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Abstract

A principal component analysis (PCA) and artificial neural network (ANN) based chemistry tabulation approach
is presented. ANNSs are used to map the thermochemical state onto a low-dimensional manifold consisting of five control
variables that have been identified using PCA. Three canonical configurations are considered to train the PCA-ANN
model: a series of homogeneous reactors, a nonpremixed flamelet, and a two-dimensional lifted flame. The performance
of the model in predicting the thermochemical manifold of a spatially-developing turbulent jet flame in diesel engine
thermochemical conditions is a priori evaluated using direct numerical simulation (DNS) data. The PCA-ANN approach
is compared with a conventional tabulation approach (tabulation using ad hoc defined control variables and linear
interpolation). The PCA-ANN model provides higher accuracy and requires several orders of magnitude less memory.
These observations indicate that the PCA-ANN model is superior for chemistry tabulation, especially for modelling
complex chemistries that present multiple combustion modes as observed in diesel combustion. The performance of
the PCA-ANN model is then compared to the optimal estimator, i.e. the conditional mean from the DNS. The results
indicate that the PCA-ANN model gives high prediction accuracy, comparable to the optimal estimator, especially for
major species and the thermophysical properties. Higher errors are observed for the minor species and reaction rate
predictions when compared to the optimal estimator. It is shown that the prediction of minor species and reaction rates
can be improved by using training data that exhibits a variation of parameters as observed in the turbulent flame. The
output of the ANN is analysed to assess mass conservation. It is observed that the ANN incurs a mean absolute error
of 0.05% in mass conservation. Furthermore, it is demonstrated that this error can be reduced by modifying the cost
function of the ANN to penalise for deviation from mass conservation.
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1. Introduction

The simulation of reacting flows is computationally
expensive. This is in part due to the large number of
thermochemical variables that need to be transported
and the associated computationally expensive evaluation
of chemical source terms and transport coefficients. An
accurate description of the chemical kinetics may require
hundreds of species and reactions, which leads to a very
high computational cost. A smaller thermochemical
state space is thus desired. One way to achieve this is to
limit the reaction mechanism to only a few species, i.e.
a global mechanism. However, such global mechanisms
may not accurately describe fundamental combustion
characteristics such as two-stage ignition or pollutant
formation. An alternative approach is based on mapping
the high-dimensional state space spanned by the thermo-
chemical state vector onto a low-dimensional manifold
(LDM). Such methods can yield a huge reduction in com-
putational cost as the evolution of the thermochemical
system can be uniquely described by a small number of
control variables and thus can be stored in look-up tables.

The use of tabulated chemistry was first introduced by
Peters [1] in their steady laminar flamelet model for non-
premixed flames. A more general theoretical framework
on using intrinsic low-dimensional manifolds (ILDM) has
been proposed by Maas and Pope [2]. Several LDM based
methods have subsequently been proposed that include
the flame prolongation of ILDM (FPI) model by Gicquel
et al. [3], the flamelet-generated manifold (FGM) method
by van Oijen and de Goey [4] and the flamelet progress
variable (FPV) method by Pierce and Moin [5]. In brief,
these LDM combustion models rely on canonical configu-
rations (e.g. one-dimensional premixed flames) to obtain
a high-dimensional state space, which is then projected
onto an LDM and tabulated in a look-up table as a function
of a few control variables (hereby referred to as the con-
ventional tabulation approach). Such models have been
successfully applied in several studies to model turbulent
premixed [4, 6] and nonpremixed flames [5]. However,
most of these studies have been limited to relatively
simple fuels which do not exhibit the multiple combustion
mode structure observed in diesel combustion.

Several challenges arise when extending these methods
to more complex fuels such as n-dodecane, a diesel fuel
surrogate. First, fuels like n-dodecane exhibit complex
two-stage ignition characteristics. Consequently, flames
in diesel engines exhibit a multiple combustion mode
structure consisting of low-temperature chemistry
(LTC) and high-temperature chemistry (HTC). This
makes selecting an appropriate LDM a challenging task.
Second, it is not clear if an LDM consisting of one or two

parametrising variables, as typically used in literature,
gives an accurate representation of the full thermochem-
ical system for complex fuels like n-dodecane. It is
also not clear how LDMs with more than two control
variables can be generated to tabulate the data obtained by
parameter variations in canonical configurations. Third,
tabulation using a structured uniformly-spaced approach
requires large memory, which becomes computationally
prohibitive when tabulation on several control variables
is required and/or multiple variables are needed to
be tabulated. Fourth, a structured uniformly-spaced
approach may not give a smooth representation of the
underlying nonlinear functions due to the prohibitively
large number of data points required, and subsequently
may give rise to numerical instabilities [7].

The limitations of the conventional tabulation approach
can be addressed by using data driven techniques as
described below. The first challenge can be addressed
by using principal component analysis (PCA), a linear
dimensionality reduction technique, to identify an LDM.
The principal components obtained by PCA, unlike
nonlinear dimensionality reduction techniques, are
computationally cheap to compute, have well defined
transport equations for a posteriori simulations [8, 9] and
form an orthogonal basis, which is desirable for presumed
probability density function (PDF) closure methods
[6, 10]. This makes PCA an ideal technique to identify
LDMs. PCA also addresses challenge number two as
an arbitrary number of PCs (up to the dimension of the
full chemical system) can be selected for parametrising
the high dimensional state space. Sutherland and Parente
[9] demonstrated a priori the applicability of PCA for
obtaining an LDM. The variables identified by PCA were
shown to be better at parametrising the high-dimensional
state space than the ad hoc defined control variables
typically used in literature. A posteriori simulations using
the PCA approach have also been conducted [8, 11].

The third and fourth challenges can be addressed by
using machine learning regression techniques to map,
i.e. fit, the high-dimensional state space on to the LDM.
Artificial neural networks (ANNs), in particular, are well
suited for fitting highly nonlinear data. Using ANNS,
tabulation of the thermochemical state space translates to
storing the network architecture and the associated node
weights and thus requires only a modest amount of data
to be stored. Since ANNs learn the underlying functional
form they are expected to yield smooth outputs, which is a
shortcoming of the conventional tabulation approach [7].

A combustion modelling approach based on PCA to
identify LDMs and ANN for tabulating (PCA-ANN ap-
proach) thus has the potential to address all of the chal-
lenges discussed above. A few studies employing ANNs



for combustion modelling have appeared in literature. Sen
et al. [12] used ANNSs to tabulate syngas-air chemistry
for large-eddy simulations (LES). The results with ANN
chemistry tabulation showed good agreement with direct
numerical simulation (DNS) statistics while providing
significant speed-up compared to direct-chemistry inte-
gration. Similar observations were reported by Franke
etal. [13] for LES simulations of methane-air combustion.
Echekki et al. [11] used ANNSs to tabulate principal com-
ponent reaction rates for one-dimensional turbulence sim-
ulations of piloted methane-air flames. The PCA-ANN ap-
proach showed results close to the full transport approach.
Similar results were reported by Malik et al. [14] and Isaac
et al. [15]. Owoyele et al. [16] used ANNSs to tabulate
chemistry for simulation of flames in diesel engine con-
ditions using Reynolds-averaged Navier—Stokes (RANS)
and LES approaches. The results showed that ANNs re-
duce the memory requirement and the chemistry look-up
time while well predicting the flame characteristics. PCA
for selection of LDM was however not considered.

The studies discussed above have shown that the
PCA-ANN approach improves the manifold recon-
struction accuracy and addresses the challenges of
chemistry tabulation discussed above. However, these
studies have focussed on relatively simple fuels like syn-
gas/methane/hydrogen and on simplified configurations
like one-dimensional turbulence and partially-stirred
reactors. No previous study has considered a PCA-ANN
approach for combustion modelling of a 3D turbulent
flame and in diesel engine conditions where a complex
multiple combustion mode flame structure is observed.
The objective of this work is thus to a priori evaluate the
PCA-ANN combustion modelling approach in diesel
engine thermochemical conditions using data from
a recent DNS of a spatially developing turbulent jet
flame [17]. The results from the PCA-ANN model are
compared with optimal estimators and a conventional
tabulation approach and strategies to improve the
PCA-ANN predictions are further discussed.

2. Methodology

We use three canonical configurations to train the
PCA-ANN model. The PCA-ANN model is then a priori
evaluated using data from a DNS of a spatially-developing
round jet turbulent flame in diesel engine conditions. The
canonical configurations, the turbulent flame and the
PCA-ANN methodology are described next.

2.1. Turbulent flame
A DNS of a spatially-developing round jet turbulent
flame in diesel engine conditions is considered. The DNS

are fully described elsewhere [17]. The thermochemical
conditions are the same as that of the Engine Combustion
Network (ECN) Spray A flame. A gaseous partially-
premixed n-dodecane fuel jet was injected into a quiescent
oxidiser at 900 K and 15% O, by volume. The simulation
was conducted until a quasi-steady lifted flame was
established. A 53-species chemical mechanism was em-
ployed [18]. Figure 1 shows a 3D rendering of the flame
coloured by combustion modes [17]. The flame presents
a complex, multi-mode structure featuring LTC and rich
premixed, lean premixed and nonpremixed HTC [17].

Soot
~Non-premixed

Lean HTC
Rich HTC

LiC

Figure 1: 3D rendering of the flame coloured by combustion modes.

2.2. Canonical configuration

In the diesel engine modelling literature, typically
zero-dimensional (0D) homogeneous reactors and
one-dimensional (1D) nonpremixed igniting flamelets
are used to tabulate chemistry. In the current study
we thus evaluate these two configurations. In addition,
two-dimensional (2D) laminar lifted flames stabilised
in a convective mixing layer are considered to generate
a database that accounts for laminar diffusion effects in
both the streamwise and cross-stream directions. The
thermochemical conditions are matched to the turbulent
flame described above in all configurations. The 0D cases
simply consider the ignition of a series of uncoupled con-
stant pressure reactors with initial conditions determined
from the mixing line. The 1D igniting flamelets are solved
in mixture fraction space using the formulation of Pitsch
and Peters [19] as implemented in FlameMaster [20]. A
scalar dissipation rate at stoichiometric mixture fraction
(¢s) of 20571 is selected to represent the values observed
in the turbulent flame near the flame base. A unity Lewis
number assumption was used for scalar transport. The
2D flames correspond to those presented in our previous
study [21]. The fuel and oxidiser streams have the same
inlet velocity, corresponding to the flame propagation
velocity. Mixture-averaged transport properties were
used for the 2D flames. Here, two cases with y; = 45!
and y; = 350 s7! at the inlet are used. Unless otherwise
stated, results are presented with y; =4 57! case.



2.3. PCA

A N x m dimensional dataset [¢] composed of N
samples of the m-dimensional thermochemical state
vector (m = 54, 53 species and temperature) is con-
sidered. The principal components [57] are defined as
[7] = [ATI[R]([¢] — [M]) where [AT] are the eigenvec-
tors of the covariance matrix of [¢], [ M] is the component
wise mean of [@] and [R] is the component wise inverse
of the range of [¢]. Range scaling was chosen because
it captures the highest variance of the dataset in the first
few PCs while the performance for reconstructing species
mass fractions is good for most species. For a detailed
comparison of the various scaling methods see Ref. [22].
A perfect mapping from [5] to [¢] can be obtained if all
principal components are retained. LDMs can be identi-
fied by retaining a subset of []. The choice of the number
of retained 7 is guided by the desire to have the smallest
LDM which captures a required level of variance in the
dataset. In this work, we consider the first five components
which are sufficient to capture ~ 95% of the variance.

The canonical configurations described in Section 2.2
are used to compute [AT], [R] and [M]. These are then
used to compute the principal components for the turbu-
lent flame dataset as, [5-]= [ATI[R1([¢5]1-[M]), where
[¢#+]1s the turbulent flame thermochemical database.

In a posteriori simulations transport equations for n
need to be solved in addition to the usual transport equa-
tions for mass, momentum and energy. This subsequently
requires the chemical source terms (w,), as well as the
mixture thermal conductivity (1), heat capacity (C,),
viscosity (u), diffusion coeflicients (D)) and mean molec-
ular mass (W) to be obtained as functions of 7. It should
be further noted that mass fractions are not required in
the a posteriori simulations, they are however of interest
for post-processing. To ensure a consistent evolution of
the thermodynamic state variables in the flow solver and
the thermochemical database, the approach developed for
tabulated chemistry by Vicquelin et al. [23] can be used.

The chemical source terms for n are defined as,
[wy] = [AT 1[R][wy], where [wy] is the reaction rate
matrix of the high-dimensional thermochemical basis.
Following Biglari et al. [8], the diffusion coefficients
for n are defined as, [Dy] = [AT][Dy], where [Dy]
are the mixture-averaged diffusion coefficients of the
high-dimensional thermochemical basis. ANNSs are used
to store these quantities parametrised by 7. Note that we
only considered a linear PCA approach to avoid the high
cost of computing the kernel function associated with
non-linear PCA [24] for the large training dataset (O(10°)
samples) used in this work.

2.4. ANN

Fully connected dense ANNs are used to fit the
thermochemical quantities on 1. A single, multi-input,
multi-output ANN is used for all species and temperature.
Separate ANNG are used for each w,, and the thermophys-
ical properties. The architecture of the neural networks
is described in the supplementary material. The ANNs
are trained using data from the canonical configurations
described in Section 2.2. The training data are divided
into training and validation sets in a 4:1 ratio. The
training set is used to train the ANNs while the validation
set is used to assess the model performance on new data
and avoid overfitting. The trained ANNs are then used
to predict the quantities for the turbulent flame based on
nr. The adequacy of this mapping is evaluated using the
turbulent flame DNS data. The error in prediction of a

variable y; is defined as, € = \/(y,-—yp,i)z/yiz, where y,, ;

represents the value predicted by the model, y; represents
the value from the DNS and y; represents the mean value
of y;. In addition, the coefficient of determination scores
are presented in the supplementary material. The mean
and median error in the prediction of all species is then
defined as mean and median of {¢; | i = 1,N,}, where N,
is the number of species. To put the results of PCA-ANN
approach in context, we also present results from the
optimal estimator (< ¢|7y,....,17s >), the conditional mean
from the DNS which minimises the error [25]. Note
that sufficient snapshots from the DNS were used to get
converged statistics for the optimal estimator.

3. Results

3.1. Choice of canonical configuration

In this section, we evaluate the canonical configu-
rations and compare their predictions with the DNS.
Figure 2 shows the heat release rate (HRR) condi-
tioned on mixture fraction (£) and progress variable
(Ye=Yco+Yco,+Yn,+Yu,0), the LDM control variables
typically used in literature [26], for the DNS as well as
the three canonical configurations. A few observations
follow. First, the DNS presents a complex combustion
structure consisting of regions of LTC (region inside the
red contour) and HTC (region outside the red contour).
Second, qualitatively both 1D flamelet and 2D flame
resemble the DNS flame structure. Third, the OD reactors,
commonly used in literature for combustion modelling,
show highly enhanced LTC and HTC regions that do
not resemble the DNS. Fourth, the 2D flame appears
closest to the DNS structure. These observations are
consistent with our previous study of LDM combustion
modelling [27] where 2D flames were shown to be better



in predicting the flame structure, both qualitatively and
quantitatively compared to OD reactors and 1D flamelets.
Thus, we will only consider data from the 2D flames for
generating the thermochemical database in the following.
Results obtained with the 0D reactors and 1D flamelets
are presented in the supplementary material.
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Figure 2: Heat release rate conditioned on ¢ and Y, for the DNS and
the various canonical configurations. The red contour marks the LTC

region (where yclestz’ an LTC marker, is greater than 5% of the

maximum [17, 21]).

3.2. Comparison with conventional tabulation

Before presenting the results of the proposed PCA-
ANN model, we present a comparison with the conven-
tional tabulation approach. In the conventional tabulation
approach, typically £ and Y, are used as control variables
for tabulation. In the PCA-ANN approach we use 7 as
control variables. To test the adequacy of PCA to identify
an LDM, we first compare the predictive performance
of tables parametrised by £ and Y, (Tabg y,) with tables
parametrised by 171 and 17, (Tabpcy). The error in the pre-
diction of HRR is used for the comparison due to its impor-
tance in combustion modelling and its complex functional
form. Several uniformly discretised tables with different
grid spacing were obtained from the 2D flame data (at y
=45s71) for the two sets of control variables (the sensitiv-
ity of table resolution is presented in the supplementary
material). The tables with the smallest error were then
chosen. The results show that Taby y, incurs an error of
74% while Tabpc4 incurs an error of 67% in the prediction
of HRR. The lower error for Tabpc4 shows that 7 are bet-
ter in parametrising the high-dimensional manifold. Next,
we evaluate the use of ANNSs instead of a simple linear
interpolation for retrieving the data from the LDM. Using
an ANN reduces the prediction error to 54% and 56% for
the LDMs with £ and Y, and 7; and 7, respectively.

The advantage of the PCA-ANN approach is further
highlighted when using more than two control variables

for tabulation. Our test revealed that using first five n
to train the ANN leads to a prediction error of 42% for
HRR. This is significantly smaller than that obtained with
two components. Using a five-dimensional table with
the conventional linear interpolation approach becomes
infeasible. For instance, tabulating a single variable
parametrised by five control variables (as used here)
with 100 points in each direction translates to storing 10
billion points or ~ 80 gigabytes in memory. Conversely,
the ANN used in this paper (see Section 3.3) to fit all
species and temperature (54 variables) only requires
~ 32000 coefficients (0.25 megabyte of memory). The
retrieval of the thermochemical manifold using the
PCA-ANN approach was also found to be about 2 times
faster than the conventional tabulation approach. It
should however be noted that the computational cost for
retrieving data from ANNs will strongly depend on the
ANN architecture (number of nodes, activation functions
etc.). These results clearly illustrate the advantages of
using ANNs over conventional tabulation approach.

3.3. Prediction of thermochemical manifold

In this section we evaluate a priori the performance of
the PCA-ANN model in predicting the thermochemical
manifold of the turbulent flame. The chemical source
terms that are the most important quantities controlling
the evolution of the thermochemical manifold in a pos-
teriori simulations are considered first. Table 1 lists the
error in the prediction of w,, from the PCA-ANN model
along with the error from the optimal estimator (€,;).
Significant errors are incurred in the prediction of all w,
by both the PCA-ANN model and the optimal estimator.
Compared to the optimal estimator, the PCA-ANN incurs
significantly higher errors for all w,. To identify the

wy € €opt €
wy, | 42% | 25% | 38%
wy, | 50% | 30% | 34%
wy, | 46% | 26% | 31%
56% | 28% | 36%
wys | 85% | 10% | 56%

Table 1: Error in the prediction of w;,, from the ANNs and optimal
estimators.

regions contributing to this error we present the total error
incurred for all reaction rates conditioned on the first
two i ([Za(fi—wy)? 171,121/ Zymaxi(w,,) where f; is the
predicted value for w,,) in Figure 3!. Also presented is

Note that although the results are obtained with five 5, the condi-
tioning is performed on the first two 1 for the purpose of representation
in 2D space.



the result for the optimal estimator. The red contour in the
figure marks the LTC region. A few observations follow.
First, consistent with the observations listed in Table 1,
the ANN incurs higher errors than the optimal estimator in
all regions. Second, the highest errors for the PCA-ANN
model are concentrated in regions of LTC (within the red
contour) and edge-flame (at high 7, values). Quantita-
tively, the error in the LTC region is 77% while the error
in the edge-flame region is 43% for the PCA-ANN model
indicating that modelling LTC is much more challenging
than HTC. The reasons for high errors will be discussed

later in this section. As outlined in Section 2.3, other than
€ €2
1 + . P P n +0.12
ol ‘ r % 0
0 0.5 10 0.5 10 0.5 1
m m Uil

(a) (b) (©

Eopt

Figure 3: Error incurred in the prediction of reaction rates conditioned
on 1y and 175. Note that i7; and 7o have been normalised.

the chemical source terms the thermophysical properties
(Cp,, A, W, D)) need to be obtained as a function of 77in
a posteriori simulation. The PCA-ANN model was found
to yield excellent predictions for these properties with
values within a 1.5% margin from those of the optimal
estimator. For brevity, these results are not presented here
but included in the supplementary material.

The predictions for the species mass fractions are next
compared to the optimal estimator. The mean error in the
prediction of all species is 20% and the median error is
17%. The corresponding mean and median errors from the
optimal estimator are 16% and 10%, respectively. This
result shows that the PCA-ANN model can predict the
thermochemical state with good accuracy, i.e. comparable
to the optimal estimator. This result is significant consider-
ing that the thermochemical state is parametrised by only
five variables and only a single neural network, fitted on
a canonical configuration is able to predict all species ob-
served in the complex turbulent flame with good accuracy.

The results for CO,, OH, CH,0 and C|,H,;0,, the key
species in the two-stage diesel engine combustion are now
discussed. OH is a high-temperature marker, C,,H,0,
is an LTC marker, CH, O is a product of LTC and is of-
ten used in experimental studies to identify LTC regions,
and CO, is a product of the overall combustion process.
Figure 4 presents the scatter plot of mass fractions of
these species against the values predicted by the ANN. Al-
though some scatter is observed, the ANN predictions are

largely concentrated near the DNS values as indicated by
the mean error whichis 11%, 18%, 13% and 30% for CO,,
OH, CH,0 and C,,H,50,, respectively. The PCA-ANN
model thus predicts the major species with good accuracy.
Table 2 lists the five species that incur the highest error in
the PCA-ANN model. Also listed is the error from the op-
timal estimator (€,,,). The results indicate that the species
incurring highest errors are radicals. The highest error is
53% observed for CH,*, a short lived radical. Similar to
the observations for reaction rates, compared with the op-
timal estimator, a significantly higher error is incurred by
the PCA-ANN model for the prediction of minor species.

Species € Eopt

CH,* 53% | 40%
CH, 52% | 41%
CsH, 50% | 32%
pC,H, 37% | 19%
OC,,H,;O0H | 36% | 26 %

Table 2: Error in the prediction of minor species from the ANN and
the optimal estimator.

Y(CO;)

Y(OH) Y(CH,0)  Y(C12H250;)

Figure 4: Scatter plot of mass fraction of major species with DNS
data on the abscissa and the ANN prediction on the ordinate. Note that
normalised values are presented.

It should be noted that although a perfect prediction of
the turbulent flame manifold is not expected, the results
obtained from the PCA-ANN model are worse than the
benchmark of the optimal estimator (best possible pre-
diction for an LDM). This could be due to the following
reasons. First, the canonical configuration used to train
the ANN is not representative of the thermochemical
manifold observed in the turbulent flame. Turbulence-
chemistry interactions can cause the thermochemical
manifold in the turbulent flame to deviate from that of
laminar flames. Turbulence can lead to a large variation
in local parameters like scalar dissipation rate, thus
affecting the evolution of the thermochemical manifold.
Using training data that accounts for the variation of such
parameters can potentially improve predictions, espe-
cially for minor species and w,, which are very sensitive
to parameter changes. This will be revisited in Section
3.4. Second, the ANN is not properly optimised for all



species. Owoyele et al. [16] showed that the accuracy of
the thermochemical basis predicted by the ANN can be
increased if a different ANN is used for prediction of each
species in contrast to using a single ANN for all species.
This was the case in that study because the authors used
the same ANN architecture for both cases. Fitting an indi-
vidual ANN for each species is cumbersome for training,
requires ad hoc assumptions for grouping species in clus-
ters and can be computationally more expensive. Another
advantage of using a single ANN for all species is that the
constraint for mass conservation can be explicitly speci-
fied. This will be further discussed in Section 3.5. For the
present case, tests with fitting an individual ANN for each
species revealed that no appreciable improvement in the
prediction error is observed. Moreover, the errors in the
species mass fractions predicted by the ANN are close to
the optimal estimator values (mean error of 20% vs 16%
for the optimal estimator) which further indicates that the
ANN used in this study is well optimised for all species.

3.4. Influence of more data

As discussed above, training the ANN with data repre-
sentative of parametric changes in the DNS is expected to
improve predictions. To test this, we repeat the analysis
presented above but with ANNS trained using data from
2D flames at two different scalar dissipation rates (4 s~
and 350 s~'). A minor improvement is observed in this
case for prediction of species mass fraction. The mean er-
ror is reduced from 20% to 18%. The maximum error also
reduced from 53% to 47%. However, a major improve-
ment is observed in the prediction of reaction rates. This
is confirmed from the quantitative error values (g, ) ob-
tained with new ANNs that are reported in Table 1. Since
a different dataset (i.e. a combination of two 2D flames)
is used here for computing 7, the i obtained with the new
dataset may not be the same as that obtained previously.
Thus, a one-to-one comparison of the error in w, may not
be meaningful. However, as reported in Table 1, the error
is reduced for all w,,, which s the desired outcome. Figure
3(c) shows the error with the new ANN conditioned on the
first two principal components. In comparison to Figure
3(a), the error in the edge-flame region is considerably
reduced, while a minor reduction is observed in the LTC
region. Quantitatively, the error in the LTC region is re-
duced from 77% to 65% while in the edge-flame region
a decrease in error from 43% to 22% is observed. This re-
sult is consistent with previous studies that show that HTC
is more sensitive to y than LTC [28]. Overall, this clearly
shows that using additional data can significantly reduce
the prediction errors. The advantage of the PCA-ANN
approach is further apparent when using multiple datasets

for tabulation. It provides a straightforward way of iden-
tifying LDMs and storing/retrieving data, which can be
challenging in the conventional tabulation approach.

3.5. Conservation properties

A limitation of using ANN for tabulation is that it is not
clear whether the predicted output satisfies mass conser-
vation and gives physically consistent outputs (e.g. non-
negative mass fractions). To ensure physically consistent
results, the absolute values of the mass fraction predicted
by the ANN were considered in this paper®. The output
of the ANN is now checked for conservation of mass.
The percentage error in mass conservation is defined as
€n = 100 X |1 — %;Y;|. The mean ¢, across all samples
predicted by the ANN for the turbulent flame is less than
0.05% while the maximum ¢, is 4%. Elemental mass
conservation is also satisfied within a maximum 5% error.

To more stringently satisfy mass conservation, one
can modify the ANN cost function to penalise deviation
from mass conservation in addition to the mean squared
deviation for mass fraction of each species. Our test with
the modified cost function revealed that the maximum
error in mass conservation of the ANN output can be
reduced to = 1% by simply adjusting the contribution
of the two components of the cost function without any
appreciable decrease in prediction accuracy. The ANN
can thus be tuned to give physically consistent outputs.

3.6. Discussion

The results show that the PCA-ANN approach is able
to predict species mass fractions and thermochemical
properties with good accuracy in a 3D turbulent jet flame
at diesel engine conditions. However, high errors are
observed in the prediction of the source terms. The
errors reported in this work should be considered in the
context of diesel engine combustion which presents, in
comparison to previous PCA-ANN studies [8, 11, 14, 15],
much more significant modelling challenges due to
its complex multiple combustion mode structure. It
should also be considered that in the present work a 3D
turbulent flame has been modelled using laminar flame
data, a much more challenging problem than previous
PCA studies which consider the same configuration
for training and testing. Nevertheless, the PCA-ANN
approach showed significant improvements over the
conventional tabulation approach which demonstrates

2The problem of negative mass fractions can although be alleviated
by pre-processing mass fractions using a log-scaling, it introduces other
problems like potential mass fraction values of greater than one upon
rescaling. As the net benefit was unclear, log-scaling was not used.



its potential for combustion modelling in diesel engine
conditions. As discussed earlier, consideration of training
data with a variation of parameters (y in the present paper)
yields better results and future work will consider using
multiple datasets to reduce the error within acceptable
limits. It should also be noted that the errors have been
presented for the prediction of instantaneous quantities.
In a posteriori simulations, mean reaction rates are
required, which could compensate for some of the errors
observed for instantaneous quantities. Building upon the
present work, future studies will consider these aspects.

4. Conclusions

A principal component (PCA) and artificial neural
network (ANN) based chemistry tabulation approach
was a priori evaluated using data from a recent direct nu-
merical simulation (DNS) of a spatially developing round
jet turbulent flame in diesel engine conditions. Three
canonical configurations, namely, zero-dimensional (0D)
ignition reactors, one-dimensional (1D) nonpremixed
flamelets and two-dimensional (2D) laminar flames were
used to train the PCA-ANN model. The performance of
the PCA-ANN model was evaluated against the optimal
estimator and the conventional tabulation approach. The
main conclusions are listed below.

1. A qualitative comparison of the canonical configu-
rations with the DNS revealed that the DNS flame
structure is best represented by the 2D flame followed
by the 1D flamelet. The 0D reactors fail to qualitatively
represent the DNS structure.

2. The PCA-ANN model was found to exhibit higher
accuracy while requiring several orders of magnitude
less memory than a conventional tabulation approach.

3. The PCA-ANN model gave excellent predictions,
comparable to the optimal estimator for the thermo-
physical properties and major species. However,
higher errors were observed in the prediction of minor
species and reaction rates.

4. The error in reaction rates predicted by the PCA-
ANN model was found to be concentrated in the
low-temperature chemistry and edge-flame regions.
Training the PCA-ANN network with data with a
variation of scalar dissipation rate was shown to reduce
errors especially in the edge-flame region.
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