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Abstract 

In this paper, we develop a novel formalization of Fuzzy 
Trace Theory (FTT), a leading theory of qualitative risky 
decision-making. Our model is the first to explicitly formalize 
and integrate the concepts of gist and the gist 
hierarchy.  Domain knowledge constrains the space of 
possible decision problems, explaining which gists are chosen 
in which contexts.  We test our model against risky-choice 
framing and Allais paradox problems, and manipulations of 
these problems.  Our results also confirm new predictions 
regarding how problem manipulations can enhance or 
attenuate framing effects. 
 
Keywords: Decision-making; mathematical model; risky 
choice; framing effect; Allais paradox; gist 

Introduction 
 In this article, we introduce a mathematical model of 

Fuzzy Trace Theory (FTT), a leading theory of decision-
making under risk, which assumes that decision-makers use 
a qualitative “gist” representation of a stimulus, in parallel 
with a precise verbatim representation (Reyna, 2012).  We 
integrate memory and decision-making research to 
formalize how decision options and probabilities are 
mentally represented.  By “formalization,” we mean a 
mathematical description, and extension, of a verbal theory.  
We focus our analysis on risky choice tasks.  We explain 
experimental evidence from several classic decision 
problems and experimental manipulations of these problems 
(e.g., Allais, 1953; Kühberger & Tanner, 2010; Peters & 
Levin, 2008; Reyna, 2012; Tversky & Kahneman, 1981).  
We then use our mathematical theory to make and test novel 
predictions. This paper provides the first explicit 
formalization of the concepts of gist, the gist hierarchy, and 
the fuzzy-processing preference (described below).   

Gist and Verbatim 
The central tenet of Fuzzy Trace Theory (FTT) is that 

people encode, store, retrieve, and forget memories that are 
characterized by different levels of detail.  We refer to these 
levels as “gist” and “verbatim.”  These representations are 
encoded separately and roughly in parallel (Brainerd et al., 
2009).  A gist representation captures the meaning, or 
"essence," of a stimulus, and is therefore a symbolic mental 
representation.  Gists representations are simple, qualitative 
(for reviews, see Reyna, 2012) and are grounded in 
experience. In contrast, a verbatim representation of a 

stimulus retains its surface form. Examples include memory 
representations of exact words, numbers, and pictures.  Even 
though verbatim representations reproduce the details of a 
given stimulus, they are also symbolic representations.   

Rivers et al. (2008) illustrate the differences between gist 
and verbatim representations using the following scenario: 
Consider an adolescent who must decide between attending 
a party where alcohol will be served to minors (which the 
adolescent perceives as a fun but risky option) and attending 
a friend’s sleepover where alcohol is not served (which the 
adolescent perceives as a fun but “safe” option in the sense 
that there is no risk of getting in trouble for underage 
drinking).  Suppose that the adolescent thinks that the party 
will be more fun than the sleepover; however, the 
adolescent faces a small risk (e.g., a 10% chance) of being 
caught drinking at the party.  An expected-value framework 
might characterize the options as follows: 

1. A 100% chance of an amount of fun at the sleepover. 
2. A 90% chance of twice as much fun and a 10% chance 

of no fun (getting caught) at the party. 
A verbatim representation of these two options would be 

what is described above, that is, a precise description of 
outcomes and their probabilities.  Outcomes and 
probabilities need not be fully explicit for a mental 
representation to be “verbatim”; verbatim representations 
encode the literal content of information or experience, 
however limited that might be.  Option 2 is preferable based 
on explicit outcomes and probabilities; in many instances, 
the odds are with the risk-taking adolescent.  However, a 
categorical gist representation of these two options is: 

1. Some fun with certainty at the sleepover. 
2. Some chance of some fun and some chance of no fun at 

the party. 
The gist representation encourages risk avoiding (option 

1) because the possibility of “no fun” is confined to the 
risky option (option 2).  Research on risky choices suggests 
that decision makers represent decision options in both ways 
simultaneously – i.e., in terms of specific verbatim 
outcomes and probabilities (when those are known or 
estimated) and as qualitative gist representations. Figure 1a 
shows a visual representation of this choice in a two-
dimensional Euclidean space (the “decision space”), 
whereas Figures 1b and 1c shows how points in this space 
are mapped to gists, represented as curves within the 
decision space (“constraints”). Finally, Figure 1d indicates 
which gist will be chosen given multiple interpretations. 
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Figure 1. a) Visual representation of the choice faced by an 
adolescent decision-maker. Each point in this space 
represents a decision option (i.e., a fixed amount of fun with 
a fixed probability). b) The gist representation of the 
adolescent decision problem. All points in the grey box are 
interpreted as “some chance of some fun,” all points in the 
horizontal oval are interpreted as “some fun with certainty,” 
and all points in the vertical oval are interpreted as “some 
chance of no fun.” Note that there are portions of the space 
where the ovals and grey box overlap each other. c) Venn 
diagram representing overlapping gists for the adolescent 
problem. d) A lattice representation of the gists in the 
adolescent decision problem (the “constraint lattice”).  
Higher elements in the lattice are preferred interpretations.  
Links indicate that all of the points in the higher gist 
category are contained within the lower gist category. 

The Hierarchy of Gist 
A second tenet of FTT is that decision-makers prefer to 

operate on the simplest gist that can be extracted from 
information, which are often qualitative and categorical 
representations, whenever possible.  This preference 
increases with experience in a domain (e.g., Reyna et al., 
2013).  Although more precise and quantitative 
representations are simultaneously generated, they are only 
relied on when necessary. A more precise representation 
may compete with the gist representation if they endorse 
very different decisions. In general, FTT assumes that 
subjects prefer to use the least precise representation of a 
problem that enables a decision to be made – i.e., they have 
a fuzzy-processing preference (Reyna & Brainerd, 2011).   

Categorical Comparisons 
When two decision complements fall into different 

qualitative categories (e.g., “some fun” vs. “no fun”), these 
categories are compared.  As we will show below, each of 
these categories is associated with a valence.  Thus, the 
category that is more highly valued will be chosen. 

Ordinal Comparisons 
When two decision options’ complements have the same 

gist, finer-grained distinctions are required.  For example, if 
two complements both involved risk, representing them 
both as “Some chance of some fun and some chance of no 
fun” would not distinguish them.  Under these conditions, 
decision-makers revert to ordinal (e.g., more vs. less) 
decision-making.   

For example, consider a hypothetical choice between: 
1. A 90% chance of an amount of fun and a 10% chance 

of no fun (getting caught) at one party. 
2. A 90% chance of twice as much fun and a 10% chance 

of no fun (getting caught) at a second party. 
Both of these options would be represented as “some 

chance of some fun and some chance of no fun.  These two 
options have the same categorical gist, but they can also be 
represented ordinally as: 

1. Some chance of less fun and some chance of no 
fun (e.g., at one party). 

2. Some chance of more fun and some chance of no 
fun (e.g., at a second party). 

Here, option 2 would be preferred to option 1. According 
to FTT and consistent with empirical evidence, decisions 
rely on these ordinal representations when options cannot be 
distinguished by categories, (e.g., some fun vs. no fun). 

Interval Comparisons 
Although ordinal representations are more precise than 

categorical ones, ordinal comparisons are still not always 
sufficient to make a choice.  For example, one could 
imagine a choice between:  

1. A 90% chance of an amount of fun and a 10% chance 
of no fun (getting caught) at one party. 

2. A 60% chance of twice as much fun and a 40% chance 
of no fun (getting caught) at a second party. 

An ordinal interpretation comparing these options is: 
1. Less1 fun is more2 likely, and no fun is less3 likely  
2. More1 fun is less2 likely, and no fun is more3 likely 
Note that such a representation requires only that 

outcomes within a complement be compared if they have 
the same categorical representation (e.g., “some fun with 
some chance”). Thus, not all pairwise comparisons between 
complements are necessary. We use subscripts to clearly 
indicate which parts are being compared.  

When ordinal comparisons lead to an indeterminate 
decision outcome, even more precise representations are 
used, such as comparing interval-level values.  For example, 
the classical expected value is an interval representation, 
which we predict subjects will use.  Using the interval-level 
numbers, the expected value of the first decision option in 
the original adolescent example is an amount of fun 
multiplied by 1.00 (i.e., probability of 100%).  In contrast, 
the second decision option has an expected value of twice as 
much fun times 0.90, plus no fun times 0.10.  This sum is 
equal to 1.8 times as much fun as the first decision option, if 
one assumes an interval-level scale of outcomes.  Thus, an 
adolescent using a verbatim representation and multiplying 
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outcomes and probabilities would choose the risky decision 
option because it has a larger expected value.  

Values 
The final tenet of FTT is that decisions are made on the 

basis of simple valenced (i.e., positive or negative) affect 
(e.g., Peters & Levin 2008).  Thus, once options are 
represented in a categorical, ordinal, or interval fashion, the 
more positively valenced option is chosen (e.g., winning 
money is preferred to losing money; saving lives is 
preferred to losing lives).  Consider the adolescent’s gist 
representation described above:  

1. Some fun with certainty 
2. Some chance of some fun and some chance of no fun. 
Given the value that some fun is preferred to no fun, we 

predict that the adolescent would choose option 1.  Decision 
outcomes would differ for an ordinal decision maker, who 
would represent the problem as follows: 

1. Less fun with certainty 
2. Some chance of more fun and some chance of no fun. 
An ordinal decision-maker would be unable to choose 

between these two options because more fun is preferred to 
less fun, but less fun is preferred to no fun.  Finally, the 
interval, or verbatim, decision-maker would choose option 2 
because it has 1.8 times the expected amount of fun as 
option 1 (described above).  FTT thus demonstrates how 
problem representations along with positive or negative 
valenced dimensions can drive the decision outcome.  

The Model 
We formalize FTT using algebraic tools originally 

developed to explain visual object perception and human 
concept learning (Feldman 1997; Jepson & Richards, 1993).  
These tools are based on lattice theory. Mathematically, a 
lattice (e.g., Figure 1c) is a kind of partial order on a set of 
elements, meaning that some (but not necessarily all) of 
these elements are ranked.  Each element in the lattice 
stands for a decision category (such as “some chance of 
some fun,” “some chance of no fun,” etc.)  Lattices have a 
common lowest element (called a “meet”) and a common 
highest element (called a “join”).  In our model, the 
requirement of a common meet ensures that all of the lattice 
elements are abstracted from the same world phenomena.  
The join of the lattice may be the empty set if our gist 
categories do not overlap.  In our lattices, a link indicates 
that the decision category at the lower end of the link 
contains the category at the higher end. 

Categories  
Feldman (1997) introduced a mathematical approach to 

qualitative categorization based on visual perception and 
artificial intelligence.  The key to this approach is that an 
item is interpreted as if it were the category in which it falls  
(e.g., in our adolescent decision problem, twice the fun with 
a 90% chance is interpreted as “some fun with some 
chance” – a representation that captures an entire set of 
points in a space).  This can be used to capture the notion of 

qualitative categories containing a range of values of which 
the specific stimulus values are just one of many examples 
(Reyna, 2012).  Category boundaries are defined by 
constraints that are “non-accidental” (Jepson & Richards, 
1992).  A feature is non-accidental if it represents a 
psychologically special value in its category (e.g., Feldman, 
2004) – for example, a 10% chance of no fun is a special 
case of “some chance of some fun” because “no fun” is a 
special case of “some fun.” Constraints are “non-accidental” 
because the probability that any point in our space will fall 
on a constraint is functionally zero (Feldman, 1997, remarks 
that mathematically, it has measure zero). We draw upon 
Feldman’s (1997) model to fully formalize of these ideas. 

The Decision Space  
Assume a space S, each point of which corresponds to one 

complement in a potential decision option (e.g., “90% 
chance of twice as much fun”).  Since we are studying risky 
decision problems, we restrict our analysis to a Euclidean 
space (e.g., Figure 1a), although there are a range of 
problems explained by FTT that are not captured by this 
rather restrictive assumption, which we leave to future 
work.   Each point in S may be parameterized by Rd where d 
is the dimension of the Euclidean space.  This means that, 
each point in S is indexed by a set of d real parameters 
s1, s2, ... sd, which are that point’s coordinates in the space.  

Constraints 
A set of points p contained in S  obeys a constraint if they 

all the points in p satisfy a single function f expressed as 
fr(f1,f2,…,fd)=0.  If we assume that this function is smooth – 
i.e., it may be differentiated an arbitrary number of times – 
we can define a constraint as a manifold in our space.  By 
manifold, we mean a subset of the space that has a 
dimension of at most d-1 (for example, a constraint in a 2-
dimensional space could be mapped to a line, which is 1-
dimensional).  Thus, a constraint p in configuration space 
S of dimension d is a manifold that can be mapped to a 
space with dimension less than d.  These manifolds are 
spaces in their own right, only with lower dimension.  This 
means that one constraint may be embedded in another 
constraint.  For example “some fun with certainty” is a 1-
dimensional space (e.g, a line), in which “no fun with 
certainty,” a 0-dimensional space (e.g., a point) is 
embedded.  This leads to the creation of a hierarchy of 
manifolds (“some fun with some chance” contains “some 
fun with certainty,” which contains “no fun with certainty,” 
etc.) that will be represented by our lattice.  We define the 
constraint set C={c1, c2, ..., cN} as containing all the 
constraints explicitly mentioned in our decision problem.  In 
our adolescent problem, C={no fun, certainty}.  These 
constraints may intersect – e.g., a hypothetical decision 
option which guarantees no fun with certainty.  On the other 
hand, the set may be empty, C={}, if there are no 
constraints in the decision problem. We may use the 
constraint set to define a constraint lattice – a structure in 
which larger, more inclusive categories appear towards the 
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bottom, and smaller categories appear towards the top (cf. 
Jepson & Richards, 1993).   Specifically, for a space S  with 
constraint set C={c1, c2, ..., cN}, the constraint lattice LS,C is 
the smallest set that contains S,  contains each c in C,  and is 
closed under intersection (meaning that all possible 
combinations of overlapping constraints are included). 

We formalize our extended version of the fuzzy 
processing preference by specifying that one always chooses 
the manifold in our space with the lowest dimension. 
Mathematically, this is identical to Feldman’s (1997) 
“Maximum Codimension Rule.”  Given a point in our space 
and a set of possible gist interpretations for that point, we 
always choose the interpretation that is highest in the 
associated lattice structure.  

Formalizing Ordinal Decision-Making 
FTT predicts that decision-makers revert to ordinal (e.g., 

more vs. less) decision-making when categorical 
distinctions cannot be made (i.e., all decision options fall 
into the same category).  If the ordinal representation of a 
decision option is preferred along all dimensions of our 
space, and strictly preferred along at least one dimension, 
then that decision option is preferred overall.  Otherwise, a 
decision cannot be made and we must revert to a more 
precise representation.  In order to formalize this intuition, 
we again use a partial order – i.e., every pair of decision 
options may be less than, greater than, equal to, or unrelated 
to one another.  For each k-dimensional category, Rk in LS,C, 
where k≤d we define the partial order, ≤R, as follows: 
• Since S is a Euclidean space, then every dimension, d, 

in Rk, is associated with a total order, ≤ (i.e., every pair 
of decision options is either less than, greater than, or 
equal to one another). 

• Given two points, f andq, in Rk We define ≤R as a 
product order on Rk x Rk (meaning that f≤Rq if and only 
if f1≤q1 , f2≤q2, ... fk≤qk ).  

Formalizing the Gist Hierarchy 
We introduce the “gist hierarchy” as follows: 

1. At the categorical level, each point is represented 
according to the extended fuzzy processing preference 
(i.e., as points in our space, S, interpreted according to 
the constraint lattice, LS,C).  All comparisons between 
points are made accordingly. 

2. At the ordinal level, points x and y in the same 
category, Rk, in LS,C, are compared according to the 
associated partial order of the category, ≤R. 

3. At the interval level, x and y are evaluated according to 
their expected values (i.e., a summation of each value 
multiplied by its respected probability). 

Subjects choose the decision predicted by the categorical 
level. If it is indifferent, descend the gist hierarchy until the 
decision can be made. If no decision can be made at any 
level, subjects remain indifferent.  

This model does not incorporate an error term, and 
instead predicts the modal outcome for each gamble; 
nevertheless, preliminary results suggest that a simple 

assumption of normally distributed noise should suffice. A 
more detailed discussion of the appropriate error term is 
outside the scope of this paper and is left to future work. 

Model Application 
We begin by applying our model to the standard Asian 

Disease Problem (ADP; Tversky and Kahneman, 1981; 
1986).  The ADP is one of the literature’s most widely 
replicated demonstrations of framing effects.  The classic 
framing effect is that people avoid risks when options are 
framed as gains, but are risk seeking when those same 
options are described as losses.  Framing effects challenge a 
fundamental axiom of economic theory (i.e., that 
preferences are coherent across different descriptions of the 
same options).  Many experiments have confirmed the 
classic results across domains (e.g., Kühberger & Tanner, 
2010).  The text of the gain-framed standard ADP is: 

“Imagine that the U.S. is preparing for the outbreak of an 
unusual Asian disease, which is expected to kill 600 people.  
Two alternative programs to combat the disease have been 
proposed.  Assume that the exact scientific estimates of the 
consequences of the program are as follows: 

If Program A is adopted, 200 people will be saved 
If Program B is adopted, there is a 1/3 probability that 600 
people will be saved and a 2/3 probability that no people 
will be saved.” (Kahneman & Tversky, 1981) 

The loss-framed version of the same problem uses the same 
preamble but presents the decision options as: 

“If Program C is adopted 400 people will die. 
If Program D is adopted there is a 1/3 probability that 
nobody will die, and a 2/3 probability that 600 people will 
die.” (Kahneman & Tversky, 1981) 

The typical result (i.e., the framing effect) is that most 
people prefer the certain option in the gain frame (A), but 
they prefer the risky gamble option in the loss frame (D).  

As per our mathematical formalization, there are two 
types of numbers that a decision-maker is required to 
understand.  The first represents the number of people who 
are saved (or who die), and the second number represents 
the probability with which this outcome occurs.  We 
represent these numbers in a 2-dimensional space, with the 
horizontal axis ranging from 0 live (or die) to 600 live (or 
die), and the vertical axis ranging from 0% to 100% 
probability.  The certain option is located at (200, 1) 
because, if Program A is chosen, there is a 100% chance 
that 200 people will be saved.  The first (non-zero) 
complement of the gamble option is located at (600, 1/3) 
since there is a 1/3 probability that 600 people will be saved; 
the second (zero) complement of the gamble option is 
located at (0, 2/3) since there is a 2/3 probability that 0 
people will be saved.  

Empirically-Grounded Constraints 
In practice, constraints are based upon innate and learned 

categories. For the domain of risky decision problems, 
common constraints are found in the literature on numerical 
cognition. Several independent findings support a 
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categorical distinction between “some” and “none.” Beyond 
the relevant FTT findings (e.g., Reyna, 2012; Reyna et al., 
2013), experimental and fMRI data have shown that 
subjects prefer to avoid winning nothing in a risky gamble, 
even if doing so lowers their overall expected utility (e.g., 
the “Pmax” strategy of avoiding winning nothing as in 
Venkatraman & Huettel, 2012).  Similarly, Tversky and 
Kahneman noted that “… very small probabilities can be 
either greatly overweighed or neglected altogether” (1992) 
consistent with the interpretation of very small probabilities 
as either “none” or “some.”  Similarly, zero is encoded into 
an “end stimulus” category that is separate from how other 
numbers are encoded (Pinhas & Tzelgov, 2012). Data 
indicate that, absent cues to the contrary, “all” and 
“certainty” are not subject to similar end effects (e.g., 
Holyoak & Glass 1978). Note that the word “all” does not 
appear in the standard ADP, neither does the word 
“certainty” nor the probability value “100%.” Thus, our 
theory predicts that these values are interpreted as “some” 
(Reyna et al., 2013 performed a critical test of this 
prediction). Therefore, only the following constraint is used: 
{none saved} (“no chance” is not used because there are no 
points on the horizontal axis), i.e., an option in which no 
one is saved is qualitatively different than an option in 
which some are saved (Reyna, 2012).   

Interpretations associated with higher levels on the lattice 
are preferred to those on lower levels (e.g., as in Figure 1d).  
This framing of the ADP contains three complements:  
1. 200 saved –interpreted as “some chance that some are 

saved.”  
2. 600 saved with probability 1/3 – interpreted as “some 

chance that some are  saved.”  
3. 0 saved with probability 2/3 – interpreted as “some 

chance that none are saved.” 
The decision-maker therefore faces the following choice: 
a) Some chance that some saved  
b) Some chance that some saved OR Some chance that 

none saved  
Most decision-makers value human life; thus, relevant 

values are retrieved from long-term memory indicating that 
“some saved is better than none saved.”  Option a therefore 
weakly dominates option b.  Similar logic applies to the loss 
framing of the ADP.  Although the ADP was initially 
explained with Prospect Theory (Tversky & Kahneman, 
1981), further tests support an FTT-based interpretation of 
the ADP’s results (e.g., Kühberger & Tanner, 2010).  

Results 
Our model successfully predicts each of the effects listed 

in Tables 1 and 2, including several variants of the ADP and 
the Allais Paradox gambles (Allais, 1953). Several of these 
(e.g., items 3 & 4) are not predicted by previous theories 
(e.g., Tversky & Kahneman, 1981; 1992).  
Table 1. Overview of the 14 effects replicated by our 
model. Whereas IDs 1-12 are variants of the ADP, IDs 13 
and 14 correspond to the Allais gambles (Allais, 1953).  

ID Experimental Effect Reference 

1 A: 200 live vs. B: 1/3 * 600 live or 2/3 * 
none live 

TK81 

2 C: 400 die vs. D: 2/3 * 600 die or 1/3 * 
none die 

TK81 

3 A: 200 live vs. B: 1/3*600 live R12, R13 
4 C: 400 die vs. D: 1/3*none die R12, R13 
5 A: 200 live vs. B: 2/3*none live R12, R13 
6 C: 400 die vs. D: 1/3*none die R12, R13 
7 A: 200 live vs. B: 1/3*all live or 2/3*none 

live 
BR14 

8 C: 400 die vs. D: 1/3*none die or 2/3*all 
die 

BR14 

9 A: 200 live and 400 don’t live vs. B: 
1/3*600 live or 2/3*none live 

KT10 

10 C: 400 die and 200 don’t die vs. D: 1/3 * 
none die or 2/3 * 600 die 

KT10 

11 A: 400 do not live vs. B: 1/3 * 600 live or 
2/3 * none live 

KT10 

12 C: 200 do not die vs. D: 1/3 * none die or 
2/3 * 600 die 

KT10 

13 A: $1m with certainty vs. B: 0.89*$1m or 
0.1*$5m or 0.01*$0 

A53 

14 C: 0.89 * $0 or 0.11*$1m vs. D: 0.90*$0 
or 0.10*$5m 

A53 

Note: TK81 = Tversky & Kahneman, 1981; R12 = Reyna, 
2012; R13 = Reyna et al., 2013; BR14 = Broniatowski & 
Reyna, 2014; KT10 = Kühberger & Tanner, 2010; A53 = 
Allais, 1953 
Table 2. Gist representations of the 14 effects replicated by 
our model.  

ID Experimental Effect Outcome 
1 A: some live WSC vs. B: some live or 

none live WSC 
A 

2 C: some die WSC vs. D: some die WSC 
or none die WSC 

D 

3 A: some live WSC vs. B: some live WSC Indifferent 
4 C: some die WSC vs. D: none die WSC Indifferent 
5 A: some live WSC vs. B: none live WSC A 
6 C: some die WSC vs. D: none die WSC D 
7 A: some live WSC vs. B: all live WSC or 

none live WSC 
Attenuated 

8 C: some die WSC vs. D: none die WSC 
or all die WSC 

Attenuated  

9 A: some live WSC and some don’t live 
WSC vs. B: some live WSC or none live 
WSC 

Indifferent 

10 C: some die WSC and some don’t die 
WSC vs. D: none die WSC or some die 
WSC 

Indifferent 

11 A: some don’t live WSC vs. B: some live 
WSC or none live WSC 

B 

12 C: some don’t die WSC vs. D: none die 
WSC or some die WSC 

C 

13 A: some $ with certainty vs. B: some $ 
WSC or some $ WSC or no $ WSC 

A 

14 C: no $ WSC or less $ WSC vs. D: no $ 
WSC or more $ WSC 

D 
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Note: WSC = with some chance 

Discussion 
Our approach builds on Tversky & Kahneman’s 

Cumulative Prospect Theory (CPT; 1992) in that we hold 
losses and gains, rather than final assets, as the carriers of 
value.  Unlike CPT, we do not distinguish between different 
degrees of these quantities by a value or decision-weight 
function in gist representations. Instead, decision options are 
perceived as gists that may be categorically distinct, or 
related in an ordinal fashion.  CPT holds that calculations 
are performed to generate a weighted decision.  In contrast, 
we hold that gist and verbatim representations of a stimulus 
are encoded simultaneously.  Tversky and Kahneman’s 
(1992) principle of diminishing sensitivity, which has 
historically been explained as satiation, can instead be 
explained as a result of categorical thinking.  Comparisons 
made between two elements in the same category (i.e., two 
elements with the same gist) would be perceived as distinct 
but not different, yielding quantity insensitivity. Our 
framework demonstrates a potential theoretical unification 
of risky decision-making with elements of visual perception.  
Indeed, in their seminal paper on framing Tversky and 
Kahneman (1981) compared different frames with different 
perspectives on a visual scene.  Our work extends this 
analogy between perception and explanation, demonstrating 
that the same mathematical formalism applies to both.  

This theory is the first, to our knowledge, to provide an 
integrated formal model of gist, the gist hierarchy, and 
qualitative decision-making.  Our mathematical model 
provides a novel extension to FTT by explaining gist-
selection in terms of empirically grounded constraints – i.e., 
prior knowledge which imposes interpretive structure on the 
space of possible decisions.  Our mathematical framework 
builds upon three basic tenets of FTT – the gist/verbatim 
distinction (formalized by our concept of constraints), the 
hierarchy of gist (formalized by our extended fuzzy 
processing preference and associated lattices), and 
preferences over these gist categories based on valenced 
affect. These three formalized tenets are used to predict 14 
experimental effects.  
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