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Abstract 
 

A Comprehensive Evaluation of Respiratory Type Alarms during Electrocardiographic 

(ECG) Monitoring in the Intensive Care Unit and a Comparison of Respiratory Rate 

between an ECG Derived Method and Impedance Pneumography 

Linda Kyeremateng Bawua 

 
Continuous monitoring of respiratory rate (RR), especially in the ICU, is important to 

identify patients with respiratory compromise. Currently, there are two methods used to assess 

RR, visual assessment (VA) and impedance pneumography (IP). While VA is easy to use, RR 

assessments are intermittent, time-consuming, and often inaccurate. The IP method, while 

continuous, is plagued with alarms, which can lead to alarm fatigue in clinicians. 

Electrocardiographic (ECG) derived RR methods, or EDR, have been examined but have not 

been validated for use in the hospital setting. 

This dissertation was designed to examine RR assessment using the three methods 

identified above. Three overall aims were studied, including: (1) a systematic review of the 

literature describing the strengths and limitations of the three methods (VA, IP, and EDR); (2) an 

evaluation of the number and types of RR alarms (i.e., parameter and apnea) in 461 ICU 

patients and the association of RR alarms to demographic, clinical characteristics, and 

supportive therapies; and (3) an evaluation of RR agreement between the IP method and a 

novel combined-ECG derive (combined-EDR) method in 100 ICU patients.  

Chapter #2: Of the 78 studies identified in the systematic review, full manuscripts for 23 

studies were reviewed and four studies were included in this review. Given the paucity of 

research and the fact that no studies have compared all three methods in the same patients, no 

definitive conclusions can be drawn about the accuracy of these three methods. Chapter #3: RR 

parameter alarms (high >30 breaths per minute [bpm] or low <5 bpm) and apnea (>20 seconds 

of no breathing) were examined in 461 ICU patients. These parameters were selected because 
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it was the hospital’s standard default parameter alarm limits in all the ICUs at our hospital. A 

total of 159,771 RR type alarms over 48,000 hours of monitoring occurred (67 RR 

alarms/bed/day). The majority of the alarms (82.5%; n=131,827) were high parameter alarms. 

RR alarm occurrence rates were associated with: the type of ICU (p<0.01); mechanical 

ventilation (p<0.01); and the lack of a ventricular assist device, or pacemaker (p<0.01). Male 

gender was associated with low (p<0.01) and apnea (p<0.05) alarms. Chapter #4: This study 

was designed to examine the agreement between the IP and combined-EDR method for 

normal RR; low RR (<5 breaths per minute (bpm); and high RR (>30 bpm) in 100 ICU patients. 

For normal RR, a significant bias difference -1.00 + 2.11 (95% CI -1.60 to -0.40) and LOA of -

5.13 to 3.13 was found between the two methods. For low RR, a significant bias difference of -

16.54 + 6.02 (95% CI: -18.25 to -14.83) and a 95% LOA of -28.33 to - 4.75 were found. For high 

RR, a significant bias difference of 17.94 + 12.01 (95% CI: 14.53 to 21.35) and 95% LOA of -

5.60 to 41.48 were found. The combined-EDR method had good agreement with the IP method 

for measuring normal breathing. Whereas the combined-EDR method was consistently higher 

than low IP RR and almost always lower than high IP RR. This study should be replicated in a 

larger sample and include confirmation with VA. 

The overall findings of this dissertation research show that there are very few studies 

that have examined the three RR methods. For the IP method, high parameter RR alarms are 

the most common type of alarm. Occurrence rates were associated with the type of ICU, 

mechanical ventilation and the lack of a ventricular assist device, or pacemaker. Male gender 

was associated with low parameter and apnea (p<0.05) alarms. These data suggest that the 

combined-EDR method is comparable to the IP method with regards to normal RR, was 

consistently higher than low IP RR, and almost always lower when comparing high RR. This 

dissertation adds to scientific knowledge regarding RR alarms using the IP method. However, 

further research is needed to test the combined-EDR method to the gold standard VA method to 

determine the accuracy of this method. 
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INTRODUCTION 
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Chapter 1 

Introduction to the Dissertation 

Respiratory rate (RR), an essential indicator of physiological state, is a vital sign that, 

when abnormal, is associated with clinical deterioration in hospitalized patients.1, 2 While visual 

assessment (VA) is the non-invasive standard of care used to assess the RR and breathing 

characteristics (i.e., depth, effort, skin color), studies show that this method is plagued with 

inaccuracies because clinicians often omit, repeat, or even guess a patient’s RR.3-7 In addition, 

VA of RR is performed intermittently (e.g., every 30 minutes with vital signs), which means that 

acute changes can be missed. Alternative methods using non-invasive device-driven 

techniques, such as impedance pneumography (IP) and Electrocardiographic (ECG) -Derived 

Respiration (EDR) + myogram, have been examined.8, 9 However, only the IP method is 

currently available in the hospital setting. Importantly, the IP method is riddled with frequent 

alarms.10, 11 In one study, a total of 161,931 RR type alarms were recorded during a one-month 

period in 77 ICU beds (79 alarms/bed/day).11 While one could argue these may have been true 

alarms the investigators noted that in many of the alarms the IP waveform was flat, and the 

alarms occurred in patients who were not experiencing acute respiratory distress. These data 

illustrate that IP RR alarms are a significant source of alarm burden for clinicians and thus, 

contribute to alarm fatigue (i.e., desensitization and/or unsafe alarm adjustments).9, 12, 13 

Background and Significance  

A change in a patient’s RR indicates the body's reaction to a physiologic disturbance and 

is a mechanism the body uses to maintain homeostasis.14 According to the Respiratory 

Compromise Institute15 respiratory compromise (RC) is defined as “a potentially life-threatening 

state of unstable respiratory health, which can occur across the care continuum – in the 

operating room, in the post-anesthesia care unit, the general care floor or in out-patient care 

facilities. It is a multifaceted disease state in which there is a high likelihood of decompensation 
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into respiratory failure or death, but in which specific interventions (enhanced monitoring and/or 

therapies) might prevent or mitigate decompensation”.(para. 2)  

 Respiratory compromise is an umbrella term use to describe acute respiratory 

distress/insufficiency, respiratory failure, and/or arrest. Of note, 60% of cardiopulmonary arrests 

that are associated with RC are preventable.16 A RR of > 27 breaths per minute (bpm) is the 

most important predictor of cardiac arrest. Fifty percent of patients with RR > 24 bpm 

experience severe life-threatening events and 21% of patients with RR of >29 will die.6 

Respiratory compromise increases a patient's mortality rate by over 30%. In addition, the length 

of hospital and intensive care unit (ICU) stays are three times longer for patients who 

experience RC.17, 18, Notably, nearly 20% of respiratory arrests associated with RC are 

potentially preventable. This unfortunate situation provides an opportunity for researchers to 

examine the accuracy of device driven methods to assess RR with the goal of identifying RC 

and improving patient outcomes.19 Based on findings from multiple research studies,17, 18 the 

Centers for Medicare and Medicaid Services proposed that RC be a national patient safety 

indicator for use by the Hospital Inpatient Quality Reporting Programs. 

Respiratory compromise ranks fifth among acute unanticipated conditions that leads to 

high hospital costs.16 Respiratory compromise is the second leading avoidable safety event in 

hospitalized patients; is one of the top five conditions leading to increased hospital costs; and is 

the third most rapidly increasing inpatient cost each year.16 It ranks third in being associated 

with the most rapidly increasing costs and is among the five conditions with highest growing 

hospital costs for Medicare-covered stays in 2010.16 Total per-patient hospital costs for patients 

with RC were four times higher than for patients without RC. In a 2017 report, the Department of 

Health and Human Services reported that $7.8 billion was spent on RC in U.S. hospitals, which 

was based on data from 2007, therefore, these costs are likely to be much higher now.16 

Given the significant economic costs, morbidity and mortality associated with RC, 

immediate evidence-based solutions are needed. Research should focus on both preventive 
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strategies and improvements in monitoring methods (ideally continuous) that are aimed at early 

identification and management of RC in hospital patients. The immediate identification of patient 

deterioration associated with RC could reduce patient morbidity and mortality, as well as 

hospital costs.15, 16 

Despite the high prevalence and serious consequences of RC in hospitalized patients, 

visual RR assessment is the most neglected and inadequately measured vital sign.5, 6 In clinical 

practice, VA of RR is performed with the patient at rest and preferably without them being aware 

that the measurement is being performed. The nurse is expected to count the rise and fall of the 

patient’s chest for a full 60 seconds and note several other respiratory characteristics (e.g., 

depth, effort, skin color).21-23 However, this best practice is not performed on a routine basis. 

Instead, the requisite systematic assessment of RR is often omitted, guessed, or missed 3. This 

situation places patients at increased risk for missed RC events because subtle and/or acute 

changes are not identified in a timely manner. 

Focus of this dissertation research  
 

In hospital units that use continuous ECG monitoring for heart rate and arrhythmia 

identification, the IP method is used to measure RR continuously. Using the ECG skin 

electrodes on the body’s surface, the IP method measures thoracic impedance during 

inspiration and expiration. Advantages of the IP method include that it is non-invasive, uses 

existing ECG skin electrodes and lead wires and continuously measures RR. However, a 

significant disadvantage of the IP method is that it is plagued with alarms,10, 11 which negatively 

impacts IP as a reliable method for identifying RC. Another non-invasive technique that has 

been studied is the EDR method. Unlike the IP method the EDR uses ECG waveforms (i.e., 

QRS, R-to-R intervals) and the myogram to derive RR.8, 9, 24  While several research studies 

using the EDR method have been published8, 9, 24 this method has not been introduced into the 

hospital setting. In addition, this method has not been evaluated for agreement with the IP 

method; thus, it is not known if this method would improve RR assessment.  
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 While the IP method has been used in hospitals for years, its sensitivity is low.9 In 

addition, the IP method generates a high number of parameter (high and low RR) and apnea 

alarms. In a one-month study that included 461 consecutively enrolled ICU patients, there were 

a total of 161,931 IP respiratory type alarms (i.e., parameter high/low and apnea).11 The RR 

alarms accounted for 6% of the over 2.5 million total number of alarms.11 However, this study 

did not annotate the respiratory alarms as true versus false or report on the specific types of 

respiratory alarms (i.e., apnea, high, low respiratory rate). Hence, both of these questions 

(true/false, type) remain unanswered.  

Therefore, this dissertation research was designed to addresses the gaps in knowledge 

regarding IP generated alarms. For this dissertation research, three types of IP RR alarms were 

examined (i.e., parameter violation high/low and apnea). The alarms examined were based on 

the default settings used in the ICU bedside physiologic monitors. A low parameter alarm was 

<5 bpm, a high parameter alarm was >30 bpm, and an apnea alarm was defined as cessation of 

breathing for > 20 seconds. In addition to RR type alarms, to date there has not been a study 

that has described whether demographics (i.e., age, sex, ethnicity), clinical characteristics (i.e., 

body mass index [BMI], altered cognitive status, tremor, current smoker), supportive therapies 

(i.e., mechanical ventilation, ventricular assist device [VAD], pacemaker), and/or primary ICU 

diagnosis are associated with RR parameter (i.e.,<5 bpm >30 bpm) and/or apnea (i.e., 

cessation of breathing >20 seconds) alarms. While several of these factors have been found to 

be associated with false ECG arrhythmia alarms,9, 25-26 it is not known whether these same 

associations exist for RR alarms. A better understanding of the specific types of RR alarms and 

patient and/or clinical characteristics associated with RR alarms could provide valuable 

information to help guide alarm reduction strategies to reduce alarm fatigue in nurses. These 

data could also help guide future RR algorithm development to improve the accuracy of device-

driven RR methods.   
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 Another gap in knowledge that this dissertation research was designed to address is an 

evaluation of the agreement between the IP method and a new algorithm that combined the IP 

signal, ECG waveforms and the myogram (Combined-EDR). Our research team has explored 

an EDR method using only ECG waveforms (QRS and R-to-R intervals) and the myogram to 

detect Cheyne-Stokes respirations in healthy adults, hospitalized patients with acute coronary 

syndromes admitted to a telemetry unit, and ICU patients.24, 27 In this dissertation we build on 

this research by evaluating a new algorithm that our group has created that combines the IP 

waveform, ECG waveforms and the myogram, or a “combined-EDR method.” We hypothesized 

that RR using the combined-EDR method will be equivalent to the IP method for normal, low, 

high RR. Our algorithm is based on our prior work and others that suggests that the combination 

of multiple physiologic signals for RR is more accurate than an algorithm that uses only one 

signal.9, 28 

Purpose 

Therefore, this dissertation was designed to examine RR type alarms generated with the 

IP method in a cohort of ICU patients and examine the agreement of the IP method to a 

combined-EDR method. The three subsequent chapters of this dissertation are entitled: (1) A 

review of the literature on the accuracy, strengths, and limitations of visual, thoracic impedance, 

and electrocardiographic methods used to measure respiratory rate in hospitalized patients; (2) 

High parameter alarms are the most frequent respiratory type alarm during impedance 

pneumography in the intensive care unit ; and (3) Agreement of respiratory rate measurement 

between a combined electrocardiographic derived method and impedance pneumography  

A brief description of the study and the Specific Aims for each chapter are detailed below.    

Chapter 2 is a systematic review of studies using prespecified inclusion and exclusion 

criteria and each study was evaluated using standardized measures. The review compared the 

accuracy, strengths, and limitations of RR using VA to IP and EDR. The first paper reports on 

findings from a systematic review with four studies.29-32 undertaken using prespecified inclusion 
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and exclusion criteria; each study was evaluated using standardized measures. The review 

compared the accuracy, strengths, and limitations of visual assessment (VA) of respiration to 

two methods that use physiologic data, namely impedance pneumography (IP) and 

electrocardiographic-derived respiration (EDR). 

Chapter 3 is a secondary data analysis in 461 ICU patients. The Specific Aims of this 

study were: to examine respiratory rate (RR) alarms by type and duration and for associations 

with patients’ demographics and clinical characteristics in critically ill patients on a bedside ECG 

monitor 

Chapter 4 is a secondary data analysis in 100 ICU patients. The Specific Aims of this 

study were: to examines the agreement of RR measurement between a combined-EDR method 

and impedance pneumography. The purpose was to compare the agreement between the IP 

and Combined-EDR methods for “normal” RR, low RR (<5 bpm; and high RR (>30 bpm).  
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CHAPTER 2 

A REVIEW OF THE LITERATURE ON THE ACCURACY, STRENGTHS, AND LIMITATIONS 

OF VISUAL, THORACIC IMPEDANCE, AND ELECTROCARDIOGRAPHIC METHODS USED 

TO MEASURE RESPIRATORY RATE IN HOSPITALIZED PATIENTS 
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ABSTRACT 

Background: Respiratory rate (RR) is one of the most important indicators of a patient’s health. 

In critically ill patients, unrecognized changes in RR are associated with poorer outcomes. 

Visual assessment (VA), impedance pneumography (IP), and electrocardiographic-derived 

respiration (EDR) are the three most commonly used methods to assess RR. While VA and IP 

are widely used in hospitals, the EDR method has not been validated for use in critically ill 

patients. In addition, little is known about the accuracy of these methods compared to one 

another. The purpose of this systematic review was to compare the accuracy, strengths, and 

limitations of VA of RR to two methods that use physiologic data, namely IP and EDR. 

Methods: A systematic review of the literature was undertaken using pre-specified inclusion 

and exclusion criteria. Each of the studies was evaluated using standardized criteria.  

Results: Of the 78 studies identified, full manuscripts for 23 studies were reviewed, and four 

studies were included in this review. Three studies compared VA to IP and one study compared 

VA to EDR. In terms of accuracy, when Bland-Altman analyses were performed, the upper and 

lower levels of agreement were extremely poor for both the VA and IP and VA and EDR 

comparisons. 

Conclusion: Given the paucity of research and the fact that no studies have compared all three 

methods in the same patients, no definitive conclusions can be drawn about the accuracy of 

these three methods. Given the clinical importance of accurate assessment of RR, additional 

research is warranted with rigorous designs to determine the accuracy of these methods and 

acceptable clinically meaningful levels of agreement.  

 

Key Words: accuracy, electrocardiography, hospitalized patients, impedance pneumography, 

respiratory rate, sensitivity, specificity, visual assessment. 
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INTRODUCTION 

Assessment of respiratory rate (RR) is often neglected when vital signs are obtained in 

hospitalized patients, which is problematic given that unrecognized changes in RR are 

associated with worse patient outcomes,1-4 including increases in cardiopulmonary arrest and 

in-hospital mortality.5-9 An abnormal RR is observed in a wide range of both acute and chronic 

conditions.10 Therefore, early detection of changes in RR and abnormal breathing 

characteristics (e.g., depth, use of accessory muscles, skin color) can be used to determine a 

patient’s health status; aid in the selection of appropriate treatments; and determine when a 

patient is ready to transition from a high to a sub-acute level of care or discharge from the 

hospital. The assessment and documentation of vital signs in hospitalized patients have been 

noted to be deficient.6, 11 Of the four vital signs (i.e., RR, heart rate, blood pressure, 

temperature), RR is the one that is most frequently missing in the medical record, even when 

the patient’s primary diagnosis is respiratory-specific.6 Reasons cited include the length of time 

required to obtain this measure and the interruptions created in workflow efficiency.2, 12 In some 

unstable patients, dynamic fluctuations in RR are even more significant than changes in systolic 

blood pressure or heart rate, which suggests that RR may be a better indicator of physiologic 

instability.6, 11 

Assessment of RR in Hospitalized Patients 

In hospitalized patients, abnormal RR (e.g., tachypnea, bradypnea) are indicators of 

respiratory instability, respiratory compromise, and often the first indication of impending 

respiratory arrest and/or the need for rescue intubation.5, 6, 8 However, identifying these acute 

changes can be delayed and/or missed if RR is not obtained often and with a high degree of 

accuracy. Therefore, assessing RR at more frequent intervals and more accurately may lead to 

earlier detection of clinical deterioration and appropriate intervention(s) to improve patient 

outcomes. To achieve this goal, the ideal method to assess RR would be accurate, sensitive, 

specific, non-invasive, and affordable; use currently available physiologic data; and easily be 
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integrated into clinical care environments with minimal disruption. Current World Health 

Organization recommendations state that measurement of RR should include a 60-second 

visual count, or auscultation for the number of breaths taken, because it is the most reliable 

method and noted that no other gold standard measure exists.13 While visual assessment (VA) 

of RR is recommended, several hospital-based studies found that RR is often not assessed, 

and even when recorded in the health record, it is often inaccurate.2, 6, 14 Surprisingly, even 

among patients whose primary diagnosis is respiratory, assessment of RR is often not 

accurate.6, 15-17 

Several challenges specific to the hospital setting make accurate RR assessment 

challenging. For example, nurses report that the VA of RR is one of the most challenging 

nursing tasks.2, 12 Another study found that clinicians believe that this time-consuming procedure 

does not provide useful clinical information, especially when RR is challenging to obtain (e.g., 

agitated or uncooperative patients).14 In addition, the VA of RR can be interrupted by 

conversations or other distractions. These obstacles and clinicians’ opinions about the clinical 

utility of carefully measuring RR have contributed to the above-outlined problems and highlight 

how continuous and non-invasive methods may improve RR assessment.  

Purpose Statement 

The purpose of this literature review is to compare the accuracy, strengths, and 

limitations of VA of RR to two methods that use physiologic data, namely impedance 

pneumography (IP) and electrocardiographic-derived respiration (EDR). The next sections of 

this paper describe each of these methods. 

Visual Assessment (VA) 

Visual assessment of RR is performed by asking a patient to lie still and refrain from 

talking. Then, the clinician counts the number of times the chest rises and falls for a full 

minute.18 In addition to counting the number of respirations, this method involves assessing the 

patient’s skin and mucous membranes for color, moisture, temperature, and breathing 
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characteristics (e.g., depth, nasal flaring, use of accessory muscles). This method requires 

concentration and can be difficult if a patient cannot follow instructions and/or cooperate. While 

RR is a critical determinant of a patient’s current physiologic state,5-7 VA of RR is often 

estimated, guessed, or omitted altogether.19 In one study,20 the nurses surveyed reported 

intentionally or unintentionally omitting RR assessment >90% of the time. In another study,11 of 

62 patients with 1,597 unique vital signs recorded, only one reading per day of RR was 

recorded compared to 5.0 for blood pressure; 4.4 for heart rate; and 4.2 for temperature (all 

p<0.001). Incorrect RR readings (low or high) can occur during routine patient activities such as 

talking, turning, or moving in bed.21 Finally, in some cases, clinicians reported that they simply 

copy a previous RR rather than do a VA.19 

Impedance Pneumography (IP)  

Evaluation of electrical impedance in body tissues is a common technique that uses 

variability in tissue volumes to measure the resistance of alternating currents (AC) as electricity 

travels through a given material.22 Measurement of impedance is used in several body 

composition assessments (e.g., body fat, muscle mass).22 In the hospital setting, the IP method 

uses the same skin electrodes to measure both the ECG and RR. It should be noted that while 

ECG lead wires and skin electrodes are used for the IP evaluation of RR, ECG waveforms are 

not used to calculate RR. Rather, the ECG device (through lead wires attached to skin 

electrodes) directs a very small amount of electrical current into the patient’s body, that is 

measured as electrical impedance.23, 24 

Depending on the manufacturer, one or two of the limbs leads or a combination of two 

are used to detect amplitude differences of the injected current (Figure 2.1). During inspiration, 

as the chest expands, resistance to the flow of an electrical current increases, which increases 

impedance. Alternatively, during expiration, impedance decreases as air leaves the lungs. To 

derive RR using the IP method, a drive-and-measure circuit is established that delivers two out-

of-phase AC-coupled currents onto a combination of electrodes.23, 25 
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A series of resistors and capacitors send a very low amplitude current into the patient’s 

chest via the ECG lead wires.23, 25 Given that the AC is minimal, patients do not experience any 

adverse effects, or experience any sensations associated with the injected current. A computer 

algorithm within the bedside ECG monitor generates both a numeric RR (breaths/minute) and a 

respiratory waveform. The waveform has an upward flag on the inspiratory wave and a 

downward flag on the expiratory wave. An accurate IP waveform is shown in Figure 2.2 (2A) 

Several caveats warrant consideration regarding the IP method. For example, the best 

lead(s) to obtain an accurate RR in a person who is an abdominal breather are typically lead II 

and/or lead III.25 These two ECG leads make sense for this application because lead II is 

obtained using the right arm and left leg electrodes and lead III is obtained using the left arm 

and left leg electrodes; thus, thoracic changes associated with abdominal breathing are most 

noticeable using these two leads. However, if a patient is in an upright position, or a chest 

breather, a more accurate ECG lead for RR detection may be lead I, which uses the right arm 

and left arm electrodes. For this reason, the ideal IP algorithm for hospitalized patients should 

use a combination of multiple ECG leads to derive the most accurate RR. However, few IP 

algorithms use multiple ECG leads, or have the ability to adjust automatically to changes in 

body position.26  Lastly, regardless of which ECG lead is used for RR detection, any one of 

these ECG leads can be contaminated with motion artifact, a disconnected lead, or inaccurate 

lead placement, making the IP method prone to inaccurate RR measurement (Figures 2.2), 2B 

and 2C.24 

Electrocardiographic-Derived Respiration (EDR)  

The graphic display of the heart's electrical activity provided by the ECG can be used to 

estimate RR. The EDR method uses the ECG waveforms recorded from the lead wires placed 

on a patient’s chest to detect even minor waveform alterations during breathing. 

These minor waveform alterations are generated by changes in both lung volume and 

the heart’s position relative to the ECG leads on the body’s surface.27-29 Unlike IP, the EDR 
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method uses only the patient’s ECG waveforms to derive RR. The EDR algorithms typically use 

direct assessments of the respiratory-influenced features described above over a series of ECG 

signals.29-31 Several different algorithms are used to estimate RR from single and/or multi-lead 

ECG waveform morphologies.32-34 Two of these algorithms (i.e., respiratory sinus arrhythmia 

[RSA], respiratory amplitude modulation [RAM]) are discussed in more detail below.29  

EDR method using RSA – During inspiration and expiration, the heart rate slightly 

increases and then decreases. This phenomenon is referred to as RSA and is depicted in 

Figure 2.3 29 The amount of respiratory oscillation differs from person to person and varies 

depending on the rate of an individual’s breathing (e.g., tachypnea, bradypnea).35 Because the 

response of the heart's peripheral arteries to changes in respiration is responsible for rapid 

changes in instantaneous heart rate variability (IHR), a computation of IHR and its inverse (R-R 

interval) can be used to derive the rhythm of an individual’s respiration.29 

EDR method using RAM – This algorithm takes advantage of anatomic movements 

related to respiration that affect the ECG. First, the heart's apex extends towards the abdomen 

as it stretches during inspiration and simultaneously the diaphragm moves downward.30 

Second, during exhalation the diaphragm recoils to aid in emptying the lungs and squeezes the 

heart's apex toward the sternum. During these processes, compared to a reference vector, the 

angles of the electrical and cardiac vectors are altered. These alterations exert a modifying 

influence on the amplitude of the ECG signals that are used to identify respirations.36 Recently, 

the RAM algorithm was simplified using total (peak-to-trough) QRS amplitude in a single lead.29 

This modified process includes the following steps: 1) detection of QRS complexes; 2) 

measurement of the total QRS amplitude; 3) exclusion of outliers (e.g., noise and artifacts); 4) 

interpolation of the EDR values, and 5) separation of the waveform with a band-pass filter as 

suited for the range of rates anticipated.29 
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METHODS 

For this review, a systematic literature search was conducted using the following 

databases: PubMed, Cumulative Index to Nursing and Allied Health Literature (CINAHL), Web 

of Science, and the Cochrane Library. Keywords used for the database searches included: 

adult(s), respiration(s), RR measurement, manual, visual, ECG or EKG derived, impedance, 

thoracic pneumography, and hospital setting. These terms were combined in strings using the 

Boolean operands “OR” and “AND” to specifically focus on studies that compared different 

methods to assess RR. 

Studies were included if they met all of the following criteria: (a) included adult patients; 

(b) were a clinical trial or a comparative study that evaluated hospitalized patients; (c) compared 

VA of RR to IP and/or EDR; (d) were published between January 2000 and August 2020; and 

(e) were published in English. 

The search strategy yielded 3,607 studies identified in PubMed, 21 in CINAHL, 16 in 

Web of Science, and 11 in the Cochrane Library (Figure 2.4). An additional 48 studies were 

found in Google Scholar. After duplicates and papers not directly relevant to the topic were 

removed, the abstracts from 78 studies were evaluated. Of these 78 studies, full manuscripts for 

23 studies were reviewed. After eliminating studies that did not meet our pre-specified inclusion 

criteria, four studies are included in this systematic review. Of these four studies, 3 (75%) 

compared VA to IP37-39 and 1 (25%) compared VA to EDR.40 

The findings from this review are summarized in Table 2.1. Standardized criteria were 

developed to review the two groups of studies. Across both groups of studies, information was 

obtained on the author, year, purpose, study design, sample characteristics, study procedures 

and analysis methods, main findings, and strengths and limitations. 
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RESULTS 

Results of the Studies that Compared VA to IP 

Description of the studies 

All of the studies that compared the VA and IP methods were cross-sectional descriptive 

studies.37-39 These studies were conducted in the United States, India, and Denmark. Sample 

sizes ranged from 5037, 38 to 159.39 Of the two studies that reported mean age,37, 39 the grand 

mean age was 45.6 years. Across three of these studies,37-39 the grand mean percentage of 

females was 46.7%.  

Description of the study procedures 

 In all three studies,37-39 nurses’ VA of RR was used for comparative purposes. In two of 

these studies,38, 39 research staff were trained to provide an additional VA of RR that was used 

as the criterion standard measure. IP measures were captured using a cardiac monitor37, 39 or a 

Sensium Vitals wireless patch.38 

Description of the methods used to assess the accuracy of VA to IP 

 Across these three studies,37-39 the analytical methods used to assess VA's accuracy 

compared to IP were extremely variable. In two studies,37, 39 paired analyses were done to 

evaluate variability between or among the measures. In one study,39 sensitivity and specificity 

analyses were done for bradypnea and tachypnea. In two studies,38, 39 Bland-Altman analyses 

were performed. 

Summary of major findings 

 The results of the comparative findings between the VA and IP methods were highly 

variable depending on the analytic method used. In one study,39 when comparative methods 

were used (e.g., analysis of variance), variability in the RR obtained by nurses using VA was 

lower than for either the criterion standard or IP measures. In the other study,37 no differences 

were found using paired t-tests between the VA and IP methods. However, in both studies that 
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used Bland Altman analyses,38, 39 the upper and lower levels of agreement (LOA) between the 

two methods were extremely poor. 

Results of the Study that Compared VA to EDR 

 Only one study was found that compared the VA and EDR methods (Table 2.1).40 In this 

descriptive correlational study, VA of RR in 377 critically ill patients was done by one of eight 

unit nurses. EDR was obtained using a BT16 – piezoelectric belt for 5 minutes after admission. 

Using paired t-tests, significant differences in RR were found between the two methods. In 

addition, using Bland Altman analyses, the LOAs between the two methods were poor. Of note, 

visual inspection of the scatter plots determined that RR obtained using VA centered around 

rates of 18, 20, and 22 breaths per minute. In contrast, the RR obtained using EDR were more 

variable.  

DISCUSSION 

While designed to be a systematic review that compared the accuracy, strengths, and 

limitations of VA, IP, and EDR methods to measure RR, only four studies were identified.37-40 Of 

note, none of these studies compared all three methods in the same sample of patients. The 

remainder of this discussion will provide a synthesis of the findings; discuss the strengths and 

limitations of the three methods; and suggest directions for future research. 

One of the limitations of the current studies was the choice of the “gold standard” or 

reference group that was used for comparative purposes. While all four studies used VA by 

nurses to determine RR,37-40 it is well known that these results are not standardized and as 

noted in one study,38 were not normally distributed and were prone to having even numbers 

reported (e.g., 18, 20). In the two IP studies that used trained researchers to perform VA of RR 

for comparative purposes,38, 39 the findings are inconclusive. A major limitation of these two 

studies is that the training procedures for the research staff to ensure inter-rater reliability were 

not described. 
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An equally important consideration in the evaluation of the comparability of methods is 

the choice of statistical tests. Three of the four studies used the Bland-Altman analysis to 

evaluate for agreement between VA of RR and the IP38, 39 and EDR40 methods. Compared to 

the calculation of a correlation coefficient, the Bland-Altman analysis describes the agreement 

between two quantitative measures by constructing LOA. These statistical limits are calculated 

using the mean and the standard deviations of the differences between the two 

measurements.41 However, it should be noted that only a clinician, who will use the test results, 

can determine whether the LOA are or are not acceptable.42 In all three studies, 37-39 the upper 

and lower LOA between VA and the IP and EDR methods were very poor.  

Several study limitations contribute to these significant discrepancies including relatively 

small sample sizes, lack of inter-rater reliability assessments, cross-sectional designs, and 

heterogeneity in patient samples. Given the clinical need to have accurate counts of RR in 

critical care settings,1, 2, 4 additional research is warranted on the use of both the IP and EDR 

methods. Future studies need to develop rigorous research protocols that included: training and 

evaluation of the inter-rater reliability of the research staff who perform the VA of RR; power 

calculations to determine appropriate sample sizes; pre-specified criteria for acceptable LOA; 

conducting experiments to determine acceptable and clinically meaningful LOA for various 

clinical conditions (e.g., tachypnea, bradypnea, normal RR); and a critical evaluation of outliers 

(e.g., changes in patient’s position during data collection).  

As noted in the Introduction, accurate, real time assessments of RR, that use physiologic 

data and are integrated into the critical care environment, may contribute to earlier detection of 

clinical deterioration.1-4 Given the paucity of evidence, the remainder of this discussion will 

describe the advantages and disadvantages of the VA, IP, and EDR methods to improve the 

earlier detection of deleterious changes in RR (see Table 2.2). While VA is easy to perform, 

does not require any additional equipment, involves human interaction, and allows a clinician to 

evaluate a number of breathing characteristics (e.g., depth, skin color), it is not the ideal method 
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for critically ill patients. For example, VA is time consuming and prone to numerous omissions 16, 

20. In addition, inaccurate measurements can occur because of environmental distractions and 

patient movement.8, 14, 22 However, the major limitation in the critical care setting is that because 

VA of RR is done at prescribed intervals (e.g., every 30 minutes), dynamic changes in RR are 

missed. 

The major advantages of the IP include that it is safe and simple to use; it is available in 

cardiac monitors; and it provides a continuous measurement of RR. However, signal 

interruptions and patient movement can affect the characteristics of the respiratory waveform 

and subsequent calculation of RR.23, 43 An example of this limitation is found in a study that 

reported 161,931 unique RR type alarms (i.e., RR parameter high/low, or apnea) from adult 

patients in the intensive care unit that used IP in their bedside monitors.43 As shown in Figure 

2.5, a large proportion of the alarms were found to have flat RR waveforms in patients who were 

known to be breathing adequately, were not in respiratory arrest, and/or were on a ventilator.  

The number of false alarms generated using the IP method is problematic because it 

interrupts nursing workflow unnecessarily and compounds the alarm fatigue problem. Another 

limitation of the IP method is that the various components of the impedance device (e.g., wires, 

skin electrodes and cables) can be sources of measurement error.44 Of note, while the IP 

method is widely accepted, in one review,44 it was noted that non-respiratory motion and cardiac 

artifact can influence the accuracy of the readings.44 

While not as well studied in the clinical setting, the EDR method has numerous 

advantages.40 Like the IP method, it is non-invasive, it provides continuous assessment of RR, 

which means acute alterations in RR are easily detected. In addition, the EDR algorithm could 

be added to existing bedside monitors to extract respiratory waveforms from the ECG signal.35 

With this method, the detection and measurement of QRS complexes are comparatively 

impervious to noise and muscle artifact, making it an ideal waveform to use to derive RR.29, 45 In 

addition, compared to IP, direct measurements of QRS amplitude are more highly correlated 
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with tidal volume and the amplitude displacement caused by the rise and fall of chest 

movement, which may be more suitable for the identification of RR.29 

In terms of limitations, similar to the IP method, device failure can occur. In addition, 

EDR measurement can be affected by the natural age-related decline in RSA, as well as 

arrhythmias (e.g., atrial fibrillation) and the effects of medications that affect heart rate and 

rhythm.29 Finally, patient movement can cause artifacts and lead to inaccurate assessments of 

RR. While this method holds promise, additional research is warranted that compares the 

accuracy of VA, IP and EDR in the same sample of critically ill patients.  

Limitations of this review 

The primary limitation of this review is the paucity of research on this topic. Given that 

only three studies compared the VA and IP methods37-39 and only one compared VA to EDR,40 

no definitive conclusions could be drawn about the accuracy of these continuous device driven 

methods. In addition, given the paucity of the research and heterogeneity of the small number of 

studies included, a meta-analysis could not be performed. 

CONCLUSIONS 

Given the importance of accurate and frequent RR assessment in the fast-paced critical 

care environment, methods that take advantage of available physiologic data are warranted. 

Given the promise, but limitations of both the IP and EDR methods, future research needs to 

focus on making refinements to these algorithms and/or developing new algorithms that are 

easily integrated into existing physiologic devices used in the critical care environment. The use 

of a combined approach that utilizes the strengths of both IP and EDR may provide more 

precise and accurate results.29 However, the optimal approach to combining these methods 

warrants additional investigation. Future studies need to include diverse patient populations with 

a variety of clinical conditions and employ the most robust analytic methods. This line of 

scientific inquiry will result in a clinically useful method to detect dynamic and acute changes to 

RR in critically ill patients who may require interventions to avert untoward outcomes. 
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Figure 2.1 An Illustration of how electrocardiographic (ECG) limb leads I, II, and III are obtained 
using skin electrodes placed on the right arm (RA), left arm (LA) and left leg (LL). Impedance 
respiration is typically generated using one or two of these ECG leads using the bedside 
monitor. A single chest (C) electrode is shown that is routinely placed in the V1 position for in-
hospital arrhythmia monitoring and the right leg (RL) electrode, that is required to record lead 
V1. Lead V1 is not used for deriving respirations. Figure from Drew et al., PloseOne  
doi:10.1371/journal.pone.0110274.g003.43 
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2A.  

 

 

2B.  

 

 

2C.  

 

 
 

Figure 2.2 Accurate (2A), inaccurate (2B), and motion artifact (2C) respiratory waveforms using 
the impedance pneumography (IP) respiration method. 
2A. Normal respirations are generated from a 10 second IP waveform. Note the upward flag on 
the inspiratory waveform and the downward flag on the expiratory waveform. 
2B. Inaccurate respiratory rate from a 10 second IP waveform recording. Note that occurrence 
of indistinguishable waveforms that are indicative of inspiration and expiration and the random 
flags throughout the tracing. 
2C. An illustration of an IP waveform during motion artifact. Note that flags are present on the 
tracing. However, not all of the flags coincide with inspiration or expiration.  
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Figure 2.3 An illustration of a respiratory sinus arrhythmia (RSA) derived respiratory rate (a and 
b), which uses varying R-R intervals (horizontal arrows) from QRS complexes on the 
electrocardiogram (ECG). Note that the circles and arrowheads of the horizontal arrows de-note 
the QRS complexes. The inverse of the R-R intervals is shown as vertical arrows (d), that are 
exaggerated for illustration. A heart rate is computed, which is used as amplitude knots for cubic 
spline interpolation to create the RSA-derived respiration waveform (c). Reprinted with 
permission from the journal.29 
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Figure 2.4 A diagrammatic representation of the literature search strategy using the PRISMA format.46 
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Figure 2.5 False apnea alarm in an intensive care unit patient measured using the impedance 
method. The respiratory waveform (bottom waveform labeled ‘‘RESP’’) is essentially a flat line. 
Therefore, respiratory rated calculated using the impedance method alarmed for apnea. The 
monitor default setting for apnea is cessation of breathing for >20 seconds. However, this 
patient was not in acute respiratory distress at the time of this alarm. Note at the top of the 
alarm tracing is an erroneous respiratory rate (RR) of 6 breaths per minute, yet the oxygen 
saturation measure from the Sp02 probe is 95%.  
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Table 2.1 – Summary of the findings from studies that compared respiratory rates (RR) identified using visual 
assessment (VA), impedance pneumography (IP), and/or electrocardiographic derived (EDR) methods. 
 

Author, Year, 
Country, Purpose, 
Setting, and Study 

Design 

Sample 
Characteristics 

Study Procedures 
and Methods of Data 

Analysis 
Main Findings Strengths and Limitations 

VA compared to IP 

Author: Lovett et 
al., 2005 
 
Country: USA 
 
Purpose: Measure 
the variability and 
accuracy of triage 
nurses’ 
measurements of 
RR relative to 
criterion standard 
measurements 
 
and 
 
Evaluate the 
variability and 
accuracy of 
electronic 
measurements of 
RR recorded 
using a cardiac 
monitor equipped 
with transthoracic 
impedance (IP). 
 
Setting: urban 
teaching ED 
 
 
Design: Cross-
sectional 

Sample size: 159 
consecutive 
patients who 
presented to the ED 
 
Age (years)  
18-29 = 34.0% 
30-39 = 22.6% 
40-49 = 14.5% 
50-59 = 8.8% 
60-69 = 7.5% 
70-79 = 5.7% 
80-89 = 1.3% 
NR = 5.7% 
 
Mean Age = 39.41 
 
Female = 50.9% 
 
Hispanic = 41.5% 
 
White = 46.5% 

 

Description of study 
procedures: 
 
Triage nurses’ 
measurements of 
RR were recorded 
from the medical 
record 
 
RAs were trained in 
standardized 
methods to collect 
criterion standard 
measurements of 
RR. RAs observed 
respirations and 
auscultated RR at a 
single location for 
one minute. When 
auscultation could 
not be performed, 
observed RR was 
used in the 
analyses. 
 
RR using the IP 
method was 
captured at 60-
second intervals. 
 
Data analysis: 
 
Variability – was 
estimated by 
calculating the SD of 
each of the 
measures. 
Differences among 
the nurse, RA, and 
IP measures were 
evaluated using 
ANOVA. 
 
Sensitivity and 
specificity of triage 
nurses versus IP 
were cross-tabulated 
measures against 
criterion standard 
measurements of 
respiratory values: 
Low = <12 breaths 
per minute 
Normal = 12-20 
breaths per minute 
High = >20 breaths 
per minute 
 
Bland Altman 
analyses were done 
that compared for – 

Variability for triage nurses’ 
measurements of RR (3.3) 
was significantly lower than 
for IP (4.1) and criterion 
standard (4.8, p<.01). 
 
Variability for IP measure 
was significantly lower than 
for criterion standard 
measure (p<.05) 
 
Accuracy of detecting 
bradypnea and tachypnea 
- neither triage nurses nor 
IP measures of RR were 
accurate in detecting 
bradypnea or tachypnea 
 
Bradypnea (<12 
breaths/min) 
 
Nurse versus criterion 
measure 
 Sensitivity = 0.00 (0.00-

0.35) 
 Specificity = 1.00 (0.97-

1.00) 
 
IP versus criterion 
measure 
 Sensitivity = 0.25 

(0.07-0.59) 
 Specificity = 0.98 

(0.94-0.99) 
 
Tachypnea (>20 
breaths/min) 
 
Nurse versus criterion 
measure 
 Sensitivity = 0.38 (0.25-

0.53) 
 Specificity = 0.84 (0.75-

0.90) 
 
IP versus criterion 
measure 
 Sensitivity = 0.40 

(0.28-0.55) 
 Specificity = 0.86 

(0.78-0.92) 
 
Agreement between triage 
nurses and criterion 
measure of RR was poor 
(95% limits of agreement -
8.6 to 9.5) 
 
Agreement between IP and 
criterion measure of RR 

Strengths 
 Data collected in an ED 

during triage 
 The criterion reference 

standard used for 
comparison 

 Use of Bland Altman 
analyses 

 
Limitations 
 The majority of the 

patients were less than 
39 years of age 

 

 Triage nurses were 
aware that their 
assessments of RR 
were  being collected 

 
 Criterion measure of 

RR was obtained after 
the triage visit, not 
simultaneously with 
triage nurses’ 
assessment of RR 

 

 No inter-rater reliability 
estimates were done 
with the RAs 
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a) triage nurses RR 
to criterion standard 
RR and b) 
criterion standard 
RR to IP rates 
 
Agreement 
Bias 
95% limits of 
agreement 

was poor (95% limits of 
agreement -9.9 to 7.5) 
Systematic bias was small 
for triage nurses’ 
measurements of RR 
(+0.0) and electronic 
measurements of RR (-
1.2). 

Author, Year, 
Country, Purpose, 
Setting, and Study 
Design 

Sample 
Characteristics 

Study Procedures 
and Methods of Data 
Analysis 

Main Findings Strengths and Limitations 

Author: Chand et 
al., 2014 
 
Country: India 
 
Purpose: Examine 
differences 
between VA and 
electronic (IP) 
measurements of 
vital signs in 
cardiac patients 
 
 
Setting: Advanced 
Cardiac Centre 
ICU 
 
 
Design: 
Comparative 
study 

Sample size: 50 
patients admitted in 
CTVS-ICU and 
CCU 
 
CTVS-ICU = 21 
(42%) 
CCU = 29 (58%) 
 
Mean age (Years) 
=55.9 
 
Females = 49.25 
(range 25-58) 
 
Females = 16% 
  
Ethnicity = NR 

Description of study 
procedures: 
 
VA – By floor RNs  
 
IP – By the cardiac 
monitor 
 
Four measurements 
of temperature, 
pulse, respiration, 
and blood pressure 
were recorded at 30-
minute intervals, 
consecutively. 
 
The measurement of 
each vital sign was 
done 
simultaneously. 
 
Data analysis: 
Paired t-test was 
used to evaluate for 
differences between 
the VA and IP 
methods 
 
The coefficient of 
variation was 
calculated to 
quantify the variation 
between the VA and 
IP measures 
 
 
 
 
 
 
 
 
 
 

A total of 200 
measurements were done 
using each method 
 
The mean difference in RR 
between the VA and IP 
methods was not 
significant (i.e., 0.015 
(+1.16), p = 0.883) 
 
The coefficient of variation 
between the VA (26.25%) 
and IP (25.48%) was 
similar 

Strengths 
 Measurements made 

simultaneously  
 
Limitations 
 Purposive sampling  

 

 Type of physiologic 
monitor not reported 

 
 Unclear if nurses were 

blinded to values 
obtained with the IP 
methods 

 
 Small sample size 

 
 Bland Altman analyses 

were not performed 
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Author, Year, 
Country, Purpose, 
Setting, and Study 
Design 

Sample 
Characteristics 

Study Procedures 
and Methods of Data 
Analysis 

Main Findings Strengths and Limitations 

Author: Granholm 
et al., 2016 
 
Country: Denmark 
 
Purpose: Evaluate 
the agreement 
between RR rates 
done using three 
methods (i.e., 
standardized 
approach, VA by 
ward staff, IP)  
 
 
Setting: Medical 
unit  
 
Design: 
Prospective, 
observational 
study 
 
 
 
 
 
 
 
 

Sample size: 50 
patients admitted to 
an acute medical 
unit 
 
Median age (years) 
= 71.5 
 
Female = 54% 
 
Ethnicity = NR 
 

Description of study 
procedures: 
 
VA - Ward staff 
performed all 
assessments as 
usual. Data obtained 
from medical record  
 
IP  – Sensium Vitals 
wireless patch 
measures RR, heart 
rate, and axillary 
temperature every 2 
minutes 
 
Standardized 
approach – Trained 
researchers counted 
the patient’s RR 
over 60 seconds. 
Patients were 
instructed to lie still 
and refrain from 
talking 
 
Data analysis: 
Bland-Altman 
analysis used to 
evaluate the 
agreement between 
the methods with 
95% LOA and 95% 
CI 

Agreement between 
standardized VA by 
researcher versus IP 
 
 Mean difference was 

0.3 b/m (95% CI -1.4 
to 2.0 b/m) 

 Lower and upper 95% 
LOAs were -11.5 b/m 
(95% CI -14.5 to - 8.6 
b/m) and 12.1 b/m 
(95% CI 9.2 to 15.1 
b/m) respectively  

 Large RR differences 
(>10 b/m) were found 
in three outliers (i.e., 
one obese patient 
with respiratory 
disease; one elderly 
patient with 
respiratory disease, 
atrial fibrillation, and 
prior cardiac surgery; 
one slim young 
patient with a non- 
respiratory-related 
infection)  

 
 The mean difference 

after removing three 
outliers was -0.1 b/m 
(95% CI -0.7 to 0.5 
b/m). Without outliers’ 
differences were 
normally distributed 

 
Agreement between VA by 
ward staff versus IP 
 
 Mean difference was 

1.7 b/m (95% CI -0.5 
to 3.9 b/m) 

 Lower and upper 95% 
LOAs were -13.3 b/m 
95% CI  

 -17.2 to -9.5 b/m) and 
16.8 b/m (95% CI 
13.0 to 20.6 b/m) 
respectively.  

 
 RR by ward staff was 

not normally 
distributed, with digit 
preferences of 16, 18, 
and 20 b/m. 

Strengths 
 
 One trained researcher 

recorded the 
standardized approach  

 

 The single paired 
measurement  

used for each 

patient minimized bias 

caused by within-

subject correlations 

 
Limitations 
 No repeated 

measurements 
 
 RR done by ward staff 

were obtained  from the 
electronic health record, 
which could affect 
comparison with IP (i.e., 
inaccurate times 
recorded)  

 
 Small sample size  
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VA compared to EDR 

Author, Year, 
Country, Purpose, 
Setting, and Study 
Design 

Sample 
Characteristics 

Study Procedures 
and Methods of Data 
Analysis 

Main Findings Strengths and Limitations 

Author: Kellett et 
al., 2011 
 
Country: Ireland 
 
Purpose: Evaluate 
for the association 
between VA and 
EDR measured 
RR and their 
relationships to in-
hospital mortality 
 
 
Setting: Acute 
medical unit in a 
small rural 
hospital 
 
 
Design: 
Descriptive, 
correlational 

Sample size: 377 
acutely ill medical 
patients 
 
Mean age (years) - 
68.3 + 16.8 
 
Alive = 67.9 (+17.0) 
 
Dead = 77.1 (+9.2) 
 
Sex = NR 
 
Ethnicity = NR 
 

Description of study 
procedures: 
 
VA of RR was 
obtained by one of 
eight nurses on the 
patient’s admission 
to the unit. Nurses 
were not given any 
instructions on how 
to measure or record 
RR. 
 
EDR: RR was 
obtained using a 
BT16/Piezoelectric 
belt for 5 minutes 
after admission. 
Data were 
transmitted to a 
separate computer 
system for 
subsequent 
analyses.  
 
Data analysis: 
 
Paired t-tests were 
used to evaluate for 
differences in RR 
between VA and 
EDR 
 
Correlation 
coefficients were 
calculated for VA 
versus EDR 
measures of RR. 
 
Bland Altman plots 
were done to 
evaluate the limits of 
agreement between 
the VA and IP 
measures of RR. 

The mean RR measured 
by VA (20.9 (+4.8) 
breaths/min) was 
significantly different from 
that obtained by EDR (19.9 
(+4.5) breaths/min), 
p=.004). 
 
The correlation coefficient 
between VA and EDR was 
0.50. 
 
Visual inspection of the 
scatter plots illustrated that 
RR obtained using VA 
clustered around rates of 
18, 20, and 22 
breaths/min. The RR rates 
obtained using EDR were 
more variable. 
 
Bland Altman plots 
revealed that the 95% LOA 
between VA and EDR for 
RR were -8.2 and 10.3 
breaths/min. 

Strengths 
 Relatively large sample 

size 
 
Limitation 
 Demographic and 

clinical characteristics 
of the sample (e.g., 
acuity level, use of 
medications) were not 
reported 

 Only eight nurses 
participated in this 
study, and their 
characteristics were not 
reported. 

 Lack of standardization 
in the VA or RR 

 Bland Altman plots not 
included in the paper 

 
Abbreviations: b/m = breaths per minute, CTVS-ICU = cardiothoracic and vascular surgery-intensive care unit, CCU = 
critical care unit, CI = confidence interval, CSM = criterion standard measurement, EDR = electrocardiographic 
derived respiration, IP = impedance pneumography, ED = emergency department, LOA = limits of agreement,  
NR = not reported, PACU = post anesthesia care unit, VA = visual assessment,  
RN = registered nurse, RR = respiratory rate, SD = standard deviation. 
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Table 2.2 Comparison of the strengths and limitations of the visual assessment (VA), impedance pneumography (IP), 
and ECG-derived respiration (EDR) methods for assessment of respiratory rate. 
 

 

METHODS 

 

STRENGTHS 

 

LIMITATIONS 

 
VISUAL  

 
Traditional method to assess RR 
 
Easy and safe to perform  
 
Breathing characteristics (e.g., depth, 
accessory muscles, skin color) can be 
assessed 
  

 
Time-consuming for clinicians 
 
Numerous omissions and guessed measurements.19  
 
VA is a snapshot of a patient’s RR at prescribed intervals 
(e.g., every 30 minutes). Acute changes and early 
identification of patient deterioration can be missed. 
 

 
 
 
IP 

 
Simpler, less time consuming than VA 
 
Safe to use 
 
Continuous measurement of RR 
 
Coherence analysis concluded that IP is 
more reliable than EDR2, 3 
 

 
Studies found that the IP method was prone to erratic artifacts, 
false-positive readings and was sensitive to motion and 
cardiac artifacts.43,49-52 

 
A device's internal impedance, such as cables and wires, can 
be a source of measurement error.44 
 
IP can generate false positives from movement and 
interruptions by the examinee and affect the readings and 
values.21 

 
IP method is influenced by behaviors that occur naturally (e.g., 
talking, coughing)21 

 
IP is predisposed to signal degeneration with body position 
changes because the thoracic signal depends on posture, 
making it difficult to evaluate tidal volume.44 

 

 
EDR 

 
The EDR algorithm can be added to 
existing ECG to extract respiratory 
signals from the ECG signal without new 
transducers, devices, or accessories 
required for monitoring.35   
 
Continuous monitoring and non-
invasive.35  
 
The sensitivity and specificity of the EDR 
algorithm to identify RR was high 
(99%/97%) in cardiac patients compared 
with other methods.32 

 
Alterations in the RR are easily 
detected.  
 

 
RSA aspect weakens with aging, which may lead to 
inaccurate measurements in older individuals. 
 
Patient movement and noise can cause artifacts and lead to 
inaccurate values.  
 
Method lacks validation in the hospital setting.  
 
EDR measurement can be affected by the natural decline in 

RSA, as well as arrhythmias (e.g., atrial fibrillation) and the 

effects of medications that affect heart rate and rhythm.29,32,53 
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CHAPTER 3 

HIGH PARAMETER ALARMS ARE THE MOST FREQUENT RESPIRATORY TYPE ALARM 

DURING IMPEDANCE PNEUMOGRAPHY IN THE INTENSIVE CARE UNIT  
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Abstract 
 
Objective: The objectives of this study were to examine respiratory rate (RR) alarms by type 

and duration and for associations with patients’ demographics and clinical characteristics.   

Design: Secondary data analysis of a retrospective, cohort study.  

Setting: Three adult intensive care units (ICU) were included: cardiac (16 beds); medical-

surgical (32 beds), and neurological (29 beds) in an academic medical center.   

Data Source: Impedance pneumography (IP) derived respiratory alarms from bedside 

electrocardiographic (ECG) monitors from 461 consecutive ICU patients during a one-month 

time period. 

Measurements and Main Results: RR parameter and apnea alarms were configured as 

follows: RR parameter (high >30 breaths/minute [bpm] or low <5 bpm) and apnea (>20 seconds 

of no breathing). A total of 159,771 RR type alarms were over triggered 48,000 hours of 

monitoring, an average of 67 RR alarms/bed/day. Parameter type alarms were more common in 

these ICU patients [88.2% (n= 140,975)] than apnea alarms [11.8% (n = 18,796)]. The majority 

of the parameter alarms (82.5%; n=131,827) were high. Using multivariate analysis, after 

controlling for the length of ICU monitoring, alarm occurrence rates were associated with: type 

of ICU unit (p<0.01); the use of mechanical ventilation (p<0.01); and the lack of a ventricular 

assist device or pacemaker (p<0.01). Male gender was associated with low parameter (p<0.01) 

and apnea (p<0.05) alarms. 

Conclusion: Study findings highlight the high rates of respiratory alarms and suggest that these 

alarms contribute to the overall alarm burden. This study confirms that high parameter alarms 

are more prevalent in the ICU setting and that some demographic and clinical characteristics 

contribute to the types of alarms generated using the IP method. Attention to appropriate alarm 

settings, as well as patients’ demographic and clinical characteristics are essential to reduce the 

number of RR alarms in the ICU. 
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INTRODUCTION 

Respiratory rate (RR) measurement in the intensive care unit (ICU) is an essential 

component of patient monitoring that aids in early recognition of patient deterioration and is 

used to guide treatments (e.g., pharmacologic, mechanical ventilation).1-3 Impedance 

pneumography (IP) was developed for continuous assessment of RR. When paired with 

electrocardiographic (ECG) monitoring of heart rate and rhythm, IP is an essential non-invasive 

innovation in the continuous assessment of a patients’ vital signs.4, 5 An additional feature of this 

method is that it generates an alarm(s) when a RR falls above or below prespecified parameters 

or when no breaths are detected. While RR alarms are designed to alert busy clinicians to a 

change in a patient’s condition that may require immediate intervention, they can contribute to 

alarm fatigue in clinicians (desensitization or unsafe alarm adjustments), which increases the 

risk of missing true events.6-8 

To date, seven studies have evaluated the number and/or types of RR alarms using IP 

in adult hospitalized patients.6, 9-14 In all of these studies, data on RR alarms, as well as other 

types of physiologic alarms were evaluated. In the three studies that provided specific data on 

RR alarms,6, 9, 10 the total number of all alarm types ranged from 83510 to 2,558,760.6 Reasons 

for this wide range may be explained by differences in the overall purpose of the studies, 

sample sizes, settings of care, duration of data collection, and type of monitor used.  

In terms of specific types of RR alarms, the total number of apnea alarms was reported 

in only two studies.10, 14 In one study,10 of the 223 apnea alarms identified, 33% were true 

alarms with 2.6 apnea alarms/patient/day. In the other study,14 of the 148 apnea alarms 

identified, 72.6% were true alarms with one apnea alarm per patient every 37 minutes reported. 

In terms of low parameter RR alarms, two studies reported ranges from 499 (28% were true 

alarms)10 to 13,139 (percentage of true alarms was not reported).9 In terms of high parameter 

RR alarms, in the same two studies, the reported range was between 113 (77% were true 

alarms)10 and 4,104 (percentage of true alarms was not reported).9 In another study,6 a total of 
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161,931 RR parameter and apnea alarms were identified during a one month period (average 

79 alarms/bed/day). Again, reasons for this wide variability in the number of alarms per day 

include: the duration of monitoring, total number of patients assessed, and differences in the 

definitions of each of the RR parameters. To date, no study has reported specifically on the 

number, types (parameter, apnea), and duration of RR alarms generated during IP-derived RR 

monitoring. 

In addition to the lack of knowledge on the specific characteristics of various RR 

parameter alarms cited above, another unanswered question is which demographic and/or 

clinical characteristics influence the number of apnea, as well as low and high parameter 

alarms. Of the seven studies cited above that evaluated RR alarms,6, 9-14 only one evaluated for 

associations between patient characteristics and apnea alarms.14 In this study of 123 patients 

who underwent surgery and were monitored in the post anesthesia care unit (PACU) for 

approximately 101 minutes, the mean number of apnea alarms was 148 (72% true alarms). Of 

note, patients who had received opioids and neuromuscular relaxants had an increased 

frequency of true apnea. However, no associations were found between age, type of surgery, 

duration of anesthesia, administration of oxygen and the number of apnea alarms. Therefore, 

potential demographic and/or clinical characteristics associated with IP-derived RR alarms is 

largely unknown.  

To date, no study has described RR type alarms in relationship to demographic (i.e., 

age, sex, ethnicity) and clinical (i.e., BMI, cognitive status, tremor, current smoker) 

characteristics; use of supportive therapies (i.e., mechanical ventilation, ventricular assist 

device, pacemaker); and/or type of ICU. Of note, several of these factors were associated with 

false ECG arrhythmia alarms.6, 15-17 Specifically, age greater than 60, mental confusion, a 

cardiovascular diagnosis, use of mechanical ventilation, admission to a cardiac ICU, and 

various ECG features (i.e., bundle branch block, ventricular pacemaker, low amplitude QRSs) 

were associated with an increased number of false arrhythmia alarms. However, it is not known 
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whether any of these characteristics are associated with various types of RR alarms. Of note, 

while the IP method does not use ECG waveforms to generate a patient’s RR, the limb lead skin 

electrodes, typically the right arm, left arm, and/or left leg electrode, are used, which is why we 

hypothesize that similar demographic and clinical characteristics, and supportive therapies may 

be associated with RR alarms. However, because ECG waveforms are not used with the IP 

method, these features were not examined in this paper because they are not likely to influence 

IP-generated RR alarms. 

In addition, it is reasonable to hypothesize that because patients who have an impaired 

cognitive status (confused), tremors, and/or are current smokers experiencing nicotine 

withdrawal may have more motion artifact during ECG monitoring, they would generate more 

RR type alarms. Also, devices that create either artifact, 60-cycle interference, or vibrations (i.e., 

mechanical ventilation, ventricular assist device, ventricular pacemaker) may interfere with the 

IP signal and lead to more RR type alarms. A better understanding of the aforementioned 

potential demographic and clinical characteristics and/or supportive therapies and their 

association with RR alarms may assist with the development of new algorithms to decrease the 

number of false alarms. In addition, while not all of these characteristics can be controlled by 

nurses, knowledge of them may help nurses to identify patients who are susceptible to high 

rates of RR alarms and allow them to intervene when possible (i.e., change skin electrodes) to 

ensure optimal signal quality (i.e., keeping the skin electrodes free of interference). 

Given the paucity of research on the number and specific types of RR alarms that occur 

during continuous monitoring using the IP method, we conducted a secondary analysis of data 

from a group of 461 ICU patients. The purposes of this study were: (1) from a total of 159,771 

RR alarms, determine the number and duration of RR parameter (i.e., <5 bpm or >30 bpm) 

and/or apnea (i.e., cessation of breathing for >20 seconds) alarms and (2) determine if 

demographic (i.e., age, sex, race) and clinical (i.e., BMI, cognitive status, tremor, current 

smoker) characteristics; the use of supportive therapies (i.e., mechanical ventilation, ventricular 
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assist device, pacemaker); and/or ICU type (i.e., cardiac, medical/surgical, or neurological) were 

associated with the number of RR parameter and/or apnea alarms. 

METHODS 
 
Study Design 

This study is a secondary analysis of data from the University of California, San 

Francisco (UCSF) Alarm Study. The detailed methods for this study were published elsewhere.6 

The Institutional Review Board approved the research protocol and granted a waiver of signed 

patient consent because physiologic monitoring is part of standard care, and the data were not 

used for clinical decision-making. Patient information was de-identified, and the data were 

processed and analyzed on an encrypted computer. 

Sample and Setting 

The parent study's primary aim was to identify the frequency and types of all alarms 

generated from bedside physiologic monitors in the ICU during a one month period.6 For this 

study, only the RR type alarms are described. The cohort included 461 consecutive adult 

patients (>18 years of age) who were treated in one of three ICUs (i.e., 16-bed cardiac, 32-bed 

medical/surgical, 29-bed neurological). Patient-level data were collected from the electronic 

health record (EHR) and included: demographic characteristics (i.e., age, race, ethnicity, 

gender), length of ICU stay, monitoring time, and discharge diagnosis. In addition, clinical 

characteristics, that were hypothesized to increase the number of RR type alarms by affecting 

signal quality, were collected and included: BMI, being a current smoker (i.e., agitation from 

nicotine withdrawal), presence of confusion, and the presence of a tremor. In addition, 

information was collected on the use of devices known to cause interference and/or artifact 

during ECG arrhythmia monitoring (i.e., mechanical ventilation, VAD, temporary or permanent 

pacemaker).6, 15, 17, 18 
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Alarm Data Capture System 

All 77 ICU beds were equipped with a Solar 8000i physiologic monitor (version 5.4 

software, GE Healthcare, Milwaukee, WI). As shown in Figure 3.1, each bedside monitor and 

the central monitoring station were connected to a local CARESCAPE Gateway (GE 

Healthcare, Milwaukee, WI). 6 This system captured all of the physiologic waveforms (i.e., ECG, 

arterial blood pressure, pulse oximetry, respiration), numeric vital sign measurements, alarm 

parameter settings, as well as all audible and inaudible alarms. Data were passed securely from 

the CARESCAPE Gateway to a secure research server for off-line analyses.  

Physiologic data were captured and stored using BedMasterEx software (Excel Medical 

Electronics, Inc, Jupiter, FL). The BedMasterEx software vendor provided a command-line 

software utility to extract waveform data into Extensible Markup Language (XML) files. One of 

the co-authors (XH) developed an application to parse the XML files; detect gaps in the data 

streams; identify alternations in signal channel configurations; and assemble the waveform data 

into multiple binary files following the publicly available format from AD Instrument (Dunedin, 

New Zealand). The binary files were prepared for analysis that could be done using various 

analytic programs (e.g., Excel, R Studio, LabChart Reader, Matlab).  

Our team learned that we could not depend on the accuracy of the medical record 

number that was input into the bedside monitor for a given patient because of human errors at 

the bedside. For example, if a nurse did not discharge a patient from the bedside monitor before 

a new patient was admitted, the discharged patient's data were merged with the new patient’s 

data. Each patient’s bed transfer history was extracted from the hospital’s EHR system to solve 

this problem. This approach established the correct association between a patient’s medical 

record number and physiologic waveform data by determining a given patient's location first and 

then retrieving the corresponding database records by linking each patient’s bed/ICU location 

with date/time information. 
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Physiologic Monitor Data Used for Determination of RR 

The bedside monitors in use during the study period recorded RR using the IP method. 

This non-invasive method measures thoracic changes associated with respiration from the 

difference in amplitude measured following the injection of a minute amount of alternating 

current into the patient’s torso through the limb lead ECG skin electrode. As the chest expands, 

impedance increases, and with expiration, impedance decreases. As illustrated in Figure 3.2, an 

IP waveform is depicted on the bedside monitor as a respiratory waveform. In addition, the 

numeric RR is generated and displayed on the bedside monitor. 

While seven ECG waveforms are recorded from the bedside monitor (i.e., I, II, III, aVR, 

aVL, aVF, and a V lead [V1 at our hospital]), the IP method does not use the ECG waveforms to 

determine RR. Instead, the right arm, left arm, and/or left leg electrodes are used to determine 

RR. The default ECG leads used to derive the IP RR are either lead I or lead II. While our 

hospital uses lead II as the default, nurses can change the RR lead to lead I, which is done if 

the patient is a chest versus abdominal breather or if frequent RR alarms and/or motion artifact 

occur that affect signal quality. When RR monitoring is first initiated, a brief learning period of 

approximately eight breaths is needed. These breaths are averaged to determine both the RR 

and the average amplitude of the respiratory waveform so that upward and downward flags 

associated with inspiration and expiration can be applied to the waveform (Figure 3.2). The 

monitors are configured with a 40% RR detection sensitivity. As with the ECG lead used for RR 

detection, the detection sensitivity can be adjusted to account for shallow versus deep 

breathing, artifact, and/or patient characteristics. 

Data Analysis 

All of the RR parameter (i.e., high and low RR) and apnea alarms that were generated 

during the one-month study period were analyzed. For this study, RR parameter alarms using 

our hospital's default settings were defined as high RR equals >30 bpm, low RR equals <5 bpm, 

and apnea alarms equals no breaths detected for >20 seconds. To ensure that we captured all 
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of the RR parameter and apnea alarms and associated them with the correct patient, our 

research team of biomedical engineers, a Professor with ECG expertise, and two doctoral 

candidates performed an audit of 100 (21.7%) patients to ensure the data were accurate. 

Alarms were excluded if they were longer than 900 seconds (15 minutes) because these alarms 

were likely to occur when a patient was detached from the bedside monitor. For each patient, a 

summary of the total number of each type of RR alarm and the total duration in seconds were 

recorded. 

Descriptive statistics were calculated for all of the demographic and clinical 

characteristics, as well as for the occurrence and duration of each type of RR alarm. Data are 

expressed as means and standard deviations, medians, ranges, and percentages. Associations 

between demographic (i.e., age, gender, and race) and clinical (i.e., BMI, current smoker, 

impaired cognitive status, tremor) characteristics, as well as ICU type (i.e., cardiac, 

medical/surgical, neurological) and use of supportive therapies (i.e., mechanical ventilation, 

VAD device and/or temporary or permanent pacemaker) and alarm rates were evaluated using 

regression models that specified a negative binomial distribution. To further describe these 

relationships, we included results from multivariate regression models for the number of each 

type of RR alarm, controlling for length of ICU monitoring time. Prior to modeling, BMI was 

transformed into a categorical variable using standard cutoffs for weight categories and age was 

considered as a categorical variable in unit increments of 10 years. Results from the multivariate 

regression models are reported as Incidence Rate Ratios (IRR) with 95% confidence intervals 

(95% CIs) for each candidate covariate with the rating period defined as the monitoring time in 

the ICU. Statistical significance was defined as a p-value of <0.05, using two-tailed tests for all 

analyses. Analyses were performed using R version 3.6 Vienna, Austria. 19 
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RESULTS 

Characteristics of the Total Sample 

Respiratory alarm data from 461 consecutive ICU patients were reviewed, representing 

over 48,000 total monitoring hours from 77 ICU beds. The median monitoring time for included 

cases was 63 hours (interquartile range [IQR] 28 to148 hours). As shown in Table 3.1, 54.2% of 

the patients were male, 61.0% were white, and 43.0% had some level of cognitive impairment. 

The sample had a mean age of 59.6 (+17.0) years and a BMI of 28.1 (+8.2) kg/m2. Most of the 

patients (42.7%) were admitted to the neurosurgical unit. In terms of treatments, 40.3% of the 

patients required mechanical ventilation and 7.4% had either a VAD, a temporary pacemaker, or 

a permanent pacemaker.  

The cohort triggered a total of 159,771 respiratory type alarms. Of these alarms. 88.2% 

were RR parameter alarms and 11.8% were apnea alarms. Of the 140,975 RR parameter 

alarms, 82.5% (n=131,827) were for high parameter violations. The median number of RR 

parameter alarms (i.e., high and low) per patient was 114 (IQR = 45 to 286). The median 

number of apnea alarms per patient was 11 (IQR = 2 to 41). The median total time a patient 

was in an alarm per monitoring time was 40.6 (IQR = 13.5 to 113.6) minutes. Each individual 

alarm lasted a median of 10 (IQR = 4 to  20) seconds (Table 3.1). 

Number, Type, Duration, and Characteristics of Alarm Types 
 

For each type of RR alarm, the demographic and clinical characteristics, ICU type, 

supportive therapies and alarm characteristics are listed in Tables 3.2 and 3.3 Because of the 

high variability in the number of alarms, the median alarm values are reported and were used in 

the statistical analysis. Based on the univariate analysis, tremor and smoking status were not 

included in the multivariate model because they demonstrated weak associations (p > 0.15) with 

all of the alarm types. 
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High Parameter Alarms 

Of the 461 patients in the cohort, 454 had at least one of the 131,827 high parameter 

alarms (Table 3.2). For these alarms, median ICU monitoring time was 64 (IQR = 28 to 149) 

hours; median number of alarms per patient was 94 (IQR = 37 to 265); median time that a 

patient was in this alarm was 19.6 (IQR = 6.2 to 57.7) minutes; and the median alarm duration 

was 8 (IQR = 4 to 18) seconds. As shown in Table 3.3, in the bivariate analysis, patients with 

cognitive impairment, patients on mechanical ventilation, patients without a VAD or pacemaker, 

and those who were in the cardiac or neurological ICUs had a higher number of high parameter 

alarms. After controlling for monitoring time, the only characteristic that remained significant in 

the multivariate analysis was being in the cardiac or neurological ICU compared to the medical 

surgical ICU (Table 4). 

Low Parameter Alarms 

Of the 461 patients in the cohort, 359 had at least one of the 9,148 low parameter 

alarms (Table 3.2). For these alarms, median ICU monitoring time was 73 (IQR = 43 to 182) 

hours; median number of alarms per patient was 6 (IQR = 1 to 21); median time that a patient 

was in this alarm was 2.6 (IQR = 0.2 to 18.9) minutes; and the median alarm duration was 20 

(IQR = 8 to 87) seconds. As shown in Table 3.3, in the bivariate analysis, BMI, patients on 

mechanical ventilation, patients without a VAD or pacemaker, and those who were in the 

cardiac or neurological ICU had a higher number of low parameter alarms. After controlling for 

monitoring time, the characteristics that were significant in the multivariate analysis were: being 

male, being on a mechanical ventilator, not having a VAD or a pacemaker, and being in the 

cardiac or neurological ICU compared to the medical surgical ICU (Table 3.4).  

Apnea Alarms  

Of the 461 patients in the cohort, 381 had at least one of the 18,796 apnea alarms 

(Table 3.2). For these alarms, median ICU monitoring time was 71 (IQR = 40 to 173) hours; the 

median number of alarms per patient was 11 (IQR = 2 to 41); median time that a patient was in 
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this alarm was 4.3 (IQR = 0.6 to 18.2) minutes, and the median alarm duration was 16 (IQR = 

10 to 29) seconds. As shown in Table 3.3, in the bivariate analysis, patients on mechanical 

ventilation, patients without a VAD or a pacemaker, and those who were in the cardiac or 

neurological ICU had a higher number of apnea alarms. After controlling for monitoring time, the 

characteristics that were significant in the multivariate analysis were, being male, not having a 

VAD or a pacemaker, and being in the cardiac or neurological ICUs compared to the medical-

surgical ICU (Table 3.4).  

DISCUSSION 

This study is the first to perform a detailed characterization of RR parameter and apnea 

alarms in a large sample of 461 ICU patients. Of the 2,558,760 alarms identified, over a one 

month period in the UCSF Alarm study,6 159,771 (6.2%) were RR alarms. This total number of 

alarms equates with an average of 67 RR alarms/bed/day. As expected, the duration of 

monitoring was associated with a higher median number of all of the IP-derived RR alarms 

evaluated and was controlled for in all of the multivariate analysis. The number of RR parameter 

alarms far exceeded the number of apnea alarms, with high parameter RR alarms accounting 

for 82.5% of these alarms.  

Compared to the two studies that evaluated the number of RR parameter alarms,9, 10 our 

rates are higher. In the study of 4,104 medical-surgical patients,10 of the 612 RR parameter 

alarms identified, 113 of the high parameter and 499 of the low parameter alarms were 

determined to be true. In the other study of 317 general ward patients who were evaluated over 

780.7 hours,9 of the 17,243 RR alarms identified, 4,104 (24%) were high and 13,139 (76%) 

were low parameter alarms.9 In this study, the vast majority of the high parameter alarms 

(3,404; 82%) occurred when the alarm setting was >30 bpm. However, the number of alarms 

decreased substantially when the alarm parameters were changed to 35 bpm (608; 15%), >40 

bpm (80; 2%), and >45 bpm (12; 0.29%). Similarly, the vast majority of the low parameter 

alarms occurred when the alarm setting was <12 to >10 bpm (12,300; 94%) versus 0.22% when 
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the alarm setting was <7 bpm. While our absolute number of RR parameter alarms was higher 

because of our longer monitoring time, our findings are consistent with those of Burgess and 

colleagues.9 In our study, our high parameter alarm setting (>30 bpm) was the most sensitive, 

similar to the Burgess study. Therefore, it is not surprising that we found very high rates for this 

particular alarm. Furthermore, our low RR parameter setting was 5 bpm, which was found to be 

the least sensitive setting in the Burgess et al., study. In terms of clinical characteristics, of the 

461 patients with high RR parameter alarms, 42.9% had cognitive impairment. In the bivariate 

analysis, those patients with cognitive impairment had a median of 126 high parameter alarms 

compared to 77 in patients without cognitive impairment. This increased number of high 

parameter alarms may be related to motion artifact that disrupts the IP signal quality. 

The parameter alarm settings used in our ICUs (> 30 bpm and < 5 bpm) are consistent 

with the current standard of care.20 However, based on our findings and those of Burgess et al.,9 

a high parameter alarm setting of >30 bpm may be too sensitive and cause high rates of false 

alarms with resultant alarm fatigue. Additional research is warranted to determine the optimal 

alarm setting to reduce the number of high parameter alarms and maintain patient safety. An 

equally important consideration is that the use of the IP method to detect RR is problematic. For 

example, the IP method can over count respirations in some patients. Figure 3.3 illustrates a 

patient from our study who was mechanically ventilated with positive end-expiratory pressure 

(PEEP) whose respiratory rate was doubled during PEEP therapy. These findings suggest that 

this problem cannot be solved by simply changing alarm settings and/or skin electrode. 

In terms of apnea alarms, compared to two previous studies,10, 14 our total median 

number of alarms (i.e., 11 per patient per day) was higher (i.e., 2.6 per patient per day true; 4.7 

per patient per day false10 and 2.714). Because we did not annotate our RR alarms, comparisons 

of true versus false apnea alarms cannot be examined. Our apnea alarm rate is higher than that 

reported by Gross et al., most likely because we used a more sensitive alarm parameter (>20 

seconds versus >30 seconds).10 Other factors that may explain differences between the two 
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studies include: different bedside monitors; a sample from a general medical-surgical ward; and 

shorter total monitoring time (48,000 hours versus 1,040 hours).10 Studies of apnea type alarms 

using the IP method are lacking. This omission is problematic given that respiratory compromise 

(RC), which is associated with both apnea and acute RR changes, increases a patient’s 

mortality rate by over 30%. In addition, the length of hospital and ICU stays for patients with RC 

are three times longer than for patients without RC.21 Therefore, a more accurate and reliable 

measure of apnea and RR may identify high risk patients prior to an acute RC event. Our data 

and that of others,10, 14 illustrates important limitations of current IP method to evaluate RR and 

apnea. 

The duration of alarms varied by type. Low parameter alarms had the highest median 

duration (20 seconds), followed by apnea (16 seconds), then high parameter alarms (8 

seconds). Given that all of the alarms were of relatively short duration, this finding suggests that 

brief changes in the IP signal, most likely due to motion artifact or other signal quality problems 

caused the alarms. In the UCSF Alarm study,6 out of the over 2.5 million alarms identified, 32% 

were technical alarms (i.e., artifact, lead(s) off, lead(s) fail). This finding highlights that signal 

quality is the most likely cause of RR alarms because the IP signal is dependent on the ECG 

leads (I or II). This problem may be solved by using a RR alarm delay in the configuration 

setting because clinically important RR changes are most likely of longer duration. Having a 

trend report of RR, would be even more useful to be able to identify patients with developing RC 

who would benefit from interventions. However, the identification of high-risk patients with the 

current IP RR alarm algorithm is extremely difficult because of the absolute number of alarms 

generated that leaves the true alarms buried among false alarms. Of note, prior studies found a 

reduction in ECG arrhythmia alarms by using daily skin electrode changes.22-24 While this 

strategy was used with the goal of reducing false arrhythmia alarms, it is possible that this 

intervention may improve IP signal quality and reduce RR type alarms. However, this 

hypothesis warrants investigation in a future study.  
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The time spent in alarms varied by RR alarm type. High parameter alarms had the 

highest duration (19.6 minutes), followed by apnea (4.3 minutes), then low parameter (2.6 

minutes). This finding suggests that nurses will spend most of their time evaluating high 

parameter alarms. Current IP algorithms are limited in that only one ECG lead is used (typically 

lead I or II), which is pre-determined as a default setting. While the nurse has the ability to 

change to the ECG lead used for IP measurement, these extra steps disrupt workflow and 

require multiple adjustments to the monitor. Algorithms that can automatically search for the 

best available ECG lead(s) may improve this problem.6 In addition, the IP method used for 

detection of RR may be enhanced by incorporating already existing ECG waveforms. Our group 

and others have evaluated the use of ECG derived methods to identify abnormal respirations 

associated with sleep disordered breathing.25-30 The next phase of this research will be to 

determine if a combined ECG RR method, that uses both IP signals and ECG waveforms, 

compared to the IP method improves RR detection and reduces the number RR alarms.  

We hypothesized that demographic and/or clinical characteristics associated with ECG 

arrhythmia alarms would be associated with RR alarms. In the multivariate analysis, for all alarm 

types, length of ICU monitoring time was associated with a higher number of alarms. While this 

finding is not surprising, it highlights a susceptible group of patients who can exacerbate alarm 

fatigue in nurses. Alarm management strategies should incorporate an evaluation of each 

patient’s length of stay and an evaluation of skin electrode integrity to ensure an optimal IP 

signal. In addition, across all three alarms, compared to a medical-surgical ICU, being in a 

cardiac or neurological ICU was associated with higher alarm rates. The reason for this finding 

is not entirely clear. In our prior studies,6, 15, 16 cardiac ICU patients had a higher number of 

arrhythmia alarms, primarily due to ECG abnormalities (i.e., bundle branch block, ventricular 

paced rhythms and low amplitude QRSs). However, given that these ECG abnormalities would 

not impact the IP signal, they are not the likely source of RR alarms. The association between 

the neurological unit and the higher number of alarms may be related to changes in cognitive 



 56 

functioning in patients with neurologic conditions. Given that 42.7% of the patients in our study 

who were in the neurological unit had documentation of a cognitive impairment supports this 

hypothesis. 

In terms of low parameter alarms, being male, being on mechanical ventilation, and not 

having a VAD or a pacemaker were associated with a higher median number of alarms. In 

terms of apnea alarms, being male and not having a VAD or a pacemaker were associated with 

a higher median number of alarms. It is worth noting that for both low parameter and apnea 

alarms, being male was associated with these two types of alarms that are mechanically similar 

(i.e., slow or no breathing). In a study of 40 healthy men and women ages 18 to 70,31 compared 

to women, men accumulated more fluid in their torso after changing from a lying to a supine 

position due to fluid shifting from the legs to the chest cavity. Because progressive accumulation 

of fluid in the lungs decreases bioimpedance, the IP signal would be impacted.32, 33 Moreover, in 

a study of 403 patients hospitalized for acute coronary syndrome,32 internal thoracic impedance 

decreased by 16.4% (95% CI=−12.2% to −20.6%; p<.0001) from the baseline level prior to the 

onset of lung rales (i.e., an increase in fluid in the lungs). To build on this concept, that excess 

fluid in the lungs can impact the IP signal, several studies found that critically ill patients who are 

mechanically ventilated accumulate excess fluid as a result of fluid resuscitation during their 

acute illness.34-36 Given these findings, excess accumulation of fluids in the thorax is a likely 

explanation for the association between the increased number of low parameter and apnea 

alarms in males and those treated with mechanical ventilation. From a clinical perspective, one 

has to question whether these alarms were simply due to changes in the IP signal, or whether 

these patients had true episodes of bradypnea and/or apnea. However, we did not annotate our 

alarms as true or false. Therefore, we are not able to confirm this hypothesis. Of note, the above 

studies may explain why patients in the cardiac ICU, who are more likely to have heart failure 

and associated fluid accumulation, had more low parameter and apnea alarms compared to 

patients in the medical-surgical ICU.  
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With regards to VAD and/or ventricular pacing, we hypothesized that these devices 

would impact the IP signal due to electrical interference, which is associated with false 

arrhythmia and technical alarms (artifact, lead(s) off/fail).37 

However, we found the opposite in our study. This finding should be interpreted with caution 

because of the small number of patients with VADs and/or ventricular pacemakers in our 

sample.  

We were somewhat surprised that no associations were found between BMI and any of 

the RR alarms. We hypothesized that a higher BMI would influence the IP signal and result in a 

higher number of RR alarms. This hypothesis was based on a study that found that higher BMIs 

altered gas exchange due to decreases in chest wall compliance38 and that patients with higher 

BMIs have RR that ranged from 15.3 bpm to 21 bpm.39-42 Given that the mean BMI in our study 

was in the overweight range and 60.3% of the patients were obese may explain why our 

hypothesized association was not supported. 

Limitations 

          Several limitations warrant consideration. While we provide new information on the 

number and types of RR parameter alarms, we did not annotate for true and false alarms. 

Because only one vendor’s monitor was used, we do not know if our findings generalize to other 

manufacturers. The study’s retrospective design did not allow us to evaluate how alterations in 

alarm settings would impact the number of alarms identified. Despite these limitations, our study 

represents the most comprehensive evaluation of RR parameter and apnea alarms in a 

consecutive sample of ICU patients.  

Implications for Practice and Research 

This study highlights the high occurrence rates for RR parameter and apnea alarms and 

suggests that these alarms make a significant contribution to overall alarm fatigue. This study 

confirms that high parameter alarms are more prevalent in the ICU setting. In addition, it 

provides new information on demographic (being male) and clinical (being on mechanical 
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ventilation, not having a VAD or pacemaker, length of ICU monitoring time, being in a cardiac or 

neurological ICU) characteristics that are associated with higher alarm rates. To decrease the 

number of RR alarms, clinicians need to evaluate the most appropriate alarm settings, as well 

as the demographic and clinical characteristics identified in this study. In addition, clinicians 

should aim to reduce the patients’ length of ICU stay through vigorous and adequate 

management of their condition(s).  

Additional research is warranted to reduce the number of RR alarms. Prospective 

studies are warranted that compare visual assessments of RR with those obtained using IP. In 

addition, bioengineers need to develop new algorithms that can be incorporated into ECG 

monitors with increased sensitivity and specificity to detect RR. In addition, studies are 

warranted that compare accuracy of the IP method to a combined method that incorporates IP 

with ECG waveforms and the myogram for the evaluation of RR parameter and apnea alarms. 

Finally, examining whether daily skin electrode changes would reduce RR alarms by ensuring 

optimal IP signal quality should be explored.  
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Table 3.1 Demographics, clinical, and hospital characteristics and number of respiratory type alarms in 
461 intensive care unit patients 

 

Abbreviations: BMI = body mass index; EHR = electronic health record; bpm = breaths per minute;  IQR = 
interquartile range; SD = standard deviation; VAD = ventricular assist device

Characteristics Total sample 
n = 461 

Demographic characteristics n (%) 

Age (mean ± SD, in years) 59.6 + 17.0 

BMI (mean + SD) 28.1 + 8.2 

Gender  

Male 
Female 

250 (54.2) 
211 (45.8) 

 
Race 

 

 
                          Asian 
                          Black/African American  
                          Native Hawaiian or Pacific Islander 
                          White 
                          Patient unable to state due to acute illness          
or not recorded in the EHR 

 
76 (16.5) 
35 (7.6) 
8 (1.7) 

281 (61.0) 
61 (13.2) 

 

Characteristics hypothesized to influence respiratory alarms  

 Current smoker 71 (15.4) 

 Documented cognitive impairment 198 (43.0) 

 Tremor 36 (7.8) 

Type of intensive care unit  

 Cardiac (16 beds) 
 Medical-Surgical (32 beds) 
 Neurological (29 beds) 

83 (18.0) 
181 (39.3) 
197 (42.7) 

Use of supportive therapy  

                         Mechanical ventilation 186 (40.3) 

               Ventricular assist device or pacemaker 34 (7.4) 

Median monitoring time in hours (IQR) 63 (28-148) 

Total number of respiratory type alarms 
  
 Parameter (high or low) 
  High (>30 bpm) 
  Low (<5 bpm) 
 
 Apnea (>20 seconds no breathing) 

159,771 
 

140,975 (88.2% of total) 
131,827 (82.5% range 1 – 5852) 

9,148 (6% range 1 – 455) 
 

18,796 (11.8% or total) 
(range 1 – 1208) 

Median monitoring time per patient (IQR) 63 (28-148) hours 

Median number of total alarms per patient (IQR) 136 (55-349) 

Median number of parameter alarms (high and low) per 
patient (IQR) 

114 (45-286) 

Median number of apnea alarms (IQR) 11 (2 - 41) 

Median time a patient was in alarms (IQR) per monitoring 
time 

40.6 (13.5 - 113.6) minutes  

Median duration of alarms (IQR) 10 (4-20) seconds 
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Table 3.2 Demographics, clinical, and hospital characteristics of the intensive care unit patients who had one or more 
apnea or parameter type alarms.  

  

Characteristics Patients with a high 
RR parameter 

alarm 
(>30 bpm) 

n = 454 

Patients with a low 
RR parameter alarm  

(< 5 bpm) 
n = 359 

Patients with any 
apnea alarm  

(no breaths for  
>20 seconds) 

n = 381 

Demographic Characteristics  

Age (years, mean (SD) 59.5 (16.9) 
28.1 (8.2) 

59.4 (16.8) 59.5 (17.0) 

BMI (kg/m2, mean (SD) 27.9 (7.3) 27.7 (7.2) 

Gender (n (%))   

 Male 
 Female 

245 (54.0) 
209 (46.0) 

200 (55.7) 
159 (44.3) 

217 (57.0) 
164 (43.0) 

Race (n (%)) 
 Asian 
 Black/African American 
 Native Hawaiian or Pacific Islander 
 White 
 Patient unable to state due to acute 
or not illness or not recorded in the EHR 

 
72 (15.9) 
34 (7.5) 
52 (11.5) 
267 (58.8) 
29 (6.4) 

 

 
52 (14.5) 
30 (8.4) 
40 (11.1) 
214 (59.6) 
23 (6.4) 

 

 
60 (15.7) 
31 (8.1) 
42 (11.0) 

 223 (58.5) 
25 (6.6)  

 

Characteristics Hypothesized to Increase Respiratory Type Alarms 

Current smoker (n (%)) 69 (15.2) 
 

196 (43.2) 

60 (16.7) 59 (15.5) 

Documented cognitive impairment (n (%))  
169 (47.1) 

 
177 (46.5)  

Tremor (n (%)) 36 (7.9) 30 (8.4) 33 (8.7)  

Intensive care unit type (n (%)) 

Cardiac (16 beds) 
Medical surgical (32 beds) 
Neurological (29 beds) 

82 (18.1) 
176 (38.8) 
196 (43.2) 

70 (19.5) 
134 (37.3) 
155 (43.2) 

73 (19.2) 
144 (37.8) 
164 (43.0) 

Supportive Therapies  

Mechanical ventilation, n (%) 176 (38.8) 158 (44.0) 167 (44.0) 

Ventricular assist device or pacemaker 33 (7.3) 27 (7.5) 32 (8.4) 

Median ICU monitoring time in hours (IQR) 64 (28-149) 73 (43-182) 71 (40-173) 

Total number of alarms 131,827 (82.5%) 9,148 (6%) 18,796 (11.8%) 

Median number of alarms (IQR) 94 (37-265) 6 (1-21) 11 (2-41) 

Median time in alarms (IQR, minutes) 19.6 (6.2-57.7)  2.6 (0.2-18.9) 4.3 (0.6-18.2) 

Median duration of alarms (IQR, seconds) 8 (4-18) 20 (8-87) 16 (10-29) 

 
    Abbreviations: BMI = body mass index; bpm = breath per minute; ICU = intensive care unit; EHR = electronic health record; 

IQR = interquartile range; kg = kilograms; m2 = meters squared; SD = standard deviation.  
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 Table 3.3 Occurrence of high and low parameter and apnea alarms by demographic and clinical characteristics and supportive     
therapy and intensive care unit type. 

 

Characteristic n 

Median number of 
high RR 

parameter alarms  
(>30 bpm) 

p-value 

Median 
number of low 
RR parameter 

alarms 
(<5 bpm) 

p-value 

Median 
number of 

apnea 
alarms 

 
(>20 bpm) 

p-value 

Age 
 18 - 34 
 35 - 49 
 50 - 64 
 65 - 79 
 80+ 

 
42 
86 
138 
136 
59 

 
75 (31 - 169) 
80 (20 - 318) 

120 (37 - 305) 
83 (42 - 247) 

127 (51 - 236) 

0.07 

 
6 (0 - 21) 
6 (1 - 26) 
5 (1 - 24) 
6 (1 - 16) 
4 (1 - 16) 

0.33 

 
11 (2 - 29) 
10 (1 - 42) 
13 (3 - 50) 
10 (2 - 41) 
12 (2 - 38) 

0.58 

Sex 
 Male  
 Female  

 
250 
211 

 
88 (34 - 263) 
97 (38 - 265) 

>0.99 
 

6 (1 - 20) 
5 (1 - 22) 

0.18 
 

12 (3 - 41) 
9 (1 - 42) 

0.06 

BMI (kg/m2) 
 <25 
 25 - 30 
 30+ 

 
181 
131 
144 

 
81 (35 - 205) 
95 (39 - 230) 

130 (40 - 328) 

0.67 

 
6 (1 - 16) 
4 (1 - 18) 
7 (1 - 30) 

0.02* 

 
10 (3 - 30) 
11 (2 - 44) 
14 (2 - 54) 

0.13 

Race 
 White 
 Non-White  

 
269 
192 

 
94 (35 - 260) 
96 (38 - 282) 

0.65 
 

6 (1 - 20) 
5 (1 - 22) 

0.50 
 

12 (2 - 42) 
11 (2 - 40) 

0.63 

Smoking status  
 Current 
smoker 
 Non-
smoker 

 
71 
390 

 
97 (34 - 324) 
94 (38 - 245) 0.92 

 
4 (1 - 14) 
6 (1 - 22) 0.15 

 
8 (2 - 27) 

12 (2 - 43) 0.28 

Cognitive 
impairment 
 Yes 
 No 

 
 

198 
263 

 
  
126 (43 - 344) 
   77 (35 - 198) 

 
<0.001* 

 
 

8 (1 - 28) 
4 (0 - 16) 

 
0.30 

 
 

18 (4 - 54) 
7 (1 - 30) 

 
0.11 

Tremor 
 Yes 
 No  

 
36 
425 

 
143 (65 - 302) 
92 (37 - 264) 

0.56 
 

6 (1 - 16) 
5 (1 - 21) 

0.46 
 

11 (4 - 32) 
11 (2 - 42) 

0.18 

Mechanical 
ventilation 
 Yes  
 No 

 
178 
283 

 
146 (51 - 483) 
73 (34 - 196) 

<0.001* 

 
14 (4 - 42) 
2 (0 - 10) 

<0.001* 

 
25 (7 - 64) 
6 (1 - 26) 

<0.001* 

VAD or pacemaker  
 Yes 
 No 

 
34 
427 

 
191 (66 - 622) 
92 (37 - 247) 

<0.001* 
 

6 (2 - 20) 
6 (1 - 21) 

0.18 
 

19 (3 - 42) 
11 (2 - 41) 

0.03* 

Intensive care unit 
 Cardiac  
Medical surgical  
Neurological 

 
83 
181 
197 

 
150 (44 - 488) 
95 (37 - 206)  
84 (37 - 230) 

<0.001* 

 
6 (1 - 21) 
4 (0 - 16) 
8 (2 - 41) 

<0.001* 

 
21 (3 - 60) 
8 (1 - 39) 

12 (2 - 35) 

<0.001* 

 
Abbreviations: BMI = body mass index; bpm = breath per minute; EHR = electronic health record; IQR = interquartile range; kg = 
kilograms; m2 = meters squared; RR = respiratory rate; VAD = ventricular assist device * Tukey’s honestly significance difference 
post hoc analysis for low RR; BMI (<25) - (30 +) differ at p=0.018. No difference between BMI of (< 25) - (25-29) p=0.82; and (25-
29) - (30 + ) p=0.13 
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Table 3.4 Multiple regression analysis for number of respiratory parameter (high and low) and apnea alarms among 
intensive care unit patients.   
 

Characteristic B (SE) p-value IRR  95% CI p-value 

High Respiratory Rate Parameter Alarms ( 30 bpm) 

Monitoring time in ICU (hours) 0.75 (0.05) <0.001* - -  

Age (units of 10 years) 0.06 (0.03) 0.07 1.06 1.00 - 1.12  

Male 0.08 (0.11) 0.44 1.09 0.88 - 1.34  

BMI (kg/m2, reference = <25) 
25 – 30 
30+ 

 
0.06 (0.12) 
0.14 (0.12) 

 
0.62 
0.26 

 
1.06 
1.15 

 
0.83 - 1.37 
0.90 - 1.47 

 

Cognitive impairment 0.17 (0.12) 0.14 1.19 0.94 - 1.50  

Mechanical ventilation -0.01 (0.12) 0.96 0.99 0.79 - 1.26  

Ventricular assist device or pacemaker -0.16 (0.22) 0.48 0.86 0.57 - 1.34  

Unit (Reference = Medical Surgical) 
Cardiac 
Neurological  

0.48 (0.17) 
 0.31 (0.11) 

0.004* 
0.008 

1.62 
1.36 

1.17 - 2.24 
1.08 - 1.70 

 
0.0002* 
0.012* 

Low Respiratory Rate Parameter Alarms ( 5 bpm) 

Monitoring time in ICU (hours) 0.47 (0.06) <0.001* - -  

Age (units of 10 years)  -0.04 (0.04) 0.36 0.96 0.88 - 1.04  

Male  0.38 (0.15) 0.01* 1.46 1.09 - 1.96  

BMI (kg/m2, reference = <25) 
25 – 30 
30+ 

 
-0.08 (0.18) 
0.21 (0.18) 

 
0.64 
0.22 

 
0.92 
1.23 

 
0.65 - 1.31 
0.87 - 1.75 

 

Cognitive impairment 0.13 (0.16) 0.45 1.13 0.83 - 1.56  

Mechanical ventilation 0.48 (0.17) 0.005 * 1.62 1.16 - 2.27  

Ventricular assist device or pacemaker  -1.06 (0.31) 0.001* 0.35 0.19 - 0.67  

Unit (Reference = Medical Surgical) 
Cardiac 
Neurological 

 
0.96 (0.23) 0.56 

(0.16) 

 
<0.001* 
<0.001* 

 
2.60 
1.76 

 
1.67 - 4.16 
1.26 - 2.43 

 
0.0001* 
0.004* 

Apnea (>20 seconds of no breathing) 

Monitoring time in ICU (hours) 0.50 (0.06) <0.001* - -  

Age (units of 10 years)  0.02 (0.04) 0.58 1.02 0.94 - 1.12  

Male 0.41 (0.15) 0.005 * 1.51 1.13 - 2.03  

BMI (kg/m2,Reference = <25) 
25 - 30 
30 +  

 
0.00 (0.18) 
0.21 (0.17) 

 
>0.99 
0.22 

 
1.00 
1.24 

 
1.00 - 1.04 

 

Cognitive impairment 0.33 (0.17) 0.05 1.40 1.02 - 1.91  

Mechanical ventilation 0.24 (0.17) 0.17 1.27 0.93 - 1.77  

Ventricular assist device or pacemaker -0.75 (0.31) 0.02 * 0.47 0.26 - 0.91  

Unit (Reference = medical surgical) 
Cardiac  
Neurological 

 
0.91 (0.23) 
0.51 (0.16) 

 
0.001* 
0.002* 

 
2.46 
1.66 

 
1.59 - 3.89 
1.19 - 2.29 

 
<0.0001* 
0.0025* 

 
Abbreviations: BMI = body mass index; bpm = breath per minute; CI = confidence interval; ICU = intensive care unit; 
EHR = electronic health record; IQR = interquartile range; IRR = incident rate ratio; kg = kilograms; m2 = meters 
squared; SD = standard deviation; SE = standard error. *Tukey’s honestly significance difference post hoc analysis. 
For high RR alarms: No difference between neuro and medical-surgical; cardiac and neuro differ at p = 0.02; cardiac 
and medical-surgical differ at p<0.01; For Low alarms and Apnea RR: There are no differences between Medical-
Surgical and Neurological unit but Cardiac and neurological is different at p<0.01; p = 0.0025. 
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Figure 3.1 Hospital infrastructure used to capture and store all physiologic monitor waveform 
and alarm data automatically. Permission: reprinted with permission from 6 
doi:10.1371/journal.pone.0110274.g002 
 
 
 

 

 
 
Figure 3.2 Impedance pneumography (IP) respiratory waveform (RESP) generation. Note the 
upward flag on the inspiratory waveform and the downward flag on the expiratory waveform, 
which denotes a single breath. 
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Figure 3.3 Illustrates double counting of respiratory rate (RR) in an intensive care unit 
patient treated with mechanical ventilation and positive end-expiratory pressure (PEEP). 
Shown are leads I, II, III and the RESP (respiratory) waveforms. Note the second RR 
just after the ventilator breath caused by PEEP, which doubles the RR in this patient 
from 16 breaths per minute to 32 breaths/minute. 
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CHAPTER 4 

AGREEMENT OF RESPIRATORY RATE MEASUREMENT BETWEEN A COMBINED 

ELECTROCARDIOGRAPHIC DERIVED METHOD AND IMPEDANCE PNEUMOGRAPHY  
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Abstract 

Background: Impedance pneumography (IP) is the current device-driven method used to 

measure respiratory rate (RR) in hospitalized patients. However, RR alarms are common using 

IP method, contributing to alarm fatigue in clinicians. While newer RR algorithms that use 

electrocardiographic features (i.e., QRS, heart rate and myogram) hold promise, they have not 

been compared to the IP method.   

Purpose: This study was designed to examine the agreement between the IP and combined-

electrocardiographic derived respiration (combined-EDR) method for normal RR; low RR 

(<5 breaths per minute (bpm); and high RR (>30 bpm).  

Methodology: This secondary analysis used data from the University of California, San 

Francisco (UCSF) Alarm Study. A total of 100 intensive care unit (ICU) patients were included 

and were distributed by RR group as follows: (1) normal RR (n=50 patients; 25 from the low RR 

group and 25 from high RR group); (2) low RR (n=50 patients); and (3) high RR (n=50 patients). 

Bland-Altman analysis was used to evaluate the agreement between the two methods.  

Results: For normal RR, a significant bias difference -1.00 + 2.11 (95% confidence interval [CI] 

-1.60 to -0.40) and limits of agreement (LOA) of -5.13 to 3.13 was found between the two 

methods. For low RR, a significant bias difference of -16.54 + 6.02 (95% CI: -18.25 to -14.83) 

and a 95% LOA of -28.33 to - 4.75 were found. For high RR, a significant bias difference of 

17.94 + 12.01 (95% CI: 14.53 to 21.35) and 95% LOA of -5.60 to 41.48 were found.  

Conclusion: The combined-EDR method had good agreement with the IP method for 

measurement of normal breathing. However, for the low RR, the combined-EDR method was 

consistently higher than the IP RR. For the high RR, the combined-EDR method was always 

lower than the IP RR. This study should be replicated in a larger sample and include 

confirmation with visual assessment (VA). 

 



 72 

Key words: impedance pneumography; electrocardiographic derived respiratory rate; 

respiratory rate; intensive care unit; physiologic monitoring 

INTRODUCTION 

Impedance pneumography (IP) is the current device-driven method that is used to 

measure respiratory rate (RR) in hospitalized patients.1 Abnormal RR (e.g., tachypnea, 

bradypnea) are indicators of respiratory instability, respiratory compromise, and often the first 

indication of impending respiratory arrest and/or the need for rescue intubation in hospitalized 

patients.2-5 However, identifying these acute changes can be delayed and/or missed if RR 

assessments are not obtained often and with a high degree of accuracy. Therefore, assessing 

RR at more frequent intervals and more accurately may lead to earlier detection of clinical 

deterioration and appropriate intervention(s) to improve patient outcomes. To achieve this goal, 

the ideal method to assess RR should be continuous, accurate, sensitive, specific, non-invasive, 

and affordable. The use of physiologic data that can detect respiration signals, that is already 

collected in hospitalized patients, would offer important advantages since these data could be 

easily integrated into existing clinical care devices. 

The algorithm used for the IP method is based on the ratio of alternating electrical 

currents measured using electrocardiographic (ECG) lead wires and skin electrodes on the 

torso. Of note, the IP method does not use ECG signals for RR calculation, it only uses the lead 

wires and skin electrodes to deliver the alternating currents used for the IP method. The major 

advantages of the IP method include that it is safe and simple to use and is integrated into 

current physiologic monitoring devices. However, signal interruptions (i.e., poor skin electrode 

contact, skin electrodes fall off), patient movement and cardiac artifact can affect the accuracy 

of IP RR.6, 7 In addition, the various components of the IP method (e.g., lead wires, cables) can 

be sources of IP measurement error.8 As a result, the IP method is prone to frequent RR alarms 

that contribute to alarm fatigue in clinicians.6, 8-12 In one comprehensive study in 461 ICU 

patients (n=77 beds),161,931 RR alarms (i.e., high and low parameter and apnea) were found 
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during the one-month study period or 79 RR alarms/bed/day.6 While the alarms were not 

annotated in this study, the investigators found that the IP respiratory waveform was often flat in 

patients who were known to be breathing adequately (e.g., no respiratory arrest, no need for 

intubation). Therefore, while the IP method has important advantages for RR assessment in 

hospitalized patients, the data show that IP RR measurements are problematic, which limits the 

value of this technology to identify patients with respiratory compromise.  

Given the problems with IP generated RR, researchers are exploring alternative 

methods to measure RR using ECG waveforms (i.e., QRS and R-to-R interval).13 While the 

EDR method is not currently available for use in the hospital setting, this method has numerous 

advantages.13 For instance, like IP, the EDR method is non-invasive; uses already existing data 

from bedside ECG monitoring devices; and RR assessments are done continuously.14 One 

study showed that because ECG QRS amplitude changes were highly correlated with tidal 

volume changes during breathing, they may be more suitable for calculating RR.13 The EDR 

method has been used to identify abnormal respirations associated with sleep disordered 

breathing.15-20 However, similar to the IP method, the EDR method is prone to signal quality 

issues, device failure, and/or patient movement. In addition, the EDR method was found to be 

less reliable in older patients due to the following factors: a decline in respiratory sinus 

arrhythmia (RSA), which is used in the EDR method; age related arrhythmias (e.g., atrial 

fibrillation); and the use of medications that effect heart rate and rhythm (e.g., beta-blockers, 

antiarrhythmics).13 What has not been tested, is a method that combines all of these signals 

(i.e., ECG, IP, and the myogram), which together may improve the accuracy of RR assessment.  

While visual assessment (VA) of RR is the gold standard method, a great deal of interest 

exists in device driven methods, like IP and EDR, for hospital-based monitoring because RR 

changes can occur quickly and could be missed by using VA alone. The VA method can 

interrupt nurse’s workflow because they must stop care activities and carefully count full breaths 

for one minute, which can be difficult in patients who are talking, not able to follow instructions 
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and/or cooperate. One study found that inaccurate RR readings were measured during routine 

patient activities such as talking, turning, or moving in bed.21  

In a prior study of VA of RR,22 RR was often estimated, guessed, omitted, or simply 

copied from a previous assessment.22 In another study,23 nurses reported intentionally or 

unintentionally omitting RR assessments over 90% of the time. In another study that examined 

62 patients with 1,597 unique vital signs recorded,24 only one RR assessment was recorded per 

day, while multiple recordings of blood pressures (5/day); heart rate (4.4/day); and temperature 

(4.2/day) were documented (all p<0.001).24  

Surprisingly, only four studies have compared VA, IP, and EDR assessment of RR.25-28 

Importantly, none of these studies compared all three methods in the same patient. In the three 

studies that compared the VA and IP methods,25, 26, 28 the upper and lower limits of agreement 

(LOAs) between the two methods were extremely poor. In the only study that compared the VA 

and EDR methods,27 significant differences in RR were found between the two methods. In 

addition, using Bland Altman analyses, the LOAs between the two methods were poor. The 

scatter plots showed that VA RR centered around RR of 18, 20, and 22 breath per minute 

(bpm). In contrast, the EDR RR were more variable. These findings suggest that VA of RR 

cluster around “normal” values that clinicians commonly use. In contrast, the EDR method 

captured dynamic RR variations, which suggest that the EDR method may be more reliable. 

Other studies have evaluated the EDR method. One study found that the IP method had 

95% LOAs that were within –5.6 to 5.2 bpm with a bias of -0.2 bpm. The authors noted that for 

four of the algorithms evaluated, those that used ECG waveform data performed better than the 

IP only algorithm.14 In a second study,13 three different RR methods were compared to RRs 

using an air flow sensor. The three approaches included: an EDR only method; an 

electromyogram method; and an RSA method. The accuracy of determining RR ranged from 

80% to 90% depending on the performance measure used in this study. Of note, the authors 
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concluded that a combination of these different methods may improve the overall performance 

of RR assessment.13  

Given the importance to RR assessment and the identified challenges associated with 

the VA and IP methods, a need exists to evaluate alternative methods to objectively measure 

RR in hospitalized patients. While the EDR method, which relies on the R-to-R intervals, 

appears to be an improvement over IP, this method lacks accuracy in older patients because of 

its dependence on heart rate variability, which tends to be fixed in older adults. In addition, this 

method is less reliable in patients with atrial fibrillation and those taking certain cardiac 

medications (e.g., beta-blockers). Hence, because hospitalized patients have many of these 

characteristics, the generalizability of an ECG only method may be limited.   

An alternative approach to the limitations identified for the individual algorithms 

discussed above,13, 14 would be to create an algorithm that combines all of the available 

physiologic signals (i.e., IP, ECG and the myogram), to create a “combined-EDR method.” 

Recent work from our research team has evaluated the accuracy of this method to detect 

Cheyne-Stokes respiration in healthy adults, hospitalized patients with acute coronary 

syndromes, and ICU patients.18, 19 In one study, periodic breathing (>3 consecutive cycles of 

hyperpnea/hypopnea without apnea) and Cheyne-Stroke respirations (>3 consecutive cycles of 

hyperpnea/hypopnea with apnea) were compared between healthy community-based adults 

and patients hospitalized with a cardiac diagnosis. Of the hospitalized cardiac patients, those 

with acute coronary syndrome had 1.6 times more periodic breathing episodes and 7.3 times 

more Cheyne-Stroke respiration episodes than healthy community-based participants.18  

In the current study, we build on this work by examining agreement between the IP 

method and a combined-EDR method in a group of adult ICU patients. The purpose of this 

study, in a group of 100 ICU patients were to: (1) examine agreement between the IP and 

combined-EDR method for normal RR; (2) examine agreement between the IP and 

combined-EDR method for low RR (<5 bpm); and (3) examine agreement between the IP and 
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combined-EDR method for high RR (>30 bpm). These parameters were used because they 

were the standard default alarm settings for all the intensive care units in our hospital and 

wanted to evaluate the standard our research aim with the standard practice at the facility.  

METHODS 

Research Design and Setting 

This study is a secondary analysis using data from the University of California, San 

Francisco (UCSF) Alarm Study, the methods of which have been published.6 Briefly, the UCSF 

Alarm study was an observational study designed to examine the total number of alarms 

generated from bedside physiologic monitors during a one-month period (March 2013). Data 

were collected from three adult ICUs (i.e., cardiac [16 beds]; medical/surgical [32 beds]; and 

neurological [29 beds]). Each bed was equipped with a Solar 8000i bedside monitor (version 5.4 

software, GE Healthcare, Milwaukee, WI). The study used a data capture system to collect the 

following physiologic data from each ICU monitor: all available waveforms (e.g., ECG, arterial 

BP, central venous pressure, intracranial pressure, SpO2); vital signs (e.g., heart rate, non-

invasive BP, RR); alarm settings (i.e., crisis, warning, advisory and technical); as well as audible 

and inaudible alarms. The physiologic data passed securely through the hospital’s Enterprise 

network via a research network (CARESCAPE Gateway; GE Healthcare, Milwaukee, WI) to a 

secure server in our research lab for off-line analysis. The study was approved by the 

Institutional Review Board (IRB) with a waiver of signed patient consent because physiologic 

monitoring is done as part of standard care and the data were analyzed retrospectively.  

The primary study collected data from 461 consecutive ICU patients. For the current 

study, we randomly selected 50 patients who had one or more low IP parameter alarms (< 5 

bpm) and another 50 patients who had one or more high IP parameter alarms (> 30 bpm). The 

parameter alarms were selected based on the current alarm configuration used in our bedside 

ICU monitors. From this sample of 100 patients, we randomly selected a subgroup of 25 

patients from each group (i.e., 25 patients with low parameter alarms and 25 patients with high 
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parameter alarms) for the normal RR comparisons. While we use the term “normal” breathing it 

should be noted that in some of these ICU patients their RR was consistently tachypneic (i.e., 

>20 bpm). Therefore, a normal RR (i.e., >12 bpm and < 20 bpm) could not be used for 

comparisons.   

IP Method   

Evaluation of electrical impedance in body tissues is a common technique that measures 

variability in tissue volume based on the measurement of resistance of alternating currents (AC) 

as electricity travels through a given material.29 In the hospital setting, the IP method uses skin 

electrodes placed on the torso for ECG monitoring. It should be noted that while ECG lead wires 

and skin electrodes are used for the IP method, the ECG waveforms are not used to calculate 

RR. Rather, the ECG device (through lead wires attached to skin electrodes) directs a very 

small amount of electrical current into the patient’s body to measure electrical impedance.7, 30 

Depending on the manufacturer, one or two of the limb leads are used to detect amplitude 

differences of the injected current.31 

During inspiration, as the chest expands, resistance to the flow of an electrical current 

increases, which increases impedance. Alternatively, during expiration, impedance decreases 

as air leaves the lungs. To derive RR using the IP method, a drive-and-measure circuit is 

established that delivers two out-of-phase AC-coupled currents into a combination of 

electrodes.7, 31 The difference in amplitude of the injected current during inspiration (chest 

expands; impedance rises) and expiration (impedance falls) is displayed as an IP waveform on 

the bedside physiologic monitor. This computer algorithm puts an artificial flag on the IP 

waveform when inspiration is identified (upward flag) and a downward flag when expiration is 

identified. In addition to the IP waveform, a numeric RR value is displayed on the bedside 

monitor.  
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Combined-EDR Method 

The combined-EDR method was created by biomedical engineers in the UCSF Center 

for Physiologic Research. The algorithm uses all of the following signals to derive a RR: ECG 

waveforms; IP signals; and the myogram. The following features are used to calculate the RR, 

namely: (1) R-to-R intervals, (2) the QRS area, (2) the ECG baseline, (3) the IP waveform, (4) 

the plethysmograph from the oxygen saturation sensor (SpO2), and (5) the myogram. At least 

two of these parameters, with high quality signals, must be present for the combined-EDR 

method to generate a RR.  

ECG signals: The algorithm uses R-to-R interval changes. Breathing causes slight 

changes in heart rate that can be detected as RSA (i.e., increased heart rate with inspiration; 

decreased heart rate with expiration). While RSA is observed in young healthy people, the heart 

rate tends to become more fixed, thus less variable, with age and co-morbidities (e.g., heart 

failure, diabetes).13, 32 Therefore, using only R-to-R intervals to measure RR is not sufficient for 

accurate and reliable RR calculations. Therefore, in addition to the R-to-R intervals, the literal 

QRS area, that is, the sum of all of the QRS complexes from all available ECG leads is used. 

Breathing causes slight changes in the QRS morphology (width and amplitude) that can be 

used for RR assessment. For example, during inspiration and expiration the heart moves 

relative to the ECG skin electrodes on the body surface, that are at fixed locations on the chest. 

The amplitude (height) and width (duration) of each waveform that make up each QRS complex 

(i.e., Q, R, and S wave) are measured and used in the algorithm.  

In addition to these ECG features, the combined-EDR method incorporates the IP and 

Sp02 waveforms as well as the myogram signal. The latter uses the ECG skin electrodes during 

inspiration and expiration to measure both chest muscle and diaphragm effort during breathing. 

The combined-EDR algorithm examines all of these features simultaneously to generate a RR. 

Therefore, it is important to note that in the absence of a good quality signal from any two of the 

aforementioned parameters, a combined-EDR RR will not be generated.  
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Data Acquisition for IP versus Combined-EDR Method Comparisons 

IP Data: The IP RR data from the bedside physiologic monitors were stored as Standard 

for the Exchange of Product Data (STEP) or STP files. The STP files were converted into binary 

files and exported into the Continuous ECG Recording Suite (CER-S software program, Amps 

LLC, New York, NY). The CER-S software allowed for qualitative assessment of the IP 

waveforms at the same time that comparisons were done between the IP and combined-EDR 

methods. To optimize the workflow in the CER-S tool, the following steps were taken: multi-day 

recordings were formatted in 24-hour periods from midnight to midnight; data were compressed 

using a loss-less proprietary algorithm, which varied between three and four-fold rate, 

depending on the input signals; and all of the data were de-identified. As mentioned above, the 

IP parameter alarms for the low and the high RR analyses were compared to the combined-

EDR RR. Figure 4.1(a and B) illustrates a screen shot of the CER-S software tool that was used 

to identify the IP RR parameter alarms for comparison with the combined-EDR method.  

Combined-EDR Data: Physiologic data signals from the primary study (i.e., ECG, IP 

signal, SpO2, myogram) were processed with the combined-EDR algorithm. The entire ICU 

monitoring period was processed and a combined-EDR RR was generated every 30 seconds. 

These data were exported into a common separated value (.csv) file in order to perform the 

comparisons of RR between the two methods. The de-identified IP RR data (normal, low, and 

high RRs) were viewed in the CER-S software tool and the corresponding times of the 

combined-EDR RR were used for the comparisons. Both RR values were required to be within 

two minutes of each other. Two reviewers independently collected the data. The reviewers met 

weekly to compare their results and overall inter-rater agreement was >95%. 

Data Analysis 

Descriptive statistics were generated for each of the RR groups. For each group, the 

agreement between the two methods was evaluated using Bland-Altman analysis.33 This 

approach included plots of the mean difference in RR between the two methods against the 
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average of the two measurements. In the case of strong agreement, the mean difference 

between the two methods is expected to be 0 or close to 0. An advantage of a Bland-Altman 

analysis is that it can uncover measurement bias (i.e., a significant slope on the regression line 

of the scatter plot) related to the underlying true RR in the event that one of the two methods 

was systematically worse at accurately capturing values at either end of the range of all RR. 

The Bland-Altman analysis reports the estimated difference between the two 

measurements with 95% LOAs around the estimate (mean difference of ±1.96 SD) and a test of 

bias in the form of ordinary least of square (OLS) regression on these estimates. Statistically 

significant differences were noted at a p-value of <0.05. Descriptive analyses were performed 

using SPSS v.27 (IBM Corporation, Armonk, NY). The Bland-Altman analysis was performed 

using R v4.0.0 and BlandAltmanLeh package v0.3.1 statistical software.33-35 

RESULTS 

Demographic and Clinical Characteristics 

The demographic and clinical characteristics of the groups are presented in Table 4.1. 

The time differences between the two RR measurements that were used for comparison was 

<40 seconds for 90% of the data. The results for each type of RR that were compared: (1) 

normal RR; (2) low RR; and (3) high RR are summarized below. 

Normal RR: The average age of the 50 patients in the normal RR group (Table 4.1), was 

60.14 (+18.01) years, 52% were male and 66% were white. Forty percent had documented 

cognitive impairment, 18% were current smokers, 42% had mechanical ventilation, and 40% 

were admitted to the neurological ICU. Their median monitoring time (IQR) was 1.11 (0.23 – 

29.13) hours.  

Low RR: The mean age of the 50 patients in the low RR group was 61.80 (+16.89) 

years, 56% were male and 60% were white. In this group, 28% had cognitive impairment, 10% 

were current smokers, 50% had mechanical ventilation, and 36% were admitted to the medical-

surgical ICU. Their median monitoring time (IQR) was 1.52 (0.33 – 10.67) hours. 



 81 

High RR: The mean age of the 50 patients in the high RR group was 60.86 (+16.13) 

years, 58% were male and 62% were white. In this group, 48% had cognitive impairment, 24% 

were current smokers, 36% had mechanical ventilation, and 42% were admitted to the 

neurological ICU. The median monitoring time (IQR) was 0.99 (0.18 – 29.1) hours. 

Bland Altman Analysis 

The results of the Bland Altman analysis are presented in Table 4.2. The Bland-Altman 

analysis examined the agreement between the two RR methods by estimating the mean 

difference and producing 95% LOAs.33 The scatter plots and Bland-Altman plots are shown in 

Figure 4.2 (A, B, and C), that illustrate the distribution and agreement between the two methods 

for normal, low, and high RR.  

Normal RR: For normal RR, a significant bias difference of -1.00 + 2.11 (95% CI -1.60 to 

-0.40) and 95% LOA of -5.13 to 3.13 were found (Table 4.2). The LOA showed that the RR were 

within three and five bpm. Figure 4.2 (2A) shows the scatter plot and Bland-Altman analysis for 

normal RR comparisons. The regression line through the points was not significant 

(p=0.088).The Bland Altman plot indicates close agreement between the two methods for 

normal RR.  

Low RR: For low RR, a significant bias difference of -16.54 + 6.02 (95% CI: -18.25 to -

14.83) and 95% LOA of -28.33 to - 4.75 were found (Table 4.2). As illustrated on the scatterplot 

(Figure 4.2) 2B, the combined-EDR RR was always higher than the IP RR. Note that the points 

on the Bland-Altman plot are essentially distributed in two lines. This pattern is seen because 

nearly all of the IP values for RR were 0 or 5, with the exception of two single points with a 

measure of 4. The regression line was significant (-1.26; 95% CI -1.62 to -0.89; p< 0.05). 

High RR: For high RR, a significant bias difference of 17.94 + 12.01 (95% CI: 14.53 to 

21.35) and 95% LOA of -5.60 to 41.48 were found (Table 4.2). Figure 4.2 (2C) shows the 

scatter plot and Bland-Altman plot for high RR comparisons. As illustrated in the scatterplot, the 
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combined-EDR RR was always lower than the IP RR, with the exception of one comparison. A 

test of a regression line through the points did not indicate a significant slope (p=0.87). 

DISCUSSION 

This study is the first to evaluate the level of agreement between two algorithm-based 

methods to measure RR, the IP method and a novel combined-EDR algorithm that combines 

signals from the IP, myogram, and ECG waveforms in a group of ICU patients. Good agreement 

was found between the two methods for the normal RR. An inverse agreement was found 

between the two methods for both the low and high RR comparisons. For low RR, the 

combined-EDR algorithm was consistently higher than the IP method. For high RR, the 

combined-EDR algorithm was consistently lower as than the IP method in all but one patient. 

Given the high level of agreement for normal RR, these findings suggest that the combined-

EDR algorithm may be more accurate when measuring low and high RR.    

For normal RR, the upper and lower LOA were within three to five bpm, which is 

clinically acceptable. Agreement between the two RR methods was found for patients who were 

both tachypneic and bradypneic. Figure 4.3 (A and B) are examples of tracings from two 

patients in our study, one with tachypnea and one with bradypnea. Based on our findings, it is 

reasonable to conclude that the IP and combined-EDR methods are comparable when 

measuring RR within the normal range (12 to 20 bpm) and in a small subset of patients with 

tachypnea and bradypnea. However, because we did not simultaneously assess RR using VA 

method, these findings warrant confirmation using the gold standard. Despite this limitation, 

based on our findings for normal RR, albeit in a small sample of ICU patients, we were able to 

compare the IP to the combined-EDR for both low and high RRs with some level of confidence.   

 For low RRs, compared to the IP method the RR using the combined-EDR method was 

consistently higher. This finding is consistent with prior studies that found that the majority of low 

IP RRs are false6, 36 due to low frequency signals, which saturate the ECG leads with noise and 

fail to capture the impedance signal.37 As illustrated in Figure 4.1 (A), low frequency IP signals 
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can increase the number of false IP RRs.38, 39 In addition to low frequency signals, shallow 

breathing can be misinterpreted by the IP method as a low RR and contribute to false alarms.39 

Several studies have examined why low RR readings occur when using the IP method. In one 

study,40 cardiac oscillations (i.e., “small waves produced by heartbeats, which are superimposed 

on the pressure and flow signals at the airway opening”) interfered with the IP signal and led to 

false low RR calculations.36 In healthy people, several factors can impact the IP signal including: 

hemodynamic properties,41 RSA,42 blood pressure,43 stroke volume,44 pulmonary vascular 

resistance,42 pulmonary blood flow,45 and lung volume.46 These factors are attenuated in 

patients with cardiac and/or respiratory diseases, that are common in hospitalized patients. 

Moreover, the spatial distribution of the IP signal in the thorax is not fixed or static. Instead, it 

likely undergoes variations due to respiration that may affect the generation of IP respirations. 

Accurate and reliable identification of low RR is extremely important in hospitalized patients who 

are susceptible to this problem because of the receipt of medications that compromise breathing 

(e.g., sedatives, opioids), sleep disordered breathing, or acute respiratory compromise.5, 18, 47 

The combined-EDR algorithm, that uses multiple physiologic signals to generate a RR appears 

to be an improvement over the IP method. However, as with the normal RR measures 

examined in this study, the combined-EDR method requires further validation in a larger sample 

along with comparisons to VA.   

When comparing the IP method to the combined-EDR method for high RR, in nearly 

every comparison the combined-EDR RR was lower. Figure 4.4 illustrates the outlier patient 

with an IP RR of 69 and a combined-EDR RR of 15 bpm. This patient provides an example of 

non-respiratory motion and cardiac artifact, that can influence the accuracy of IP RR.8, 37, 41 This 

finding supports previous studies that identified that both motion artifact7, 8, 37 and cardiac artifact 

from aortic blood flow can be measured using IP and lead to false high RR.41, 48  Because the 

combined-EDR method uses a combination of several different physiologic signals (i.e., R-to-R 

intervals, QRS area, ECG baseline, IP waveform, Sp2O, and the myogram) this method 
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minimizes the number of false high RRs. Our data suggest that the combined-EDR method may 

substantially reduce high parameter alarms associated with motion and cardiac artifact.  

A noteworthy finding from our study was the number of patients with a RR above the 

physiologic upper limit of “normal” (i.e., <20 bpm). The scatterplot in Figure 4.2 (2C), shows that 

22 patients had a RR >20 bpm, which represent 88% of the 25 ICU patients in this group. With 

one exception, the combined-EDR was consistently lower than the IP method. Figure 4.5 

illustrates the one outlier patient who had an IP RR of 32 and a combined-EDR RR of 50. The 

IP RR appears to be accurate despite motion artifact. It is not known which of the physiologic 

signals were driving the combined-EDR calculation of RR. However, this example suggests that 

the combined-EDR may calculate high RR in some patients. Future studies need to determine 

whether refinements are needed to the combined-EDR algorithm for high RR.  

Limitations 

          Several limitations warrant consideration. While we provide new information on the 

agreement between the IP RR method and a novel multi-signal algorithm for RR measurement, 

we did not use the gold standard of VA to compare the two methods. Additionally, because we 

examined only one monitoring vendor, our findings may not generalize to other monitoring 

manufacturers. The study’s retrospective design did not allow us to evaluate the patient 

scenarios or alarm adjustments made by clinicians, that would add important context to our 

findings. It must also be noted that the parameters we used for our study may have been too 

low or high in a non-critical care setting. However, since our findings for parameter alarms were 

high, and suggestive of tachypnea in the ICU, a replication of the study must include the alarm 

parameters that are lower than our <5 and >30 bpm for the low and high RR. Despite these 

limitations, this study is the first to examine a novel physiologic-based algorithm strategy that 

uses existing data from bedside monitors to determine RR.  
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CONCLUSION 

RR alarms are common in the ICU. In one study in 461 ICU patients, there were 161,931 

RR alarms (apnea and high/low parameter) were found during the one-month study period or a 

total of 79 alarms/bed/day.6 The problem that is created by the high number of alarms is that 

true RR events (low or high RR) go unrecognized because they are buried among false alarms. 

This problem is described as alarm fatigue (i.e., desensitization to alarms). In an effort to reduce 

alarm fatigue it is standard practice for hospitals to use wide RR parameter limits (i.e., <5 bpm 

and >30 bpm) as a way to reduce RR alarms. Findings from our study suggest that these 

settings, may miss important true RR changes that require intervention to avert respiratory 

compromise. While confirmation of our findings is warranted, our data suggest that the 

combined-EDR method is comparable to the IP method with regards to normal RR, was 

consistently higher than low IP RR, and almost always lower than the higher IP RR. This latter 

finding is of significant interest, since we found that tachypnea was common in our ICU sample. 

Implications for Practice and Research 

 Low RR using the IP method may be influenced by low frequency signals, which can 

cause inaccurate low RR. However, low RR can occur with shallow breathing, which would be 

of clinical significance in hospitalized patients at risk for respiratory compromise. High RR, using 

the IP method, can be caused by cardiac artifact. However, we found RRs often exceeded the 

upper limit of normal (i.e., <20 bpm) in the ICU sample we examined, which may suggest 

tachypnea is common. This study should be replicated in a larger sample and include 

confirmation with VA.  
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Figure 4.1 Illustrates the continuous electrocardiographic recording suite (CER-S) software program used 
to identify impedance pneumography (IP) respiratory rate (RR) parameter alarms for comparison to the 
combined-electrocardiographic derive respiration method. The IP waveform is labeled as Resp in the 
figures below.  
 
 
A. The left side of the figure shows IP RR parameter alarms during this patient monitoring period. The 

highlighted IP alarm (RESP 0< 5) was for a low parameter RR alarm. The panel to the right of the 
alarm shows a one-minute period of ECG signals (leads I, II, II and V) as well as the IP waveform 
(Resp). The spikes at the very end of the IP tracing are upward and downward flags added to the IP 
waveform to show inspiration and expiration.  

 

 

 

 
 

B. The left side of the figure shows IP RR parameter alarms during this patient monitoring period. The 
highlighted IP alarm (RESP 41 > 30) was for a high parameter RR alarm. The panel to the right of the 
alarm shows a one-minute period of ECG signals (leads I, II, II and V) as well as the IP waveform 
(Resp). The IP waveform has motion artifact throughout the tracing with upward and downward flags in 
some parts of the tracing. 
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Figures 4.2. (2A, 2B, and 2C) Scatterplots (left) and Bland-Altman plots (right) for normal, low and high respiratory 
rate (RR) comparing impedance pneumography (IP) to the combined-electrocardiographic derived-respiration 
(combined-EDR) method. The heavier dashed lines in the Bland-Altman figures represent the mean difference 
(middle line) and the upper and lower limits for 95% of the data; the lighter dashed line is the 95% confidence interval 
(CI) for each of these lines. The red lines are sunflower plots and show when there is more than one value at this 
measure. For example, a three-armed sunflower plot indicates that there are three individual values at this one 
location.  
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Figure 4.3 Illustrates the respiratory rate (RR) measured using impedance pneumography (IP) 
in two different intensive care unit patients during tachypnea (A) and bradypnea (B). Shown are 
one minute time periods with electrocardiographic (ECG) leads I, II, II, and V (V1) and the IP 
waveform. The IP waveform has an upward flag during inspiration and a downward flag during 
expiration.   
 
A. Patient with an IP RR of 33 breath per minute (bpm). The combined-EDR method RR was 33 

bpm. This patient has a heart rate of 150 beats/minute, which when combined with the 
tachypnea suggests this that patient is in acute distress.   

 

  

B. Patient with an IP RR of 9 bpm. The combined-EDR method RR was 9 bpm. While the IP 
waveform is not as smooth as seen in A (above), the upward and downward flags are present. 
This patient’s heart rate is 60 beats/minute, with pre-mature atrial complexes and a short run of 
supra-ventricular tachycardia.   
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Figure 4.4 Illustrates a high respiratory rate (RR) measured using impedance pneumography 
(IP) in an intensive care unit patient. The IP RR was 69 breath per minute (bpm), the combined-
electrocardiographic RR was 15 bpm. Shown is a one-minute time period with ECG leads I, II, 
II, and V (V1) and the IP waveform (RESP). The IP waveform has upward flags and downward 
flags calculated using the IP waveform, which in this case is contaminated with both cardiac and 
motion artifact.  
 
 
 

 
 

Figure 4.5 Illustrates a high respiratory rate (RR) measured using impedance pneumography 
(IP) in an intensive care unit patient. The IP RR was 32 breath per minute (bpm), the combined-
electrocardiographic RR was 50 bpm. Shown is a one-minute time period with ECG leads I, II, 
II, and V (V1) and the IP waveform (RESP). The IP waveform shows the outlier patient with high 
RR (50 bpm) compared to the low IP RR (32 bpm), which in this case is contaminated with both 
cardiac and motion artifact.  
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Table 4.1 Demographic and clinical characteristics of 100 intensive care patients. 

Abbreviation: BMI = body mass index; bpm = breaths per minute; IQR = interquartile range; kg = kilogram; m2 = 
meter squared; RR = respiratory rate; SD = standard deviation.  
 
 

 

Table 4.2 Mean difference and limits of agreement for normal, low and high respiratory rate comparing impedance 
pneumography to the combined-electrocardiographic derived method. 
 

Patient group Bias Mean (SD) 95% CI of the bias 95% LOA Lower, Upper Regression Test 
(p-value) 

 
Normal RR 

 
-1.00 (2.11) 

 
-1.60 to -0.40 

 
-5.13 to 3.13 

 
0.088 

 
Low RR 

 
-16.54 (6.02) 

 
-18.25 to -14.83 

 
-28.33 to - 4.75 

-1.26; 95% CI -1.62 to 
-0.89; p<0.05* 

High RR  17.94 (12.01) 14.53 to 21.35 -5.60 to 41.48 0.87  

Abbreviations: CI = confidence interval; LOAs = limits of agreement; RR = respiratory rate; SD = standard deviation. 

 
 

 

 
 Characteristics 

 
Normal RR 

 
 
 

n = 50  
                                   

 
Low RR 

 
(<5 bpm) 

 
n = 50  

 

 
High RR 

 
(>30 bpm) 

 
n = 50  

 

Demographic 
characteristics 

   

Age (mean ± SD, in years) 60.14 + (18.01) 61.80 + 16.89 60.86 +16.13 

BMI (mean + SD, kg/m2) 26.72 + 4.73 26.84 + 4.83 29.50 + 9.79 

 n (%) n (%) n (%) 

Sex     
     Male 
     Female 

 
26 (52.0) 
24 (48.0) 

 
28 (56.0) 
22 (44.0) 

 
29 (58.0) 
21(42.0) 

Race 
     Asian 
     Black/African American  
     White  
     Unknown or decline 

 
6 (12.0) 
5 (10.0) 
33 (66.0) 
6 (12.0) 

 
8 (16.0) 
6 (12.0) 
30 (60.0) 
6 (12.0) 

 
7 (14.0) 
8 (16.0 

31 (62.0) 
4 (8.0) 

Clinical characteristics    

     Current smoker 9 (18.0) 5 (10.0) 12 (24.0) 

     Documented cognitive 
impairment 

20 (40.0) 19 (28.0) 24 (48.0) 

     Tremor 3 (6.0) 2 (4.0) 5 (10.0) 

Intensive care unit type 
Cardiac (16 beds) 
Medical-Surgical (32 
beds) 
Neurological (29 beds) 

 
13 (26.0) 
17 (34.0) 
20 (40.0) 

 
16 (32.0) 
18 (36.0) 
16 (32.0) 

 
11 (22.0) 
18 (36.0) 
21 (42.0) 

Mechanical ventilation 21 (42.0) 25 (50.0) 18 (36.0) 

Median monitoring time in 
hours (IQR) 

1.11 (0.23 – 29.13) 1.52 (0.33 – 10.67) 0.99 (0.18 – 29.1) 
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Conclusion 

In hospitalized patients, respiratory rate (RR) assessment is an essential indicator of 

respiratory instability and/or compromise and is often the first indication of impending respiratory 

arrest.1, 2 While visual assessment (VA) is the non-invasive standard of care used to assess the 

RR and breathing characteristics (i.e., depth, effort, skin color), studies show that this method is 

plagued with inaccuracies because clinicians often omit, repeat, or even guess a patient’s RR.3-7 

In addition, VA of RR is performed intermittently (e.g., every 30 minutes with vital signs), which 

means that acute changes can be missed. Therefore, accurate and frequent assessment of RR 

is important for identifying high risk patients. Impedance pneumography (IP) is the current 

device-driven method used to measure RR in hospitalized patients. However, RR alarms are 

common using this method and contribute to alarm fatigue in clinical staff. Newer RR algorithms 

that use electrocardiographic features (i.e., QRS, heart rate and myogram) hold promise, but to 

date have not been compared to the IP method. Alternative methods using non-invasive device-

driven techniques, such as impedance pneumography (IP) and Electrocardiographic (ECG) -

Derived Respiration (EDR) + myogram, have been examined.8,9,10 However, only the IP method 

is currently available in hospital settings that use ECG monitoring. Importantly, the IP method is 

riddled with frequent alarms, which can lead to alarm fatigue in nurses.8, 9 Therefore, this 

dissertation research was designed to addresses the gaps in knowledge regarding IP generated 

alarms and test a new algorithm that combines several physiologic waveforms to measure RR 

namely: IP; ECG waveforms (i.e., R-R-interval, QRS area) and the myogram. Of note, the 

combined-EDR method uses physiologic signals that are currently available in bedside 

physiologic monitors; hence, no new equipment or devices are needed to measure RR with our 

algorithm.  

The first aim of this dissertation research was to systematically review the literature 

regarding respiratory rate (RR) measurement methods in hospitalized patients by comparing the 

accuracy, strength, and limitations of VA to two methods that use physiologic data namely: IP 
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and EDR. Of the 78 studies identified, full manuscripts for 23 studies were reviewed. While 

designed to be a systematic review that compared the accuracy, strengths, and limitations of 

VA, IP, and EDR methods to measure RR, only four studies were identified.11-14 Of note, none of 

these studies compared all three methods in the same sample of patients. In terms of accuracy, 

when Bland-Altman analyses were performed, the upper and lower levels of agreement were 

extremely poor for both the VA and IP and VA and EDR comparisons. Several study limitations 

contribute to these significant discrepancies including relatively small sample sizes, lack of inter-

rater reliability assessments, cross-sectional designs, and heterogeneity in patient samples. 

Given the clinical need to have accurate counts of RR in critical care settings,15,16,17 additional 

research is warranted on the use of both the IP and EDR methods. Future studies need to 

develop rigorous research protocols that include: training and evaluation of the inter-rater 

reliability of the research staff who perform the VA of RR; power calculations to determine 

appropriate sample sizes; pre-specified criteria for acceptable LOA; conducting experiments to 

determine acceptable and clinically meaningful LOA for various clinical conditions (e.g., 

tachypnea, bradypnea, normal RR); and a critical evaluation of outliers (e.g., changes in 

patient’s position during data collection). Given the paucity of research and the fact that no 

studies have compared all three methods in the same patients, no definitive conclusions can be 

drawn about the accuracy of these three methods. 

The second aim was a secondary data analysis from the University of California San 

Francisco (UCSF) Alarm Study.18  The objectives of this study were to examine RR alarms by 

type (i.e., parameter high/low and apnea), duration and for associations with patients’ 

demographics and clinical characteristics. One strength of our study in 461 ICU patients was 

that three adult intensive care units (ICU) were included (i.e., cardiac, medical-surgical, and 

neurological). We examined nearly 160,000 IP RR alarms during more than 48,000 hours of 

ECG monitoring. The vast majority (88.2%) of all types of RR alarms were parameter alarms. Of 

the RR parameter alarms, over 80% were high parameter alarms. Using multivariate analysis, 
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after controlling for the length of ICU monitoring, alarm occurrence rates were associated with: 

type of ICU unit; the use of mechanical ventilation; and the lack of a ventricular assist device or 

pacemaker. Male gender was associated with low parameter and apnea alarms. Patients 

treated in the cardiac and neurological ICU were more likely to have a higher median number of 

all types of RR alarms. This study shows that there are a very high number of RR IP alarms, 

specifically 67 RR alarms/bed/day and illustrates that RR alarms, especially high parameter RR 

alarms, make a significant contribution to overall alarm fatigue. In addition, it provides new 

information on characteristics that are associated with higher alarm rates.  

In the final aim of this dissertation research, we examined RR agreement between the IP 

and the combined-EDR method for normal RR; low RR (<5 bpm); and high RR (>30 bpm). 

Data used in this study also came from the UCSF Alarm Study.8. 9,10 This study is the first to 

evaluate the level of agreement between two algorithm-based methods to measure RR, the IP 

method and a novel combined-EDR algorithm that combines signals from the IP, myogram, and 

ECG waveforms in a group of ICU patients. Good agreement was found between the two 

methods for the normal RR. An inverse agreement was found between the two methods for both 

the low and high RR comparisons. For low RR, the combined-EDR algorithm was consistently 

higher than the IP method. For high RR, the combined-EDR algorithm was consistently lower as 

than the IP method in all but one patient. Our data suggest that the combined-EDR method is 

comparable to the IP method with regards to normal RR, was consistently higher than low IP 

RR, and almost always lower than the higher IP RR. This latter finding is of significant interest, 

since we found that tachypnea was common in our ICU sample. 

 

 

 

 

 



 100 

Implication for Clinical Practice 

Based on a systematic review, whether visual assessment of respiratory rate was better or 

worse than impedance pneumography or electrocardiographic-derived respiration for adult 

patients in the intensive care unit was inconclusive. 

High and low respiratory parameter alarms were more common than apnea alarms during 

impedance pneumography for adult patients in the intensive care unit, particularly for patients 

with high respiratory rates. In addition, focused consideration should be given to male patients 

who tended to have a higher number of occurrences of low respiratory parameter and apnea 

alarms as compared to female patients. 

Depending on the respiratory rate (normal, low or high) of adult patients in the intensive care 

unit, the combined electrocardiographic derived method varied in agreement with the 

impedance pneumography method for respiratory rate measurement. Evaluating patient 

scenarios or alarm adjustments made by clinicians would add important context to the study 

findings. For example, Low frequency signals may influence respiratory rate using the 

impedance pneumography method. Cardiac artifact may be a major contributor to high 

respiratory rate using the impedance pneumography method RRs often exceeded the upper 

limit of normal (i.e., <20 bpm) in the ICU – may suggest tachypnea is common.  

The high occurrence rates for RR parameter and apnea alarms suggests that these 

alarms make a significant contribution to overall alarm fatigue. The prevalence of high 

parameter alarms in the ICU setting and the impact of demographic (being male) and clinical 

(being on mechanical ventilation, not having a ventricular assist device or pacemaker, length of 

ICU monitoring time, being in a cardiac or neurological ICU) characteristics that are associated 

with higher alarm rates must be noted by clinicians. To decrease the number of RR alarms, 

clinicians need to evaluate the most appropriate alarm settings, as well as the demographic and 

clinical characteristics identified. In addition, clinicians should aim to reduce the patients’ length 

of ICU stay through vigorous and adequate management of their condition(s).  



 101 

Low RR using the IP method may be influenced by low frequency signals, which can 

cause inaccurate low RR. However, low RR can occur with shallow breathing, which would be 

of clinical significance in hospitalized patients at risk for respiratory compromise. High RR, using 

the IP method, can be caused by cardiac artifact. However, we found RRs often exceeded the 

upper limit of normal (i.e., >20 bpm) in the ICU sample we examined, which may suggest 

tachypnea is common.  

Recommendation for Future Research 

The systematic literature review was inconclusive with regards to the accuracy of the 

visual assessment, impedance pneumography and electrocardiographic derived methods for  

measuring respiration. Given the importance of accurate and frequent RR assessment in the 

fast-paced critical care environment, methods that take advantage of available physiologic data 

that can detect respiratory signals are warranted. Given the promise, but limitations of both the 

IP and EDR methods, future research needs to focus on making refinements to these 

algorithms and/or developing new algorithms that are easily integrated into existing physiologic 

devices used in the critical care environment. The use of a combined approach that utilizes the 

strengths of both IP and EDR may provide more precise and accurate results. However, the 

optimal approach to combining these methods warrants additional investigation. Future studies 

need to include diverse patient populations with a variety of clinical conditions and employ the 

most robust analytic methods and evaluate different device monitoring vendors. This line of 

scientific inquiry will result in a clinically useful method to detect dynamic and acute changes to 

RR in critically ill patients who may require interventions to avert untoward outcomes. 

Finally, examining whether daily skin electrode changes would reduce RR alarms by 

ensuring optimal IP signal quality should be explored. The study in chapter four revealed that 

the combined-EDR method was in good agreement with the IP method for normal breathing. 

However, for low RR compared to the IP method the combined-EDR was consistently higher. 

The study should be replicated for confirmation of the findings with VA method and other 
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monitoring devices since only one vendor was used in this study and the gold standard was not 

compared due to the secondary data utilized for this research study. 
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