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Abstract An efficient method for the simulation of strained heteroepitaxial growth with intermixing using
kinetic Monte Carlo is presented. The model used is based on a solid-on-solid bond counting formulation in
which elastic effects are incorporated using a ball and spring model. While idealized, this model neverthe-
less captures many aspects of heteroepitaxial growth, including nucleation, surface diffusion, and long-range
effects due to elastic interaction. The algorithm combines a fast evaluation of the elastic displacement field
with an efficient implementation of a rejection-reduced kinetic Monte Carlo based on using upper bounds for
the rates. The former is achieved by using a multigrid method for global updates of the displacement field and
an expanding box method for local updates. The simulations show the importance of intermixing on the growth
of a strained film. Further, the method is used to simulate the growth of self-assembled stacked quantum dots.

Keywords Heteroepitaxy · Strained · Intermixing · Kinetic · Monte Carlo · Self-assembly

PACS 68.43.Jk · 68.65.Hb · 68.55.-a · 81.16Dn · 81.15.Aa

1 Introduction

Heteroepitaxy is the process of slow deposition of a film of one or more crystalline materials on a crystalline
substrate of a different material. The classical examples of film/substrate combinations include, for example
Ge/Si, InAs/GaAs, and InP/GaAs. The natural lattice spacing between the film and the substrate differ by a few
percent resulting in elastic stress. Consequently, as the film grows the elastic energy builds up. The formation
of 3D islands reduces the elastic energy by relieving stress at the cost of increased surface energy. In many
cases these islands are on the order of tens of nanometers and are referred to as quantum dots. These quantum
dot materials are of importance in construction of some optoelectronic devices.

The theory of island formation is well understood in the context of Asaro–Tiller–Grinfeld instability [1,6].
This explains the instability of a single component stressed film to perturbations of the flat surface. The flat
surface is unstable under sufficiently long wavelength perturbations. These perturbations grow through mass
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transport on the surface, along the free energy gradients, leading to formation of surface ripples that later grow
into large islands with stress concentration in the valleys. The theory, however, fails to explain an experimental
observation, namely in many cases the film first grows in a layer-by-layer fashion until it reaches a certain
critical thickness. Then islands form on top of this layer (known as the wetting layer). This mode of growth is
known as the Stranski–Krastonov (SK) growth mode [13,18].

It was demonstrated experimentally by Cullis et al. [25,5], that the intermixing between the film and sub-
strate is of importance. The presence of compositional non-uniformity and the dilution of the film by substrate
material can have a stabilizing effect. Moreover, the presence of vertical and lateral segregation in the case of
alloy films [24], can further change the nature of the instability. Subsequently, Tu and Tersoff [22], using a
continuum model developed by Spencer et al. [21], argued that Stranski-Krastonov growth is a kinetic effect
and the wetting layer is not stable. A crucial aspect of their proposal is the intermixing that occurs between
the film and the substrate.

Another important example in which intermixing occurs on very large length scales is the self assembly
of stacked quantum dots. Here, the dominant mechanism of intermixing results from the deposition process in
which several layers of one material deposited which are followed by several layers of another material and
so on. Since the materials are not lattice matched elastic strain develops and it is observed that the film forms
quantum dots. The quantum dots in different layers align themselves to self assemble into stacked quantum
dots. Intermixing of the film material and the capping layer needs to be addressed in this situation. Some related
study, both experimental and computational, can be found in References [23,10,9,11,27,14].

It is clear that the simulation of strained heteroepitaxial growth with intermixing has important applications.
One reasonably popular approach is based on numerical solution of continuum equations. Indeed, recent study
in this direction [21–23,26,27] has been able to capture many aspects of the film growth. Another approach
is based on kinetic Monte Carlo (KMC). Since, KMC is based on an atomistic scale it is typically slower
than a continuum formulation. On the other hand, KMC not only captures all the physical effects modeled by
continuum approach but can also naturally include discrete and stochastic effects such as nucleation, surface
roughness, and intermixing.

The purpose of this article is to present a KMC model of strained heteroepitaxial growth with intermixing
and an algorithm for its efficient simulation. We extended the model proposed by Orr et al. [12] and Lam
et al. [7] to include intermixing. This model is a solid-on-solid bond counting scheme [19] in which elastic
interactions are included using a ball and spring model. The efficient simulation of this model represents the
major contribution of this article.

One computational bottle neck for the simulation of strained film growth is the repeated calculation of
elastic field. In this article, we address this by the inclusion of intermixing into the multigrid-Fourier method
developed by Russo and Smereka [15,16]. In addition, we present a cleaner way to incorporate the substrate
into the multigrid method and simplify the coarse-graining and prolongation operators. As it turns out, for
the KMC model used here, the change in total elastic energy, when a surface atom is removed, is needed. It
was established by Schulze and Smereka [17] that despite the long-range nature of elastic interactions one can
accurately compute this energy change by local calculations. In this study, we have verified that this approach
also works in case of intermixing. In addition, we have presented numerical evidence that the asymptotic
expressions presented in Ref. [17] remain valid in the case of intermixing.

Another computational bottleneck is the computation of the rates. In order to implement rejection-free
KMC one must know the hopping rates for all the atoms. In order to accomplish this, one would have to
compute the change in elastic energy that occurs when each and every atom is removed. This would be pro-
hibitively expensive. Fortunately, it was argued in Ref. [17] that the current elastic energy density can be
used to provide fairly sharp upper bounds on the change in elastic energy. These can be used to provide a
rejection-reduced KMC algorithm. Here, we demonstrate that this approach works well for the intermixing
case. In our simulations the rejection rate is approximately between .5% and 5%.

In the following sections, we explain the KMC model and present our algorithm to calculate the elastic
displacement field and elastic energy in the case of a multicomponent film. Some results are presented that
illustrate the effectiveness of the algorithm; namely, the effects of intermixing on the morphology of a grow-
ing strained film and a simulation illustrating the self-assembly of stacked quantum dots. To the best of our
knowledge these results are the first kinetic Monte Carlo simulations of strained heteroepitaxial growth with
intermixing.
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2 Model description

Our model is based on the solid-on-solid model presented by Orr et al. [12] and Lam et al. [7]. We consider
a semi-infinite substrate which is initially composed of a single component. For ease of exposition, we shall
refer to the substrate material as Silicon. The deposited material will be composed of a prescribed mixture
of Silicon and Germanium. The model and algorithm will be detailed for a two component film but it is not
limited to this. In this article, we restrict ourselves to 1+1 dimensions. The atoms in the crystal occupy sites
on a simple cubic crystal, within the solid-on-solid framework (no overhanging atoms). Therefore, the height
of the surface is a function of the horizontal coordinate denoted by �. Each atom in the lattice is bonded with
its nearest (four possible) and next to nearest neighbors (four possible) by bonds of strength γ .

The elastic interactions are modeled by means of a ball and spring system. Each atom on the lattice is
connected to its nearest and next to nearest neighbors by Hookean springs. The lateral and vertical springs
have a spring constant of kL and the diagonal springs kD. We choose kD = kL/2 corresponding to the isotropic
case [7]. The natural bond lengths (lattice spacing) are denoted by ass, asg and agg, for Si–Si, Si–Ge and Ge–Si
bonds, respectively. If these quantities are equal there are no forces due to lattice mismatch and hence no elastic
energy in the crystal. In general, since ass �= asg �= agg forces do arise. This is addressed in detail in the next
section.

The crystal evolves by rearranging itself through motion of surface atoms. By virtue of the solid-on-solid
assumption each surface atom is uniquely specified by � (the horizontal component) and this is what we mean
when we specify the �th surface atom. The hopping rate of the �th surface atom is modeled by

R� = R0 exp

[
�E + E0

kBT

]
(1)

where �E is the change in the total energy when removing the �th surface atom, R0 is the attempt frequency,
kB is the Boltzmann constant and T is the absolute temperature. We write the total energy as

E = Echem + W

where Echem is the total chemical energy and W is the total elastic energy. The chemical energy can be thought
of as the contribution to the total energy from local interactions whereas W is the contribution by the long-range
interactions. Since, we are assuming that the bond energy is the same for nearest and next to nearest neighbors,
it follows that

�Echem = −γ N

where N is the total number of nearest and next to nearest neighbors. Therefore, the change in total energy is
given by

�E = −γ N + �W (2)

The calculation of �W is described in the next two sections. The parameters E0 and R0 will be chosen to
match the adatom diffusion rate to experimental values. When an atom hops it moves to another surface site
whose horizontal coordinate changes by ±1, with equal probability. It should be noted that since only surface
atoms can move in this model intermixing can only arise due to surface roughness combined with adatom
diffusion.

As a simplification, we shall ignore the elastic contribution to the energy barrier for adatoms; therefore,
the rates, we shall use are

R� =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

R0 exp

(−3γ + E0

kBT

)
if N ≤ 3

R0 exp

(−Nγ + �W + E0

kBT

)
if N > 3

(3)

The number 3 corresponds to the number of bonds of an adatom on a flat terrace. The adatoms with less than 3
bonds are assumed to hop at the same rate as other adatoms. The change in elastic energy when a surface atom
is removed is usually a small fraction of the change in chemical energy. Nevertheless, these small changes
become important when their variation is due the morphology of the surface. We have found, however, that
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the change in elastic energy when removing an adatom is insensitive to the surface morphology. In other
words, the adatom hops merely serve as a mechanism for surface mass transport. Based on this, we do not
consider the contribution of �W in the hopping rate of adatoms. Numerical studies confirm that there is no
significant change in the results due to this treatment for the adatoms, however, it reduces the computational
time significantly. This was also reported by [7].

Finally, we deposit atoms at a rate of

Rdep = F M (4)

where F is the deposition rate in monolayers per unit time and M is the total number of sites in the horizontal
direction.

The model by Lam et al. [7] allowed the possibility of large hops with R0 adjusted to correct for the large
hop size. This greatly improved the computational speed but at the same time not changing the results too
much. However, in the case of intermixing we observed that the inclusion of this feature significantly retarded
intermixing. Hence, large hop strategy was not adopted in this study.

3 The displacement field

The calculation of the hopping rate of an atom involves the computation of elastic energy of the crystal in
different configurations. The elastic energy is merely the sum total of the energy stored in each spring when
the crystal is in mechanical equilibrium. The energy in a harmonic spring is proportional to the square of the
change in length of the spring (relative to natural length). This is computed in terms of the displacements of the
atoms from a reference configuration. The computational challenge is in quickly computing the equilibrium
displacements of the atoms.

3.1 Forces in the reference configuration

The first step toward the calculation of the elastic energy is the choice of a reference configuration. The dis-
placements of atoms are calculated with respect to this reference configuration. We choose this to be a cubic
lattice, whose lattice spacing equals that of pure substrate material. This ensures that the substrate is devoid
of any forces in the reference state. Thus, two atoms in the reference configuration are a distance ass apart.
The natural lattice spacing, however, depends on the nature of the two atoms. The natural lattice spacing is
a = ass, ags, and agg, when the two atoms are Si–Si, Ge–Si, and Ge–Ge respectively. It is useful to introduce
the misfit parameter, ε,

ε = (a − ass)

ass
(5)

This typically varies from ε = −0.06 to +0.06. In the two component system Ge/Si, we have two interactions
to be considered Ge–Si and Ge–Ge and we introduce the following quantities

εsg = (asg − ass)

ass
and εgg = (agg − ass)

ass
. (6)

In order to compute the forces, that arise from the misfit, on the atoms in the reference configuration let
us focus on two nearest neighbor atoms. The force exerted by the spring on the atoms can be calculated to
be kL(a − ass) in magnitude where kL is the spring constant for nearest neighbor atoms. In the case of next
to nearest neighbor interaction, the force is calculated to be kD(a − ass) in magnitude, to first order in ε. The
spring constant for next to nearest neighbors is kD. Before the general formula for the forces in the reference
configuration are given, we first present a simple example.

An Example. In order to make things clear, we present a sample calculation of forces in the configuration
shown in Fig. 1. The forces are given by

F−1,1 =
(

0

0

)
, F0,1 =

(
0

0

)
, and F1,1 =

(
−Fgg

N N

−Fgg
N N

)
. (7)
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F1,1

F
−1,0

F0,1

F
1,0

F
0,−1 F

−1,1

F
−1,−1

F1,−1

ssa

ssa

ssa ssa

Fig. 1 Configuration shows the atom of interest in the center surrounded by eight neighboring sites. The Green circles represent
Si atoms, the red represent Ge and blue the empty sites.

The first two correspond to interactions with empty sites and the last one arises from a Ge–Ge interaction. The
forces from Si–Ge interactions are given by

F−1,0 =
(

F sg
N

0

)
, F1,0 =

(
−F sg

N

0

)
,

F0,−1 =
(

0

F sg
N

)
, F−1,−1 =

(
F sg

N N

F sg
N N

)
, F1,−1 =

(
F sg

N N

−F sg
N N

)
.

(8)

where

F sg
N = kLεsgass, F sg

N N = kDεsgass, and Fgg
N N = kDεggass. (9)

The General Case. The crystal is a lattice indexed by (�, j). The first index represents the horizontal coor-
dinate. The crystal is periodic in this index. The second is the vertical coordinate. The crystal is semi-infinite
in this index, i.e., j < h� where h� is the location of the surface. All sites j > h� are unoccupied.

We now write down the misfit forces for the general case. The net force on an atom at site (�, j)
in the reference state, due to its nearest and next to nearest neighbors ( j + m, �+ n) where (m, n) ∈
({−1, 0, 1}, {−1, 0, 1}), is given by

(
F�j
G�j

)
=

∑
m,n=−1,0,1

Fmn
�j (10)

where Fmn
�j are given by

F−1,1
�j =

(
f −1,1
�, j

f −1,1
�, j

)
F0,1

�j =
(

0

f 0,1
�, j

)
F1,1

�j =
(

f 1,1
�, j

− f 1,1
�, j

)

F−1,0
�j =

(
f −1,0
�, j

0

)
F1,0

�j =
(

− f 1,0
�, j

0

)

F−1,−1
�j =

(
f −1,−1
�, j

f −1,−1
�, j

)
F0,−1

�j =
(

0

f 0,−1
�, j

)
F1,−1

�j =
(

f 1,−1
�, j

− f 1,−1
�, j

)
,

(11)

with f mn
�j defined as

f mn
�j =

{
σi, j;n,m εi, j;m,n kDass if (m, n) ∈ (±1, ±1)
σi, j;n,m εi, j;m,n kLass otherwise. (12)
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The connectivity matrix, σi, j;m,n , is defined as

σ�, j;n,m =
{

1 if sites (�, j) and (� + m, j + n) both contain atoms
0 otherwise (13)

and the misfit matrix, ε�, j;n,m , is defined as

ε�, j;n,m =
⎧⎨
⎩

εgg if sites (�, j) and (� + m, j + n) both contain Ge atoms
εsg if sites (�, j) and (� + m, j + n) contain a Ge and a Si atom
0 otherwise

(14)

Note: The misfit for a Ge/Si system is εgg = 0.04 is known. However, our model demands a parameter εsg
which is not clear. We have conducted simulations with both εsg = 0.04 and εsg = .02. The first choice
considers asg = agg and the second considers asg = 0.5agg. The second choice seems appropriate if one con-
siders the two species as hard spheres of different sizes. Preliminary simulations with the first choice revealed
quantitative differences in the island sizes but no apparent qualitative differences in the nature of the instability.
With the true nature of the interactions being unknown, we present only results corresponding to εsg = 0.02.

3.2 Interactions

The atoms in the reference state experience forces from their neighbors as given by Eq. 10. The atoms become
displaced from the reference position to achieve mechanical equilibrium (force balance) and we denote the
displacement of the atom at site (�, j) as (u�j , v�j )

T .
Our aim is to calculate (u�j , v�j )

T . We will assume that there is a J such that the crystal is made of pure Si
for j ≤ J and that all sites in this region are occupied. This means that in the region j ≤ J the misfit forces
given by Eq. 10 will be zero. Whereas these forces will be nonzero for j ≥ J ; this includes the deposited
atoms and the regions where the deposited atoms have intermixed with the substrate atoms. We treat these two
regions separately. In order to set a convenient language for the rest of this article, we will refer to these regions
as the film ( j ≥ J ) and substrate ( j < J ), not to be confused with the original substrate and the deposited
material. Further, we choose our indices such that J = 0 for convenience.

3.2.1 Interactions in the film region

For the film region corresponding to the indices j ≥ 0, the force balance gives us

0 = F�j + kL
(
σ�, j;1,0(u�+1, j − u�j ) + σ�, j;−1,0(u�−1, j − u�j )

)
+ kD

2

(
σ�, j;1,1(u�+1, j+1 − u�j ) + σ�, j;−1,1(u�−1, j+1 − u�j )

)

+ kD

2

(
σ�, j;1,−1(u�+1, j−1 − u�j ) + σ�, j;−1,−1(u�−1, j−1 − u�j )

)

+ kD

2

(
σ�, j;1,1(v�+1, j+1 − v�j ) − σ�, j;−1,1(v�−1, j+1 − v�j )

)

+ kD

2

(−σ�, j;1,−1(v�+1, j−1 − v�j ) + σ�, j;−1,−1(v�−1, j−1 − v�j )
)

(15)

and

0 = G�j + kL
(
σ�, j;0,1(v�j+1 − v�j ) + σ�, j;0,−1(v�, j−1 − v�j )

)
+ kD

2

(
σ�, j;1,1(v�+1, j+1 − v�j ) + σ�, j;−1,1(v�−1, j+1 − v�j )

)

+ kD

2

(
σ�, j;1,−1(v�+1, j−1 − v�j ) + σ�, j;−1,−1(v�−1, j−1 − v�j )

)

+ kD

2

(
σ�, j;1,1(u�+1, j+1 − u�j ) − σ�, j;−1,1(u�−1, j+1 − u�j )

)

+ kD

2

(−σ�, j;1,−1(u�+1, j−1 − u�j ) + σ�, j;−1,−1(u�−1, j−1 − u�j )
)

(16)
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where σ�, j;n,m is the connectivity matrix defined in Eq. 13. This gives a linear system of equations that can be
solved for (u�j , v�j ). This system interacts with the substrate region. Note that the above relations at j = 0
use u�,−1, v�,−1 which are displacements in the substrate.

3.2.2 Interactions in the substrate region

Now for the region j < 0, we first note that, this is a semi-infinite substrate. There are no forces arising from
misfit in the substrate and requiring mechanical equilibrium gives us

0 = kL(u�+1, j − 2u�, j + u�−1, j )

+ kD

2
(u�+1, j+1 + u�−1, j+1 + u�+1, j−1 + u�−1, j−1 − 4u�j )

+ kD

2
(v�+1, j+1 + v�−1, j−1 − v�+1, j−1 − v�−1, j+1) (17)

0 = kL(v�j+1 − 2v�j + v�j−1)

+ kD

2
(v�+1, j+1 + v�−1, j+1 + v�+1, j−1 + v�−1, j−1 − 4v�, j )

+ kD

2
(u�+1, j+1 + u�−1, j−1 − u�+1, j−1 − u�−1, j+1). (18)

This is a homogeneous system of equations that takes a non-trivial solution due to the displacement field of the
film (at j = 0 ). This gives us the displacement field for j < 0 of a relaxed substrate with given displacements
at j = 0. The system in Eqs. 17 and 18 needs to be solved for j < 0 given (u�,0, v�,0). We do this by using a
Fourier series in the x-direction:

(
u�j
v�j

)
=

M∑
ξ=1

(
ûξ j
v̂ξ j

)
ei�ξ . (19)

Now, inserting this into Eqs. 17 and 18 we get

0 = 2kLûξ, j (cos ξ − 1) + kD
[
(̂uξ, j−1 + ûξ, j+1) cos ξ − 2ûξ j

+ i (̂vξ, j+1 − v̂ξ, j−1) sin ξ
]

(20)
0 = kL (̂vξ, j+1 − 2v̂ξ j + v̂ξ, j−1) + kD

[
(̂vξ, j−1 + v̂ξ, j−1) cos ξ − 2v̂ξ, j

+ i (̂uξ, j+1 − ûξ, j−1) sin ξ
]
.

We look for a solution for the above system in the form

ûξ j = α j ûξ,0, v̂ξ, j = α j v̂ξ,0

and obtain a linear homogeneous system of the form

�(α)

(
ûξ,0
v̂ξ,0

)
= 0. (21)

The above system admits non-trivial solutions if

P(α) := det[�(α)] = 0

giving raise to a polynomial equation in α. The polynomial P(α) is of degree 4 and has roots of the form
(α1, α2, 1/α1, 1/α2) where |α1|, |α2| > 1 [15]. Since, we are interested in solutions û j = α j û0, v̂ j = α j v̂0
that decay as j → −∞ we pick the two roots α1, α2.

(
ûξ, j
v̂ξ, j

)
= Q( j)Q−1(0)

(
ûξ,0
v̂ξ,0

)
(22)
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where Q( j) is the invertible 2 × 2 matrix given by
(

r1α
j
1 r2α

j
2

)
.

Finally, rp and αp are the eigenvectors and eigenvalues that arise when solving the discrete equation. The
solution of Eqs. (17) and (18) is then given by

(
u�, j
v�, j

)
=

M∑
ξ=1

Q( j)Q−1(0)

(
ûξ0
v̂ξ0

)
ei�ξ where

(
ûξ0
v̂ξ0

)
= 1

M

M∑
ξ=1

(
u�,0
v�,0

)
e−iξ� (23)

A three dimensional version of this was presented in [15] and similar approach was presented in [8].

4 Elastic energy of the crystal

The elastic energy can be computed using the displacement field calculated by the algorithm in the previous
section; it is

W =
∑

all springs

1

2
kspringδ

2 (24)

where kspring = kL, kD depending on whether the spring is a diagonal or lateral spring, and δ is the change in
spring length with respect to natural spring length. We rewrite W as

W = Wf + Ws (25)

where

Wf =
∑
j>0

1

2
kspringδ

2 and Ws =
∑
j≤0

1

2
kspringδ

2

where
∑

j>0 indicates summing all springs connected to atoms located at sites with j > 0,
∑

j≤0 is defined
in a similar way. We can write the expression of Wf as a sum over atoms:

Wf = 1

2

∑
j≥0

wi, j (26)

where wi, j is the energy of all the springs connected to the atom at site (i, j). The expression for wi, j is
given at the end of this section. Since, there are no forces arising from misfit in the substrate we can write the
expression for the elastic energy of the substrate

Ws = −1

2
uT

s Asus

where As is the non-positive infinite dimensional matrix representing the interaction of the atoms in the substrate
and us is the vector representing their displacements. It is convenient to decompose us into the displacements
of the atoms at j = 0 and those for j < 0:

us =
(

u0
u j<0

)

Since atoms in the substrate below the first layer produce no net force on each other it follows

As

(
u0
u j<0

)
=

(
f0
0

)
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where f0 is the force on the top layer of the substrate atoms due to the substrate atoms. If we use the above
expression in the equation for Ws we find

Ws = −1

2
f0 · u0

which can be written as

Ws = −1

2

M∑
�=1

(u�,0 f� + v�,0g�) (27)

where

f� = kL(u�−1,0 − 2u�,0 + u�+1) + kD

2
(u�−1,−1 − 2u�,0 + u�+1,−1) + kD

2
(v�−1,−1 − v�+1,−1)

and

g� = kL(−v�,0 + v�,−1) + kD

2
(v�−1,−1 − 2v�,0 + v�+1,−1) + kD

2
(u�−1,−1 − u�+1,−1).

Therefore, the total energy of the crystal is given by Eq. 25 along with Eqs. 26 and 27). It should be pointed out
that this expression could have also been obtained using summation by parts. Finally, as promised we present
the expression for wi, j

wi, j = wxx
i, j + w

yy
i, j + 2w

xy
i, j (28)

with

wxx
i j = kL

2

(
σi, j;1,0(ui+1, j − ui, j − d)2 + σi, j;−1,0(ui−1, j − ui, j + d)2)

+ kD

4

(
σi, j;1,1(ui+1, j+1 − ui, j − d)2 + σi, j;−1,−1(ui−1, j−1 − ui, j + d)2

+ σi, j;1,−1(ui+1, j−1 − ui, j − d)2 + σi, j;−1,1(ui−1, j+1 − ui, j + d)2),

w
yy
i j = kL

2

(
σi, j;0,1(vi, j+1 − vi, j − d)2 + σi, j;0,−1(vi, j−1 − vi, j j + d)2)

+ kD

4

(
σi, j;1,1(vi+1, j+1 − vi, j − d)2 + σi, j;−1,−1(vi−1, j−1 − vi, j + d)2

+ σi, j;1,−1(vi+1, j−1 − vi, j + d)2 + σi, j;−1,1(vi−1, j+1 − vi, j − d)2),

w
xy
i j = kD

4

(
σi, j;−1,−1(ui−1, j−1 − ui, j + d)(vi−1, j−1 − vi, j + d)

+ σi, j;1,1(ui+1, j+1 − ui, j − d)(vi+1, j+1 − ui, j − d)

− σi, j;1,−1(ui+1, j−1 − ui, j − d)(vi+1, j−1 − vi, j + d)

− σi, j;−1,1(ui−1, j+1 − ui, j + d)(vi−1, j+1 − vi, j − d)
)
,

where

d =
⎧⎨
⎩

ags − ass Ge–Si bonds
agg − ass Ge–Ge bonds

0 for Si–Si bonds
(29)
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5 Multigrid Fourier algorithm

In this section, we describe a multigrid Fourier algorithm to solve the linear system, derived in the previous
section, for the displacement field. This algorithm is quite similar to the one presented in [16] but there are
differences, first it was extended to a multicomponent system, second the incorporation of the substrate was
simplified as was the coarse- graining procedure. In [16], the substrate was removed and replaced by effective
forces. Unfortunately, standard SOR (the method of Successive over Relaxation) is unstable when this is done
and the resulting system had to be under relaxed to stabilize it. Here, the substrate is handled in more seamless
way by using Eq. 23 to supply the boundary conditions. As we shall see this formulation coarse grains nicely
resulting in an efficient algorithm.

Multigrid is an efficient method for solving linear systems Au + F = 0 where A comes from the discreti-
zation of a partial differential equation. A good introduction to the idea of a multigrid algorithm can be found
in the book by Briggs [3]. Two important tools needed to implement multigrid algorithm are coarse-graining,
CF, and prolongation operators, FC. The operator CF takes data from fine grid to a coarse grid; if u is a vector
of length N then CFu will be vector of length N/2. The operator FC takes data from a coarse grid to fine grid,
if u is a vector of length N then FCu is vector of length 2N . If u is smooth then u ≈ FC(CFu). Naturally,
there are many different ways to formulate these operators but typically coarse-graining operators are based on
averaging and the prolongation operators are based on interpolation. In addition, a multigrid algorithm needs
a course grained version of A, denoted as A(2). If A is N × N then A(2) will be N/2 × N/2. One natural way
to construct A(2) is to consider the discretization on a coarser grid.

Our goal is to solve Au + F = 0. Suppose, we have an approximate solution, ua. In order to assess its
accuracy, we can compute the residual: r = Aua + F. The relationship between the residual and the error,
e = u − ua, is

Ae + r = 0 (30)

One could solve the above equation for e and then determine u using u = ua + e, at first sight that would
appear as much work as solving the original system. The crucial observation used by multigrid methods is
that if an iterative solver such as Jacobi, Gauss–Seidal, or SOR is used to obtain the approximate solution
then the residual, r, and the error, e, are known to be smooth. Indeed, this is why these methods converge
so slowly. Since r is smooth, little information is lost because of coarse-graining. For this reason multigrid
methods replace Eq. 30 by

A(2)e(2) + r(2) = 0 (31)

Once this smaller system is solved the solution then updated using unew
a = ua +FCe(2). One then applies SOR

or Jabobi on the fine scale using unew
a as a guess. This procedure is repeated until the residual is sufficiently

small. This represents a two level multigrid scheme. In most implementations this procedure is extended to
many levels.

Implementation of a multigrid method for the system given by Eqs. 15–16 could be accomplished with
a standard multigrid method if the film profile was flat and there was no artificial boundary condition. The
main difficulty is the formulation of coarse-grained versions of Eqs. 15, 16, and 23. One approach is to use
algebraic multigrid methods as in [4]. The approach outlined here was presented in [16] in which the problem
was defined on a rectangular domain using fictitious atoms.

5.1 Fictitious atoms

We start by defining a rectangular domain. Let jmax be the vertical coordinate of the highest atom. Then, we
define our domain of computation to be

	 = {(i, j) : 1 ≤ i ≤ M, 0 ≤ j ≤ N }.
where M is the period of the lattice in the horizontal direction and N > jmax is an integer. Some of these sites
are occupied and others are not. All sites in 	 that are not occupied by real atoms are called fictitious atoms.
This is illustrated in Fig. 2.
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Substrate (Pure Si)

Fictitious atoms

Film (Ge/Si)

Fig. 2 Computational domain, with real and fictitious atoms. The red circles represent the Ge atoms and the green
circles the Si atoms. The null interaction with fictitious atoms is represented by dashed lines

The system of equations in (15) and (16) are now extended to fictitious atoms, simply by setting the
connectivity matrix to zero at these sites. This is done by defining the site atom density

pi, j =
{

1 if (i, j) is a real atom
0 if (i, j) is a fictitious atom . (32)

With these definitions, the connectivity matrix can be written as

σi, j;m,n = pi, j pi+m, j+n . (33)

In order to simplify the notation, we introduce the following spring strength matrices

K x−1,−1 = kD/2 K x
0,−1 = 0 K x

1,−1 = kD/2

K x−1,0 = kL K x
0,0 = 0 K x

1,0 = kL

K x−1,1 = kD/2 K x
0,1 = 0 K x

1,1 = kD/2

and

K y
−1,−1 = kD/2 K y

0,−1 = kL K y
1,−1 = kD/2

K y
−1,0 = 0 K y

0,0 = 0 K y
1,0 = 0

K y
−1,1 = kD/2 K y

0,1 = kL K y
1,1 = kD/2.

Using these matrices, we can rewrite (15) and (16) as:

1∑
m,n=−1

K x
mnσ�j;mn

([u�+m, j+n − u�j ] + mn[v�+m, j+n − v�j ]
) − F�j = 0 (34)

1∑
m,n=−1

K y
mnσ�j;mn

([v�+m, j+n − v�j ] + mn[u�+m, j+n − u�j ]
) − G�j = 0. (35)

5.2 Coarsening and prolongation operations

A key ingredient in the multigrid technique are the coarsening and prolongation operations used to map data
between coarser and finer grids. We let L = 1, 2, . . . Lg denote the scale of the grid. L = 1 denoted the finest
scale and Lg the coarsest. In our computations, we will choose the number of grid points in the horizontal
direction on the finest scale to be M = 2P where P is an integer. Clearly then, Lg ≤ P . The number grid
points in the horizontal direction for the other levels are

ML+1 = ML

2
L = 1, 2, . . . , Lg − 1 (36)
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1 2
1 1

2
1 1

2
1

1

Level L

Level L+1

2 1

Fig. 3 Coarsening operation in the horizontal direction with even number of grid points. The same relative weights are
used in the prolongation, when interpolating values from the coarse to the fine grid.

where M1 = M . In the vertical direction, we let N denoted the number of grid points on the finest scale. The
number of grid points for the other levels is given by

NL+1 = max

(⌊
NL + 1

2

⌋
, 1

)
L = 1, 2, . . . , Lg − 1 (37)

where �·	 represents the integer part.

5.2.1 Operators in horizontal direction

In the case of the horizontal direction, we have periodic boundary conditions and the number of grid points
will be even for all levels. The coarse-graining procedure we use is displayed schematically in Fig. 3 and can
be expressed as

qL+1 = Cx qL (38)

where qL is a quantity defined on the fine grid, qL+1 is defined on the coarse grid, and Cx is the ML+1 × ML
matrix given by

Cx = 1

4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 1
1 2 1

1 2 1
· · ·

1 2 1
· · ·

1 0 · · · 1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The operation to take variables from the coarse grid to the fine grid is simply

qL = Px qL+1 where Px = 2CT
x (39)

5.2.2 Operators in vertical direction

The situation in the vertical direction is slightly different mainly because the number of grid points, NL , can
be either even or odd. Our coarse-graining strategy is shown in Figs. 4 and 5. We can write the coarse graining
and prolongation operations as follows

qL+1 = CyqL and qL = PyqL+1
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1 2
1 1

2
1 1

2
1

1

Level L

Level L+1

2 1

Fig. 4 Coarsening operation in the vertical direction for an even number of grid points on the fine scale. The blue
circles represent the grid outside the computational domain where the data is assumed to be zero

1 2
1 1

2
1 1

2
1

1

Level L

Level L+1

2 1

Fig. 5 Coarsening operation in the vertical direction for an odd number of grid points on the fine scale

The matrices Cy and Py are defined differently for even and odd NL . For NL even we have

Cy = 1

4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 1
1 2 1

1 2 1
· · ·

1 2 1
· · ·

1 2 1
1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and Py = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
2
1 1

2
1 1

2 ·
1 ·

·
1
2
1 1

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

whereas for NL odd we have

Cy = 1

4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 1
1 2 1

1 2 1
· · ·

1 2 1
· · ·

1 2 1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and Py = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
2
1 1

2
1 1

2 ·
1 ·

·
1
2
1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Remark It should be pointed out that Py is not quite equal to 2CT
y as was the case in the x direction. In [16],

it was incorrectly asserted that their prolongation operator, P , could be written as twice the transpose of the
coarsening operator.

5.2.3 Coarsening and prolongation operators in two dimensions

We construct our coarse from fine operator, CF, and the fine from coarse operator CF, as the tensor product
of the one dimensional operators. Namely

CF = Cx ⊗ Cy and FC = Px ⊗ Py

Therefore, if qL is a quantity defined on the grid for level L then we map to the coarser grid of level L + 1
using

qL+1 = CF(qL)



14 A. Baskaran et al.

In an analogous way, we can map qL to finer grid using

qL−1 = FC(qL)

5.2.4 Coarse-grained interactions

Here, it will be outlined how to coarse grain Eqs. 34 and 35. They will be written in terms of the coarse-
grained values of the site atom density. The site atom density, pi, j , given by (32), is coarsened for all levels
L = 2, . . . Lg using CF. The coarse-grained site atom density is used to coarse grain the connectivity matrix
as follows

σ L
i, j,m,n =

√
pL

i, j

√
pL

i+m, j+n,

the geometric mean of the site atom densities at the two sites. The coarse-grained version of Eqs. 34 and 35
are written as

22−2L
1∑

m,n=−1

cL
�j;mn K x

mn

(
uL

�+m, j+n − uL
�j + mn(vL

�+m, j+n − vL
�j )

)
+ F L

�j = 0 (40)

22−2L
1∑

m,n=−1

cL
�j;mn K y

mn

(
vL
�+m, j+n − vL

�j + mn(uL
�+m, j+n − uL

�j )
)

+ GL
�j = 0 (41)

The factor 22−2L is typical of coarsened elliptic equations. This can be interpreted as the weakening of springs
as several springs are replaced by a single spring. The boundary conditions at j = −1 are given by (23) on
the corresponding grid level. In other words

(
uL

�, j
vL
�, j

)
=

ML∑
ξ=1

Q( j)Q−1(0)

(
ûξ0
v̂ξ0

)
ei�ξ where

(
ûξ0
v̂ξ0

)
= 1

ML

ML∑
ξ=1

(
u�,0
v�,0

)
e−iξ� (42)

The system of equations given by Eqs. 40, 41, and 42, will for sake of convenience, be written as

ALuL + FL = 0. (43)

5.3 Successive over relaxation

In our multigrid algorithm, we shall use the method of successive over relaxations to generate approximate
solutions. In order to explain our implementation, it is useful to rewrite these equations as

(
axx axy

ayx axx

)(
uL

�j

vL
�j

)
=

(
cx

cy

)
−

(
F L

�j

GL
�j

)
, (44)

where

axx = 22−2L
1∑

m,n=−1

c�j;mn K x
mn, axy = 22−2L

1∑
m,n=−1

c�j;mn K x
mnmn,

ayx = 22−2L
1∑

m,n=−1

c�j;mn K y
mnmn, ayy = 22−2L

1∑
m,n=−1

c�j;mn K y
mn,

cx = 22−2L
1∑

m,n=−1

c�j;mn K x
mn

(
uL

�+m, j+n + mnvL
�+m, j+n

)
,
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and

cy = 22−2L
1∑

m,n=−1

c�j;mn K y
mn

(
v�+m, j+n + mnu�+m, j+n

)
.

We have omitted writing the explicit dependence of the a and c coefficients on � and j . The relaxation scheme
for the above system is based on treating the right hand side as known. Let us denote by ((uL

�j )
k, (vL

�j )
k)T

the value of the displacement at iteration k. Then, the solution at the next iteration, ((uL
�j )

k+1, (vL
�j )

k+1)T is
computed by relaxing system (44) by one SOR iteration. The SOR relaxation is performed as

(uL
�, j )

∗ = (ck
x − F L

�j − axy(v
L
�j )

k)/axx (45)

(uL
�j )

k+1 = ω(uL
�j )

∗ + (1 − ω)(uL
�j )

k

(vL
�, j )

∗ = (ck
y − GL

�j − ayx (u
L
�j )

k+1)/ayy (46)

(vL
�j )

k+1 = ω(vL
�j )

∗ + (1 − ω)(vL
�j )

k

where the superscript k on cx and cy indicates that these terms are evaluated using the displacements at the kth
iterate.

5.4 Multigrid V-cycle implementation

In our computations, we implement the multigrid algorithm using a standard V-cycle which, for sake of
completeness, we will now describe. The V-cycle starts with the following steps:

Precomputation

1. Compute F1 using (10).
2. Compute NL and ML for L = 2 to Lg using (37) and (36).
3. Coarse grain the site atom density: pL+1 = CF(pL) for L = 2 to Lg

4. Compute the connectivity matrix: (σ L
i, j,m,n) for L = 2 to Lg

5. Initialize first guess for u1
guess (usually u1

guess = 0 or an existing field).

V-cycle

For L = 1 to Lg − 1 do the following

Relax ALuL + FL = 0 for η steps (η = 2 in our calculations)
Compute residual rL = FL + ALuL

Coarse grain the residual: rL+1 = CF(rL)
Set FL+1 = rL+1

Set uL+1 = 0 (This is the initial condition for the next relaxation)

End Loop
Solve ALguLg + FLg = 0 by relaxation
For L = Lg − 1 to 1 do the following

Prolong the solution on the coarse mesh: eL = FC(uL+1)
Let uL

guess = eL + uL

Relax ALuL + FL = 0 with initial guess uL
guess for η steps

End Loop
The accuracy of the solution is measured using the L2 norm of relative residual defined as

RGlobal = ||r||2/||F||2
The V-cycles are repeated until RGlobal < εG where εG is a specified tolerance.
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Table 1 Average CPU time in seconds to update the displacement field and calculate the change in elastic energy

Fourier-multigrid CPU time

System size εg = 10−2 εg = 10−3 εg = 10−4

512 0.030 0.065 0.202
1024 0.056 0.128 0.420

Atom of interest

ρ = 2

ρ = 2

Substrate (Pure Si)

Fictitious atoms

Film (Ge/Si)

Fourier Boundary

Fig. 6 Computational domain for local elastic solve with ρ = 2 with real and fictitious atoms. The red circles represent
the germanium atoms and the green circles the silicon atoms. The blue region represents the grid points updated by
SOR and the red region represents the boundary where u = uρ

5.5 Calculation of elastic energy differences

Given the surface site, (�, h�), our goal is to calculate the change in the elastic energy

�W = W (u) − W (ua)

where u and ua are the displacement fields with and without the atom, respectively. Table 1 shows the com-
putational time required to accomplish this task. In more detail, we consider a film, with 10 monolayers of
deposition, having a profile similar to the one shown in Fig. 9. We begin with an updated displacement field
and remove an atom and compute the change of elastic energy. The atom is then replaced; this is done each and
every surface atom. Results for the computational time are displayed on Table 1. These were obtained using
a 3.6 GHz Intel Pentium 4 Processor Linux Box. It should be pointed out that εG = 10−2 provides accurate
values to �W i.e., within 1–5%.

6 Local elastic calculations

Even though the multigrid method greatly reduces the computational time for an update of the elastic displace-
ment field it is still far too slow considering the large number of updates required during the course of a kinetic
Monte Carlo simulation. In this section, we will first examine the long-range nature of elastic interactions and
then outline a strategy for the computation of elastic energy differences using local updates of the displacement
field.

6.1 Long-range nature of elastic interactions

As is well known elastic interactions are long ranged and in fact for strained films they are even longer. In
order to make this point clear, it is interesting to consider the following quantity

�Wρ = W (u; 	ρ) − W (ua;	a
ρ)

where

	ρ := {(�, m); i − ρ ≤ � ≤ i + ρ, hi ≥ m ≥ hi − ρ}
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Fig. 7 The upper figure shows a portion of the film along with some of the expanding boxes. The black line shown on the lower
left hand figure shows a plot of (�W − �Wρ)/�W versus ρ. The colored lines show plots of (�W − �Wloc)/�W versus ρ.
The blue line is for 2 SOR iterations for each box, where green is 10 and red is 50. The lower right hand figure presents a plot of
Rloc for results on the left. In both graphs the dotted line corresponds to ρ−2

and

	a
ρ := 	ρ\{(i, hi )}.

Also in the above formula W (u; 	ρ) is taken to mean the total elastic energy inside the region 	ρ with a dis-
placement field given by u as shown in Fig. 6. Figures 7 and 8 demonstrate the very slow decay of �Wρ → �W
by plotting (�W − �Wρ)/�W versus ρ for two different profiles.

These results can be further understood in the context of continuum elasticity for a film on a semi-finite
substrate—which is a reasonable approximation since the ball and spring system is a discretization of linear
elasticity.

We take the film profile to be of the form h(x) = T + c(x) where c(x) is a smooth compactly supported
function whose region of support includes x = 0. If one employs the small slope approximation and if a small
amount of material is removed from the surface at (0, h(0)) then

�Wρ = �W (1 + O(T/ρ)) as ρ → ∞ (47)

where 	ρ is a semi-circular region of radius ρ centered at (0, h(0)). For more details see [17].

6.2 Principle of energy localization

Given that the goal is to update the displacement field after removing only one surface atom it might seem
reasonable to suppose that one could locally update the displacement in the vicinity of the removed atom.
However, the above results suggest otherwise. Nevertheless, in [17] the authors present an algorithm to per-
form local updates to the elastic fields and calculate the change in the elastic energy, with and without the
atom, by local calculations. This is based on what is called Principle of Energy Localization [17] which we
will now explain.

The idea behind Energy Localization is to compute �W by replacing ua by a locally corrected field ua
ρ

which is computed by solving Eqs. 34 and 35 for atoms in the domain 	a
ρ using u as Dirichlet boundary data.
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Fig. 8 This is the as Fig. 7 except the film profile is different

In this way, we have the following approximate displacement field for the atom-off configuration

ua ≈
{

ua
ρ for (�, j) ∈ 	a

ρ

u otherwise
(48)

The principle of energy localization states that

�Wloc = W (u; 	ρ) − W (ua
ρ;	a

ρ)

will be very close to �W provided that (48) is a good approximation to the displacement field. This result
is rather surprising given that �Wρ is a terrible approximation and the only difference between them is that
�Wloc uses a approximation to ua.

In order to assess the accuracy of (48), we note that since both u and ua
ρ satisfy Eqs. 34 and 35 exactly

for points not on the boundary of 	a
ρ then residual will be zero everywhere except for these points. In other

words, the atoms on the boundary of 	a
ρ experience a small force. With this in mind we define local relative

residual in the region 	ρ as

Rloc = 1

εasskL
max

(�, j)∈	a
ρ+1

|r�, j |

This formula also considers the possibility that the solution inside 	a
ρ may not satisfy Eqs. 34 and 35 exactly.

The following numerical results are consistent with the principle of energy localization

– �Wloc is an excellent approximation to �W as ρ increases.
– The local residual Rloc decreases as ρ increases.

Figures 7 and 8 show plots of the relative error, (�W − �Wloc)/�W for two different profiles. The results
show that the method can provide accurate values for the change in elastic energy using local calculations.
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Fig. 9 Pure Ge on Si: The Ge atoms are represented by red squares and the Si by green squares. The results show the evolution
after 2, 4, 6, 8 and 10 monolayers deposition

In addition, one can appeal to continuum theory as discussed above to gain further insight into the results
discuss above. In the same setting for Eq. 47 it is established in [17] that

Rloc = O(ρ−2) as ρ → ∞ (49)

and that

�Wloc = �W (1 + O(ρ−2)) as ρ → ∞ (50)

6.3 Expanding box method

Based on the principle of energy localization, Schulze and Smereka [17] proposed the Expanding Box Method
to construct a local update of the elastic displacement field that can be used to find an accurate value for the
energy differences. This method is based on using SOR in small neighborhood of the site where the atom was
removed. When a change is made to the crystal configuration at one site, few iterations of SOR have negligible
impact on the solution at sites that are at a distance of more than one lattice spacing away. The expanding
box method constructs a series of nested domains 	a

ρ for ρ = 2, 3, . . . , ρmax and finds a locally corrected
atom-off displacement field, ua

2. Two iterations of the SOR algorithm described in Sec. 5.3 are used and the
atom-on displacement field, u, is used as Dirichlet data for the boundary points of 	a

2. If it is determined that
Rloc < εloc, then our local update of the displacement field has been successful. If not we repeat the above
procedure until Rloc < εloc. If ρ = ρmax is reached before a successful local update has been achieved we
resort to a global update using the multigrid-Fourier method.

In order to give some idea on the computation speed of this method, we present some results in Table 2
for ρmax = 50. Results for εloc = 10−4 were not included since in this case the method fails for almost all
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Table 2 Average CPU time in seconds to update the displacement field and calculate the change in elastic energy

Expanding box CPU time

System size εg = 10−2 εg = 10−3

512 0.0022 (466) 0.0176 (301)
1024 0.0022 (930) 0.0106 (608)
The number in the parentheses is the number of successful applications of the expanding box method

attempts. It is clear that the method is significantly faster than the Fourier-multigrid method. Two specific
examples of this method are shown on Figs. 7 and 8. The first example shows a case where the local update
would be successful. In the case shown in Fig. 8 the decay is slower than the former case because we are near
the base of a large island. In this example, the expanding box method would fail if ρmax < 50. The red curves
shown in Figs. 7 and 8 are consistent with the expressions given by Eqs. 49 and 50. In addition, the black curves
on these figures clearly demonstrate the non-local nature of the elastic energy and is consistent with Eq. 47.

In the kinetic Monte Carlo algorithm, we use to simulate strain file growth, the removed atom is then moved
to a neighboring site. Once the atom is moved the atom-on displacement field, u, must be updated. This is also
done with the expanding box method. It should be pointed out that the theorems are valid for an initial solution
u that is exact (in other words a globally computed solution is needed). Nevertheless, in practice this “quilt”
of locally corrected solutions is found to be of sufficient accuracy to provide faithful energy differences; this
issue is discussed in more detail in [17].

7 Reduced-rejection kinetic monte carlo

When using Eq. 3 for parameters of physical interest one finds a wide range of different rates. In this situation,
the most efficient way to simulate kinetic Monte Carlo is to use a rejection-free implementation. In this case the
hopping rate of every surface atom R needs to be known before an event can occur. Even with the expanding
box method, this is too slow for practical simulations. Here, we outline a reduced-rejection approach which
reduces the number of elastic computations.

In this method the rates, R�, are replaced by upper bounds, Rup
� where Rup

� ≥ R where Rup can be quickly
evaluated. Now, the atoms are selected with rates Rup

� . Once an atom is selected the actual rate is computed. In
order to compensate for the overestimate in the rate, the selected atom will then hop with probability R�/Rup

� .
This introduces the possibility of rejection whose rate depends on how closely R� is approximated by Rup

� .
It is clear by looking at (3) that if we can extract an appropriate upper bound for the change in elastic energy
�W then an upper bound on the rates will follow. By performing a large number of numerical experiments, it
has been found that �W can be bounded above as follows

�W ≤ C(N )w�

where N is the number of occupied neighbors of the �th surface atom and w� is the energy stored in the springs
attached to this atom. The function C(N ) was found by extensive experiments in [17] and was verified for a
multi-component film with intermixing

C(N ) =
{

2.4 if N = 4
3.5 if N > 4

It seems remarkable that C(N ) is independent of the type of surface atom and type of neighboring atoms. The
dependence on those factors is contained in w�.

The upper bounds are now, in view of Eq. 3, given as

Rup
� = Roexp

(−γ N + C(N )w� + Eo

kBT

)
if N > 3 (51)

For N ≤ 3, we use the actual rates from Eq. 3.
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8 The algorithm

The KMC algorithm is the same as that given in [17] but for the convenience of the reader we present it here.

Precomputation

1. Calculate elastic field of crystal using multigrid-Fourier method.
2. Compute Rdep and Rup

� for � = 1 to M using (51)

Algorithm For evolution

1. Select an event by choosing a uniformly distributed random number r ∈ [0, Z), with Z = Rdep + ∑
Rup

� .
This interval represents an overestimate of the sum of rates for atoms hopping plus the rate of deposition.
The event to which r corresponds is located using a binary tree search [2].

2. If the event is a deposition, locally update the height, connection arrays and attempt a local elastic solve;
revert to a full elastic solve if the expanding box exceeds size ρmax. Update the rate estimates using (51) in
the same region in which the elastic field was updated.

3. If the event selected is a hop, then take into account the elastic effects by computing the actual hopping rate
R� ≤ Rup

� that depends on the energy difference of the system with and without the atom.
(a) Make a copy of the atom-on displacement field u in the domain 	ρmax . Follow the same procedures

in Step 2 to compute the displacement field with the atom removed, ua
ρ (atom off).

(b) Once the elastic field has been updated (locally or globally as necessary), calculate the energy barrier
and actual rate R�.

(c) Use rejection to decide whether or not to make the move. Note that the atom-off calculation must be
performed whether or not this move is made.

(d) If the move is rejected, no change is made to the displacement field. Return to Step 1.
(e) If the move is accepted, a hop is made. Update the displacement field in the vacated position using

ua
ρ . Perform a second local/global calculation in the atom’s new position thereby updating u.

4. Return to Step 1. One event has been completed

9 Results

In this section, we present some results using the parameters from [7] namely, E0 = 0.53 eV, R0 = 2D0/a2
ss,

D0 = 3.83 × 1013Å
2
/s, ass = 2.73Å, εgg = .04, εsg = .02. The spring constants kL = 13.85 eV/a2

s and
kD = kL/2. These were chosen to model the Ge/Si system. In our simulations, we took the bond strength to be
γ = 0.37 eV, whereas [7] choose γ = 0.4 eV. This was done in order to promote the effects of intermixing. It
should be pointed out that the above values are very approximate and our choice of .37 eV instead of .4 eV is
still well within the range of physically reasonable values. The simulations presented here were conducted at a
temperature of 600 K and we take εG = εloc = 10−2. Finally, we mention that for results in Fig. 9 the rejection
rate was 0.2% at 1 monolayer and increased to 1.14% at 10 monolayers. In addition, the displacement field
was updated 9.53 × 108 times of which 1,679 were global updates.

9.1 Example 1

Our first example aims to clearly establish the importance of intermixing. To this end we shall present two
cases. The first is a simulation of the model as discussed in Sect. 2. In the second case, we shall perform the
exact same simulation except the Silicon atoms are not allowed to hop: intermixing thereby is prevented. In
this way, the importance of intermixing can be readily observed. The results are shown in Figs. 9 and 10. In
both cases, pure Germanium was deposited on pure Silicon substrate at a rate of 0.8 monolayers/s.

In the intermixing case (Fig. 9), it is clear that after 2 monolayers islands have not yet formed, one has a
thin film composed of mixture of both Silicon and Germanium. When 4 monolayers have been deposited there
are indications that islands have formed and after 6 monolayers of deposition there are three distinct islands
that persist after further deposition. The case with no intermixing (Fig. 10), is quite different: well defined
islands are apparent at 2 monolayers of deposition. These observations can be summarized by a plot of the
square of the roughness ω2 (the variance of the height function) as the function of the film thickness in Fig. 11.
The data represent the ensemble average over 10 different runs. It can be observed that intermixing initially
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Fig. 10 Pure Ge on Si: The Ge atoms are represented by red squares and the Si by green squares. The results show the evolution
after 2, 4, 6, 8 and 10 monolayers of deposition. The Si atoms have been fixed by setting their hopping rates to zero
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Fig. 11 Roughness plot: this figure shows the plot of ω2 the square of the roughness against the film thickness in monolayers,
averaged over 10 independent runs. The red plot shows the behavior with intermixing and the blue without intermixing. The
figure on the right zooms into the first five monolayers of crystal growth

suppresses growth of the roughness. However, due to the valley formation the roughness in the intermixing
case will ultimately exceed that of the no mixing case.

If one defines an apparent critical thickness as the film thickness at which island first become observable
then the apparent critical thickness for the intermixing case is close to three monolayers, whereas for the case
with no intermixing the apparent critical thickness is approximately one monolayer. Our simulations show that
the intrinsic roughness of the surface due to thermal fluctuations combined with adatom diffusion causes the
Germanium and Silicon to mix. An inspection reveals that the pure Ge that was deposited is diluted by around
30%. This mixture has a lower elastic energy density than pure Germanium and consequently the growth rate
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Fig. 12 Elastic energy density plots: the figures show a portion of the elastic energy density (logarithmic scale) for the film after
two monolayers of deposition. The figure on the left is the intermixing case and the figure on the right is without intermixing

of islands will be reduced allowing the formation of an apparent critical layer (see Fig. 12). This is consistent
with the Asaro–Tiller–Grinfeld (ATG) instability which predicts that the growth rate of the instability is an
increasing function of the elastic energy density.

This delay in the onset of the instability is a kinetic effect hence the film is only kinetically stabilized and
islands eventually form due to elastic interactions. It also shows the formation of valleys between islands. The
valleys arise due stress concentration at the base of the islands. The elastic energy is lowered when the valleys
form. It should be noted that the notion of an apparent critical thickness and its connection to the ATG in
stability was discussed in [20]. The effect of intermixing on the apparent critical thickness was discussed in
the framework of a continuum model in [22].

Figure 13 shows the elastic energy density in the two scenarios at 10 monolayers of deposition. In the
case without intermixing stress concentration is observed where the island meets the substrate, whereas with
intermixing, the concentrations occur in the valleys between islands. Furthermore, it is observed that the rate
of decay of the elastic energy density substrate decays faster in the case with intermixing, see Fig. 14 which
plots the elastic energy density along two different cross sections. It is observed that the rate of decay of the
elastic energy density substrate decays faster in the case with intermixing. It is somewhat paradoxical that net
effect of the intermixing results in a higher energy density in the islands despite lowering it in the early stages
of growth.

Equally surprising is that the intermixed crystal has a greater total elastic energy than the crystal without
intermixing: the total elastic energy with and without intermixing is 9.363 ×102kBT and 5.727 ×102kBT ,
respectively. Since all the bond strengths are the same, the chemical energy does not enhance intermixing or
segregation. Therefore, we conclude that the intermixing is driven by entropy. We conjecture, despite the larger
elastic energy, that the free energy of the intermixing case is less than the case without intermixing.

9.2 Example 2

In this example, we deposited 15 monolayers of pure Ge on Si at a rate of 10 monolayers/s and at a temperature
of 600 K. This was capped by 30 monolayers of Si at the same flux and followed by another 15 monolayers of
Ge and so on. The Ge readily forms islands on the Si substrate. When a new Ge film is grown on the capping
layer the quantum dots align with the ones buried below. By this process they self assemble to form an array
of stacked quantum dots as shown in Fig. 15.

10 Summary

In this study, we have presented a kinetic Monte Carlo model for strained heteroepitaxial growth with inter-
mixing. The model is based on a solid-on-solid, bond counting formulation [19] in which elastic interactions
are accounted for with balls and springs on cubic lattice [12,7]. We have also introduced an algorithm for
the efficient simulation of this model. This algorithm is based on the study in [15–17] but was extended to
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Fig. 13 Elastic energy density plots: the figures show the plots of the elastic energy density (logarithmic scale). The figure on top
corresponds to the crystal configuration at 10 monolayers without intermixing shown in Fig. 10 and the bottom one corresponds
to the crystal configuration at 10 monolayers with intermixing shown in Fig.9

Fig. 14 Elastic energy density plot (cross section): this figure shows the elastic energy density as a function of the distance (in
atoms) below the surface. The figure of the left represents a cross section in the center of an island and the one on the right the
cross section between two islands. The red color represents the case without intermixing and blue with intermixing.

include intermixing and other improvements. In particular, the Fourier-multigrid method developed in this
study has much neater way of coupling the film and the substrate as compared to that in [16]. In addition, the
course-graining and prolongation operators have been simplified. We have presented numerical evidence that
the principle of energy localization is valid in the case of intermixing and that the asymptotic results presented
in [17] also remain true. Our results also indicate that the expanding box method works well in the case of
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Fig. 15 Stacked quantum dots: quantum dots of 15 monolayers Ge with a capping layer of 30 monolayers Si

intermixing. We have also demonstrated that the formula for the upper bounds on the rates proposed by Schulze
and Smereka [17] appears to work well even for mixtures.

A preliminary study on the growth of strained films with intermixing is presented. The study indicates
the presence of Asaro-Tiller-Grinfeld (ATG) type instability of the flat strained film leading to the formation
of quantum dots. The intermixing is found to initially lower the strain in the film resulting in a stabilizing
effect that delays the onset of islands. This gives rise an apparent critical thickness. Eventually, this critical
layer disappears as the valleys form. A detailed study of the effects of intermixing on the critical thickness is
currently under way. The model also successfully predicts self assembly of stacked arrays of quantum dots.
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