23.14 for 3DGS-No-SH ). The covariance

parameters (rotation and scale) have a drop in performance at a codebook size of 1024 but improve as the

codebook size is increased.

Generalization of codebook across scenes We train our train our method on a single scene (‘Counter’)

of the Mip-NeRF360 dataset. We then freeze the codebook and calculate only assignments for the rest

of the eight scenes in the dataset and report the averaged performance metrics over all scenes (Fig. B.3).

Interestingly, we observe that the shared codebook generalizes well across all scenes with a small drop in

performance compared to learning a codebook for each scene. Sharing learnt codebook can further reduce

the memory requirement and can help speed up the training of CompGS. The quality of the codebook can

be improved by learning it over multiple scenes.

3.1.5 Conclusion

3D Gaussian Splatting efficiently models 3D radiance fields, outperforming NeRF in learning and ren-

dering efficiency at the cost of increased storage. To reduce storage demands, we apply opacity regulariza-

tion and K-means-based vector quantization, compressing indices and employing a compact codebook. Our

method cuts the storage cost of 3DGS by almost 45×, increases rendering FPS by 2.5× while maintaining

image quality across benchmarks.
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3.2 NOLA: Compressing LoRA using Linear Combination of Random

Basis

Fine-tuning Large Language Models (LLMs) and storing them for each downstream task or domain is

impractical because of the massive model size (e.g., 350GB in GPT-3). Current literature, such as LoRA,

showcases the potential of low-rank modifications to the original weights of an LLM, enabling efficient

adaptation and storage for task-specific models. These methods can reduce the number of parameters needed

to fine-tune an LLM by several orders of magnitude. Yet, these methods face two primary limitations: (1) the

parameter count is lower-bounded by the rank one decomposition, and (2) the extent of reduction is heavily

influenced by both the model architecture and the chosen rank. We introduce NOLA, which overcomes

the rank one lower bound present in LoRA. It achieves this by re-parameterizing the low-rank matrices in

LoRA using linear combinations of randomly generated matrices (basis) and optimizing the linear mixture

coefficients only. This approach allows us to decouple the number of trainable parameters from both the

choice of rank and the network architecture. We present adaptation results using GPT-2, LLaMA-2, and

ViT in natural language and computer vision tasks. NOLA performs as well as LoRA models with much

fewer number of parameters compared to LoRA with rank one, the best compression LoRA can archive.

Particularly, on LLaMA-2 70B, our method is almost 20 times more compact than the most compressed

LoRA without degradation in accuracy. Our code is available here: https://github.com/UCDvision/NOLA

3.2.1 Introduction

Large pre-trained neural networks have exhibited remarkable generalization abilities across a diverse

range of downstream tasks in both natural language processing and computer vision, achieving unprece-

dented data efficiency. For instance, large language models have demonstrated the capability for few-shot

generalization [33] across a variety of tasks, including translation, question-answering, cloze tasks, and rea-

soning. Similarly, in DINOv2, [228] showcase how a large pre-trained ViT model [70] with more than 1B

parameters yields superior all-purpose visual features for a variety of downstream benchmark tasks at both

image and pixel levels. Typically, these pre-trained large models are adapted to downstream tasks through

fine-tuning of their parameters. However, fine-tuning and storing the entire set of model parameters for each

task incurs a significant storage cost (e.g., 350GB for GPT-3). This challenge has spurred a considerable

body of recent works focusing on parameter-efficient fine-tuning of large models [45, 67, 135, 281, 335].
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Inspired by the low intrinsic dimensionality of over-parameterized networks’ optimal parameters [10,

181], [135] proposed a seminal hypothesis that the change in weights during model adaptation/finetuning

has a low “intrinsic rank”, leading to the development of Low-Rank Adaptation (LoRA). In essence, LoRA

enables the indirect training of a linear layer in a neural network by optimizing the rank-decomposition ma-

trices for the weight change in these layers, resulting in a significant reduction in the number of parameters

required for adaptation (e.g., 10,000× parameter reduction for GPT-3). Notably, LoRA has gained popu-

larity, and various extensions of this method have been proposed since its inception [67, 335]. However,

LoRA and its derivatives have three inherent limitations: (1) the parameter count is lower-bounded by the

rank one decomposition of linear layers, and (2) the number of parameters is quantized since rank is an

integer number, and (3) the number of parameters inherently depends on the model’s architecture, i.e., the

dimensions of the linear matrix, and the choice of rank. In this paper, we introduce a method, denoted as

NOLA, that offers the same benefits as LoRA while addressing its limitations. NOLA allows one to decouple

the number of trainable parameters from both the choice of rank and the network architecture, and it breaks

the rank-one decomposition limit of LoRA.

NOLA is inspired by the recent work by [223], titled PRANC. In this work, we reparameterize a neural

network using a linear combination of pseudo-randomly generated weights. Then, we indirectly train the

network parameters by optimizing the linear mixture coefficients. This approach results in a significant

reduction in the total number of parameters needed to represent the network. Unlike PRANC, our focus

in NOLA is on reparameterizing the change of neural weights for fine-tuning large models. More critically,

unlike PRANC, NOLA incorporates the invaluable insight from [135], which posits that the weight change

during fine-tuning is intrinsically low-rank. In essence, we utilize the rank-decomposition presented in

LoRA but assemble the rank-decomposition matrices as a linear combination of pseudo-random matrices

(i.e., the ‘basis’). Optimizing the rank-decomposition matrices in NOLA is akin to determining the linear

mixture coefficients for the random matrices. This design allows us to decouple the number of parameters

from the shape of the linear layer and also from the rank choice. Furthermore, the low-rank constraints offer

substantial advantages in compute and memory footprint over the methodology proposed in PRANC. Figure

3.6 illustrates the fundamental concept of NOLA.

Why Fewer Parameters Matter?

We envision a future where we must efficiently manage and transition between multiple Large Language

Models (LLMs), each tailored for specific tasks. This vision arises from the necessity for LLMs customized

with private data and/or the concept of crafting a universal LLM that can summon customized LLMs as a
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Figure 3.6. Our Method (NOLA): After constraining the rank of ∆W by decomposing it to A × B, we
reparametrize A and B to be a linear combination of several random basis matrices. We freeze the basis
and W and learn the combination coefficients. To reconstruct the model, we store the coefficients and the
seed of the random generator which is a single scalar. NOLA results in more compression compared to
LoRA and more importantly decouples the compression ratio from the rank and dimensions of W. One
can reduce the number of parameters to 4 times smaller than rank=1 of LoRA which is not possible with
LoRA due to rank being an integer number.

versatile toolbox to tackle diverse tasks [266]. However, currently, customized LLMs demand substantial

storage, and the process of switching between them lacks efficiency due to large I/O operations. NOLA offers

a more compact reparameterization solution that can be stored effectively in GPU memory, allowing for

on-demand reconstruction directly on the GPU itself when a new task arises.

Note that while storing parameters in CPU memory is a cost-effective option, the process of transfer-

ring them from CPU to GPU incurs substantial time and power consumption. Moreover, this data transfer

relies on a shared resource (e.g., PCIe bus), which may experience congestion in busy server environments.

Therefore, optimizing model compactness to fit several of them within the limited GPU memory proves

advantageous in these scenarios. As an example, 1,000 customized GPT-3 models using LoRA need almost

35GB of memory (assuming LoRA compresses it by a factor of 10,000×), which may not fit in the GPU

memory along with the LLM model itself. Hence, compacting it by an additional factor of 5 reduces it to

7GB, which can fit in the GPU memory, leading to very efficient switching between the tasks.

Contributions. Our specific contributions in this paper are: 1) A novel reparameterization for com-

pressing task-specific large language models, denoted as NOLA. 2) NOLA decouples the compression ratio

from the rank and dimension of the weight matrix, unlocking higher compression ratios while keeping most

benefits of LoRA, including reduced memory and computation at training time. 3) NOLA can be further
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improved by quantizing the coefficients and can be applied to other architectures like CNNs. 4) Applied to

PRANC, NOLA speeds it up and reduces its memory footprint.

3.2.2 Related Works

Vision and Language Transformer Models: Transformer networks, introduced by [306], emerged as

a sequence-to-sequence model in Natural Language Processing (NLP). Their success soon extended to the

computer vision community, with subsequent works [71,299] introducing the Vision Transformer (ViT) net-

work as a strong alternative to the Convolutional Neural Network (CNN) backbones. Transformers accept

a sequence of tokens as input. These tokens can be, for instance, word embeddings in language or image

patches in vision. BERT [68] and GPT-2 [245] in NLP, and MAE [117] and DINO [39] in computer vision

train transformer networks via self-supervision on large amounts of unlabeled data. These studies demon-

strate that large transformer networks when trained on massive corpora, generalize well to downstream tasks

even when finetuning on very few task-specific examples. For example, [33] show that GPT-3 with 175B

parameters is a good few-shot learner. Lastly, the scaling law presented by [148] indicates that a simultane-

ous increase in training data and model parameters can lead to significant performance gains and emergent

capabilities previously unavailable to smaller models.

Parameter Efficient Fine-Tuning: Owing to their unprecedented few-shot generalization performance,

large neural networks, such as foundation models and LLMs have gained immense popularity in recent years.

An increasing number of users are customizing these models to adapt them to their specific tasks. However,

given the colossal size of these models, fine-tuning and storing the entire set of model parameters [68, 245]

for each task is impractical. This challenge is exacerbated as the number of tasks increases. In addition

to storage concerns, the overhead involved in loading task-specific models and transferring weights from

CPU to GPU often becomes a computational bottleneck in many applications. Parameter Efficient Fine-

Tuning (PEFT) approaches aim to address these issues by identifying the minimum number of parameters

needed to adapt a large model. Adapters [133, 191, 201, 251] are PEFT approaches that achieve adaptation

by adding small modules to the intermediate layers of the model. A major drawback of Adapters is the

extra latency they introduce in inference. BitFit [347] only adapt bias of the network. Ladder tuning [280]

reduce memory footprint in training by avoiding back-propagation through the main backbone. IA3 [192]

trains extra parameters in the attention module. Another widely adopted PEFT approach is prompt-tuning

for LLMs that involves optimizing a new set of input tokens, or prompts, for each task [111, 179, 186, 194].
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While reminiscent of prompt engineering, the distinction lies in training a specific set of prompt tokens in

prompt-tuning which might also increase inference latency.

[135] introduced LoRA, demonstrating that a low-rank modification of the original weights is sufficient

to adapt an LLM to a new task. Unlike adapters and prompt-tuning, these low-rank modifications can be in-

tegrated into the original weights, thus avoiding additional overhead during inference. However, LoRA has

two main limitations: 1) the rank-one decomposition sets a lower bound on the parameters needed for fine-

tuning, and 2) the number of required parameters is contingent upon the architecture and the rank choice.

Our work, termed NOLA, addresses these challenges by decoupling the trainable parameters from both the

rank choice and the network architecture. Several recent studies have sought to enhance LoRA by quan-

tizing its parameters [67, 102, 173, 335], optimizing the design choice of LoRA through neural architecture

search [353], or dynamically allocating parameters based on the required rank for each weight matrix [351].

Most of these enhancements are also compatible with our proposed method. In fact, we demonstrate that

NOLA can be quantized to 4-bit without any performance degradation, thereby emphasizing that the concept

of quantization is distinct from and complementary to, NOLA.

Compact Deep Learning Models: A closely related area to PEFT is model compression. Prun-

ing [116, 153, 187, 190, 271, 297, 313] and quantization [175, 249] stand as the principal methods for com-

pressing neural networks. Techniques such as those in [145,172] can achieve a high pruning rate, leading to

significant compression.

3.2.3 Proposed Method: NOLA

LoRA, short for Low-Rank Adaptation, is a widely embraced method for customizing a pre-trained

model, such as GPT, for a specific task. Instead of changing all parameters denoted as W within a given

layer, LoRA maintains the original pre-trained parameters W as a constant and learns a residual adjustment

∆W to fine-tune the model for the new task. The resulting updated layer parameters are then computed as

W + ∆W. The core concept behind LoRA is to minimize the size of ∆W by constraining its rank. In a

more formal context, considering W ∈ Rm×n and ∆W ∈ Rm×n, LoRA accomplishes this by reparameterizing

∆W as the product of two matrices, ∆W = A × B, where A ∈ Rm×r and B ∈ Rr×n, with r representing the

rank—a hyperparameter. By selecting a relatively small rank (r << min(m,n)), LoRA efficiently reduces

memory usage. This optimization is achieved by storing A and B, which exhibit a significantly more compact

representation than the full ∆W. The resulting compression ratio is quantified as mn
r(m+n) . Unfortunately, this
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compression ratio is: (1) tied to the shape of the parameters m and n, and hence the model architecture and

(2) is upper-bounded by mn
m+n , i.e., for r = 1.

In this paper, we introduce a novel reparameterization technique for ∆W that effectively decouples the

rank from the compression ratio, allowing for a compression ratio higher than mn
m+n , which corresponds to

r = 1 in the LoRA framework. To achieve this, we draw inspiration from PRANC [223] and reparameterize

matrices A and B to exist within a lower-dimensional space defined by a set of randomly generated basis

matrices. Formally, we express this as:

A =
k

∑
i=1
αiAi , B =

l

∑
j=1
β jB j(3.1)

where, Ai ∈ Rm×r and B j ∈ Rr×n are random matrices generated by a Pseudo Random Number Generator

with a fixed seed. We subsequently learn A and B as linear combinations of these predefined and frozen

random matrices. Importantly, the random matrices themselves remain constant, and we optimize only the

coefficient vectors α and β. Then:

∆W = (
k

∑
i=1
αiAi) × (

l

∑
j=1
β jB j)(3.2)

In practical terms, to store ∆W for a specific task, we only need to retain the seed (a single scalar) and the

coefficient vectors α and β. Remarkably, this approach allows for a small number of basis matrices (k + l)

to be chosen, irrespective of the rank of the A × B factorization and the shape of ∆W, thereby enhancing the

compression ratio to go beyond mn
m+n .

Quantization of coefficients α and β: We are mainly interested in reducing the storage for a new task,

assuming the pre-trained LLM is already available. Hence, to further reduce the storage, we quantize the α

and β coefficients to lower precision (e.g., 4 bits) while the random basis and the pre-trained LLM weights

have standard FP16 floating point precision. Note that one can also quantize A and B matrices in LoRA;

however, our method does not force A and B themselves to be of low precision. One can quantize α and β

after the optimization (post-training quantization) or while optimizing them (quantization-aware training).

We expect the latter to perform better. For quantization-aware learning, we use the method in [146, 248]

where we use the quantized α and β in the forward pass and update the FP16 versions of α and β in the

backward pass. Moreover, we use the Straight-Through Estimator (STE) trick [24] to estimate the gradient.

A few recent works have shown that it is possible to quantize the weights of LLMs for each task, which

reduces both computation and storage. However, these methods are not suitable for a large number of tasks
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since the quantized LLM is still task-specific and large.

Memory Efficiency: Note that depending on the number of basis matrices, the random basis may be

large, requiring a large memory. Interestingly, generating random matrices in the GPU itself is very fast,

so similar to PRANC, at each iteration, we generate chunks of the basis matrices at a time, multiply them

by the corresponding coeficents, and discard them. Generating a basis on the fly at the inference time can

drastically reduce the communication cost between CPU and GPU since α and β vectors for several tasks

can be stored in the GPU memory.

Efficiency of NOLA compared to PRANC: PRANC [223] reshapes the whole model parameters or each

layer of it into a long vector and reparameterizes that by a linear combination of random vectors. However,

as mentioned in [223], this method involves multiplication of the coefficients with the big random matrix

twice at each iteration (once in forward and once in backward passes), which is very expensive. For in-

stance, the size of the random matrix for ResNet18 with 1000 coefficients will be almost 11M × 1K. NOLA

reduces this computation while keeping the same number of parameters by reshaping the long vector to be

a 2D matrix and constraining its rank. Assuming d2 weights and k random basis, the basis matrix size for

PRANC will be kd2 while NOLA with rank r reduces that to kdr assuming that each component in A × B has

k
2 basis matrices to keep the number of parameters equal to PRANC. Then, the total compute for PRANC

will be kd2 + d2 ≈ kd2 while for NOLA, it will be kdr + 2dr ≈ kdr. Hence, assuming a small rank r, NOLA can

reduce the training time of PRANC by a large factor d
r due to the reduction of the computation at forward

and backward passes. Moreover, in the appendix, we empirically show that NOLA offers a better coverage

of the weight space compared to PRANC.

Structure of the parameters: Note that one can apply NOLA to model architectures other than trans-

former by simply reshaping the weight tensor to be a 2D matrix (preferably close to square) and then

compressing it. We do this in our ResNet experiments in the Appendix, where the weight matrices are 4D

tensors of convolutional filters.

3.2.4 Experiments

Here, we evaluate NOLA in transfer learning tasks in both NLP and vision. Moreover, in the appendix,

we evaluate NOLA in training from scratch.
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3.2.4.1 NOLA on GPT-2:

We adapt the parameters of pre-trained GPT-2 to three different Natural Language Generation (NLG)

datasets by finetuning the parameters using NOLA. We use GPT-2-Large and GPT-2-Medium in our experi-

ments. We follow the [135, 186] for our adaptation setup.

Datasets: We utilize the following datasets for our Natural Language Generation (NLG) task: E2E

NLG Challenge [227] serves as a commonly used benchmark for evaluating NLG models. It encompasses

of 51,200 samples, distributed as follows: 42,200 for training, 4,600 for validation, and an additional 4,600

for testing. DART [215] is yet another significant dataset employed for evaluating text-to-data generation.

This dataset is rich with 82,191 examples drawn from various domains. WebNLG [94] is a text-to-data

dataset, boasting 22,000 examples spanning 14 distinct categories. Notably, the WebNLG test set introduces

five new categories, prompting us to present results across all categories within this dataset. These datasets

collectively provide a comprehensive foundation for our NLG evaluation and experimentation.

LoRA: In our experiments, we apply LoRA on both query and value projection layer in each attention

block. Since number of parameters is tied to the rank, we adjust the rank to reduce number of parameters.

We compare to LoRA with both rank four and rank one.

Other Baselines: Moreover, we compared NOLA to a few other baselines, including finetuning all pa-

rameters, Adapters [133, 191, 240, 261], and Prefix-layer tuning (PreLayer) [186].

NOLA: We evaluate NOLA with two different variations: 1. Adapting MLP layers. 2. Adapting query and

value projection matrices. Note that, unlike LoRA, we can use any number of parameters while applying

NOLA to any weight structure since the number of parameters is not tied to the shape of the weight tensor.

We allocate an equal number of parameters to A and B in each NOLA layer (i.e., k = l). Using k = l = 1000

results in 0.096M parameters in GPT-M and 0.144M parameters in GPT-L. Also, we use half (k = l = 500)

and quarter (k = l = 250) number of parameters per layer to get smaller checkpoints.

Implementation Details: We trained our models using a single NVIDIA RTX 6000 Ada Generation

GPU. For all hyperparameters except learning rate, we use the same values as LoRA for training and evalu-

ation of GPT-2. We train our models for 5 epochs with a learning rate of 0.1 and no weight decay. We use a

batch size of 8. We use a rank of 8 for NOLA in our experiments. Like LoRA, we scale A × B with c
r , where

c is a hyperparameter and r is the rank. We use the default value of c = 1.

Results: We compare to LoRA and other baselines in Table 3.10 and Table B.13 in the Appendix. NOLA

is on par or better compared to other methods with the same number of parameters. In the E2E task, NOLA

with 0.036M parameters archives a BLEU score of 70.12, which is 20 times more compact compared to
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Table 3.10. E2E NLG Challenge: We compare NOLA to LoRA with two different architectures: GPT-2
medium (M) and large (L). QV refers to Query and Value projection, while MLP denotes the MLP layer
within transformers. AdapterL and AdapterH are two Adapter baselines reported in [135]. The best and
second best performing methods are in bold. To reduce number of parameters in LoRA, we use lower rank
(LoRA rank=1). We don’t see drop in performance by reducing number of trainable parameters to 1

20 of
LoRA with rank 4 in GPT-L. Note that in LoRA, one cannot reduce the number of parameters below rank
one.

GPT-2 M

Method Adapted Adapter # Trainable E2E NLG Challenge
Layers Rank Parameters BLEU NIST MET ROUGE-L CIDEr

Finetune All Layers - 354.920M 68.2 8.62 46.2 71.0 2.47
AdapterL Extra Layers - 0.370M 66.3 8.41 45.0 69.8 2.40
AdapterL Extra Layers - 11.090M 68.9 8.71 46.1 71.3 2.47
AdapterH Extra Layers - 11.090M 67.3 8.50 46.0 70.7 2.44
FinetuneTop2 Last 2 Layers - 25.190M 68.1 8.59 46.0 70.8 2.41
PreLayer Extra Tokens - 0.350M 69.7 8.81 46.1 71.4 2.49
LoRA QV 4 0.350M 70.4 8.85 46.8 71.8 2.53
LoRA QV 1 0.098M 68.7 8.72 45.6 70.5 2.43
NOLA (Ours) QV 8 0.350M 70.1 8.80 46.8 71.7 2.53
NOLA (Ours) QV 8 0.096M 70.0 8.82 46.7 71.6 2.51
NOLA (Ours) MLP 8 0.096M 70.2 8.79 46.7 71.8 2.51
NOLA (Ours) QV 8 0.048M 70.1 8.82 46.4 71.4 2.52
NOLA (Ours) MLP 8 0.048M 69.4 8.71 46.5 71.5 2.47

GPT-2 L

Finetune All Layers - 774.030M 68.5 8.78 46.0 69.9 2.45
AdapterL Extra Layers - 0.880M 69.1 8.68 46.3 71.4 2.49
AdapterL Extra Layers - 23.000M 68.9 8.70 46.1 71.3 2.45
PreLayer Extra Tokens - 0.770M 70.3 8.85 46.2 71.7 2.47
LoRA QV 4 0.770M 70.4 8.89 46.8 72.0 2.47
LoRA QV 1 0.184M 69.9 8.81 46.7 71.6 2.53
NOLA (Ours) QV 8 0.144M 70.5 8.85 46.8 71.7 2.54
NOLA (Ours) MLP 8 0.144M 70.1 8.80 46.5 71.2 2.52
NOLA (Ours) QV 8 0.072M 69.8 8.80 46.4 71.3 2.51
NOLA (Ours) MLP 8 0.072M 69.4 8.71 46.6 71.5 2.48
NOLA (Ours) QV 8 0.036M 70.1 8.80 46.7 71.7 2.53
NOLA (Ours) MLP 8 0.036M 70.0 8.81 46.4 71.5 2.53

LoRA with rank 4 that has 0.77M parameters and archives a BLEU score of 70.4. This NOLA model uses

a rank of 8, which does not affect the number of parameters and increases the run time slightly (negligible

compared to that of the actual LLM model). Note that our goal is to reduce the number of parameters without

reducing the accuracy, which is shown in Tables 3.10 and B.13. We are not claiming that NOLA improves the

accuracy compared to baselines. We show various variants of NOLA (MLP, QV, etc) to emphasize that NOLA

is not very sensitive to the choice of the variation.
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Table 3.11. Training time and memory: We compare the training memory and running time of NOLA to
LoRA. Since generating a random basis on each layer has a small overhead, we can generate random basis
once and share the basis across layers to save time. This version of NOLA has a similar runtime to LoRA
and on-par accuracy to NOLA with a non-shared basis.

Model & Method Random Basis Training Training Time # Trainable E2E NLG Challenge
Memory (ms/batch) Parameters BLEU NIST MET ROUGE-L CIDEr

GPT-2 L (LoRA r=1) - 33.35GB 776 184K 69.89 8.81 46.70 71.64 2.53
GPT-2 L (NOLA QV) Non-shared 33.37GB 834 144K 70.46 8.85 46.77 71.68 2.54
GPT-2 L (NOLA QV) Shared 33.40GB 779 144K 70.32 8.85 46.74 71.71 2.54

Training Time and Memory of NOLA: Similar to LoRA, in the inference time, we can calculate A ×

B offline and merge it with W. Therefore, NOLA does not have any overhead compared to the original

model. In training time, NOLA has a small overhead due to the multiplication of coefficients to basis weights.

We measure the running time and memory footprint of NOLA during training and compare it to LoRA in

Table 3.11. Since generating a random basis for each layer adds a small overhead, we can share the random

basis across all layers and generate and store them only once to improve the running time. We measure time

and memory with a batch size of 8. NOLA, with a unique random basis for each layer, is slightly slower than

LoRA. However, NOLA with a shared random basis has on-par accuracy with the unique random basis and

has a similar running time to LoRA.

Ablation Study on the rank of NOLA: Since the number of parameters is decoupled from the rank of

the matrix, we can solely evaluate the effect of rank without changing the number of parameters. We report

the effect of rank in Table 3.12. We vary the rank from 1 to 8 and use c = 1.0 for ranks 4 and 8, and c = 0.5

for lower ranks. As also noted by [135], understanding the effect of rank needs more rigorous study as future

work.

3.2.4.2 NOLA with Quantized Coefficients, α and β:

We evaluate the performance of NOLA with rank 4 with quantized α and β parameters on the E2E dataset

in Table 3.13 in two different setups. First, we do Post Training Quantization (PTQ) by quantizing the

parameters to q bits after the training. We observe no significant drop in both LoRA and NOLA in 4 bits PTQ

experiments. Second, we evaluate models with Quantization Aware Training (QAT) where we quantize the

coefficients in the forward pass and update them in the non-quantized form. In QAT with 3 bits, NOLA has

a slight drop of 0.3 points while LoRA has a drop of 2.8 points in the BLEU metric. Note that in NOLA,

although α and β are quantized, A and B in Eq 3.1 are not quantized since the basis matrices, Ai and B j, are

non-quantized. This is in contrast to LoRA where A and B are quantized.
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Table 3.12. Effect of rank in NOLA: We vary the rank from 1 to 8. Note that we can use the same number
of parameters in all ranks since the number of parameters is not tied to the rank in NOLA.

# Train Rank E2E NLG Challenge
Params BLEU NIST MET ROUGE-L CIDEr

GPT-2 M (NOLA QV)

96K 8 70.03 8.82 46.74 71.64 2.51
96K 4 69.69 8.76 46.56 71.44 2.51
96K 2 70.47 8.86 46.71 71.79 2.53
96K 1 69.09 8.78 45.87 70.15 2.45

96K 8 70.03 8.82 46.74 71.64 2.51
48K 8 70.09 8.82 46.44 71.36 2.52
24K 8 68.30 8.67 45.13 68.91 2.40
12K 8 67.18 8.60 43.99 68.38 2.26

GPT-2 L (NOLA QV)

144K 8 70.46 8.85 46.77 71.68 2.54
144K 4 70.25 8.85 46.84 71.81 2.54
144K 2 69.69 8.78 46.55 71.25 2.51
144K 1 69.71 8.82 46.47 70.96 2.51

Table 3.13. Quantization of coefficients: Post-training quantization of parameters does not degrade the
performance up to the 4 bit quantization. In quantization-aware training, NOLA is more robust to quantiza-
tion compared to LoRA.

Model # Quant E2E NLG Challenge
& Method Bits BLEU NIST MET ROUGE-L CIDEr

Post Training Quantization

GPT-2 L
(LoRA r=1)

16-bit 69.89 8.81 46.70 71.64 2.53
8-bit 69.91 8.81 46.69 71.75 2.53
4-bit 69.63 8.75 46.32 71.24 2.48
3-bit 62.01 8.02 42.01 67.23 2.07

16-bit 70.46 8.85 46.77 71.68 2.54
8-bit 70.43 8.84 46.78 71.72 2.54
4-bit 70.29 8.82 46.74 71.82 2.52

GPT-2 L
(NOLA QV)

3-bit 65.14 8.58 44.38 67.56 2.23

Quantization Aware Training

GPT-2 L
(LoRA r=1)

3-bit 67.08 8.86 44.67 68.76 2.36
2-bit 56.13 4.70 35.38 63.68 1.40

3-bit 70.14 8.82 46.58 71.61 2.53GPT-2 L
(NOLA QV) 2-bit 68.69 8.72 46.06 70.61 2.48

3.2.4.3 NOLA on LLaMA-2:

Finetuning with LoRA for larger LLMs is challenging due to compute demand, so we need to resort to

QLoRA where the base model is quantized. Our NOLA framework is agnostic to the quantization of base
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Table 3.14. Instruction finetuning for quantized LLaMA-2: NOLA fine-tunes LLaMA-2 70B (8-bit)
with 0.57M parameters, a 95% reduction compared to rank-one LoRA. We use quantized version of
LLaMA-2 for both LoRA and NOLA, so our LoRA baseline is equivalent to QLoRA.

LLaMA-2 - 7B (8-bit) LLaMA-2 - 13B (8-bit) LLaMA-2 - 70B (8-bit)
w/o Finetuning LoRA NOLA w/o Finetuning LoRA NOLA w/o Finetuning LoRA NOLA

Adapter Rank - 1 16 - 1 16 - 1 16
Trainable Parameters - 2.50M 0.06M (↓97%) - 3.91M 0.14M (↓96%) - 12.94M 0.57M (↓95%)

Train Loss 1.53 0.97 1.05 1.43 0.94 0.95 1.42 0.87 0.90
Val Loss 1.74 1.04 1.01 1.59 0.96 0.97 1.53 0.92 0.90
MMLU Acc 45.3 46.5 46.5 54.8 55.3 55.3 68.9 69.5 69.4

model, so for LLaMA-2 [300] experiments, we use NOLA with base model quantized to 8-bits while the

NOLA coefficients still use 16-bit. We fine-tune the pretrained LLaMA-2 model using 8-bit QLoRA on

the Alpaca dataset [287], reporting both training and validation loss metrics specific to the Alpaca dataset.

Additionally, we employ the MMLU (Massively Multitask Language Understanding) benchmark [126] to

assess performance across a diverse set of language understanding tasks. This benchmark comprises 57

tasks spanning areas such as mathematics, history, computer science, and law. On MMLU, we focus on

5-shot evaluation (providing 5 examples in the context), following the standard practice.

Implementation Details: We apply LoRA and NOLA across all layers (Query, Key, Value and Output

projections and MLP layers) of the transformer on three different model sizes of LLaMA-2: 7B, 13B, and

70B. For our LoRA experiments, we set the rank r = 1 since LoRA paper (its Table 15) shows that rank one

model performs as well as higher ranks for larger LLMs (e.g., GPT-3). For NOLA, we use r = 16 and adjust

the number of optimized parameters for each LLaMA-2 model size using the following settings: k = l = 128

for LLaMA-2 7B, k = l = 256 for LLaMA-2 13B, and k = l = 512 for LLaMA-2 70B. During fine-tuning

LoRA or NOLA, we adhere to the hyperparameters reported in QLoRA, [67]. We optimize for one epoch

on the Alpaca dataset with a batch size of 256 using four RTX 3090 GPUs. The learning rate is 0.0002 for

LoRA and 0.001 for NOLA. Similar to LoRA, we scale A × B with c
r , where c is a hyperparameter and r is

the rank. We use c = 16 for LoRA and c = 4 for NOLA.

Results: Results are presented in Table 3.14. Remarkably, NOLA is capable of fine-tuning LLaMA-2

70B with fewer than 0.6M parameters, representing an average reduction of parameters by 95% compared

to LoRA with rank one.

3.2.4.4 NOLA on Vision Transformers

We perform experiments on the image classification task on ViT-B and ViT-L architectures with both

supervised and self-supervised (MAE) initializations.
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Implementation details: All pre-trained networks are obtained from Timm library [323]. All approaches

are trained for 50 epochs, and the top-1 accuracy at the final epoch is reported. We use a batch-size of 64

and tune the initial learning rate for each dataset and architecture for all approaches. Since our focus is on

finetuning on small datasets, we use 5 and 10 labeled examples per class for finetuning. Since there is a

high variance in performance due to the small training sets, we sample four different sets of training samples

per k-shot and three different initializations for LoRA/NOLA and report the mean accuracy and standard

deviation. All approaches are trained with cross-entropy loss. Additional details are in the appendix.

Datasets: ImageNet-21k and ImageNet-1k are used to pretrain the backbone models. We use CIFAR10 [169],

CIFAR100 [168], CUB-200-2011 [321], Caltech-101 [83], Aircraft [203], Food101 [28], Pets [233] and

SUN397 [327] datasets for finetuning.

Baselines: We compare NOLAwith three baseline approaches: Linear, Full-FT (full fine-tuning) and LoRA [135].

In Linear, only the final classifier head is optimized, while in Full-FT, the entire backbone network is op-

timized too. No additional parameters are used during finetuning for either of these approaches. We apply

LoRA on Query, Key, and Value projection matrices with rank set 4 for ViT-B to 1 or 4 for ViT-L. In our

preliminary experiments, LoRA with rank one sees a big drop in accuracy. This is aligned with our GPT-2

M experiments where smaller models require higher rank. We apply NOLA on the MLP layers and use rank

of 4 for ViT-B and 1 for ViT-L. We report the number of trainable parameters for each approach excluding

the classifier head parameter count which is common to all approaches. We also report nearest-neighbor

(1-NN) evaluation for zero-shot classification on downstream tasks using ImageNet pretrained features.

Results: Results on finetuning on image classification tasks are presented in Table 3.15. A naive Nearest

Neighbor approach performs competitively on the CUB and Caltech datasets. LoRA and NOLA are signif-

icantly better than Linear and Full-FT on several settings (e.g. CIFAR-100 5 shot on ViT-B-MAE). This

might be due to the overfitting of the Linear and Full-FT approaches on the limited number of train samples.

When using a similar number of training parameters, NOLA outperforms LoRA in most of the settings across

architectures and datasets. It also achieves comparable performance to LoRA with just half or one-third of

the training parameters of LoRA. This is consistent with our observations on the NLG tasks. The difference

between the two methods is particularly noticeable when the number of training examples is small - either

in 5 shot setup or when the number of classes is small, as in CIFAR-10. This suggests that the improvement

obtained by NOLA could be due to the reduction in the number of training parameters. Both LoRA and NOLA

consistently and significantly outperform Linear and Full-FT approaches. NOLA can easily be employed in

MLP layers since the number of training parameters is decoupled from the weight matrix dimensions. A
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Table 3.15. Results on vision transformers. We finetune ImageNet pre-trained ViT models on multiple
small datasets with 5 and 10 training samples. The mean accuracy and standard deviation across 12 runs
are reported. The number of train parameters for Linear classifier depends on the number of classes in
the dataset (0.01, 0.1, 0.2, 0.1M parameters for CIFAR-10, CIFAR-100, CUB and Caltech respectively).
We do not count the linear layer in trainable parameters. The best performing method is in bold while all
methods within one point of the best are underlined. NOLA outperforms LoRA with comparable parameters
across datasets and architectures, particularly in the low training data regime. The performance of NOLA
with half or one-third of the training parameters is comparable to that of LoRA. Note that LoRA with rank
one is the most compact LoRA.

Base # Train CIFAR-10 CIFAR-100 CUB-200-2011 Caltech-101
Model Params 5 10 5 10 5 10 5 10

ViT-B

Nearest Neighbor 79.6 80.8 52.4 59.2 71.9 78.0 84.1 87.5
Linear 0 80.8 (1.1) 85.1 (1.0) 58.9 (0.9) 64.5 (0.7) 72.7 (0.4) 79.2 (0.2) 85.8 (0.8) 88.5 (0.4)

Full-FT 5.3M 73.9 (6.5) 87.6 (2.7) 61.4 (2.4) 78.2 (1.1) 59.7 (1.9) 76.6 (0.2) 87.9 (0.8) 91.1 (0.5)
LoRA (r=4) 141K 87.3 (2.3) 93.1 (0.5) 76.3 (0.5) 81.6 (0.9) 75.7 (0.5) 82.4 (0.3) 88.4 (1.1) 90.8 (0.5)
NOLA-MLP 47K 87.9 (1.3) 92.2 (0.5) 75.1 (0.6) 81.3 (0.8) 75.5 (0.6) 81.7 (0.4) 88.0 (1.2) 90.6 (0.5)

ViT-B-MAE

Nearest Neighbor 18.2 19.8 5.8 9.8 13.2 25.3 28.2 40.7
Linear 0 27.4 (1.9) 34.5 (1.4) 15.7 (0.7) 22.2 (0.2) 12.7 (0.3) 18.4 (0.3) 66.9 (1.1) 76.9 (0.6)

Full-FT 5.3M 41.1 (4.4) 58.4 (3.6) 19.7 (4.8) 24.2 (11.1) 23.0 (3.8) 51.9 (2.8) 76.4 (2.3) 86.5 (0.5)
LoRA (r=4) 141K 54.7 (1.6) 70.1 (2.2) 39.3 (3.1) 52.4 (1.3) 35.7 (1.5) 54.0 (0.6) 82.4 (0.6) 87.7 (0.5)
NOLA-MLP 47K 55.1 (2.6) 72.1 (2.7) 42.1 (1.4) 53.5 (1.0) 35.8 (1.5) 53.9 (0.6) 88.0 (1.2) 90.6 (0.5)

ViT-L

Nearest Neighbor 88.7 89.9 68.9 74.0 77.4 82.3 88.4 90.1
Linear 0 84.1 (1.8) 88.4 (1.1) 63.7 (1.3) 70.6 (0.9) 73.7 (0.6) 79.2 (0.3) 87.6 (0.9) 89.9 (0.4)

Full-FT 289M 77.2 (2.7) 90.2 (2.8) 74.0 (2.3) 86.2 (0.6) 73.3 (0.9) 83.9 (0.2) 88.7 (1.0) 91.3 (0.7)
LoRA (r=4) 375K 86.5 (2.0) 93.8 (1.0) 82.9 (0.9) 87.6 (0.6) 81.2 (0.4) 85.3 (0.3) 89.3 (0.7) 91.3 (0.3)
LoRA (r=1) 94K 86.3 (1.3) 92.8 (0.8) 82.2 (0.8) 85.6 (0.9) 80.6 (0.3) 85.2 (0.3) 89.9 (1.0) 91.6 (0.4)
NOLA-MLP 94K 89.0 (3.6) 96.0 (0.5) 83.6 (0.9) 87.8 (0.6) 80.8 (0.6) 85.2 (0.2) 90.0 (0.7) 91.7 (0.3)
NOLA-MLP 47K 83.9 (1.8) 93.0 (1.7) 81.2 (1.0) 87.1 (0.6) 80.7 (0.5) 85.0 (0.3) 89.8 (0.8) 91.5 (0.4)

ViT-L-MAE

Nearest Neighbor 33.5 39.2 15.2 21.9 16.9 29.2 57.4 67.6
Linear 0 40.2 (2.3) 49.2 (2.6) 22.6 (0.9) 31.3 (0.5) 15.2 (0.3) 21.9 (0.4) 75.2 (0.5) 83.2 (0.6)

Full-FT 289M 60.6 (4.5) 68.3 (4.0) 37.9 (11.1) 52.0 (16.1) 42.2 (2.3) 67.1 (1.1) 87.2 (0.8) 90.8 (0.7)
LoRA (r=4) 375K 63.5 (3.0) 82.4 (2.3) 50.2 (6.8) 62.6 (5.2) 35.2 (2.9) 60.8 (1.2) 87.0 (0.9) 90.7 (0.4)
LoRA (r=1) 94K 67.7 (3.8) 83.8 (1.2) 50.4 (1.0) 62.5 (0.6) 32.9 (1.8) 56.6 (1.7) 87.0 (0.6) 90.8 (0.4)
NOLA-MLP 94K 70.6 (3.8) 86.0 (1.4) 51.7 (1.1) 63.8 (0.8) 36.9 (5.6) 61.6 (1.0) 87.4 (0.4) 90.9 (0.5)
NOLA-MLP 47K 69.6 (3.8) 84.8 (1.1) 49.9 (0.8) 62.8 (0.7) 36.1 (0.8) 58.8 (1.2) 87.1 (0.6) 90.9 (0.4)

Table 3.16. More results on vision tasks. Using ViT-B, NOLA achieves comparable performance as
LoRA (r=4) with just one-third the number of parameters on four challenging datasets. The linear layer
sizes are: 0.03M, 0.2M, 0.1M, 0.3M for Aircraft, Food101, Pets and SUN397 respectively.

Method # Train Aircraft Food101 Pets SUN397
Params 5 Shot 10 Shot 5 Shot 10 Shot 5 Shot 10 Shot 5 Shot 10 Shot

Nearest Neighbor 24.6 27.1 48.4 54.2 82.3 86.2 44.4 51.5
Linear 0 29.7 (2.3) 36.9 (2.1) 53.2 (0.3) 61.5 (0.1) 88.4 (0.4) 91.3 (0.3) 38.0 (0.8) 42.7 (0.4)
Full-FT 82M 31.4 (2.4) 43.2 (2.0) 48.6 (5.1) 65.8 (2.7) 82.7 (1.1) 91.1 (0.5) 45.0 (3.3) 52.6 (0.3)
LoRA (r=4) 0.141M 32.4 (1.4) 43.8 (1.5) 60.8 (1.6) 73.1 (0.6) 85.5 (0.8) 91.6 (0.5) 51.6 (0.4) 55.6 (0.3)
NOLA-MLP 0.047M 33.7 (2.2) 43.3 (1.4) 64.5 (0.8) 72.6 (0.4) 88.0 (0.6) 92.2 (0.3) 50.5 (0.4) 55.5 (0.3)

similar application of LoRA would require 8× more training parameters due to the large hidden layer di-

mensionality of the MLP module. We empirically observe that NOLA-MLP slightly outperforms NOLA on

attention block. We provide results on four additional datasets used for benchmarking transfer learning in
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Table 3.16. Aircraft, Food101 and Pets are finegrained datasets while SUN397 is a large dataset with 397

classes. There is a bigger difference in the performance of Nearest Neighbor and Linear approaches on most

of these datasets compared to those in Table 3.15, suggesting that it is harder to adapt to these datasets. In

line with our prior observations in Table 3.15, NOLA with just one-third the number of parameters performs

comparably to LoRA.

3.2.4.5 Measuring the rank of possible solutions in NOLA vs PRANC:

Choosing n basis vectors (d dimensional each) in PRANC will result in all possible learned matrices

living in a n dimensional subspace. However, since NOLAwith the same number of total parameters (k+l = n)

uses A × B factorization, the possible solutions can live in a higher dimensional subspace. We do a simple

experiment by sampling several random coefficient vectors, reconstructing the ∆W matrix, reshaping it to

be a long (d2)-dimensional vector, and measuring the rank of the covariance of samples to see how much

of the whole space is covered by the samples. The results are shown in Figure 3.7 for a simple experiment

with varying d and n. As expected, NOLA can cover the whole space (full-rank) using a small number of

parameters compared to PRANC. Note that the rank in this analysis is on the covariance of possible random

samples of weight matrices and should not be confused with the rank in LoRA or NOLA formulation.

Figure 3.7. Comparing the rank of samples in the solution subspace for PRANC and NOLA, given the same
number of parameters, n. “Percentage Coverage” is the subspace rank divided by the max possible rank
(d2), so 1.0 denotes full rank. As expected, the coverage for PRANC increases linearly while it saturates
very fast for NOLA.

3.2.4.6 NOLA in training from scratch:

MLP on MNIST (a toy experiment):
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We believe NOLA is a better reparametrization than PRANC and can achieve local minimums that

PRANC cannot achieve. To show this empirically, we perform a very simple experiment where we ap-

ply a 2-layer MLP for the MNIST classification task. Since we want to measure which method is better at

reaching the local minimums and not necessarily the generalization, we evaluate the models by the training

loss. Also, we intentionally use a large number of neurons in the hidden layer to over-parameterize and

increase the number of local minimums.

We use a linear layer from 784 features to 256 with bias followed by ReLU and a linear layer from 256

to 10 classes. We use all 60K samples for training to report the training loss. For both PRANC and NOLA,

we use 32 parameters for each layer. Other hyperparameters are same for both: 200 epochs, 512 batch size

with lr = 0.05. We use rank r = 4 for NOLA. PRANC has a final training loss of 0.87, while NOLA achieves a

training loss of 0.71. This simple experiment empirically supports that NOLA has better representation power.

Additionally, PRANC training finishes in 1152 seconds while NOLA finishes in 579 seconds. We will leave

the theoretical study of this comparison for future work. Moreover, this experiment empirically shows that

NOLA is a generic method, and its success is not dependent on the architecture of transformers or attention

modules.

CNN on ImageNet100 and CIFAR-10:

Moreover, to compare the representation power of NOLA and PRANC, we train NOLA from scratch on an

image classification task using a CNN architecture. For each convolution layer, we reshape all parameters

of a layer into a matrix (close to square shape) and apply NOLA to the matrix. Then, we reshape it to the

original shape of the convolution. Additionally, we train LoRA using a similar approach as NOLA. We follow

a similar setup as [223] for our experiments on image classification.

Datasets and Architectures: We consider two architectures in our experiments: ResNet20 with 270K

parameters, and ResNet18 [122] with 11M parameters. We train ResNet20 on CIFAR10 [169], and ResNet18

on ImageNet100 [260].

Results: We report result of ImageNet100 in Table B.11, and CIFAR10 in Table B.10. NOLA outper-

forms both PRANC and LoRA with a similar number of parameters.

Implementation Details: For ImageNet100 and ResNet18, we use k = l = 2,000 basis for each of 20

modules, and for the classifier (last linear layer), we used k = l = 10,000, resulting in a total of 100,000

trainable parameters excluding 9,600 batchnorm parameters. We use rank 64 for all layers. We train all

models using Adam optimizer with a learning rate of 0.001 and batch size of 256 for 200 epochs. For

CIFAR-10 and ResNet20, we use k = l = 250 basis for each convolutional module, and for the linear layer,
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we use k = l = 1000 parameters. We use batch size 256, Adam optimizer, and a learning rate of 0.001. We

use a single NVIDIA-GeForce RTX 3090 for all experiments.

Training Time Comparison: We measure the training time of NOLA and PRANC on a single NVIDIA-

GeForce RTX 3090 GPU and batch size of 256. Note that training time includes both forward and backward

passes for each batch. On average, NOLA processes a batch in 228ms while PRANC does the same in

1070ms, so NOLA is 4.6 times faster than PRANC.

Table 3.17. Training On CIFAR10: Result of
our method on CIFAR10 dataset and ResNet20.

Method # Params Acc.

trained model 269,722 88.92%

PRANC 12,752 81.5%
LoRA 13,295 81.5%
NOLA 12,876 82.4%

Table 3.18. Training On ImageNet100: Result of
our method on ImageNet-100 dataset and ResNet18

Method # Params Acc.

trained model 11,227,812 82.1%

HashedNet [50] 129,200 52.96%
PRANC 119,200 61.08%
LoRA 150,000 63.50%
NOLA 109,600 64.66%

3.2.5 Conclusion

We develop NOLA, a parameter efficient fine-tuning method based on LoRA. NOLA uses a linear

combination of low-rank random matrices as weights for the fine-tuning task. The combination coefficients

are optimized while the random matrices are frozen. Thus, NOLA provides a way to decouple the number

of fine-tuning parameters both from the pretrained model architecture and the rank of the low-rank matrices.

It performs as well as or even better than LoRA with 95% fewer parameters on LLaMA-2. It is also on par

with LoRA but with half to one-third number of parameters using smaller LLMs like GPT2 and on image

classification tasks with vision transformers.
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CHAPTER 4

Robustness of Efficient Models in Vision Transformers

In the previous chapters, we looked at how to improve the efficiency of models in terms of compute,

memory, data and resources. Here, we attack models to make them less efficient! We analyse the robustness

of a specific type of efficient models - adaptive inference models for image classification - to adversarial

attacks on their efficiency. As the size of models is growing rapidly and efficient solutions are introduced to

keep pace, more such studies on adversarial attack and defense on efficiency are the need of the hour.

4.1 SlowFormer: Adversarial Attack on Compute and Energy

Consumption of Efficient Vision Transformers

Recently, there has been a lot of progress in reducing the computation of deep models at inference time.

These methods can reduce both the computational needs and power usage of deep models. Some of these

approaches adaptively scale the compute based on the input instance. We show that such models can be

vulnerable to a universal adversarial patch attack, where the attacker optimizes for a patch that when pasted

on any image, can increase the compute and power consumption of the model. We run experiments with

three different efficient vision transformer methods showing that in some cases, the attacker can increase the

computation to the maximum possible level by simply pasting a patch that occupies only 8% of the image

area. We also show that a standard adversarial training defense method can reduce some of the attack’s

success. We believe adaptive efficient methods will be necessary in the future to lower the power usage of

expensive deep models, so we hope our paper encourages the community to study the robustness of these

methods and develop better defense methods for the proposed attack. Code is available at:

https://github.com/UCDvision/SlowFormer

4.1.1 Introduction

The field of deep learning has recently made significant progress in improving model efficiency for in-

ference. Two broad categories of methods can be distinguished: 1) those that reduce computation regardless

of input, and 2) those that reduce the computation depending on the input (adaptively). Most methods,
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Figure 4.1. Computation and Energy Attack on Vision Transformers: Given a pre-trained input-
dependent computation efficient model, the adversary first attaches an adversarial patch to all images in a
dataset and optimizes this patch with our method such that it maximizes the model’s computation for each
sample. During inference, the adversary modifies the input of the victim’s model by applying the learnt
patch to it. This results in an increase in compute in the victim’s model. The attack will thus potentially
slowdown and also lead to increased energy consumption and CPU/GPU usage on the victim’s device.

such as weight pruning or model quantization, belong to the first category which reduces computation by

a constant factor regardless of the input. However, in many applications, the complexity of the perception

task may differ depending on the input. For example, when a self-driving car is driving between lanes in

an empty street, the perception may be simpler and require less computation when compared to driving in

a busy city street scene. Interestingly, in some applications, simple scenes such as highway driving may

account for the majority of the time. Therefore, we believe that adaptive computation reduction will become

an increasingly important research area in the future, especially when non-adaptive methods reach the lower

bound of computation.

We argue that reduction of compute usually reduces power usage, which is crucial, particularly in mobile

devices that run on battery, e.g., AR/VR headsets, humanoid robots, and drones. For instance, increasing the

size of the battery for a drone may lead to a drastic reduction in its range due to the increased battery weight.

This is important since the improvement in battery technology is much slower than compute technology.

For instance, the battery capacity from iPhone [2] (1st generation) in 2007 to iPhone 15 Pro Max in 2023

improved from 5.18 watt-hour to 17.32 watt-hour (less than 4 times) while the compute has increased by a

much larger factor. As an example, a delivery robot like Starship uses a 1,200Wh battery and can run for 12

hours [8], so it uses almost 100 watts for compute and mobility. Hence, an adversary increasing the power

consumption of the perception unit by 20 watts, will reduce the battery life by almost 20%, which can be

significant. Note that 20 watts increase in power is realistic assuming that it uses two NVIDIA Jetson Xavier

NX cards (almost 20 watts each).
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Key idea: Assuming that a perception method is reducing the computation adaptively with the input, an

adversary can attack the model by modifying the input to increase the computation and power consumption.

Our goal is to design a universal adversarial patch that when pasted on any input image, it will increase

the computation of the model leading to increased power consumption. We believe this is an important

vulnerability, particularly for safety-critical mobile systems that run on battery.

Please note that in this paper, we do not experiment with real hardware to measure the power consump-

tion. Instead, we report the change in FLOPs of the inference time assuming that the power consumption is

positively correlated with the number of FLOPs, as studied in [264].

We design our attack, SlowFormer, for three different methods (A-ViT [338], ATS [81], and Ada-VIT

[207]) that reduce the computation of vision transformers. These methods generally identify the importance

of each token for the final task and drop the insignificant ones to reduce the computation. We show that in

all three cases, our attack can increase the computation by a large margin, returning it to the full-compute

level (non-efficient baseline) for all images in some settings. Our threat model is agnostic to the accuracy of

the model and attacks the computation and power consumption only. Figure 4.1 shows our attack.

There are some prior works that design a pixel-level perturbation attack to increase the compute of the

model. We believe universal patch-based attacks that do not change with the input image (generalize from

training data to test data) are much more practical in real applications. Note that to modify the pixel values

on a real robot, the attacker needs to access and manipulate the image between the camera and compute

modules, which is impossible in many applications.

Contributions: We show that efficient vision transformer methods are vulnerable to a universal patch

attack that can increase their compute and power usage. We demonstrate this through experiments on three

different efficient transformer methods. We show that an adversarial training defense can reduce attack

success to some extent.

4.1.2 Related Work

Vision Transformers: The popularity of transformers [306] in vision has grown rapidly since the intro-

duction of the first vision transformer [70,298]. Recent works demonstrate the strength of vision transform-

ers on a variety of computer vision tasks [56,70,195,247,298,342,355,356,358]. Moreover, transformers are

the backbone of recent Self-Supervised Learning (SSL) models [39,117], and vision-language models [244].

In our work, we design an attack to target the computation and energy efficiency of vision transformers.
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Efficient Vision Transformers: Due to the recent importance and popularity of vision transformers,

many works have started to study the efficiency of vision transformers [31, 150, 341]. To accomplish this,

some lines of work study token pruning with the goal of removing uninformative tokens in each layer

[81, 206, 207, 246, 338]. ToMe [27] merges similar tokens in each layer to decrease the computation. Some

works address quadratic computation of self-attention module by introducing linear attention [12, 149, 158,

198,270]. Efficient architectures [131,196] that limit the attention span of each token have been proposed to

improve efficiency. In our paper, we attack token pruning based efficient transformers where the computation

varies based on the input samples [81, 207, 338].

Dynamic Computation: There are different approaches to reducing the computation of vision models,

including knowledge distillation to lighter network [130, 199], model quantization [193, 248] and model

pruning [182]. In these methods, the computation is fixed during inference. In contrast to the above models,

some works address efficiency by having variable computation based on the input. The intuition behind this

direction is that not all samples require the same amount of computation. Several recent works have devel-

oped models that dynamically exit early or skip layers [26,74,86,104,109,139,289,307,316] and selectively

activate neurons, channels or branches for dynamic width [23,35,42,82,92,129,137,343] depending on the

complexity of the input sample. Zhou et al. show that not all locations in an image contribute equally

to the predictions of a CNN model [357], encouraging a new line of work to make CNNs more efficient

through spatially dynamic computation. Pixel-Wise dynamic architectures [36, 43, 77, 156, 254, 308, 332]

learn to focus on the significant pixels for the required task while Region-Level dynamic architectures per-

form adaptive inference on the regions or patches of the input [89, 188]. Finally, lowering the resolution

of inputs decreases computation, but at the cost of performance. Conventional CNNs process all regions of

an image equally, however, this can be inefficient if some regions are “easier” to process than others [134].

Correspondingly, [336, 337] develop methods to adaptively scale the resolution of images.

Transformers have recently become extremely popular for vision tasks, resulting in the release of a

few input-dynamic transformer architectures [80, 207, 338]. Fayyaz et al. [80] introduce a differentiable

parameter-free Adaptive Token Sampler (ATS) module which scores and adaptively samples significant

tokens. ATS can be plugged into any existing vision transformer architecture. A-ViT [338] reduces the

number of tokens in vision transformers by discarding redundant spatial tokens. Meng et al. [207] propose

AdaViT, which trains a decision network to dynamically choose which patch, head, and block to keep/acti-

vate throughout the backbone.
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Adversarial Attack: Adversarial attacks are designed to fool models by applying a targeted perturba-

tion or patch on an image sample during inference [103, 171, 283]. These methods can be incorporated into

the training set and optimized to fool the model. Correspondingly, defenses have been proposed to mitigate

the effects of these attacks [85, 185, 230, 329]. Patch-Fool [90] considers adversarial patch-based attacks on

transformers. Some recent works [202, 319, 350] also study and design methods for the transferability of

adversarial attacks on vision transformers. However, most prior adversarial attacks target model accuracy,

ignoring model efficiency.

Energy Attack: Very recently, there have been a few works on energy adversarial attacks on neural

networks. In ILFO [114], Haque et al. attack two CNN-based input-dynamic methods: SkipNet [316] and

SACT [86] using image specific perturbation. DeepSloth [132] attack focuses on slowing down early-exit

methods, reducing their energy efficiency by 90-100%. GradAuto [229] successfully attacks methods that

are both dynamic width and dynamic depth. NICGSlowDown and TransSlowDown [46, 47] attack neural

image caption generation and neural machine translation methods, respectively. All these methods primarily

employ image specific perturbation based adversarial attack. SlothBomb injects efficiency backdoors to

input-adaptive dynamic neural networks [44] and NodeAttack [115] attacks Neural Ordinary Differential

Equation models, which use ordinary differential equation solving to dynamically predict the output of

a neural network. Our work is closely related to ILFO [114], DeepSloth [132] and GradAuto [229] in

that we attack the computational efficiency of networks. However, unlike these methods, we focus on

designing an adversarial patch-based attack that is universal and on vision transformers. We additionally

provide a potential defense for our attack. We use a patch that generalizes from train to test set and thus

we do not optimize per sample during inference. Our patch-based attack is especially suited for transformer

architectures [90].

4.1.3 Computation and Energy Attack

4.1.3.1 Threat Model:

We consider a scenario where the adversary has access to the victim’s trained deep model and modifies

its input such that the energy consumption and computational demand of the model is increased. The attack

is agnostic to model accuracy. To make the setting more practical, instead of perturbing the entire image,

we assume that the adversary can modify the input image by only pasting a patch [32, 262] on it and that

the patch is universal, that is, image independent. During inference, a pretrained patch is pasted on the test

image before propagating it through the network.
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In this paper, we attack three state-of-the-art efficient transformers. Since the attacker manipulates only

the input image and not the network parameters, the attacked model must have dynamic computation that

depends on the input image. As stated earlier, several recent works have developed such adaptive efficient

models and we believe that they will be more popular in the future due to the limits of non-adaptive efficiency

improvement.

4.1.3.2 Attack on Efficient Vision Transformers:

Universal Adversarial Patch: We use an adversarial patch to attack the computational efficiency of

transforms. The learned patch is universal, that is, a single patch is trained and is used during inference

on all test images. The patch generalizes across images but not across models. The patch optimization is

performed only on the train set. The patch is pasted on an image by replacing the image pixels using the

patch. We assume the patch location does not change from train to test. The patch pixels are initialized

using i.i.d. samples from a uniform distribution over [0,255]. During each training iteration, the patch is

pasted on the mini-batch samples and is updated to increase the computation of the attacked network. The

patch values are projected onto [0,255] and quantized to 256 uniform levels after each iteration. Note that

we use a pretrained network and do not update its parameters either in the training or in the evaluation of

our attack. During inference, the trained patch is pasted on the test images and the computational efficiency

of the network on the adversarial image is measured.

Here, we focus on three methods employing vision transformers for the task of image classification. All

these methods modify the computational flow of the network based on the input image for faster inference.

A pretrained model is used for the attack and is not modified during our adversarial patch training. We first

provide a brief background of each method before describing our attack.

Attacking A-ViT :

Background: A-ViT [338] adaptively prunes image tokens to achieve speed-up in inference with min-

imal loss in accuracy. For a given image, a dropped token will not be used again in the succeeding layers

of the network. Let x be the input image and {tl}1∶K be the corresponding K tokens at layer l. An input-

dependent halting score hl
k for a token k at layer l is calculated and the token is dropped at layer Nk where its

cumulative halting score exceeds a fixed threshold value 1−ϵ for the first time. The token is propagated until

the final layer if its score never exceeds the threshold. Instead of introducing a new parameter for hl
k, the

first dimension of each token is used to predict the halting score for the corresponding token. The network
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is trained to maximize the cumulative halting score at each layer and thus drop the tokens earlier. The loss,

termed ponder loss, is given by:

Lponder =
1
K

K

∑
k=1
(Nk + rk), rk = 1 −

Nk−1

∑
l=1

hl
k(4.1)

Additionally, A-ViT enforces a Gaussian prior on the expected halting scores of all tokens via KL-divergence

based distribution loss, Ldistr.. These loss terms are minimized along with the task-specific loss Ltask. Thus,

the overall training objective is L = Ltask + αdLdistr. + αpLponder where αd and αp are hyperparameters.

Attack: Here, we train the patch to increase the inference compute of a trained A-ViT model. Since we

are interested in the compute and not task-specific performance, we simply use −(αdLdistr. + αpLponder) as

our loss. It is possible to preserve (or hurt) the task performance by additionally using +Ltask (or −Ltask) in

the loss formulation.

Attacking AdaViT:

Background: To improve the inference efficiency of vision transformers, AdaViT [207] inserts and

trains a decision network before each transformer block to dynamically decide which patches, self-attention

heads, and transformer blocks to keep/activate throughout the backbone. The lth block’s decision network

consists of three linear layers with parameters Wl = W p
l ,W

h
l ,W

b
l which are then multiplied by each block’s

input Zl to get m.

(4.2) (mp
l ,m

h
l ,m

b
l ) = (W

p
l ,W

h
l ,W

b
l )Zl

The value m is then passed to sigmoid function to convert it to a probability value used to make the binary

decision of keep/discard. Gumbel-Softmax trick [200] is used to make this decision differentiable during

training. Let M be the keep/discard mask after applying Gumbel-Softmax on m. The loss on computation is

given by:

Lusage = (
1

Dp

Dp

∑
d=1

Mp
d − γp)2 + (

1
Dh

Dh

∑
d=1

Mh
d − γh)2 + (

1
Db

Db

∑
d=1

Mb
d − γb)2(4.3)
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where Dp, Dh, Db represent the number of total patches, heads, and blocks of the entire transformer, respec-

tively. γp, γh, γb denote the target computation budgets i.e. the percentage of patches/heads/blocks to keep.

The total loss is a combination of task loss (cross-entropy) and computation loss: L = Lce + Lusage.

Attack: To attack this model, we train the patch to maximize the computation loss Lusage. More specif-

ically, we set the computation-target γ values to 0 and negate the Lusage term in Eq. 4.3. As a result, the

patch is optimized to maximize the probability of keeping the corresponding patch (p), attention head (h),

and transformer block (b). We can also choose to attack the prediction performance by selectively including

or excluding the Lce term.

Attacking ATS:

Background: Given N tokens with the first one as the classification token, the transformer attention

matrix A is calculated by the following dot product:

A = Softmax (QKT /
√

d)where
√

d is a scaling coefficient, d is the dimension of tokens, Q, K and V are the

query, key and value matrices, respectively. The value A1, j denotes the attention of the classification token

to token j. ATS [81] assigns importance score S j for each token j by measuring how much the classification

token attends to it:

(4.4) S j =
A1, j × ∣∣V j∣∣
∑i=2 A1,i × ∣∣Vi∣∣

The importance scores are converted to probabilities and are used to sample tokens, where tokens with a

lower score have more of a chance of being dropped.

Attack: Since ATS uses inverse transform sampling, it results in fewer samples if the importance dis-

tribution is sharp. To maximize the computation in ATS, we aim to obtain a distribution of scores with high

entropy to maximize the number of retained tokens. Therefore, we optimize the patch so that the attention

of the classification token over other tokens is a uniform distribution using the following MSE loss:

(4.5) L =
N

∑
i=2
∣∣A1,i −

1
N
∣∣22

Note that one can optimize S to be uniform, but we found the above loss to be easier to optimize.

For a multi-head attention layer, we calculate the loss for each head and then sum the loss over all heads.

Moreover, ATS can be applied to any layer of a vision transformer. For a given model, we apply our loss at

all ATS layers and use a weighted summation for optimization.
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4.1.4 Defense

An obvious defense, although weak, will be to use non-dynamic efficient methods only, e.g., weight

pruning, where the reduction in compute is deterministic and does not depend on the input. However, most

such methods do not achieve high levels of computation efficiency since they do not take advantage of the

simplicity of images.

We adopt standard adversarial training as a better defense method for our attack. In the standard way, at

each iteration of training the model, one would load an image, attack it, and then use it with correct labels

in training the model. We cannot adopt this out-of-the-box since our attack generalizes across images and

is not dependent on a single image only. To do this, we maintain a set of adversarial patches, and at each

iteration sample one of them randomly (uniformly), and use it at the input while optimizing the original loss

of the efficient model to train a robust model. To adapt the set of adversarial patches to the model being

trained, we interrupt the training at every 20% mark of each epoch and optimize for a new patch to be added

to the set of patches. To limit the computational cost of training, we use only 500 iterations to optimize for

a new patch, which results in an attack with reasonable accuracy compared to our main results.

4.1.5 Experiments

4.1.5.1 Attack on Efficient Vision Transformers

Dataset: We evaluate the effectiveness of our attack on two datasets: ImageNet-1K [65] and CIFAR-

10 [166]. ImageNet-1K contains 1.3M images in the train set and 50K images in the validation set with

1000 total categories. CIFAR-10 has 50K images for training and 10K images for validation with 10 total

categories.

Metrics: We report Top-1 accuracy and average computation in terms of GFLOPs for both attacked and

unattacked models. Similar to Attack Success Rate in a standard adversarial attack, we introduce a metric:

Attack Success to quantify the efficacy of the attack. We define Attack Success as the number of FLOPs in-

creased by the attack divided by the number of FLOPs decreased by the efficient method. AttackS uccess =
(FLOPsattack−FLOPsmin)

(FLOPsmax−FLOPsmin)
where FLOPsmin is the compute of the efficient model and FLOPsmax is that of the

original inefficient model. Attack Success is thus capped at 100% while a negative value denotes a reduc-

tion in FLOPs. Note that our Attack Success metric illustrates the effectiveness of an attack in reversing the
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Table 4.1. Computation and Energy Attack on Effi-
cient ViTs: Comparison of the effect of our attack with
baselines: No Attack, Random Patch, targeted (TAP),
and non-targeted (NTAP) adversarial patches applied to
three input-dynamic computation efficient pre-trained
models of varying architectures. The maximum pos-
sible compute for a given architecture is provided in
bold. On A-ViT , we completely undo the efficiency
gains obtained by the efficient method through our at-
tack, achieving Attack Success of 100%.

Method Attack Model Top-1 Attack
GFLOPs Acc Success

ViT-Tiny 1.3 - -

A-ViT

No attack 0.87 71.4% -
Random Patch 0.87 70.8% -1%

TAP 0.85 0.1% -5%
NTAP 0.83 0.1% -10%

SlowFormer (ours) 1.3 4.7% 100%

ViT-Small 4.6 - -

A-ViT

No attack 3.7 78.8% -
Random Patch 3.7 78.4% -2%

TAP 3.6 0.1% -12%
NTAP 3.6 0.1% -7%

SlowFormer (ours) 4.6 2.3% 99%

ViT-Tiny 1.3 - -

ATS

No attack 0.84 70.3% -
Random Patch 0.83 69.8% -2%

TAP 0.76 0.1% -17%
NTAP 0.61 0.1% -50%

SlowFormer (ours) 1.0 1.2% 35%

ViT-Small 4.6 - -

ATS

No attack 3.1 79.2% -
Random Patch 3.1 78.6% -1%

TAP 3.0 0.1% -7%
NTAP 2.4 0.1% -47%

SlowFormer (ours) 4.0 1.0% 60%

ViT-Base 17.6 - -

ATS

No attack 12.6 81.3% -
Random Patch 12.5 81.2% -2%

TAP 12.0 0.1% -12%
NTAP 11.0 0.1% -32%

SlowFormer (ours) 15.4 0.2% 52%

ViT-Small 4.6 - -

AdaViT

No attack 2.25 77.3% -
Random Patch 2.20 76.9% -2%

TAP 2.28 0.1% 1%
NTAP 2.15 0.1% -4%

SlowFormer (ours) 3.2 0.4% 40%

Figure 4.2. Visualization of our Energy At-
tack on Vision Transformers: We visualize
the A-ViT-Small with and without our attack.
We use patch size of 32 for the attack (on the
top-left corner). We show pruned tokens at
layer 8 of A-ViT-Small. Our attack can re-
cover most of the pruned tokens, resulting in
increased computation and power consump-
tion. Note that although the patch is reason-
ably small and is in the corner of the view,
it can affect the whole computational flow
of the network. This is probably due to the
global attention mechanism in transformers.
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Table 4.2. Results on CIFAR10 dataset. We
report results on CIFAR10 dataset to show that
our attack is not specific to ImageNet alone.
CIFAR-10 is a small dataset compared to Ima-
geNet and thus results in an extremely efficient
A-ViT model. Our attack increases the FLOPs
from 0.11 to 0.58 which restores nearly 41% of
the original reduction in the FLOPs.

Method Model Top-1 Attack
FLOPs Acc Success

ViT-Tiny 1.26 95.9% -
A-ViT-Tiny 0.11 95.8% -
SlowFormer (ours) 0.58 60.2% 41%

ATS-Tiny 0.85 94.7% -
SlowFormer (ours) 0.99 24.7% 34.1%

Table 4.3. Accuracy controlled compute ad-
versarial attack: We attack the the efficiency of
A-ViT while either maintaining or destroying its
classification performance. We observe that our
attack can achieve a huge variation in task perfor-
mance without affecting the Attack Success. The
ability to attack the computation without affecting
the task performance might be crucial in some ap-
plications.

Attack Model Attack Top-1
GFLOPs Success Acc

ViT-Tiny 1.26 - -

No attack 0.87 - 71.4%
Acc agnostic 1.26 100% 4.7%
Preserve acc 1.23 92% 68.5%
Destroy acc 1.26 100% 0.1%

FLOPs reduction of a particular method.

Baselines: We propose three alternative approaches to SlowFormer (ours) to generate the patch.

Random Patch: A simple baseline is to generate a randomly initialized patch. We sample IID pixel values

from a uniform distribution between 0 and 255 to create the patch.

NTAP: We consider a standard adversarial patch that is trained to attack the model task performance instead

of compute. We use a non-targeted universal adversarial patch (NTAP) to attack the model. We train the

patch to fool the model by misclassifying the image it is pasted on. We use the negative of the cross-entropy

loss with the predicted and ground-truth labels as the loss to optimize the patch.

TAP: We train a universal targeted adversarial patch (TAP). The patch is optimized to classify all images in

the train set to a single fixed category. Similar to NTAP, the adversarial attack here is on task performance

and not computation. We experiment with ten randomly generated target category labels and report the av-

eraged metrics.

Implementation Details: We use PyTorch [236] for all experiments. Unless specified, we use a patch of

size 64× 64, train and test on 224× 224 images, and we paste the patch on the top-left corner. Note that our

patch occupies just 8% of the total area of an input image. We use AdamW [197] optimizer to optimize the

patches and use 4 NVIDIA RTX 3090 GPUs for each experiment. We use varying batch sizes and learning

rates for each of the computation-efficient methods.
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Table 4.4. Effect of patch size: Analysis of the effect of adversarial patch size on the attack success rate
on A-ViT. Our attach is reasonably successful even using a small patch size (32 × 32), which is only 2%
of the image area. Interestingly, a small patch on the corner of the view affects the computational flow of
the entire transformer model. This might be due to the global attention mechanism in transformers.

Patch Size Model Top-1 Attack
(Area) GFLOPs Accuracy Success

ViT-Tiny 1.26 - -
A-ViT-Tiny 0.87 71.4% -

64 (8%) 1.26 4.7% 100%
48 (5%) 1.26 1.8% 99%
32 (2%) 1.22 17.4% 90%
16 (0.5%) 0.98 63.3% 27%

ViT-Small 4.6 - -
A-ViT-Small 3.7 78.8% -

64 (8%) 4.6 2.3% 99%
48 (5%) 4.6 5.1% 98%
32 (2%) 4.4 39.5% 78%
16 (0.5%) 3.8 78.2% 16%

ATS Details: As in ATS [81], we replace layers 3 through 9 of ViT networks with the ATS block and set

the maximum limit for the number of tokens sampled to 197 for each layer. We train the patch for 2 epochs

with a learning rate of 0.4 for ViT-Tiny and lr = 0.2 for ViT-Base and ViT-Small. We use a batch size of

1024 and different loss coefficients for each layer of ATS. For DeiT-Tiny we use

[1.0,0.2,0.2,0.2,0.01,0.01,0.01], for DeiT-Small we use [1.0,0.2,0.05,0.01,0.005,0.005,0.005], and for

DeiT-Base we use [2.0,0.1,0.02,0.01,0.005,0.005,0.005]. The weights are vastly different at initial and

final layers to account for the difference in loss magnitudes across layers.

A-ViT Details: When attacking A-VIT [338], the patches are optimized for one epoch with a learning rate

of 0.2 and a batch size of 512 (128× 4GPUs) using AdamW [197] optimizer. We optimize the patches for 4

epochs for patch length 32 and below. For CIFAR-10 experiments, the images are resized from 32 × 32 to

256 × 256 and a 224 × 224 crop is used as the input. For the training of adversarial defense, we generate 5

patches per epoch of adversarial training and limit the number of iterations for patch generation to 500. The

learning rate for patch optimization is increased to 0.8 for faster convergence.

AdaViT Details: For AdaViT [207], we first freeze the weights and use a learning rate of 0.2 and a batch

size of 128 with 4 GPUs for patch optimization. We use AdamW [197] optimizer with no decay and train for

2 epochs with a patch size of 64 x 64. We train on the ImageNet-1k train dataset and evaluate it on the test set.
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Table 4.5. Attack with adversarial perturbation on ImageNet. The efficient methods are also suscep-
tible universal perturbation based attacks. We use an ℓ∞ bound on the perturbation.

Method Epsilon Attack Model Top-1 Attack
(/255.) GFLOPs Accuracy Success

ViT-Tiny 1.3 - -
- No attack 0.87 71.4% -

A-ViT 16 SlowFormer 1.15 6.1% 73%
32 SlowFormer 1.25 0.5% 98.4%

- No attack 0.84 70.3% -
ATS 16 SlowFormer 0.98 15.6% 30.4%

32 SlowFormer 1.04 0.8% 43.5%

ViT-Small 4.6 - -
- No attack 3.7 78.8% -

A-ViT 16 SlowFormer 4.48 20% 86.4%
32 SlowFormer 4.59 1% 98.1%

- No attack 3.1 79.2% -
ATS 16 SlowFormer 3.6 31.0% 33.3%

32 SlowFormer 3.8 3.6% 46.7%

- No attack 2.25 77.3% -
AdaVit 16 SlowFormer 3.0 26.1% 31.9%

32 SlowFormer 3.2 2.8% 40.4%

Results. The results of our attack, SlowFormer , on various methods on ImageNet dataset are shown in

table 4.1. In A-ViT, we successfully recover 100% of the computation reduced by A-ViT . Our attack has an

Attack Success of 60% on ATS and 40% on AdaViT with ViT-Small. A random patch attack has little effect

on both the accuracy and computation of the method. Both standard adversarial attack baselines, TAP and

NTAP, reduce the accuracy to nearly 0%. Interestingly, these patches further decrease the computation of

the efficient model being attacked. This might be because of the increased importance of adversarial patch

tokens to the task and thus reduced importance of other tokens. Targeted patch (TAP) has a significant re-

duction in FLOPs on the ATS method. Since the token dropping in ATS relies on the distribution of attention

values of classification tokens, a sharper distribution due to the increased importance of a token can result in

a reduction in computation. The computation increase with SlowFormer for AdaViT is comparatively low.

To investigate, we ran a further experiment using a patch size of 224 × 224 (entire image size) to find the

maximum possible computation for an image. This resulted in 4.18 GFLOPs on the ImageNet-1K valida-

tion set, which is markedly lower than the limit of 4.6. Using this as an upper-bound of GFLOPs increase,

SlowFormer achieves a 49% Attack Success.

We report the results on CIFAR-10 dataset in Table B.10. The efficient model (A-ViT ) drastically

reduces the computation from 1.26 GFLOPs to 0.11 GFLOPs. Most of the tokens are dropped as early as
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layer two in the efficient model. SlowFormer is able to effectively attack even in such extreme scenarios,

achieving an Attack Success of 40% and increasing the mean depth of tokens from nearly one to five.

SlowFormer is similarly effective on ATS with an Attack Success of 34%.

We additionally visualize the effectiveness of our attack in Figure C.1. The un-attacked efficient method

retains only highly relevant tokens at the latter layers of the network. However, our attack results in nearly

the entire image being passed through all layers of the model for all inputs. In Fig. 4.3, we visualize the

optimized patches for each of the three efficient methods.

4.1.5.2 Ablations:

We perform all ablations on the A-ViT approach using their pretrained ViT-Tiny architecture model.

Accuracy controlled compute adversarial attack: As seen in Table 4.1, our attack can not only increase

the computation, but also reduce the model accuracy. This can be desirable or hurtful based on the attacker’s

goals. A low-accuracy model might be an added benefit, similar to regular adversaries, but might also lead

to the victim detecting the attack. We show that it is possible to attack the computation of the model while

either preserving or destroying the task performance by additionally employing a task loss in the patch

optimization. Table 4.3 indicates that the accuracy can be significantly modified while maintaining a high

Attack Success.

Effect of patch size: We vary the patch size from 64 × 64 to 16 × 16 (just a single token) and report the

results in Table 4.4. Interestingly, our attack with ViT-Small has a 73% Attack Success with a 32× 32 patch

size, which occupies only 2% of the input image area.

Effect of patch location: We vary the location of the patch to study its effect on the Attack Success of the

model. We randomly sample a location in the image for where we paste the patch on. We perform five such

experiments and observe an Attack Success of 100% for all patch locations.

Perturbation attack: While we focus on patch based attacks in this paper, efficient transformers are also

susceptible to perturbation based attacks (table 4.5). In perturbation attacks, all pixels in the image can be

modified, but with an upper bound on the ℓ∞ norm of the perturbation.

4.1.5.3 Adversarial training based defense

Our simple defense that is adopted from standard adversarial training is explained in Section 4.1.4.

The results for defending against attacking A-ViT are shown in Table 4.6. The original A-ViT reduces the
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Table 4.6. Defense using adversarial training: We
propose and show the impact of our defense for our
adversarial attack on A-ViT. Our defense is simply
maintaining a set of universal patches and training
the model to be robust to a random sample of those at
each iteration. The defense reduces the computation
to some extent (1.26 to 1.01), but is still far from the
unattacked model (0.87).

Method GFLOPs Top-1 Attack
Acc. Success

No attack 0.87 71.4 -
SlowFormer 1.26 4.7% 100%
Adv. Defense +
SlowFormer

1.01 65.8% 34%

Figure 4.3. Visualization of optimized
patch: We show the learned universal patches
for each of the three efficient methods.

GFLOPs from 1.26 to 0.87, our attack increases it back to 1.26 with 100% attack success. The proposed

defense reduces the GFLOPs to 1.01 which is still higher than the original 0.87. We hope our paper en-

courages the community to develop better defense methods to reduce the vulnerability of efficient vision

transformers.

4.1.6 Conclusion

Recently, we have seen efficient vision transformer models in which the computation is adaptively mod-

ified based on the input. We argue that this is an important research direction and that there will be more

progress in this direction in the future. However, we show that the current methods are vulnerable to a

universal adversarial patch that increases the computation and thus power consumption at inference time.

Our experiments show promising results for three SOTA efficient transformer models, where a small patch

that is optimized on the training data can increase the computation to the maximum possible level in the

testing data in some settings. We also propose a defense that reduces the effectiveness of our attack. We

hope that our paper will encourage the community to study such attacks and develop better defense methods

on various machine learning methods, including generative models, that reduce the computation adaptively

with the input.

80



CHAPTER 5

Discussion

In this work, I have tried to develop compute and memory efficient solutions to diverse computer vision

tasks. The developed solutions lead to reduced training and inference times, storage memory and hardware

requirements, making them easier and more accessible to use. In self-supervised representation learning

(SSL) from images, we proposed a novel training algorithm that requires lesser computation per training

iteration while also converging faster. Knowledge from such SSL models can also be distilled to smaller

models using our simple regression based technique proposed in SimReg. On a more specific setting of

Gaussian splatting for novel view synthesis, we show that it is possible to vastly compress the models with-

out greatly affecting their performance. This significantly reduces the bottleneck in widespread adoption

of Gaussian splat models. Keeping pace with the advances in foundation models, our work on parameter

efficient fine-tuning (PEFT) also reduces the memory requirement for task-specific parameters. This work

will potentially have a bigger impact as the market for custom solutions using large vision and language

models rapidly increases in the near future. Seemingly contrary to these directions, our work analysing the

robustness of these models aims to attack their efficiency. We find that adaptive inference methods, a class

of compute efficient approaches, are susceptible to adversarial attacks, highlighting the need for more such

studies and development of defenses against such attacks.

Several of the above mentioned works can be extended or adapted to novel settings and tasks. Here are

some potential avenues for future research along these directions.

Distillation for 3DGS model compression: We looked at compression of 3DGS models in our work

CompGS. CompGS focused on training a compressed version of 3DGS from scratch. It is possible to

pretrain a non-compressed version first and incorporate its knowledge in training the compressed one. This

is aligned with the ideas of knowledge distillation from a stronger teacher model to a weaker student model.

The novel view synthesis task is especially suited for such distillation since the scene remains the same

between the train and test settings. Novel view points in addition to the training data can easily be generated

by sampling the view points and rendering the teacher model from the corresponding views.
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Continual learning for vision models: Continual learning (CL) involves iteratively improving a model

as and when new data is obtained. It could also be seen as a variant of fine-tuning, albeit with the assump-

tion that the initially observed data is no longer available. Thus, methods and ideas from the rich fine-tuning

literature could be borrowed and adapted to work effectively in the continual learning setting. Specifically,

similar to our work on fine-tuning, it is interesting to look at parameter efficient solutions for CL. Traditional

solutions have relied on a single common network as more data and/or tasks are added. However, PEFT can

be a simple and clever alternative to limit the growth in model size but improve performance. With the use

of task-specific parameters, it could also be trivially easy to overcome the negative backward effects in CL

where training on newer data / tasks results in catastrophic forgetting on the earlier tasks.

Compute adversarial attack on LLMs and VLMs: In SlowFormer, we adversarially attacked the

efficiency of vision transformer models. It is possible that a similar attack can be used to render large

language models (LLMs) and vision language models (VLMs) inefficient. In vision language models, the

input image could be attacked similar to SlowFormer, with the additional aim of slowing down the language

component. While adaptive input methods are not as prevalent in language models as compared to vision,

there are several potential ways to decrease the model’s inference efficiency. In language generation tasks,

the attack desideratum could be to increase the length of the generated text. Recent models like OpenAI-o1

include an additional step of thinking about the initial answer and modifying it to provide the final output.

Such models could be forced to think longer.
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APPENDIX A

Compute Efficiency in Computer Vision in Training and Inference

A.1 Constrained Mean Shift for Representation Learning

Here, we provide additional results and analysis on self-supervised (section A.1.1), cross modal con-

straint (section A.1.2), semi-supervised (section A.1.3) and supervised (section A.1.4) settings. Additional

results include analysis of retrieved far neighbors (Figs. A.1 and A.2) and ablations to justify various design

choices (tables A.5, A.6, A.7, A.8, A.10, A.12, A.13). More details on implementation (section A.1.5) and

compute calculation (Eq. A.1, table A.11) are provided. We also provide the code as part of the supplemen-

tary materials.

A.1.1 Results on Self-supervised Setting

A.1.1.1 Using far neighbors in unconstrained MSF:

In CMSFself, we use augmented images from previous epoch to obtain distant neighbors. A trivial way

to sample farther neighbors is to just increase the number of neighbors k in the original (unconstrained)

MSF [162] method. Here we train MSF with k = 500 to compare with our CMSFself. We train all models

for 80 epochs. Settings are similar to our self-supervised settings in the main text. For fair comparison, we

use memory-bank of size 256k for MSF while we use 128K for CMSFself. Results are in Table ??. While

increasing k in MSF helps to sample far NNs, it degrades the accuracy. We hypothesize that this happens

due to reducing purity of top-k in unconstrained MSF with increasing k (also shown in Fig. 5 of the main

submission). This experiment shows that it is not trivial to to sample far NNs with good purity.

TableA.1. Using far neighbors in unconstrained MSF [162]: Using far NNs by trivially increasing k in
MSF baseline degrades the accuracy. This is due to the low purity of far NNs in MSF when no constraint
is utilized. However, CMSFself achieves high accuracy while using distant NNs.

MSF [162] MSF [162] CMSFself
Top-k = 500 Top-k = 5 Top-k = k′ = 5

NN 35.8 49.7 51.4
20-NN 40.2 54.0 55.5
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A.1.1.2 Effect of number of neighbors k

CMSFself uses top-k NNs as part of loss calculation. Here we study the effect of k in CMSFself per-

formance. We set k′ = k in all models. Note that as described in Line 350 of the main submission, k′ is

the number of NNs retrieved from the second memory bank M′. We train all models for 80 epochs. All

settings are similar to that of CMSFself in main text. Results are shown in Table ??. Higher values of k and

k′ degrade model performance. We thus use k′ = k = 5 in all our main experiments.

Table A.2. Effect of k in top-k NNs sampling within M: We set k = k′ in all models and varied k. We
use memory bank of size 256k. Increasing k degrades the accuracy of the model.

k′=k=5 k′=k=10 k′=k=20 k′=k=50

NN 51.4 51.3 51.1 49.5
20-NN 55.5 55.3 55.3 53.8

we experimented with ResNet-18 and ResNet-101 networks. ResNet-101 is trained for 100 epochs.

CMSF outperforms MSF by 1.9 points (51.7% vs 49.8%) with ResNet-18 and 0.8% points (71.9% vs 71.1%)

with ResNet-101.

A.1.1.3 Results with Different Architectures

In addition to the ResNet-50 architecture, we experiment with a smaller and a larger backbone architec-

ture. We consider ResNet-18 and ResNet-101 networks. The results are shown in table A.3. The proposed

CMSFself improves over MSF across different architectures. Note that the networks are trained only for 100

epochs on ResNet-101.

A.1.2 Cross-modal Constraint

Fig. 6 of main submission showed that proposed CMSFsup is more robust to noisy labels. Here, we

explore another such noisy constraint: a pre-trained SSL model from another modality. We consider an un-

labeled video dataset and use the RGB and optical flow inputs as the two different modalities. We first train

Table A.3. Results with different backbone architectures: We compare performance of our method
with that of CMSF with ResNet architectures of different sizes. We observe that CMSF consistently
outperforms MSF. * models were trained for 100 epochs instead of 200.

Method ResNet-18 ResNet-50 ResNet-101*

MSF [162] 49.8 72.2 71.1
CMSFself 51.7 73.0 71.9
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two SSL models on the RGB and Flow modalities separately using InfoNCE method [113, 303]. Then we

continue the training on one modality while freezing the other modality and using it as a constraint. In train-

ing the flow network using RGB network as constraint, we sample k′ nearest neighbors in RGB’s memory

bank and then search for top-k nearest neighbors among those samples in the memory bank corresponding

to Flow.

Implementation Details. Following [113], we use split-1 of UCF-101 [277] (13k videos) as the unlabeled

dataset. We use similar augmentation and pre-processing as [113] and calculate optical-flow using unsuper-

vised TV-L1 [345] algorithm. For cross-modal experiments, we use S3D [331] architecture with the input

size of 128×128 pixels. We initialize from the pretrained weights of InfoNCE (400-epoch) released by [113].

We use following settings for our method: memory bank of size 8192, n = 10, k = 5, batch size 128, weight

decay 1e − 5, initial lr of 0.001, and learning rate decay by factor of 10 at epoch 80. We train each modality

for additional 100 epochs using PyTorch Adam optimizer. For a fair comparison, we run CoCLR using their

official code by initializing it from the same model as ours. We use the code from [113] for linear evaluation.

Results: The results are shown in Table A.4. We report top-1 accuracy for linear classification and recall@1

for retrieval on the extracted features of frozen networks. All experiments use spatio-temporal 3D data

either in RGB or flow format. At the end of 3 stages of training on Flow modality, our method outperforms

CoCLR [113] baseline and MSF with 2 stages.

A.1.3 Results on Semi-supervised Setting

Unless specified, we use the ImageNet100 dataset for all the ablations on the semi-supervised setting

for faster experimentation.

A.1.3.1 Role of Confidence Threshold in Pseudo-labeling

We use a MLP classification head to predict pseudo-labels for the unlabeled set. As shown in Fig. A.1,

the accuracy of the classifier is low in the initial stages and improves as training progresses. Using con-

straints from incorrectly labeled samples might affect the learning process. Thus, we use confidence (class

probabilities) based thresholding to select the samples to be used for pseudo-labeling. Only those samples

with confidence higher than the threshold are assigned a pseudo-label. Fig. A.1 shows that the accuracy of

the classifier on the confident samples remains high throughout training, limiting the number of incorrect
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Table A.4. Cross-modal constraint: We initialize all models using an InfoNCE pre-trained model. In
CMSF-cross modal, one of the modalities is used to constrain and train the other. Superscript indicate
the constraint modality, subscript indicate the training modality. For example, in CMSFFlow

RGB, we continue
training CMSF on RGB modality while using frozen pretrained Flow model as the constraint. Note that
CoCLR [113] also uses another modality as a constraint in the form of contrastive learning. We continue
training InfoNCE SSL model for 200 epochs using MSF [162] for a fair comparison. We use S3D [331]
architecture for all models. Models with the final round of training on Flow modality are highlighted with
yellow and those on RGB are highlighted with blue. All rows with * contain results for the same model.
Results are repeated for easier understanding of the table.

Model Final Epochs R@1 Linear
modality

InforNCERGB RGB 400 35.5 47.9
InforNCERGB→MSFRGB RGB 400+200 39.6 50.8

InforNCEFlow∗ Flow 400 45.3 66.1
InforNCEFlow→MSFFlow Flow 400+200 47.3 64.7

InforNCEFlow∗ Flow 400 45.3 66.1
InforNCEFlow→ CoCLRFlow

RGB RGB 400+100 49.8 61.0
InforNCEFlow→ CoCLRFlow

RGB→ CoCLRRGB
Flow Flow 400+100+100 50.0 67.3

InforNCEFlow∗ Flow 400 45.3 66.1
InforNCEFlow→ CMSFFlow

RGB RGB 400+100 45.8 58.1
InforNCEFlow→ CMSFFlow

RGB→ CMSFRGB
Flow Flow 400+100+100 54.1 71.2

pseudo-labels. Results for threshold value (t) selection are shown in table A.5. As expected, t = 0 (i.e,

no thresholding) performs poorly compared to higher threshold values. Pseudo-labeling accuracy increases

with increasing value of t and the best result is observed for t = 0.9. While further increase in t could result in

higher pseudo-labeling accuracy, it would also mean that fewer samples are assigned pseudo-labels. Thus,

we use t = 0.9 in all our experiments on ImageNet100. Since ImageNet-1k has ten times more classes, we

reduce the value to 0.85 for all our experiments on ImageNet-1k.
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Table A.5. Role of confidence threshold in pseudo-labeling (ImageNet100 results): Using confidence
based threshold to pseudo-label helps improve performance by eliminating noisy pseudo-labels. A higher
threshold value results in higher pseudo-label accuracy but also limits the number of samples that partic-
ipate in constraint selection. We set the value of t to 0.9 on the ImageNet100 dataset and to 0.85 on the
more diverse (1000 classes) ImageNet-1k dataset.

Threshold (t) 1-NN 20-NN Top-1

0 67.9 71.2 76.2
0.7 67.9 72.3 77.1
0.9 69.0 72.7 77.5

Figure A.1. Unconstrained NN accuracy in semi-supervised: For analysis, we track the pseudo-
labeling accuracy and accuracy of top-k neighbors chosen with and w/o applying the pseudo-label based
constraint during training. The more accurate constrained NNs provide a better training signal. Pseudo-
label accuracy on confident samples remains high throughout training, decreasing slightly as more confi-
dent samples are added.

A.1.3.2 Effect of Caching on Pseudo-label Training

In addition to optimizing the query encoder network using CMSF loss, we train the pseudo-label clas-

sifier head at the end of each epoch of query encoder training. Each round of pseudo-label training entails

40 epochs of classifier head training on the supervised subset of the data (10%). While the time required

for backward pass is minimal since only the MLP head is updated, forward pass through the encoder adds

significant computational overhead. We thus employ encoder feature caching to overcome this issue. We
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Table A.6. Feature caching for pseudo-label classifier training (ImageNet100 results): We experi-
ment two different caching schemes for pseudo-label training - offline and online. In offline caching, the
features are calculated once at the beginning each round of pseudo-label training while in the online set-
ting, the features are cached for each mini-batch during query encoder training. Since both approaches
have similar performance, we use the online version since it has minimal computational overhead.

Method 1-NN 20-NN Top-1

Offline Caching 67.9 71.2 76.2
Online Caching 66.5 71.9 76.0

experiment with two caching settings - offline caching and online caching. In offline caching, encoder fea-

tures for all the supervised samples are calculated once at the beginning of pseudo-label training and kept

fixed for the remaining 39 epochs. In online caching, encoder features for the supervised samples are cached

for each mini-batch during the query network training. Similar to offline caching, these features are then

fixed and used throughout the 40 epochs of pseudo-labeling network training. Offline technique requires one

epoch of forward pass through the encoder, but has the advantage of using the most recent model parameters

for feature calculation. Online caching results in features for different images being calculated using differ-

ent encoder parameters. We observe that both these settings perform similarly on the ImageNet100 dataset

(refer table A.6). We thus use the online version in all our experiments since it has almost no overhead.

With this setting, pseudo-label training increases the training time of each epoch approximately by just 40

seconds.

A.1.3.3 Pseudo-label Classifier Selection

The classifier used to generate pseudo-labels plays a crucial role in obtaining effective constraint sets for

CMSFsemi. We experiment with two classification techniques - k-NN classifier and MLP classifier trained

with cross-entropy loss. Results on ImageNet100 dataset are shown in table A.7. k-NN classifier has lower

pseudo-labeling accuracy and thus results in poorer performance. We additionally experiment with linear,

two and three layer architectures for the MLP classifier head. As shown in table A.7, multi-layer head sig-

nificantly outperform the linear classifier. Since there is minimal difference in performance of two and three

layer MLPs, we use a two layer MLP head in all our experiments.
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Table A.7. Pseudo-label classifier selection (ImageNet100 results): We experiment with different clas-
sifier methods and architectures for pseudo-label prediction. Linear layer or multi-layer perceptron (MLP)
heads trained using cross-entropy loss on the supervised examples outperform a k-NN classifier. MLP
classifiers achieve higher accuracy on the pseudo-labeling task on both the train and test sets. We use a
two layer MLP head based classifier in all our experiments.

Pseudo-label Classifier 1-NN 20-NN Top-1

k-NN Classifier 64.9 69.5 74.7
Linear Classifier 65.6 70.0 75.5
2 Layer MLP Head 67.9 71.2 76.2
3 Layer MLP Head 67.1 71.0 76.1

Table A.8. Role of network fine-tuning on classification performance (ImageNet-1k results): We
evaluate the trained models using the linear evaluation technique commonly employed for evaluating self-
supervised approaches and entire network fine-tuning as performed in semi-supervised methods. Both
the methods use 10% of the dataset as supervision. We observe an increase in classification performance
when both the encoder and MLP classifier are fine-tuned.

Fine-tune Method Top-1

Linear layer training 76.5
Full network fine-tune 76.9

A.1.3.4 Fine-tuning without Pseudo-labels

Since we do not explicitly optimizer our encoder networks on the label classification task in the pre-

training stage, we perform two-stage fine-tuning. We initially fine-tune the pretrained model on only the

supervised samples and use the fine-tuned model to obtain pseudo-labels for the unsupervised ones. The

combined data is then used to fine-tune the network again. In table A.8, we present results with just a single

round of fine-tuning with the 10% supervised samples on ImageNet-1k. Two rounds of fine-tuning provides

a small improvement in performance over the single-stage version.

A.1.4 Results on Supervised Setting

A.1.4.1 Coarse-grained ImageNet

CMSFsup top-k groups together only top-k neighbors and thus can help in preserving the latent structure

of the data compared to top-all. To verify this, we consider a dataset with coarse-grained labels where this

difference is pronounced. ImageNet dataset was constructed using the WordNet hierarchy. Consider the

subtree of WordNet that contains all the 1000 categories from ImageNet-1k as the leaf nodes. To obtain

a coarse-grained version, we merge each category in the leaf node to its parent node. After merging, we
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Table A.9. Supervised learning on coarse grained ImageNet: We train on the coarse grained version of
ImageNet (93 super categories) and perform linear evaluation on the original ImageNet-1k validation set
with fine-grained labels (1000 categories). CMSFsup top-10 outperforms all other variants and baselines.

Train Dataset ImageNet-1k Validation Set
Xent SupCon CMSFsup CMSFsup CMSFsup

top-all top-1000 top-10

ImageNet-1k 77.2 77.5 75.7 - 76.4
ImageNet-coarse 61.4 58.7 67.0 71.0 74.2

further ensure that no two of the newly obtained super-classes are in the same path in the graph by merging

the descendant into the ancestor class. The total number of classes is thus reduced from 1000 in ImageNet-

1k to 93 in our ImageNet-coarse. We train CMSFselfand the baseline approaches in a supervised manner

using the coarse labels and then evaluate on the fine-grained (i.e., original) labels on ImageNet-1k validation

set. The training settings remain same as that of CMSFsup in Sec.3.2 of main submission.

In Table A.9 we compare the top-all, top-1000 and top-k variants on the coarse grained version of

ImageNet. We consider the top-1000 variant to limit the effect of dataset imbalance introduced due to the

merging of classes. CMSFsup top-k sees a minor drop in performance compared to training on ImageNet-1k.

However, methods in which most or all samples in a class are explicitly brought closer - CMSFsup top-all

and top-1000, cross-entropy and supervised contrastive - see a huge drop in accuracy.

A.1.4.2 Ablations

We explore different design choices and parameters of our method and baselines. We add the techniques

used for our methods to the baselines to isolate the effect of different losses. The results are reported in Table

A.10. Training and evaluation details are the same as in the main submission.

A.1.5 Implementation Details

A.1.5.1 Transfer Learning

We use the LBFGS optimizer (max iter=20, and history size=10) along with the Optuna library [11] in

the Ray hyperparameter tuning framework [189]. Each dataset gets a budget of 200 trials to pick the best

parameters on validation set. The final accuracy is reported on a held-out test set by training the model on the

train+val split using the best hyperparameters. The hyperparameters and their search spaces (in loguniform)

are as follows: iterations ∈ [0,103], lr ∈ [10−6,1], and weight decay ∈ [10−9,1]. We also show that we

can reproduce the transfer results for BYOL [107] and SimCLR [48] with our framework. The features are
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Table A.10. Ablations of baselines and CMSFsup: All experiments use 200 epochs if not mentioned
and use ImageNet-1k dataset. (a) More epochs does not improve transfer accuracy for Xent. Thus, the
model available from PyTorch [9] (last row) has the best transfer accuracy; (b) We add components of
our method to improve SupCon baseline. The baseline implementation of SupCon uses std. aug and 16k
memory size and it does not include the target embedding u in the positive set. (c) We find that our method
is not very sensitive to the size of memory bank or top-k in supervised settings; (d) Interestingly, excluding
the target embedding u from C does not hurts the results. Note that when we do not include the target, the
nearest neighbors are still chosen based on the distance to the target, so they will be close to the target.

Method Mean Linear
Trans IN-1k

(a) Xent
lr=0.05, cos, epochs=200, strong aug. 71.5 77.2
lr=0.05, cos, epochs=200, std. aug. 71.0 77.3
lr=0.10, cos, epochs=200, strong aug. 72.3 77.1
lr=0.05, cos, epochs=90, std. aug. 72.4 76.8
lr=0.10, cos, epochs=90, std. aug. 74.0 76.7
lr=0.10, step, epochs=90, std. aug. 74.9 76.2

(b) SupCon
Base SupCon 77.2 77.9
+ change to strong aug. 77.9 77.4
+ add target to positive set 77.8 77.4
+ change to weak/strong aug. 77.8 77.2
+ increase mem size to 128k 78.4 77.5

(c) CMSFsup
top-1 (BYOL-asym) 74.3 69.3
mem=128k, top-2 78.4 76.2
mem=128k, top-10 80.1 76.4
mem=128k, top-20 79.9 76.3
mem=128k, top-all 80.1 75.7
mem=512k, top-10 79.9 76.2
mem=512k, top-20 80.1 76.3

(d) CMSFsup
target in top-10 80.1 76.4
target not in top-10 80.3 76.4

extracted with the following pre-processing for all datasets: resize shorter side to 256, take a center crop of

size 224, and normalize with ImageNet statistics. No training time augmentation was used.

A.1.5.2 Supervised Setting

Implementation Details of Baselines
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Table A.11. ResNet50 backbone training FLOPs calculation:We provide the number of forward and
backward passes per image (including multi-crops) and the total such passes for the entire training stage.
Mean Shift and the proposed constrained mean shift methods have the least compute requirement among
all approaches. Eq. A.1 provides the formula to calculate the total number of passes and FLOPs. In PAWS,
sup refers to the size of the support set in the mini-batch.

Method Unlabeled Labeled Mini- Iters Epochs Total FLOPs
Fwd Bwd BS Fwd Bwd BS Batch per Pass

epoch (×108) (×1018)

Mean Shift [162] 2 1 256 768 5004 200 7.7 4
BYOL [107] 4 2 4096 24576 312 1000 76.7 40
SwAV [38] 3.1 3.1 4096 25395 312 800 63.4 37
SimCLRv2 [49] 2 2 4096 16384 312 800 40.9 16
UDA† [330] 2 1 15360 1 1 512 47104 40000 18.8 10
FixMatch† [276] 2 1 5120 1 1 1024 17408 250 300 13.1 70
MPL† [241] 3 2 2048 2 2 128 10752 500000 53.8 30
PAWS (sup=6720) [14] 3.1 3.1 4096 1 1 6720 38835 312 300 36.6 21
PAWS (sup=1680) [14] 3.1 3.1 256 1 1 1680 4947 5004 100 24.8 15
PAWS (sup=400) [14] 3.1 3.1 256 1 1 400 2387 5004 100 12.0 7
CMSFsemi-basic 2 1 256 768 5004 200 7.7 4
CMSFsemi 2 1 256 768 5004 200 7.7 4
CMSFsemi-mix prec. 2 1 768 2304 1668 200 7.7 4

Table A.12. Noisy supervised setting on ImageNet-100: Our method is more robust to noisy annotation
compared to Xent and SupCon. The top-all variant suffers greater degradation compared to top-10 since
all images from a single category are not guaranteed to be semantically related in the noisy setting.

Method Noise Food CIFAR CIFAR SUN Cars Air- DTD Pets Calt. Flwr Mean Linear
101 10 100 397 196 craft 101 102 Trans IN-100

Xent 0% 53.6 81.9 61.1 37.8 25.7 29.5 56.9 69.7 70.2 82.3 56.9 85.7
SupCon 0% 61.5 88.7 69.0 49.1 51.6 48.2 65.4 81.0 87.0 89.8 69.1 86.9
CMSFsup top-all 0% 61.6 88.2 68.5 49.9 54.6 52.7 64.7 82.2 89.6 89.1 70.1 84.9
CMSFsup top-10 0% 62.6 86.8 66.2 50.5 54.7 51.0 64.6 82.4 88.5 90.4 69.8 85.0

Xent 5% 46.5 81.1 58.1 35.8 27.5 36.0 58.7 67.5 73.3 77.0 56.1 81.5
SupCon 5% 60.0 87.1 66.4 48.2 52.1 47.8 65.1 80.8 85.7 89.3 68.3 85.7
CMSFsup top-all 5% 60.3 87.5 66.4 49.1 55.5 53.0 64.8 80.9 87.3 89.9 69.5 84.4
CMSFsup top-10 5% 61.6 86.8 67.4 49.6 55.8 51.2 63.4 81.5 86.7 90.6 69.5 84.7

Xent 10% 44.1 79.5 56.1 32.4 26.1 34.5 56.1 69.7 72.5 75.1 54.6 79.6
SupCon 10% 58.8 85.8 66.4 47.0 50.6 47.7 65.3 79.8 85.0 89.1 67.6 84.0
CMSFsup top-all 10% 59.4 86.4 66.0 48.8 55.0 51.4 64.7 80.1 87.8 89.0 68.9 83.1
CMSFsup top-10 10% 60.9 87.2 66.9 49.4 54.2 51.4 65.5 80.6 88.5 90.0 69.5 83.8

Xent 25% 49.0 77.2 54.5 30.6 25.9 30.7 53.1 66.6 64.1 77.8 53.0 75.2
SupCon 25% 55.6 84.9 63.4 43.1 43.9 43.7 62.9 74.3 82.1 86.8 64.1 81.1
CMSFsup top-all 25% 56.4 85.7 64.2 46.0 53.6 49.6 62.7 74.2 85.2 87.4 66.5 78.8
CMSFsup top-10 25% 58.9 85.2 64.9 47.8 55.0 50.6 64.0 80.0 86.3 89.7 68.2 81.8

Xent 50% 44.4 72.3 51.3 31.1 21.4 24.9 46.0 57.4 56.0 73.0 47.8 67.8
SupCon 50% 30.8 64.9 38.9 24.2 13.6 20.5 45.5 55.2 60.1 59.2 41.3 69.0
CMSFsup top-all 50% 44.7 79.3 54.9 35.2 35.7 41.2 54.9 54.6 75.3 75.1 55.1 61.6
CMSFsup top-10 50% 58.7 85.7 64.2 47.5 51.6 50.5 62.0 77.3 86.8 70.1 65.4 80.1

SupCon: The MLP architecture for SupCon baseline is: linear (2048x2048), batch norm, ReLU, and linear

(2048x128). To optimize the SupCon baseline, following [152], we use the first 10 epochs for learning-rate

warmup. For both SupCon and ProtoNW, the temperature is 0.1.
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Table A.13. Transfer dataset details: Train, val, and test splits of the transfer datasets are listed in this
table. Test split: We follow the details in [162]. For Aircraft, DTD, and Flowers datasets, we use the
provided test sets. For Sun397, Cars, CIFAR-10, CIFAR-100, Food101, and Pets datasets, we use the
provided val set as the hold-out test set. For Caltech-101, 30 random images per category are used as the
hold-out test set. Val split: For DTD and Flowers, we use the provided val sets. For other datasets, the val
set is randomly sampled from the train set. For transfer setup, to be close to BYOL [107], the following
val set splitting strategies have been used for each dataset: Aircraft: 20% samples per class. Caltech-101:
5 samples per class. Cars: 20% samples per class. CIFAR-100: 50 samples per class. CIFAR-10: 50
samples per class. Food101: 75 samples per class. Pets: 20 samples per class. Sun397: 10 samples per
class. Accuracy measure: Top-1 refers to top-1 accuracy while Mean refers to mean per-class accuracy.

Dataset Classes Train Val Test Accuracy Test set
samples samples samples measure provided

Food101 [28] 101 68175 7575 25250 Top-1 -
CIFAR-10 [166] 10 49500 500 10000 Top-1 -
CIFAR-100 [166] 100 45000 5000 10000 Top-1 -
Sun397 (split 1) [327] 397 15880 3970 19850 Top-1 -
Cars [163] 196 6509 1635 8041 Top-1 -
Aircraft [203] 100 5367 1300 3333 Mean Yes
DTD (split 1) [59] 47 1880 1880 1880 Top-1 Yes
Pets [233] 37 2940 740 3669 Mean -
Caltech-101 [83] 101 2550 510 6084 Mean -
Flowers [221] 102 1020 1020 6149 Mean Yes

Prototypical Networks (ProtoNW): In order to further study the effect of contrast, we design another

contrastive version of our top-all variation. We calculate a prototype for each class by averaging all its

instances in the memory bank. Then, similar to prototypical networks [274], we compare the input with all

prototypes by passing their temperature-scaled cosine distance through a SoftMax layer to get probabilities.

Finally, we minimize the cross-entropy loss. Note that this method is still contrastive in nature because of

the SoftMax operation.

A.1.5.3 Semi-supervised Setting

Pretraining: Similar to the self-supervised setting, we train the network for 200 epochs using SGD op-

timizer (batch size=256, lr=0.05, momentum=0.9, weight decay=1e-4). Ten nearest neighbors are cho-

sen from the constraint set for loss calculation. The size of memory bank is set to 128000. We train the

pseudo-label classifier using an additional SGD optimizer (batch size=256, lr=0.01, momentum=0.9, weight

decay=1e-4) for 10 epochs at the end of each epoch of query encoder training. A confidence threshold value

of 0.85 is used to assign pseudo-labels to the unlabeled samples.
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Fine-tuning: In addition to pretraining, we use a two layer MLP atop the CNN backbone and fine-tune the

entire network on the supervised subset for 20 epochs. This fine-tuned network is used to pseudo-label the

unlabeled set with a confidence threshold of 0.9. Samples above the threshold are combined with the super-

vised set for a second round of fine-tuning for 20 epochs. We observe that nearly one third of the samples in

the dataset have confidence higher than the threshold at the end of the first fine-tuning stage. We use a SGD

optimizer (batch size=256, lr=0.005, momentum=0.9, weight decay=1e-4) for both the fine-tuning stages.

The learning rate is multiplied by 0.1 at the end of epoch 15.

Calculation of forward and backward FLOPs: In figure 1 of the main submission, we present a plot

of top-1 accuracy against total compute and resources for various semi-supervised approaches. Here (ta-

ble A.11) we present the calculation of the forward and backward FLOPS for each of the methods. We

set the backward FLOPs to be twice the forward number of FLOPs [121] for a single image and the total

FLOPs to be the sum of forward and backward pass FLOPs for the entire training. We use a value of 3.9

GFLOPs for a single forward pass of 224 × 224 resolution image through the ResNet50 backbone [136].

Additional compute due to the use of multi-crops are accounted for. A scalar multiplier of ( K
224)

2
is used for

images of resolution K×K (e.g., using one (96×96) image would be equivalent to 0.184 image of resolution

(224×224)). However, we do not consider the floating point precision (mixed or full precision) in our calcu-

lations. We show that similar performance can be achieved by using both automatic mixed precision and full

precision floating point during training (table 4, main submission) and thus focus the compute calculation

on the total number of forward and backward passes. Eq. A.1 provides the formula to calculate the total

number of training passes and FLOPs.

Fwd mini-batch = (Unlabeled fwd crops ∗Unlabeled batch-size)

+ (Labeled fwd crops ∗ Labeled batch-size)

Bwd mini-batch = (Unlabeled bwd crops ∗Unlabeled batch-size)

+ (Labeled bwd crops ∗ Labeled batch-size)

Fwd passes = Fwd mini-batch ∗ Iterations per epoch ∗ Epochs

Bwd passes = Bwd mini-batch ∗ Iterations per epoch ∗ Epochs

Total FLOPs = (Fwd passes + 2 ∗Bwd passes) ∗ (3.9 × 109)

(A.1)
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Figure A.2. CMSFself nearest neighbor selection: We use epoch 100 of CMSFself to visualize Top-5
NN from primary (M) and auxiliary (M′) memory banks. M stores features for the current epoch while
M′ contains representations from a different augmentation of the same image instance from the previous
epoch. First row shows the target image and its top-5 NNs from the auxiliary memory bank M′. Samples
of the second row are the images in M corresponding to the ones in row 1. Thus, rows 1 and 2 contain
different augmentations of the same image instances. We also report their rank in M in row 2. The last
row contains the top-5 NNs in M. Note that constrained samples in M (second row), have high rank while
they are semantically similar to the target.
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A.2 SimReg: Regression as a Simple Yet Effective Tool for Self-supervised

Knowledge Distillation

In this supplementary material, we present additional experimental results (Sec. A.2.1) and details on

experiment settings and implementation (Sec. A.2.2). Additional results include those on the role of MLP

head during training (Sec. A.2.1.1) and self-distillation (Sec. A.2.1.2). We publicly release the code*.

A.2.1 Additional Experimental Results

A.2.1.1 Role of MLP Head

In tables 1 and 2 of main we analyze how the depth of MLP head during training and inference affects

classification performance. We present additional results here in table A.14 with different teacher and stu-

dent network settings. The student networks are trained with different prediction head configurations. The

evaluation is always performed using features from backbone network for a fair comparison. In addition to

the self-supervised (SSL) teacher models used in the main paper, we consider a supervised teacher network.

The teacher is trained with cross-entropy loss using ground truth labels on the ImageNet dataset. As in

SSL teachers, we use only the backbone network for distillation from a supervised teacher. Note that the

supervised labels are absent during student training. In both the supervised and self-supervised settings,

the student with 4 layer MLP head consistently outperforms others on all metrics. Compared to Linear

head, 4L-MLP achieves 5 (MoCo-v2, ResNet-18), 11.2 (MoCo-v2, MobileNet-v2) and 6 (Supervised,

MobileNet-v2) percentage points improvement on linear evaluation.

A.2.1.2 Self-distillation

In all the previous experiments, a larger teacher network is distilled to a shallower student. In self-

distillation, we consider the same backbone architecture for both teacher and student. Similar to other

experiments, we use a prediction head (linear or MLP) atop student backbone during distillation and remove

it during evaluation. As we observe in table A.15, the student with a 4 layer MLP head outperforms the

teacher in both ImageNet classification and transfer tasks. The improvement in transfer performance is

particularly significant (+4 percentage points) and might be attributed to the use of prediction head and

weaker augmentations during distillation.

*Code is available at https://github.com/UCDvision/simreg
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Teacher Student Arch Prediction 1-NN 20-NN Linear
(Inference) Head (Train)

MoCo-v2 ResNet-50 ResNet-18
Backbone

4L-MLP 54.8 59.9 65.1
2L-MLP 52.7 58.5 63.6
Linear 48.8 54.3 60.1

MoCo-v2 ResNet-50 MobileNet-v2
Backbone

4L-MLP 55.46 59.73 69.1
2L-MLP 54.4 59.6 68.5
Linear 48.7 54.2 57.9

Supervised ResNet-50 MobileNet-v2
Backbone

4L-MLP 63.77 67.87 73.5
2L-MLP 64.7 69.3 73.5
Linear 55.4 62.0 67.5

Table A.14. Effect of MLP Heads on ImageNet classification performance. As in table 1 of main
paper, we analyze the role of the prediction head used during training by varying the number of MLP
layers. However, the evaluation here is performed using the features from the backbone network and the
prediction head plays no role during inference. A linear prediction head corresponds to the architecture
used in earlier works [161]. We observe that a deeper prediction module during training results in sub-
stantial boosts in performance. This observation is consistent across different teacher networks (both SSl
and supervised) and student architectures. Compared to Linear head, 4L-MLP achieves 5(MoCo-v2,
ResNet-18), 11.2(MoCo-v2, MobileNet-v2) and 6(Supervised, MobileNet-v2) percentage points im-
provement on linear evaluation.

Student Arch Prediction Head ImageNet Transfer
(Inference) (Train) 1-NN 20-NN Linear Linear

MoCo-v2 Teacher - 57.3 60.9 70.8 74.3

ResNet-50 4L-MLP 58.2 62.2 72.0 78.3
ResNet-50 Linear 56.4 60.6 69.7 71.8

Table A.15. ImageNet Classification and transfer results for self-distillation with prediction head.
In self-distillation, the teacher and student backbone architectures are the same (ResNet-50). We use a
MoCo-v2 pretrained teacher and train student networks with linear and 4 layer MLP heads. All evalu-
ations are performed using backbone features. The student with MLP prediction head outperforms the
teacher on both ImageNet classification and transfer tasks. A boost of 4 percentage points on average
transfer accuracy suggests that the use of prediction head and weaker augmentations during distillation
are beneficial in learning a good generalizable model.

A.2.1.3 Comparison with CompRess without MLP

In table 1 of the main paper, we observed that the use of MLP head during distillation benefits both

the CompRess variants on the ImageNet classification task. Here, we show that similar boost in CompRess

performance can be achieved on transfer tasks when distilled with MLP head. We use the officially provided

pretrained models for vanilla CompRess-2q ResNet-18 and MobileNet-v2 architectures for our comparison

and perform transfer analysis similar to that in table 5 of the main paper. Results in table A.16 demonstrate
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Arch MobileNet-v2 ResNet-18
Method CompRess-2q CompRess-2q SimReg CompRess-2q CompRess-2q SimReg

plain -4L-MLP -4L-MLP plain -4L-MLP -4L-MLP

Food 61.4 71.4 73.1 57.6 61.7 65.4
CIFAR10 85.3 90.3 91.2 82.5 87.3 88.6
CIFAR100 65.1 73.9 76.1 62.5 68.4 70.2

SUN 53.9 58.0 59.4 52.2 54.3 57.1
Cars 35.0 60.3 62.4 30.0 37.2 42.3

Aircraft 42.1 57.7 58.7 38.0 42.3 45.8
DTD 70.4 71.7 74.5 67.4 69.3 70.9
Pets 82.9 86.7 85.6 81.6 84.0 83.9

Caltech 85.6 91.1 91.7 85.3 87.3 89.2
Flowers 87.6 94.3 95.1 83.0 86.4 90.9

Table A.16. Transfer learning performance of CompRess with and without MLP. Since the teacher
networks are self-supervised, generalization of learnt features to other datasets is important. Similar to
ImageNet classification, CompRess with MLP significantly outperforms vanilla CompRess (CompRess-
2q plain) on all datasets and metrics. MLP heads, if present, are only used during distillation and are not
part of inference networks.

that performance of vanilla CompRess models are significantly worse compared to both CompRess with

MLP and proposed regression based distillation. Note that the MLP heads are not used during inference for

fair comparison.

A.2.1.4 Results with Intermediate Layers of CNN

In our results in table 2 of main paper, we analyze how the classification performance changes as we

consider features from the earlier layers of the prediction head. Here, we analyize results from various

intermediate layers including those from the CNN backbone. We train a single ResNet-18 student from

a MoCo-v2 ResNet-50 teacher and perform k-NN evaluation using features from different layers. In ta-

ble A.17, Conv-1 refers to the output of the first convolutional layer while ResBlk-j refers to the output from

the jth residual block. The CNN features for evaluation are obtained by reducing their spatial dimension

and then vectorizing. The spatial dimensions are reduced so that the feature lengths are roughly the same

throughout the backbone for fair comparison. We observe that the performance increases as we go deeper

into the backbone. The best performance is achieved at the intermediate layer of prediction head and there

is a small drop in accuracy at the final prediction layer.
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A.2. SIMREG: REGRESSION FOR SELF-SUPERVISED KNOWLEDGE DISTILLATION

Eval Layer Conv-1 ResBlk-1 ResBlk-2 ResBlk-3 ResBlk-4 2L-MLP 4L-MLP
Student 1-NN 20-NN 1-NN 20-NN 1-NN 20-NN 1-NN 20-NN 1-NN 20-NN 1-NN 20-NN 1-NN 20-NN

ResNet-18 6.2 7.2 16.0 18.0 21.8 24.3 33.4 37.4 55.3 60.2 56.0 60.9 53.4 57.6

Table A.17. ImageNet classification using intermediate features. We consider a single student net-
work with 4 layer MLP head and perform k-NN evaluation using features from various intermediate layer
features from the network. For fair comparison, we match the dimensions from the intermediate convo-
lutional features (Conv-1 and residual block features) to that of the final backbone feature (ResBlk-4) by
reducing their spatial dimensions. As expected, performance improves as we use features from deeper
layers of the CNN. This changes in the MLP head where a drop in accuracy at the very last layer of the
prediction head is observed.

A.2.2 Implementation Details

A.2.2.1 Teacher Networks

We use teacher networks trained using four different self-supervised representation learning approaches

- MoCo-v2 [52], BYOL [107], SwAV [37] and SimCLR [48]. We use the official and publicly available pre-

trained weights for these networks with ResNet-50x4 architecture pretrained model for SimCLR teacher

and ResNet-50 models for the remaining methods. MoCo-v2 and SwAV have been trained for 800 epochs

and BYOL and SimCLR for 1000 epochs. For distillation with BYOL, SwAV and SimCLR teachers we

use cached features from the teacher. The cached features are obtained by passing the entire training data

through the teacher network once and storing the features. Random image augmentation as would be used

in non-cached version is employed to generate the inputs for caching.

A.2.2.2 Image Augmentations

We use two strategies for augmenting the input image during distillation - ‘weak’ and ‘strong’. ‘Strong’

augmentation refers to the setting used in MoCo-v2 [52]. In both augmentation settings, we apply a series

of stochastic transformations on the input image. A random resized crop (scale is in range [0.2, 1.]), random

horizontal flip with probability 0.5 and normalization to channel-wise zero mean and unit variance are

common for both augmentation methods. In addition to these transformations, ‘strong’ augmentations use

random color jittering (strength of 0.4 for brightness, contrast and saturation and 0.1 for hue) with probability

0.8, random grayscaling with probability 0.2 and Gaussian blur (standard deviation chosen uniformly from

[0, 1]).
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A.2. SIMREG: REGRESSION FOR SELF-SUPERVISED KNOWLEDGE DISTILLATION

A.2.2.3 Optimizer

In all our distillation experiments, we use SGD optimizer with cosine scheduling of learning rate, mo-

mentum of 0.9 and weight decay of 0.0001. Initial learning rate is set to 0.05. The networks are trained for

130 epochs with a batch size of 256 using PyTorch [235] framework.

A.2.2.4 Evaluation Metrics

We utilize k-NN and linear evaluation to evaluate classification performance on ImageNet and linear

evaluation to evaluate transfer performance. For ImageNet linear evaluation, the inputs to the linear layer

are normalized to unit l2 norm and then each dimension is shifted and scaled to have unit mean and zero

variance [161]. The layer is trained for 40 epochs using SGD with initial learning rate of 0.01 and momentum

of 0.9. The learning rate is scaled by 0.1 at epochs 15 and 30. For evaluation of transfer performance, we use

the optimizer settings from [162]. The shorter side of the input image is resized to 256 and centre crop with

length 224 is used. The input is channel-wise normalized using the statistics from ImageNet dataset. We use

LBFGS optimizer with parameters max iter=20 and history size=10. Learning rate and weight decay are

optimized by performing a grid search using validation set. The best model is obtained by retraining with

optimal parameters on the combined train and validation set. 10 different log spaced values in [-3, 0] are

used for learning rate while 9 log values in [-10, -2] are used for weight decay.

A.2.2.5 MLP Architecture

For the proposed prediction head, we experiment with linear, 2 and 4 layer MLPs. Each MLP layer is

composed of a linear projection followed by 1D batch normalization and ReLU activation. Let the dimension

of the student backbone output be m and that of teacher d. For linear evaluation, a single layer with input and

output dimensions of (m,d) is used. For a 2 layer MLP, following [107], we use the dimensions (m,2m,d).

We extend this to a 4 layer MLP with the following intermediate feature dimensions: (m,2m,m,2m,d).

Batch normalization and ReLU activation are not employed at the end of layer 2 for 4 layer MLP head

(equivalent to stacking two 2-layer MLP heads). For our ablation on the role of MLP head during inference

(table 2 in main paper), we compare the performance of our method at different layers of the MLP head

from a single trained network. For fair comparison, we require all the intermediate dimensions to be same

as that of the output. Thus, for this experiment alone, we use an MLP such that the feature dimensions

are (m,d,d,d,d). The output dimension (m) for ResNet-18, ResNet-50 and MobileNet-v2 are 512, 2048

and 1280 respectively. The teacher output dimensions are 2048 and 8192 respectively for ResNet-50 and
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A.2. SIMREG: REGRESSION FOR SELF-SUPERVISED KNOWLEDGE DISTILLATION

ResNet-50x4 architectures. From table 2 (network with MLP feature dimensions (512, 2048, 2048, 2048,

2048)) and table 4 (network with MLP feature dimensions (512, 1024, 512, 1024, 2048)) results, we observe

that higher MLP feature dimensions might help further boost performance (65.7 vs 65.1 on ImageNet linear).

More ablations on this are necessary to optimize the MLP architecture.
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APPENDIX B

Memory Efficiency of Models in 3D, Vision and NLP Applications

B.1 CompGS: Smaller and Faster Gaussian Splatting with Vector Quanti-

zation

In this supplementary pdf, we compare the performance of our CompGS with state-of-the-art approaches

on the NeRF-Synthetic dataset (Section B.2). Section B.3 shows exploratory results on generalization of the

learnt vector codebook across scenes and Section B.5 provides insights on the learnt codebook assignments.

We also provide scene-wise results (section B.6), ablations on baselines (section B.7) and additional visu-

alizations and qualitative comparisons on the ARKit dataset (section B.9). The anonymized code for our

approach is provided along with this pdf in the zipped supplementary material file.

B.2 Results on NeRF-Synthetic and DeepBlending Datasets

The results (PSNR) for the NeRF-Synthetic dataset [208] are presented in Table B.1. Our CompGS

approach achieves an impressive average improvement of 1.13 points in PSNR compared to the 3DGS-

No-SH baseline while using less than half its memory. As reported in the main submission, we report

metrics for 3DGS both from the original paper and using our own runs. We observe an improvement for

3DGS [151] over their official reported numbers by 0.5 points. The comparison between our CompGS

and SOTA methods for novel view synthesis on Deep Blending dataset is shown in Table B.2. CompGS

maintains the speed and performance advantages of 3DGS while being 40× to 50× smaller. CompGS-32K

BitQ is the post-training bit quantized version of CompGS-32K, in which position parameters are 16-bits,

opacity is 8 bits, and the rest are 32 bits.

B.3 Generalization of codebook across scenes

We train our vector quantization approach including the codebook and the code assignments on a single

scene (‘Counter’) of the Mip-NeRF360 dataset. We then freeze the codebook and learn only assignments

for the rest of the eight scenes in the dataset and report the averaged performance metrics over all scenes.
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B.3. GENERALIZATION OF CODEBOOK ACROSS SCENES

Table B.1. Results on NeRF-Synthetic dataset. Here, we present the PSNR values for the synthesized
novel views on the NeRF-Synthetic dataset [208]. Our CompGS approach achieves an impressive average
improvement of 1.13 points in PSNR compared to the 3DGS-No-SH baseline while using less than half
its memory. As reported in the main submission, we report metrics for 3DGS both from the original paper
and using our own runs. We observe an improvement of 3DGS over the reported numbers by 0.5points. ∗

indicates our own run.

Mic Chair Ship Materials Lego Drums Ficus Hotdog Avg.

Plenoxels 33.26 33.98 29.62 29.14 34.10 25.35 31.83 36.81 31.76
INGP-Base 36.22 35.00 31.10 29.78 36.39 26.02 33.51 37.40 33.18
Mip-Nerf 36.51 35.14 30.41 30.71 35.70 25.48 33.29 37.48 33.09
Point-NeRF 35.95 35.40 30.97 29.61 35.04 26.06 36.13 37.30 33.30
3DGS 35.36 35.83 30.80 30.00 35.78 26.15 34.87 37.72 33.32
3DGS∗ 36.80 35.51 31.69 30.48 36.06 26.28 35.49 38.06 33.80
3DGS-No-SH 34.37 34.09 29.86 28.42 34.84 25.48 32.30 36.43 31.97
CompGS 4k 35.99 34.92 31.05 29.74 35.09 25.93 35.04 37.04 33.10

Table B.2. Comparison with SOTA methods for novel view synthesis on Deep Blending dataset.
CompGS is a vector quantized version of 3DGS that maintains the speed and performance advantages of
3DGS while being 40× to 50× smaller. CompGS 32K BitQ is the post-training bit quantization version of
CompGS 32K, in which position parameters are 16-bits, opacity is 8 bits, and rest are 32 bits. ∗Reproduced
using official code. † Reported from 3DGS [151]. Our timings for 3DGS and CompGS are reported using
a RTX6000 GPU while those with † used A6000 GPU. We boldface entries for emphasis.

Deep Blending

Method SSIM↑ PSNR↑ LPIPS↓ FPS
Mem
(MB)

Train
Time(m)

Plenoxels† [88] 0.795 23.06 0.510 11.2 2700 27.5
INGP-Base† [213] 0.797 23.62 0.423 3.26 13 6.31
INGP-Big † [213] 0.817 24.96 0.390 2.79 48 8.00
M-NeRF360† [19] 0.901 29.40 0.245 0.09 8.6 48h
3DGS † [151] 0.903 29.41 0.243 137 676 36.2
3DGS ∗ [151] 0.899 29.49 0.246 151 662 19.3
LigthGaussian [78] - - - - - -
CGR [?] 0.900 29.73 0.258 181 23.8 -
CGS [?] 0.898 29.38 0.253 - 25.30 -
CompGS 16K 0.906 29.90 0.252 485 12 20.3
CompGS 32K 0.907 29.90 0.251 484 13 26.2
CompGS 32K BitQ 0.907 29.89 0.251 484 8 26.2

In addition to the results in Fig.5 of the main submission, we provide results with our 32K variant here in

table B.3. Interestingly, we observe that the shared codebook generalizes well across all scenes with a small

drop in performance compared to learning a codebook for each scene. Sharing learnt codebook can further

reduce the memory requirement and can help speed up the training of CompGS. The quality of the codebook
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B.4. VARIANCE IN 3DGS PERFORMANCE

Table B.3. Effect of shared codebook. We train our vector quantization approach including the codebook
and the code assignments on a single scene (‘Counter’) of the Mip-NeRF360 dataset. We then freeze the
codebook and learn only assignments for the rest of the eight scenes in the dataset and report the averaged
performance metrics over all scenes. Interestingly, we observe that the shared codebook generalizes well
across all scenes with a small drop in performance compared to learning a codebook for each scene.
Sharing learnt codebook can further reduce the memory requirement and can help speed up the training of
CompGS. The quality of the codebook can be improved by learning it over multiple scenes.

Dataset Mip-NeRF360
Method SSIM↑ PSNR↑ LPIPS↓

3DGS 0.815 27.21 0.214
3DGS ∗ 0.813 27.42 0.217
CompGS 4K 0.804 26.97 0.234
CompGS 32K 0.806 27.12 0.240
CompGS Shared Codebook 4K 0.797 26.64 0.242
CompGS Shared Codebook 32K 0.800 26.780 0.247

Scene 1 2 3 4 5 6 7 8 9 10 11

Min 25.140 31.774 28.854 21.414 27.084 30.864 31.134 26.522 22.418 21.733 25.250
Max 25.271 32.183 29.068 21.562 27.293 31.425 31.545 26.624 22.585 22.193 25.415
Mean 25.221 32.038 28.997 21.491 27.227 31.228 31.427 26.583 22.495 21.940 25.333
Diff 0.131 0.409 0.215 0.148 0.210 0.561 0.410 0.102 0.167 0.460 0.165
Std 0.032 0.109 0.051 0.037 0.048 0.155 0.105 0.024 0.045 0.123 0.046

Table B.4. Variance in 3DGS performance: We run the 3DGS baseline method 20 times on all the
scenes of Mip-NeRF360 and Tanks&Temples datasets with different seeds and report the statistics of the
performance. We only report the PSNRs for brevity. Some of the scenes (Bonsai, Kitchen, Room and
Train) have a huge difference in performance between their best and worst runs (denoted as ‘Diff’) with
a PSNR difference more than 0.4. The median of the standard deviation of these runs across all scenes is
0.048.

can be improved by learning it over multiple scenes. Fig. B.3 shows qualitative comparison of the same.

There are no apparent differences between CompGS and CompGS-Shared-Codebook approaches.

B.4 Variance in 3DGS Performance

We observe huge differences in the reported performance of 3DGS across different published works.

To analyze this, we run the 3DGS baseline method 20 times on all the scenes of Mip-NeRF360 and

Tanks&Temples datasets with different seeds and report the statistics of the performance in table B.4. We

only report the PSNRs for brevity. Some of the scenes (Bonsai, Kitchen, Room and Train) have a huge

difference in performance between their best and worst runs with a PSNR difference more than 0.4. Thus,

one must be careful when comparing performances of methods with small differences. The median of the

standard deviation of these runs across all scenes is 0.048.
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B.7. ABLATIONS FOR GAUSSIAN COUNT REDUCTION

B.5 Analysis of learnt code assignments

In Fig. B.1, we plot the sorted histogram of the code assignments (cluster to which each Gaussian

belongs to) for each parameter on the ‘Train’ scene of Tanks&Temples dataset. We observe that just a single

code out of the 512 in total is assigned to nearly 5% of the Gaussians for both the SH and DC parameters.

Similarly, a few clusters dominate even in the case of rotation and scale parameters, albeit to a lower extent.

Such a non-uniform distribution of cluster sizes suggest that further compression can be achieved by using

Huffman coding to store the assignment indices.

Figure B.1. Histogram of code assignments. We plot the sorted histogram of the code assignments
(cluster to which each Gaussian belongs to) for each parameter on the ‘Train’ scene of Tanks&Temples
dataset. We observe that just a single code out of the 512 in total is assigned to nearly 5% of the Gaussians
for both the SH and DC parameters. Similarly, a few clusters dominate even in the case of rotation and
scale parameters, albeit to a lower extent. Such a non-uniform distribution of cluster sizes suggest that
further compression can be achieved by using Huffman coding to store the assignment indices.

B.6 Scene-wise Metrics

For brevity, we reported the averaged metrics over all scenes in a dataset in our main submission.

Here in table B.5, we provide the detailed scene-wise metrics for MipNerf-360, Tanks and Temples and

DeepBlending datasets.

B.7 Ablations for Gaussian count reduction

We perform ablations to choose the right hyperparameters for the baseline approaches to reduce the

Gaussian count. The metrics for the chosen settings are reported in table 3 of the main submission. The

ablations for minimum opacity, densification interval and end iteration and gradient threshold are shown in

tables B.6, B.7, B.8 and B.9 respectively. Among these baselines, modify gradient threshold provides the

best trade-off between model size and performance.
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B.7. ABLATIONS FOR GAUSSIAN COUNT REDUCTION

Table B.5. Scene-wise metrics. We report the scene-wise metrics on all the scenes for both 3DGS and
CompGS 32K. As observed in the averaged metrics in the main submission, CompGS achieves a high
level of compression and fast rendering without losing much on rendering quality.

Scene Method SSIM↑ PSNR↑ LPIPS↓ Train Time(s) FPS Mem(MB) #Gauss

Bicycle 3DGS 0.763 25.169 0.212 1845 68 1422 6026079
CompGS 32K 0.755 25.068 0.244 2123 242 29 1314018

Bonsai 3DGS 0.940 31.918 0.206 876 276 293 1241520
CompGS 32K 0.932 31.195 0.223 1405 492 10 377227

Counter 3DGS 0.906 29.018 0.202 968 208 283 1200091
CompGS 32K 0.895 28.467 0.222 1571 356 10 385515

Flowers 3DGS 0.602 21.456 0.339 1192 133 851 3605827
CompGS 32K 0.588 21.262 0.367 1744 343 23 1037132

Garden 3DGS 0.863 27.241 0.108 1870 76 1347 5709543
CompGS 32K 0.848 26.822 0.140 2177 258 30 1370624

Kitchen 3DGS 0.926 31.510 0.127 1206 158 425 1801403
CompGS 32K 0.918 30.774 0.142 1729 317 13 564382

Room 3DGS 0.917 31.346 0.221 1020 190 364 1541909
CompGS 32K 0.912 31.131 0.235 1439 444 9 327191

Stump 3DGS 0.772 26.651 0.215 1445 104 1136 4815087
CompGS 32K 0.770 26.605 0.236 1936 303 27 1226044

Treehill 3DGS 0.633 22.504 0.327 1213 122 879 3723675
CompGS 32K 0.634 22.747 0.355 1744 336 23 1002290

Train 3DGS 0.811 21.991 0.209 563 253 254 1077461
CompGS 32K 0.804 21.789 0.231 1169 456 12 500811

Truck 3DGS 0.878 25.385 0.148 897 159 611 2588966
CompGS 32K 0.872 25.092 0.165 1306 494 13 540081

DrJohnson 3DGS 0.898 29.089 0.247 1312 121 772 3270679
CompGS 32K 0.906 29.445 0.249 1717 379 17 714902

Playroom 3DGS 0.901 29.903 0.246 1003 181 551 2335846
CompGS 32K 0.908 30.347 0.253 1422 589 10 393414

Table B.6. Ablation study on opacity threshold. We changed the default value of 0.005 for minimum
opacity as a baseline approach for compressing 3DGS by reducing the number of Gaussians. Gaussians
with opacity values below the threshold are pruned, resulting in smaller models for lower thresholds. Table
3 in main paper shows the results of this experiment when min opacity is 0.1.

Mip-NeRF360 Tanks&Temples Deep Blending
SSIM PSNR LPIPS #Gauss SSIM PSNR LPIPS #Gauss SSIM PSNR LPIPS #Gauss

0.05 0.810 27.308 0.230 1.93M 0.839 23.508 0.194 1.04M 0.902 29.542 0.251 1.47M
0.1 0.802 27.120 0.244 1.46M 0.833 23.439 0.204 780K 0.902 29.504 0.255 1.01M
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B.8. DETAILS OF ARKIT DATASET.

Table B.7. Ablation study on densification interval. We modify the densification interval in 3DGS as a
baseline approach for compressing 3DGS by reducing the number of Gaussians. Higher intervals results
in less frequent densification and thus smaller number of Gaussians. Table 3 in main paper shows the
results of this experiment when interval is 500.

Mip-NeRF360 Tanks&Temples Deep Blending
SSIM PSNR LPIPS #Gauss SSIM PSNR LPIPS #Gauss SSIM PSNR LPIPS #Gauss

300 0.803 27.201 0.241 1.70M 0.837 23.517 0.195 1.00M 0.902 29.705 0.253 1.30M
500 0.794 26.98 0.255 1.07M 0.832 23.36 0.206 709K 0.902 29.76 0.258 844K

Table B.8. Ablation study on densification end iteration. Early or late stopping of densification process
impacts the number of Gaussians and the model performance of 3DGS. We report the results with the value
set to 3000 in our main submission (table 3).

Mip-NeRF360 Tanks&Temples Deep Blending
SSIM PSNR LPIPS #Gauss SSIM PSNR LPIPS #Gauss SSIM PSNR LPIPS #Gauss

5000 0.797 27.199 0.241 1.92M 0.838 23.599 0.188 1.12M 0.897 29.486 0.256 1.34M
3000 0.780 27.02 0.267 1.12M 0.835 23.55 0.194 810K 0.896 29.42 0.264 795K

Table B.9. Ablation study on gradient threshold. We modify the gradient threshold, used as a criterion
in the densification process of 3DGS. A higher threshold results in a smaller 3DGS model. Among the
baselines considered for reducing Gaussian count, modify gradient threshold provides the best trade-off
between model size and performance. Table 3 in main paper shows the results of this experiment for
gradient threshold of 0.00045.

Mip-NeRF360 Tanks&Temples Deep Blending
SSIM PSNR LPIPS #Gauss SSIM PSNR LPIPS #Gauss SSIM PSNR LPIPS #Gauss

0.00035 0.786 26.934 0.265 1.27M 0.833 23.579 0.203 833K 0.901 29.574 0.254 1.41M
0.00045 0.769 26.57 0.292 809K 0.825 23.31 0.217 578K 0.900 29.49 0.260 1.01M
0.00055 0.754 26.290 0.312 552K 0.818 23.041 0.228 433K 0.899 29.544 0.265 764K

B.8 Details of ARKit dataset.

Unlike visual recognition community that uses large scale benchmarks, interestingly, radiance field

modeling community traditionally has used small datasets with a handful of 3D scenes: maximum of 13

total real world scenes in several papers (e.g., 3DGS [151]). We believe this is due to the computational cost

of NeRF-based methods (several hours of training for each scene). Hence, with the recent advancements in

this field including 3DGS that takes only a few minutes to learn a scene, it may be time to move beyond

small benchmarks and evaluate methods on larger scale benchmarks. Therefore, we use an existing scene-

understanding dataset [21] as a benchmark for radiance field modeling that is an order of magnitude larger

than the traditional datasets (200 vs 13 scenes). We believe the community will benefit from using this larger

benchmark to evaluate future radiance field methods with a reasonable computational demand. Note that
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B.9. QUALITATIVE COMPARISON ON ARKIT DATASET.

DL3DV-140 is another large dataset that is concurrent work to ours, so we include that one too in the results

of our main paper.

ARKit [21] is an indoor scene understanding dataset comprising 5,048 scans encompassing 1,661 dis-

tinct scenes. The videos are recorded using the 2020 iPad Pro and have a resolution of 1920 × 1440. We

exclusively utilize the RGB frames from each video. To construct the dataset subset for view synthesis,

we randomly select 200 raw videos from the ARKit dataset, extracting a uniform sample of 300 frames

from each. Subsequently, we employ the code provided by 3DGS [151] to extract undistorted images and

Structure-from-Motion (SfM) information from the input images. The dataset can easily be extended in the

future by including more of the remaining scenes from the ARKit dataset.

B.9 Qualitative comparison on ARKit dataset.

Figures B.4 and B.5 provide qualitative results on the ARKit dataset.
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B.9. QUALITATIVE COMPARISON ON ARKIT DATASET.

Ground Truth CompGS [Ours] 3DGS 3DGS-No-SH
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Figure B.2. Visualization of results on Sythetic-NeRF dataset. We compare the performance of our
compressed CompGS with the original 3DGS and 3DGS-No-SH approaches on different scenes of the
NeRF-Synthetic dataset. The difference between CompGS and 3DGS-No-SH is apparent in some of these
scenes. E.g., 3DGS-No-SH fails to effectively model the brown color of branches and shadows and bright
light on the leaves of the ‘Ficus’ scene. All approaches including 3DGS have imperfect reconstruction in
some of the scenes like ‘Drums’ and ‘Lego’. The scenes and views used for visualization were chosen at
random.
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B.9. QUALITATIVE COMPARISON ON ARKIT DATASET.

Ground Truth CompGS 3DGSCompGS-Shared-Codebook
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Figure B.3. Qualitative analysis of shared codebook. We show the generalization of codebook learned
using a single scene on various scenes of the Mip-NeRF360 dataset. The codebook was trained on the
‘Counter’ scene (row-1) and frozen for the remaining scenes. The codebooks for all four parameters (DC,
SH, Scale, Rot) are shared across scenes. Both CompGS and CompGS-Shared-Codebook are visually
similar to the uncompressed 3DGS with no conspicuous differences between them. 3DGS-No-SH requires
twice more memory than CompGS while 3DGS is ten times bigger than CompGS . The scenes and views
used for visualization were chosen at random.
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B.9. QUALITATIVE COMPARISON ON ARKIT DATASET.

FigureB.4. Visualization of ARKit dataset. ARKit is a 3D indoor scene dataset captured using a iPads/i-
Phones. The dataset consists of videos of indoor environments like houses and office space from multiple
view-points. We uniform sample images from each video to form our benchmark dataset for novel view
synthesis. Some sample images from different scenes are shown in this figure. The dataset presents unique
challenges such as the presence of motion blur due to the use of videos.
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B.9. QUALITATIVE COMPARISON ON ARKIT DATASET.

Figure B.5. Qualitative analysis on ARKit dataset. We visualize the results of CompGS along with the
uncomressed 3DGS and its variant 3DGS-No-SH . Presence of large noisy blobs is a common error mode
for 3DGS-No-SH on this dataset. It also fails to faithfully reproduce the colors and lighting in several
scenes. The visual quality of the synthesized images for all methods is lower on this dataset compared to
the scenes present in standard benchmarks like Mip-NeRF360 , indicating its utility as a novel benchmark.
Further comparison with various NeRF based approaches and more analysis can help improve the results
on this dataset.
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B.10. NOLA: COMPRESSING LORA USING LINEAR COMBINATION OF RANDOM BASIS

B.10 NOLA: Compressing LoRA using Linear Combination of Random

Basis

CNN on ImageNet100 and CIFAR-10:

Moreover, to compare the representation power of NOLA and PRANC, we train NOLA from scratch on an

image classification task using a CNN architecture. For each convolution layer, we reshape all parameters

of a layer into a matrix (close to square shape) and apply NOLA to the matrix. Then, we reshape it to the

original shape of the convolution. Additionally, we train LoRA using a similar approach as NOLA. We follow

a similar setup as nooralinejad2023pranc for our experiments on image classification.

Datasets and Architectures: We consider two architectures in our experiments: ResNet20 with 270K

parameters, and ResNet18 resnet with 11M parameters. We train ResNet20 on CIFAR10 cifar10, and

ResNet18 on ImageNet100 imagenet.

Results: We report result of ImageNet100 in Table B.11, and CIFAR10 in Table B.10. NOLA outper-

forms both PRANC and LoRA with a similar number of parameters.

Implementation Details: For ImageNet100 and ResNet18, we use k = l = 2,000 basis for each of 20

modules, and for the classifier (last linear layer), we used k = l = 10,000, resulting in a total of 100,000

trainable parameters excluding 9,600 batchnorm parameters. We use rank 64 for all layers. We train all

models using Adam optimizer with a learning rate of 0.001 and batch size of 256 for 200 epochs. For

CIFAR-10 and ResNet20, we use k = l = 250 basis for each convolutional module, and for the linear layer,

we use k = l = 1000 parameters. We use batch size 256, Adam optimizer, and a learning rate of 0.001. We

use a single NVIDIA-GeForce RTX 3090 for all experiments.

Training Time Comparison: We measure the training time of NOLA and PRANC on a single NVIDIA-

GeForce RTX 3090 GPU and batch size of 256. Note that training time includes both forward and backward

passes for each batch. On average, NOLA processes a batch in 228ms while PRANC does the same in

1070ms, so NOLA is 4.6 times faster than PRANC.

Table B.10. Training On CIFAR10: Re-
sult of our method on CIFAR10 dataset and
ResNet20.

Method # Params Acc.

trained model 269,722 88.92%

PRANC 12,752 81.5%
LoRA 13,295 81.5%
NOLA 12,876 82.4%

Table B.11. Training On ImageNet100: Result of
our method on ImageNet-100 dataset and ResNet18

Method # Params Acc.

trained model 11,227,812 82.1%

HashedNet chen2015compressing 129,200 52.96%
PRANC 119,200 61.08%
LoRA 150,000 63.50%
NOLA 109,600 64.66%
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B.10. NOLA: COMPRESSING LORA USING LINEAR COMBINATION OF RANDOM BASIS

Ablation and details of NOLA on Vision Transformers:

Implementation detail: We consider learning rates of 5e − 3, 1e − 3 and 5e − 4 for LoRA, NOLA and

Linear methods and 8e − 5, 5e − 5, 3e − 5 and 1e − 5 for Full-FT. The best settings is chosen based on the

performance on validation set. For creation of k-shot dataset, we randomly sample without replacement

from the train set. For each of these sets, we run with three different initializations of the networks. This

process is repeated four times and the averaged values are reported.

Comparison between NOLA-QV and NOLA-MLP: We experiment with NOLA layer in both the attention

and MLP modules of the vision transformer. We observe that applying NOLA on MLP performs better than

that on attention block (Table B.12). Thus, we use NOLA-MLP as our default setting. Note that the number of

trainable parameters remains the same in both versions. Unlike this, applying LoRA on MLP block would

require significantly higher number of trainable parameters due to the increased dimensions of the weight

matrices in MLP compared to those in attention block.

Table B.12. Comparison between NOLA in MLP and attention blocks: We observe that NOLA on MLP
block is more effective. We choose this as our default setting.

Base # Train CIFAR-10 CIFAR-100 CUB-200-2011 Caltech-101
Model Params 5 10 5 10 5 10 5 10

ViT-L NOLA-QV 47K 87.0 (0.9) 91.6 (0.7) 74.8 (0.6) 80.4 (0.9) 75.3 (0.4) 81.7 (0.3) 87.9 (1.1) 90.6 (0.5)
NOLA-MLP 47K 87.9 (1.3) 92.2 (0.5) 75.1 (0.6) 81.3 (0.8) 75.5 (0.6) 81.7 (0.4) 88.0 (1.2) 90.6 (0.5)

B.10.1 Results of NLG task on DART and WebNLG datasets:

In Table B.13, we report more results similar to Table 3.10 using GPT-2 M and GPT-2 L on DART

nan2020dart and WebNLG gardent2017webnlg datasets.
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B.10. NOLA: COMPRESSING LORA USING LINEAR COMBINATION OF RANDOM BASIS

Table B.13. DART and WebNLG Dataset: Similar to Table 3.10 we compare NOLA to other methods.
NOLA is on par or better with other methods with the same number of parameters.

GPT-2 M

Method Adapted Adapter # Trainable DART WebNLG
Layers Rank Parameters BLEU↑ MET↑ TER↓ BLEU↑ MET↑ TER↓

Finetune All Layers - 354.000M 46.2 0.39 0.46 46.5 0.38 0.53
AdapterL Extra Layers - 0.370M 42.4 0.36 0.48 50.2 0.38 0.43
AdapterL Extra Layers - 11.000M 45.2 0.38 0.46 54.9 0.41 0.39
FinetuneTop2 Last 2 Layers - 24.000M 41.0 0.34 0.56 36.0 0.31 0.72
PreLayer Extra Tokens - 0.350M 46.4 0.38 0.46 55.1 0.41 0.40
LoRA QV 4 0.350M 47.1 0.39 0.46 54.9 0.41 0.39
LoRA QV 1 0.098M 46.4 0.38 0.48 53.5 0.40 0.40
NOLA (Ours) QV 8 0.096M 47.0 0.38 0.48 53.9 0.40 0.40
NOLA (Ours) MLP 8 0.096M 47.1 0.38 0.47 54.7 0.41 0.40
NOLA (Ours) QV 8 0.048M 45.7 0.38 0.49 53.8 0.40 0.40
NOLA (Ours) MLP 8 0.048M 45.5 0.38 0.49 53.0 0.40 0.40

GPT-2 L
Finetune All Layers - 774.000M 47.0 0.39 0.46 55.5 0.42 0.42
AdapterL Extra Layers - 0.880M 45.7 0.38 0.46 56.0 0.41 0.39
AdapterL Extra Layers - 230.000M 47.1 0.39 0.45 57.7 0.43 0.39
PreLayer Extra Tokens - 0.770M 46.7 0.38 0.45 56.3 0.42 0.40
LoRA QV 4 0.770M 47.5 0.39 0.45 57.1 0.43 0.38
LoRA QV 1 0.184M 47.7 0.39 0.47 55.9 0.42 0.39
NOLA (Ours) QV 8 0.144M 47.8 0.39 0.47 55.8 0.41 0.39
NOLA (Ours) MLP 8 0.144M 47.8 0.39 0.47 56.0 0.42 0.39
NOLA (Ours) QV 8 0.072M 46.4 0.38 0.48 55.5 0.41 0.38
NOLA (Ours) MLP 8 0.072M 46.8 0.38 0.48 55.8 0.41 0.39
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APPENDIX C

Robustness of Efficient Models in Vision Transformers

C.1 SlowFormer: Adversarial Attack on Compute and Energy

Consumption of Efficient Vision Transformers

In sections C.2 and C.3, we provide visualizations of our learnt patches and token dropping respectively.

In Sec. C.4, we provide additional details on our train and test settings.

C.2 Patch Visualization

In Fig. C.1, we visualize the optimized patches for each of the three efficient methods. All patches are

of size 64 × 64, contributing to 16 of the 196 tokens for the input image. Surprisingly, a rectangular region

in the patch for A-ViT , corresponding to one token, is almost entirely black.

We optimize patches for A-ViT using different initializations and visualize them in Fig. C.2. All patches

achieve Attack Success close to 100%. Presence of multiple universal adversarial patches highlights the

vulnerability of the current efficient methods.

Figure C.1. Visualization of optimized patch: We show the learnt universal patches for each of the three
efficient methods that we attack.
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C.2. PATCH VISUALIZATION

Figure C.2. Optimized patches With different initializations: Here, we show the optimized patches
for A-ViT . A different initialization is used to train each of these patches. All patches achieve Attack
Success close to 100%. Presence of multiple universal adversarial patches highlights the vulnerability of
the current efficient methods.

We show the evolution of the patch as training progresses in Fig. C.4. The patch is trained to attack A-

ViT approach. We observe that the patch converges quickly, requiring less than an epoch for 100% Attack
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C.4. IMPLEMENTATION DETAILS

Figure C.3. Visualization of patch optimization: We train our patch to attack A-ViT and display the
patch at various stages of optimization. We observe that the patch converges quickly. The patch at 1000
iterations (0.1 epoch) is similar to that at 10000 iterations (1 epoch) in terms of both appearance and attack
performance.

Success. The patch at 1000 iterations (0.1 epoch) is similar to that at 10000 iterations (1 epoch) in terms of

both appearance and attack performance.

C.3 Visualization of Token Dropping

In Fig. C.3, we visualize dropped tokens in A-ViT-Small with and without our attack. Our attack signif-

icantly decreases the number of pruned tokens, resulting in more compute and energy consumption for the

efficient transformer model.

C.4 Implementation Details

ATS Details: As in ATS [81], we replace layers 3 through 9 of ViT networks with the ATS block and set the

maximum limit for the number of tokens sampled to 197 for each layer. We train the patch for 2 epochs with

a learning rate of 0.4 for ViT-Tiny and lr = 0.2 for ViT-Base and ViT-Small. We use a batch size of 1024 and

different loss coefficients for each layer of ATS. For DeiT-Tiny we use [1.0,0.2,0.2,0.2,0.01,0.01,0.01], for

DeiT-Small we use [1.0,0.2,0.05,0.01,0.005,0.005,0.005], and for DeiT-Base we use [2.0,0.1,0.02,0.01,0.005,0.005,0.005]

The weights are vastly different at initial and final layers to account for the difference in loss magnitudes

across layers.

A-ViT Details: The patches are optimized for one epoch with a learning rate of 0.2 and a batch size of 512

(128 × 4GPUs) using AdamW [197] optimizer. We optimize the patches for 4 epochs for patch length 32

and below. For CIFAR-10 experiments, the images are resized from 32 × 32 to 256 × 256 and a 224 × 224

crop is used as the input. For the training of adversarial defense, we generate 5 patches per epoch of ad-

versarial training and limit the number of iterations for patch generation to 500. The learning rate for patch
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C.4. IMPLEMENTATION DETAILS

Figure C.4. Visualization of our Energy Attack on Vision Transformers: Similar to Figure 2 of the
main submission, we visualize the A-ViT-Small with and without our attack. We use patch size of 32 for
the attack (on the top-left corner). We show pruned tokens at layer 8 of A-ViT-Small. Our attack can
recover most of the pruned tokens, resulting in increased computation and power consumption.

optimization is increased to 0.8 for faster convergence.

AdaViT Details: We use a learning rate of 0.2 and a batch size of 128 with 4GPUs for patch optimization.

We use AdamW [197] optimizer with no decay and train for 2 epochs with a patch size of 64 x 64. We train

on the ImageNet-1k train dataset and evaluate it on the test set.
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[106] J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. Richemond, E. Buchatskaya, C. Doersch, B. Avila Pires, Z. Guo, M. Ghesh-

laghiAzar, B. Piot, k. kavukcuoglu, R. Munos, andM. Valko, Bootstrap your own latent - a new approach to self-supervised

learning, in Advances in Neural Information Processing Systems, 2020.

125
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