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ABSTRACT 

The hippocampus has been recognized as critical for several memory processes, but 

current theories disagree about how to characterize its role. Some theoretical models 

suggest that the hippocampus forms memories that capture relationships between 

different experiences (“integration”), whereas others suggest that it forms distinct 

representations of otherwise similar events (“differentiation”). Different computational 

models of hippocampal function propose different mechanisms for hippocampal 

integration and differentiation, and it is unclear whether a single model can explain both 

processes. In the first chapter of this dissertation, I consider evidence suggesting that the 

prefrontal cortex might mediate the tradeoff between memory integration and 

differentiation, flexibly modulating hippocampal functioning depending on task goals. The 

second chapter describes a proposed proof-of-concept hippocampal-prefrontal model 

that is able to handle a switch in task goals from integration to differentiation. The third 

chapter describes possible ways in which items may be relating to each other in a real-

world environment, I present a study on the testing effect and event boundaries. We know 

through extensive literature that retrieval practice, or repeated recall through testing, 

enhances long-term memory retention. By introducing a manipulation of event 

boundaries, I show behaviorally, through the use of virtual reality environments, that 

retrieval practice or restudy of items within an event can cause forgetting of other items 

within the same event. In the future, this work can be related to the hippocampal and 

prefrontal findings associated with both the testing effect and event segmentation. Finally, 

the last chapter introduces an example of a disorder population, namely individuals with 

schizophrenia, who have deficits in memory processing, possibly related to hippocampal 
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and prefrontal dysfunction. This chapter showcases a study of temporal sequence 

processing in schizophrenia, which reveals a deficit in the functioning of both the 

hippocampus and dorsolateral prefrontal cortex. Together, the work described in this 

dissertation shows literature from multiple fields of research, empirical studies, and 

computational modeling of the interplay between the hippocampus and prefrontal cortex.
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CHAPTER 1: Getting the Hippocampus Under Control: Goal-directed 
Prefrontal Modulation 
Integration and Differentiation in Hippocampus and Prefrontal Cortex 

The hippocampus is known to play a central role in memory processes [1], and 

computational models and descriptive theories have assigned a broad range of 

functions to the hippocampus. Many of these functions can be grouped under the 

umbrella of two key processes: “integration” and “differentiation”. In this review, we will 

summarize evidence suggesting that integration and differentiation are key functions of 

the hippocampus. Next, we summarize descriptive and computational models that 

explain a particular subset of this evidence and consider whether any existing model of 

hippocampal function is sufficient to explain both integration and differentiation because 

these goals are computationally incompatible. Next, we summarize evidence linking 

prefrontal cortex (PFC) to flexible, goal directed modulation of memory encoding and 

retrieval. These findings suggest that PFC might interact with the hippocampus in a 

manner allowing memories from single experiences to be adaptively modulated, 

updated, and recapitulated as necessary to accomplish specific behavioral goals. We 

close by considering biologically plausible computational mechanisms by which PFC 

can shape the representational landscape in the hippocampus, enabling the 

hippocampus to support functions that would be otherwise computationally 

incompatible. 

Mnemonic Differentiation 

In our everyday lives, it is important to form precise memories to distinguish 

between events with overlapping content. For example, think of the last two weddings 
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you attended. They overlapped in content (i.e., a ceremony, cake cutting, etc.), but we 

can distinguish one event from the other. The hippocampus is thought to form distinct 

representations of overlapping events (“pattern separation”) [2-3] to minimize 

competition in the face of high interference. Functional magnetic resonance imaging 

(fMRI) studies in humans investigated pattern separation and retrieval precision by 

examining hippocampal activity with the Mnemonic Similarity Task [4]. In this task, 

participants were shown repetitions of studied items (e.g., a rubber duck), highly similar 

“lure” items (e.g., a rubber duck viewed from a different perspective), and unrelated new 

items (e.g., an apple). Studies using this paradigm demonstrate that activity in the 

hippocampus [5], particularly the CA3 and/or dentate gyrus (DG) subfields [6-7], 

differentiates between repeated stimuli versus similar lures and new items.  

These findings are also consistent with electrophysiological studies. In a rodent 

study, researchers found that the DG is particularly important for pattern separation [8]. 

Leutgeb and colleagues (2007) put rats in a slowly morphing enclosed environment 

(e.g., moving from a square enclosure to a circle enclosure by slight modifications). 

Even with slight changes in the rat’s environment, rats showed changes in activity 

patterns within the DG [9-10]. This finding that the DG is sensitive to very slight changes 

between environments shows that the DG is capable of separating representations for 

highly similar events. Additionally, relying on converging evidence [8,10-11], including 

the work discussed above, Guzowski and colleagues (2004) suggest that the CA3 is 

also sensitive to small changes in context [9]. Together, this evidence supports the idea 

that the DG and CA3 subfields of the hippocampus are necessary for successful pattern 

separation. 
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In addition to neurophysiological evidence, lesion studies support the 

hippocampus being involved in differentiation. In a recognition memory task, 

participants with hippocampal damage were shown common images of items (i.e., 

easily recognized and named items) [12]. Following a distraction task, they were shown 

the same images again together with new images. Images that were only slightly 

different from the original images were also presented, and participants determined if 

the images were old, new, or similar. Behavioral results showed that those with 

hippocampal damage had more difficulty determining when images were similar, 

indicating a deficit in pattern separation [12]. These results are supported by rat lesion 

studies [13]. However, it is important to note that a review investigating pattern 

separation in the hippocampus concluded that the ability to differentiate types of stimuli 

heavily relies on task design [14]. 

There is also evidence that the role of the hippocampus in mnemonic 

differentiation is especially prominent when people must repeatedly encode or retrieve 

highly similar information. A number of fMRI studies have shown that differences in 

hippocampal representations between two highly overlapping memories can become 

grossly exaggerated over the course of learning, a phenomenon known as repulsion 

[14–16]. For example, one fMRI study [15] examined hippocampal representations as 

participants were repeatedly exposed to a series of photos depicting a route between 

two destinations in a city. Following each of many runs, they were given random photos 

along the routes and asked with which destination that image was associated. Critically, 

the routes that were studied were highly overlapping, such that participants needed to 

focus specifically on the unique aspect of each route in order to select the correct 
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destination. Early in learning, hippocampal activity patterns for each route were distinct 

such that similarity between highly overlapping routes was about the same as the 

similarity between nonoverlapping routes. Following repeated route exposure, however, 

the representations between overlapping routes further separated – as if they were 

repelling one another – with the representations of the overlapping routes becoming 

less similar than the representations of nonoverlapping routes. The authors asserted 

that the hippocampus is responsible for increasing distance between competing 

representations [15]. Another fMRI study supporting these findings [18] found that items 

that did not overlap in context (spatial and temporal) showed more similar 

representations in DG and CA3 than those that did overlap in context, suggesting 

repulsion. These findings are consistent with the idea that pattern separation in the 

hippocampus can be dramatically increased when it is necessary to resolve competition 

between highly similar memories. 

Memory Integration 

A separate line of work has shown that the hippocampus can also be critical for 

memory tasks that require integration of information from different events. For example, 

statistical learning tasks involve gradual learning of associations between temporally 

contiguous events. In one fMRI study of statistical learning [19], participants were 

shown a stream of fractal images that included pairs of fractals that were shown in the 

same temporal order (e.g., A always followed by B). Both prior to and after encoding, 

the fractals were viewed in random order so that researchers could characterize the 

representational changes before and after the manipulation. Although participants were 

not explicitly instructed about the sequentially pairing of the two fractals, 
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representational similarity within the hippocampus was increased for fractals that were 

paired relative to those that were not contiguously presented with one another [19]. 

Using a different statistical learning paradigm, Schapiro and colleagues [20] observed 

impaired learning of associations between sequences of images or tones in a patient 

with bilateral hippocampal lesions.  

In studies using an associative inference task, participants are trained on paired 

items and are asked to infer relationships across pairs. For example, one could learn an 

“AB” pair, where A is an image of a face and B is an image of a house, and a “BC” pair, 

where B is the same image of a house and C is an image of a different face. During the 

inference test, participants are given face A and are asked to choose either face C or 

face D, for example. The answer, if the correct relationship has been established (i.e., a 

shared B house), is face C [18-21]. fMRI studies using these paradigms demonstrate 

that hippocampus is involved in this integrative process [19-20, 22]. Ultimately, these 

paradigms are used to explain how we integrate (and differentiate) similar content and 

how we use that information to draw conclusions. 

The importance of the hippocampus for memory integration tasks like associative 

inference (AB+BC=AC) is interesting because the hippocampus is also thought to be 

necessary for differentiating between overlapping associations (AB≠ AC) [26]. 

Interestingly, some fMRI studies have observed evidence of representational separation 

and integration in the same paradigm, just in different subregions of the hippocampus 

[6,8,21]. Schlichting and colleagues [24] showed that, during an associative inference 

task, the posterior hippocampus represents individual associations, whereas anterior 

hippocampal representations generalize across overlapping AB and AC associations . 
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Dimsdale-Zucker [18] and Bakker [6], whose differentiation findings were previously 

described, showed that either increased similarity within CA1 across items that shared a 

context [18] or increased activity in CA1 [6] was associated with pattern completion. In a 

goal-based navigation task using VR environments, participants learned and were 

tested on a variety of local environments, then entered an MRI where they viewed 

locations in those environments. The following day, participants were tested on global 

environments comprised of the previously learned local environments. Results revealed, 

through analyses of patterns of activation in the hippocampus and entorhinal cortex 

(EC), that both integration and differentiation are important in constructing local and 

global environments and are, therefore, necessary for goal-based navigation [27]. 

Together, these studies suggest that CA1 is primarily involved in integration while 

DG/CA3 are involved in differentiation. 

Computational Modeling of Integration and Differentiation 

 Several computational models, some of which are explained further in Table 1, 

have been proposed to explain the role of the hippocampus in differentiating between 

similar memories. Norman and O’Reilly [26-27], for instance, used the Complementary 

Learning Systems (CLS) model [30] to demonstrate how hippocampal differentiation of 

overlapping memories could enable recollection of past events in the face of significant 

interference (see [26] for related simulations). The CLS model is based on the known 

architecture of the hippocampus (see Box 1), and central to this model is the fact that 

DG has sparse coding due to a high degree of inhibition. Because of this inhibition, two 

events with many overlapping elements (as with an AB-AC task) are represented by 

distinct populations of units in DG (i.e., pattern separation). In a standard AB-AC task, 
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participants learn a list of paired items (“AB”) followed by learning of a different list of 

paired items, where item A from the AB list is now paired with an item C (“AC”). Results 

from studies using this paradigm revealed that learning of the AC list interfered with 

performance on the previously learned AB list [29-30]. By differentiating overlapping 

representations, a computational model can recover information about the two events 

without suffering from interference [26]. Ultimately, these simulations show how 

hippocampal pattern separation can enable the hippocampus to learn in the face of 

interference and make very fine-grained mnemonic discriminations.  

Interestingly, the same CLS model architecture used to explain differentiation has 

also been used to model hippocampal memory integration. In the Recurrency and 

Episodic Memory Results in Generalization (REMERGE) Model [23]. Kumaran and 

colleagues used a principle known as “big loop recurrence” – referring to the idea that a 

retrieved hippocampal representation can be fed back into the hippocampus to cue 

retrieval of a related memory representation. Consider our earlier example: if people 

separately learn to associate face A and face C with house B, then they can infer an 

association between A and C. In REMERGE, each association (AB and BC) is encoded 

separately by the hippocampus. During the inference phase, when the hippocampus 

receives input about face A in the superficial layers of EC, it is then able to recover the 

representation of house B in the deep (output) layers of EC. Information about house B 

is then recirculated into the superficial layers of EC. During a second pass, the face 

A/house B pair is transferred from the superficial layers of EC into the hippocampus, 

which allows retrieval of the face C memory into the deep layers of EC. The key point 

from the REMERGE model is that implementation of big loop recurrence can potentially 
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explain hippocampal memory integration, but this principle would seem to be 

counterproductive for memory tasks that require strong differentiation. 

 To address this issue, Schapiro and colleagues proposed [32] another variant of 

the CLS model that attempts to explain that integration and differentiation could be 

happening in different hippocampal pathways [34-35]. In this model, integration occurs 

through the monosynaptic pathway (MSP)—i.e., the direct connection between the EC 

and CA1—whereas differentiation occurs through the trisynaptic pathway (TSP), 

described in Box 1. To test these pathways, the model learned tasks that mimicked 

statistical learning and episodic memory. Results showed that the TSP was able to 

support rapid learning of individual items, but due to high pattern separation, it was not 

sufficient to support statistical learning of associations between items. In contrast, the 

MSP was able to support slow learning of statistical associations in CA1. To mimic an 

underdeveloped TSP, the TSP pathway was “lesioned” (i.e., pathway projection 

strength set at 0), and the ability to do statistical learning was not impaired, further 

proving that MSP was involved in integration while TSP was important for differentiation 

[33]. Although this model can account for both encoding of single items and 

associations, it is not clear that the model can succeed at integration while maintaining 

the capacity to differentiate between highly similar items (as in the mnemonic 

discrimination task) or retain previously learned associations while learning new 

overlapping associations (as in AB-AC learning). Given the differences between the 

MSP and TSP observed in Schapiro et al.’s simulations, it is possible that a mechanism 

could be incorporated to flexibly prioritize pattern separation in the TSP for mnemonic 

differentiation in the face of high interference and the MSP when memory integration is 
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necessary. As we describe later, this would require a mechanism to flexibly select or 

prioritize processing in one of these pathways to perform depending on task demands 

[32]. 

Another framework to understand hippocampal integration and differentiation is 

the Non-Monotonic Plasticity Hypothesis (NMPH) [35]. Rather than focusing on 

unpacking circuit level interactions in the hippocampus, the model focuses on a learning 

rule that could be implemented in the hippocampus. According to the NMPH, when a 

memory retrieval cue triggers moderate co-activation of overlapping associations, 

differentiation occurs due to weakening of synaptic connections, but strong co-activation 

between overlapping associations leads to integration [23,33]. The NMPH can also 

potentially account for the phenomenon of repulsion. Specifically, when overlapping 

memories are repeatedly reactivated, the NMPH learning rule prunes the parts of the 

representation that are maximally overlapping. As a result, the competing memories 

become more differentiated from one another than they are from other items that do not 

overlap much [37]. The key idea in the NMPH is that there is a “sweet spot” for 

repulsion: if two representations are just different enough, then repeated retrieval will 

exaggerate the differences between them. The NMPH can explain a broad range of 

data, but it is somewhat inflexible in that it does not readily explain how the same stimuli 

can be integrated or differentiated under different task conditions. As we pointed out 

earlier, tasks like associative inference share a lot in common with tasks that require 

differentiation between overlapping associations, so it is unclear how representational 

overlap alone could be sufficient to explain the range of data described above.  

Control of Memory Functioning by the Prefrontal Cortex 
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 One key assumption of the models described above is that they attempt to 

explain differentiation and/or integration solely through computations in the 

hippocampus. As we have seen, however, differentiation and integration are observed 

in highly similar tasks that differ primarily in terms of the intended goal—i.e., to focus on 

distinctive attributes of individual items or associations or to focus on shared elements. 

Ultimately, it is unclear whether a single brain area with a particular set of cellular and 

circuit-level anatomy can support both extreme differentiation (e.g., discrimination 

between two nearly identical rubber ducks [12] in the mnemonic differentiation task, or 

creating hyper-differentiated representations of competing associations [15]) while still 

supporting extreme integration (e.g., integration of overlapping associations in 

associative inference tasks [23] or integration of temporally contiguous items in 

statistical learning paradigms [21]). It also seems implausible that such complex 

memory tasks would be supported by the hippocampus in isolation. Given the high 

degree of extrinsic connectivity of the hippocampal-entorhinal system [38], it is worth 

considering whether the tradeoff between differentiation and integration might depend 

on interactions between the hippocampus and other brain regions.   

In particular, the prefrontal cortex (PFC) might play a critical role in hippocampal 

differentiation and integration by modulating hippocampal representations to fit task 

demands. A wide range of research suggests that different areas of the PFC and 

anterior cingulate cortex (ACC) [see Box 2] play a critical role in using representations 

of goals and rules to support performance on complex memory tasks [43,45] involving 

differentiation or integration [41]. For instance, prefrontal regions are critical for 

mitigating interference in AB-AC paired associate learning tasks [42] and in tasks that 
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require fine grained mnemonic distinctions between studied items and similar lures [40–

43]. In humans, inactivation of the ventrolateral PFC via transcranial magnetic 

stimulation (TMS) impaired mnemonic discrimination between previously learned 

objects (e.g., a hammer) and unseen lure items (e.g., a hammer from a slightly different 

angle) [45]. Frontal lesions in rats and humans can sometimes increase susceptibility to 

falsely remember even items that are unrelated to study items [44–46] suggesting that 

differentiation can break down with frontal dysfunction. In addition, one study found that 

inactivation of the medial PFC in rodents impaired mnemonic differentiation [46]. This 

empirical evidence suggests the necessity of a PFC to successfully differentiate 

between similar items. 

Several lines of research also suggest that frontal areas are critical for memory 

integration, as in the transitive inference task (e.g., learn that if A<B and B<C, then 

A<C). For instance, in an fMRI study investigating the hippocampus and prefrontal 

cortex, researchers found that activation of the rostrolateral PFC was required for 

relational integration instead of the hippocampus [50]. In a rodent study, mice with 

damage to the medial PFC had impaired transitive inference abilities [51]. Similarly, 

those with VMPFC damage had difficulties with transitive inference [52-53]. Other 

studies have shown that the VMPFC plays a role in associative inference (i.e., AB-BC 

task). One study found that individuals with VMPFC damage were able to successfully 

learn AB and BC pairs, but they were unable to infer a relationship between A and C 

[54]. In an fMRI AB-BC task, the ability to have successful associative inference was 

related to the functional coupling of the hippocampus and VMPFC [53]. This suggests 

that integration is able to occur when the hippocampus and PFC work together. 
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Given that PFC regions seem to support flexible, goal-directed processing, it is 

reasonable to think that the PFC might support memory integration and differentiation 

via modulation of activity in the hippocampus. This idea is consistent with theoretical 

models suggesting that, during retrieval, the PFC interacts with the MTL by cueing the 

correct contextual information to complete the task [55]. During retrieval, the PFC 

directs the MTL to attend to the type of information necessary for the current task (i.e., 

integration or differentiation) to succeed. There have also been lesion studies 

demonstrating that PFC-hippocampal interactions are necessary for integration and 

differentiation [51–53]. Given a confluence of data suggesting a role for PFC in 

mnemonically challenging memory integration and differentiation tasks [44–49], there is 

good reason to believe that performance on these tasks might depend on interactions 

between the PFC and hippocampus.  

Computational Mechanisms for Prefrontal Control of Hippocampal Function 

There are multiple mechanisms by which the PFC could plausibly play a 

significant role in controlling hippocampal function [43,45,50-51] (Box 2). Here, we 

propose three possibilities: 1) Input Modulation, 2) Output Gating, and 3) Direct 

Modulation (Figure 2). Input modulation involves the PFC interacting with regions that 

provide input to the hippocampus. The perirhinal cortex (PRC), parahippocampal cortex 

(PHC), and presubiculum account for much of the direct input to the hippocampal 

system [61], and these areas receive direct inputs from both the ventrolateral PFC [62] 

and medial [63] PFC.  

The second potential mechanism is Output Gating, where the ACC works as a 

mediator between the PFC and EC. A specific way in which ACC and PFC could 
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interact with the hippocampus is as follows:  for integration, the representations of 

similar information become more similar through the big loop (see Box 1). In this case, 

the ACC is not needed as there is no conflict between the two similar representations. 

However, if these integrated representations are not helpful to the task at hand (e.g., 

mnemonic discrimination), then the ACC registers the conflict and proceeds to drive 

control processes in the PFC that cause the hippocampus to shift to a differentiation 

mode of encoding.  

The last pathway is through Direct Modulation. This pathway involves input from 

the PFC to hippocampus through the nucleus reuniens in the thalamus, which may 

suppress pattern completion by suppressing unwanted hippocampal activity [59]. A 

study investigating fear memory generalization shows that inactivation of the nucleus 

reuniens (or prefrontal inputs into the nucleus reuniens) showed increased 

generalization, whereas activation showed a decreased ability to generalize across 

memories [57]. This showcases the necessity of the nucleus reuniens for tasks where 

generalization does not help participants reach task goals and suggests a role in 

differentiation vs integration. 

Note that the three proposed mechanisms are not mutually exclusive, and it is 

reasonable to think that all three mechanisms are engaged to control memory encoding 

and retrieval depending on task demands. Through these pathways, we propose that 

during integration, the PFC enhances shared features during retrieval leading to 

updated representations that are more similar, and during differentiation, the PFC 

inhibits shared features leading to an updated representations that are less similar 

(Figure 3). 
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Concluding Remarks and Future Perspectives 

Ultimately, adaptive human behavior depends on flexible deployment of learned 

information to accomplish goals. At some times, this might require differentiation 

between similar experiences and at others it might require integration of bits of 

information acquired at different moments. Computational models have been effective 

at demonstrating how the unique architecture of the hippocampus could meet the 

demands of differentiation or integration in the context of specific task demands. To 

create a single model that is capable of a wide variety of tasks with different goals, it 

may be necessary for computational models of memory to incorporate contributions of 

the PFC to flexibly monitor and control hippocampal functions depending on task goals.  

 If, as we propose, the PFC plays a role in modulating hippocampal function in the 

service of task demands, this would have far-reaching implications for our 

understanding of hippocampal function. Numerous theories have been proposed to 

explain how the hippocampus contributes to memory, but this approach might be 

myopic. The nature of hippocampal computations and their apparent memory functions 

might be radically altered based on task demands, goals, and an organism’s 

understanding of the current situation. Accordingly, it may be time to embrace 

complexity and consider a more flexible view of memory, in which the hippocampus is 

part of a broader circuit that supports the use of memory to guide goal-directed behavior 

in the present and planning for the future [25,65]. 
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BOX 1: Medial Temporal Lobe Circuitry 

 Most computational models of hippocampal function focus on how information 

flows between the EC and hippocampal subfields (Figure 1). Information from different 

neocortical hub areas converges in layers II and III of EC, which in turn, directs inputs to 

the hippocampal subfields via two pathways. Neurons in EC II convey input to the 

dentate gyrus (DG), which inputs into the CA3, before reaching the CA1 and re-entering 

the EC via layer V. These connections comprise the “trisynaptic pathway” (TSP), which 

is central to the computational specializations of the hippocampal EC-hippocampal 

circuit. Due to sparse coding within DG, there is a greater ability within this region to 

encapsulate small changes in representations, which allows for differentiation between 

similar inputs, ultimately leading to pattern separation. In contrast, neurons in EC III 

input directly into the CA1, which is known as the “monosynaptic pathway” (MSP) [38, 

65]. The deep and superficial layers in this system have bidirectional connections, 

resulting in an interconnected loop of information transfer [30], also known as the “big 

loop”. The movement of information from the deep layers into the superficial layers of 

the EC is often called “big loop recurrence” [23, 66], which supports memory integration. 

Ultimately, the hippocampus is receiving information from various regions, through EC, 

to bind together information before entering higher-order cortical regions [38-41].  
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BOX 2: Subregions of the Prefrontal Cortex 

The prefrontal cortex (PFC) occupies about 1/3 of the human neocortex, and it 

consists of multiple subregions. In broad terms, researchers have differentiated these 

subfields along the rostro-caudal, dorsal-ventral, and medial-lateral axes. Anatomical 

research has suggested that areas in the ventromedial PFC ([70]) and the Subgenual 

Anterior Cingulate Cortex (ACC) are positioned to play the most significant role in 

modulation of hippocampal function. These areas have direct connections with EC layer 

5 [59], which receives direct output from CA1, and they are positioned to modulate 

activity in CA1 via a disynaptic pathway through the nucleus reuniens of the thalamus. 

The Anterior Cingulate Cortex (ACC) is known to be involved in conflict monitoring 

processes and works with the PFC to resolve conflict [63–65]. When tasks involved 

competition between multiple answers, ACC was found to be highly active, which is in 

line with the idea that ACC is necessary when there is conflict [71], [72]. The ACC has 

also been linked to accessing information from and updating established schemas in 

cortical regions [74], which suggests the ability of the ACC to work with the PFC in 

updating information to better match the task at hand. Further, research suggests that 

the co-activation of medial prefrontal regions and the ACC is the key to controlling what 

type of information is needed for successful retrieval and, importantly, inhibiting the 

information that is not needed [73].  

In contrast, the anatomy of the frontopolar cortex (area 10) has not been well 

characterized. However, the medial frontopolar cortex might work alongside 

ventromedial PFC and ACC in modulating hippocampal function because of its role in 

monitoring competing goals and switching between tasks [75]–[77]. There are also 
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connections between the PFC and other medial temporal regions that input into the EC 

and, ultimately, the hippocampus. Anterograde and retrograde tracings studies show 

that orbital PFC is connected to the perirhinal cortex, which is a part of the anterior 

temporal system involved in object perception, while the medial PFC is connected to the 

parahippocampal cortex, which is associated with the posterior medial system involved 

in retrieval of contextual information [63], [78]. Additionally, there is a bi-directional 

relationship between the parahippocampal cortex and the dorsolateral PFC [79], which 

is involved in strategic planning and resolving competition between competing 

representations [80], [81]. Together, these regions of the PFC, along both the medial-

lateral and dorsal-ventral axes, work together to monitor competing representations, 

recruit necessary regions, and bias neural processing to achieve task goals. 
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Table 1: Computational Models 

Model Model Parameters 

CLS Model [28], 

[29] 

The CLS framework posits that the hippocampus is specialized 

for encoding specific experiences (hippocampus), in contrast to 

the neocortex, which generalizes across multiple experiences 

(see also [2]). Successive variants of this model have 

incorporated increasing degrees of detail regarding the anatomy 

and physiology of the hippocampal system. The model was 

originally proposed to explain how people can rapidly learn new 

information and still retain memories of previously learned events 

with overlapping elements. The CLS model is able to reduce 

interference between memories because it has a relatively fast 

learning rate and because of pattern separation in the DG. 

Pattern separation occurs because overlapping inputs from the 

EC are assigned to sparse, nonoverlapping representations in 

the DG. Simulations of this model have focused on the 

importance of mnemonic differentiation to overcome interference. 

[28] 

Recurrency and 

Episodic Memory 

Results in 

The REMERGE model by Kumaran and McClelland was 

proposed in order to demonstrate how the original idea behind 

the CLS model—that the hippocampus separates memories—
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Generalization 

(REMERGE) 

Model [82] 

can be aligned with evidence for hippocampal involvement in 

rapid generalization. Using associative inference, Kumaran and 

colleagues were able to show that “big loop recurrence” (see Box 

1) happens through a recirculation of information between the 

superficial and deep layers of the entorhinal cortex. To better 

characterize integration tasks, the authors implement a bi-

directional, layered network. Through a combination of localist 

coding and inhibitory competition, the conjunctive layer works to 

limit interference and allow for generalization. Importantly, activity 

within this layer increases along with the memory strength of the 

features, which they associate with increased activity in the 

hippocampus. The feature layer represents the external input into 

the model and has a recurrent, bi-directional relationship with the 

conjunctive layer [82]. Together, these layers work together to 

generalize across item pairs, as with associative inference. 

C-Horse [33] Schapiro and colleagues used the architecture of the CLS model 

to explain how the tension between mnemonic differentiation and 

integration can be resolved through the interaction of two intra-

hippocampal circuits, the trisynaptic (TSP) and monosynaptic 

(MSP) pathways (see Box 1). As described in earlier simulations 

of the CLS model, the high degree of pattern separation in the 

TSP (via sparse coding in the DG and CA3) enables rapid 
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encoding of specific memories, whereas the distributed, 

overlapping representations in the MSP enable generalization 

across overlapping memories. This work suggests that the 

hippocampal complex can use either pathway depending on task 

goals [32-33].  

Non-Monotonic 

Plasticity 

Hypothesis 

(NMPH) [35] 

The Non-Monotonic Plasticity Hypothesis (NMPH) does not 

model hippocampal function per se, but instead proposes a 

learning rule that may be implemented in the hippocampus to 

adjudicate between differentiation and integration. The model 

starts with the premise that activation of one memory can lead to 

co-activation of features of other memories, which can lead to 

updating of the competing memories. When there is low co-

activation between memories, there is no learning-related change 

in the strength of the overlapping memories. However, when 

there is moderate co-activation between memories, such as 

when two memories are associated with the same cue, there is a 

weakening of synaptic connections between those memories, 

causing differentiation. When co-activation is high, there is a 

strengthening of the synaptic connections, causing integration 

[35], [36]. Thus, the NMPH proposes that the learning rule will 

determine whether competing memories will be differentiated or 

integrated based on the degree of representational overlap.  
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FIGURES 

 

FIGURE 1: Medial Temporal Lobe Circuitry. Neocortical input into EC II and III is then 

input into the hippocampus via the Monosynpatic and Trisynaptic Pathways The blue 

arrow represents the Monosynaptic Pathway (EC III -> CA1 -> EC V). The red arrows 

represent the Trisynaptic Pathway (EC II -> DG -> CA3 -> EC V). 
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FIGURE 2: The Hippocampal-Prefrontal Circuitry. The blue arrows represent the Input 

Modulation pathway: Information flows from the PFC to the perirhinal and 

parahippocampal cortices to EC to the hippocampus. The yellow arrows represent the 

Output Gating pathway: Information flows from the PFC to ACC to EC to the 

hippocampus. The red arrows represent the Direct Modulation pathway: Information 

flows from the PFC to the nucleus reuniens of the thalamus to the hippocampus. Green 

= PFC; yellow = ACC; red = thalamus; dark red = nucleus reuniens; blue = hippocampal 

formation. 
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FIGURE 3: Integration vs Differentiation Using PFC. During encoding, the hippocampus 

encodes different representations for items with shared and distinct features. For 

integration processes, shared features are enhanced leading to more similar item 

representations after updating. For differentiation processes, shared features are 

inhibited to allow for more distinct updated representations. 
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CHAPTER 2: Prefrontal Control of the Hippocampus: A Computational 
Model 
INTRODUCTION 

 The ability to integrate [1]–[3] and differentiate [4]–[6] across similar items or 

events is canonically associated with the hippocampus. Integration – or the increased 

similarity between item or event representations – is typically investigated using 

inference [7]–[9] or statistical learning tasks [2]. For example, in a standard associative 

inference task, participants encode a set of “AB” pairs, where A is an image of an item 

and B is scene image, and a set of “BC” pairs, where B is the same scene image and C 

is a new item image. At test, the participants are given item A and asked to pair it with C 

or a novel item D. If integration is successful, when given A, participants should be able 

to recognize its relationship with C (i.e., a shared B). In the brain, this integration is 

shown through an increased similarity in the representational patterns for items A and C 

from encoding to test [7]–[9]. fMRI studies investigating integration show overall 

increased activity in the anterior hippocampus (namely, the CA1) [10], or more 

specifically, an increase in voxel pattern similarity in the CA1 for A and C items from 

encoding to test [11]. 

 In contrast, differentiation – or the decreased similarity between item or event 

representations – is investigated through mnemonic similarity tasks. In such a task, 

participants encode a set of items, then during test, they are presented with the same 

items (i.e., studied), items similar to studied items (i.e., lures), and novel items (i.e., 

foils) and have to mark them as “old” (already studied) or “new” (novel). For successful 

differentiation, the participants must be able to recognize that the lure items are different 
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from the studied items, thus marking them as “new” [6], [12], [13]. Differentiation is often 

associated with the dentate gyrus (DG) and CA3 subfields of the hippocampus, such 

that voxel pattern similarity for studied and lure items become comparable [14]–[17]. 

These studies typically include a small number of repetitions (once or twice) during 

encoding and test, however, when there is repeated retrieval, another phenomenon 

emerges: repulsion. Repulsion is the decrease in representational similarity in the 

hippocampus for similar items with repeated retrieval such that the voxel pattern 

similarity for these dissimilar items is greater than similar items [18], [19]. Ultimately, 

both standard differentiation and repulsion tasks showcase a change in representational 

similarity between similar items related to better performance as the representations 

decrease in similarity. 

 Due to the implication of hippocampal processing for these opposing tasks – 

integration and differentiation – there are still outstanding questions: How is the 

hippocampus able to achieve both tasks? And how can it switch between these two task 

goals? We propose that a control system, namely the prefrontal cortex (PFC), is 

interacting with the hippocampus to switch between integration and differentiation tasks. 

This is supported by literature indicating that various subregions of the PFC are 

necessary in both integration [20]–[24] and differentiation [25]–[27]. During both 

transitive inference (e.g., if A<B and B<C, then A<C) [20], [22] and associative inference 

tasks [24], damage or inactivation of the ventromedial PFC (VMPFC) is associated with 

impaired performance. Similarly, for mnemonic discrimination tasks, damage or 

inactivation of the medial PFC [25]–[27] causes increased false alarms, indicating a 

difficulty in determining that a lure item has not been studied.  
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 Retrieval suppression literature, which focuses on diverting attention from 

distracting information to focus on task goals, suggests that the PFC may be controlling 

the hippocampus through two pathways: 1) PFC -> ACC -> entorhinal cortex (EC) or 2) 

PFC -> nucleus reuniens -> hippocampal CA1 [28], [29]. These pathways are in addition 

to the well-studied pathway from PFC to areas, such as the parahippocampal and 

perirhinal cortices, which feed into the EC, ultimately landing in the hippocampal 

circuitry [30], [31]. We suggest that, through these pathways, the PFC can inhibit the 

information that is “distracting” (i.e., the overlapping feature information between similar 

items) so that differentiation can occur. Here, we propose a simple, proof-of-concept 

hippocampal-PFC model that uses inhibitory connections to switch between integration 

and differentiation task goals. 

METHODS 

Model Structure 

The current model, is an iteration of a previous hippocampal model , based on 

the Complementary Learning Systems (CLS) model [2-3] as part of the Leabra 

framework using Emergent software [32], [33]. See https://github.com/emer/leabra for 

all related documentation and code. Briefly, the previous hippocampal model includes 

an Input layer, which contains “pools” of patterns (i.e., subset of patterns representing 

item features). This layer feeds into the EC superficial layer (ECin), which then projects 

to the DG and CA3. The DG and CA3 have high levels of inhibition, which allow them to 

showcase their sparse coding and, therefore, any competition that arises between 

items. The CA3 includes projections to itself (i.e., recurrent connections) and to CA1. 
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The CA1 then projects to the deep layers of the EC (ECout). Using these pattern 

representations, we can compare the patterns during learning and retrieval to determine 

how well the model is able to represent learned items at the end of the hippocampal 

loop.  

Our current model expands upon this hippocampal model by adding a simple 

PFC, as a proof of concept. Fig. 1 shows the model structure with a 6-unit PFC, where 

each unit corresponds to an entire pool in the input layer. Importantly, this model uses 

these pools to represent features of the item. Here, we use these pools to represent 

overlapping and non-overlapping information between items. Items that share 

information have very similar patterns (i.e., 80% units the same) in pools that represent 

shared features. Other pools represent other unshared (“distinct”) information, which is 

related to the type of task (explained further below). When the PFC is “off” there is no 

modulation of the hippocampus. When the PFC is “on”, specific units can be turned on, 

which then inhibit the patterns in corresponding pools in the ECin and CA1. More 

specifically, the PFC is turned on during the plus phase of the alpha cycle, which is the 

period after the expectation is presented (i.e., minus phase) where the outcome is 

observed [34]. 

Model Testing 

Integration and Differentiation 

To model the ways that the PFC may be influencing the hippocampus to 

integrate vs differentiate similar items, we used a task that involves switching between 

these two processes [12], [13]. In this task, participants learn common, easily 
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recognizable items. After each learning block, participants performed a test phase, 

which included previously learned items (“studied”), items similar to previously learned 

items (i.e., altered dimensions or reduced/enlarged versions; “lure”), or novel items 

(“foil”). During this test phase, they were either given a general test or a specific test. 

During the general test, participants were expected to respond to both studied and lure 

items as “old” and foils as “new”. This type of test represents an integration task – the 

goal is to integrate the representations of studied and lure items. In contrast, in one 

version of the specific test [12], participants were expected to respond to studied items 

as “old” and lure and foil items as “new”. In another version [13], the specific test 

required participants to respond to studied items as “old/larger”, lure items as 

“old/smaller”, and foil items as “new”. In both versions, the specific test represents a 

discrimination task – the goal is to discriminate between studied items and similar lures. 

Figure 2 shows an example of the studied, lure, and foil pattern representations. 

For studied and lure items, half of the pools (i.e., 3 out of 6) are the same patterns, 

representing the shared information between studied and lure items, in a paired fashion. 

In contrast, the foil patterns are completely different from both studied and lure items 

[may want to get into the percentages here and compare the patterns to get the exact 

numbers]. The other half of the pools represented information that was distinct to each 

item. The model received 10 item patterns per run (“studied” items) during the training 

phase, then during test, the model received 5 studied, 5 lures, and 5 foil item patterns. 

During the general test, the PFC was off, indicating no PFC modulation of the 

hippocampus. In contrast, during the specific test, the PFC units corresponding to the 

“shared” pools of the input layer was turned on to inhibit the possible shared information 
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between objects. The reason for turning the PFC on during the specific test only is 

because in an fMRI study using this task, researchers found that the PFC was 

preferentially active during the specific test compared to the general test [13]. 

Importantly, this PFC is not discriminatory across items, meaning that the same pools 

are inhibited for studied, lure, and foil items, which is consistent with empirical findings 

[13]. For each run (of which there are 20, representing separate participants), there 

were four epochs. Each epoch represents a cycle through the model. For the first two 

epochs, a general test was performed (i.e., PFC off), and for the final two epochs, a 

specific test was performed (i.e., PFC on). When the PFC was on, the inhibition 

occurred specifically during the third quarter of the alpha cycle, which is associated with 

the “plus” phase. The plus phase is the period in the cycle where there is a comparison 

between the expectation and the outcome, allowing for error-driven learning to occur 

[34]. 

To determine the change in similarity between studied and lure items, we 

compared the representational patterns for each item type: 1) studied patterns during 

test to studied item patterns during training, 2) lure item patterns during test to its similar 

studied item during training, and 3) foil item patterns during test to a studied item during 

training. To quantify these differences, we analyzed the difference in unit-by-unit 

similarity in the ECout. We then analyzed the change in ECout similarity between the 

general test and specific test to show how the item types change in their similarity to 

studied item patterns. Accuracy for determining “old” responses versus “new” responses 

were calculated by characterizing “old” as sharing over 50% of the studied item patterns 

and “new” as sharing less than 50% of those units. 
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Repulsion 

To model repulsion, we used a modified version of a task from Chanales and 

colleagues [18]. In the original task, participants viewed 4 routes in a city, each with 

distinct destinations. For each route, participants were shown 98 sequential images 

along the path of the route. These routes were paired such that two sets of routes 

shared many similar images (74-77 shared images that were similar but not identical 

before diverging), but the sets did not overlap with each other (e.g., Route 1 and Route 

2 overlapped, Route 3 and Route 4 overlapped, but Routes 1 and 2 did not overlap with 

Routes 3 and 4). Participants viewed these routes twice per run for a total of 14 runs. 

Following each run, participants were shown an image along one of the learned routes 

and were asked if that image was related to the target destination, the lure destination 

(the route which shared a great deal of similarity), or a destination from a non-

overlapping route. 

In our modified version, we had the model learn a full input pattern representing 

the each of the 4 training routes (Fig. 3), with pools representing overlapping 

information, information distinct to each route, and the route destinations. The model 

was trained on these patterns across 28 epochs to represent 28 interactions with the 

route, in line with the original task. After each learning session, the model was tested on 

the routes by receiving an input pattern with a missing destination, mimicking a cued 

recall task rather than a forced-alternative choice task as with the original. For the first 

half of the epochs (14), the PFC was off, which was followed by 14 epochs with the PFC 

on. When the PFC was on, the pools corresponding to overlapping information were 

inhibited in the ECin and CA1. Like the study above, this PFC inhibition occurred during 
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the plus phase of the alpha cycle [34]. For each layer, representational similarity 

analyses were performed to determine how similar the representations for overlapping 

vs non-overlapping routes changed when the PFC was off vs on. As a control, we also 

performed a similar simulation where the distinct pools were inhibited in ECin and CA1 

to show that it is specifically the manipulation of the overlapping pools that showcase 

repulsion. 

To determine the similarity changes between overlapping and non-overlapping 

routes, we performed representational similarity analyzes in EC, CA1, CA3, and DG. To 

compare directly to the empirical data [18], we averaged across CA1, CA3, and DG to 

show the full hippocampal representational similarities across route types in addition to 

each subfield alone. We performed a repeated measures ANOVA (with/without PFC 

inhibition x route type) to show the differences between route types between the first 

half (without PFC) and second half (with PFC) of training and test. To further 

characterize the changes in similarity between routes as it relates to repulsion, we 

analyzed the patterns similarity differences in ECout for the overlapping pools only. By 

doing this analysis, we can investigate how PFC inhibition of these pools changes the 

similarity for overlapping information. 

RESULTS 

Integration and Differentiation 

To investigate the accuracy of the model (i.e., old vs new responses), we 

analyzed the similarity of test items to studied items during training (see Fig 4a for 

single representative run). If the similarity was above 50%, the trial was marked as “old”, 
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and if it was below, it was marked as “new”. We calculated accuracy for both the 

general and specific tests. The general test results showed that the model was 100% 

accurate for studied and foil items while lure items’ accuracy was 86%. The specific test 

results showed that the model was 100% accurate for lure and foil items while studied 

items’ accuracy was 92% (Fig. 4b). These results are in line with the empirical results 

[6-7], such that both the model and participants are able to perform well at both tasks. 

Repulsion 

To investigate the differences in representational similarity between overlapping 

and non-overlapping routes as a function of PFC inhibition, we analyzed the similarity in 

the hippocampus and EC (Fig. 5). Results revealed that in the hippocampus (all 

subfields averaged; Fig. 5a), there was a main effect of route type (F(1)=46.85, 

p<0.001) and PFC inhibition (F(1)=36.17, p<0.001), such that overlapping routes were 

more similar than non-overlapping routes and similarity being greater when there was 

no PFC inhibition. There was also an interaction (F(1)=53.98, p<0.001), where there 

was significantly greater similarity for overlapping routes compared to non-overlapping 

routes when there was no PFC inhibition (p<0.001), which was not present when there 

was PFC inhibition (p=0.44). In addition, there was greater similarity for overlapping 

routes when there was no PFC inhibition compared to when there was PFC inhibition 

(p<0.001). This was not the case for non-overlapping routes (p=0.059).  This indicates 

that there a significant decrease in similarity between the without PFC and with PFC 

conditions for overlapping routes specifically. Similarly, in EC (Fig. 5b), there was a 

main effect of route type (F(1)=1323.3, p<0.001) and PFC inhibition (F(1)=100.2, 

p<0.001), such that overlapping routes were more similar than non-overlapping routes 
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and similarity being greater when there was no PFC inhibition. There was also an 

interaction (F(1)=2397.8, p<0.001), where there was significantly greater similarity for 

overlapping routes compared to non-overlapping routes when there was no PFC 

inhibition (p<001), but similarity for non-overlapping routes was greater than overlapping 

routes when there was PFC inhibition (p<0.001). In addition, there was greater similarity 

for similarity for overlapping routes without PFC inhibition compared to when there was 

PFC inhibition (p<0.001). The opposite was true for non-overlapping routes, such that 

similarity was greater with PFC inhibition compared to when there was no PFC inhibition 

(p<0.001). 

Additionally, we performed ANOVAs for each subfield of the hippocampus. In DG 

(Fig. 5c), there was a main effect of route type (F(1)=5.29, p=0.028) and PFC inhibition 

(F(1)=12.91, p=0.001), such that overlapping routes were more similar than non-

overlapping routes and similarity being greater when there was no PFC inhibition. There 

was also an interaction (F(1)=5.28, p=0.028), where there was significantly greater 

similarity for overlapping routes compared to non-overlapping routes when there was no 

PFC inhibition (p=0.011), which was not present when there was PFC inhibition 

(p=0.15). In addition, there was greater similarity for overlapping routes when there was 

no PFC inhibition compared to when there was PFC inhibition (p=0.002). This was also 

the case for non-overlapping routes (p<0.001). This indicates that there a significant 

decrease in similarity between the without PFC and with PFC conditions. In CA3 (Fig. 

5d), there was a main effect of route type (F(1)=4.95, p=0.033), such that overlapping 

route similarity was greater than non-overlapping route similarity. There was no effect of 

PFC inhibition or interaction. This indicates that in CA3, similarity for overlapping routes 
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was greater than non-overlapping routes regardless of PFC inhibition. In CA1 (Fig. 5e), 

there was a main effect of route type (F(1)=92.43, p<0.001) and PFC inhibition (F(1)= 

182.08, p<0.001), such that overlapping routes were more similar than non-overlapping 

routes and similarity being greater when there was no PFC inhibition. There was also an 

interaction (F(1)=195.19, p<0.001), where there was significantly greater similarity for 

overlapping routes compared to non-overlapping routes when there was no PFC 

inhibition (p<0.001) However, when there was PFC inhibition, non-overlapping routes 

showed greater similarity than overlapping routes (p=0.0098). In addition, there was 

greater similarity for overlapping routes when there was no PFC inhibition compared to 

when there was PFC inhibition (p<0.001). This was not the case for non-overlapping 

routes (p=0.52). This indicates that there a significant decrease in similarity between the 

without PFC and with PFC conditions for overlapping routes specifically. 

To show that it was specifically the inhibition of the overlapping feature pools, we 

ran two control simulations: one with no inhibition of any pools (Fig. 6) and one with 

inhibition of the distinct pools instead of overlapping (Fig. 7). In the no inhibition control 

(route type x first vs second half of train/test), in the whole hippocampus, there was a 

main effect of route type, such that overlapping route similarity was greater than non-

overlapping routes (F(1)=87.96, p<0.001; Fig. 6a). There was no effect from the first half 

of train/test to the second half, and there was no interaction. In EC (Fig. 6b), there was 

a main effect of route type, such that overlapping route similarity was greater than non-

overlapping routes (F(1)=33994.4, p<0.001), and a main effect of train/test half 

(F(1)=226.02, p<0.001), such that similarity overall across routes was greater during the 

first half. There was also an interaction (F(1)=65.94, p<0.001). In DG (Fig. 6c), there 
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was a main effect of first half vs second half of training/test (F(1)=5.4, p=0.03), such that 

similarity was higher across route types for the first half compared to the second half. 

This indicates that over time, the DG is working to pattern separate the similar routes. 

There was no main effect of route type or an interaction between the two variables. 

Conversely, in CA3 (Fig. 6d), there was a main effect of first half vs second half of 

training/test (F(1)=6.84, p=0.013), such that similarity was higher across route types for 

the second half compared to the first half. There was no main effect of route type or an 

interaction between the two variables. In CA1 (Fig. 6e), there was a main effect of route 

type (F(1)=377.4, p<0.001), such that similarity was greater for overlapping routes 

compared to non-overlapping routes, and a main effect of first vs second half 

(F(1)=14.7, p<0.001), such that similarity was greater in the first half compared to the 

second half. There was no interaction. This control shows that repulsion does no occur 

when there is no PFC inhibition of overlapping pools. 

In the distinct feature pool inhibition control (route type x PFC inhibition; Fig. 7), 

in the whole hippocampus (Fig. 7a), there was a main effect of route type (F(1)=352.82, 

p<0.001), such that similarity for overlapping routes was greater than non-overlapping 

routes. There was no main effect of PFC inhibition, but there was an interaction 

(F(1)=14.76, p<0.001), which showed a greater difference in similarity between route 

types with PFC inhibition compared to without. In EC (Fig. 7b), there was a main effect 

of route type (F(1)=28998.6, p<0.001) and PFC inhibition (F(1)=3829.3, p<0.001), such 

that overlapping routes were more similar than non-overlapping routes and similarity 

being greater when there was PFC inhibition. There was also an interaction 

(F(1)=649.4, p<0.001), which showed a greater difference in similarity between route 
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types with PFC inhibition compared to without. In DG (Fig. 7c), there was a main effect 

of route type (F(1)=10.87, p=0.0024), such that overlapping route similarity was greater 

than non-overlapping routes. There was no main effect of PFC inhibition or an 

interaction. In the CA3 (Fig. 7d), there was no main effect of route type or PFC 

inhibition. Additionally, there was no interaction, suggesting that in CA3, there was no 

significant difference between all variables. In CA1 (Fig. 7e), there was a main effect of 

route type (F(1)=872.3, p<0.001), such that overlapping route similarity was greater 

than non-overlapping routes. There was no main effect of PFC inhibition, however there 

was an interaction (F(1)=20.67, p<0.001), showcasing a greater difference between 

overlapping and non-overlapping route similarity when there was PFC inhibition 

compared to when there was no PFC inhibition. This control showcases that when there 

is inhibition of the distinct pools, instead of the overlapping pools, there is no repulsion 

in any region. 

Additionally, we investigated the similarity in ECout of the overlapping pools 

during test to their training patterns over the 28 runs for the main simulation and the 

controls (Fig. 8). During the first half of training/test, all three model simulations reach 

100% similarity. Then during the second half, both the overlapping pool inhibition 

simulation and the distinct pool inhibition simulation show a decrease in similarity 

(plateauing at 75% similar) to training patterns for the overlapping pools. In contrast, for 

the no inhibition simulation, similarity to training patterns for overlapping pools remains 

at 100%. This indicates that when there is no inhibition, the overlapping feature 

representation reaches 100% and stays constant. In contrast, when there is inhibition of 

any feature (overlapping or distinct), the overlapping pool training to test similarity 



 50 

decreases, which shows an update in the route representations. Despite the similar 

trend for both simulations, the results above show that repulsion only occurs when there 

is overlapping pools inhibition. 

DISCUSSION 

Historically, the hippocampus is viewed as the key to episodic memory 

processing with the PFC being a region to store representations during consolidation 

[4], [32]. However, our work shows that the hippocampus and PFC work together, 

dynamically, to update representations to match task goals. Specifically, our model 

showcases the possibility that the PFC is working as a controller of the hippocampus to 

enable switching between integration and differentiation – two opposing concepts. Our 

results support the idea that the PFC suppresses the overlapping features between 

highly similar items to divert attention away from the information distracting from 

differentiation processes. Through the Ranganath et al. studies [12], [13], we show that 

when the overlapping features between studied and lure items are inhibited, the model 

is better able to differentiate the differences between the items. This is indicated by the 

shift for the lure items being treated as “old” for the general test and “new” for the 

specific test (Fig. 4). In the Chanales et al. repulsion study [18], we show that repulsion 

occurs in the EC and CA1 when there is inhibition of overlapping features (Fig. 5). 

As a simple proof-of-concept, this first iteration of a hippocampal-PFC model has 

a few limitations and leaves room for future models to expand upon the findings 

discussed here. One such limitation is the similarity between the original empirical tasks 

and the tasks in the model, especially in the repulsion task [18]. As described in detail in 
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the Methods, we modeled the simplest version of the task. In this simple version, the 98 

stimuli associated with each of the routes was compressed into a single input pattern 

into the computational model. In doing so, the routes were easier for the model to learn, 

leading accuracy to be at ceiling regardless of repulsion. In the literature, repulsion 

typically leads to better performance in distinguishing between two similar routes [18], 

[19], which we could not produce due to this compression. To reproduce the 

performance effects in future iterations of the model, we would create separate inputs 

for each stimulus in each route with “route” pools to represent which route the image 

was associated. However, as we were focusing on the replication of the 

representational effects, the results currently presented are sufficient to make that point. 

Relatedly, for both tasks, there is an additional limitation in relation to the stimuli. As we 

did not use the actual stimuli, instead using a pattern to represent the stimuli, we are not 

able to capture the variability in similarity between studied and lure items. In a more 

complex version of the model, it may be worth it to more directly translate the stimuli 

into input patterns. By doing this, an additional variable – the similarity (e.g., visual, 

semantic, etc.) between items – can be investigated to show how 

integration/differentiation/repulsion effects change as item similarity changes. 

One of the biggest limitations of the model is the lack of empirical research to 

suggest that the PFC can specifically suppress the neuronal populations associated 

with overlapping content across similar stimuli. As discussed in the introduction, there is 

research to support the idea that the PFC works as a controller of the hippocampus in 

both integration and differentiation processes, as when the connection between the 

hippocampus and PFC is severed or specific inhibition of related PFC regions [20]–[24], 
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there is an inability to complete integration and differentiation tasks at the same capacity 

as an intact PFC. This suggests that the PFC is changing/updating representations to 

help the hippocampus complete these tasks. Logically, we suggest that in order to 

differentiate between similar stimuli, there must be either an increased excitation of the 

neurons corresponding to the distinct features for each item or inhibition of the 

overlapping features, as supported by the retrieval suppression literature [28]. To fully 

test this proof-of-concept model, we suggest creation of a study that 1) investigates 

integration and differentiation such that both tasks are performed and 2) analyzes the 

functional connectivity between the hippocampus and PFC on the item feature level. 

With such a study, the assumption we are making here can be investigated further and, 

ultimately, be used to strengthen (or possibly disprove) the current model. 

As described in the Methods, our PFC is a simple 6-unit layer that is used as an 

inhibitory connection to the EC and CA1, as supported by the literature [28], [29]. This 

leaves room for future iterations of the model to include a more complex PFC. One way 

to increase the complexity of the model is to have a larger PFC layer that can learn 

representations, maintain those representations, and update them according to task 

goals. In the current model, the PFC is manually turned on and off, but in future 

iterations, the model would simply need to be given the goal of the task, prompting the 

PFC to turn on and off as needed per task demands. Another way to increase the 

complexity of this proposed hippocampal-PFC control system would be to create layers 

(e.g., VMPFC, ACC, nucleus reuniens) representing the various routes to/from the PFC, 

as discussed in the Introduction. Additionally, the current model’s PFC inhibition is kept 
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high and steady. With a more complex iteration, the PFC would be able to vary this 

inhibition accordingly. 

Despite these limitations, the current model supports the possibility two concepts: 

1) updating representations via PFC control allows for switching between integration 

and differentiation tasks and 2) repulsion can occur through inhibition of overlapping 

features. In proving these concepts, this model is the first of its kind to showcase these 

types of interactions between the hippocampus and PFC. As the first brick in the 

foundation of hippocampal-PFC models, we have shown the possibilities for more 

complex versions to come, which can then be used to describe populations with 

hippocampal and/or PFC dysfunction. 
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FIGURES 

 

Figure 1. Schematic of the Hippocampal-PFC Model. The hippocampal aspect of the 

model includes includes the hippocampal loop: Input -> ECin -> DG -> CA3 -> CA1 -> 

ECout -> ECin. The PFC is a simple 6-unit layer. When the units of this PFC are “on”, 

there is inhibition of the pools representing the overlapping content between item 

representations in both the EC and CA1. 
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Figure 2. Item Representation Patterns in the Entorhinal Cortex Input Layer. 

During the general test, 50% of the item representation is shared between the studied 

and lure items. Foil representations do not include any shared content between items. 

During the specific test, this shared information (or where the shared information would 

be stored for foil items) is inhibited.  
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Figure 3. Repulsion Task Patterns. Each route is represented as patterns with pools 

representing the overlapping features, distinct features, and the route destination. 

During the first half of training and test, there is no PFC inhibition, and during the 

second half, there is inhibition of the overlapping pools. 
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Figure 4. Integration and Differentiation Results. A) The % units similar to studied 

items changes depending on PFC inhibition. When the PFC is off (i.e., the general test), 

the lure similarity to comparable to the studied items. When the PFC is on (i.e., the 

specific test), the lure similarity to studied items decreases to be in line with foil items. 

B) Accuracy (calculated by the similarity to studied items) shows that the model can 

perform well for both the general test (where lures are considered “old”) and specific 

test (where lures are “new”). 
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Figure 5. Pattern Similarity by ROI: Inhibition of overlapping pools. A) The whole 

hippocampus analysis reveals greater pattern similarity for overlapping routes 

compared to non-overlapping routes when there is no PFC inhibition (p<0.001) that is 

not present when there is PFC inhibition. B) In EC, when there is no PFC inhibition, 

pattern similarity is greater for overlapping routes compared to non-overlapping routes 

(p<0.001), and this relationship inverses when there is PFC inhibition (p<0.001), 

indicating repulsion. C) In DG, when there is no PFC inhibition, pattern similarity is 

greater for overlapping routes compared to nonoverlapping routes (p=0.011), which is 

not present when there is PFC inhibition. D) In CA3, regardless of PFC inhibition, 

pattern similarity is greater for overlapping routes compared to non-overlapping routes 

(p=0.033). E) In CA1, when there is no PFC inhibition, pattern similarity is greater for 

overlapping routes compared to non-overlapping routes (p<0.001), and this relationship 

inverses when there is PFC inhibition (p=0.0098). 
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Figure 6. Pattern Similarity by ROI: No inhibition. A) In the whole hippocampus, 

regardless of training/test half, pattern similarity is greater for overlapping routes 

compared to non-overlapping routes (p<0.001). B) In EC, regardless of training/test half, 

pattern similarity is greater for overlapping routes compared to non-overlapping routes 

(p<0.001). C) In DG, overall pattern similarity is higher during the first half compared to 

the second half. This indicates that the DG is working to do pattern completion. D) In 

CA3, pattern similarity is overall greater in the second half compared to the first half. 

This indicates that the CA3 is working to pattern complete across routes. E) In CA1, 

regardless of training/test half, pattern similarity is greater for overlapping routes 

compared to non-overlapping routes (p<0.001). 
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Figure 7. Pattern Similarity by ROI: Inhibition of distinct pools. A-E) Regardless of 

inhibition of the distinct pools, there is greater pattern similarity for overlapping routes 

compared to non-overlapping routes in every ROI. 
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Figure 8. Change in overlapping pool similarity over repeated retrieval. When the 

overlapping pools or distinct pools are inhibited, similarity to training patterns decreases 

with inhibition. When there is no inhibition, similarity to training patterns for all routes 

reaches 100%, indicating perfect accuracy for overlapping features. 
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CHAPTER 3: Testing the Boundaries: The Testing Effect and Event 
Segmentation 
INTRODUCTION 

It’s the night before a big exam, and you’re scrambling to figure out the best way 

to prepare. Your options are to either reread your notes over and over or use a stack of 

flashcards to self-test. Which is the most effective? According to research, the best way 

to retain information long-term is to self-test. The testing effect – the phenomenon that 

testing (or retrieval practice), such as cued recall, results in greater performance in the 

long term compared to restudy – has been examined in many forms. Within the past two 

decades, there has been a concerted effort to research different aspects of the testing 

effect to determine 1) how robust the effect is, and 2) what type of test results in the 

greatest memory retention. The testing effect has been shown to have different results 

depending on the method of test. Multiple choice questions over short-answer 

responses at initial testing leads to greater memory performance at final test  [1], [2]. 

However, there is evidence to show that this is highly dependent on feedback. 

Feedback, in this case, means that the participant is shown the correct answer 

immediately after answering during initial testing. With feedback at initial testing, 

investigators showed that the short-answer questions yielded better final performance. 

This indicates that the type of test and amount of feedback greatly determine how 

robust the memory retention will be [3]. Not only does type of test matter but the amount 

of time spent restudying/doing retrieval practice impacts memory retention. Karpicke 

and Roediger showed that the highest recall at final test was associated when 

participants had been tested multiple times [1]. These results stress the idea that more 

opportunities to be tested is more beneficial than a single testing session. 
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This leads to the question: if we know that items that undergo retrieval practice 

are subsequently remembered better in the long-term, what about untested items 

related to these retrieval-practiced items? Either untested items are remembered better, 

which is referred to retrieval-induced facilitation (RIFA), or if interference may cause 

these untested items to be remembered less, which is referred to as retrieval-induced 

forgetting (RIF) [4]. Research shows that RIF and RIFA are dependent on more than 

one factor. In one passage-reading study, it was found that retrieval-practiced passages 

presented in a random order of sentences showed RIF for untested items at 20 minutes. 

However, at a 24-hour delay, there was RIFA for untested items in retrieval-practiced 

passages that were read in the correct order [4]. This indicates that RIFA is not only 

related to the delay between initial retrieval practice and final test, as seen with the 

testing effect, but also how integrated/related the untested information is to the retrieval-

practiced information. Liu and Ranganath [5] investigated what “related” means by 

separating relatedness into temporal or semantic relatedness. In this behavioral study, 

participants learned scene-word associations where scenes were associated with two 

words, either semantically related or unrelated, and presented at varying temporal 

distances to compare temporally distant/semantically related pairs, temporally 

distant/semantically unrelated pairs, temporally close/semantically related pairs, and 

temporally close/semantically unrelated pairs. Results showed that regardless of 

semantic relatedness, there was RIF for temporally far pairs and RIFA for temporally 

close pairs at a 10-minute delay. At a 24-hour delay, there was RIF for temporally 

far/semantically unrelated items and RIFA for all other conditions (temporally 

far/semantically related, temporally close/semantically unrelated, and temporally 
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close/semantically related). These results suggest that RIF occurs when items are 

unrelated and far, but RIFA occurs when items are related and/or temporally close [5]. 

Most studies on the effects of retrieval practice have used relatively simple 

stimuli, such as word pairs or static images, or passages. But how do these phenomena 

occur in real life? Unlike snapshots, we perceive continuous stimulus input that we then 

must separate into discrete portions – or events. Research into event segmentation 

suggests that segmentation occurs automatically and that the way we segment events 

ultimately affects what information is retained and able to be recalled [6], [7]. One way 

to mimic this segmentation is to use a continuous stimulus set (e.g., videos) that has 

discrete boundaries. Radvansky and colleagues have repeatedly shown that the event 

of walking through a doorway is sufficient as a boundary between events and that 

location-updating (i.e., moving from one room to another via a doorway) causes 

forgetting of information from a previous event. For these tasks, participants must 

interact with items and move those items to another room. Results showed that once 

they entered the next room, interference occurred such that it was harder to remember 

information about the prior room [8]–[11]. However, using doorways as an event 

boundary can also lead to memory facilitation as well [12], [13]. In one such study, 

participants either learned two word lists in a one room or one word list in one room 

followed by learning of another word list after moving to walking to a new room. The 

results revealed that there was less retroactive interference of the first list for the group 

that moved to a separate room [12], leading to overall greater memory retention in that 

group. 
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In this study, we hypothesize that unpracticed items within an event with an item 

that has been practiced will get a boost in recall memory due to being in close proximity 

to a practiced item (i.e., RIFA), however unpracticed items across a boundary will not 

receive a boost. Alternatively, the unpracticed items within an event may be forgotten 

(i.e., RIF) due to competition between practiced and unpracticed items within an event 

or because of the event segmentation (i.e., doorways). To test this hypothesis, we 

created virtual reality-based videos that included semantically unrelated items that were 

either retrieval practiced (RP+) or restudied (RS+), unpracticed but in a room with a 

practiced/restudied item (RP-/RS-), or unpracticed across a boundary from a 

practiced/restudied item (CTRL), where events were separated by doorways. Using 

these conditions, we examined the testing effect (RP+ vs RS+) and the effect of 

boundaries (RP-/RS- vs CTRL). The testing effect would be demonstrated by better 

cued recall of items that had undergone retrieval practice (RP+) than cued recall of 

items that had been re-studied (RS+). A boundary effect would be demonstrated if there 

was a difference in RP-/RS- items compared to CTRL items. If cued recall of items 

accompanying re-studied (RS-) or retrieval practiced items (RP-) is better than items in 

the next room (CTRL), then that would suggest RIFA. If the inverse relationship is 

found, that would suggest RIF. No difference in memory from control items would 

suggest no boundary effect. 

METHODS 

Participants 
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Healthy undergraduates (N=84, mean age = 19.6, 39 female, 38 male, 7 other) were 

recruited from the University of California, Davis through the SONA Psychology 

Research Recruitment System and were randomly sorted into two groups: Retrieval 

Practice (RP; N = 42) and Restudy (RS; N = 42). Inclusion criteria required that 

participant must be over 18 years of age and native English speakers (characterized by 

learning English prior to 5 years of age). Compensation for participation was two class 

credits. Three participants (3 RS) were excluded because behavioral performance 

during encoding (explained further below) was below two standard deviations of the 

mean. Following this exclusion, data are presented for a final sample of 81 participants 

(42 RP, 39 RS; 39 female, 36 male, 6 other). 

Procedure and Design 

Stimuli. We created 10 videos using Cinema4D. In each video, there were 4 rooms, 

where rooms 1 and 2 shared a wall and floor color/texture and rooms 3 and 4 shared a 

different wall and floor color/texture. In each room, there were two real-world items, 

collected from sketchfab.com and cgtrader.com. In each video, 2 rooms were 

designated “Retrieval Practice/Restudy” (RP, RS), where participants either performed 

RP or RS on one item (RP+/RS+; other item: RP-/RS-) in the room, and the other 2 

rooms contained control items (CTRL), where there was no RP or RS. These rooms 

were designed to be in interleaved order. Event boundaries were simulated by hallways 

and numbered doors, and importantly, the temporal distance between items both within 

and between rooms was the same. 
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Encoding Phase. Participants were randomly assigned to either the RP or RS group 

and were instructed to pay attention to both the items and the surroundings. They then 

viewed 5 videos in a virtual reality environment. In each room, participants viewed the 

first item for 8 seconds, then would be shown the second item for the same amount of 

time. The name of the item was presented underneath each item. Following the second 

item, the video would then show the door, which led to a hallway, before entering the 

door for the next room (Figure 1a). Importantly, the time between viewing the items 

within a room was the same as the time between viewing the items between rooms to 

preserve temporal distance. After each video, participants were given a chance to RP or 

RS the RP+/RS+ items (2 items per video). For RP, participants viewed a still image of 

the background of the room and numbered door corresponding to the RP+ item with the 

first letter of the RP+ item name followed by dashes representing the number of letters 

in the RP+ item name. Participants were then given an unlimited amount of time to type 

in the correct item name. Following this, the correct name of the item briefly (8 seconds) 

appeared on the screen as feedback. For RS, participants were given the name of the 

RS+ item and had to retype the name of the item (Figure 1b). In both groups, 

participants performed this twice per item before moving on to the next video. 

Participants viewed a total of 40 items. 

Retrieval Phase. The retrieval phase occurred immediately after encoding. During this 

phase, participants were tested on every item viewed during the encoding phase, in 

pseudorandom order, in the same form as the previously described RP+ items. To 

eliminate interference between RP+ and RP- items, the RP+ items were presented at 

the end of the retrieval phase. 
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Analysis. To determine if performance was better on RP+ items compared to all other 

items (RP- and CTRL), the RP- and CTRL item performance was averaged, and a two-

way ANOVA (group x item type) performed. To assess the effect of event boundaries, 

item trials were grouped into threes in one of two ways depending on how they were 

viewed during encoding: 1) CTRL, boundary, RP+, RP- or 2) RP-, RP+, boundary, 

CTRL (Figure 1c). A two-way ANOVA (group x item type) was then performed between 

the RP and RS group for the RP- and CTRL items. This way, we could determine if/how 

retrieval practice or restudy in one room affected unpracticed/unstudied items across a 

boundary compared to within an event. Post-hoc correlation analyses were performed 

to further characterize the relationship between RP+ and RP-/CTRL performance, using 

a difference score (RP- - CTRL). 

RESULTS 

 Overall performance on the final memory test for both groups were similar with 

the RP group correctly identifying 30.9% of items and the RS group correctly identifying 

29.1%. To determine if there was a testing effect (RP+ vs RS+) [1], [2] and retrieval 

induced facilitation/forgetting (RP-/RS- vs CTRL) [4], we performed a two-way ANOVA 

with factors of Group (retrieval practice vs. restudy) and Item type (Practiced or 

Unpracticed). Results showed that performance on the final test was higher for 

practiced than for unpracticed items (F(1,79)=28.86, p<0.001). These results show that 

doing retrieval practice or restudy is better than no practice or restudy. Results also 

show an interaction (F(1,79)=4.28, p=0.042; Figure 2) where the difference between the 

RP+ and other item performance was significantly greater for the RP group compared to 
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the RS group. This demonstrates the ‘testing effect’ [1], [2] in demonstrating that 

memory retention was greater for retrieval practiced versus restudied items.  

The main analysis of this experiment is to determine if there is an effect of event 

boundaries. To investigate whether there is RIFO or RIFA within and across event 

boundaries, we used a two-way ANOVA (group x item type) focused on unstudied items 

(CTRL and RP-) within and across events. Results revealed a main effect of item type 

(F(1,79)=5.05, p=0.027; fig), where participants performed better on CTRL items 

compared to RP- items. These results show that participants were better at retaining the 

memory of items across a boundary compared to items in an event with an RP+/RS+ 

item, suggesting that retrieval practice and restudy cause interference (i.e., forgetting) 

for items within an event. Correlations between correct RP+ performance and the 

difference between RP- and CTRL showed that both RP group and RS (Figure 3) had a 

small negative correlation (r=-0.20 and r=-0.23, respectively), indicating that when 

performance on RP+ items was high, participants performed better on CTRL items 

compared to RP- items (Figure 4). Together, these results show that although RP+ 

performance is significantly higher for the RP group (i.e., the testing effect), both RP 

and RS cause interference within an event that does not cross event boundaries, and 

this interference is correlated with RP+ performance. 

DISCUSSION 

Our results support both the testing effect and RIF within boundaries. The testing 

effect is showcased by better performance on RP+ items in the RP group compared to 

RS+ items in the RS group. RIF is shown by better performance on CTRL items 
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compared to RP-/RS- item performance. This is further supported by the correlation 

results, which suggest that performance on RP+/RS+ items is related to the amount of 

RIF. Together, these results overall support the idea that doorways “cause” forgetting 

[8]. Because we controlled for temporal distance, we can confidently assert that this 

forgetting is due to a change in spatial location and, therefore, unrelated to how close in 

time the items are viewed within and across boundaries. 

The use of videos of a virtual environment has its advantages in that we can 

better represent real-world instances, while still controlling for variables of interest (e.g., 

temporal distance between items). However, there are few limitations for real-world 

applications. Although we often interact with items in a room, we typically do not interact 

with one item at a time, perfectly spaced. Additionally, due to the timing constraints 

needed to showcase boundary effects, true VR where participants are able to explore 

the environment on their own was unavailable. In a future study, using an actual VR 

apparatus, perhaps these concerns can be controlled for by employing eye-tracking 

techniques to determine both the time the participant viewed each item and the time 

between viewing items. 

As a future step, we suggest three changes to the current task to ask further 

questions. One change is to use a different recall task. In the current study, we utilized a 

stem-completion type cued recall, which is harder than other recall/recognition tasks 

such as a forced-alternative choice, but easier than free recall. To boost overall 

performance, it would be worth it to explore either a recognition test (e.g., “yes”/”no” to 

“Have you seen this item?”) or a forced-alternative choice (e.g., “Did you see Item A, B, 

or C?”). Another change, which could delve deeper into the boundary effects, would be 
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to include more than two items per room. By doing this, we can investigate the 

difference between items close to a boundary vs items in the middle of an event. A final 

suggested change is to change the order of the paradigm so that there is not an 

additional chance to encode the items after participants have already done retrieval 

practice or restudy. By doing it this way, the competition between items in a room could 

be preserved in a way that doesn’t allow participants a way to resolve it (i.e., by being 

able to re-view the items). 

Overall, the current results suggest that doing either retrieval practice or restudy 

lead to RIF, such that there is competition between items within an event where the 

practiced/restudied item wins out. Further research is necessary to better characterize 

this relationship and apply it to disordered populations. 
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FIGURES 

 

Figure 1. Task Schematic. A) Participants enter Room 1 to view Item 1 followed by 

Item 2. After viewing Item 2, the participants move through a hallway and enter Room 2, 

where two new items await. This is repeated for four rooms per building with a total of 5 

buildings. Under each item, participants can read the name of the item. B) After viewing 

each building, participants either perform retrieval practice (RP), where they are given 

the first letter of two previously encoded items (interleaved, such that the RP items are 

separate by control items) and must complete the name of the item, or restudy (RS), 

where they see the name of two items they encoded (again, interleaved) which they 

must retype. This is followed by a feedback screen showing the correct answer. C) 

Event boundaries are shown in two ways. In one, an unpracticed item (RP-) is followed 

by a practiced item (RP+) in the same room, then a boundary and another unpracticed 
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item (CTRL) in the adjacent room. In the other, an unpracticed item (CTRL) is followed 

by boundary, then a practiced item (RP+) is followed by another unpracticed item (RP-) 

in the same room. 
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Figure 2. Item Performance Results. Both groups show better performance on RP+ 

items compared to all other items, however, the difference between the item types is 

greater for the RP group (p=0.042), suggesting a testing effect.  
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Figure 3. Event Boundary Results. ANOVA results show that, regardless of group, 

performance on CTRL items was better than RP- items (p=0.027), suggesting RIF. 
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Figure 4. Correlation Between Correct Retrieval Practice/Restudy and the 

Difference in Performance for RP- and CTRL. Correlation results reveal that there is 

a small negative correlation between correct retrieval practice/restudy and the 

difference in RP- and CTRL, such that participants who performed better on RP+/RS+ 

items also performed better on CTRL items compared to RP-/RS- items. This suggests 

RIF correlates with correct retrieval practice/restudy. 
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CHAPTER 4: Memory Based Prediction Deficits and Dorsolateral 
Prefrontal Dysfunction in Schizophrenia 
INTRODUCTION 

As we recollect past events (“episodic memory”), we can unfold an entire 

sequence of experiences happening at a particular place and time. Neuroscience 

highlighted the fact that this ability to encode and recall sequences of events serves 

several purposes beyond retrieval of past events. Past information is often useful for 

generating predictions helping us navigate an uncertain world. For instance, imagine 

watching a basketball game the first time. When a player shoots a basket, the score for 

that player’s team goes up. Therefore, the next time a player shoots the ball into the 

basket, prior knowledge allows us to predict that the score will increase. Humans can be 

remarkably effective learning about arbitrary sequences of stimuli (1), and information 

about learned sequences can help us anticipate and efficiently process information 

even when explicit episodic memory retrieval is not required (2,3). 

Episodic memory is impaired in people with schizophrenia (SZ). Although SZ 

affects a range of cognitive abilities, episodic memory is disproportionately impaired, 

and severity of memory deficits predicts patients’ ability to work and live independently 

(4). A key finding is that people with SZ can sometimes perform well at recognizing 

familiar objects or events but are especially impaired at remembering relationships 

between objects and the context in which they were encountered (5,6,7,8,9). Results 

from functional magnetic resonance imaging (fMRI) studies suggest two possible 

explanations for these deficits. In one view, dysfunction might reflect impaired 

functioning of the hippocampus, which normally supports the ability to bind item and 
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context information in a manner that can support episodic memory (2,10). Another 

explanation, that is not mutually exclusive (11), is that prefrontal dysfunction affects 

control processes that enable one to use learned information to make complex 

attributions about the context in which events take place (12,13).  

Whereas studies of memory emphasize memory for past events, other work has 

focused on the idea that people with SZ might be impaired generating precise 

predictions about the future (14,15). Bayesian models propose that, in the healthy brain, 

higher-order brain areas generate predictions about upcoming sensory information and 

experience prediction errors encouraging belief updating and better future predictions 

(14,16,17,18). In this framework, people with SZ generate aberrant prediction errors 

impairing their learning about the statistical structure of the world. Prediction error 

research in SZ has informed a broad range of paradigms, including mismatch negativity 

(19), examination of hallucinations (20), and studies of reinforcement learning - 

demonstrating impaired learning (21) and dysfunction in dorsal and ventromedial 

prefrontal cortex and striatum (22,23). 

At present, it is not clear whether people with SZ show more global deficits in the 

ability to predict future events based on learned memory representations. Although 

studies have shown deficits in explicit memory for temporal or sequential relationships, 

these deficits might reflect an inability to make complex memory attributions, rather than 

a prediction deficit per se. Accordingly, in the present study, we investigated the extent 

to which people with schizophrenia are able to utilize memory of learned sequences to 

successfully predict future events. 
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We adapted a paradigm from a recent study of healthy undergraduates which 

scanned participants while making semantic decisions about sequences of objects (24). 

In some sequences, object order was fixed, such that seeing the first object could 

enable generation of precise predictions about the remaining objects in the sequence. 

In other sequences, object order was changed on every repetition (i.e., random), 

allowing participants to become highly familiar with the objects, but unable to make 

accurate predictions. With this paradigm, healthy individuals had faster reaction times 

(RTs) when making semantic decisions about objects in fixed versus random 

sequences. Thus, after a sequence was learned, people used that sequence memory to 

facilitate response preparation by predicting upcoming objects during fixed sequences, 

resulting in faster semantic decisions.  

Previously (3), we used electroencephalography (EEG) to examine sequence 

learning and found that both HC and SZ reached criterion for sequence learning and 

utilized sequence memory to predict future objects and make faster semantic decisions 

for objects in fixed versus random sequences. This RT facilitation is referred to as the 

“sequence prediction effect”. Although people with SZ also reached criterion during 

sequence learning, their learning was less efficient and accompanied by decreased 

alpha and beta1 power prior to stimulus onset for fixed versus random sequences (3). 

Interestingly, these frequency bands have also been found to mediate prediction 

feedback (14). 

Here, we report the second part of this study, in which fMRI was used to identify 

brain regions that might underlie hypothesized deficits in sequence-based prediction in 

SZ (see Fig. 1). Based on previous work, we focused on two regions of interest (ROI): 
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dorsolateral prefrontal cortex (DLPFC) - identified as dysfunctional during relational 

memory in fMRI studies of SZ (25), and right posterior hippocampus - identified as a key 

region mediating sequence representation in our previous sequence memory study 

(24). Using representational similarity analysis (RSA), we examined the extent to which 

activity patterns in these regions carry position information for objects in learned 

sequences, and whether the fidelity of these representations could identify individual 

differences in sequence-based item prediction for fixed versus random sequences. We 

hypothesized that neural sequence representations in DLPFC and posterior 

hippocampus are disrupted in people with SZ, resulting in attenuated sequence 

prediction effects. 

METHODS AND MATERIALS 

Participants 

As previously (3), forty-four individuals (7 unmedicated) with SZ were recruited 

from the UC Davis Early Psychosis Programs (EDAPT and SacEDAPT). Sixty-six HC 

responded to paid advertisements through the UC Davis Imaging Research Center 

(IRC). Clinical assessments were conducted to confirm SZ diagnosis and symptom 

severity. Clinicians with master’s or doctoral level training confirmed diagnosis using the 

Structured Clinical Interview for DSM-V (SCID-V). Symptoms were assessed using the 

Brief Psychiatric Rating Scale (BPRS), Scale for the Assessment of Negative 

Symptoms (SANS), and Scale for the Assessment of Positive Symptoms (SAPS). 

Exclusion criteria included: substance abuse in past year, implants that may interfere 

with MRI scanning (e.g. ferromagnetic implants), neurological defects, loss of 

consciousness after head trauma, low IQ (i.e., <70), or less than 20/30 vision when 
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corrected. Four participants were excluded for miscellaneous reasons including; a 

change in diagnosis (1 HC, 1 SZ), an incidental finding (1 SZ), and refusal to enter the 

scanner due to anxiety (1 SZ). Eleven participants (7 HC, 4 SZ) were excluded due to 

operator error which caused a mis-alignment of task onset and scanner onset. An 

additional 6 participants (2 HC, 4 SZ) were excluded due to poor quality behavioral data 

(greater than 30% non-responses), and 4 were excluded (2 HC, 2 SZ) for low quality 

structural/functional scans (signal dropout or excess motion greater than 1 

voxel).  Following exclusions, data are presented on a final sample of 85 participants 

(54 HC and 31 SZ). As seen in Table 1, groups were matched on age, gender and 

parental education, but the SZ sample had lower participant education as illness often 

interrupts educational attainment. Included in the table are CPZ equivalents for 

medicated SZ participants. The current study was approved through the University of 

California, Davis, Institutional Review board and participants provided informed consent 

prior to study. 

Procedure and Design 

Encoding Phase 

Participants learned five sequences (see 24), during EEG (3) prior to entering the 

MRI scanner. Encoding conditions are illustrated in Figure 1, and details are provided in 

Zheng et al. (3). 

Sequence Retrieval Task 

Immediately following encoding, participants were positioned in the MRI scanner. 

During sequence retrieval, participants viewed previously encoded sequences (two 
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fixed, two random, and one novel) for three repetitions per run across four runs. 

Sequence order was randomized and objects appeared in a continuous stream, with no 

delays between sequences.  Each object in each sequence was presented for 1000ms. 

Before each run, a semantic question was provided, which participants answered for 

each object. Questions were: 1) Can this object fit in a shoebox? 2) Can you easily lift 

this object with one hand? 3) Is the presented object living? or 4) Does this object 

contain visible metal? Semantic questions were asked to maintain attention and gauge 

RT differences both within and between sequences to index sequence prediction 

success.  

MRI Acquisition 

Imaging was conducted at the University of California, Davis, Imaging Research 

Center (IRC) on a 3T Siemens Trio Total imaging matrix (Tim) MRI system with a 32-

channel head-coil. Structural images were acquired using T1-weighted magnetization-

prepared rapid acquisition gradient echo (MPRAGE) pulse sequence (208 slices, 

sagittal; voxel size = 1.0mm!; TR = 2000ms; TE = 2.98ms; flip angle = 8°; FoV = 

256mm). Functional images were acquired with an echo planar imaging (EPI) sequence 

(235 time points; voxel size = 3.4mm!; TR = 2000ms; TE = 25ms; FoV = 218mm; 34 

slices, interleaved). 

Data Processing and Analysis 

Behavioral Data 

Sequence prediction effects were calculated by averaging RT across objects 2-5 

for fixed and random sequences and calculating differences in RT between sequence 
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types (fixed – random). Repeated-measures analysis of variance (ANOVA) identified 

main effects of group (HC vs. SZ), sequence type (fixed vs. random) or higher order 

interactions for averaged RT values. Pearson Product moment correlations examined 

associations between symptom severity (total scores on the BRPS, SANS, and SAPS) 

and sequence prediction effects. Significance levels were set at p<0.05 for all analyses. 

fMRI Data Preprocessing 

Preprocessing of fMRI data was modeled after Hsieh et al (2). Preprocessing 

was accomplished using fMRI Expert Analysis Tool (FSL version 5.0.9). To strip the 

skull and remove any non-brain tissue, the Brain Extraction Tool (BET) extracted brain 

volumes. All functional images were slice-time corrected and high-pass filtered with a 

0.01 Hz cut-off. MCFLIRT was used for motion correction and functional images were 

co-registered with each individual’s MPRAGE using FLIRT. Resulting transformation 

matrices were used to transform ROIs into native-space for each participant.  

Regions of Interest 

A priori regions of interest (ROIs) were bilateral DLPFC and bilateral 

hippocampus. Hippocampal ROIs utilized probabilistic maps based upon an average of 

55 hand-traced T1 images using methods validated by Ritchey and colleagues (10). 

Hippocampal ROIs included the full body, and sub-regions for head, body and tail based 

on anatomical landmarks (10). The DLPFC ROI (36 voxels) utilized a probabilistic mask 

including Brodmann areas 9 and 46 based upon Talairach coordinates functionally 

defined by MacDonald and colleagues (26). After placing ROIs in standard space, they 

were transformed into native space prior to statistical analysis as described above. 
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We also performed an exploratory searchlight whole brain RSA analysis using 

400 parcellations acquired from Schaefer and colleagues (27). As previously, 

parcellations were transformed into native space prior to statistical analyses (FWE 

corrected at p<0.05).  

Representational Similarity Analysis 

RSA is a multivariate approach correlating patterns of voxel activation across 

objects that share a similar feature of interest to determine if brain regions are sensitive 

to that feature (28,29). For example, imagine an area of the brain encoding 

representations of dogs. Patterns of activation in that area for one dog will be similar to 

patterns of activation for another dog. In contrast, patterns of activation for a cat in that 

area might show shared activation across some voxels because of some shared 

features (e.g. four legs, domestic animal, etc.), but the overall pattern of activation for 

the cat will be more dissimilar than either of the dog representations, confirming that the 

area is most sensitive to processing dog-related representations. For the current study, 

we utilized RSA to understand how DLPFC and posterior hippocampus represented 

fixed versus random sequences. 

To do this, we first assessed patterns of activity across voxels within DLPFC and 

posterior hippocampus during single trials using parameter estimates (i.e. beta weights) 

for each object, estimated through the Least-Square2 (LS2) method (30). A general 

linear model (GLM) computed beta weight estimates for each object. For each 

functional run, there were 75 GLMs (5 objects/sequence x 5 sequences x 3 repetitions) 

for a total of 300 beta maps (4 runs x 75 beta maps/run). Outlier beta maps, determined 

by a signal intensity lying in the 1% of all beta maps, were excluded from analyses. 
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Next, we examined voxel pattern similarity for fixed and random sequences by 

calculating Pearson’s correlation coefficient between beta weight vectors for pairs of 

trials, which were Fisher transformed and averaged in three ways (fig. 1B). To examine 

fixed sequence representations, an average was taken for all fixed sequences across 

repetitions and runs, where each object was in the same position. For random 

sequences, an average was taken across all random sequences, where the position of 

objects varied. To include representations where object information was shared 

between objects in different sequences regardless of position, voxel patterns were 

rearranged within random sequences and averaged. These two averages were 

combined to create a full picture of random sequence representation. For bilateral 

DLPFC, we performed a three-way ANOVA to identify effects of group (HC vs. SZ), 

hemisphere (left vs. right), and sequence representation (fixed vs. random). Based on 

prior research using a similar paradigm (24), we limited analyses of the posterior 

hippocampus to the right hemisphere. We performed a two-way ANOVA in right 

posterior hippocampus examining effects of group (HC vs. SZ) and sequence 

representation (fixed vs. random). Correlation analyses were performed to determine 

associations between RT sequence prediction effects and similarity values (fixed – 

random) gleaned from RSA results. 

RESULTS 

Behavioral Results 

Based upon previous results (3), we hypothesized that people with SZ would show 

reduced sequence prediction effects. This was supported by the ANOVA, which 

revealed main effects of group (F(1,83)=8.27, p=0.005) and sequence type 
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(F(1,83)=21.90, p<0.001), as well as a significant group by sequence interaction 

(F(1,83)=8.93, p=0.004). As shown in Figure 2, t-tests investigating sequence prediction 

effects (fixed minus random RT for objects 2-5) revealed that this interaction was due to 

HC showing a greater speeding of RT for fixed versus random sequences than people 

with SZ (t=-2.99, p=0.004). Thus, although people with SZ were able to learn and 

retrieve well-learned sequences and speed their RTs, these memory prediction effects 

were reduced relative to HC. (Supplemental figure 1 illustrates the difference between 

objects within each sequence.) 

fMRI Results 

Based on previous work (24), we hypothesized that DLPFC and posterior hippocampus 

are involved in supporting memory-based prediction for objects within a temporal 

context and that these representations would be reduced in people with SZ. We 

examined this separately for DLPFC and hippocampus using RSA to compare voxel 

pattern similarities for fixed and random sequences. 

Supporting our hypothesis for the DLPFC, ANOVA revealed a main effect of 

sequence with fixed sequences showed higher similarity than random sequences 

(F(1,83)=14.84, p<0.001; fig 3). There was no main effect of hemisphere (F(1,83)=3.37, 

p=0.07). Although there was no main effect of group, there was an interaction between 

sequence and group (F(1,83)=5.67, p=0.02). Post-hoc tests revealed that in HC only, 

DLPFC voxel pattern similarity was higher for fixed sequences than for random 

sequences (t=5.16, p<.001). Conversely, in the SZ sample there were no differences in 

how the DLPFC represented objects in fixed versus random sequences (t=0.92, 



 95 

p=0.36). These data suggest that DLPFC dysfunction may be associated with memory-

based prediction deficits in individuals with SZ. 

In posterior hippocampus, ANOVA revealed no main effects of group or 

sequence. There was, however, a trend toward an interaction between group and 

sequence (F(1,87)=3.20, p=0.08; fig 3). Exploratory post-hoc analyses revealed that this 

trend-level interaction was due to increased pattern similarity for fixed versus random 

sequences in the right posterior hippocampus of HC (t=2.26, p=0.03) but not in people 

with SZ (t=-0.55, p=0.58). Results did not strongly support our hypothesis that 

hippocampal dysfunction contributes to temporal sequence memory deficits in SZ.  

Searchlight analyses did not reveal other areas showing increased pattern 

similarity for fixed versus random sequences. Thus, there were no effects in other parts 

of the brain. 

Association with Performance 

To determine the relationship between sequence prediction effects and 

representational similarity, we performed correlation analyses (Fig 4). In the left DLPFC, 

fixed sequence representations were significantly correlated with sequence prediction 

effects in HC (r=-0.330, p=0.011) but not in SZ (r=-0.115, p=0.392). In the right DLPFC, 

there was no correlation between sequence prediction and representational similarity. 

These data suggest that, in HC only, as sequence prediction increases (indicated by an 

increasingly negative value), representational similarity increases in the left DLPFC. 
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Similar analyses were performed in the bilateral posterior hippocampus, however 

none of the results from these analyses were significant, indicating that pattern similarity 

in the posterior hippocampus was not associated with sequence prediction effects. 

Association with Clinical Symptoms 

Correlational analyses did not reveal any significant relationships between DLPFC 

pattern similarity effects and severity of clinical symptoms (total SANS, SAPS and 

BPRS) in the SZ sample (all r-values > 0.08).   

DISCUSSION 

We rely on memory to make accurate predictions about our changing 

environment. In the present study, we investigated whether people with SZ show 

deficits in memory-based prediction using a temporal sequence paradigm (2,3,31). 

Although both groups predicted and responded more quickly to objects within a 

previously learned sequence (i.e. faster RTs for fixed versus random sequences), this 

effect was reduced in people with SZ relative to HC. Multivariate analyses of fMRI data 

revealed that participants with SZ showed disrupted neural representations of learned 

sequences in the DLPFC. These findings support the conclusion that people with SZ 

can learn temporal sequences but their ability to utilize this sequence memory to predict 

future events is dysfunctional. 

Sequence prediction effects were measured indirectly as individuals responded 

to objects contained in sequences that could be learned (i.e., fixed) or could not be 

learned (i.e., random), with speeding of semantic decisions for learned versus 

unlearned sequences providing evidence of successful prediction. Behavioral results 
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indicate that individuals with SZ were capable of forming and using memories to predict 

the next object in the sequence and, thereby, guide their behavior. As previously (3) 

both groups showed evidence of sequence learning, but memory prediction effects were 

reduced in people with SZ relative to HC. Therefore, memory impairments do not 

appear due to a lack of attention or a generalized memory deficit.  However, individuals 

with SZ did not improve predictions to the same degree as healthy individuals, 

suggesting that people with SZ were less successful in using memory representations 

to guide predictions (14). 

Although semantic priming deficits have been reported in SZ (32,33), it is notable 

that, in the present study, objects in learned and random sequences were equally 

familiar. Thus, differential effects of sequence learning on semantic decisions between 

patients and controls cannot be explained by differences in semantic priming. Instead, 

our results are more consistent with the idea that people with SZ have a reduced ability 

to use sequential regularities to predict upcoming events.  

To better understand these memory-related prediction impairments, we used 

RSA to characterize representations of information from temporal sequences in DLPFC 

and posterior hippocampus. Multivariate analyses revealed that, in HC, representational 

similarity was higher across repetitions of objects in learned sequences relative to 

repetitions of objects in random sequences in the DLPFC. These effects were not 

significant for people with SZ, and DLPFC voxel pattern similarity differences between 

objects in learned and random sequences were significantly higher in HC than in SZ. 

Moreover, the fidelity of DLPFC representations of objects in learned sequences was 

predictive of sequence prediction success in HC only, although there were no significant 
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group differences in the size of the association. Results are consistent with a large body 

of behavioral, eye-tracking, EEG and fMRI research linking both memory (25,34) and 

prediction (23) impairments to DLPFC dysfunction in people with SZ. Impaired DLPFC 

control of memory encoding and retrieval has been repeatedly demonstrated in people 

with SZ on both an individual study (31,34) and meta-analytic level (25).  

In addition to the DLPFC, numerous studies supported the idea that hippocampal 

abnormalities might contribute to relational memory deficits in SZ (35). Several studies 

documented reductions in hippocampal volume in SZ (36) and others (37,38,39), 

including results from our group (31,40), demonstrated reduced hippocampal activation 

during relational memory retrieval in people with SZ relative to HC. In the present study, 

however, we did not observe any evidence for hippocampal dysfunction in people with 

SZ. Exploratory analyses of data restricted to the HC group revealed that, consistent 

with our previous study (24), pattern similarity in right posterior hippocampus was higher 

for objects in learned relative to random sequences. Although these effects were not 

significant in people with SZ, we did not observe any significant between group 

differences in hippocampal sequence representations, nor did we find significant 

relationships between hippocampal results and sequence prediction effects in either 

group. Thus, results did not support the hypothesis that sequence-based prediction 

deficits in people with SZ were related to impaired hippocampal function.  

As described in Zheng et al. (3), people with SZ learned sequences more slowly 

than HC, consistent with a deficit in relational memory. As previously (2,41), participants 

were highly trained on fixed and random sequences prior to scanning, thus enabling 

people with SZ to compensate for any learning deficits. During scanning, participants 
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were not asked to explicitly recall sequences, so we would only expect them to show 

faster decisions for objects in fixed sequences if they proactively used memory for the 

learned sequences to accurately predict upcoming objects. Thus, results are consistent 

with concluding that, even when learning is sufficient to overcome relational memory 

deficits, people with SZ are impaired using what was learned to predict upcoming 

events, with this deficit strongly associated with DLPFC dysfunction. 

 A challenge of studying people with SZ is the heterogeneity of the disorder which 

can increase variability in addition to potential medication effects and differences in 

clinical presentations. One might expect that we would have found correlations with 

positive symptoms given literature linking predictive coding deficits with severity of 

positive symptoms (18).  One notable difference between our study and previous work 

is that participants in this study were early psychosis patients who were clinically stable 

with mild to moderate symptoms. Therefore, a restricted range may have contributed to 

lack of clinical correlations. Most participants in the SZ group were receiving second 

generation antipsychotics and when analyses were repeated after excluding un-

medicated participants there was no difference in the pattern of behavioral or fMRI 

results. We also did not find any significant correlations with standardized medication 

dose (i.e., CPZ equivalents). Thus, results do not appear to be influenced by medication 

or symptom severity effects. We did experience significant data loss due to excess 

motion and operator error. This was likely related to both operator and participant 

fatigue as fMRI recordings were obtained immediately following an EEG study (3). 

Finally, our primary fMRI analysis examined a priori regions in the hippocampus and 

prefrontal cortex based upon previous fMRI studies (2,31), raising the possibility that 
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there were task effects or group differences within other regions of the brain. To 

address this, we conducted an exploratory whole-brain searchlight analysis which did 

not reveal any task effects or group differences in other brain regions.  

 In conclusion, results indicate a key finding: individuals with SZ are able to learn 

sequences, but there is dysfunction in using prior knowledge about sequences to aid in 

prediction of upcoming objects. HC were more successful than people with SZ engaging 

their DLPFC to form object/sequence representations to facilitate prediction of 

upcoming objects in learned sequences. These findings support prior theories 

proposing that there are aberrant prediction processes in people with SZ (14,17).  

Ongoing efforts to remediate memory-based prediction deficits in SZ using 

neurostimulation, pharmacology or behavioral interventions may be most successful if 

they target DLPFC-related control processes.  
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TABLES AND FIGURES 

Table 1. Sample Demographics 

 
Healthy Controls 

(n=54) 

Schizophrenia 

(n=31) 

 

p-values 

 
Mean ± SD Mean ± SD 

Age (years) 24.10 ± 4.38 23.05 ± 4.23 0.28 

Sex (% 

male/female) 

72%/28% 81%/19% 0.39 

Education (years) 15.07 ±	1.98 13.50 ± 1.80 0.00047*** 

Parental 

Education (years) 

13.70 ± 3.03 14.69 ± 2.57 0.13 

BPRS (total) 
 

37.77 ± 10.09  

SANS (total) 
 

18.10 ± 10.71  

SAPS (total) 
 

7.45 ± 12.00  

CPZ Equivalents  244.22 ± 161.22  
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SZ, schizophrenia; BPRS, Brief Psychiatric Rating Scale; SANS, Scale for the 

Assessment of Negative Symptoms; SAPS, Scale for the Assessment of Positive 

Symptoms; CPZ, chlorpromazine 

  



 103 

 

Figure 1. Schematic of the paradigm. Fixed sequences show the same objects in the 

same position for each repetition. Random sequences show the same objects but in a 

different position each repetition. 
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Figure 2. Sequence prediction indicated by the difference in RT for objects 2-5 between 

fixed and random sequences. RT for fixed sequences was faster than random 

sequences for both groups with HC showing a significantly greater difference. 
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Figure 3. In the bilateral DLPFC (Fig. 3A and 3B), HC showed significantly greater 

similarity for fixed sequences compared to random while SZ did not. The left posterior 

hippocampus showed no group or sequence differences (Fig. 3C and 3D). In the right 

posterior hippocampus, in HC only, fixed sequences showed significantly greater 

similarity for fixed versus random sequences. 



 106 

 

Figure 4. Scatter plot of correlations between pattern similarity in the left DLPFC and 

sequence prediction success. For HC (Fig. 4A and 4B), greater pattern similarity for 

fixed versus random sequences in the left DLPFC was correlated with better sequence 

prediction. These correlations were not significant in people with SZ (Fig. 4C and 4D). 
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Concluding Remarks 
Together, these chapters highlight the idea that the relationship between the 

hippocampus and prefrontal cortex (PFC) is dynamic and both are necessary for 

successful encoding, retrieval, and memory updating. In Chapter 1, I proposed that the 

PFC flexibly controls hippocampal representations to switch between integration and 

differentiation when items are similar. I continued this line of thinking in Chapter 2 by 

proposing a possible mechanism by which these regions may be interacting with each 

other, computationally. Using studies that investigate integration and differentiation, I 

showed that the proposed computational model can achieve similar results as the 

empirical data. In Chapter 3, I focused on retrieval processes and how retrieval practice 

or restudy of information can affect memory for other information within the same event. 

This work showcases that retrieval competition can occur within events, leading to 

forgetting of information related to retrieval practiced/restudied information. And finally, 

in Chapter 4, I showcased how the hippocampus and PFC are affected in temporal 

sequence processing in individuals with schizophrenia, which may be related to the 

behavioral effects observed. Ultimately, the underlining thread connecting these lines of 

research is the dynamic relationship between the hippocampus and PFC, where the 

PFC may be controlling hippocampal representations during both encoding and retrieval 

leading to memory updating that is necessary to achieve task goals and, importantly, 

flexibly change these representations when task goals change. 




