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Abstract—Distributed Energy Resources (DER) are one of the
distinguished features of Smart Grid. A combination of small-
scale energy generator and storage unit can produce energy
to serve the associated load, while at the same time store or
sell excessive energy. Assuming there is an energy surplus, the
system can choose to sell a portion of its available energy to
the market. In this work, an oligopoly model is developed in
order to study dynamic pricing in such a scenario. The problem
can be characterized as a dynamic N -player differential game,
where the optimal solutions correspond to the equilibria of the
game. We provide a mathematical analysis for the solution of
the game, where a complete characterization of the steady-state
price and optimal strategies of the players can be obtained in
the symmetric case. Extensive numerical studies are provided to
demonstrate the behaviors of the proposed market model and to
analyze the impacts of various market parameters on the system.

I. INTRODUCTION

With the help of advance information technology, the con-
cept of Smart Grid is being developed and implemented in
hopes that it can improve reliability and efficiency of the
existing power system. It also encourages higher penetration of
renewable energy sources in the current energy mix, resulting
in lower GHG emission. One of the distinguished features of
Smart Grid is the integration of distributed generation (DG)
and distributed storage (DS) in the power system. These two
elements, also known as Distributed Energy Resources (DER),
are considered the largest “new frontier” for Smart Grid [1].

DG usually refers to some small-scale energy generators
distributed over the power system. It brings the point of gener-
ation closer to the load, hence reduces loss during transmission
and enhances the voltage profile [2]. The generators can be
fossil fuel-based, or fuel cell-based. Photovoltaic panels and
wind turbines are also gaining tremendous popularity due to
growing environmental concern.

Renewable energy sources are, however, fluctuating and
intermittent in nature. To mitigate this, energy storage de-
vices can be deployed. They can discharge and augment the
generation when the load peaks, or store any excess energy
generated. They can even perform power arbitrage when time-
of-use pricing is in place. A number of distributed energy stor-
age technologies are available. For instance, superconducting
materials, supercapacitor and flywheel are studied in [3].

For better management of the power system, one usually
breaks it down into small clusters, or microgrids, of DERs
and loads within a local area [2]. A microgrid can disconnect

itself from the grid at times when fault occurs. A number of
experiments and test beds on microgrid technologies can be
found around the world (e.g. [4]).

Apart from these, some researchers employ pricing and
market-based strategies to operate DER-based systems. In
order to match the power generation and demand in an
islanded microgrid, Marzband et al. [5] use single side auction
mechanism to determine the market clearing price. The use of
distribution locational marginal price (DLMP) as the pricing
signal to control a power distribution system with distributed
renewable energy generation and storage is described in [6].
In the EcoGrid EU real-time market [7], the system operator
carries the burden to settle the price. This is a huge optimiza-
tion problem requiring vast information such as the capacity
of each device, and responses from consumers and DERs.
In [8], Ding et al. formulate a profit maximization problem
for a single wind turbine system which can either sell the
wind energy on a green energy market, or use it to serve the
associated load. Although it is close to our problem, it does
not consider the possibility of energy storage.

While most papers propose pricing schemes and design
markets to integrate and optimize the management and control
of DERs from the perspective of an individual DER system,
there is little work in the literature that deals with the market
competition among multiple systems, and the behaviors of
players and market price in such a scenario. In this work,
we look at this scenario where a player is considered to be a
small-scale DER system which consists of a pair of distributed
generator and storage units (DGS in short). While a DGS is
serving its associated local load and any energy deficit can be
sourced from the energy market, there will often be energy
surplus which can be either stored or sold to the market.
Subsequently, in order to develop such a market model, we
will use techniques from differential game theory [11] to
capture the dynamic nature of the price and players’ behaviors.
Differential game has been applied in our previous work in
communications engineering for the dynamic spectrum access
problem in the form of an oligopolistic market competition
among licensed spectrum holders [13]. The model of [13] can
be naturally extended to deal with the problem of pricing and
trading in the energy market. We seek to analyze the steady-
state equilibrium of the energy price as well as the optimal
strategies (i.e., amount of energy to sell) taken by each DGS.

The remainder of the paper is organized as follows. In Sec-



2

tion II, the problem formulation is introduced. The dynamic
market is described in Section III. In Section IV, we present
the mathematical analysis for the model and in Section V,
we provide numerical results to validate our model. Finally,
Section VI concludes the paper.

II. SYSTEM MODEL

The system consists of multiple DGSs, each of which
consists of a pair of energy generator and storage unit as shown
in Fig. 1. Due to the intermittent nature of renewable energy
sources, forecast of energy generation has to be done within
short timeframes to achieve reasonable accuracy [9]. Hence,
we can divide the horizon into periods of T time units. In each
period, depending on the total amount of energy available, the
pair can consider either to sell its excessive energy to an energy
market if there is an energy surplus, or to buy more energy
from the market if there is an energy shortage. Assume that
for the i-th DGS, its available energy stock at time t is Ei(t).
In reality, Ei(t) can be expressed as

Ei(t) = Gi(t) + Si − Li (1)

where
• Gi(t) is the total amount of energy generated during

the period [0, t) (t ≤ T ). Naturally, Gi(t) should be a
continuous, non-negative and non-decreasing function in
[0, T ]. If the energy forecast is accurate enough, the shape
of Gi(t) in the interval can be known a priori.

• Si is the amount of energy available in the storage unit or
its state of charge (at t = 0). We assume there is no loss
in charging/discharging of the storage and also the rate
of charging/discharging is fast compared to the length of
the interval T so Si is known.

• Li is the total loads or amount of energy consumed during
the time interval. It is assumed that loads can be predicted
so Li is also known.

In the following analysis, we focus on the case where the
DGSs have energy surplus during the interval (i.e., Ei(t) > 0,
∀t). As such, there is an incentive for the DGS to sell part of
its available energy to the energy market for monetary benefits.
Assume that during this period, there are N such DGSs having
energy to sell, who will compete among each other as the N
oligopolists in the market (i.e., sellers in a market dominated
by a small number of firms). In Fig. 1, the said energy market
can be thought of as a common platform implemented at a
centralized controller, who acts as a market broker. The broker
can provide several necessary market functions, such as player
coordination, price announcement and price update.

A reasonable assumption in this model is the homogeneous
goods assumption, i.e., the energy offered by each DGS is
equally preferred by the broker, without any priority given to
a particular DGS. Under this assumption, a unit energy is sold
at a common market price p which is set and monitored by
the market. Each player i will need to determine its strategy
in terms of the amount of energy offered or market output, ei,
with the goal of maximizing its own payoff or utility function.

DGS 1

Generator

Storage

DGS 2

Generator

Storage

DGS N

Generator

Storage

Energy Market (broker)

e1 p eN pe2 p

Fig. 1. Energy market model.

Note that ei will be constrained by Ei(t). Also of interest is the
(steady-state) value of the market price p under the dynamics
of competition among the players.

In the following section, an oligopolistic differential game
framework will be proposed in order to analyze such dynamics
and study the outcomes of the energy market.

III. DYNAMIC OLIGOPOLISTIC ENERGY MARKET

In the dynamic market, one assumes that the price p(t) and
the players’ strategies ei(t) are time-dependent and that the
dynamics of p(t) follow a trajectory which is controlled by its
past values as well as the values of each ei(t), reflected by a
differential equation. Thus, the system is a differential game
[11] where the price p(t) is the state variable and each ei(t) is
the control variable of each player. Following [13], we adopt
a standard inverse demand function in Cournot oligopoly as

p̂(t) = a− λ
N∑
i=1

ei(t), (2)

where constants a, λ > 0 are the intercept and slope of the
inverse demand curve, respectively. We additionally require
that λ < 2N in order to ensure market stability, as will be
shown later. The quantity p̂(t) is called the desirable price
level, i.e., the price level that meets the current total supplies
given by

∑N
i=1 ei(t). The feasibility of linear demand in

electricity market has been studied by some authors, e.g., [10].
Hence, the dynamics of the market price is such that it reacts

to the difference between the desirable and the current price
levels ∆p(t) = p̂(t)−p(t), i.e., ṗ(t) = dp(t)/dt = G(∆p(t)).
We let G(.) be a linear function in ∆p(t), i.e., G(∆p(t)) =
k∆p(t), so that

ṗ(t) = k[a− λ
N∑
i=1

ei(t)− p(t)], p(0) = p0. (3)

Eq. (3) is called the price trajectory. p0 is the initial price at
time t = 0. Note that negative price can also be allowed, i.e.,
p ∈ R. The goal of player i is to maximize its utility function,
which is defined in terms of its revenue earned, subtracted by
the cost incurred. The instantaneous utility of player i at time
t is given by

Ui(p, ei, e−i) = ei(t)p(t)︸ ︷︷ ︸
revenue

− (αei(t) + βe2i (t))︸ ︷︷ ︸
cost

(4)
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where α, β > 0 are positive constants; and e−i refers to the
joint strategies of player i’s opponents.

The revenue ei(t)p(t) refers to the money gained from
selling ei(t) units of energy. The term αei(t) accounts for
miscellaneous cost, including a commission fee paid to the
market broker, which is assumed to be linear to the amount
of energy sold; while the term βe2i (t) is a second-order
adjustment cost which serves as a penalty in case the DGSs
sell out too much energy, which may result in undesirable
consequences, e.g., reduced storage lifetime due to excessive
battery discharging.

Thus, each player seeks to maximize its accumulated payoff
given by

Ji(p, ei, e−i) =

∫ T

0

e−rt
[
ei(t)p(t)− αei(t)− βe2i (t)

]
dt

(5)
where e−rt(r > 0) is the standard discount factor.

The overall oligopolistic differential game can be stated as
the following optimization, ∀i

max
ei

Ji(p, ei, e−i)

s.t.

ṗ(t) = k

[
a− λ

N∑
i=1

ei(t)− p(t)

]
, p(0) = p0.

0 ≤ ei(t) ≤ Ei(t) ∀t.
(6)

IV. ANALYSIS OF THE OLIGOPOLISTIC MARKET

A. Equilibrium in the General Case

Before providing a characterization of the proposed game’s
equilibrium solution, we first comment that the time needed
for the price and players’ strategies to converge to its steady-
state values (i.e., the point where the market is stable and
the supplies have matched the demands) might be relatively
smaller than the duration T . This assumption will be nu-
merically verified in a subsequent section. Thus, in order to
simplify the mathematical analysis, one may allow an infinite
time horizon where T →∞. Under this assumption, we will
look for the feedback Nash equilibrium (NE) of the game
where each player employs its stationary Markov strategies.
These concepts are defined as follows [11], [12].

Definition 1. The strategy function ei of player i can be
classified as stationary Markov if ei ≡ ei(p(t)), which is solely
a function of the current state p(t).

Definition 2. Consider the differential game (6) with an
infinite horizon, where all players’ strategies ei ≡ ei(p(t)) are
of the stationary Markov type defined above. Then, the strategy
profile (e∗1, e

∗
2, . . . , e

∗
N ) is a stationary Markov feedback NE if

for any player i, any p(t) at any time t,

Ji(p, e
∗
i , e
∗
−i) ≥ Ji(p, e′i, e∗−i), ∀e′i 6≡ e∗i . (7)

Using known results from optimal control and differential
game theory, the feedback Markov NE for the game can be
characterized by solving the Hamilton-Jacobi-Bellman (HJB)
equations [12], which are a set of N partial differential
equations (PDE), stated in the following theorem.

Theorem 1. The differential game (6) with an infinite horizon
admits a stationary Markov strategy profile (e∗1, e

∗
2, . . . , e

∗
N ),

e∗i ≡ e∗i (p) as a stationary Markov feedback NE if for any
player i, there exists a continuously differentiable function
Vi(p) : R 7→ R that satisfies 1

rVi(p) =max
ei
{(p ei − αei − βe2i )

+
∂Vi(p)

∂p
· k[a− λei − λ

N∑
j=1,j 6=i

e∗j − p ]} (8)

The solution of (8) is the set of N functions Vi(p), i =
1, . . . , N , commonly known as the value functions. As the
maximand in (8) is quadratic in ei, one can carry out the
maximization by taking the (partial) derivative with respect to
ei. Subsequently, we denote Φi this derivative, given by

Φi = p− α− 2βei − kλ
∂Vi
∂p

. (9)

Due to the energy constraint 0 ≤ ei ≤ Ei, the solution
to Φi(ei) = 0 will be the optimal strategy e∗i only when this
constraint is satisfied; otherwise the optimal point should occur
at the boundaries, i.e., either at 0 or Ei, conditioned on the
sign of Φi. In general, at equilibrium, if there are M < N
players whose optimal strategies are either 0 or Ei, then for
the remaining players, the problem becomes an unconstrained
(N−M)-player linear-quadratic differential game model [11],
in which the corresponding value function of a player i, if
exists, takes the quadratic form Vi = 1

2Xip
2−Yip+Zi. Thus,

e∗i can be obtained by substituting ∂Vi

∂p = Xip−Yi in (9) and
solving Φi(ei) = 0. In summary,

e∗i =


1
2β [(1− kλXi)p+ (kλYi − α)] Φi = 0,

0 Φi < 0,

Ei Φi > 0.

(10)

Here, Xi, Yi and Zi are constant and depend on N, r, k, α, β
and λ. However, determining the conditions for their existence
and finding their closed forms are generally a mathemat-
ically intractable problem [13], as one will need to solve
N simultaneous non-linear PDEs. Moreover, due to the 3
separate conditions for each player, a complete analysis of
the equilibrium may need to exhaustively include up to 3N

different market scenarios.
Nonetheless, some conclusions can be made on the general

solutions for a particular player i:
• Φi < 0 implies p < α+2βei+kλ

∂Vi

∂p . The market price p
can be seen as the marginal revenue (MR), i.e., earnings
from selling one extra unit of energy. On the other hand,
the right-hand side is the marginal cost (MC). As MR <
MC, player i has no incentives to sell energy.

• Similarly, Φi > 0 implies that MR > MC. That is, there
are enough profits in the market for player i to sell at
maximum quantities.

1When dealing with the HJB equation and its subsequent analysis, it is
understood that p is treated as a variable and the results should hold for all
t; so p, ei(p) and Vi(p) can be used instead of p(t), ei(p(t)) and Vi(p(t)).
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• Φi = 0 implies that MR = MC, i.e., player i faces
perfect competition and will have to select an output that
maximizes his profits. The optimal solution corresponds
to the Markov NE strategy, which appears to be a linear
feedback function of price p.

B. Players with Similar Constraints

In the following section, we investigate the special case,
i.e., symmetric game where a complete characterization of the
Markov feedback NE is obtainable. We assume that all players
have identical constraints, i.e., Ei(t) ≡ E(t), ∀t, ∀i. As a
result, the game becomes a symmetric oligopoly. Following
the analysis from [13], at the feedback NE, players’ strategies
are also symmetric with e∗i = ei and Vi = V , ∀i. Thus, due to
the symmetric condition, the general 3N scenarios are reduced
to 3 distinct market regions, depending on the value of p(t).
Next, we will discuss each of the region.

1) Region 1 - True Oligopoly: If the price p(t) is such that
the optimal feedback strategy fulfills the constraint 0 ≤ ei ≤
Ei(t), then all players are able to maximize their profits by
choosing this optimal strategy as the solution to Φi(ei) = 0.
This scenario is therefore seen as the true-oligopoly case. The
closed-form solution can be obtained as follows.

Proposition 1. In region 1, the value function and its deriva-
tive have the following forms

∂V (p)

∂p
= Xp− Y, V (p) =

1

2
Xp2 − Y p+ Z, (11a)

where

X =
(2β+N)k + βr−

√
((2β+N)k+βr)2 −(2N−λ)k2λ

(2N−λ)k2λ
(11b)

Y =
2βkaX + kNαX − α

(2N − λ)k2λX − (2β +N)k − 2βr
(11c)

Z =
α2 + (2N − λ)k2λY 2 − 2NkY α− 4βkaY

4βr
. (11d)

Furthermore, the optimal feedback strategy taken by each
player will be linear in p, given by

e∗(p) =
1

2β
[(1− kλX)p+ (kλY − α)] . (12)

Next, the exact price trajectory p(t) can be readily obtained
by solving (3) with e∗ given by (12). The general solution is
given by

p(t) = Γ + C e
−k
(

1 + N(1−kλX)
2β

)
t
, C = const, (13)

where Γ is the steady-state price in region 1, which equals

Γ =
2βa+N(α− kλY )

2β +N(1− kλX)
. (14)

The constant C can be found by applying initial condition
for p(t). In particular, with p(0) = p0, we obtain C = p0−Γ.

In addition, under the original assumption that λ < 2N , it
can be shown that X < 1

kλ (details omitted). It follows that the

exponential term of (13) approaches 0 and consequently p(t)
approaches Γ as t → ∞, provided that Γ lies within region
1. Γ is also called the market equilibrium, which marks the
point where the supplies and demands are balanced.

The boundary values for region 1 occur at price levels where
constraints 0 ≤ ei ≤ E(t) start to be violated. From (12),
one can see that region 1 thus corresponds to an interval p ∈
[p1, p2(t)] where

p1 =
α− kλY
1− kλX

, p2(t) =
α− kλY + 2βE(t)

1− kλX
. (15)

2) Region 2 - No Participation: In region 2, the optimal
strategy occurs at the boundary e∗ = 0 for all players due to
Φi(ei) < 0. This happens if the price level p drops below the
lower threshold p1 as given above. Thus, in this region, it is
implied that all DGSs do not participate in the market due to
inadequately low price which does not give them profits. The
detailed solution is given as follows.

Proposition 2. In region 2, the players’ equilibrium strategy
is e∗ = 0 for all p < p1. The steady-state price of this region
is p = a, following a price trajectory given by

p(t) = a+ C e−kt, C = const. (16)

Moreover, the value function V (p) in this region has the
following form

V (p) = V1
(a− p1)r/k

(a− p)r/k
(17)

where V1 = 1
2Xp

2
1 − Y p1 + Z.

For initial condition p(0) = p0, the constant C is given by
p0 − a. Additionally, the condition p(t) < α + kλ∂V∂p which
results from Φi(ei) < 0 can be verified.

3) Region 3 - Output Saturation: In region 3, as opposed to
region 2, equilibrium strategy occurs at the upper boundary,
i.e., e∗ = E(t) for all p > p2(t). It is seen that as price
level goes above the upper threshold value, all DGSs will
maximize their profits by selling the maximum amount of
energy, i.e., their outputs become saturated. The solution is
given as follows.

Proposition 3. In region 3, the players’ equilibrium strategy
is e∗ = E(t) for all p > p2(t). The actual price trajectory
will depend on the form of the function E(t), with the general
solution given by

p(t) = e−kt[

∫
k(a−NE(t))ektdt+ C], C = const. (18)

Moreover, the value function V (p) in this region has the
following form

V (p) = Rp+S+(V2−Rp2−S)
(a− λNE(t)− p2)r/k

(a− λNE(t)− p)r/k
(19)

where V2 = 1
2Xp

2
2−Y p2+Z, R = E(t)

r+k , and S = 1
r [kE(t)

r+k (a−
λNE(t))− αE(t)− βE2(t)].
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(a) Constant energy stock (b) Linear energy stock

E(t) = m
1
 + m

2
 tE(t) = m

t t

Fig. 2. Two examples of the function E(t).

From Φi(ei) > 0, the condition is p(t) > α + 2βE(t) +
kλ∂V∂p which can also be verified.

As we can see, the shape of the available energy function
E(t) can affect the solution if region 3 occurs. E(t) depends
on the energy generation function G(t) according to (1).
As previously stated, the exact form of G(t) is difficult to
obtain due to the random nature of renewable energy sources;
however in general, G(t) can be approximated as continuous,
non-negative and non-decreasing functions.

We can consider two simple cases of E(t), i.e., the constant
energy stock and the linear energy stock. In Fig. 2(a), it is
implicitly assumed that G(t) = const or there is no generation
during the period (e.g., no sunlight during night time). This
results in a constant energy stock E(t) = m > 0. In Fig. 2(b),
we implicitly assume a linear G(t), i.e., energy is generated
at a steady rate m2 over time, which results in a linear stock
E(t) = m1 +m2t (m1,m2 > 0). This might correspond to a
daytime period with steady wind or solar power.

For constant energy stock, the final trajectory equation (with
p(0) = p0) is given by

p(t) = a−Nm+ (a−Nm− p0)e−kt. (20)

On the other hand, for linear energy stock, the trajectory
equation becomes

p(t)=a−Nm1+
Nm2

k
−Nm2t+(a−Nm1+

Nm2

k
−p0)e−kt

(21)

V. PERFORMANCE EVALUATION

In this section, we present the numerical results in order
to evaluate the performance of the proposed game and study
the behaviors of the energy market. In our simulation, the key
parameters are listed in Table I. Notably, it is assumed that
the energy stock function for all players takes the linear form
E(t) = 30 + 2.5t, where the time t is measured in hours and
E(t) in MWh. The settings may not reflect all the real-time
data of an actual energy market; but the example could be
useful to illustrate the model’s behaviors.

Using the previous settings, we obtain the dynamics of the
price trajectory p(t) and the path of the equilibrium strategies
taken by the players e(p(t)) for 3 different initial market price
p0 = 1, 35, 70. The results are shown in Fig. 3. In accordance
with our theoretical analysis, the price p(t) is convergent and
approaches its steady-state value as time progresses. Hence,
e(p(t)) also converges as a result. (Note that the interval

TABLE I
ENERGY MARKET PARAMETERS.

Parameters Values
N 4
a 90 $/MWh
λ 1 $/(MWh)2
k 0.5
r 0.3
α 4 $/MWh
β 0.5 $/(MWh)2
E(t) 30 + 2.5t (MWh)
T 4 hrs

0.130.63 4
0.5

5.98

24.26

35

41.11

70

t

p(
t)

 (
$/

M
W

h)

Trajectory of price

 

 

p0 = 1
p0 = 35
p0 = 70

0.130.63 4
0

16.44

30

40

t

e(
p(

t)
) 

(M
W

h)

Optimum strategy over time

 

 
E(t)

Transition point

Fig. 3. Dynamics of price and players’ strategies.

duration T = 4 hrs in this example is sufficiently large for the
equilibrium to happen). It is clear that the equilibrium price
is independent of the initial price p0, because the dynamical
system is linear in p which admits a unique steady-state point.
The steady-state value is psteady = Γ = 24.26 which lies in
region 1. Region 2 occurs if p < p1 = 5.98 and region 3
occurs if p > p2 = 41.11. Different initial prices affect the
starting regions of the market, as it starts in region 2 and 3
for p0 = 1 and p0 = 70, respectively. Along the trajectory,
when p(t) reaches the boundary p1 or p2, a transition from
one region to another will occur. This is evident in the abrupt
change in the shapes of e(p(t)) at t = 0.13 and t = 0.63.
Note that p(t) should remain continuous and differentiable at
the transition points (which is mathematically provable).

The impacts of the number of players on the market behav-
iors, especially the steady-state values, are also investigated
and shown in Fig. 4. It can be observed that in this example,
psteady = Γ and esteady both drop as the number of players
N grows larger. Economically, it can be explained that more
competitors increase the aggregate supplies which brings down
the equilibrium price. However, each individual player gets
a smaller share of the market; hence, esteady also drops.
Mathematically, one can prove that as N →∞, psteady → α
and esteady → 0 (assuming final equilibrium in region 1).

Next, the proposed market is studied in terms of the
aggregate profits gained by a DGS over time. For a better
assessment, we compare our scheme with alternative schemes
in which each DGS decides to sell a fixed quantity of energy
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to the market without dynamic, feedback strategy adaptation.
In the first scheme, the DGSs choose to fully sell its energy
stock (Full-E in short); while in the second scheme, the DGSs
sell half of its energy stock and store the rest (Half-E). In
both schemes, the price is determined by the inverse demand
function (2). Their accumulated profits can be estimated by
(5) and are plotted in Fig. 5. It can be seen that the proposed
solution optimally maximizes the profits of the DGSs over
time and is clearly better than any of the fixed-quantity
schemes. Another interesting observation is that for fixed-
quantity schemes, the DGSs may even incur loss (in the case
of Full-E, the profit curve becomes negative after certain point)
as revenues cannot cover the growing costs.

VI. CONCLUSION & FUTURE WORKS

In this short paper, we have developed an oligopolistic
market model based on differential game to allow the DGSs
to dynamically trade energy and optimize their profits over
time. The Markov feedback NE solution for the game is
mathematically analyzed; and a complete characterization
is obtained for symmetric players with similar constraints.
Through analytical and numerical evaluations, it can be seen
that players adaptively determine their energy quantities to sell

based on feedback functions of price level which will lead
to different market regions. The proposed solution is shown
to maximize the DGSs’ aggregate profits over fixed-quantity
schemes. However, this work has only considered the case
where DGSs have energy surplus and a hybrid scenario will
be a topic of future studies, where certain DGSs have energy
deficit and need to buy back from the grid. Furthermore, the
loads, energy generation and storage functions of a DGS of
adjacent intervals are interdependent and may not always be
accurately predicted; and how this influences the cost function
and strategies will be studied. A discrete-time method for
the proposed scheme will also be proposed, which can bring
together the DGSs and the market broker and pave the way
for its implementation in practice.
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