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Learning to simulate high energy 
particle collisions from unlabeled 
data
Jessica N. Howard1*, Stephan Mandt2, Daniel Whiteson1 & Yibo Yang2

In many scientific fields which rely on statistical inference, simulations are often used to map from 
theoretical models to experimental data, allowing scientists to test model predictions against 
experimental results. Experimental data is often reconstructed from indirect measurements 
causing the aggregate transformation from theoretical models to experimental data to be poorly-
described analytically. Instead, numerical simulations are used at great computational cost. We 
introduce Optimal-Transport-based Unfolding and Simulation (OTUS), a fast simulator based on 
unsupervised machine-learning that is capable of predicting experimental data from theoretical 
models. Without the aid of current simulation information, OTUS trains a probabilistic autoencoder 
to transform directly between theoretical models and experimental data. Identifying the probabilistic 
autoencoder’s latent space with the space of theoretical models causes the decoder network to 
become a fast, predictive simulator with the potential to replace current, computationally-costly 
simulators. Here, we provide proof-of-principle results on two particle physics examples, Z-boson and 
top-quark decays, but stress that OTUS can be widely applied to other fields.

From measuring masses of particles to deducing the likelihood of life elsewhere in the Universe, a common goal 
in analyzing scientific data is statistical inference—drawing conclusions about values of a theoretical model’s 
parameters, θ , given observed data, x. The likelihood model of observed data, p(x|θ) , is a central ingredient in 
both frequentist and Bayesian approaches to statistical inference; however, it is typically intractable, due to the 
complexity of a full probabilistic description of the data generation process. One way to circumvent this diffi-
culty is to simulate experimental data for a given value of the theoretical parameters, θ , from which a probability 
model of the likelihood, p(x|θ) , can be constructed and used for downstream statistical inference regarding θ . 
This is known as simulation-based inference, and has found application across scientific disciplines ranging from 
particle physics to cosmology1.

However, traditional approaches to simulation, which attempt to faithfully model complex physical phe-
nomena, can be computationally expensive—a limitation we aim to overcome in this work. In simulation-based 
inference, experimental data arising from a physical system typically depend on an initial configuration of 
the system, z, that is unobserved, or belonging to a latent space, while the parameters θ govern the underlying 
mechanistic model. In many cases, the transformation from the latent state to experimental data is non-trivial, 
involving complex physical interactions that cannot be described analytically, but can be simulated numerically 
by Monte-Carlo algorithms. In particle physics, for example, the parameters θ govern theoretical models that 
describe fundamental particle interactions. These fundamental interactions produce secondary particles, z, which 
are not directly observable and often transform in flight before passing through layers of detectors whose indirect 
measurements, x, can help reconstruct their identities and momenta. The transformation from the unobserved 
latent space, particles produced in the initial interaction, to the experimental data, is stochastic, governed by 
quantum mechanical randomness, and has no analytical description.

Instead, Monte-Carlo-based numerical simulations of in-flight and detection processes generate samples of 
possible experimental data for a given latent space configuration 2–6. This approach is computationally expensive5,6 
because it requires the propagation and simulation of every individual particle, each creating subsequent showers 
of thousands of derivative particles. Additionally, these simulations contain hundreds of parameters which must 
be extemporaneously tuned to give reasonable results in control regions of the data where the latent space has 
been well-established by results from previous experiments.

In particle physics, like many other fields in the physical sciences7–10, the computational cost of numerical 
simulations has become a central bottleneck. A fast, interpretable, flexible, data-driven generative model which 
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can transform between the latent space and the experimental data would be significant for these fields. Recent 
advances in the flexibility and capability of machine learning (ML) models have allowed for their application as 
computationally inexpensive simulators11–19. Applications of these techniques have made progress towards this 
goal but fall short in crucial ways. For example, approaches leveraging Generative Adversarial Networks (GANs) 
are able to mimic experimental data for fixed distributions in the latent space11–13, but are unable to generate 
predictions for new values of latent variables, a crucial requirement for a simulator. Other efforts condition on 
latent variables14 but require training with labeled pairs generated by slow Monte-Carlo generators, incurring 
some of the computational cost they seek to avoid.

We lay the foundations and provide a proof-of-principle demonstration for Optimal-Transport-based Unfold-
ing and Simulation (OTUS). We use unsupervised learning to build a flexible description of the transformation 
from latent space, Z , to experimental data space, X  , relying on theoretical priors, p(z), where z ∈ Z and a set of 
samples of experimental data {x ∈ X } but, crucially, no labeled pairs, (z, x). Our model applies a type of proba-
bilistic autoencoder20,21, which learns two mappings: encoder (data → latent, pE(z | x) ) and decoder (latent 
→ data, pD(x | z) ). Typical probabilistic autoencoders (i.e. variational autoencoders (VAEs)13,22) use a simple, 
unphysical latent space, Y , for computational tractability during learning. However, this causes VAEs to suffer 
from the same weakness as GANs: doomed to mimic the data distribution, p(x), for a fixed physical latent space, 
p(z), unless the model compromises to requiring expensive simulated pairs (e.g. a conditional VAE approach23). 
OTUS’s innovation is to align the probabilistic autoencoder’s latent space, Y , with that of our inference task, Z . 
With this change, our decoder becomes a computationally inexpensive, conditional simulator mapping Z → X  
as well as a tractable transfer function, pD(x | z) . See Fig. 1 for a visual description.

For VAEs, identifying Y with Z is difficult because the training objective requires the ability to explicitly 
compute the latent space prior, p(y) for y ∈ Y . In particle physics, such explicit computations are intractable. 
We therefore turn to a new form of probabilistic autoencoder: the Sliced Wasserstein Autoencoder (SWAE)20,21, 
which alleviates this, and other, issues by reformulating the objective using the Sliced Wasserstein distance and 
other ideas from optimal transport theory. This reformulation lets us identify Y with Z and also allows the 
encoder and decoder network mappings to be inherently stochastic.

We suggest that an SWAE20 can be used to achieve the broad goal of simulators: learning the mapping 
from the physical latent space to experimental data directly from samples of experimental data {x ∼ p(x)} and 
theoretical priors {z ∼ p(z)} in control regions. The resulting decoder ( Z → X  ) can be applied as a simulator, 
generating samples of experimental data from latent variables in a fraction of the time, and probed and visual-
ized to ensure a physically meaningful transformation. Additionally, the decoder’s numerically tractable detector 
response function, pD(x | z) , would be useful in other applications, such as direct calculation of likelihood ratios 
via integration24. The encoder network’s X → Z mapping can also be used in unfolding studies25,26. Lastly, the 
mathematical attributes of the SW distance allow for the inclusion of informed constraints on the mappings.

In this work, we first present background on the problem, the objective, and discuss related work. In Proposed 
Solution, we present the foundations for the OTUS method and discuss steps toward scaling OTUS to a full 

Figure 1.   Schematic of the problem and the solution. Current simulations map from a physical latent space, Z , 
to data space, X  , attempting to mimic the real physical processes at every step. This results in a computationally 
intensive simulation. Previous Machine Learning (ML) solutions can reproduce the distributions in X  but are 
not conditioned on the information in Z ; instead they map from unphysical noise to X  , which limits their 
scope. We introduce a new method which provides the best of both worlds. OTUS provides a simulation 
Z → X  (Decoder) which is conditioned on Z yet is computationally efficient. Advantageously, it also 
inadvertently provides an equivalently fast unfolding mapping from X → Z (Encoder).
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simulation capable of replacing current Monte-Carlo methods in particle physics analyses. In Results, we give 
initial proof-of-principle demonstrations on Z-boson and semileptonic top-quark decays. In “Methodology”, we 
discuss the details of our methods. We then conclude by discussing directions for future work and also briefly 
discuss how OTUS might be applied to problems in other scientific fields.

Theoretical background
The primary statistical task in particle physics, as in many areas of science, is inferring the value of a model 
parameter, θ , based on a set of experimental data, {x} . For example, physicists inferred the mass of the Higgs 
boson from Large Hadron Collider data27,28. Inference about θ requires a statistical model, p(x | θ) , which can 
be used to calculate the probability to make an observation, x, given a parameter value, θ . Unfortunately, such 
analytical expressions are unavailable due to the indirect nature of observations and the complexity of detectors. 
Previous solutions to this problem have relied on numerical Monte-Carlo-based simulations2–4.

Fundamental particle interactions, like the decay of a Higgs boson, produce a set of particles which define an 
unobserved latent space, Z . The statistical model p(z | θ) is usually well-understood and can often be expressed 
analytically or approximated numerically. However, experimenters only have access to samples of experimen-
tal data, {x} . Therefore, calculating p(x | θ) requires integrating over the unobserved {z ∼ p(z | θ)} ; namely, 
p(x | θ) =

∫

dz p(x | z) p(z | θ).
The transfer function, p(x | z) , represents the multi-staged transformation from the unobserved latent space, 

Z , to the experimental data space, X  . As latent space particles travel they may decay, interact, or radiate to 
produce subsequent showers of hundreds of secondary particles. These particles then pass through the detec-
tor, comprising many layers and millions of sensors resulting in a high-dimensional response of order O(108) . 
Finally, the full set of detector measurements are used to reconstruct an estimate of the identities and momenta 
of the original unobserved particles in the latent space. For the vast majority of analyses this final, experimental 
data space, X  , has a similar dimensionality [The dimensionality is not necessarily equal due to the imperfect 
nature of the detection process. For example, Z may represent four quarks but X  may only contain three jets.] to 
that of Z , usually O(101) . However, the complex, stochastic, and high-dimensional nature of the transformation 
makes it practically impossible to construct a closed-form expression for the transfer function p(x | z) . Instead, 
particle physicists use simulations as a proxy for the true transfer function.

To arrive at p(x | θ) , samples of {z ∼ p(z | θ)} are transformed via simulations into effective samples of 
{x ∼ p(x | θ)} , approximating the integral above. Current state-of-the-art simulations strive to faithfully model 
the details of particle propagation and decay via Monte-Carlo techniques. This approach is computationally 
expensive and limited by our poor understanding of the processes involved. Ad-hoc parameterizations often fill 
gaps in our knowledge but introduce arbitrary parameters which must be tuned to give realistic results using 
data from control regions, where the underlying p(z | θ) is well-established from previous experiments, freeing 
p(x | θ) of surprises. Examples of control regions include decays of heavy bosons (e.g. Z) or the top quark (t).

The computational cost of current simulations is the dominant source of systematic uncertainties and the 
largest bottleneck in testing new models of particle physics29. A computationally-inexpensive, flexible simulator 
which can map from Z to X  such that it effectively approximates p(x | z) would be a breakthrough.

Objective and related work
The development of OTUS was guided by the goals of the simulation task and the information available for train-
ing. Specifically, the simulator has access to samples from model priors, p(z | θ)control , and experimental data 
samples, {xcontrol} . Critically, {xcontrol} samples come from experiments, where the true {zcontrol} are unknown, 
such that no (zcontrol, xcontrol) pairs exist. Instead, the distribution of {zcontrol} are known to follow p(z | θ)control 
and the distribution of {xcontrol} is observed.

The simulator should learn a stochastic transformation Z → X  such that samples {z} drawn from 
p(z | θ)control can be transformed into samples {x} whose distribution matches that of the experimental data 
{xcontrol} . Additionally, these control regions should be robust so that the simulator can approximate p(x | θ) for 
different, but related, values of θ . Traditional Monte-Carlo simulators such as GEANT42 face related challenges.

The flexibility of ML models at learning difficult functions across a wide array of contexts suggests that these 
tools could be used to develop a fast simulator. The objectives described above translate to four constraints on 
the class of ML model and methods of learning. Generating samples of {x ∈ X } requires a (1) generative ML 
method. For z ∈ Z , the simulator maps z → x such that the output x depends on the input z, meaning the 
mapping is (2) conditional. The problem’s inherent and unknown randomness prevents us from assuming any 
particular density model, suggesting that our simulator should preferably be (3) inherently stochastic. The lack 
of (z, x) pairs mandates an (4) unsupervised training scheme. Additionally, the chosen method should produce 
a simulation mapping ( Z → X  ) which is inspectable and physically interpretable.

Generative ML models can produce realistic samples of data in many settings, including natural images. 
Generative Adversarial Networks (GANs) transform noise into artificial data samples and have been adapted to 
particle physics simulation tasks for both high-level and raw detector data, which can resemble images11–14,17. 
However, while GANs have successfully mimicked existing datasets, {x} , for a fixed set of {z} , they have not 
learned the general transformation z → x prescribed by p(x | z) , and so cannot generate fresh samples {x′} for 
a new set of {z′} , thus failing condition (2). Other GAN-based approaches14 condition the generation of {x} on 
values of {z} , but in the process use labeled pairs (x, z), which are only obtained from other simulators, rather 
than from experiments, thus failing condition (4). Relying on simulated (x, z) pairs incurs the computational 
cost we seek to avoid, and limits the role of these fast simulators to supplementing traditional simulators, rather 
than replacing them.
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An alternative class of unsupervised, generative ML models are variational autoencoders (VAEs). While GANs 
leverage an adversarial training scheme, VAEs instead optimize a variational bound on the data’s likelihood 
by constructing an intermediate latent space, Y , which is distributed according to a prior, p(y)30. An encoder 
( X → Y ) network transforms x → ỹ , where the ~ distinguishes a mapped sample from those drawn from p(y). 
Similarly, a decoder ( Y → X  ) network transforms a sample produced by the encoder back to the data space, 
ỹ → x̃ . The autoencoder structure is the combined encoder–decoder chain, x → ỹ → x̃ . During training, the 
distribution of the encoder output, pE(y | x) , is constrained to match the latent space prior, p(y), via a latent loss 
term which measures the distance between the distributions. At the same time, the output of the autoencoder, x̃ , is 
constrained to match the input, x, which are compared pairwise. New samples from X  following the distribution 
of the data, p(x), can then be produced by decoding samples, {y} , drawn from p(y), via y → x̃′.

The form of p(y) is usually independent of the nature of the problem’s underlying theoretical model, and 
is often chosen to be a multi-dimensional Gaussian for simplicity. This choice provides sufficient expressive 
power even for complex datasets (i.e. natural images). However, in the particle physics community, optimizing 
the encoding mapping to match this latent space is seen as an extra, unnecessary hurdle in training12. Therefore, 
GANs have been largely favored over VAEs in the pursuit of a fast particle physics simulator. Some studies inves-
tigated VAEs in this context, but retained the unphysical form of p(y) (i.e. multi-dimensional Gaussian)13,15,16, 
preventing them from being conditional generators, failing requirement (2).

Proposed solution
Our approach: OTUS.  In this work, we aim to align the probabilistic autoencoder’s latent space, Y , with 
that of our inference task, Z . This will allow us to learn a conditional simulation mapping from our theoretical 
model latent space to our data space, Z → X  . Therefore, we construct a probabilistic autoencoder where the 
latent space prior, p(y), is identical to the physical latent space, p(y) ≡ p(z) = p(z | θ) , for the choice of particu-
lar parameters, θ . The decoder then learns pD(x | z) providing precisely the desired conditional transformation, 
z → x . Additionally, pD(x | z) can act as a tractable transfer function in approaches which estimate p(x | θ) via 
direct integration24. The encoder’s learned pE(z | x) is of similar interest in unfolding applications25,26.

This is not possible with VAEs because optimizing the variational objective requires explicit computation of 
the densities p(y), pE(y | x) , and pD(x | y) . Therefore, p(y) is often assumed to be a standard isotropic Gaussian 
for its simplicity and potential for uncovering independent latent factors of the data generation process. However, 
in particle physics the true prior, p(z), which is governed by quantum field theory, is highly non-Gaussian and 
computing its density explicitly requires an expensive numerical procedure. Similarly, as we have little knowledge 
about the true underlying stochastic transforms, assuming any particular parametric density model for pE(y | x) 
or pD(x | y) , like a multivariate Gaussian, would be inappropriate and overly restrictive. These concerns led us 
to use inherently stochastic (i.e. implicit) models for p(z), pE(z | x) , and pD(x | z) that are fully sample-driven.

Additionally, the VAE objective’s use of KL-divergence introduces technical disadvantages. The KL-divergence, 
DKL(·�·) , is not a true distance metric, and will diverge for non-overlapping distributions often leading to unus-
able gradients during training20,31. Moreover, the specific use of DKL(pE(z | x)�p(z)) within the VAE loss forces 
pE(z | x) to match p(z) for every value of x ∼ p(x)21. This term must be carefully tuned (e.g. with a β-VAE 
approach13,32) to avoid the undesirable effect of the encoder mapping different parts of X  to the same overlap-
ping region in Z , which can be particularly problematic if Z represents a physically meaningful latent space.

We resolve these issues by applying an emerging class of probabilistic autoencoders, based instead on the 
Wasserstein distance, which is a well-behaved distance metric between arbitrary probability distributions rooted 
in concepts from optimal transport theory20,21.

The original Wasserstein Autoencoder (WAE)21 loss function is

where E denotes the expectation operator and c(·, ·) is a cost metric. For the optimal pE(z | x) , LWAE becomes 
an upper bound on the Wasserstein distance between the true data distribution, p(x), and the decoder’s learned 
distribution, pD(x) =

∫

dzpD(x | z)p(z) ; the bound is tight for deterministic decoders.
Term A of Eq. (1) constrains the output of the encoder–decoder mapping, x̃ , to match the input, x, while 

term B of Eq. (1) constrains the encoder mapping. The hyperparameter � provides a relative weighting between 
the two terms. The difference between the marginal encoding distribution, pE(z) =

∫

dxpE(z | x)p(x) , and the 
latent prior, p(z), is measured by dz(·, ·) . [Comparing pE(z) and p(z) rather than pE(z | x) and p(z) is the crucial 
innovation which allows different parts of Z to remain disjoint.] Unfortunately, the originally proposed options 
for dz(·, ·)21 had undesirable features which made them ill-suited for this particle physics problem (see “Model 
choice”).

The more recent Sliced Wasserstein Autoencoder (SWAE)20 uses the Sliced Wasserstein (SW) distance as the 
dz(·, ·) metric. The SW distance, dSW(·, ·) , is a rigorous approximation to the Wasserstein distance, dW (·, ·) . The 
SWAE completely grounds the loss function in optimal transport theory as each term and the total loss can be 
identified as approximating the Wasserstein distances between various distributions and allows p(y) to be any 
sampleable distribution, including the physical, p(z). Additionally, the (S)WAE method allows the encoder and 
decoder to be implicit probability models, while avoiding an adversarial training strategy which can lead to 
problems like mode collapse33.

Both dW and dSW are true distance metrics20. The KL-divergence and adversarial schemes lack this property 
resulting in divergences and meaningless loss values which lead to problems during training and make it difficult 
to include additional, physically-motivated constraints. The Wasserstein distance is the cost to transport prob-
ability mass from one probability distribution to another according to a cost metric, c(·, ·) , following the optimal 

(1)LWAE(p(x), pD(x | z), pE(z | x)) = Ex∼p(x)EpE(z|x)Ex̃∼pD(x|z)[c(x, x̃)]
1A

+ � dz(pE(z), p(z))
1B

,
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transportation map. However, it is difficult to calculate for multivariate probability distributions when pairs 
from the optimal transportation map are unknown. However, for univariate probability distributions, there is a 
closed-form solution involving the difference between the inverse Cumulative Distribution Functions ( CDF−1 s) 
of the two probability distributions. The SW distance approximates the Wasserstein distance by averaging the 
one-dimensional Wasserstein distance over many randomly selected slices—one-dimensional projections of the 
full probability distribution20 (see "Training").

The SWAE loss takes the general form of the WAE loss

Term A of Eq. (2) compares pairs (x, x̃) , where x̃ is the output of the encoder–decoder mapping. In term B of 
Eq. (2), matched pairs are not available so we instead use the SW distance approximation. Both loss terms use 
the cost metric c(u, v) = ||u− v||220.

The SWAE allows us to train a probabilistic autoencoder that transforms between X  and Z with a physical 
prior p(z). However, since we are in an unsupervised setting, the true p(x | z) is unknown. It is therefore crucial to 
ensure that the learned transformation is plausible and represents a series of physical interactions. To encourage 
this, we can easily impose supplemental physically-meaningful constraints on the SWAE model. These constraints 
can be relations between Z and X  spaces or constraints on the internal properties of these respective spaces. In 
this work, we use one constraint from each category.

From the first category, we add a term comparing the unit vector parallel to the momentum of an easily 
identifiable particle in the latent and experimental spaces. This can be thought of as analogous to choosing a 
consistent basis and can be helpful for problems containing simple inversion symmetries. An example of such 
an inversion symmetry exists in the Z → e+e− study below. In particle experiments, misidentification of lepton 
charge in the process of data reconstruction is known to be extremely rare. This means a learned mapping which 
frequently maps electron/positron ( e∓ ) information in Z to positron/electron ( e± ) information in X  , and vice 
versa, would be unphysical. For a generative mapping G : U → V , this anchor term takes the general form

We chose cA(u, v) = 1− p̂u · p̂v , where p̂ is the unit vector of the electron’s momentum. We add the anchor 
loss in Z space, LA(p(x), pE(z | x)) , and in X  space, LA(p(z), pD(x | z)) , to the SWAE loss with hyperparameter 
weightings βE and βD respectively.

From the second category, we enforce the Minkowski metric constraint internally for Z and X  spaces respec-
tively. A particle’s nature, excluding discrete properties such as charge and spin, is described by four quantities 
related by the Minkowski metric. Arranging these quantities into a 4-vector defined as pµ = (p,E) where E is a 
particle’s energy and p is a vector of its momentum in the x̂ , ŷ , ẑ direction respectively, the constraint becomes

where m is the particle’s mass. We directly enforce this relationship in the model for all particles. [We note that 
initial experiments lacked this constraint yet the networks automatically learned this relationship from the data. 
However, directly including this constraint in the model architecture improved performance overall.]

Adding more physically-motivated constraints would be straightforward, however, in this work we only 
assume this minimal set and recommend that more robust data structures be considered first, as such constraints 
may become unnecessary (see “Conclusion”).

OTUS in practice.  In this section we briefly outline how OTUS might eventually be applied to problems 
in particle physics such as searches for new particles. However, we emphasize that this work only demonstrates 
a proof-of-principle version of OTUS. Follow-up work will be necessary to overcome some technical hurdles 
before OTUS could be applied to such a problem (see “Conclusion”).

A main goal of particle physics is to discover the complete set of fundamental units of matter: particles. 
Therefore, searches for exotic particles are common practice in this field. These searches typically proceed by 
looking for anomalies in data which are better described by simulations which assume the existence of a new 
particle. It is therefore phrased as a hypothesis test between two theoretical models, θSM , which assumes only the 
particles in the Standard Model (SM), and θBSM , which assumes the existence of one or more new particles that lie 
Beyond the Standard Model (BSM). These distinct models will generate distinct latent signatures, {zSM | θ} and 
{zBSM | θ} , which lie in Z . As particle physics experiments do not observe the latent {z} directly, the hypothesis 
test is performed in the observed space X  , see “Introduction” and “Objective and related work” for more details.

The goal for OTUS is to learn a simulation mapping from Z → X  which is independent of the underlying 
model, θ , and can be applied to any z. This is achieved by carefully selecting control regions, {zi | θi} , which 
span Z and for which observed data, {x} , is available for training. See Fig. 2 for a visual description. These con-
trol regions have known distributions of outcomes in X  , which allows us to properly match distributions in Z 
to distributions in X  for training OTUS. Since these control regions are chosen to span Z , OTUS will then be 
able to interpolate to unseen signal regions. Neural networks in general are known to perform well at interpo-
lation tasks34, and recent work has shown that autoencoders in particular are proficient at learning manifold 
interpolation35. Still more work has suggested there might be a deeper connection to the structure of this manifold 
and optimal transport36. Therefore, it is reasonable to expect that OTUS will be able to interpolate well in this 
space. However, these claims should be thoroughly investigated in future work.

(2)LSWAE(p(x), pD(x | z), pE(z | x)) = Ex∼p(x)EpE(z|x)Ex̃∼pD(x|z)[c(x, x̃)]
2A

+ � dSW(pE(z), p(z))
2B

.

(3)LA(p(u), pG(v | u)) = Eu∼p(u)Ev∼pG(v|u)[cA(u, v)].

(4)pµpµ = E2 − p2 = m2,
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A signal region is a region in Z space where signatures of new particles might occur. SM predictions, 
{zSM | θSM} , and BSM predictions, {zBSM | θBSM} , would then be passed to OTUS to produce two simulated data 
samples {xSM} and {xBSM} which would be compared with observed data, {x} , via a hypothesis test to calculate the 
relative likelihood of the SM and BSM theories. This technique, simulation-based inference, is standard practice 
in particle physics and is applied to existing simulation methods.

As a concrete example, let our BSM theory be the SM with the addition of a new particle, Z′ , with a mass of 
0.030 [TeVc−2 ], which decays into a pair of leptons, a flagship search for the Large Hadron Collider37. The latent 
space Z would include the two leptons produced by the decay of the Z′ , and the observed space X  would include 
the leptons identified and measured by the detector. For OTUS to be able to predict the observed signatures from 
this latent space, it would need to interpolate between control regions which have similar relationships. Decays 
of existing particles to leptons, such as the 0.091 [TeVc−2 ] Z and the 0.002 [TeVc−2 ] J/ψ would allow OTUS 
to learn the mapping from latent leptons to observed leptons. Our theoretical Z′ has a mass which lies between 
those of the particles in our control regions. OTUS would need to interpolate along this axis; control regions at 
various masses provided by the Z and J/ψ decays are therefore essential to describe and determine the nature 
of the interpolation. To verify the interpolation, one might compare the prediction of OTUS to observed data 
in the intermediate range between the Z′ and the Z.

Alternatively, the Z′ could have a heavier mass, e.g. 1 [TeVc−2 ]. In this scenario, OTUS would be required to 
extrapolate along the mass axis. Naively, this sounds problematic as extrapolation is generally much less sound 
than interpolation, however this task is also required of current simulations for this scenario. Simulations suc-
ceed in such tasks when they have inductive biases which control their behavior even outside of training (tuning) 
regions. These inductive biases are based on physics principles and scale to the signal regions of interest. For 
neural networks, it has been shown that architectures with inductive bias constraints succeed at such extrapola-
tion tasks38. Since a mature version of OTUS will manifestly include such inductive biases (see “Conclusion”) it 
is reasonable to assume it can achieve this task as well as current simulation methods can.

Results
Demonstration in Z → e

+
e
− decays.  We first test OTUS on an important control region: leptonic 

decays of the Z-boson to electron-positron pairs, Z → e+e− . The theoretical prior is well-known, and its param-
eters {θ} , like the Z-boson’s mass and its interaction strengths, are tightly constrained by precision experiments. 
We identify Z with the Z-boson’s decay products: the electron, e− , and positron, e+ , whose four-momenta span 
the space. We compose these into an eight-dimensional vector

This simplistic vector description excludes categorical properties such as charge.
The model prior p(z) can be simply expressed with quantum field theory and sampled. The subsequent step, 

where the electron and positron travel through the layers of detectors, depositing energy and causing particle 
showers, cannot be described analytically; a model will be learned by OTUS from data in control regions. Here 
we use simulated data samples, but specific (z, x) pairs are not used to mimic the information available when 
training from real data. The complex intermediate state with many low-energy particles and high-dimensional 
detector readouts is reduced and reconstructed yielding estimates of the electron and positron four-momenta. 
Therefore, X  has the same structure and dimensionality as Z , though the distribution p(x) reflects the impact 
of the finite resolution of detector systems (see "Data generation").

Figure 3 shows distributions of testing data, unpaired samples from X  and Z in several projections, and 
the results of applying the trained encoder and decoder to transform between the two spaces. Visual evalua-
tion indicates qualitatively good performance, and quantitative metrics are provided. Measuring overall per-
formance, the SW distances are as follows: dSW(p(z), pE(z̃)) = 0.984 [ GeV2 ], dSW(p(x), pD(x̃)) = 1.33 [ GeV2 ], 

(5)z := {ze− , ze+} = {pe
−
,Ee

−
, pe

+
,Ee

+
}.

Figure 2.   Schematic diagram of how OTUS can be used in an abstract analysis. The gray surface represents Z . 
Different theoretical models, θi , will produce different signatures {zi | θi} which lie in Z . The goal of OTUS is 
to learn a general mapping from Z → X  which is independent of the underlying theory, θ , and only depends 
on the information contained in {z ∈ Z} . One trains OTUS using control region data which span Z and have 
known outcomes in X  . These allow us to pair distributions in Z with distributions in X  . From these examples, 
OTUS interpolates to the rest of Z and can then be used to generate {xi} from samples {zi | θi} from regions not 
used during training, including the blinded signal region. This can then be used to search for new particles.
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dSW(p(x), pD(x̃
′)) = 3.03 [ GeV2 ]. Additionally, several common metrics are reported for each projection in 

Supplementary Tables 1 and 2. Details of the calculations are provided in Evaluation.
To ensure that the learned decoder reflects the physical processes being modeled, we inspect the transforma-

tion from Z → X  in Fig. 4. The learned transfer function, pD(x | z) , shows reasonable behavior, mapping samples 
from Z to nearby values of X  . This reflects the imperfect resolution of the detector while avoiding unphysical 
transformations such as mapping information on the far-end distribution tails in Z to the distribution peaks in X .

Finally, we examine the distribution of a physically important derived quantity, the invariant mass of the 
Z-boson, see Fig. 5. This quantity was not used as an element of the loss function, and so provides an alternative 
measure of performance. The results indicate a high-quality description of the transformation from Z to X  . The 
performance of the transformation from X  to Z is less well-described, likely because this relation is more strict 
in Z causing a sharper peak in the distribution. Such strict rules are difficult for networks to learn when not 
penalized directly or hard-coded as inductive biases, again signaling that a robust data representation will be 
crucial to improving performance (see “Conclusion”).

Demonstration in semileptonic top‑quark decays.  The Z-boson control region is valuable for cali-
brating simulations of leptons such as electrons or muons, which tend to be stable and well-measured. We next 
test OTUS on the challenging task of modeling the decay and detection of top-quark pairs featuring more com-
plex detector signatures. This control region has more observed particles and introduces additional complexities: 
unstable particles decaying in flight, significantly degraded resolution relative to leptons, undetected particles, 
and a stochastically variable number of observed particles.

The initial creation of top-quark pairs, their leading-order decay t t̄ → W+b W−b̄ , and the subsequent 
W-boson decays are well-described using quantum field theory, so p(z | θ) can be sampled. We select the modes 

Figure 3.   Performance of OTUS for Z → e+e− decays. (a) Matching of the positron’s px , py , and E 
distributions in Z . It shows distributions of samples from the theoretical prior, {z ∼ p(z)} (solid black), as well 
as the output of the encoder, {z̃} ; the encoder transforms samples of testing data in experimental space, X  , to the 
latent space, Z , and is shown as x → z̃ (dashed cyan). (b) Matching of the positron’s px , py , and E distributions 
in X  . It shows the testing sample {x ∼ p(x)} (solid black) in the experimental space, X  , as well as output from 
the decoder applied to samples drawn from p(z), labeled as z → x̃′ (dashed purple). Also shown are samples 
passed through both the decoder and encoder chain, x → z̃ → x̃ (dotted green). Dotted green and solid black 
distributions are matched explicitly during training. Enhanced differences between dashed purple and solid 
black indicate the encoder’s output needs improvement, as pE(z) does not fully match p(z). If performance were 
ideal, the distributions in every plot would match up to statistical fluctuations. Residual plots show bin-by-bin 
ratios with statistical uncertainties propagated accordingly (see “Evaluation”).
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Figure 4.   Visualization of the transformation from Z → X  in the Z → e+e− study for positron energy. (a) The 
learned transformation of the decoder, pD(x | z) . (b) The true transformation from the simulated sample, for 
comparison, though the true (z, x) pairs are not typically available and were not used in training. Colors in the X  
projection indicate the source bin in Z for a given sample.

Figure 5.   Performance of OTUS for Z → e+e− decays in a physically important derived quantity, the invariant 
mass of the electron-positron pair, MZ . (a) Matching of the MZ distribution in Z . It shows distributions of 
samples from the theoretical prior, {z ∼ p(z)} (solid black), as well as the output of the encoder, {z̃} ; the encoder 
transforms samples of testing data in experimental space, X  , to the latent space, Z , and is shown as x → z̃ 
(dashed cyan). (b) Matching of the MZ distribution in X  . It shows the testing sample {x ∼ p(x)} (solid black) 
in the experimental space, X  , as well as output from the decoder applied to samples drawn from p(z), labeled 
as z → x̃′ (dashed purple). Also shown are samples passed through both the decoder and encoder chain, 
x → z̃ → x̃ (dotted green). Dotted green and solid black distributions are matched explicitly during training. 
Enhanced differences between dashed purple and solid black indicate the encoder’s output needs improvement, 
as pE(z) does not fully match p(z). If performance were ideal, the distributions in every plot would match up 
to statistical fluctuations. Note that this projection was not explicitly used during training, but was inferred by 
the networks. Residual plots show bin-by-bin ratios with statistical uncertainties propagated accordingly (see 
“Evaluation”).
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W− → e− ν̄e and W+ → u d̄ as examples and assign our latent space to describe the four-momenta of these 
six of particles:

with a total of twenty-four dimensions.
Unlike in the Z → e+e− study, the X  space’s structure is considerably different from that of the Z space. 

While the electron e− is stable and readily identifiable, the other particles are more challenging. The neutrino, 
ν̄e , is stable, yet invisible to our detectors, providing no estimate of its direction or momentum; instead its pres-
ence is inferred using momentum conservation pν = −

∑

pobserved . Unfortunately, soft initial state radiation 
and detector inefficiencies also contribute to missing momentum. The aggregate quantity is labeled pmiss . The 
four quarks b̄ , u, d̄ and b are strongly-interacting particles each producing complex showers of particles that 
are clustered together into jets to estimate the original quark momenta and directions. Unfortunately, despite 
significant recent progress39–41, we cannot assume a perfect identification of the source particle in Z for a given 
jet observed in X  , causing significant ambiguity.

Additionally, a complete description of the Z → X  transformation should include the possibilities for the 
number of jets in X  to exceed the number of quarks, due to radiation and splitting, or to fail to match the number 
of quarks, due to jet overlap or detector inefficiency. We leave this complexity for future work and restrict our 
X  space to contain exactly four jets.

The final complexity introduced in this study is the presence of a sharp lower threshold in transverse momen-
tum, pT . Experimental limitations require that jets with pT < 20 [GeVc−1 ] be discarded and therefore are not 
represented in the training dataset, as they would be unavailable in control region data. Mimicking this experi-
mental effect, we directly impose this threshold on the decoder’s output instead of the network learning it. Paral-
leling reality, such events are discarded before computing losses. This strategy requires modifications to both the 
model and training strategy (see “Methodology”).

Our experimental data is the vector

with a total of twenty-four dimensions. If quark-jet assignment were possible, it would be natural to align the 
order of the observed jets with the order of their originating quarks in Z space. Lacking this information, it is 
typical to order jets by descending |pT| =

√

p2x + p2y  , where jet 1 has the largest |pT|.
Figure 6 shows distributions of testing data, unpaired samples from X  and Z in several projections, and 

the results of applying the trained encoder and decoder to transform between the two spaces. Visual evalua-
tion indicates qualitatively good performance, and quantitative metrics are also provided. Measuring overall 
performance the SW distances are as follows: dSW(p(z), pE(z̃)) = 22.3 [ GeV2 ], dSW(p(x), pD(x̃)) = 232 [ GeV2 ], 
dSW(p(x), pD(x̃

′)) = 120 [ GeV2 ]. Additionally, several common metrics are reported for each projection in 
Supplementary Tables 3 and 4. Details of the calculations are provided in “Evaluation”.

To probe the Z → X  transformation, we inspect the learned transfer function, pD(x | z) in Fig. 7. While the 
overall performance is worse in this more complex case, it still shows reasonable behavior, mapping samples from 
Z to nearby values of X  and avoiding unphysical transformations such as mapping information on the far-end 
distribution tails in Z to the distribution peaks in X  . Additionally, cross-referencing with the true simulation’s 
mapping shows the similar nature of the mappings.

Finally, we examine the distribution of physically important derived quantities, the invariant masses of the 
top-quarks and W-bosons estimated by combining information from pairs and triplets of objects, see Fig. 8. No 
exact assignments are possible due to the ambiguity of the jet assignment and the lack of transverse information 
for the neutrino, but a comparison can be made between the experimental sample in X  and the mapped samples 
Z → X  . As in the Z → e+e− case, we see imperfect but reasonable matching on such derived quantities which 
the network was not explicitly instructed to learn.

Methodology
This section provides details on the methods used to produce the results in the previous section. We first describe 
the data generation process. We then describe the machine learning models used and strategies for how they 
were trained. Finally, we give details on the qualitative and quantitative evaluation methods used in the visuali-
zations of the results.

Data generation.  The data for this work was generated with the programs Madgraph5 v.2.6.3.242, Pythia 
v.8.2403, and Delphes v.3.4.14. ROOT v.6.08/0043 was used to interface with the resulting Delphes output files. 
We used the default run cards for Pythia, Delphes, and Madgraph. Where relevant, jets were clustered using the 
anti-kt algoritm44 with a jet radius of 0.5. The card files can be found with the code for this analysis (see "Code 
availability").

Samples of the physical latent space, Z , were extracted from the Madgraph LHE files to form the 4-momenta 
of the particles. Samples of the data space, X  , were extracted from Delphes’ output ROOT files. We selected for the 
appropriate final state: e+ , e− in the Z → e+e− study and e− , missing 4-momentum (i.e. MET = (pmiss,Emiss) ), 
and 4 jets in the semileptonic tt̄ study. If an event failed this selection, the corresponding Z event was also 
removed. Reconstructed data in X  was extracted by default as (pT, η,φ) of the object and converted into (p,E) 
via the following relations

(6)z := {ze− , zν̄e , zb, zb̄, zu, zd̄} = {pe
−
,Ee

−
, pν̄e ,Eν̄e , pb,Eb, pb̄,Eb̄, pu,Eu, pd̄ ,Ed̄}

(7)
x :={xe− , xmiss, xjet1, xjet2, xjet3, xjet4} = {pe

−
,Ee

−
, pmiss,Emiss, pjet1,Ejet1, pjet2,Ejet2, pjet3,Ejet3, pjet4,Ejet4},
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where m is the particle’s definite mass and is zero for massless particles. Note that we are assuming natural units 
where the speed of light, c, is equal to unity. This equates the units of energy, E, momentum, p , and mass, m. In 
our case, me+ = me− = 0 [GeVc−2 ] is a standard assumption given that the true value is very small compared 
to the considered energy scales. We additionally set m = 0 [GeVc−2 ] for the 4 jets and MET since these objects 
have atypical definitions of mass.

In total, we generated 491,699 events for Z → e+e− and 422,761 events for semileptonic tt̄ . The last 160,000 
events in each case were reserved solely for statistical tests after training and validation of OTUS.

Model.  Model choice.  In this section, we briefly survey the literature of machine learning methods which 
might be considered for this task. We discuss their features and whether they are compatible choices for this 
application.

We will primarily focus on OT-based probabilistic autoencoder methods (i.e. WAE21 and its derivatives) 
but first we briefly address a derivative of VAEs, β-VAE. This method appears similar to WAE in the form of 
loss function that is used. Both have a data-space loss and a latent-space loss with a relative hyperparameter 
weighting β (or � for the WAE). However, the β-VAE method is not principled in OT and thus is distinct from 
the WAE method and its derivatives. Most importantly for our application, the β-VAE (like its predecessor VAE) 

(8)p := (px , py , pz) =(pTcos(φ), pTsin(φ), pTsinh(η))

(9)E =

√

(pTcosh(η))2 +m2,

Figure 6.   Performance of OTUS for semileptonic tt̄ decays. (a) Matching of the b quark’s px , py , and E 
distributions in Z . It shows distributions of samples from the theoretical prior, {z ∼ p(z)} (solid black), as well 
as the output of the encoder, { ̃z} ; the encoder transforms samples of the testing data in experimental space, 
X  , to the latent space, Z , and is shown as x → z̃ (dashed cyan). (b) Matching of the leading jet’s px , py , and E 
distributions in X  . It shows the testing sample {x ∼ p(x)} (solid black) in the experimental space, X  , as well as 
output from the decoder applied to samples drawn from the prior p(z), labeled as z → x̃′ (dashed purple). Also 
shown are samples passed through both the decoder and encoder chain, x → z̃ → x̃ (dotted green). Dotted 
green and solid black distributions are matched explicitly during training. Enhanced differences between dashed 
purple and solid black indicate the encoder’s output needs improvement, as pE(z) does not fully match p(z). If 
performance were ideal, the distributions in every plot would match up to statistical fluctuations. Residual plots 
show bin-by-bin ratios with statistical uncertainties propagated accordingly (see “Evaluation”).
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is likelihood-based which precludes it from applications where the latent prior is not analytically known. The 
interested reader can find more information on these distinctions in the following reference45.

The WAE method21 provides a general framework for an autoencoder whose training is based on ideas from 
OT theory, namely the Wasserstein distance. This work defined a large umbrella under which a rich amount of 
subsequent literature falls (e.g. SWAE20, Sinkhorn Autoencoders46, CWAE47). The key difference between these 
methods and the original WAE method is the fact that each chooses a different dz(·, ·) cost function. Therefore, 
the choice of method largely comes down to finding a suitable dz for the given problem.

The original WAE work proposes two specific options for the dz , defining two versions of WAE: GAN-WAE 
and MMD-WAE. The first is an adversarial approach in which dz is the Jensen–Shannon divergence estimated 
using a discriminator network. The second chooses dz to be the Maximum Mean Discrepancy (MMD)21.

The GAN-WAE strategy suffers from the same practical issues as other adversarial methods such as GANs 
(i.e. mode collapse). This possibility of training instability makes it an undesirable choice. The MMD-WAE does 
not have this training instability issue but requires an a priori choice of a kernel for the form of latent space prior, 
p(z). This implies that we analytically know the desired prior form ahead of time, which is not the case for particle 
physics in general. Therefore, this option will not work for the applications explored in this work.

We now explore WAE derivatives which choose other choices for dz that might be more amenable to our 
application. CWAE47 chooses the Cramer-Wold distance as the dz cost function. For a Gaussian latent space 
prior, this provides a computationally efficiency boost due to the existence of a closed-form solution. However, 
this assumption makes it unsuitable for our current application because our latent prior, p(z), is non-Gaussian 
and often does not have a form which is known analytically a priori.

Two other derivatives allow for a flexible prior form which would be suitable for the task at hand. SWAE20 
chooses the dz cost function to be the SW distance and Sinkhorn Autoencoder (SAE)46 chooses it to be the 
Sinkhorn divergence which is estimated via the Sinkhorn algorithm. Both have comparable performance with 
trade-offs in performance and computational efficiency. SAE claims superior performance to SWAEs for Gauss-
ian priors, while it is slightly more computationally intensive ( O(M2) as opposed to SWAEs best case O(M) or 
worst case O(MlogM) ). However, both methods are valid choices for this application. Therefore, we suggest that 
SAE performance on this task be explored in future work.

We also note the existence of other WAE-derivative methods which generalize the underlying OT framework. 
In our application, the dz metric always compares distributions in the same ambient space Z . Additionally, the 
overall loss function also approximates the Wasserstein distance between two distributions in the same ambient 
space X  , namely Wc(p(x), pD(x)) . However, recent work using the Gromov–Wasserstein distance48 extends the 
underlying Optimal Transport (OT) framework to situations where the two probability measures µ and ν are 
not defined on the same ambient space (e.g. Rn and Rm with different dimensions n and m). For this applica-
tion, this is an over-powered tool since by construction p(z) and pE(z) (p(x) and pD(x) ) always lie in the same 
ambient space. However, if one were attempting to study the optimal transportation between different spaces, 
this would be ideal. This would be an interesting direction to follow-up recent related work which connects OT 
and particle physics36,49.

Figure 7.   Visualization of the transformation from Z → X  in the tt̄ study for the energy of the b quark in 
Z to energy of the leading jet in X  . (a) The learned transformation of the decoder, pD(x | z) . (b) The true 
transformation from the simulated sample, for comparison, though the true (z, x) pairs are not typically 
available and were not used in training. Note that the b quark will not always correspond to the leading jet, see 
the text for details. Colors in the X  projection indicate the source bin in Z for a given sample.
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Base model.  Both the encoder and decoder models of OTUS are implicit conditional generative models, and 
operate by concatenating the input with random noise and passing the resulting vector through feedforward 
neural networks.

For a model, G, mapping from a space, U , to a space, V , the steps are as follows. (1) A sample of raw input 
data, u ∈ U  , is standardized by subtracting the mean and dividing by the standard deviation resulting in the 
standardized data vector, ū . (2) A noise neural network computes a conditional noise distribution pN (ǫ | u) , 
where the noise vector ǫ ∼ pN (ǫ | u) has the same dimensionality as the core network prediction w̄ (defined in 
the next step). (3) The standardized data vector, ū , and noise vector, ǫ , are then concatenated and fed into a core 
neural network. This network outputs the 3-momentum, p , information of each particle in the standardized 

Figure 8.   Performance of OTUS for semileptonic tt̄ decays in physically important derived quantities in 
X  . (a) Matching of the invariant mass of the combined tt̄ pair. (b) Matching of the invariant mass of the 
hadronically decaying W-boson, MW . (c) Matching of the invariant mass of the top-quark, Mt , reconstructed 
using information from the leptonically decaying W-boson. (d) Matching of the invariant mass of the top-
quark, Mt , reconstructed using information from the hadronically decaying W-boson. These show the testing 
sample {x ∼ p(x)} (solid black) in the experimental space, X  , as well as output from the decoder applied to 
samples drawn from p(z), labeled as z → x̃′ (dashed purple). Also shown are samples passed through both the 
decoder and encoder chain, x → z̃ → x̃ (dotted green). Dotted green and solid black distributions are matched 
explicitly during training. Enhanced differences between dashed purple and solid black indicate the encoder’s 
output needs improvement, as pE(z) does not fully match p(z). Residual plots show bin-by-bin ratios with 
statistical uncertainties propagated accordingly (see “Evaluation”).
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space, collected into a vector w̄ . (4) The vector w̄ is then unstandardized by inverting the relationship in step 
1, creating a vector w. (5) The Minkowski relation ( see "Our approach: OTUS") is then enforced explicitly to 
reinsert the energy information of each particle, transforming w into the final v ∈ V which is distributed accord-
ing to pG(v | u).

Both the encoding and decoding model’s noise networks produce Gaussian-distributed noise vectors with 
mean and diagonal covariances [µ(x), σ 2(x))] and [µ(z), σ 2(z))] respectively. For the Z → e+e− study, the core 
and noise networks for both the encoder and decoder each used a simple feed-forward neural network archi-
tecture with a single hidden layer, with 128 hidden units and ReLU activation.

Model for semileptonic top‑quark decay study.  To better model the complexities in the semileptonic tt̄ data, we 
introduced a restriction to the decoder model and modified the training procedure accordingly (see “Training”). 
With these modifications, the base model encountered difficulty during training, so we introduced the following 
three changes to the architecture for more effective training.

First, the conditionality of the noise network is removed and the noise is instead drawn from a fixed standard 
normal distribution, pN (ǫ | u) = pN (ǫ) = N (0, I) . Second, the model now has a residual connection such that 
the core network now predicts the change from the input u. The 3-momentum sub-vector of u is added to w 
before proceeding to imposing the Minkowski relation in step 5. This input-to-output residual connection pro-
vides an architectural bias towards identity mapping, when the model is initialized with small random weights.

Lastly, the core network itself is augmented with residual connections50 and batch normalization51. An input 
vector to the core network is processed as follows: (A) A linear transform layer with K units maps the input to a 
vector r ∈ R

K . (B) Two series of [BatchNorm, ReLU, Linear] layers are applied sequentially to r, without changing 
the dimensionality, resulting in s ∈ R

K . (C) A residual connection from r is introduced, so that s → s + r . (D) 
The resulting s is then transformed by a final linear layer with J units to obtain the output vector t ∈ R

J . For the 
tt̄ study, the input vector [ū, ǫ] is 24+ 18 = 42 dimensional, the output dimension J = 18 , and we set K = 64 
for the core network, in both the encoder and decoder models.

Training.  Base training strategy.  As described in "Our approach: OTUS", the model is trained by minimiz-
ing the SWAE loss function augmented with anchor terms

with respect to parameters of the encoder pE(z | x) and decoder pD(x | z) distributions.
As each term in the loss function has the form of an expectation, we approximate each with samples and 

compute the following Monte-Carlo estimate of the loss:

where {xm}Mm=1 and {zm}Mm=1 are M instances of X  and Z samples, {z̃m ∼ pE(· | xm)}
M
m=1 are drawn from the 

encoder, {x̃′m ∼ pD(· | zm)}
M
m=1 are drawn from the decoder, and {x̃m ∼ pD(· | z̃m)}

M
m=1 are drawn from the 

auto-encoding chain x → z̃ → x̃ . [This is equivalent to drawing a sample (x, z̃, x̃) from the joint distribution 
p(x)pE(z̃ | x)pD(x̃ | z̃) .] The estimation of dSW(p(z), pE(z)) uses L random slicing directions {θl}Ll=1 drawn uni-
formly from the unit sphere, along which the samples zm ∼ p(z) and z̃m ∼ pE(z) are compared; this involves 
estimating each CDF−1 by sorting the two sets of projections in ascending order as {(θl · zm)sorted}Mm=1 and 
{(θl · z̃m)sorted}

M
m=1 , for each direction θl ; we refer interested readers to20 for more technical details of the Sliced 

Wasserstein distance. We use the squared norm as the cost metric c(u, v) = ||u− v||2 in the SWAE loss20. The 
anchor cost, cA , between two observation vectors u, v (which can reside in either X  or Z space) is defined as 
cA(u, v) := 1− p̂u · p̂v , where p̂u is the unit vector of the coordinates of u corresponding to the momentum of 
a pre-specified particle, and p̂v is defined analogously with respect to the same particle; this is chosen as the 
electron in our experiments. For example, cA(x, z̃) would be computed as

At a higher level, the computation of L̂SWAE based on a mini-batch proceeds as follows. Following the path 
through the full model, a batch of samples X ∼ p(x) from X  space is passed to the encoder model, E, producing 
Z̃ ∈ Z distributed according to pE(z | x) . The encoding anchor loss term LA,E(X, Z̃) ≡ LA(p(x), pE(z | x)) is then 
computed along with the SW distance latent loss, d̂SW(Z, Z̃) ≡ d̂SW(p(z), pE(z)) . The samples Z̃ and Z ∼ p(z) 
are then passed independently in parallel through the decoder model, D, producing X̃ and X̃ ′ , respectively. The 
decoding anchor loss term LA,D(Z, X̃ ′) ≡ LA(p(z), pD(x | z)) is then computed. Finally, the data space loss, 
chosen to be MSE(X, X̃) , is computed. See Supplementary Fig. 1 for a visual representation. We can then mini-
mize the tractable Monte-Carlo estimate of the objective, L̂SWAE , by stochastic gradient descent with respect to 
parameters of the encoder and decoder networks.

(10)
LSWAE(p(x), pD(x | z), pE(z | x)) = Ex∼p(x)Ez∼pE(z|x)Ex̃∼pD(x|z)[c(x, x̃)] + �dSW(pE(z), p(z))

+ βELA(p(x), pE(z | x))+ βDLA(p(z), pD(x | z)),

(11)

L̂SWAE =
1

M

M
∑

m=1

c(xm, x̃m)+ �
1

L ∗M

L
∑

l=1

M
∑

m=1

c((θl · zm)sorted, (θl · z̃m)sorted)

+ βE
1

M

M
∑

m=1

cA(xm, z̃m)+ βD
1

M

M
∑

m=1

cA(zm, x̃
′
m),

(12)cA(x, z̃) = 1− p̂e−x · p̂e−z̃ = 1−
pe−x

�pe−x �
·

pe−z̃
�pe−z̃ �

.
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Since the original (S)WAE aimed to ultimately minimize dW (p(x), pD(x)) via an approximate variational 
formulation, [When minimized over all pE(z | x) that satisfies the constraint pE(z) = p(z) , term A of Eq. (1) 
becomes an upper bound on dW (p(x), pD(x)) ; the bound is tight for deterministic decoders21. The overall WAE 
loss LWAE is a relaxation of the exact variational bound, and recovers the latter as � → ∞ .] we also consider an 
auxiliary strategy of directly minimizing the more computationally convenient SW distance dSW(p(x), pD(x)) 
to train a decoder, or minimizing dSW(p(z), pE(z)) to train an encoder. This can be done by simply optimizing 
the Monte-Carlo estimates

where the samples {xm, zm, x̃′m, z̃m}Mm=1 are defined the same way as before. Auxiliary training of the encoder was 
found helpful for escaping local minima when optimizing the joint loss L̂SWAE , and auxiliary fine-tuning of the 
decoder in post-processing also improved the decoder’s fit to the data.

Note that the idea of training a decoder by itself is similar in spirit to GANs, but again with the major dis-
tinction and innovation that we use samples from a physically meaningful prior p(z) instead of an uninformed 
generic one (e.g. Gaussian), as we are also interested in a physical conditional mapping pD(x | z) in addition to 
achieving good fit to the marginal p(x).

Training an (S)WAE with a restricted decoder.  As was previously explained, experimental limitations in the 
semileptonic tt̄ study require a minimum threshold, so that jets which have pT < 20 [GeVc−1 ] are discarded 
and therefore are not represented in the training dataset, as they would not be available in control region data. 
Denoting the region of X  space which passes this threshold by S, we are faced with the task of fitting a distribu-
tion pD(x) over X  while only having access to data samples in the valid subset S ⊂ X .

We propose a general method for fitting an (S)WAE such that its marginal data distribution pD(x) , when 
restricted to the valid set S, matches that of the available data. We first define the restricted marginal data 
distribution,

where 1S(x) is the indicator function of S so that it equals 1 if x ∈ S , and 0 otherwise, and PD(S) :=
∫

dtpD(t)1S(t) 
normalizes this distribution. Note that PD(S) depends on the decoder parameters, and can be identified as the 
probability that the data model pD(x) yields a valid sample x ∈ S.

Our goal is then to minimize dW (p(x), p̄D(x)) . This can be done by minimizing the same variational upper 
bound as in a typical (S)WAE, but with an adjustment to the data loss function in term A of Eq. (1), so it becomes

Letting θ denote the parameters of the model, it can be shown that the gradient of the modified cost function 
has the simple form

This means that training an (S)WAE with a restricted decoder by stochastic gradient descent proceeds as in 
the unrestricted base training strategy, except that only the valid samples in S contribute to the gradient of the 
data loss term, with the contribution scaled inversely by the factor PD(S) , which can be estimated by drawing 
samples x̃′m ∼ pD(x) [This is equivalent to passing zm ∼ p(z) through the decoder to produce x̃′m .] and forming 
the Monte-Carlo estimate

Parameter optimization.  For the Z → e+e− study, we used the base training strategy. We optimized L̂SWAE for 
80 epochs with anchor penalties βE = βD = 50 , followed by another 800 epochs with the anchor penalties set 
to 0. For the semileptonic tt̄ study, we modified the base training strategy to accommodate a restricted decoder, 
substituting all appearances of pD(x) in the loss L̂SWAE by p̄D(x) (e.g. using the modified data loss term Eq. (16)). 
We optimized the resulting loss L̂SWAE till convergence, for about 1000 epochs. Then we froze the encoder and 
fine-tuned the decoder by minimizing d̂SW(p(x), p̄D(x)) for 10 epochs, with a reduced learning rate. The input-
to-output residual connection (see “Model”) in the tt̄ model allowed for sufficiently high PD(S) ≈ 0.6 and reli-
able gradient estimates during training, and the architectural bias towards identity mapping made the anchor 
losses redundant, so we set βE = βD = 0.

(13)d̂SW(p(x), pD(x)) =
1

L ∗M

L
∑

l=1

M
∑

m=1

c((θl · xm)sorted, (θl · x̃
′
m)sorted)

(14)d̂SW(p(z), pE(z)) =
1

L ∗M

L
∑

l=1

M
∑

m=1

c((θl · zm)sorted, (θl · z̃m)sorted),

(15)p̄D(x) =
pD(x)1S(x)

PD(S)
,

(16)Ex∼p(x)EpE(z|x)Ex̃∼p̄D(x|z)[c(x, x̃)] → Ex∼p(x)EpE(z|x)Ex̃∼pD(x|z)

[

1S(x̃)

PD(S)
c(x, x̃)

]

.

(17)∇θ

1S(x̃)

PD(S)
c(x, x̃) =

1S(x̃)

PD(S)
∇θ c(x, x̃).

(18)PD(S) ≈
1

M

M
∑

m=1

1S(x̃
′
m).
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In both studies, we found that a sufficiently large batch size significantly improved results. This is likely do to 
increasing the accuracy of gradient estimates for stochastic gradient descent and also the CDF−1 in the SWAE 
latent loss. In all of our experiments, we used the Adam optimizer52 with L = 1000 number of slices, a batch size 
of M = 20,000 , and learning rate of 0.001. We tuned the � hyperparameter of the (S)WAE loss L̂SWAE on the 
validation set; we set � = 1 for the Z → e+e− model, and � = 20 for the tt̄ model.

Evaluation.  This section provides details on the various qualitative and quantitative evaluation techniques 
used in this work.

As common in the literature11,12,14, we visualize our results along informative one-dimensional projections 
using histograms (e.g. Figs. 3, 5). We choose the bin sizes such that the error on the counts can be approximated 
as Gaussian distributed. These histograms are accompanied by residual plots, showing the ratio between the 
histograms from generated samples and the histogram from true samples, with accompanying statistical 
errors53[Specifically, for a bin with counts h1 and h2 , respectively, the error on the ratio, r = h2/h1 is 
σr = r

√

1
h2

+ 1
h1

.]. We also visualize the generative mappings using transportation plots (e.g. Fig. 4) that allow 
us to confirm the physicality of the learned mappings.]

In addition to qualitative comparisons, we also evaluated the results using several quantitative metrics. To this 
end, we calculate the Monte-Carlo estimate of the SW distance, d̂SW(·, ·) , using L = 1000 slices according to the 
cost metric c(u, v) = ||u− v||2 . The results are reported for each study in the text. In addition, we apply several 
statistical tests on the considered one-dimensional projections, which we report in Supplementary Tables 1–4. 
First, we calculate the reduced χ2 , χ2

R , for each comparison and report it along with the degrees-of-freedom (dof). 
Second, we calculate the unbinned two-sample, two-sided Kolmogorov–Smirnov distance. Lastly, we calculate 
the Monte-Carlo estimate of the Wasserstein distance, d̂W (·, ·) , according to the cost metric c(u, v) = ||u− v||2 . 
All statistical tests were carried-out using two separate test sets not used during training or validation of the 
networks. The number of samples in each test set were 80,000 in the Z → e + e− study and 47,856 in the semi-
leptonic tt̄ study.[Note that the number of samples in the semileptonic tt̄ study is lower due to the hard pT cutoff 
constraint as described in “Demonstration in semileptonic top-quark decays". The events present are ones that 
passed this cutoff constraint.]

Conclusion
OTUS is a data-driven, machine-learned, predictive simulation strategy which suggests a possible new direc-
tion for alleviating the prohibitive computational costs of current Monte-Carlo approaches, while avoiding the 
inherent disadvantages of other machine-learned approaches. We anticipate that the same ideas can be applied 
broadly outside of the field of particle physics.

In general, OTUS can be applied to any process where unobserved latent phenomena Z can be described in 
the form of a prior model, p(z), and are translated to an empirical set of experimental data, X  , via an unknown 
transformation. For example, in molecular simulations in chemistry observations could be measurements of real-
world molecular dynamics, p(z) would represent the model description of the system, and p(x | z) would model 
the effects of real-world complications7. In cosmology, X  could be the distribution of mass in the observed uni-
verse, p(z) could describe its distribution in the early universe, and p(x | z) would model the universe’s unknown 
expansion dynamics (e.g. due to inflation)9,54. In climate simulations, p(z) could correspond to the climate due to 
a physical model, while p(x | z) takes unknown geography-specific effects into account8. Additionally, an immedi-
ate and promising application of OTUS is in medical imaging, which uses particle physics simulations to model 
how the imaging particles (e.g X-rays) interact with human tissue and suffers from the great computational cost 
of these simulations10. We note that our method assumes a high degree of mutual information between Z and X  
in the desired application. Therefore, in situations where such mutual information is low (e.g. chaotic turbulent 
flows) the transformations learned by this method would likely be less reliable.

Moreover, features of this method can be adapted to suit the particular problem’s needs. For example, in 
this work we were interested in low-dimensional data, however the method could also be applied to high-
dimensional datasets. Moreover, the encoding and decoding mappings can be stochastic, as in this work, or 
deterministic. Lastly, while this work aimed to be completely unsupervised, and thus data-driven, OTUS can 
be easily extended to a semi-supervised setting. In this case, the data would consist mostly of unpaired samples 
but would have a limited number of paired examples (z, x) (e.g. from simulation runs). These pairs sample the 
joint distribution, p(z, x), which, combined with the decoder pD(x̃ | z) , yields a transportation map γ between 
p(x) and pD(x̃) , γ (p(x), pD(x̃)) :=

∫

dzp(z, x)pD(x̃ | z) . Since calculating the Wasserstein distance between p(x) 
and pD(x̃) involves finding the optimal transportation map, this particular choice yields an upper bound on the 
Wasserstein distance. We can similarly construct a transportation map between p(z) and pE(z̃) using p(z, x) and 
pE(z | x) . This makes directly optimizing the Wasserstein distances dW (p(x), pD(x)) and dW (p(z), pE(z)) tractable 
in this high-dimensional setting. Therefore, we get the alternative objectives

which are upper bounds on dW (p(x), pD(x)) and dW (p(z), pE(z)) respectively. These terms can be incorporated 
alongside the unsupervised SWAE loss, to leverage paired examples {(z, x) ∼ p(z, x)} in a semi-supervised setting.

We have demonstrated the ability of OTUS to learn a detector transformation in an unsupervised way. The 
results, while promising for this initial study, leave room for improvement. Several directions could lead to higher 
fidelity descriptions of the data and latent spaces.

(19)Lpaired(pD(x | z), p(z, x)) = E(z,x)∼p(z,x)Ex̃∼pD(x|z)[c(x, x̃)]

(20)Lpaired(pE(z | x), p(z, x)) = E(z,x)∼p(z,x)Ez̃∼pE(z|x)[c(z, z̃)],
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First, the structure of the latent and data spaces can significantly affect the performance and physicality of 
the resulting simulations. Particle physics data has rich structures often governed by group symmetries and 
conservation laws. Our current vector format description of the data omits much of this complicated structure. 
For example, we omitted categorical characteristics of particles like charge and type. Knowledge of such proper-
ties and the associated rules likely would have excluded the necessity of terms like the anchor loss. Therefore, 
future work should explore network architectures and losses that can better capture the full nature of these data 
structures38,55.

The next technical hurdle is the ability to handle variable input and output states. The same p(z) can lead to 
different detected states as was described, but not explored, in the semileptonic tt̄ study where the number of 
jets can vary. Additionally, it should be possible to handle mixtures of underlying priors in the latent space. This 
can cause the number and types of latent-space particles to vary from one sample to another. For example, the 
Z boson can decay into Z → µ+µ− in addition to Z → e+e− ; a simulator should be able to describe these two 
cases holistically.

Finally, an essential feature of a predictive simulator is that it learns a general transformation, allowing it 
to make predictions for points in the latent space which lie outside of the control regions. This would require 
structuring the latent and data spaces to accommodates data from several control regions, such that the net-
work may learn to interpolate between them. Since networks excel at interpolation we expect that this will be a 
straightforward step.

Data availibility
The datasets generated and analysed during the current study are available in the DRYAD repository, doi: 
10.7280/D1WQ3R.

Code availability
The code used during the current study are available in the Zenodo repository and are linked to the dataset, 
10.5281/zenodo.4706055.
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