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Abstract: Pulmonary arterial hypertension (PAH) is a progressive and fatal disease without a cure.
The exact pathogenic mechanisms of PAH are complex and poorly understood, yet a number of
abnormally expressed genes and regulatory pathways contribute to sustained vasoconstriction and
vascular remodeling of the distal pulmonary arteries. Mammalian target of rapamycin (mTOR) is one
of the major signaling pathways implicated in regulating cell proliferation, migration, differentiation,
and protein synthesis. Here we will describe the canonical mTOR pathway, structural and functional
differences between mTOR complexes 1 and 2, as well as the crosstalk with other important signaling
cascades in the development of PAH. The pathogenic role of mTOR in pulmonary vascular remodel-
ing and sustained vasoconstriction due to its contribution to proliferation, migration, phenotypic
transition, and gene regulation in pulmonary artery smooth muscle and endothelial cells will be
discussed. Despite the progress in our elucidation of the etiology and pathogenesis of PAH over the
two last decades, there is a lack of effective therapeutic agents to treat PAH patients representing
a significant unmet clinical need. In this review, we will explore the possibility and therapeutic
potential to use inhibitors of mTOR signaling cascade to treat PAH.

Keywords: RTK/PI3K/AKT/mTOR pathway; Raptor; Rictor; SMC transition; EndMT

1. Introduction

Idiopathic pulmonary arterial hypertension (IPAH) is a progressive and fatal disease in
which functional and structural changes in the pulmonary vasculature lead to the increase
in pulmonary vascular resistance (PVR) and pulmonary arterial pressure (PAP) [1,2].
Patients with IPAH, if untreated, die mainly because of progressive right heart failure,
and the response of the right ventricle (RV) to the increased afterload is an important
determinant of outcome in patients [3–5].

Regardless of the initial pathogenic trigger, sustained pulmonary vasoconstriction,
concentric pulmonary vascular remodeling, in situ thrombosis, and increased pulmonary
artery (PA) wall stiffness all directly contribute to increasing PVR and PAP in patients
with pulmonary arterial hypertension (PAH) and animal with experimental pulmonary
hypertension (PH) [6,7]. Concentric PA wall thickening is characterized by significant
intimal, medial, and adventitial thickening due to: (i) increased proliferation of pulmonary
vascular endothelial cells (EC), PA smooth muscle cells (PASMC), and fibroblasts (FB),
(ii) inhibited apoptosis of EC and PASMC, and (iii) increased endothelial-to-mesenchymal
transition (EndMT) that converts EC to proliferative myofibroblast (myoFB), a mesenchy-
mal cell with functional and structural characteristics in common with FB and synthetic or
proliferative SMC. Enhanced PASMC proliferation contributes to the concentric PA medial
thickening. The phenotypical transition of slowly growing EC to proliferative myoFB, via
enhanced EndMT, contributes to neointimal formation, intimal thickening, and distal PA
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obliteration [8–10]. The concentric PA wall thickening and intraluminal obliteration in
small arteries and arterioles directly increase PVR and RV afterload in PAH patients.

Multiple cellular and molecular mechanisms are implicated in the development and
progression of pulmonary vascular remodeling through enhanced PASMC proliferation
and migration, such as the signaling cascades involving increases in intracellular free
[Ca2+], downregulation of K+ channels and bone morphogenetic protein (BMP) receptors,
upregulation of transforming growth factor-β (TGF-β) receptors, membrane receptors (e.g.,
Notch and CaSR) and Ca2+-permeable cation channels, and phosphorylation or activation
of cytoplasmic kinases like AKT and mammalian target of rapamycin (mTOR) [11–20].
However, the specific sequence of events involved in the enhanced PASMC proliferation in
PH remains unclear.

When cells, including PASMC, are activated by extracellular mitogenic factors such as
platelet-derived growth factor (PDGF), epidermal growth factor (EGF), fibroblast growth
factor (FGF), insulin-like growth factor (IGF), and endothelin-1 (ET), the AKT/mTOR
signaling pathway plays an important role in regulating cell proliferation, migration, and
apoptosis, much of which has been linked to subsequent activation of the mTOR, an
important downstream signaling protein. In this review, we will focus on the pathogenic
role of the mTOR signaling in the development and progression of PAH and also discuss the
possibility and potential to use specific inhibitors of mTOR signaling cascade to treat PAH.

1.1. The Canonical PI3K/AKT/mTOR Signaling

The PI3K/AKT/mTOR signaling pathway is an important intracellular transduction
system involved in regulating cell proliferation, cell differentiation, gene expression, and
protein synthesis. The family of lipid kinases termed phosphoinositide 3-kinases (PI3K, also
known as phosphatidylinositol 3-kinases) is able to phosphorylate the 3′-hydroxyl group
of the inositol ring of phosphatidylinositol. PI3Ks are divided into three different classes
(I-III) based on their structure, function, and substrate specificities and could be activated
by G protein-coupled receptors (GPCR) and receptor tyrosine kinases (RTK) [21,22]. Upon
binding of the p85 regulatory subunit of PI3K to RTK or GPCR on the cell membrane, the
p110 catalytic subunit is released, translocated to the plasma membrane, and catalyzes the
conversion (phosphorylation) of the phospholipid PI(3,4,5)P3 (PIP3) from the substrate the
phospholipid PI(4,5)P2 (PIP2). This activity of PI3K is negatively regulated by phosphatase
and tensin homologue (PTEN), which dephosphorylates PIP3 back to PIP2 and prevents
further signal transduction (Figure 1). Loss of PTEN is one of the major mechanism for the
excessive activation of PI3K signaling leading to the development of cancer [23,24]. The
second messenger PIP3 then recruits protein serine/threonine kinase-3′-phosphoinositide-
dependent kinase 1 (PDK1) and AKT to the membrane. AKT (also known as protein
kinase B) is a serine/threonine kinase with three isoforms (AKT 1-3). After the recruitment,
AKT is undergoing conformational changes exposing two critical amino acids residues
for phosphorylation. PDK1 phosphorylates AKT at T308 site located in central catalytic
domain whereas PDK2 phosphorylates AKT at S473 site located at C-terminal domain.
Both phosphorylation events are necessary for the complete AKT activation.
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Figure 1. The canonical PI3K/AKT/mTOR signaling. Schematic diagram depicting the canonical PI3K/AKT/mTOR signal-
ing cascade and its proposed effect on cell proliferation, inflammation, metabolism, and gene expression. Upon the acti-
vation of receptor tyrosine kinases (RTK) and/or G protein-coupled receptors (GPCR) by mitogenic ligands and growth 
factors (GF), p85 subunit of PI3K binds to RTK while GPCR activate Ras. Both mechanisms stimulate PI3K/AKT/mTOR 
signaling. AMPK and Redd1 inhibit mTORC1 via the promotion of TSC1/TSC2 assembly. TSC1/TSC2 complex, in turn, 
suppresses a direct stimulator of mTORC1, Rheb. The upregulated mTORC1 regulates a number of downstream targets 
including p70S6K (ribosomal S6 kinase), 4E-BP1 (4E binding protein 1), SREBP (sterol regulatory element binding protein), 
DAP1 (death-associated protein 1) to enhance protein synthesis, cell proliferation, autophagy, and PASMC phenotypical 
switch from contractile to proliferative phenotype. It also has a crosstalk with other major signaling such as HIF (hypoxia-
inducible factor), NF-κB (nuclear factor kappa B), Notch, PPAR (peroxisome proliferator-activated receptor), STAT3 (sig-
nal transducer and activator of transcription 3), TFEB (bHLH leucine zipper transcription factor EB), and YY1 (yin-yang 
1). The downstream targets of mTORC2 include GSK3 (glycogen synthase kinase 3), SGK1 (serum- and glucocorticoid-
induced protein kinase 1), FoxO1 (Forkhead box O1), Snail, Slug to control glycogen production, ion channels activity, 
apoptosis, inflammation, and endothelial transition to mesenchymal phenotype. Rapamycin is able to inhibit mTORC1. 
PI3K, phosphoinositide 3-kinases; PIP2, phospholipid PI(4,5)P2; PIP3, phospholipid PI(3,4,5)P3; PTEN, phosphatase and 
tensin homologue; PDK1, serine/threonine kinase-3′-phosphoinositide-dependent kinase 1; TSC1/2, tuberous sclerosis 
complex 1/2; AMPK, adenosine monophosphate-activated protein kinase; Redd1, DNA damage response 1; Rheb, GTP 
binding protein Ras homolog enriched in brain; MHC11, myosin heavy chain 11; PDGF, platelet-derived growth factor; 
EGF, epidermal growth factor; VEGF, vascular endothelial growth factor; IL-6, interleukin 6; TNF-α, tumor necrosis factor 
alpha; TGF-β, transforming growth factor beta; PDGFR, PDGF receptors; EGFR, EGF receptors; VEGFR, VEGF receptors; 
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Figure 1. The canonical PI3K/AKT/mTOR signaling. Schematic diagram depicting the canonical PI3K/AKT/mTOR
signaling cascade and its proposed effect on cell proliferation, inflammation, metabolism, and gene expression. Upon the
activation of receptor tyrosine kinases (RTK) and/or G protein-coupled receptors (GPCR) by mitogenic ligands and growth
factors (GF), p85 subunit of PI3K binds to RTK while GPCR activate Ras. Both mechanisms stimulate PI3K/AKT/mTOR
signaling. AMPK and Redd1 inhibit mTORC1 via the promotion of TSC1/TSC2 assembly. TSC1/TSC2 complex, in turn,
suppresses a direct stimulator of mTORC1, Rheb. The upregulated mTORC1 regulates a number of downstream targets
including p70S6K (ribosomal S6 kinase), 4E-BP1 (4E binding protein 1), SREBP (sterol regulatory element binding protein),
DAP1 (death-associated protein 1) to enhance protein synthesis, cell proliferation, autophagy, and PASMC phenotypical
switch from contractile to proliferative phenotype. It also has a crosstalk with other major signaling such as HIF (hypoxia-
inducible factor), NF-κB (nuclear factor kappa B), Notch, PPAR (peroxisome proliferator-activated receptor), STAT3 (signal
transducer and activator of transcription 3), TFEB (bHLH leucine zipper transcription factor EB), and YY1 (yin-yang
1). The downstream targets of mTORC2 include GSK3 (glycogen synthase kinase 3), SGK1 (serum- and glucocorticoid-
induced protein kinase 1), FoxO1 (Forkhead box O1), Snail, Slug to control glycogen production, ion channels activity,
apoptosis, inflammation, and endothelial transition to mesenchymal phenotype. Rapamycin is able to inhibit mTORC1.
PI3K, phosphoinositide 3-kinases; PIP2, phospholipid PI(4,5)P2; PIP3, phospholipid PI(3,4,5)P3; PTEN, phosphatase and
tensin homologue; PDK1, serine/threonine kinase-3′-phosphoinositide-dependent kinase 1; TSC1/2, tuberous sclerosis
complex 1/2; AMPK, adenosine monophosphate-activated protein kinase; Redd1, DNA damage response 1; Rheb, GTP
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binding protein Ras homolog enriched in brain; MHC11, myosin heavy chain 11; PDGF, platelet-derived growth factor;
EGF, epidermal growth factor; VEGF, vascular endothelial growth factor; IL-6, interleukin 6; TNF-α, tumor necrosis factor
alpha; TGF-β, transforming growth factor beta; PDGFR, PDGF receptors; EGFR, EGF receptors; VEGFR, VEGF receptors;
ALK, anaplastic lymphoma kinase; ABl, tyrosine-protein kinase ABl; ET, endothelin; 5-HT, serotonin; S1P, sphingosine-1-
phosphate; ATP, adenosine triphosphate; ETA, ET receptor A; CaSR, calcium-sensing receptor; 5HT1, 5HT receptor 1; PAR1,
protease-activated receptor 1; S1PR1, S1P receptor 1; P2Y, purinergic G protein-coupled receptors.

Recently identified potential PDK2 kinases, i.e., DNA-dependent protein kinase (DNA-
PK) and mTOR, are considered as Class IV PI3Ks. mTOR serves as a core component of
two multi-protein distinct complexes: mTOR complex 1 (mTORC1) that is highly sensitive
to rapamycin, insulin, and growth factors, and mTOR complex 2 (mTORC2) that is mostly
insensitive to rapamycin. In both complexes, mTOR acts as serine/threonine protein kinase
involved in the regulation of cell proliferation, survival, transcription, and protein synthesis,
while in mTORC2, it also functions as tyrosine protein kinase, which promotes activation
of insulin receptors and controls the actin cytoskeleton. mTOR complexes (mTORC1 and
mTORC2) consist of the shared and unique components. The shared components include
catalytic subunit mTOR, mammalian lethal with SEC-13 protein 8 (mLST8, also known as
G-protein β subunit-like or GβL), and DEP domain containing mTOR-interacting protein
(DEPTOR). The regulatory-associated protein of mammalian target of rapamycin (Raptor)
and proline-rich AKT substrate 40kDa (PRAS40) are established as the unique proteins for
mTORC1, while rapamycin-insensitive companion of mTOR (Rictor), mammalian stress-
activated map kinase-interacting protein 1 (mSin1) and protein observed with Rictor 1 and
2 (Protor1/2) are found in mTORC2 complex. Unlike mTORC1, mTORC2 is protected from
the inhibitory effect of rapamycin indicating the difference between Raptor-bound mTOR
and Rictor-bound mTOR. Nevertheless, the long-term treatment of rapamycin in some cell
types appears to inhibit free mTOR before it is assembled into mTORC2 complex [25,26].

The interaction between mTOR and its upstream effector AKT are complex and,
somewhat, paradoxical. mTORC1, which is better characterized than mTORC2, is a well-
known target of AKT. AKT suppresses a key indirect regulator of mTORC1, the tuberous
sclerosis complex 1/2 (TSC1/TSC2, also known as hamartin). The TSC1/TSC2 heterodimer,
in turn, blocks mTORC1 by inactivating the GTP binding protein Ras homolog enriched
in brain (Rheb), which directly phosphorylates mTORC1 [27,28] (Figure 1). Additionally,
the stress and hypoxia response genes adenosine monophosphate-activated protein kinase
(AMPK) and Redd1 (DNA damage response 1, also known as RTP801/Dig2/DDIT4) can
promote assembly of TSC1/TSC2 resulting in suppressive effect on mTORC1 pathway.
Moreover, AMPK is able to phosphorylate Raptor at two inhibitory sites [29]. However,
AMPK-mediated negative regulation of mTORC1 could be completely blocked by AKT [30].
Adding to the complexity is that Redd1 seems to interact with hypoxia-induced factor α
(HIF-α) under certain conditions [31,32]. Given that HIF-α, in turn, is activated by mTOR,
the increased PI3K/AKT/mTOR pathway might regulate Redd1 via mTOR-mediated
upregulation of HIF-α [33]. Another AKT-dependent mechanism of mTOR regulation is
the release of mTORC1 inhibitor PRAS40 from the complex. Phosphorylation of PRAS40 at
T246 by Akt and at S183/Ser221 by mTORC1 results in its dissociation and increasing of
mTORC1 signaling [34,35]. The upstream effectors of mTOR are summarized in Table 1.

Unlike mTORC1, mTORC2 (as PDK2) is able to phosphorylate AKT at S473 to com-
plete its full activation. Recent findings support the hypothesis about the positive feedback
loop between AKT and mTORC2. AKT initiates mTORC2 activation by phosphorylating
its subunit mSin1 at T86 site [36]. Therefore, the mechanism of AKT/mTORC2 activation
appears to be the following: AKT is phosphorylated by PDK1 at T308, increased AKT
phosphorylates mSin1 at T86, enhanced mTORC2 phosphorylates AKT at S473, Akt is fully
activated. Although there are debates about the physiological importance of phosphory-
lation at T308 over the S473 site, these two events are certainly independent from each
other. Interestingly, the activity of AKT-T308 phosphorylation alone may be sufficient for
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a subset of its physiological roles while AKT-S473 phosphorylation is required for other
functions [37,38].

Table 1. The list of upstream and downstream targets of mTOR.

Target Position Regulation by mTOR Role Function

RTK Upstream — Activates PI3K mTOR↑
PI3K Upstream — Converts PIP2 to PIP3 mTOR↑
PTEN Upstream — Dephosphorylates PIP3 to PIP2 mTOR↓
PDK1 Upstream — Phosphorylates AKT at T308 mTOR↑
AKT Upstream — Inhibits TSC1/TSC2 mTOR↑
TSC Upstream — Inhibits RHEB mTOR↓

RHEB Upstream — Phosphorylates mTOR mTOR↑
Redd1 Upstream — Activates TSC mTOR↓
AMPK Upstream — Activates TSC mTOR↓

P70S6K Downstream Activation

Activates S6 PASMC growth and proliferation↑

Activates eIF4B
Gene translation↑
Protein synthesis↑

PASMC growth and proliferation↑

Inhibits MHC11 SMC contractile-to-proliferative
transition↑

4E-BP1 Downstream Inhibition Inhibits eIF4E Gene translation↑
Protein synthesis↑

SREBP Downstream Activation — Lipid synthesis↑
DAP1 Downstream Activation — Autophagy↓

SGK1 Downstream Activation — Ion transport↑
Cell apoptosis↑

FoxO1 Downstream Inhibition — Inflammatory response↓

GSK3 Downstream Inhibition
— ER stress↓

Glycogen synthesis↓
Inhibits Snail EndMT↑

Slug Downstream Activation — EndMT↑
HIF-α Downstream Activation — Hypoxia response↑
NF-κB Downstream Activation — Inflammatory response↑
Notch Downstream Activation — Cell-cell interaction↑

PPAR Downstream Activation — Glucose metabolism↓
Lipid metabolism↑

STAT3 Downstream Activation — Immune response↓

TFEB Downstream Activation — Lysosomal biogenesis↑
Autophagy↑

YY1 Downstream Activation — Cell proliferation↑

1.2. Structural and Functional Differences between mTORC1 and mTORC2

mTORC1 implements its regulatory role in protein synthesis through downstream
targets, eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1), and S6 kinase
(S6K, also known as p70 ribosomal S6 kinase or p70S6K) [39]. It activates S6K resulting
in upregulation of S6 and eukaryotic initiation factor-4B (eIF4B) but suppresses 4E-BP1,
which leads to the dissociation of 4E-BP1 from eIF4E (Figure 1). Then eIF4E binds with
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eIF4G to promote translation. mTORC1 is also involved in cell proliferation by positively
controlling the synthesis of lipids, essential components of the plasma membrane, via the
sterol regulatory element binding protein 1/2 (SREBP1/2) and in autophagy by regulating
its suppressor, death-associated protein 1 (DAP1) [40–42]. mTORC1 can stimulate a number
of well-known PH-related pathways such as HIF-1α, Notch, nuclear factor kappa B (NF-κB),
the signal transducer and activator of transcription 3 (STAT3), peroxisome proliferator-
activated receptor γ (PPARγ), yin-yang 1-PPARγ coactivator-1α (YY1-PGC1α), the bHLH
leucine zipper transcription factor EB (TFEB) [43–49]. Compared to mTORC1, much less
is known about mTORC2 signaling network. mTORC2 directly activates serum- and
glucocorticoid-induced protein kinase 1 (SGK1), a kinase controlling ion transport and
growth [50]. Forkhead box O1/3a (FoxO1/3a), an inflammatory responsive transcription
factor, has been established as another mTORC2 target [51,52]. Its positive regulation is
realized via AKT-S473 phosphorylation. mTOR downstream targets are summarized in
Table 1 and will be discussed below.

Besides the divergent upstream and downstream molecules, mTOR complexes in-
teract with each other. The crosstalk between the complexes is not well investigated but
the studies using gain- or loss-of-function approaches towards each of the complexes in
different cell types are able to shed the light on mTORC1/mTORC2 regulation. Thus,
Raptor silencing in mouse hepatocytes or rapamycin treatment in human mesenchymal
stromal cells resulted in the increased phosphorylation of AKT-S473 and insulin-mediated
activation of mTORC2 but not mTORC2 level [53,54]. However, Raptor knockdown did
not affect mTORC2-specific AKT-S473 phosphorylation in PASMC isolated from IPAH
patients [12]. The Rictor-mTOR complex is increased while the Raptor-mTOR complex is
decreased in the setting of enhanced AMPK activity [53]. Vice versa, mTORC1 stimula-
tion inactivates mTORC2 through the inhibition of mSin1 by S6K, which leads to mSin1
dissociation from mTORC2 [55].

The findings from mouse fibroblasts arguing against the idea about negative regulation
between mTOR complexes because Rictor knockout (KO) did not affect TSC2, Raptor, and
S6K [38]. In addition, Rictor overexpression in mesenchymal stromal cells had no effect
on mTORC1 signaling determined by S6K level [54]. Nevertheless, in human fibroblasts
and IPAH-PASMC, mTORC2 appears to be an upstream effector of mTORC1, since Rictor
silencing diminishes the phosphorylation of S6K [12,56]. Available published literature
confirms the complexity of the crosstalk between mTORCs indicating its dependency on
cell type and/or experimental conditions.

The activity and function of mTOR is tightly coupled to its intracellular localization.
When the level of amino acids is low, mTOR is mainly located in the cytoplasm. Upon
growth factors stimulation, it is recruited to lysosomal membranes, however the pools of
mTORC1 are also found in mitochondria and nucleus [57]. mTORC2 appears to exist at
least in two subpopulations: Plasma membrane-localized pool promotes AKT activation in
response to growth factors while lysosomal pool controls the efficiency of autophagy [58].
However, Betz et al. speculated that mitochondria-associated endoplasmic reticulum
membranes appears to be mTORC2 signaling hub [59].

1.3. AKT/mTOR and PASMC Proliferation

Published observations support the importance of AKT/mTOR pathway in pulmonary
vascular remodeling and the development of PAH. Concentric PA wall thickening due to ex-
cessive PASMC growth/proliferation and migration is one of the pathological hallmarks of
the pulmonary vascular remodeling in patients and animals with PH. The pro-proliferative
and pro-survival effect of AKT/mTOR in PASMC has been demonstrated in humans in-
cluding patients with idiopathic PAH (IPAH) and chronic thromboembolic pulmonary
hypertension (CTEPH), as well as in animal PH models, including hypoxia-induced PH
(HPH), hypoxia/Sugen-induced PH (Su/Hyp-PH), and monocrotaline-induced PH (MCT-
PH) [60–67]. The activated mTOR signaling determined by the increased protein levels
of phosphorylated AKT (pAKT-S473 and pAKT-T308), phosphorylated mTOR (pmTOR),
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and its downstream targets has been reported in PASMC in these types or forms of PH.
Accumulating reports provide a strong evidence indicating that both mTOR complexes
play a pathogenic role in the enhanced PASMC proliferation and pulmonary vascular
remodeling in PH.

Genetic approach in animal experiments has demonstrated the importance of the
mTOR pathway in the development of PH (Table 2). Thus, mice with SMC-specific KO of
Pten (PtenSMC−/− mice) manifest spontaneous PH and RV hypertrophy as early as 20 days
after the birth [68]. Compared with WT littermates, PtenSMC−/− mice had the increased
PA wall thickness, occluded precapillary arterioles, and enhanced autocrine SMC growth.
Another group reported features of spontaneous PH in mice with inducible KO of Pten in
SMC at the time of tamoxifen injection although RVSP was not significantly changed [69].
After exposure to hypoxia for four weeks, these mice displayed more severe PH compared
with wildtype controls. The activated AKT signaling has been detected in PA, heart, and
lung tissues from PtenSMC−/− mice, but downstream effectors including mTOR were not
studied. On the other hand, Pten overexpression resulted in the attenuated PH and vascular
remodeling in transgenic mice exposed to hypoxia for four weeks [14]. The exact role of
each AKT isoforms yet to be discovered, however we previously reported that mice with
global KO of Akt1, but not Akt2, were protected against the development of HPH due to
attenuated pulmonary vascular remodeling [14]. Moreover, hypoxia-induced proliferation
of PASMC isolated from Akt1−/− mice was inhibited in comparison with cells from WT or
Akt2−/− mice.

Table 2. The list of in vivo studies demonstrating the role of AKT/mTOR signaling in the development of PH.

Target Method PH model Effect Parameters Ref

Genetic Approach

PTEN Transgenic global
overexpression HPH in mice Inhibition

Pulmonary vascular remodeling↓
RVSP↓

RV hypertrophy↓
PA wall thickness↓

[14]

PTEN Conditional KO in
SMC

Spontaneous PH in
mice (at the age of

20 days)
Promotion

Pulmonary vascular remodeling↑
RV hypertrophy↑

PA wall thickness↑
SMC proliferation↑

[68]

PTEN Conditional and
inducible KO in SMC — — Aorta contractility↓

SMC de-differentiation↑ [70]

PTEN Conditional and
inducible KO in SMC

Spontaneous PH
in mice Partial promotion

RVSP
RV hypertrophy↑

Pulmonary vascular remodeling↑
PA wall thickness↑

[69]

HPH in mice Promotion

RVSP↑
RV hypertrophy↑

Pulmonary vascular remodeling↑
PA wall thickness↑

PDK1 Conditional KO in EC
(heterozygous) HPH in mice Inhibition

Pulmonary vascular remodeling↓
RVSP↓

RV hypertrophy↓
PA wall thickness↓

[71]

AKT1 Global KO HPH in mice Inhibition

RVSP↓
RV hypertrophy↓

Pulmonary vascular remodeling↓
PA wall thickness↓

[14]
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Table 2. Cont.

Target Method PH model Effect Parameters Ref

AKT2 Global KO HPH in mice No effect

RVSP
RV hypertrophy

Pulmonary vascular
remodelingPA wall thickness

[14]

AMPKα2 Global KO HPH in mice Promotion

RVSP↑
RV hypertrophy↑

Pulmonary vascular remodeling↑
PASMC proliferation↑

[72]

AMPKα2 Conditional KO
in EC

Su/Hyp-PH
in mice Promotion

RVSP↑
RV hypertrophy↑

PA wall thickness↓
Pulmonary vascular remodeling↑

[73]

AMPK Conditional KO
in EC HPH in mice Promotion

RVSP↑
RV hypertrophy↑

PA wall thickness↓
[74]

TSC1 Conditional KO
in SMC

Spontaneous PH in
mice (at the age of

10–12 weeks)
Promotion

RVSP↑
RV hypertrophy↑

Pulmonary vascular remodeling↑
PA wall thickness↑

PASMC proliferation↑
SMC de-differentiation↑

[75]

mTOR
Conditional and

inducible KO
in SMC

HPH in mice Inhibition

RVSP↓
RV hypertrophy↓

Pulmonary vascular remodeling↓
PA wall thickness↓

Polycythemia↓

[14,15]

Raptor
Conditional and

inducible KO
in SMC

HPH in mice Partial inhibition RV hypertrophy↓ [15]

Rictor

Conditional and
inducible KO

in SMC

HPH in mice
(at the age of 8–10

weeks)

Negligible
inhibition

RVSP
RV hypertrophy

[15]

Conditional and
inducible KO

in SMC

Spontaneous PH in
mice (at the age of

6–8 months)
Promotion

RVSP↑
RV hypertrophy↑

PA wall thickness↑

Conditional and
inducible KO in EC

HPH in mice
(at the age of 8–10

weeks)
No effect —

Pharmaceutical approach

Sorafenib
(multikinase

inhibitor)

Oral gavage
(10 mg/kg/day) MCT-PH in rats Inhibition

RVSP↓
RV hypertrophy↓

Pulmonary vascular remodeling↓
PA wall thickness↓

PASMC proliferation↓
PASMC apoptosis↑

[76]

Sorafenib
(multikinase

inhibitor)

Oral gavage (10,
30, or

100 mg/kg/day)
MCT-PH in rats Inhibition

RVSP↓
RV hypertrophy↓

Cardiopulmonary remodeling↓
Pulmonary vascular remodeling↓

[77]

Imatinib (RTK
inhibitor)

Oral gavage
(50 mg/kg/day) MCT-PH in rats Inhibition

RVSP↓
RV hypertrophy↓

Pulmonary vascular remodeling↓
PA wall thickness↓

[76]
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Table 2. Cont.

Target Method PH model Effect Parameters Ref

Imatinib
(RTK

inhibitor)

Oral gavage
(100 mg/kg/day) MCT-PH in rats Inhibition

PAP↓
RV hypertrophy↓

Pulmonary vascular remodeling↓
PA wall thickness↓

[60]

Metformin
(AMPK

activator)

Intraperitoneally
(100 mg/kg/day)

HPH in rats Inhibition

Mean PAP↓
RV wall thickness↓
RV hypertrophy↓

PFAT↑
PA contraction↓

PA cell proliferation↓
Endothelial function↑

[78]

MCT-PH in rats Inhibition
Mean PAP↓

RV hypertrophy↓
Survival↑

Metformin
(AMPK

activator)

Oral gavage
(100 mg/kg/day) Su/Hyp-PH in rats Inhibition

RVSP↓
RV hypertrophy↓

Pulmonary vascular remodeling↓
[79]

AICAR
(AMPK

activator)

Intraperitoneally
(1 mg/kg/day) HPH in rats Inhibition

Mean PAP↓
RV hypertrophy↓

Pulmonary vascular remodeling↓
PA wall thickness↓

[80]

Rapamycin
(mTOR

inhibitor)

Oral gavage
(5 mg/kg/day) MCT-PH in rats Inhibition

PAP↓
RV hypertrophy↓

Pulmonary vascular remodeling↓
PASMC proliferation↓

[60]

Rapamycin
(mTOR

inhibitor)

Oral gavage
(1 mg/kg/day) HPH in rats Inhibition

Pulmonary vascular remodeling↓
RVSP↓mPAP↓

PA wall thickness↓
[66]

Rapamycin
(mTOR

inhibitor)

Intraperitoneally
(3 mg/kg/day) HPH in mice Inhibition

RV hypertrophy↓
Pulmonary vascular remodeling↓

PA wall thickness↓
[81]

mTORC1 substrates S6K and 4E-BP are considered as the canonical molecular mecha-
nisms for the increased proliferation of PASMC resulting in distal arteriole muscularization
in HPH [48,66,82–84]. Right ventricular hypertrophy, predominantly due to increased after-
load or increased pulmonary vascular resistance in Su/Hyp rat model of PH, has also been
recently associated with upregulation of mTORC1 not mTORC2 signaling [85]. Multiple
reports showed that many altered upstream pathways mediate signal transduction via
mTORC1 to promote PH. Thus, mTORC1 activation in mice due to SMC-specific deletion of
Tsc1 (Tsc1SMC−/− mice) is necessary and sufficient to increase PASMC proliferation and PA
thickness leading to the development of spontaneous PH under normoxic conditions [75].
Marked activation of mTORC2, pAKT-S473, and glycogen synthase kinase 3 (GSK3) was
detected in PA isolated from Tsc1SMC−/− mice. Although there is a lack of direct evidence
whether GSK3 is a shared target for Rictor and Raptor in PASMC, it appears to be regulated
by both complexes in opposite directions in axon regeneration process: In contrast to
pAKT-T308, mTORC2 and pAKT-S473 suppressed GSK3 phosphorylation [86]. Lee et al.
also showed that downregulated TSC1 promoted mTORC1/S6K pathway under hypoxic
conditions [87]. Global deficiency of another mTORC1 upstream molecule, Ampkα2 (an
AMPK isoform), resulted in the exacerbation of HPH due to excessive PASMC proliferation
(Table 2) [72,88]. mTOR phosphorylation was higher in Ampkα2−/− mice compared with
WT mice under hypoxic conditions indicating the possibility for further activation of the
mTOR pathway.
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Some experiments were performed to identify the specific role of mTORC1 component,
Raptor, in PA medial thickening. Thus, the results by Aghamohammadzadeh et al. showed
that Raptor is required for aldosterone-induced survival pattern of PASMC defined by
enhanced proliferation, viability, and apoptosis resistance through mTORC1/S6K pathway
in Su/Hyp-PH and MCT-PH rats [89]. Our study on mice (at the age of 8–10 weeks)
with SMC-specific deletion of Raptor or Rictor (RaptorSMC−/− or RictorSMC−/−) exposed to
chronic hypoxia for three weeks also showed the predominant pathogenic role of mTORC1
in the concentric PA thickening and the development of HPH [15]. All these data strongly
support the involvement of mTORC1 signaling in the regulation of PASMC proliferation
and survival during PH.

Nevertheless, the role of mTORC2 should not be ruled out since both complexes are
activated and contribute to PASMC proliferation in animals with HPH and MCT-PH and
patients with IPAH [12,60,62,90]. Goncharov et al. demonstrated that mTORC2 promotes
cell proliferation and survival via mTORC1 activation in AMPK-dependent manner [12].
Interestingly, neither Raptor nor Rictor siRNA affected normal PASMC proliferation. The
transgenic mice with serotonin transporter (5HTT) overexpression in SMC exhibit the
mTOR profile similar to hypoxic mice characterized by marked increases in mTORC1
and mTORC2 substrates [75]. Although other studies suggest that serotonin realizes
its mitogenic effects on PASMC through AKT/mTORC1/S6K, it is still unclear whether
mTORC1 activation precedes mTORC2 activation in 5HTT-transgenic mice [91,92]. In
contrast to this, disturbed mTORC2 pathway is able to stimulate cell proliferation under
certain conditions. Additionally, older RictorSMC−/− mice (at the age of 3–6 months)
develop spontaneous PH under normoxic conditions due to increased PDGF receptors
and PA muscularization [15]. It is worth to note that pAKT-S473 was decreased while
pAKT-T308 was not affected in PA isolated from older RictorSMC−/− mice suggesting the
independence between these two events.

Pharmacological experiments in animal models of PH demonstrated the therapeutic
potential to target AKT/mTOR signaling to prevent or inhibit the development of ex-
perimental PH, or reverse established PH (Table 2). A low dose of multikinase inhibitor,
sorafenib (10 mg/kg per day orally administered for 14 days), was able to partially reverse
RVSP and RV hypertrophy in rats with MCT-induced PH [76,77]. In addition, sorafenib
improved vascular remodeling by reducing the number of fully muscularized PAs and
restoring the proliferation/apoptosis ratio in PASMC. Interestingly, the beneficial effect of
sorafenib on hemodynamics and morphological parameters was better than that of imatinib
(RTK inhibitor). Nevertheless, the specific and selective effect of sorafenib or imatinib on
AKT/mTOR expression and/or mTORC1/mTORC2 activity in vivo remains unknown.

AMPK activators (metformin and AICAR) were also therapeutically beneficial in
animals with experimental PH [78–80]. Metformin improved survival in MCT-PH rats
by 40%. Both drugs decreased PA cell proliferation and pulmonary vascular remodel-
ing while metformin additionally had a therapeutic effect on endothelial function and
pulmonary vasoconstriction since it increased carbachol-induced relaxation and reduced
phenylephrine-induced contraction of PA rings isolated from hypoxic rats [78]. Dean et al.
specifically tested metformin in female rats with Su/Hyp-PH and found it suppressed
estrogen synthesis and metabolism [79]. These findings opened new avenues to investigate
further therapeutic effect of metformin on animal models of PH in both females and males
given that sex hormones including estrogen are considered as key mediators of sexually
dimorphic features of PH in humans [93,94].

Rapamycin has been studied in vivo to treat PH for 20 years since the first report
in MCT-PH rats [95]. At the dose of 1-5 mg/kg/day, it showed that rapamycin had a
significant inhibitory effect on the development of HPH and MCT-PH in both prevention
and reversal experiments due to attenuation of pulmonary vascular remodeling [60,66,81].
The authors observed that treatment with rapamycin was more potent than that of ima-
tinib [60]. Moreover, one-week treatment with rapamycin, but not with imatinib, was
also able to significantly reverse established PH in MCT rats. In contrast to imatinib,



Int. J. Mol. Sci. 2021, 22, 2144 11 of 28

rapamycin normalized serum-stimulated proliferation of PASMC isolated from MCT-PH
rats. Mechanistically, imatinib was also less efficient in reducing the levels of pAKT-S473,
pAKT-T308, pGSK3, and pS6K in PASMC than rapamycin [60]. These data indicate that
mTOR pathway could be therapeutically targeted by specific drugs to develop novel and
effective treatments for patients with PAH and other forms of PH.

Moreover, AKT/mTOR has been established as a major mechanism for cell prolifer-
ation induced by growth factors (i.e., PDGF, FGF2) [67]. The activation of AKT/mTOR
signaling was also linked to the enhanced PASMC proliferation induced by thrombin,
blood-coagulation factor [96]. The phosphorylation of mTOR, AKT, and S6K is significantly
increased in response to PDGF [65,97–99]. Besides, PDGF-BB increased the protein levels
of either pAKT-S473 and pAKT-T308 in human PASMC supporting an idea that both
mTOR complexes were activated by PDGF [90]. Additionally, IPAH-PASMC appear to be
more sensitive to PDGF-BB since AKT-S473 and AKT-T308 phosphorylation in response to
PDGF-BB are higher in IPAH-PASMC compared with normal PASMC. Nevertheless, the
signal transduction associated with mTORC1 is considered as a key pathway for PDGF-
induced PASMC proliferation. Thus, S6K inhibition or AMPK activation significantly
reduced PDGF-induced proliferation [67,98,99]. Finally, short-term treatment with ra-
pamycin markedly abolished PDGF effect on PASMC proliferation. It is worth to note that
in our experiments, we failed to detect PDGF receptors in pulmonary arterial endothelial
cells (PAEC) isolated from both normal subjects and IPAH patients probably due to very
low level of expression [90]. Along with this, Ten Freyhaus et al. reported that PDGF-BB
was not able to activate PDGF receptors in human coronary EC [100]. The findings led
us to conclude that pro-proliferative effect of PDGF or thrombin via AKT/mTOR seems
to be unique for PASMC since none of them increased AKT phosphorylation in human
PAEC [96,99].

Given that Ca2+ is a major stimulus for cell contraction, proliferation, and migration,
it is reasonable to propose the involvement of Ca2+ signaling in AKT/mTOR cascade.
Indeed, PDGF induced a rise in cytosolic free Ca2+ concentration ([Ca2+]cyt) in PASMC [90].
In addition, PDGF also enhanced cyclopiazonic acid (CPA)-induced Ca2+ release from
intracellular Ca2+ stores (SR/ER) and store-operated Ca2+ entry (SOCE) [65,99]. Published
reports indicate that rapamycin is very effective in PH treatment due to its inhibitory effect
on SOCE and suppression of PASMC proliferation (Table 2) [49,60,65,82,101]. Rapamycin
also decreased PDGF-mediated upregulation of SOCE components, STIM1, and Orai1 [99].
In addition, blocking of Ca2+-sensing receptor (CaSR) with NPS2390 or transient receptor
potential canonical 6 (TRPC6) with SKF96365 in human PASMC affected AKT/mTOR cas-
cade but the authors did not specify the role of each complex in these experiments [102,103].
The upregulation of both CaSR and TRPC6 in PASMC contribute to the enhanced [Ca2+]cyt
and pulmonary vascular remodeling during PH in our published studies [16,104–106].
Besides, PDGF was unable to realize its stimulating effect on [Ca2+]cyt in the presence of
BAPTA-AM, a membrane-permeable Ca2+ chelator that can accumulate in the cytosol and
intracellular organelles to chelate intracellular free Ca2+ [107,108]. These data shed a great
light on the role of Ca2+ signaling in AKT/mTOR-mediated PASMC proliferation in PH.

mTOR-mediated proliferation is also associated with other critical signaling involved
in the development of PH. For example, PDGF can upregulate HIF-1α protein expression,
transcription factor controlling PASMC proliferation [97]. It indirectly supports the idea
about the role of AKT/mTOR/HIF-1α axis in PDGF-mediated proliferation [64,109]. In-
deed, mTORC1 can specifically activate HIF-1α signaling [45]. However, another study
proposed HIF-1α as a downstream target of Rictor (or mTORC2) but not Raptor (or
mTORC1) [12]. Notch is another major pro-proliferative pathway activated by mTOR [49].
Inability of Notch inhibitor, DAPT (a γ-secretase inhibitor), to abolish the activation of
mTORC1 pathway in mice with HPH suggest that mTOR is an upstream regulator of
Notch. Utilizing mouse lung tissues in these experiments remains an open question about
the validation of crosstalk between mTOR and Notch pathways in PASMC especially given
the fact that Notch regulates mTORC1 in cancer cells [110–112]. Finally, hypoxia-induced
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mTOR promoted the phosphorylation of nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-κB) in PASMC, which contributes to the inflammation due to vascular
injury in PH [48]. It is in line with earlier study by Furgeson et al. demonstrating that
PTEN depletion in culture of SMC increased PI3K/AKT/mTOR and NF-κB activity [113].
Moreover, we previously revealed the pathogenic role of NF-κB in PDGF-induced PASMC
proliferation [114]. The complicated cross-talk between mTOR and other signaling during
the pathogenesis of PH provides a fertile ground for further studies to identify the novel
and therapeutically effective targets for treatment patients with different forms of PH.

1.4. AKT/mTOR and Phenotypical Transition of SMC

It is believed that PAH patients are divided into two groups based on the acute
response to vasodilators during pulmonary vasodilator test: “responders” (or vascular
responsive-PAH) and “non-responders” (vascular non-responsive-PAH) [115]. Pulmonary
vasodilator testing is used to determine the relative contribution of reversible vasoconstric-
tion versus vascular remodeling to choose the effective therapy. If the component of the
reversible vasoconstrictive is significant, it identifies patients who may potentially benefit
from long-term use of Ca2+ channels blockers to reduce PVR and PAP [116]. The positive di-
lation test is not observed very frequently in adults (about 10–15%) while pediatric patients
respond in 40% cases [117–120]. Only half of “responders” in both groups benefit from
long-term therapy with Ca2+ channels blockers [120]. The potential explanation for this
phenomenon is the ultrastructural changes in remodeled vessels and severity of disease be-
tween “responders” and “non-responders”. We believe that at the early stage, or initiation
of disease, the sustained pulmonary vasoconstriction is the major cause for the elevated
PVR/PAP when a patient could be defined as a “responder” to pulmonary vasodilator test.
Then, at the late stage, or progression of disease, the sustained vasoconstriction is replaced
or dominated by vascular remodeling characterized by the adventitial, medial, and intimal
hypertrophy of the pulmonary arteries, the intraluminal obliteration and occlusion of small
pulmonary arteries and arterioles, and the neointimal and plexiform lesions in the pul-
monary vasculature when patients have symptoms or require medical/surgical treatment.
This hypothesis has support from animal models of PH where the “early” changes of the
vessels are always the increased vasoconstriction and vascular tone (within a couple of
weeks), then ultrastructural changes take place in EC (e.g., via EndMT) and SMC (e.g., via
contractile-to-proliferative phenotypic transition and enhanced cell growth/proliferation)
to initiate “remodeling” or concentric wall thickening and occlusive intimal lesions (which
may also include inflammation-associated intimal, medial, and adventitial lesions).

Recent studies suggest the molecular differences in “responders” and “non-responders”.
Hemnes et al. concluded that vascular smooth muscle contraction genes were more en-
riched in the “responders” suggesting that sustained vasoconstriction at early stage of PH
or in less severe forms of PH could be a result from the layer of differentiated PASMC in
contractile state [121]. Contractile PASMC are responsible for the regulation of vascular
tone due to their contraction ability. However extremely plastic PASMC can de-differentiate
from contractile (or quiescent) to proliferative (or synthetic) phenotype in response to many
stimuli, i.e., hypoxia or PDGF [122–124]. The concept of phenotypic switch leading to the
excessive PASMC proliferation and PA thickening is well accepted in the development and
progression of PAH [124–126]. We previously showed that PASMC de-differentiation is me-
diated, at least in part, by a switch in Ca2+ signaling [105]. Thus, contractile PASMC have
the increased voltage-dependent Ca2+ entry while PASMC in proliferative state exhibit the
enhanced receptor-operated and store-operated Ca2+ entry.

The studies on SMC plasticity demonstrated that AKT/mTOR pathway appears to
trigger cell de-differentiation [127–129]. The decreased expression of PTEN in SMC has
been recently established as an initial event promoting phenotypic switch through the
activation of serum response factor, transcription factor controlling SMC contractile gene
expression [70]. Earlier, the same group generated PtenSMC−/− mice, which manifest
spontaneous PH due to severe SMC hyperplasia [68]. The nuclear HIF-1α expression
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was increased in SMC isolated from PtenSMC−/− mice confirming AKT/mTOR-mediated
regulation of HIF-1α. These findings are in line with the investigation by Houssaini
et al. on Tsc1SMC−/− mice, which developed marked pulmonary vascular remodeling
characterized by higher density of muscularized pulmonary vessels and PA thickness due
to loss of SMC contractile phenotype [75]. The authors linked the lack of contractile protein
myosin heavy chain 11 with mTORC1/S6K activation. The published literature provided
a compelling evidence that mTORC1/S6K pathway stimulated SMC de-differentiation
while rapamycin restored contractile morphology and decreased collagen synthesis by
40–60% [127,130–133]. Furthermore, Zhan et al. proposed AMPK/TSC2/mTORC1/S6K
molecular mechanism in osteoblastic differentiation model of vascular SMC induced by β-
glycerophosphate [133]. Taken together, these data determined the critical role of mTORC1
complex in SMC phenotypic transition (Figure 2).

The knowledge about the involvement of mTORC2 in this process is limited; nev-
ertheless, a few reports suggest the opposite roles of two complexes in SMC transition
towards synthetic state. Martin et al. proposed the mechanism by which rapamycin
promotes vascular SMC differentiation [131]. The phosphorylation of AKT-S473 was corre-
lated with the restoration of contractile protein expression in SMC treated with rapamycin.
Moreover, pre-treatment of cells with IGF-1 resulted in the enhancement of rapamycin
effect indicating the potential activation of mTORC2. Similar observations came from
the study by Hayashi et al. showing that the treatment of vascular SMC with IGF-1 led
to the maintenance of differentiated phenotype by triggering PI3K/AKT cascade [134].
The recent publication based on in vivo and in vitro studies demonstrated that mTORC1
and mTORC2 differently orchestrate cell-fate program in mesenchymal stromal cells [54].
Rapamycin prevented osteoblast differentiation and calcification of mesenchymal stromal
cells due to inhibition of mTORC1/S6K pathway and stimulation of mTORC2/AKT-S473
signaling. These results shed the light on SMC phenotype transition, which is mediated by
the existing negative regulation between two mTOR complexes, but the exact mechanism
has to be determined.

1.5. AKT/mTOR in SMC-EC Communication

The interaction between EC and SMC constantly exposed to the close contact and
paracrine regulation are fundamental for the pathogenesis of diverse cardiovascular dis-
eases including PH. The very early studies provided the first evidence that EC promotes
SMC differentiation from synthetic to quiescent state by changing morphology, gene expres-
sion pattern, and cell contractility [135–138]. However, the specific paracrine mechanism
responsible for the phenomenon was not identified at that time. Later, Brown et al. revealed
the transition from proliferative to contractile phenotype in both the EC/SMC bilayer co-
culture and SMC cultured alone in the conditioned medium collected from co-cultured
EC/SMC [139]. The SMC differentiation was associated with the rapid phosphorylation
of AKT-S473 (mTORC2 target) and the subsequent upregulation of differentiation protein
markers. The conditioned medium collected from EC or SMC cultured alone did not
induce SMC differentiation. In contrast, the conditioned medium from EC promoted SMC
proliferation, migration, and protein synthesis [140]. In addition, it is a well-known fact
that PDGF promotes SMC phenotypic transition from contractile to proliferative phenotype
but some investigators speculated about the ability of PDGF to maintain SMC differenti-
ation [134,141–143]. The analysis of published literature led us to conclude that it is not
just one-way controlling SMC phenotype by AKT/mTOR pathway but rather a balancing
differentiation/de-differentiation process depending on the specific conditions.
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Figure 2. Pulmonary arterial smooth muscle and endothelial mTOR signaling in pulmonary vascular remodeling. Sche-
matic diagram depicting the potential pathogenic role of the AKT/mTOR signaling in the development and progression 
of pulmonary hypertension (PH). Pulmonary vascular remodeling, such as concentric pulmonary arterial wall thickening 
due to pulmonary arterial smooth muscle (PASMC) proliferation and occlusive intimal lesions due to PASMC migration 
and pulmonary arterial endothelial cell (PAEC) injury and endothelial-to-mesenchymal transition (EndMT), is a major 
cause for the elevated pulmonary vascular resistance (PVR) and pulmonary arterial pressure (PAP) in patients with pul-
monary arterial hypertension (PAH) and in animals with experimental PH. Activation of AKT/mTOR signaling or in-
creased mTORC1 and mTORC2 activity in PASMC promotes contractile-to-proliferative phenotypic transition and en-
hances PASMC proliferation, which result in concentric pulmonary vascular wall medial hypertrophy and thickening. 
Activation of AKT/mTOR signaling or increased mTORC1 and mTORC2 activity in PAEC promotes EndMT, while 
EndMT-derived fibroblasts are involved in the development of occlusive intimal lesions and neointimal formation result-
ing in obliterative occlusion in small vessels. The mTORC1/mTORC2-mediated increases in gene expression and protein 
translation in PASMC and PAEC also enhance the synthesis and release of mitogenic factors (e.g., PDGF, VEGF, NAMPT) 
and ligands (e.g., ET-1) and stimulate PASMC/PAEC proliferation via autocrine and/or paracrine mechanisms. The 
mTORC1/mTORC2-mediated upregulation of membrane receptors, ion channels, and inflammatory ligands is also in-
volved in the development concentric medial thickening and obliterative intimal lesions. PDGF, platelet-derived growth 
factor; VEGF, vascular endothelial growth factor; NAMPT, nicotinamide phosphoribosyltransferase; ET-1, endothelin-1. 

The knowledge about the involvement of mTORC2 in this process is limited; never-
theless, a few reports suggest the opposite roles of two complexes in SMC transition to-

Figure 2. Pulmonary arterial smooth muscle and endothelial mTOR signaling in pulmonary vascular remodeling. Schematic
diagram depicting the potential pathogenic role of the AKT/mTOR signaling in the development and progression of
pulmonary hypertension (PH). Pulmonary vascular remodeling, such as concentric pulmonary arterial wall thickening due
to pulmonary arterial smooth muscle (PASMC) proliferation and occlusive intimal lesions due to PASMC migration and
pulmonary arterial endothelial cell (PAEC) injury and endothelial-to-mesenchymal transition (EndMT), is a major cause
for the elevated pulmonary vascular resistance (PVR) and pulmonary arterial pressure (PAP) in patients with pulmonary
arterial hypertension (PAH) and in animals with experimental PH. Activation of AKT/mTOR signaling or increased
mTORC1 and mTORC2 activity in PASMC promotes contractile-to-proliferative phenotypic transition and enhances PASMC
proliferation, which result in concentric pulmonary vascular wall medial hypertrophy and thickening. Activation of
AKT/mTOR signaling or increased mTORC1 and mTORC2 activity in PAEC promotes EndMT, while EndMT-derived
fibroblasts are involved in the development of occlusive intimal lesions and neointimal formation resulting in obliterative
occlusion in small vessels. The mTORC1/mTORC2-mediated increases in gene expression and protein translation in PASMC
and PAEC also enhance the synthesis and release of mitogenic factors (e.g., PDGF, VEGF, NAMPT) and ligands (e.g., ET-1)
and stimulate PASMC/PAEC proliferation via autocrine and/or paracrine mechanisms. The mTORC1/mTORC2-mediated
upregulation of membrane receptors, ion channels, and inflammatory ligands is also involved in the development concentric
medial thickening and obliterative intimal lesions. PDGF, platelet-derived growth factor; VEGF, vascular endothelial growth
factor; NAMPT, nicotinamide phosphoribosyltransferase; ET-1, endothelin-1.
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SMC-EC communication in PH has been also demonstrated in vivo, for example, in
PtenSMC−/− mice with enhanced susceptibility to severe HPH [69]. Animals exhibited
occlusive vascular lesions characterized not only by medial thickening but also by plexi-
form intimal lesions due to hyperproliferative EC, a hallmark of human PAH but rarely
observed in mouse HPH model. On the other hand, EC-specific deletion of Pdk1 gene
in mice was able to improve HPH via the inactivation of AKT/mTORC1 pathway in PA
tissue and the attenuation of PA muscularization [71]. In our experiments, conditional and
inducible KO of Rictor in EC failed to protect mice from the development of HPH sug-
gesting a negligible role of endothelial mTORC2 (Table 2) [15]. Additionally, Omura et al.
reported that normal mouse PASMC had the increased proliferation after stimulation with
the conditioned medium collected from ex vivo incubation with lungs (predominantly
consisted of EC [144]) isolated from mice with HPH [74]. Although the profile of endothe-
lial AKT/mTOR remained mostly unknown, these studies provided the evidence about
AKT/mTOR-mediated communication between EC and SMC in the development of PH
(Figure 2).

1.6. AKT/mTOR and EC Dysfunction

Our knowledge on AKT/mTOR signaling mainly comes from studies on SMC func-
tion, while little is known about the role of endothelial mTOR in PH. Two recent inde-
pendent studies on mice with constitutive deletion of Ampk or its isoform Ampkα2 in EC
(AmpkEC−/− or Ampkα2EC−/− mice) demonstrated that endothelial mTORC1 contributes to
the pulmonary vascular remodeling and development of experimental PH (Table 2) [73,74].
The first in vitro reports appeared on the role of mTOR signaling in EC exposed to hypoxia.
Thus, Li et al. performed time-course experiments using rat aortic EC treated with hy-
poxia for 24 h and concluded that hypoxia-induced EC proliferation required both mTOR
complexes [145]. Interestingly, mTORC1 activation at early response to hypoxia precedes
stimulation of mTORC2 axis. Consistently, overexpression of mTOR was sufficient to
enhance proliferation of rat aortic EC under normoxia or hypoxia [146]. Moreover, the
conditioned medium collected from hypoxic PAEC had higher concentrations of PDGF
isoforms and mitogenic effect on PASMC measured by [3H]-thymidine incorporation tech-
nique and flow cytometric analysis [147]. The similar pro-proliferative effect was observed
using the conditioned medium collected from human umbilical vein endothelial cells
(HUVEC) after hypoxic exposure but it was not due to release of PDGF, indicating the
potential role of other growth factors [148].

These data are in line with other studies as higher protein expression of PDGF-BB was
detected in human or bovine PAEC exposed to hypoxia [149,150].

We also recently reported that the proliferation rate is higher in normal or IPAH
PASMC cultured in the conditioned medium collected from PAEC due to PDGF released to
the medium [90]. PDGF isoforms concentration detected by ELISA assay was significantly
higher in the conditioned medium collected from IPAH PAEC compared with normal
PAEC. Besides, the conditioned medium from PAEC was able to activate PDGF receptors
and AKT/mTOR signaling in both normal and IPAH PASMC. These data are in line with
the previous in vivo studies using HPH and MCT-PH models in rats demonstrating the
upregulation of PDGF receptors and isoforms in lung tissue and higher concentration of
PDGF-AA and PDGF-BB in plasma isolated from PH rats [151]. In addition, PDGF-BB
level in lung tissues and PASMC proliferation were increased in AmpkEC−/− mice with
the exacerbated PH after exposure to hypoxia [74]. It is worth noting that the conditioned
medium prepared from ex vivo incubation with lungs from hypoxic AmpkEC−/− mice
promoted normal mouse PASMC proliferation compared to hypoxic WT lungs. Overall,
these findings imply that PAEC stimulate PASMC proliferation in a paracrine manner due
to, at least, PDGF release and activation of SMC AKT/mTOR signaling, leading to medial
thickening and pulmonary vascular remodeling in PH (Figure 2).

In addition to the promoting effect on PASMC proliferation and migration via a
paracrine mechanism and direct cell-to-cell interaction through gap junctions and Notch
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signaling, EC also contribute to the development of PH by undergoing EndMT, the con-
version from a fully differentiated, slowly growing phenotype to a highly proliferative,
mesenchymal (myoFB or SMC-like) morphology [152,153]. EndMT has recently been es-
tablished as an important component of PH phenotype [8,9,154]. At the molecular level,
EndMT is characterized by activating key drivers such as Snai1 (Snail), Snai2 (Slug), Twist,
ZEB, and switching from EC specific gene pattern to mesenchymal phenotype [153,155].
The elegant study by Song et al. explored whether PDGF signaling is involved in EndMT
program using in vivo and in vitro approaches [151]. Mechanistically, the increased protein
level of PDGF-A and PDGF-B in PAEC was correlated with EndMT induced by hypoxia.
The treatment of PAEC with either PDGF-AA or PDGF-BB for 72 h resulted in EndMT
promotion however PDGF-BB exhibited higher potency to induce EndMT. Furthermore,
PDGF-BB siRNA attenuated hypoxia-mediated EndMT pattern. EndMT observed in differ-
ent models of PH was inhibited by imatinib, PDGFR antagonist, due to upregulated CD-31
and downregulated fibronectin and vimentin [151,153,156,157].

Both PDGF-AA and PDGF-BB increased TGF-β1 expression in PAEC but TGF-β1, a
well-known promoter of EndMT, enhanced PDGF-BB but not PDGF-AA in PAEC sug-
gesting the positive reciprocal regulation between PDGF-BB and TGF-β1 [151]. Unfortu-
nately, the authors did not attempt to investigate the role of AKT/mTOR in these experi-
ments. Abundant evidence from the published literature demonstrated that components of
AKT/mTOR signaling are critical factors for epithelial-to-mesenchymal transition (EMT)
during carcinogenesis but some studies also shed a light on the relationships between
AKT/mTOR and EndMT [158–162]. Thus, 48-h treatment of HUVEC with TGF-β1 led
to the significant enhancement of EndMT, motility, and migration ability along with the
activation of mTORC1/S6K axis [163]. In rats with HPH, the increased TGF-β1 inacti-
vated PTEN to trigger PASMC proliferation and resistance to apoptosis via AKT signaling
contributing to pulmonary vascular remodeling [164]. In lung FB, TGF-β launched the
metabolic reprogramming by driving mTORC1 [165]. Hypoxia-mediated EndMT provoked
mTORC1 phosphorylation in PAEC while the treatment with recombinant human BMP-7
markedly suppressed both events [166]. It is worth to note that BMP-7 deficiency was
enough to induce spontaneous EndMT and PAEC migration under normoxic conditions
but further investigations would be needed to define the cross-talk between mTOR and
TGF-β family. In contrast, in mammary epithelial cells knockdown or pharmacological
inhibition of mTORC1 triggered EMT characterized by the induction of the mesenchymal
markers such as fibronectin, vimentin, together with the repression of epithelial markers
such as E-cadherin [167]. The authors proposed the underlying mechanism as TGF-β-
independent. In addition, two independent studies established the AKT/mTOR/S6K
pathway as a necessary positive mediator for bleomycin-induced EndMT as bleomycin
failed to transform HUVEC after treatment with rapamycin [168,169].

Although it is still unclear how mTORC1 and its downstream targets regulate EndMT,
there are some speculations about the regulation of Snail and Slug by mTORC2. At
first, Rictor silencing prevented human PAEC from undergoing phenotypical changes
linked to EndMT induced by interleukin-13 [170]. Secondly, knockdown of Rictor but
not Raptor enhanced Snail proteasomal degradation leading to its reduced expression in
GSK3-dependent manner [171]. Thirdly, IGF-1 treatment significantly decreased expression
of E-cadherin due to upregulated Snail and Slug but had no influence on Twist and ZEB1
levels in human ovarian cancer cells [172,173]. Rapamycin successfully reversed EMT
by restoring E-cadherin [173,174]. Lastly, Rictor shRNA did not alter E-cadherin level
while Raptor shRNA reduced E-cadherin expression [173]. Moreover, RAPTOR-deficient
cells exhibit the increased pAKT-S473 and suppressed GSK3 along with the activation of
E-cadherin transcriptional repressors such as Snail, ZEB1 and Twist resulted in EMT.

Furthermore, the new elegant study by Mammoto et al. provided strong evidence that
EndMT in PAEC and PDGF-mediated excessive PASMC proliferation could be interdepen-
dent in PH [175]. The authors found that TWIST1 overexpression increased PDGF-B protein
in human PAEC. The most excited findings are that the conditioned medium collected
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from TWIST1-overexpressed PAEC stimulated PASMC DNA synthesis and migration in
response to PDGF while TWIST1-silenced PAEC exhibit the opposite effect. Additionally,
endothelial Twist1 also mediated hypoxia-induced PDGF-B expression and DNA synthesis
in PASMC culturing in the conditioned medium collected from hypoxic PAEC.

In summary, these results together demonstrated that EC could contribute to neointi-
mal formation, intimal thickening, and distal PA obliteration during PH by two AKT/mTOR-
dependent mechanisms: Directly—via transformation into mesenchymal cells with pro-
proliferative and apoptosis-resistant abilities, and indirectly—through stimulation of SMC
proliferation and migration in a paracrine manner by releasing growth factors (Figure 2).
The new avenues opened for investigations would uncover the molecular mechanisms of
the interaction between these two events, which is critical to our elucidation of the etiology
and pathogenesis of PH.

1.7. AKT/mTOR Signaling as a Therapeutic Target for PH

The evidence from published research works has generated significant interest for
targeting the components of AKT/mTOR pathway for PH therapy. The potential thera-
peutical agents for PH treatment could be from the group of RTK inhibitors (i.e., imatinib),
PI3K inhibitors, AMPK activators, AKT inhibitors, and mTOR inhibitors (e.g., rapamycin),
however not all of them are under development in clinical trials to treat PH.

Imatinib (sold under the brand name Gleevec®) was the first RTK blocker approved
by FDA to treat cancer in 2001. As the first significant compound with the ability to reverse
pulmonary vascular remodeling in animal experiments, it attracted great interest from
PH community specialists [176]. Later, in 2005, the group of investigators reported a
therapeutic potential of imatinib as an add-on in a 61-year-old patient with PAH who did
not responded to the triple therapy (dual endothelin A and B receptor antagonist, bosentan;
a phosphodiesterase 5 inhibitor, sildenafil; and an analog of prostacyclin, iloprost) [177].
It led to significant improvement in PVR (32%) and the 6-min walking distance (6MWD)
test (47%). The results from the first randomized, double-blind, placebo-controlled trial
became available in 2010 [178]. This Phase II study was designed to assess the safety,
tolerability, and efficacy of imatinib in 59 patients with PAH (NCT00477269). Analysis of
42 patients that completed six-month therapy showed significant decrease in PVR and
increased in cardiac output (CO); nevertheless, 6MWD was not changed in the imatinib
group compared to the placebo. Unfortunately, adverse effects such as nausea, headache,
and edema were observed in 11 patients in both groups (Table 3).

Table 3. The list of pharmaceutical drugs used in clinical trials for PAH patients.

Drug Dose N of Par-
ticipants Status Results Effect Adverse Effects Identifier

Imatinib RTK
inhibitor) — 130 Completed Not

available — — NCT01092897

Imatinib (RTK
inhibitor)

200–400 mg
orally once

daily
59

Completed (24-week
randomized,
double-blind,

placebo-controlled)

Available
[178]

PVR↓
CO↑

Nausea,
headache,

peripheral edema
NCT00477269

Imatinib (RTK
inhibitor)

200–400 mg
orally once

daily
202

Completed (24-week
randomized,
double-blind,

placebo-controlled)

Available
[179]

PVR↓
mPAP↓

CO↑
6MWD↑

Cardiac failure,
subdural hematoma,
dyspnea, worsening

PAH

NCT00902174

Nilotinib (RTK
inhibitor)

50–300 mg
orally twice

a day
23 Terminated (due to

serious adverse events)
Not

Available —

Cardiogenic shock,
right ventricular

dysfunction, gastric
ulcer hemorrhage,

cholecystitis,
hepatitis

NCT01179737
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Table 3. Cont.

Drug Dose N of Par-
ticipants Status Results Effect Adverse Effects Identifier

Sorafenib
(multikinase

inhibitor)

200–400 mg
twice daily 12 Completed (16-week,

open-label)
Available

[180] CO↓

Diarrhea,
hand–foot

syndrome, rash,
alopecia

NCT00452218

Metformin
(AMPK

activator)

500 mg–1000 mg
orally once or

twice daily
1899 Recruiting Preliminary

[181]

RVSP
6MWD

RV function↑
RV lipid
content↓

— NCT01884051

Metformin
(AMPK

activator)

1000 mg orally
twice daily 130 Recruiting Not

available — — NCT03617458

Rapamycin
(mTOR

inhibitor)
— 25 Recruiting Not

Available — — NCT02587325

The similar results were received in two following-up clinical trials: The observation
study in Switzerland on 15 patients and Phase III multinational study IMPRES on 202 pa-
tients (NCT00902174) [179,182,183]. Severe side effects including subdural hematomas in
4–5% cases led the sponsors to adjust the international normalized ratio from 2.5 to around
2.0, which limited the use of imatinib as add-on therapy in PAH [184].

Given the existence of cancer paradigm of PAH, it was expected that several clinical
trials were initiated to test other RTK inhibitors approved as cancer therapeutics in the set-
ting of PAH. Thus, nilotinib (PDGF receptor, c-Kit, and Abl antagonist) showed promising
results in preclinical experiments on fos-related antigen 2 transgenic mice as novel model
for systemic sclerosis-associated PAH [185]. Histological abnormalities such as intimal
thickening with concentric laminar lesions, medial hypertrophy, perivascular inflamma-
tory infiltrates, and adventitial fibrosis mimicked the main characteristics in humans and
indicated the severity of the disease. Oral treatment with nilotinib for eight weeks resulted
in strong improvement of proliferative vasculopathy and lung fibrosis. Unfortunately, a
phase II clinical trial initiated in 2010 was prematurely terminated due to serious adverse
effects including cardiac, gastrointestinal, and hepatobiliary disorders (NCT01179737).

Another multi-kinase inhibitor, sorafenib, which previously showed effectiveness
in animal models of PH, was tested in clinical trials (Table 3) [76,77]. The first report on
safety, tolerability, and exploratory efficacy evaluation of sorafenib in patients with PAH in
2010 demonstrated that sorafenib was well tolerated at 200 mg twice daily in 12 patients
(NCT00452218) [180]. Although sorafenib generated a modest improvement, the authors
did not recommend “compassionate” use of this drug for PAH treatment (Table 3). In
fact, 30–40% patients displayed sorafenib-related manageable adverse events (hand-foot
syndrome, rash, and alopecia). All participants were receiving parenteral prostanoid
therapy, which made it difficult to extrapolate the safety for the determined dose regimen
to patients with other PAH therapies or without any treatments. Recently, the small study
by Kimura et al. confirmed favorable effects of sorafenib (100–400 mg/day) to improve
symptoms in refractory PAH with similar tolerated adverse events [186].

Clinical experience with other RTK inhibitors such as nilotinib, bosutinib, lapatinib,
ponatinib, carfilzomib, dasatinib, and ruxolitinib urges caution because they appeared
to be associated with the development of subclinical PAH in the treatment of cancer
patients [187–190]. Of these, dasatinib have the strongest documented ability to induce
PAH [191,192]. Using echocardiography to estimate non-invasively the mean tricuspid
regurgitation peak gradient, which reflects PAP, Minami et al. observed possible PAH onset
in 10% and 13.2% patients with chronic myeloid leukemia (CML) treated with nilotinib
and dasatinib, respectively [193]. Of note, 2.7% CML patients treated with imatinib also
displayed drug-induced PAH. A new pharmacovigilance-pharmacodynamic study aimed



Int. J. Mol. Sci. 2021, 22, 2144 19 of 28

to answer why RTK blockers paradoxically have been linked to both cause and treatment
for PAH [190]. A positive disproportionality signal was found for dasatinib, bosutinib,
ponatinib, ruxolitinib, and nilotinib indicating that the benefits unlikely outweigh the risks
for use in humans. The authors highlighted potential roles of BMP signaling pathway and
the Src protein kinase family in the pathophysiology of RTK-induced PAH. Undoubtedly,
further exploring of the underlying mechanisms would provide important information to
combat this rare and severe adverse event.

Promising results from animal studies with AMPK activator, metformin, provided
the rationale to test its therapeutic effect in PAH patients. In a recent Phase II clinical trial,
Brittain et al. demonstrated compelling evidence that metformin therapy was safe and well
tolerated in 20 patients with PAH [181]. Although no changes were reported in RVSP and
6MWD, RV function and lipid deposition were significantly improved. Only one patient
did not reach the target dose of metformin due to side effects. The most common side
effects included diarrhea, heartburn, and abdominal pain while no serious adverse effects
were documented. Another Phase II, randomized, blinded clinical trial on 130 subjects was
initiated in 2018 to assess metformin effect on 6MWD, WHO functional class, RV function,
and lipid content (NCT03617458).

Inhibition of mTOR by rapamycin (sirolimus, rapamune) appears to be a prime target
for developing another strategy for PAH treatment. Rapamycin was purified from a soil
bacterium Streptomyces hygroscopicus in the early 1970s and originally was proposed to
be used as antifungal agent. Later, potent immunosuppressive and cytostatic anti-cancer
activity was revealed, which received a significant interest from pharmaceutical companies
to launch multiple clinical trials [194–196]. As an immunosuppressant, it was approved by
FDA in 2003 for kidney transplantation. In addition, in 2010, Wessler et al. reported a case
study on PAH improvement in a 61-year-old patient who received rapamycin treatment
due to pancreatic cancer [197]. The results from the first pilot trial to evaluate the safety
and efficacy of rapamycin analog, everolimus, to treat severe PAH became available in
2013 [198]. Out of 10 PAH patients (8 with IPAH and 2 with CTEPH) enrolled in the study,
8 completed everolimus therapy for 6 months. Besides two patients with acute bronchitis
and the worsening of right heart function, no other adverse side effects were observed. In
87.5% of cases, PVR was decreased with the mean of 31%. Moreover, mean PAP and CO
were also significantly improved while other parameters including 6MWD displayed only
a trend, probably due to a small population. In 2017, a clinical trial was initiated to test
ABI-009, albumin-bound rapamycin, on 25 PAH patients (NCT02587325). The first results
expected in near future would help in developing the improved therapeutic options for the
PAH patients, especially for those who do not respond to current therapies.

2. Summary and Conclusions

Despite expanding research into the diagnosis and treatment of PAH, death rates
from this disease have continued to increase 2.5% per year for women and 0.9% per year
for men during the past decade. Published data demonstrate that mTOR is essential for
pulmonary vascular remodeling and occlusive intimal lesions, which suggests mTORC1/2
complexes, Raptor and Rictor, may both contribute to the development and progression
of PAH. Targeting the pathway using specific inhibitors for PI3K, AKT, mTOR, Raptor, or
Rictor is considered as a good therapeutic strategy to develop novel and specific treatment
for PAH. Unfortunately, there are currently no available pharmacological compounds that
are able to specifically inhibit mTORC1 or mTORC2. Based on our results, genetic ablation
of both Raptor and Rictor using SMC-specific deletion of mTOR had the greatest inhibitory
effect on PH development compared with Raptor (mTORC1) or Rictor (mTORC2) deletion
alone [15].

Recently, small-molecule ATP-competitive mTOR inhibitors that block both mTORC1
and mTORC2 were developed [199,200]. Due to similar ATP sites in mTOR and PI3K,
multiple PI3K inhibitors could act as dual inhibitors suppressing the activity of mTOR as
well. It is of a great interest to test a powerful two-hit inhibition system in PH animal models
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given the fact that many dual PI3K/mTOR inhibitors emerged into clinical trials as anti-
cancer agents [201]. More studies need to be done to answer three fundamental questions
on the therapeutic design: (a) Whether the drug should target the more upstream proteins
of the signaling pathway (e.g., PI3K, AKT) or the downstream proteins (e.g., mTOR);
(b) whether the specific drug for mTORC1 (e.g., by inhibiting Raptor) or mTORC2 (e.g., by
inhibiting Rictor) is more beneficial than blocking the upstream proteins or the “whole”
signaling pathway (e.g., RTK, or PI3K), and (c) whether targeting both upstream and
downstream regulator (e.g., RTK blocker and Raptor blocker) is therapeutically reasonable
for PAH treatment.

Novel therapeutic targets are desperately needed for developing new drugs for treat-
ment of PAH. Elucidating precise pathogenic mechanisms at levels of gene, molecule,
cell, organ, and system will be definitely translated into novel therapeutic approaches for
different forms of PAH.
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