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Abstract

Tensegrity Spines for Quadruped Robots

by

Andrew Preston Sabelhaus

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Alice M. Agogino, Chair

Robots that are designed for NASA’s missions to foreign planets, as with disaster relief
efforts on earth, face tough challenges with harsh environments and locomotion over extreme
terrain. Soft-bodied robots could address many of these challenges by conforming and adapt-
ing to their environments. This dissertation presents the modeling, design, and control of a
set of soft and flexible robotic spines that assist quadruped robots in their locomotion over
extreme terrain. These spines are tensegrity systems, consisting of rigid bodies held together
in a network of flexible cables, used as a practical method of producing soft behavior.

First, the geometry and possible movements of these spines are discussed. Next, the in-
verse statics problem is solved for these spines, in order to calculate the tensions of the cables
which control the spine’s vertebrae. The resulting inverse statics optimization algorithm is
tested in a hardware experiment, demonstrating pseudo-static open-loop positioning of the
spine. Using this model, a design of a quadruped robot with a tensegrity spine is proposed
and prototyped. Simulations show that this quadruped robot’s tensegrity spine can lift and
position its feet, as a way to assist with locomotion and balance. Hardware experiments
validate the simulation’s motions of the robot’s spine and feet.

Then, control systems are investigated for these tensegrity spines. A set of closed-loop
controllers, which use model-predictive control (MPC) in combination with the inverse statics
algorithm, are proposed and simulated against dynamics models of the spine. Two different
MPC formulations are used, both of which show low-error tracking in simulation.

Finally, given the ongoing challenges with MPC, an energy-based stability criterion is
derived for a class of high-dimensional, nonlinear, possibly hybrid robotic systems. These
systems, termed ‘statically conservative’, include networks of cables in tension, similar to
tensegrity spines. The stability criterion is applied to these cable networks, giving condi-
tions for stabilizing controllers. An example controller is proposed for a cable-driven robot
with slack cables. Simulations of this system and its controller to validate the stability proof.
These control approaches show promise for future hardware implementation of walking lo-
comotion in quadruped robots with tensegrity spines.
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Problem Statement
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Chapter 1

Introduction

Of the many ongoing challenges in robotics, one of the most pressing is the use of robots
in unstructured environments. Though robots have been successful in a number of domains
(for example, manufacturing), significant challenges exist in using robots in spaces that are
not specifically designed for their presence. In particular, designing and controlling a robot
to move or walk over uneven, extreme terrain is both a need and an unsolved problem in
multiple domains.

This dissertation proposes an approach to assisting the locomotion of four-legged
(quadruped) robots over uneven terrain. Using the principle of tensegrity, this work presents
the modeling, design, and control of flexible bodies for quadruped robots. These flexible
bodies are referred to here as ‘spines’ in reference to their biological motivation.

The research in this dissertation seeks to demonstrate that such spines can be made
practical in both design and manufacture, with models that match physical experiment, and
which can be controlled in closed-loop. It is also demonstrated that quadrupeds with these
spines are able to perform movements beneficial to walking locomotion. Along the way to
these goals, new approaches to statics modeling of tensegrity structures are presented, as is
a new framework for analyzing energy in physical systems with flexible, soft components.

The remaining sections in this introduction provide the problem statement of locomotion
over uneven, extreme terrain, and review some current robotics solutions to the problem.
The concept of a quadruped robot with a tensegrity spine is then proposed in brief. The
chapter finishes with an outline of the remainder of the dissertation.

1.1 Transportation Needs in Extreme Environments

Both on Earth and on foreign planets, there are a variety of environments where human
movement and transportation are limited or impossible. In space exploration, data from a
variety of sources is highly valued in determining the origins, composition, and colonization
potential of different planets. However, sending human operators to collect this data is im-
practical. Similarly, in disaster situations, large amounts of supplies must be transported to a
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community to facilitate relief and recovery. However, many common forms of transportation
cannot reach such areas post-disaster, and it is left to humans to manually transport goods.
In both cases, there are clear potential benefits of robots that move in uneven, unstructured
environments and transport equipment and supplies.

1.1.1 Extreme Terrain on Foreign Planets

The US National Aeronautics and Space Administration (NASA) has long used robotics
technology to explore worlds inaccessible by humans, dating back to the 1970s with the
Voyager probes [184]. In modern times, space agencies send mobile robots to the surface of
planets. NASA’s most recent of such missions include the Mars Science Laboratory rovers,
Opportunity [183], Spirit [13], and Curiosity [83]. Valuable data from these experiments
has informed our world’s understanding of the composition of the Martian surface, radiation
properties, and past hydrodynamics.

Figure 1.1: The Mars Curiosity Rover, in one of its more aggressive motions on rocky terrain
[99]. The limitations of wheeled robots become evident in comparison to the variety of rocky
surfaces on planets such as Mars.

Each of these rovers has employed a wheeled base to move around on the planet’s surface.
For example, Mars Curiosity (Fig. 1.1) has six wheels with a suspension that allows it to
move on inclined surfaces. However, these robots are all limited in the regions they can
traverse, due to the inherent issues with wheeled locomotion. Fig. 1.1 demonstrates a
particularly aggressive slope and terrain for this robot, which was restricted to smoother,
flatter surfaces for most of its life cycle, similar to its counterpart Spirit [13]. Even in these
conservative motions, the robot still experienced a number of hardware failures in its wheels
due to the terrain [13]. These limitations are common to wheeled rover designs [173].
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A wider array of science return is available in areas that are neither smooth nor flat, such
as river beds and lava tubes. Transportation of the bulky equipment required for scientific
measurements (e.g., mass spectrometers) in these spaces has prompted NASA to examine
other means of locomotion (Sec. 1.2.2.) Nevertheless, no other design concept than wheels
has been flown by NASA.

1.1.2 Extreme Terrain in Disaster Relief Areas

In addition to locomotion and transportation needs in space, challenges exist with extreme
terrain here on Earth. Humanitarian crises cause significant loss of human life, much of which
occurs due to lack of supplies during and after the event occurs ([94], p.179). Disasters often
significantly disrupt transportation capabilities ([94], p.43) just as transportation is needed
the most. Supplies such as fuel, lighting, communications, and medical equipment are needed
by the relief workers that serve the area, as are fresh water [200] and cooking fuel [71] for
survivors.

Figure 1.2: A street in Chobhar, Nepal af-
ter two earthquakes struck the region in April
2015. Credit: Desiree Matel-Anderson, Field
Innovation Team.

However, current options to bring aid
into a disaster area are limited by the abil-
ity of traditional vehicles to access the area,
potentially creating crises of food, water,
and healthcare in regions that cannot be
accessed. All-terrain trucks are limited by
wheel base and axle height in the same way
as wheeled robots in space [147]. Airdrops
by helicopters can be unpredictable and dan-
gerous [80], and robotic drones have rela-
tively small carrying capacities [4] and so
are limited to lightweight payloads. More
widely-used are pack animals [160], which
cannot operate in the same way as machines.

Therefore, it is most common for human
relief workers to transport supplies manu-
ally, and much disaster equipment is specifi-
cally designed to be carried by people [201].
Fig. 1.2 shows one such situation, cour-
testy of the Field Innovation Team [65],
where wheeled vehicles cannot pass through
a street after an earthquake. Disaster re-
lief experts anticipate other earthquakes to
cause damage in the United States in the
near future, including along the Cascadia and Seattle fault lines in the Pacific Northwest as
well as along the San Andreas fault in the San Francisco Bay Area.
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In the same way that robotic rovers have been used in space for decades, the idea of using
robots to help in disaster relief situations is not new. Entire books have been written on the
topic [138], and nascent organizations such as Roboticists Without Borders are being formed
to oversee their implementation [137]. However, most of these uses have involved search and
rescue, not transportation. Sec. 1.2.1 below reviews these solutions.

1.2 Robots in Extreme Environments

The issues identified above are well-known in the field of robotics, and many proposed
solutions exist. The following section reviews those proposed solutions, and identifies the
particular gap which the work in this dissertation seeks to address: reliable transportation
of supplies and equipment over unknown and uneven terrain.

Chapter 2 reviews the literature related to this dissertation’s goals: quadrupeds, spines,
and control. This section instead reviews other potential robotics solutions to the issues
identified above.

1.2.1 Search and Rescue Robots

The field of robotics has traditionally focused on search and rescue for research in the context
of disaster relief. As differentiated from transportation of supplies during rebuilding, search
and rescue refers to an immediate response to a disaster, within the first few days, where
survivors may be trapped or in danger [138]. As a result, these robots are more often designed
solely for locomotion over or through uneven terrain, without regard to carrying equipment
or supplies.

In particular, tank-style robots are those most commonly used for search and rescue [139].
However, these robots are mostly small [59] and suffer from the same inherent issues as other
wheeled vehicles: they still cannot climb over large rocks or gaps. On the other hand, more
novel search and rescue robots are very small, and designed more to navigate inside rubble
than to carry supplies over it. Robots such as the VelociRoach [82] and Salamandra [51]
can move over uneven terrain, but exhibit potential limitations for use in transporting large
payloads or sensitive equipment. However, these modes of locomotion may be adaptable to
transportation in future work.

1.2.2 Flying and Hopping Robots

While disaster relief robotics has focused on identifying and assisting survivors, space robots
for uneven terrain locomotion have explored more extreme methods of locomotion that would
otherwise be inadvisable in sensitive disaster situations. In particular, robots that combine
flying and hopping may locomote effectively over uneven terrain, but have significant trade-
offs.



CHAPTER 1. INTRODUCTION 6

Hopping robots can use inertial flywheels [89], thrusters [107], or other methods to make
rapid movements from one location to another. These robots have significant challenges
aiming their motions [88], and risk damaging surrounding environments in sensitive situa-
tions as a result. For space applications, concerns may also exist in transporting sensitive
equipment.

In addition to the previously-stated small payload capacity of flying robots in disaster
relief settings, more challenges exist in space applications. In particular, Mars has a less
dense atmosphere, making flight difficult [177], but still possible. These solutions are not
considered here for the same reasons as with disaster relief.

1.2.3 Walking Robots

Walking locomotion is generally energy-efficient, does not involve unstable hopping, nor has
the size and terrain limitations of treads and wheels. Walking robots can have a variety of
different leg configurations and walking gaits. Robots with two legs (bipeds) for locomotion
over rough terrain have been recently emphasized by national competitions such as the
DARPA Robotics Challenge [53]. However, these robots are inherently unstable and require
active control at all times, and often fall or collapse in field tests [2]. Robots with six legs
(hexapods) or greater have more stability in comparison to two, and can locomote over
uneven surfaces even in open-loop [134]. However, the additional degrees of freedom with
each leg make closed-loop control more challenging.

Quadruped (four-legged) robots represent an efficient trade-off between stability and
complexity. Four legs are the minimum number required for pseudo-static walking gaits. It
is for this reason that this dissertation proposes the following concept.

1.3 Proposed Solution

This dissertation develops a flexible, actuated spine for quadruped robots that can assist in
a robot’s locomotion over uneven terrain in disaster relief and space applications. The spine
is used as part of an early prototype of the robot Laika, named after the first dog in space
(Fig. 1.3). Laika’s spine is a tensegrity structure (discussed in Chap. 2.3), consisting of rigid
vertebrae held together in a network of flexible cables. These cables are actuated by motors,
changing their lengths and forces, which moves the spine’s vertebrae.

Using a flexible tensegrity structure as part of a quadruped robot could address many of
the challenges that are found in other quadrupeds (Sec. 2.1), while simultaneously taking
advantage of the benefits of quadruped locomotion gaits. Laika’s spine is inherently flexible,
allowing for passive compliance with uneven terrain, while also assisting the robot in lifting
and moving its feet (Chap. 6).

Though designing a robot with such a spine is appealing for multiple reasons, significant
challenges also arise. Before this dissertation, no work existed that could model such a spine
either statically or dynamically. No practical hardware designs existed, nor were there sys-
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Figure 1.3: Prototype of the quadruped robot Laika, which incorporates an actuated tenseg-
rity spine as its body. Laika’s flexible spine allows it to passively balance on terrain such as
the rock in this example. Current prototypes of Laika do not yet walk, as this dissertation
focuses on Laika’s spine, not locomotion.

tems to control the spine’s movement in closed-loop. Each of these challenges are addressed,
in order, in subsequent chapters.

1.4 Dissertation Outline

This dissertation is split into three parts. The first part, an extension of this introduc-
tion, addresses the problem statement and background literature for quadruped robots with
tensegrity spines. The second addresses the kinematics, statics, and mechanical design of
such spines, since these concepts will be shown to be inherently intertwined. The third and
final part addresses dynamics models and control systems for both this spine and related
control problems, presenting solutions to the major difficulties with this spine’s system.

Part I contains this introduction, its continuation to a literature review in Chap. 2, and
a review of Lagrangian dynamics and passivity-based control in Chap. 3. Particular empha-
sis is placed on statics modeling and energy-based robotics control, since this dissertation
contributes progress in these two areas in addition to the spine itself. Chap. 3 reviews key
theorems in prior work related to dynamics and energy-shaping control, which are needed
for the new contributions in Chap. 8.

Part II presents the kinematics, statics, and design of tensegrity spines. While previous
investigations into tensegrity robots of similar types relied upon either model-free or ad-
hoc design methods, these chapters instead take a model-based and physically-validated
approach. In particular, Chap. 4 performs a bio-inspired investigation into spine geometry,
Chap. 5 derives the first mathematical models of these spines, and Chap. 6 presents the first
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designs for tensegrity spine prototypes based on these mathematical models. Chap. 5 also
presents a new inverse statics optimization algorithm for these spines, and shows that the
results can be used for open-loop control. These results demonstrate that tensegrity spines
can be modeled accurately and designed efficiently, and that their motions can be beneficial
to quadruped robots.

Part III presents dynamics models and the first closed-loop control systems for these
spines. As with Part II, these controllers are model-based as opposed to ad-hoc or hand-
tuned. Chap. 7 uses model-predictive control (MPC), in combination with the inverse statics
algorithm from Chap. 5, as part of multiple closed-loop controllers for some example spines.
Then, given the limitations of the MPC controllers, Chap. 8 presents a new framework
for energy-based control of robots that have statically conservative forces, a phenomenon
present in the slack cable dynamics of tensegrity spines. Finally, Chap. 9 discusses the
future work for this project, including walking prototypes of quadrupeds with these spines,
locomotion studies, scaling up soft robots to compete with larger rigid robots, manufacturing
and sensing challenges, and the wide applications and extensions of the proposed energy-
shaping framework.
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Chapter 2

Prior Work

The work in this dissertation spans many disparate domains in robotics modeling, design,
and control. The following chapter discusses the background and reviews the literature in
these domains. Relevant prior work in each area - quadruped robots and locomotion, robotic
spines, tensegrity structures, and control - are reviewed in order.

Taken in whole, this chapter suggests that ongoing challenges in each sub-field can be
addressed by particular combinations and contributions of the approaches presented here.
Robotic locomotion challenges could be addressed by constructing systems with soft compo-
nents. The intimidating issues with soft robotic spines could be addressed in turn by the use
of tensegrity designs. And, ongoing challenges in modeling, design, and control of tensegrity
robots can be addressed in part by the contributions in this dissertation.

2.1 Quadruped Robots and Locomotion

As discussed briefly in Sec. 1.2.3, quadruped (four-legged) robots exhibit a number of desir-
able qualities for locomotion, particularly over uneven terrain. A large number of quadruped
robots have been designed for different types of locomotion. This section reviews those robots
and ongoing challenges.

One major differentiation of quadruped robot designs is the robots’ purpose. Many are
focused on fast locomotion over flat terrain, i.e., running [174, 93], without or without spines
to assist in ‘galloping’ gaits [103, 150, 62]. These running robot serve a very different purpose
than Laika, which is intended for reliable, safe transportation of goods.

The other class of quadrupeds focuses on walking over uneven or uncertain terrain [73,
72, 110, 148, 157, 159, 33, 87]. Such terrain could be as diverse as the stairs inside buildings
[87, 182, 1] or rocky planets. However, balancing and locomotion over large obstacles can be
challenging for robots built with rigid structures that cannot conform to the environment,
limiting them to obstacles that are small in comparison to their total size [75, 72].

Such a limitation is evident in the work of Boston Dynamics, whose BigDog robot is
arguably the leading quadruped robot for transportation [159]. Fig. 2.1 shows a variety
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Figure 2.1: Various walking four-legged (quadruped) robots by Boston Dynamics, the leader
in this field. Right-to-left, top-to-bottom, the BigDog robot walks over rubble (A), mud
(B), snow (C), and a dirt path (D). In (E), the SpotMini robot walks up stairs. With the
exception of the rubble in (A), all these terrains are mostly-flat slopes (B-D) or environments
that only tip the robot up and down, not left-to-right (E). In the only truly uneven test, the
rubble in (A), the robot is tilted to the left as it walks: since BigDog cannot distribute its
weight between its shoulders and hips using a spine, it is less balanced. Images from [29].

of generations of BigDog, and its successors. By using many-jointed legs and advanced
control systems, BigDog can traverse snow (Fig. 2.1(C)) and sloped, smooth dirt paths
(Fig. 2.1(D)).

However, BigDog is constructed with a rigid chassis as its body, and exhibits somewhat
surprising behavior as a result when locomoting over very uneven terrain. For example, Fig.
2.1(A) shows a large swaying motion of the robot as it walks over a pile of cinderblocks, also
noticeable when slipping in mud (Fig. 2.1(B)). These motions presumably arise from the
large moments between BigDog’s shoulders and hips as its legs contact different heights of
terrain: the robot must make large movements to place all four of its feet in contact with
the ground. Though BigDog does still traverse these terrains, questions of the stability of
gaits arise. The proposed solution in this dissertation incorporates a flexible, actuated body
for precisely this purpose.

Boston Dynamics’ ongoing work appears to address these issues of balance by shrinking
the size of the robot’s body, and widening its stance, with the new SpotMini (2.1(E)).
Though doing so does allow the robot a wider range of motions, simply shrinking the robot’s
size counteracts the goals of transportation: the original BigDogs carried payloads, whereas
SpotMini does not. This suggests an inherent limitation on rigid chassis for robots, where
design tradeoffs dictate stability versus carrying capacity.
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2.2 Spines for Quadruped Robots

One method to address these limitations, then, is to incorporate a flexible body into the
robot, such that the weight distribution and leg placement can be partially performed by
the body itself. This can be done with the goals of faster locomotion [174, 62] or other tasks
such as turning [202], but which do not necessarily assist in uneven terrain settings. Robots
that do incorporate spines for balance purposes can either use passive or active spine designs.

Passive spines assist in balance by conforming to the environment under the robot’s legs,
without the need for active control [190, 100]. Such designs have been demonstrated on
inclined surfaces, for example. However, using a passive spine in the robot’s body comes
with significant modeling and control challenges, since the robot’s legs may not be able to
move into a desired position during a gait cycle. Extremely uneven terrain, such as large
rocks, suggests an actively controlled spine.

Spines that are actively controlled for purposes of balance have traditionally incorporated
rigid joints [20, 21]. Though this assists in positioning the robot’s feet, the lack of compliance
makes adapting to the environment challenging in other ways. Additionally, design issues
arise. When the robot needs to rotate its spine, for example, all the torque for this rotation
must pass through every joint in the spine and every actuator [20, 21], requiring heavy
mechanisms with large actuators, and subsequent inefficiencies. Amplified moment arms
through rigid joints when encountering large obstacles often limit mechanical designs in this
way [188].

2.3 Tensegrity Robots

A solution to the all these issues of compliance, active control, force distribution, and design
efficiency can possibly be found in the principle of tensegrity, or ‘tension-integrity’, structures.
The definition of the word tensegrity can be vague in the literature. Here, the following is
adopted:

Definition 2.3.1. Tensegrity. A tensegrity structure consists of rigid bodies suspended in
a network of cables in tension such the bodies do not contact each other [179].

This definition is sometimes restricted further to structures without internal bending
moments, i.e., where the bodies are single bars and cables only connect at bar ends [135,
128, 26]. However, both historical examples (Snelson’s ‘X-Cross’, [179]) and many modern
robots [130, 70, 27, 69, 46] use the broader definition, having more complicated bodies
suspended in the network, as with the vertebrae of these spines.

Tensegrity structures are differentiated from other cable-driven robots by the lack of
contact (either frictional, or through other types of joints) between their bodies. Instead,
cables must hold each body apart. The results can be striking and counter-intuitive (Fig.
2.2). Among the variety of benefits to using tensegrity principles when designing structures
are:
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1. Shape Change. By adjusting the tensions on the structure’s cables, for example by
retracting or extending the cables, the structure can change shape.

2. Force Redistribution. Since there are many load paths through the structure’s cables,
there is no single mechanism that carries the whole load applied to any individual
element. Therefore, the rigid elements can be more lightweight, with lower internal
stresses.

3. Adjustable compliance. A tensegrity structure can be made more stiff, or more flexible,
without changing shape. Chap. 5 takes advantage of this ‘pretensioning’ property for
control.

Figure 2.2: Kenneth Snelson’s “Dragon”, a
tensegrity structure, stiffly cantilevered over a
lake [181].

There are many robots which take ad-
vantage of these properties. These robots
are able to adjust the lengths of their ca-
bles to roll [109, 167, 106, 48, 162, 199]
(Fig. 2.3a), crawl [153, 175, 194, 130, 214]
(Fig. 2.3b), swim [24, 46], hop and jump
[107, 127], and climb [68, 70]. Most of these
examples involve locomotion: the tenseg-
rity structure’s shape change is designed
to propel it along the ground or through
a medium. Tensegrity robots also called
‘spines’ have been previously investigated
[129, 131, 130], but these may more prop-
erly be named ‘snakes’, since they perform
this type of ground locomotion.

There has not yet been a tensegrity spine
used as part of a larger robot in walking lo-
comotion, such as is proposed here. Other
work has proposed similar ideas [92], but differ in purpose and goal for their use.

2.4 Tensegrity Robot Modeling: Kinematics and

Dynamics

Since these structures by definition do not have position constraints on their bodies, their
kinematics, statics, and dynamics can be expressed in relatively general formulations. This
does not necessarily make it easy to design or control tensegrity robots, nor do prior math-
ematical models apply to all tensegrity robots. This dissertation contributes new static and
dynamic models not present in the literature.

Most models for tensegrity structures begin by assuming that the structure can be repre-
sented as a graph, with force-carrying elements (bodies in compression or cables in tension)
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(a) A spherical tensegrity robot designed for
rolling locomotion [167].

(b) A snake tensegrity robot designed to crawl
along the ground [131].

Figure 2.3: Two example tensegrity robots. (A) A spherical robot designed to roll by
changing its cable lengths, consisting of only bars with cables connected at nodes. (B) A
snake-like tensegrity robot designed to crawl, which has more complicated bodies suspended
in its network, which cannot be easily modeled by the techniques in the seminal work of
[179].

represented as edges that exist between nodes where they connect [179]. This model, simi-
lar to a truss in civil engineering, currently only allows for pin joints at nodes (no internal
moments.) However, the graph structure can still represent the geometry of most systems
(discussed more in Chap. 5).

Using such a formulation simplifies the kinematics and statics of tensegrity structures.
This is the form-finding problem, and has a variety of well-known solutions. Form-finding is
the process of simultaneously solving for a pose of the tensegrity structure’s bodies alongside
the cable forces that keep it in equilibrium [193]. A subset of this problem is solving for the
cable forces in static equilibrium for a given pose. For related parallel robots, the former
problem is termed inverse kinetostatics analysis [22, 16], and the latter subset is inverse
statics analysis [12, 76].

For tensegrity robots like these spines, no position constraints exist on the bodies, de-
coupling their statics and kinematics and avoiding the need for approaches common in the
parallel cable-driven robot literature such as [74, 12, 16]. This allows for the easier-to-solve
force-density method [172, 193, 195] to be applied. However, solutions have yet to exist in
the literature for tensegrity robots with internal bending moments, which occur in the spines
considered here.

As mentioned above, much research on tensegrity structures and robots assumes that the
bodies suspended in the structure are single ‘bars’, with cables only attached at endpoints.
Fig. 2.2 demonstrates this “bars-only” design principle. For structures like this, equations of
motion are well-known [179]. By assuming the single rods are infinitely thin, and by a clever
parameterization of the states of the bars, equations of motion can be written succinctly.
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For other tensegrity robots, such as the spines considered here, those models either require
modifying the body’s shape or else do not apply. Chapter 7 gives an alternative dynamics
formulation for the spines in this paper, though it lacks some of the benefits of the method
from [179].

2.5 Tensegrity Robot Control

Although there are a variety of benefits to using tensegrity structures as robots, control
of such structures has proven challenging. Their dynamics are inherently nonlinear and
often high-dimensional. Various saturation issues also exist, as cables within the structure
provide no force in compression, and the controller cannot retract any cable to a negative rest
length (discussed in Chap. 7.) Consequently, state-space control for tracking or regulation
has been mostly limited to low-dimensional structures, particularly those with only bars
[6, 210, 178, 179, 128], which assume, a-priori, that all cables are in tension at all times.
Open-loop methods have also been used for this purpose [186, 187, 37, 68], but cannot reject
disturbances.

However, extensive closed-loop control strategies have been developed for high-
dimensional tensegrity robots with other control goals. In particular, when the robots
are intended to roll or crawl, model-free controllers have used evolutionary algorithms
[153, 95, 96, 102], central pattern generators [131, 130], Bayesian optimization [162, 108],
deep reinforcement learning [215], kinodynamic motion planning [115], or hand-tuned algo-
rithms [198]. Model-predictive control has been used for generating locomotion primitives as
“expert” supervision for imitation learning of an end-to-end locomotion policy [45]. Tenseg-
rity structures which oscillate, such as fish tails, have used resonance entrainment [26, 24].
Though these approaches are promising in their domains, they do not necessarily apply to
state tracking, as is needed for precision movements of a spine as part of a more complicated
gait.

2.6 Control Techniques for High-Dimensional,

Nonlinear, Hybrid-Dynamics Robots

Controlling a robot with a tensegrity spine could be done with a variety of approaches,
including directly attempting to control the whole robot in a specific gait. This dissertation
focuses on control of the spine alone. It is assumed that by demonstrating control of the spine
as a subsystem, closed-loop walking will be made simpler. Since it is somewhat unknown
what types of motions would benefit walking locomotion (some discussed in Chap. 4), the
state tracking problem is studied here, as it is the most extensible to different situations.

Many options for control exist in the literature for state tracking in robots with high-
dimensional, nonlinear dynamics. When the robot’s dynamics are also hybrid, for example
in the case where a robot’s cables can become slack, the problem becomes even more chal-
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lenging. A brief review of some common approaches is given in this subsection, justifying
the use of model-predictive control (MPC) in Chap. 7. The last section in this chapter, sec.
2.6.6, is dedicated to a more thorough discussion on the other approach in this dissertation,
that of passivity-based control, since it requires somewhat more nuance than MPC.

2.6.1 Feedback Linearization

One approach to nonlinear control is that of feedback linearization, where a set of nonlinear
dynamics is transformed (in a one-to-one manner) into a set of linear dynamics. This is
done for both walking robots [132] and tensegrity structures [6]. However, doing so is only
practical for systems with a similar number of inputs as states; otherwise, numerical issues
arise with taking many derivatives of the same variable. Since the robots considered in this
dissertation are highly under-actuated, feedback linearization would not be indicated here.

2.6.2 Lyapunov Function Finding / Sums-of-Squares

A more modern approach to control of highly under-actuated robots, including those which
have hybrid dynamics by nature of walking locomotion, is the use of various Lyapunov
techniques to generate controllers. Control Lyapunov Functions [8] can be used in certain
cases, for example, though solving for control laws can be challenging. Similar approaches
include the use of trajectory libraries [121]. In these cases, robots are modeled with the
lowest number of degrees of freedom possible, for tractability, and are still significantly
lower-dimensional than the spines considered here.

Addressing computational complexity issues can be done via various sums-of-squares
programming techniques for Lyapunov function finding [120] or other optimization techniques
to make problems convex [122] or lower-dimensional [119]. These are possibly the most
promising approaches in the literature for robots such as the spines considered here. However,
adapting these techniques on a new system (such as the spine) is a significant undertaking,
one which may detract from the proof-of-concept goals in this dissertation. Implementing
these approaches is left for future work.

2.6.3 Model-Predictive Control

Model-Predictive Control (MPC) is an optimization-based approach to control, commonly
used to address some of the challenges experienced in systems such as these tensegrity robots.
For example, using an optimization program for control can address constraints on the system
(in the case of the tensegrity spine, actuator saturation and tensioned cables). In addition,
computational tractability of an optimization-based controller can be addressed by using a
receding horizon. These two features combined become the definition of MPC. Finally, an
MPC formulation allows straightforward introduction of smoothing weights and constraints
for hard-to-control systems [209, 63].
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Model-predictive control for nonlinear systems (NMPC) is a well-studied topic with many
implementations [7], particularly in low dimensions where nonconvex optimization is compu-
tationally possible [209]. For high-dimensional nonlinear systems, practical options include
modifying the NMPC problem or using more efficient solvers [39]. Alternatively, linearized
dynamics can be used at later points in the horizon [217], or linearizations can be performed
at each timestep in the problem to create a linear time-varying MPC [63].

2.6.4 Model-Free Approaches and Machine Learning

As with tensegrity robots, control approaches that use machine learning (with or without
models) have recently seen a strong emergence in robotics. Entire books are written on
the subject [67, 54]. However, as per the discussion on NASA’s needs for space, as well as
the inherent sensitivity of disaster situations, controllers without stability proofs may be of
concern. Most model-free techniques, and most machine learning approaches, do not come
with stability proofs, nor can easily be extended to do so. Therefore, these approaches are
left for future work, and model-based approaches are the focus of this dissertation.

2.6.5 Other Approaches

There are an enormous number of other approaches to nonlinear, high-dimensional, hybrid
control. These include using reachability for hybrid systems to develop controllers [118], or
controlling Gaussian Process-based models of robots [60]. It is impractical to list all potential
options here. A current survey for tensegrity robots in particular can be found in [111].

2.6.6 Passivity-Based Control of Lagrangian Systems

In addition to the approaches mentioned above, one of the more recent control approaches for
mechanical systems is that of passivity-based control (PBC). Using the concepts of passivity
and dissipativity for control can address both nonlinearities and high number of states in
a problem. Passivity-based control examines the energy in a system, potentially bypassing
parts of the nonlinear dynamics. And, by taking advantage of interconnection properties
of passive systems, a larger system can be separated into individual subsystems of lower
dimension, while satisfying stability properties [10]. For these reasons, this dissertation
proposes a form of energy-shaping control, motivated by passivity, in Chap. 8.

Passivity-Based Control of Robotic Systems

The use of an energy-based passivity analysis for control is a well-studied topic, first appear-
ing in the 1980s [145]. In this framework, the total energy of a robotic system is used as a
storage function (see Defn. 3.2.1) and a Lyapunov candidate. Various proposed controllers
have been developed that extend this idea to adaptive control [31], output feedback [143],
underactuated systems [165] and impedance control of manipulators [5], among others.
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The approach of passivity-based control has been particularly successful with flexible-link
robotic manipulators [146] or flexible cable-driven robots [43, 44]. Of particular interest are
systems with viscoelastic joints have been stabilized by PBC [101]. The cables of the robots
in this dissertation can be considered ‘viscoelastic’ in the sense that their tensioned-or-slack
state is determined by a combination of length and stretch rate. However, the approaches
in all the above assume certain forms of applied forces, such as affine-in-the-control-input
dynamics [101]. The above, then, do not necessarily apply to the tensegrity spine robots
studied here.

Vehicle Platoons and Equilibrium-Independent Dissipativity

The systems studied in this dissertation cannot necessarily be placed in the framework of
[144, 32], due to issues with the systems’ total potential energy. In the cases considered in
Chapter 8, the potential energy is unbounded, and the Lyapunov candidate of the system’s
total energy is therefore not a Lyapunov function. Yet, equilbria clearly exist in some cases.

One promising method to address this difficulty is that of equilibrium-independent dis-
sipativity (EID) [86], which allows for interconnections of systems without knowledge of a
system-wide equilibrium point. In particular, any individual subsystem does not necessarily
need to have an equilibrium; instead, it must simply be possible that an equilibrium exist
upon application of a particular input.

Such an approach has been used to decouple other types of flexible robots, such as UAVs
supporting a payload with flexible cables in Meissen et al. [125]. This is very similar to the
tensegrity structures considered in this dissertation, where individual bodies are connected
with flexible cables. In Meissen et al.’s work, some subsystems (such as a suspended payload)
also had unbounded potential energy, yet control was addressed through EID and intercon-
nections. The approach proposed in Chapter 8 differs from [125] in a variety of ways, and
has different benefits versus drawbacks. These comparisons are discussed in-line later, after
presentation of the new approach.
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Chapter 3

Review of Lagrangian Dynamics and
Passivity-Based Control

Controllers for the various mechanical systems studied in this dissertation will be model-
based; that is, using the system’s equations of motion. Newton’s laws could be used to
derive these dynamics equations. However, a more powerful form, one that lends itself to an
energy-focused consideration of mechanics, will be used instead. That approach is the use
of Lagrange’s Equations.

The following chapter presents Lagrange’s equations as background, in combination with
the concepts of passivity and dissipativity. The technical details here become relevant when
investigating the techniques in Chapter 8. This chapter includes a variety of theorems from
prior work that are needed later. These topics are reviewed here in order to dedicate Chap.
8 to the new results without extraneous content.

3.1 Lagrange’s Equations

For a physical system governed by Newtonian physics, an energy balance can be used to write
the governing equations of motion (or of continuous time response behavior.) Traditionally,
the mechanics/dynamics literature refers to the result as Lagrange’s equations, whereas the
electromechanical systems community (and control systems community) refers to them as
the Euler-Lagrange equations. Both terms are equivalent for the discussion here.

3.1.1 A Variational Approach to Lagrange’s Equations of Motion

The following considers what is termed the variational approach to Lagrange’s equations
[77], Ch.2. This approach uses the calculus of variations to define Lagrange’s equations,
without a discussion of bases or geometry. Such a discussion of bases and geometry will be
temporarily deferred to later subsections.
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Consider a system which is parameterized by a a set of generalized coordinates, {q1 . . . qn}.
Each generalized coordinate is an element of a subset of the real numbers, qj ∈ Xj ⊆ R.
Similarly, define their time derivatives as the generalized velocities, q̇j ∈ R. There will be
a quantity called the generalized force acting on the system, the interpretation of which is
application-dependent. The generalized force will be defined according to its components in
the direction of each coordinate, Qj ∈ R.

Let the system’s total kinetic energy, potential energy respectively, be denoted by T and
U which are implicitly functions of the generalized coordinates and generalized velocities:

T ∈ R, U ∈ R

Both are scalar-valued functions. Define the quantities called the Lagrangian, L, and the
Hamiltonian, H, as either the difference or sum respectively of the kinetic and potential
energy:

L := T − U, H := T + U

Then, the following set of equations, referred to as Lagrange’s equations, hold based on a the
use of Hamilton’s principle from the calculus of variations. These are equivalent to Newton’s
laws of motion.

d

dt

(
∂L

∂q̇j

)
−
(
∂L

∂qj

)
= Qj, j = 1 . . . n. (3.1)

This forms a set of n equations, one for each coordinate. In the future, summations over all
indices j (Einstein notation) will occasionally be implied, and will be clear from context.

There are significant benefits to using Lagrange’s equations over Newton’s laws in many
contexts, including the ease of incorporating constraints, automatically dealing with signs
of forces, creating distinctions between conservative and nonconservative generalized forces,
and allowing general treatments of curvilinear systems in E3 and related manifolds [142].
However, the most powerful property in the control systems context is the passivity and
stability analysis that follows easily from the use of energy to derive the equations.

3.1.2 Vector Form of Lagrange’s Equations

Stability analysis for control (e.g., by Lyapunov methods) requires considering a single signal
in a vector space. In multibody Lagrangian systems, the equations of motion are instead
derived in terms of individual position vectors for each particle (and for rigid bodies, ro-
tation tensors for each body.) One method to extract a single vector may be the use of
the representative particle, either for systems of K particles in E3K [40] or for systems of
K rigid bodies in E12K [41, 42]. Instead, for the analysis here, the generalized coordinates,
velocities, and forces are simply concatenated into vectors of real numbers; behavior is then
interpreted geometrically after the proofs. Such an approach maintains the purely analytical
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interpretation of Lagrange’s equations, allowing for a more diverse set of applications where
a geometric interpretation is not indicated (for example, to electrical systems.)

So, define an n-dimensional vector consisting of the generalized coordinates, as in

q := [q1, q2, . . . , qn]> ∈ X ⊆ Rn. (3.2)

Similarly for the generalized velocities,

q̇ := [q̇1, q̇2, . . . , q̇n]> ∈ Rn, (3.3)

and for the components of the generalized force,

Q := [Q1, Q2, . . . , Qn]> ∈ Rn. (3.4)

The notation q will be used interchangeably to refer to the set {q1, . . . , qn} as well as the
element of X , for example when used as an argument to a function. Finally, the following
notation will be used for partial derivatives with respect to a vector in Rn,

∂U

∂q
:=

[
∂U

∂q1

, . . . ,
∂U

∂qn

]>
∈ Rn. (3.5)

It is important to note that this is not the geometric definition of a gradient in Euclidean
space, which will be discussed shortly. Then, Lagrange’s equations could be equivalently
expressed as

d

dt

(
∂L

∂q̇

)
−
(
∂L

∂q

)
= Q. (3.6)

This is not a generally-accepted form of Lagrange’s equations in the dynamics literature,
and does not appear in pervasive texts such as [77]. However, most past work on passivity-
based control using Lagrange’s equations [144, 32, 197] considers the form of eqn. (3.6),
and so both the coordinate-wise and vectorized forms will be interchanged throughout this
dissertation.

3.1.3 Definition of Conservative Generalized Forces

In eqn. (3.6), the concept of kinetic energy is usually well-defined and is clear for a variety
of systems (for example, systems of particles.) However, U is less clear, and requires a
discussion on conservativeness of a generalized force.

Definition 3.1.1. Conservative Generalized Force. A generalized force represented
by its components {Q1, . . . , Qn} is conservative if each component can be expressed as a
partial derivative of a scalar field that is only a function of the generalized coordinates,

Qj = −∂U
∂qj

, j = 1, . . . , n. (3.7)
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This definition must be met for all coordinates and all components (∀ j.)

Remark. Later, for an analysis of dissipativity in the control-systems usage of the term, an
opposite sign convention will be chosen, equally valid for the definition of conservation:

Q =
∂U

∂q
.

The motivation for this convention will become clear in section 3.3.2. It is unfortunate
that the two communities of dynamics and control require these different conventions; how-
ever, this dissertation will be consistent in the application of one definition versus the other
depending upon context.

In eqns. (3.1) and (3.6), the quantity U is the system’s potential energy. The potential
energy is therefore defined as the U from all generalized forces which meet Defn. 3.1.1.
It should be clear upon inspection how expressing Qj as the above would allow it to be
subsumed into U in eqns. (3.1) and (3.6).

3.1.4 The Geometry of Lagrange’s Equations: Systems of
Particles

Though the above refers to Lagrange’s equations without discussion of bases, modeling
physical systems requires doing so. The robots in this dissertation are modeled as systems
of particles, which will be the realization of Lagrange’s equations considered here.

The following subsection establishes three main results from the literature. First, a
discussion of the geometry of an unconstrained system of particles gives context for the
vague descriptions of eqns. (3.1) and (3.6). Second, potential energy and generalized forces
are defined for a particle and system of particles. Finally, the definitions of conservative forces
for the particles are shown to be equivalent to the concept of a conservative generalized force.

Configuration Space, Configuration Manifold, and Position Vectors

Let a mechanical system be defined in a given configuration space C. For example, the
configuration space for a system of K unconstrained particles is Euclidean space for each
particle, C = E3K . Let there be a vector (or a set of vectors for K > 1) that expresses the
system’s state in this space, each implicitly parameterized by the generalized coordinates q.
For example, with a system of particles,

r1(q), . . . , rK(q) ∈ E3.

If these particles are constrained, their motion lies on a configuration manifoldM of lower
dimension than C, i.e. M ⊆ C. Then, the generalized coordinates are said to parameterize
M. Motions of the system are then considered as changes in q, which change r1...K in
M. Also observe that the particles’ positions are possibly a function of all the generalized
coordinates q, though smart choices of parameters decouple q into blocks per particle.
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Potential Energy in Euclidean Space

It is now possible to be explicit about the arguments to U . In particular, the potential
energy is only a function of the particles’ positions:

U = U(r1(q), . . . , rK(q)).

The dependence of r on q will be dropped in the notation in the remaining derivations; it is
always implied.

The point raised about partial derivatives versus gradients in reference to eqn. (3.5) can
now be made clear via the chain rule. The gradient is defined in E3 for a single particle with
position vector r as

∇U(r) =
∂U

∂r
∈ E3, (3.8)

and for particle k in a system as

∇rkU(r1, . . . , rK) =
∂U

∂rk
∈ E3. (3.9)

By the chain rule, we can relate the above to eqn. (3.5), since for a single particle,

∂U

∂qj
=
∂U

∂r
· ∂r

∂qj
= ∇U(r) · ∂r

∂qj
, (3.10)

and for a system of particles,

∂U

∂qj
=

K∑
k=1

∂U

∂rk
· ∂rk
∂qj

=
K∑
k=1

∇rkU ·
∂rk
∂qj

. (3.11)

As a result, another way to write the expression in eqn. (3.5) for a system of particles is

∂U

∂q
:=



K∑
k=1

∇rkU ·
∂rk
∂q1

...
K∑
k=1

∇rkU ·
∂rk
∂qn


∈ Rn. (3.12)

It is therefore clear that

∇rkU =
∂U

∂rk
∈ E3 6= ∂U

∂q
∈ Rn,

since they are in different vector spaces and have different dimensions. This salient point
is overlooked by most standard control systems references on the stability of a Lagrangian
system [32, 196, 144]. However, both expressions give the same definition of potential energy,
when considered with the generalized force as follows.
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Generalized Force Components in Euclidean Space

Deriving Lagrange’s equations for a single particle or system of particles gives the following
definition of the generalized force components in those cases [142, 77]. Letting the total force
on the particle be F or on particle k be Fk,

Qj = F · ∂r

∂qj
, or for a system, (3.13)

Qj =
K∑
k=1

Fk ·
∂rk
∂qj

. (3.14)

The geometric definition of conservative forces in (a system of) particles is that the force
is the gradient of a scalar function of the particle’s position, either

F = ∇U(r) or Fk = ∇rkU(r1, . . . , rK).

Now, the equivalence with the definition of a conservative generalized force can be established
by substituting such a conservative force into eqn. (3.13) or (3.14) respectively, and noting
the equivalence to eqns. (3.10) and (3.11):

Qj = ∇U · ∂r

∂qj
=
∂U

∂qj
,

or for a system,

Qj =
K∑
k=1

∇rkU ·
∂rk
∂qj

=
∂U

∂qj
.

The following important fact has been established: either the component-wise definition
or the geometric Euclidean space definition of conservation can be used interchangeably.
Summing over all components shows this result, which also emphasizes the difference in a
component-wise sense of conservation (according to coordinate j) versus a particle-wise sense
of conservation (according to particle k).

Q =
∂U

∂q
⇐⇒ Fk =

∂U

∂rk
∀ k. (3.15)

It is worth briefly reiterating that the notation ∇rkU = ∂U
∂rk

will be used interchangeably;

i.e., the gradient operator ∇ will only be used in E3.

3.1.5 Variational Approach to the Work-Energy Theorem

The various theorems on passivity and stability of a Lagrangian system require the following
lemma, which derives a form of the work-energy theorem from the variational approach (eqn.
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3.1). The lemma is then shown to be equivalent to the traditional work-energy theorem for a
system of particles, which will be used interchangeably in the remainder of this dissertation.

The following is adapted from [32, 144] to match the notation used here

Lemma 3.1.0.1. The Work-Energy Principle for a Component-Wise Representation of La-
grange’s Equations.

Consider a system modeled by eqn. (3.1), with n generalized coordinates. The instan-
taneous change in energy in the system, Ḣ, is equal to the inner product of the generalized
velocities and the generalized force component vector:

Ḣ =
n∑
j=1

q̇jQj = q̇>Q. (3.16)

Proof. For a system considered here, the total energy in the system is the kinetic plus
potential energy, equal to the Hamiltonian H. To show eqn. (3.16), first consider multiplying
the j-th of Lagrange’s equations with the j-th generalized velocity, as in:

q̇j

(
d

dt

∂L

∂q̇j

)
− q̇j

(
∂L

∂qj

)
= q̇jQj. (3.17)

Then, take the following derivative:

d

dt

(
q̇j
∂L

∂q̇j

)
= q̈j

∂L

∂q̇j
+ q̇j

d

dt

∂L

∂q̇j
. (3.18)

Rearrange,

q̇j
d

dt

∂L

∂q̇j
=

d

dt

(
q̇j
∂L

∂q̇j

)
− q̈j

∂L

∂q̇j
, (3.19)

substitute into (3.17) as

d

dt

(
q̇j
∂L

∂q̇j

)
− q̈j

∂L

∂q̇j
− q̇j

(
∂L

∂qj

)
= q̇jQj, (3.20)

and sum over all coordinates:∑
j

d

dt

(
q̇j
∂L

∂q̇j

)
−
∑
j

q̈j
∂L

∂q̇j
−
∑
j

q̇j

(
∂L

∂qj

)
=
∑
j

q̇jQj. (3.21)

Next, take the full time derivative of the Lagrangian, noting that it has both the coordinates
and velocities as arguments, and using the chain rule:

d

dt
L =

n∑
j=1

∂L

∂qj
q̇j +

n∑
j=1

∂L

∂q̇j
q̈j. (3.22)

Rearrange eqn. (3.22) as
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−
n∑
j=1

q̇j
∂L

∂qj
=

n∑
j=1

∂L

∂q̇j
q̈j −

dL

dt
, (3.23)

and substitute into eqn. (3.21), eliminating the q̈ terms:∑
j

d

dt

(
q̇j
∂L

∂q̇j

)
−
∑
j

q̈j
∂L

∂q̇j
+
∑
j

∂L

∂q̇j
q̈j −

dL

dt
=
∑
j

q̇jQj,

∑
j

d

dt

(
q̇j
∂L

∂q̇j

)
− dL

dt
=
∑
j

q̇jQj. (3.24)

Since the derivative is a linear operator,

d

dt

(∑
j

q̇j
∂L

∂q̇j
− L

)
=
∑
j

q̇jQj. (3.25)

The Legendre transformation, commonly used to interchange the Lagrangian and Hamil-
tonian formulations of mechanical systems, states the following:

H =
∑
j

q̇j
∂L

∂q̇j
− L (3.26)

Therefore, the following expression holds for the time derivative of the Hamiltonian, noting
that the vectors q̇ and Q have been defined to produce the inner product on the right-hand
side of this equation.

Ḣ =
∑
j

q̇jQj = q̇>Q. (3.27)

Remark. The variational (component-wise) form of the work-energy theorem is equivalent
to the more commonly encountered geometric form, using forces and velocities for particles
in E3. By expanding out eqn. (3.27),



CHAPTER 3. REVIEW OF LAGRANGIAN DYNAMICS AND PASSIVITY-BASED
CONTROL 26

Ḣ = q̇>Q,

=
n∑
j=1

q̇jQj,

=
n∑
j=1

q̇j

(
K∑
k=1

Fk ·
∂rk
∂qj

)
,

=
k∑
k=1

Fk ·

(
n∑
j=1

q̇j
∂rk
∂qj

)
.

Since the chain rule for a particle’s velocity gives

vk = ṙk =
d

dt
r =

∑
j

∂rk
∂qj

dqj
dt
,

the geometric work-energy theorem follows:

Ḣ =
K∑
k=1

Fk · vk. (3.28)

3.2 Passivity and Dissipativity

Having now established some energy-related principles that arise from the dynamics of a
mechanical system, a framework for control can be established. The following section details
the related concepts of passivity and dissipativity for input-output analysis of a nonlinear
system. The treatment here is shortened and adapted from Arcak et al. [10]. Various
intricacies, such as existence and uniqueness, can be found in [56] and related.

3.2.1 Definition of Passivity and Dissipativity

Consider a dynamical system of the form

ẋ(t) = g(x(t),u(t)), (3.29)

y(t) = h(x(t),u(t)), (3.30)

with the known condition g(0,0) = 0 and h(0,0) = 0. Here, the state vector is x(t) ∈ Rn,
the input vector is u(t) ∈ Rm, and the system’s output is y ∈ Rp. The functions g,h are
continuously differentiable mappings, g : Rn × Rm 7→ Rn and h : Rm × Rm 7→ Rp.

An input-output analysis can be conducted on the system (3.29)-(3.30) via the notion of
dissipativity, as many authors have done [10, 32].
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Definition 3.2.1. Dissipativity. The system (3.29)-(3.30) is dissipative with respect to a
supply rate s(·, ·) : Rm × Rp 7→ R if there exists a function V : Rn 7→ R such that V (0) = 0,
V (x) ≥ 0 ∀x, and

V (x(τ))− V (x(0)) ≤
∫ τ

0

s(u(t),y(t)) dt (3.31)

for every input signal u and every time τ ≥ 0 in the interval of existence of the solution x(t).
The function V (x(t)) is called the storage function.

Remark. If V (·) is also continuously differentiable, then eqn. (3.30) can be substituted into
Defn. 3.2.1, and so the above is equivalent to

V̇ (x(t)) ≤ s(u(t),h(x(t),u(t)) ∀ x ∈ Rn, ∀ u ∈ Rm, (3.32)

or more succinctly with arguments dropped, V̇ ≤ s(u,h(u,y)).

The choice of supply rate s defines the type of dissipativity considered. There are many
important supply rates, in particular the L2-gain supply rate [197]. However, the passivity
supply rate will be the focus of this dissertation. It is defined as the following.

Definition 3.2.2. Passivity. Consider a system (3.29)-(3.30) with the same dimension of
input and output, i.e. m = p. It is passive if it is dissipative with respect to the supply rate
of

s(u,y) = u>y. (3.33)

Two related supply rates, those of input-strict and output-strict passivity, are needed in
later chapters. These add a bound on the supply rate according to either the input or the
output respectively [197]. Here, || · || is used as the Euclidean norm.

Definition 3.2.3. Input Strict Passivity. A system is input strictly passive if it is dissi-
pative with respect to a supply rate of

s(u,y) = u>y − ε||u||22, (3.34)

or equivalently, s = u>y − εu>u, where ε ∈ R > 0.

Definition 3.2.4. Output Strict Passivity. A system is output strictly passive if it is
dissipative with respect to a supply rate of

s(u,y) = u>y − ε||y||22, (3.35)

or equivalently, s = u>y − εy>y, where ε ∈ R > 0.

A generalization of (input or output strict) passivity is that of the quadratic supply rate.
This is particularly useful if the dimensions of u and y are not conformal.
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Definition 3.2.5. Quadratic Supply Rate. A supply rate is quadratic if it can be ex-
pressed as

s(u,y) =

[
u
y

]>
X

[
u
y

]
, (3.36)

where X ∈ R(m+p)×(m+p) is a constant matrix.

The blocks of X can be selected to meet the definitions 3.2.2, 3.2.3, and 3.2.4 (see [10].)

3.2.2 Memoryless Nonlinearities

In the following sections, systems without internal state will occasionally be analyzed for
their dissipativity properties. These memoryless nonlinearities have no concept of a state
‘x’. Consequently, the system’s dynamics (3.29-3.30) reduce to

y(t) = h(u(t)). (3.37)

The storage function is taken to be zero for these systems. Specifically, a memoryless
nonlinearity will be dissipative with respect to the supply rate s if

s(u,h(u)) ≥ 0 ∀ u ∈ Rm. (3.38)

Typical examples of memoryless nonlinearities are nonlinear springs and dampers [171].
For example, if a particle in one dimension with position x ∈ R is attached to a nonlinear
spring and nonlinear damper, the applied forces on the particle would arise from some
functions f and w,

Fs(x) = f(x), Fd(ẋ) = w(ẋ).

In these cases, the function F : R 7→ R, and so the dissipativity inequality would be for
example

s(x, f(x)) ≥ 0.

Linear springs and dampers would be f(x) = kx and w(ẋ) = cẋ, which are both clearly
input and output strictly passive with ε = {k, c} > 0.

3.3 Passivity-Based Control of Lagrangian Systems

With this mathematical machinery in hand, the two fields of Lagrangian dynamics and
dissipativity can be united. The result is termed passivity-based control [144], since passivity
is used in these cases to show stability. Stability can arise from passivity (or dissipativity)
for arbitrary dynamical systems, but here, the following proofs are presented with respect
to Lagrange’s equations, since that will cover all applications considered in later chapters.
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The section is split into two parts. First, the passivity of a Lagrangian system, from an
input generalized force to an output generalized velocity, is proven given certain conditions.
Second, a stability proof is provided, given an unforced system with a stricter set of condi-
tions. These two proofs form the basis of the work in Chap. 8, which will modify both for
use with the proposed energy-shaping controller.

3.3.1 Passivity of Lagrangian Systems with Bounded Potential
Energy

The following proposition, adapted from [197, 32, 144] gives the passivity of a Lagrangian
system under some general circumstances. Specifically, the system is passive with respect to
a generalized force as input, and generalized velocity as output, when (a) only conservative
forces act on the system and (b) the potential energy is bounded. It is proposed in accordance
with the dynamics community’s formulations of Lagrange’s equations.

Below, the full system state is both the combined generalized forces and generalized
velocities,

x :=

[
q
q̇

]
∈ X × Rn ⊆ R2n.

The use of q and q̇ differs slightly from the control systems terminology using x. The full
state here is of the same dimension as usually encountered in control, but the constant n has
a different meaning. Treating q and q̇ separately is needed for some parts of the following
proof, so the storage function V (·, ·) is written with two arguments for clarity. This is
equivalent to the definition of passivity (3.2.2) above, substituting various constants (e.g. n
vs. 2n.)

Proposition 3.3.1. Passivity of Euler-Lagrange systems with Bounded Potential Energy.
Consider a system that is described by Lagrangian mechanics, eqn. (3.1), with n gener-

alized coordinates, velocities, and forces: qj ∈ Xj ⊆ R, q̇j, Qj ∈ R, j = 1 . . . n. Specifically,

d

dt

(
∂L

∂q̇j

)
−
(
∂L

∂qj

)
= Qj, j = 1 . . . n,

where L = T − U is the Lagrangian, T is the kinetic energy, and U is the potential energy.
If U is bounded below by a constant c ∈ R,

U ≥ c,

and the total generalized forces are treated as the input to the system, Qj = uj, then the
system is passive from q̇ to Q, i.e.

V (q(τ)), q̇(τ))− V (q(0)), q̇(0)) ≤
∫ τ

0

q̇(t)>Q(t)dt, (3.39)
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for every input signal Q and every time interval t = [0, τ) in the interval of existence of the
solution q(t), with the storage function V (·, ·) : X × Rn 7→ R chosen to be the Hamiltonian
H = T + U minus the bounding constant for the potential energy,

V (q, q̇) := H(q, q̇)− c. (3.40)

Proof. Consider the storage function candidate

V (q, q̇) = H(q, q̇) + c = T (q, q̇) + U(q)− c.

First, justify that this is a valid storage function. The total kinetic energy in mechanical
systems is always nonnegative, T ≥ 0. So,

T ≥ 0, U − c ≥ 0 ⇒ T + U − c ≥ 0 ⇒ H − c ≥ 0.

Thus, V (·, ·) is nonnegative, and is a valid storage function.
However, in anticipation of the work in following sections where an equilibrium point q̄

will be considered, V (·, ·) is not necessarily zero for zero argument. A coordinate transfor-
mation to q′ such that q′ = 0 ⇐⇒ q = q̄ can easily address this problem and so is ignored
here.

From Lemma 3.1.0.1,

Ḣ = q̇>Q,

where q̇ and Q are vectors of the generalized coordinates/velocities as per eqns. (3.3)-(3.4).
Observe that V̇ = Ḣ since the bounding constant does not change with time. Integrating
from 0 to τ , and noting that the constant c subtracts away in V (τ)−V (0), gives the desired
expression:

V (q(τ)), q̇(τ))− V (q(0)), q̇(0)) =

∫ τ

0

q̇(t)>Q(t)dt, (3.41)

establishing both the passivity and the losslessness of this formulation.

Remark. The losslessness noted in the equality of eqn. (3.41) versus eqn. (3.39) arises from
the fact that the system does not dissipate energy. For a mechanical system, this would be
interpreted as free oscillations without damping. It is intuitive, then, that adding a damping
(dissipation) term gives a stronger condition, specifically output strict passivity, which then
shows the system settling to an equilibrium point (or surface.)
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3.3.2 Output Strict Passivity of Lagrangian Systems with
Rayleigh Dissipation

The aforementioned addition of energy dissipation into a Lagrangian system can take a
variety of forms. The most common, forming the basic principle of passivity-based control
[197, 144, 32] is an internal force in the system that is a function of the generalized velocities.
Specifically, consider if the generalized forces in the system were not themselves an input,
but instead consisted of a memoryless nonlinearity added to a separate input term:

Qj := −Rj(q̇) + uj, j = 1 . . . n, (3.42)

or as vectors of components in Rn,

Q := −R(q̇) + u. (3.43)

The function R is considered to be a memoryless nonlinearity - for example, a dashpot,
which only a function of the system’s velocities. Since R : Rn 7→ Rn, its passivity and
input-strict passivity respectively would be given if

q̇>R(q̇) ≥ 0, or respectively, (3.44)

∃ ε > 0 s.t. q̇>R(q̇) ≥ εq̇>q̇, ∀q̇ ∈ Rn. (3.45)

The common interpretation of the term R is a damping ‘force’, informally termed
‘Rayleigh Dissipation’ [144, 77]. It is often expressed as a set of partial derivatives of the
Rayleigh Dissipation FunctionR, written in vectorized form similar to potential energy (eqn.
3.5)

R(q̇) :=
∂R(q̇)

∂q̇
(3.46)

This form emphasizes the fact that R(·) is only a function of q̇, and allows the discussion
of R as a counterpart to the potential energy U(q). This form also allows for conveniently
analyzing the dissipativity of R if R is quadratic in q̇, leading to a positive-definiteness test
for input-strict passivity. As an example, a one-dimensional spring-damper system would
have

U(x) =
1

2
kx2, R(ẋ) =

1

2
cẋ2

Since none of the results in this dissertation rely on properties of R, it is not used, and R
is used instead to denote the total energy-dissipating, nonconservative force with no position
dependence.

These definitions of R then give (in one way of potentially many) output strict passivity
of the Lagrangian system. The following proof is adapted from [144, 197, 32] as with the
passivity proof above.
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Proposition 3.3.2. Output Strict Passivity of Lagrangian Systems with Rayleigh Dissipa-
tion.

Consider a Lagrangian system (eqn. 3.1),

d

dt

(
∂L

∂q̇j

)
−
(
∂L

∂qj

)
= Qj, j = 1 . . . n.

Assume this system is passive, i.e., has bounded potential energy and satisfies the conditions
of Prop. (3.3.1). Assume that, in addition, the generalized forces can be split into two terms,

Q = −R(q̇) + u (3.47)

where u represents an external input signal with component uj in the direction of the j-th
generalized coordinate, and R : Rn 7→ Rn is a memoryless nonlinearity that is only a function
of the generalized velocities.

Then, if R is input strictly passive, i.e. eqn. (3.45) holds,

∃ ε > 0 s.t. q̇>R(q̇) ≥ εq̇>q̇, ∀q̇ ∈ Rn,

then the system (3.1) is output strictly passive, satisfying the inequality

V (q(τ), q̇(τ))− V (q(0), q̇(0)) + ε

∫ τ

0

q̇(t)>q̇(t) dt ≤
∫ τ

0

q̇(t)>u(t) dt, (3.48)

for every input signal u and every time interval t = [0, τ) in the interval of existence of the
solution q(t), with the same storage function V (·, ·) as in Prop. 3.3.1.

Proof. Consider the same storage function candidate as in Prop. 3.3.1,

V (q, q̇) = H(q, q̇)− c,

which is nonnegative by the same arguments as Prop. 3.3.1, and recall that Lemma 3.1.0.1
showed that

Ḣ = q̇>Q.

Substituting for Q yields the following, similar to Prop. 3.3.1, dropping excess notation:

Ḣ = −q̇>R + q̇>u, (3.49)

⇒ V (τ)− V (0) = −
∫ τ

0

q̇>R dt+

∫ τ

0

q̇>u dt. (3.50)

The input-strict passivity of the memoryless nonlinearity R then gives that

q̇>R ≥ εq̇>q̇⇒
∫ τ

0

q̇>R dt ≥ ε

∫ τ

0

q̇>q̇ dt.
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The desired inequality then holds:

V (τ)− V (0) + ε

∫ τ

0

q̇>q̇ dt ≤
∫ τ

0

q̇>u dt.

3.3.3 Stability of Lagrangian Systems with Rayleigh Dissipation
and Strict Minima of Potential Energy

Finally, stability of the above system can be considered in the autonomous case (u ≡ 0.)
When a system is designed to meet the following proof, the literature terms this passivity-
based control, which may also imply the interconnection of systems via u in other ways
[197, 144, 32].

The derivations below depend on the particular usage of strict passivity above, and do not
apply for systems that (for example) do not have this particular form of Rayleigh dissipation,
or other considerations with potential energy. Therefore, the proof is best not considered
as ‘stability of Lagrangian systems,’ as is sometimes used [144], but instead stability under
certain conditions on forces and energy.

The following continues to take the variational approach to treating Lagrange’s equa-
tions, as with Props. 3.3.1 and 3.3.2. For the unconstrained system of particles, proving
stabilization to an equilibrium point q̄ in Rn will later be shown to correspond to a config-
uration r̄1 . . . r̄K in E3K . In particular, the arguments to the potential energy U will not be
specified; it is implied that q parameterizes U . Examples will be given later for (systems of)
particles, where for example U = U(r1(q), . . . , rK(q)).

Proposition 3.3.3. Stability of a Lagrangian System with Rayleigh Dissipation and Strict
Minima of Potential Energy.

Consider the same system from Prop. 3.3.2, in the form of (3.6), with Rayleigh dissipa-
tion as Q = −R + u. Let the system be unforced, with u = 0, so that

d

dt

(
∂L

∂q̇

)
−
(
∂L

∂q

)
= −R(q̇).

Assume the system is output strictly passive, i.e. has bounded potential energy and R is
input strictly passive (Prop. 3.3.2).

The following hold:

1. If in addition the potential energy U has a strict local minimum at coordinates q̄ in a
set Q ⊆ X ⊆ Rn, i.e.

U
∣∣
q=q̄

= c, U > c ∀q 6= q̄ ∈ Q, (3.51)

then q̄ is an equilibrium point, and the system is locally asymptotically stable in the
sense of Lyapunov around that equilibrium point in Q.
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2. If also U is radially unbounded (proper), then the system is asymptotically stable around
the point q̄ in all of Q. If Q = Rn then the system is globally asymptotically stable.

Proof. First, establish the equilibrium point(s) of the system (3.6.) By the definition, equi-
libria exist where q̇ = 0. Using the definition of L = T −U , as well as the fact that the total
potential energy is not a function of the generalized velocities, Lagrange’s equations at zero
velocity become

d

dt

(
∂T

∂q̇j

∣∣∣q=q̄
q̇=0

)
− ∂T

∂qj

∣∣∣q=q̄
q̇=0

+
∂U

∂qj

∣∣∣
q=q̄

= −Rj(0), j = 1 . . . n. (3.52)

By definition, kinetic energy is zero at zero velocity, so all T terms drop. In vector form,

∂U

∂q

∣∣∣
q=q̄

= −R(0). (3.53)

Then, since the function R is input strictly passive, R(q̇ = 0) = 0, and

∂U

∂q

∣∣∣
q=q̄

= 0. (3.54)

By the assumption that U is bounded below (and assumptions on continuous differentiability
giving extrema of U), there exist q that satisfy this property, which are subsequently the
equilibrium point(s):

U ≥ c, ∃ q̄ s.t. U
∣∣
q=q̄

= c, ⇒ ∃ q̄ s.t.
∂U

∂q

∣∣∣∣
q=q̄

= 0. (3.55)

Consider the storage function V = H − c as a Lyapunov candidate. First establish that
it is a positive definite function. It was shown in the proof to Prop. (3.3.1) that V is
nonnegative. In addition, the storage function is zero at the equilibrium point’s coordinates:

V (q̄,0) = T
∣∣q=q̄
q̇=0

+ U
∣∣
q=q̄
− c,

V (q̄,0) = c− c = 0.

Then specialize to the first assumption, where U has a strict local minimum at q̄ in Q.
Therefore,

U > c⇒ U − c > 0 ∀q 6= q̄ ∈ Q.

Since T ≥ 0 for any argument,

T + U − c > 0 ∀q 6= q̄ ∈ Q,
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V (q, q̇) > 0 ∀q 6= q̄ ∈ Q.

Therefore, V is a locally positive definite function, V � 0, around {q = q̄, q̇ = 0}.
Next, consider V̇ . Assuming (again) continuous differentiability of the storage function,

from Prop. (3.3.2) it was shown that, with u ≡ 0 in eqn. (3.48), input strict passivity of R
gives

V̇ (q, q̇) ≤ −εq̇>q̇. (3.56)

Since the right-hand side of eqn. (3.56) is quadratic,

εq̇>q̇ ≥ 0 ⇒ V̇ (q, q̇) ≤ 0.

Therefore, V̇ is negative semi-definite, V̇ � 0, meets all requirements for a Lyapunov func-
tion, and shows stability of the system in the sense of Lyapunov.

Then, to get asymptotic stability, LaSalle’s Invariance Principle can be used in the follow-
ing way. Here, since q̇>q̇ is quadratic, it is positive definite, implying that the only solution
to V̇ = 0 from eqn. (3.56) is

V̇ (q, q̇) = 0 ⇐⇒ q̇ = 0.

From eqns. (3.53-3.54), it was shown that

q̇ = 0 ⇒ ∂U

∂q

∣∣∣
q=q̄

= 0,

which must occur at q̄, proven to be unique. Therefore,

V̇ (q, q̇) = 0 ⇐⇒ {q = q̄, q̇ = 0},

indicating that the equilibrium is the only point at which V̇ = 0, and so is a positively
invariant set for the zero level set of this V̇ . This meets the conditions of LaSalle’s Invariance
Theorem, and the system is asymptotically stable.

Finally, for global stability, incorporate the second set of assumptions. Then, since

V (q, q̇) = T + U + c,

lim
q,q̇→∞

V (q, q̇) = lim
q,q̇→∞

T + lim
q→∞

U + c.

By definition, the kinetic energy approaches infinity as velocity approaches infinity (for any
value of generalized coordinates):

lim
q̇→∞

T =∞.
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The assumption gives radial unboundedness of U , and since T goes to infinity in the second
argument, their sum is then radially unbounded with respect to both arguments:

lim
q,q̇→∞

T =∞, lim
q→∞

U =∞ ⇒ lim
q,q̇→∞

V (q, q̇) =∞.

Which meets the condition of radial unboundedness of the Lyapunov candidate, and therefore
the system is asymptotically stable in all of Q, or globally if Q = Rn.

3.3.4 A Geometric Interpretation of Passivity and Stability for
Systems of Particles

The above proof works for all formulations of Lagrange’s equations. However, two concepts
are left vague. First is the definition of input and output, u and q̇, in a physical space. Second
is the concept of an ‘equilibrium point’ corresponding to the equilibrium configuration q̄.
The following short section interprets this proof in terms of a (system of) particle(s).

Inputs and Outputs For Systems of Particles

The remark to Lemma 3.1.0.1 established that, for a particle or a system of K particles
respectively,

q̇>Q = F · v, or q̇>Q =
K∑
k=1

Fk · vk,

where the particles’ positions and velocities rk,vk ∈ E3. For the single particle, the passivity
inequality is clear: the system would be passive from an applied force to the resulting velocity
of the particle.

For the system of particles, the passivity inequality is less clear, for the same reasons
as discussed in Sec. 3.1.2. Each force has its own individual inner product with its own
velocity, and there is no sense of an ‘input’ or ‘output’ vector for the system as a whole. The
best interpretation here is then that of the single representative particle abstraction of force
and velocity [40, 142]. The system would then be passive with respect to the applied force
on the representative particle to the induced velocity of the representative particle.

As such, future work could extend this result to rigid bodies via [41] and systems of rigid
bodies via [42].

Equilibrium Configuration for an Equilibrium Point

The vector q̄ ∈ Q ⊆ Rn is an equilibrium point, and the stability proof above shows that the
system settles to a configuration defined by this point. What, however, does this represent
in terms of the system’s position in its configuration space, such as the system of particles
in E3K?
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Here, the kinetic and potential energies of the system are functions of by the particles’
positions and velocities, rk(q) and vk(q, q̇). Recall that eqn. (3.15) showed

Q =
∂U

∂q
⇐⇒ Fk =

∂U

∂rk
= ∇rkU ∀ k.

The stability proof above had ∂U
∂q

= 0 at q̄, so it is clear then that the equilibrium point is
at

∂U

∂q

∣∣∣
q=q̄

= 0 ⇐⇒ ∇rkU(r1(q̄), . . . , rK(q̄)) = 0 ∀ k, (3.57)

or equivalently, from the definition of a conservative force,

Fk(q̄) = 0 ∀ k,

which is Newton’s second law.
This fact will be used in Chap. 8: the equilibrium point of the system parameterizes the

equilibrium configuration in E3K given by a Newtonian force balance. A proof of the system
stabilizing to its equilibrium point also proves stabilization around a configuration in space
(or on a manifold), with an appropriately defined basis.

3.3.5 Conclusion

This chapter reviewed a variety of concepts related to the use of Lagrange’s equations for
modeling mechanical systems, the use of passivity and dissipativity to analyze those systems,
and the provable stability of those systems via such an analysis. The level of detail given
here will be crucial for the extension in Chapter 8, where these proofs will be adapted for a
new application, with a new concept of potential within a Lagrangian system.

The concepts in this chapter do not represent a new contribution to the literature, but
instead, a clarification and standardization on the terminology and notation across different
fields (mechanics, signals and systems.) By organizing this dissertation with Chap. 3 here,
then Chap. 8 can focus on a novel contribution.
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Part II

Kinematics, Statics, and Design
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Chapter 4

Tensegrity Spines: Geometry and
Movement Goals

When considering the development of a spine for a quadruped robot, two fundamental ques-
tions arise prior to undertaking any modeling or design efforts. First, what motions should
such a spine perform? And second, what geometry or shape of spine best facilitates those
motions?

The following chapter presents an initial analysis of answers to these two questions from
the perspective of tensegrity spines. Though there is significantly more depth in these ques-
tions, the preliminary answers here allowed for selection of one specific geometry and one
set of desired motions, allowing for the development of designs and control systems in later
chapters.

4.1 Biological Spines as Bio-Inspiration for Spine

Movements

How should a spine assist a robot in its motions? There are a number of potential options, as
discussed in Chap. 2; however, most prior work focused on either dynamic running motion
of a robot or passive stabilization of a gait. Instead, this research seeks to have a robot walk
robustly on uneven terrain, implying the use of less dynamic motions, and of state-space
control. Fortunately, as opposed to requiring a more full study of possible spine motions and
their effects on a robot, biology gives inspiration as to how spines move. The biomechanics
community is clear in this regard. Biological spines perform three motions in a biped or
quadruped animal’s body:

1. bending in the sagittal plane,

2. bending in the coronal plane, and

3. axial rotation.
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These three motion primitives, also sometimes referred to as “flexion/extension”, “lateral
bending”, and “torsion”, [85], appear in a wide range of biomechanics literature on vertebral
spines of humans and quadruped animals [78, 9, 149, 154, 206, 61, 79, 205]. Fig. 4.1 shows
two of these motions (lateral bending and axial rotation). The biomechanics community
parameterizes all positions of the spine using these three variables, though the exact resulting
state of each vertebra is somewhat unclear in most cases.

(a) Spine bending [61]. (b) Spine rotation [206].

Figure 4.1: Two examples of biomechanics research on spines, showing (a) lateral bending
and (b) rotation. These motion primitives, alongside flexion/extension, comprise the three
motions of vertebrate spines.

Other vertebrate animals may use their spines in more exotic ways. For example, various
robots have been prototyped that use more complicated curves (e.g. sinusoids) for swimming
or crawling, including the Salamandra robots [50, 51] which also have four legs. However,
the proposed quadruped has more biomechanical similarities to the literature cited here, in
light of its intended style of locomotion.

This three variable parameterization, ‘bending-bending-rotation’, is therefore chosen as
a reasonable design and control goal for an actuated tensegrity spine. Later, these will be
used to parameterize an example state trajectory for the spine robot considered here. Ch.
6 validates this choice with a practical application: it will be shown that combinations of
bending and rotation lift and reposition a quadruped robot’s legs, and actively shift its
balance. Future work may show benefits to different or more complicated motion patterns.
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4.2 Tensegrity Spine Geometries

Creating a shape and cable connection pattern for any tensegrity structure is a non-trivial
task. This is the problem of form-finding: designing the size, shape, and placement of the
bars of a tensegrity alongside its cable tensions such that it remains in static equilibrium
[193]. Generating potential shapes and geometries of tensegrity spines could be done in this
way; however, such an undertaking would be challenging both theoretically and numerically.

Instead, since this dissertation seeks to validate the concept of tensegrity spines in general
(as opposed to, for example, presenting an optimal design for tensegrity spines), the shapes
of spines were designed by hand. Concepts of bio-inspiration were used when envisioning
shapes during brainstorming sessions, as were the motion goals of these robots. The subset of
designs that were created, and are considered here, do not necessarily represent a thorough
investigation into all options, but instead, are intended as a high-level validation of the
chosen design: specifically, that no other option the team could envision would have more
benefits than the one that is chosen. This section presents the designs that were considered,
as simple 3D-printed concepts, without actuation.

In the initial work conducted in this dissertation [169], a single spine geometry was
chosen for an analysis. That shape is the “tetrahedral” spine (Fig. 4.2). A spine with
nested tetrahedral vertebrae was proposed in the literature as a bio-inspired model for a
human spine [66]. It contains sets of horizontal cables along its sides, top, and bottom,
which correlate logically to the desired lateral bending / extension-flexion motions.

Figure 4.2: Initial concept for the geometry of a tensegrity spine, with tetrahedral vertebrae,
nested within each other. This shape has been proposed as a bio-inspired model for a human
spine [66]. Image used with permission from [191].

In addition to this spine, a team of students brainstormed the following six vertebra
shapes and connection patterns. This team, consisting of Lara Janse van Vuuren [98], Asher
Saghian [170], Shu Jun Tan [191], Robel Teweldebirhan [192], and Huajing Zhao [216], con-
structed the designs in Fig. 4.3. The designs concepts were motivated by the desired motions
identified above. All have a similar approximately-horizontal set of cables for bending and
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extension/flexion, similar to the tetrahedral spine, but those in Fig. 4.3 emphasize sets of
cables that would produce axial rotation.

Figure 4.3: Tensegrity spine geometries considered in the brief design study conducted here.
The Curved Rod (CR) spine consists of nested, alternating cups. The W-Alternating spine
has vertebrae that are mirrored images of the letter “W”. The same principle is used for
the “H” and “X” spines. The W-Cross and W-Extended spines are variations on the W-
Alternating, with different rotations and cable connection patterns between the vertebrae.
All are simple 3D-printed prototypes without actuation. Images from [170, 191] with per-
mission.

4.3 Evaluation of Spine Geometries

Given these spine shapes, and the desired motions of the spine, a variety of techniques could
be used to quantitatively or qualitatively compare their performance, up to and including
simulations and fully actuated hardware prototypes. Such an approach is somewhat im-
practical given the goals of this dissertation, particularly considering the eventual goal of
locomotion. There exists a large, unexplored gap between qualitative behavior of a given
spine and its benefits for a quadruped walking over uneven terrain. Therefore, only a brief
qualitative analysis was performed, focusing on identifying any clear choices for a spine
geometry moving forward.

To do so, a set of high-level metrics for comparing potential spine shapes was created, in
collaboration with the same team as above [98, 170, 191, 192, 216]. These metrics are one
possible adaptation of the movement goals into design parameters. The team proposed the
following to compare the designs:
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1. Neutral Zone. As defined in [180], the neutral zone of a spine is the range over which it
moves with marginal resistance. For the spines here, the neutral zone is interpreted in
terms of flexibility of the spine in a given pretensioned state, for both bending (sagittal
or coronal) and axial rotation.

2. Complexity. A common design parameter is the number of features required in a design,
which correlates to potential for manufacturing and assembly error. This metric counts
(roughly) the number of cable connections required per-vertebra in a design.

3. Component Failure. Spine geometries with a greater tendency to show cracks or ma-
terials failure are penalized. For this metric, the team both visually examined the
prototypes, and penalized designs with obvious stress concentrations.

4. Stability. As opposed to stability in the control system sense, the team identifies
“stability” here as the tendency for a spine to stay upright, or suspend its vertebra
without significant deformation, in a given pretensioned state.

5. Cost of Shape Change. One of the goals for this spine was to move along its motions
with a minimal amount of actuation in the cables, which correlates directly to the size
of actuators required. The team penalized designs that required greater changes in
force in the cables in order to produce a given movement.

The above are challenging to evaluate numerically, given the heterogeneity of spine ge-
ometries and the significant differences in pretension required for each design. These metrics
were therefore analyzed qualitatively, with the “Pugh Matrix” ranking system for designs,
which only assigns ratings of -1, 0, or +1 to each design. The team experimented with
each prototype by hand, and came to the consensus decisions shown in Fig. 4.4. In the
analysis, the tetrahedral spine was chosen as a control, since it has already been proposed
as a tensegrity spine model, and since its bio-inspiration gave it the most clear justification
for use among all the designs considered.

The analysis in Fig. 4.4 indicates a variety of competing metrics for these spines. For
example, more flexible spines were also less stable. Certain spine shapes are obvious choices
to eliminate - particularly, the “H” and “W”-Extended spines. Among the remaining options,
there is no clear optimal geometry. One hypothesis may be, therefore, that different spines
are more optimal for different applications. For example, more flexible spines may be better
for quadrupeds walking over larger obstacles with smaller payloads, whereas more stable
spines may be better for the reverse (smaller obstacles but heavier payloads.)

As such, the remainder of this dissertation considers the tetrahedral spine geometry. Fu-
ture work in quantitatively evaluating different spine geometries, particularly with hardware
prototypes on walking robots, may suggest a more favorable spine geometry.
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Figure 4.4: Qualitative evaluation of the different spine designs, using the metrics described
above. These were each analyzed by hand as a group effort in [98, 170, 191, 192, 216]. The
results indicate a clear competition between the various metrics: more flexible spines are less
stable, etc. There is no clear optimal design given this level of analysis, but three designs
stand out: the tetrahedral spine, the Curved Rod spine (if cost of shape change/actuation
is neglected), and the W-Alternating spine. Image taken from [170] with permission.
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Chapter 5

Inverse Statics Optimization for
Design and Control of Tensegrity
Spine Robots

Designing and controlling tensegrity spines for quadruped robots requires a variety of system
models, used for different purposes. This chapter introduces the first of these models: static
equilibrium. In doing so, the inverse statics problem is formulated, where a tensegrity
robot’s bodies are positioned in space and a set of cable tensions is calculated that keeps it
in that pose. Since many solutions to these cable tensions exist, an optimization program
is proposed to calculate these tensions - thus motivating the title to this chapter, inverse
statics optimization. This procedure can be used as a simple form of open-loop control, by
iteratively applying these pseudo-static cable tension solutions to a physical system. Chapter
7 also uses these solutions as part of a closed-loop controller, and the approach here arises
again in calculating equilibria in Chapter 8.

The following chapter first introduces the kinematics of tensegrity structures, with the
example of the tetrahedral tensegrity spine proposed in Chap. 4. Then, the static equilibrium
condition and corresponding inverse statics problem are presented and solved. The resulting
algorithm is adapted from the well known force-density method [172] to allow its application
to this spine model. In that section, a reformulation of the static equilibrium condition is
proposed for tensegrity structures with internal bending moments, such as this spine, showing
the first feasible solutions for such structures. Finally, a hardware test of the resulting
algorithm is performed, and it is shown that open-loop control of these spines tracks a
trajectory with low error.

5.1 Tensegrity Kinematics

By Defn. 2.3.1, a tensegrity structure (or robot) is defined as
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“a set of rigid bodies suspended in a network of cables in tension such the bodies do not
contact each other [179].”

Generally speaking, those bodies can have complicated shapes [46]. However, a useful
specialization, one which is employed in the vast majority of the literature, is that of tenseg-
rity structures as a graph. Informally, a body is represented by a set of nodes, with edges
representing stiff members (bars). Cables are also edges between nodes. The kinematics of
the structure are therefore reduced to a description of nodes in space. The following section
provides a rigorous mathematical description.

However, the following analysis has an important caveat: it is assumed that all bodies in a
tensegrity robot are rigid, with no moving joints within them. A variety of past work does not
limit to this case. Tensegrity structures may be composed of multiple rigid bodies containing
pin joints between them (e.g., [25, 24]. These structures have more in common with jointed
mechanisms (example, 4-bar or N-bar mechanisms) than the tensegrity spine robots studied
in this dissertation, and the mathematical tools to model them are much more complex. It is
arguable that the definition of tensegrity here does not capture a sufficiently wide number of
structures; however, it does capture the vast majority of tensegrity robots considered in the
literature [130, 68, 70, 27, 69, 46, 109, 167, 106, 48, 162, 199, 153, 175, 194, 130, 214, 107].

5.1.1 Graph Definition of a Tensegrity Structure

A tensegrity structure can be defined by a graph G = (V,E), with nodes V and edges E.
There are n nodes, where each ai ∈ V, i = 1...n represents a point in E3 where members of
the structure connect. There are m edges, where each edge ek ∈ E, k = 1...m represents a
structural member that connects two nodes. Forces P = {p1, . . . ,pn}, pi ∈ E3 are applied
at each node. The two dimensional case follows similarly to the 3D case here: the structure
exists in a d-dimensional physical space (d=2 or d=3.) This representation is the same as
an idealized truss, or a frame, in structural engineering.

The following assumptions arise from the above definition.

1. Nodal coordinates and external forces are expressed in a Cartesian basis, for ex-
ample ai = xiE1 + yiE2 + ziE3. The following chapter abuses notation so that
ai = [xi, yi, zi]

> ∈ R3, etc.

2. Structural members ek, k = 1...m, are perfectly rigid, do not deform, and do not change
length. (Cable deformations are back-calculated after solving the initial problem.)

3. Structural members only connect two nodes; a member is exactly one edge.

4. Structural members exist as one of two types: either bars of which there are r, which
can take either compression or tension loading, or cables, which can only take tension
loading, of which there are s. This implies s+ r = m.
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Assumption 1 may be modified in the analysis throughout this paper by choosing a
different curvilinear coordinate system in E3. So long as force and moment balance conditions
still hold, so do the conclusions below.

As with other graphs, the connections between nodes can be defined by a connectivity
matrix, also called an indicence matrix or branch-node matrix ([172]) in the literature. The
connectivity matrix C ∈ R(s+r)×n describes how nodes are connected by structural members.
If member i ∈ {1, ..., (s+ r)} connects nodes k and j, then the k-th and j-th columns in C
are set to 1 and -1 respectively for row i, as in

C(a,b) =


1 if a = i, b = k

−1 if a = i, b = j

0 else

(5.1)

The structure is then fully defined by the tuple of the configuration matrix, all nodal
coordinates, and all nodal forces. Combining each nodal coordinate into a vector according
to dimension, for example as x = [x1, . . . , xn] ∈ Rn, the tuple is then

(x, y, z, px, py, pz) ∈ Rn, C ∈ R(s+r)×n. (5.2)

5.1.2 Kinematics of the Tensegrity Graph

It is important to highlight the following result of this discussion:

Tensegrity structures have no position constraints that define a kinematic relationship.

In effect, the bodies are free to move in all dimensions in space. Since the bodies can be
positioned arbitrarily, the kinematics problem is trivial: the nodal coordinates can have any
value. This is different than having a solution with respect to cable tensions for a particular
set of nodal coordinates. That problem is the statics problem, below, which does indeed
constrain nodal positions, though the constraints are not from positions.

As discussed above, there are some structures also called ‘tensegrity’ in the literature
for which this statement is not true. For example, some structures consider pinned joints
between bars [24]. Such structures are not considered here, again because other analysis
tools for these mechanisms are more applicable (e.g. [12, 11].

For control, there are a variety of mundane ways to transform a system state into the
kinematic parameters above. For example, assume there are b bodies in the structure, and a
local frame of nodal positions ak in body j. If there is a state vector ξ containing the center
of mass of each body rj and a set of Euler angles parameterizing the body’s rotation, then
a node’s position in the global frame is bkj as in

bkj(ξ) = Rφ
j (ξ)Rγ

j (ξ)Rθ
j(ξ)ak + rj(ξ),
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where R
(·)
j are appropriate rotation matrices. The 2D model removes the y, θ, φ coordinates,

but is otherwise expressed in the same manner.

5.1.3 Kinematics of Tetrahedral Tensegrity Spines

The tetrahedral-vertebra spine from Chap. 4 can be put in the framework described above.
Consider first a two-dimensional projection of two vertebrae of that spine, as a reduced-order
model for analysis. Fig. 5.1 shows a visualization of this model, with a set of dimensions
chosen to match a potential hardware version of the spine, with an initial pose (horizontal)
chosen arbitrarily. The graph structure is visible with nodes V in blue and edges E in black
(for members in the rigid body) and red (for cable members, which can only take tension
loads.)

Figure 5.1: Example two-dimensional, two-vertebra tensegrity spine. Blue circles are nodes,
black edges are bars (compression), red edges are cables (tension.) This model is a projection
into 2D of the tetrahedral spine from Chap. 4.

Writing a connectivity matrix C for this spine requires differentiating between the cable
members and bar members. It is assumed that the first s rows of C represent cables and
the remaining r = m− s rows are for bars [179]. For later analysis in this section, the nodes
have been ordered in Fig. 5.1 according to rigid body, in groups of four. Also imposing an
ordering on the bars leads to the following connectivity matrix, highlighted according to its
block structure:



CHAPTER 5. INVERSE STATICS OPTIMIZATION FOR DESIGN AND CONTROL
OF TENSEGRITY SPINE ROBOTS 49

C =



0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 −1 0 0
0 0 0 1 0 0 −1 0
1 −1 0 0 0 0 0 0
1 0 −1 0 0 0 0 0
1 0 0 −1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 1 0 −1 0
0 0 0 0 1 0 0 −1


, (5.3)

where the red rows represent the s = 4 cables and blue rows are the r = 6 bars within the
vertebrae.

Evaluating the movements of such a spine requires fixing part of the structure in space,
or otherwise modeling its interaction with the environment. The following analysis assumes
that the leftmost vertebra is fixed to the ground and does not move, and also provides the
reaction forces to keep the body in static equilibrium. Columns 1-4 of C are highlighted
with lighter colors to emphasize the nodes for the fixed left vertebra.

5.2 Tensegrity Statics using the Force Density

Method

Given a configuration of the tensegrity (nodal coordinates), the forward and inverse statics
problems correspond to calculating cable tensions so that the system is in static equilibrium.
Both forward and inverse require an expression for the static equilibrium condition. This
section derives that constraint for the tensegrity spines considered here, and along the way,
introduces a new reformulation of the constraint to account for internal bending moments
within a tensegrity body.

The inverse statics solutions can be used for control (later sections,) since the dynamics
models in later chapters will assume that the control input arises from adjusting the cables’
parameters. Specific models of the cables, such as linear elasticity, rest length, etc., are
needed to describe the control input precisely. Consequently, this section focuses on calcu-
lating cable tensions independent of a specific model, under the assumption that the control
input can be calculated from these tensions.

For structural networks, including cable networks, the static equilibrium condition can
be readily specified by the force density method [172]. It has, by extension, been used for
tensegrity systems as networks of force-carrying structural members in tension or compression
[195]. This section briefly derives the static equilibrium condition for a structure using force
density, then reformulates it for the problem at hand.
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In the following, the character q does not refer to the generalized coordinates for La-
grange’s equations as in chapter 3. This is an unfortunate clash of terminology between
fields. The field-specific terminology is kept in this chapter, since the work here does not
consider any dynamics of the system, and thus Lagrange’s equations do not appear.

For an initial analysis of the statics of this system using the force density method, the
following assumptions are imposed in addition to those for the kinematics:

5. Structural members are one-dimensional; they have zero volume and mass. (The mass
of the structure is instead distributed to the nodes, for purposes of analysis.)

6. Forces are only exerted at nodes. This includes gravitational forces due to the struc-
ture’s mass.

7. All connections between members (i.e., the nodes) are friction-less pin joints.

8. All nodes are fixed in space; they do not translate.

The final assumption differentiates the statics problem from the form-finding problem
as discussed in Chap. 2.4. Specifically, if no static solution is found for the specified nodal
coordinates and forces, then this chapter does not consider adjusting the positions of the
nodes.

5.2.1 The Force Density Method for General Networks

Assume that the nodal positions and external forces are given. Let the force in member i be
Fi, which acts along its axis. Define the force density vector q as

q = [ q1, q2, q3, ... qs+r ]> ∈ R(s+r), (5.4)

such that if member i has length `i,

qi = Fi/`i. (5.5)

As seen in [68, 172, 193, 195] the force balance condition in d=3 dimensions for static
equilibrium of the structure can then be stated as

C>diag(q)Cx = px,

C>diag(q)Cy = py,

C>diag(q)Cz = pz.

(5.6)

With some manipulation, as also discussed in [68, 172, 195], eqn. 5.6 can be reorganized as

Aq = p, (5.7)

where
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A =

C>diag(Cx)
C>diag(Cy)
C>diag(Cz)

 ∈ R(nd)×(s+r), (5.8)

p =

px
py
pz

 ∈ R(nd). (5.9)

The d=2 dimensional case follows similarly.
Here, A and p are constants. Therefore, eqn. (5.7) is a set of linear equations in q. A

value for q that satisfies (5.7) can then be obtained in a variety of ways, e.g. by a quadratic
program [68], which produces a set of equilibrium cable forces for a given desired pose. If
solutions exist, then ū can be calculated (for example, in the linear elastic case) as

ūi = `i −
`iq
∗
i

ki
. (5.10)

5.2.2 Existence and Uniqueness of Equilibrium Solutions

Issues can arise when attempting to apply eqn. (5.7) to tensegrity robots. Both the existence
of solutions, and their uniqueness, must be considered.

Existence of Solutions

First, the spine considered in this work intuitively requires internal bending moments to
be present in static equilibrium, violating Assumption 7. Consider, for example, the center
node of the tetrahedral spine: it must resist the induced bending from the cables at the tips
of the tetrahedron. In such a case, eqn. (5.7) is inconsistent in almost all poses of the spine,
and no solutions exist.

Additional insight exists when examining the rank of A. In works such as [68, 169, 70],
the tensegrity structure has many more cables and bars than nodes, such that (s+r) > (nd).
Thus, A is wider than it is tall, with a null space dimension of at least (s + r) − (nd) > 0.
However, for example with the two-dimensional two-vertebra tensegrity spine, (s + r) = 10
and (nd) = 16, so A is taller than it is wide, has an empty null space in almost all poses,
and no solutions exist other than q = 0 with px,py = 0.

This rank deficiency issue for static equilibrium is discussed in the literature on tenseg-
rity structures in the context of geometry [35] and energy methods [49]. Algorithms exist
for determining if a structure would have static equilibrium solutions [155, 128]. However,
addressing this issue usually consists of adding cables or changing the geometry of the tenseg-
rity structure itself (via form-finding, e.g. [195]), which is not possible given the problem
statement in this work. It has also been suggested that a rigid body be replaced with an
equivalent rigid frame with no bending moments; however, such a task is very challenging.
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No force-density formulations of static equilibrium for tensegrity structures with internal
bending moments is present in the literature.

Uniqueness of Solutions

When eqn. (5.7) has a nonzero null space, an infinite number of solutions exist. Informally,
the structure can increase or decrease its stiffness by antagonistically tightening or loosening
cables. The inverse statics optimization problem presented below proposes searching this
null space for some optimal set of tensions.

The question of uniqueness of the equilibrium calculated via the above, with respect to
spatial coordinates, is an open problem for many tensegrity systems. This chapter considers
static equilibrium, but an equilibrium point in the robot’s state space must be considered with
respect to the equations of motion. For comparison, this chapter asks: what cable tensions,
and therefore rest lengths of springs, keep the structure in equilibrium? An analysis of
equilibrium points asks: given a set of rest lengths of flexible cables, what nodal coordinates
achieve static equilibrium? The latter requires analyzing the dynamic equations of the cables,
and is considered in Chapter 8 for general networks.

For some tensegrity structures, particularly with bars only and when pretensioned with
linear-elastic cables, it has been shown that a static equilibrium is an asymptotically stable
local equilibrium in the state space [185]. It has also been shown qualitatively that some
tensegrity structures have multiple equilibria when position constraints on the bodies are
imposed [203]. Identifying equilibria of this dynamic system is left for future work. Relatively
speaking, for the spines considered here, the local region where only one equilibrium exists
is “large:” no multiple equilibria have been found during all the research in this dissertation.

5.2.3 Rigid Body Reformulation of the Force Density Method

The well-known results in preceding sections did not produce any solutions for the spines in
this work. Therefore, the following adaptation of the node-graph formulation of the force
density method is proposed.

Here, the equilibrium condition for a tensegrity structure is expressed as a force and
moment balance per rigid body. The derivation below produces a new set of linear equations
for static equilibrium. Doing so neglects the internal stresses within the bodies, consistent
with the assumption of rigid-body equations of motion. The process below is therefore
described as a “rigid body reformulation”, although prior statics work uses the term ‘rigid’
in different contexts [35]. The following is the first static equilibrium constraint for tensegrity
robots such as these.

The rigid body reformulation requires the following two assumptions:

1. The tensegrity robot consists of b rigid bodies each with the same number of nodes,
η = n/b.
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2. The columns of C are block-ordered according to rigid body: nodes are assigned an
ordering in blocks of η.

These assumptions are demonstrated in the highlighted C in eqn. (5.3). The robot has
b = 2 bodies, with η = 4 nodes each, so that columns 1-4 and 5-8 correspond to each body.
This is similar to the repeated ‘cells’ of a larger tensegrity, as the term is used in [136].

Preliminaries

Throughout the following section, certain patterns and quantities are used repeatedly. Here,
they are briefly introduced and derived, so as to shorten exposition in the sequel.

Combining together sets of rows or columns of a matrix will be referred to as collapsing
the matrix. One way to do so is pre-multiplication by a matrix that is generated using the
Kronecker product in combination with the identity matrix and ones vector. For example,
the matrix

K =(I2 ⊗ 1>4 ) (5.11)

=

[
1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1

]
(5.12)

would collapse rows 1-4 and 5-8 of another matrix A ∈ R8×n, as in KA ∈ R2×n.
Reformulating the constraint to neglect internal stresses requires that the force densities

for the cables, qs, be separated from the force density vector for all members, q. Recall that
the C matrix has been organized with the first s rows as cables (for example, highlighted in
red in eqn. (5.3)) and the remainder as rigid members (bars.) Therefore, the first s elements
of q are qs. Relating these two can be done by a matrix H, which will be used as

H =

[
Is

0r×s

]
∈ R(s+r)×s, Hqs =

[
qs
0r

]
, qs = H>q. (5.13)

Both the cable lengths and the square of the cable lengths are needed below. They can
be obtained using the C matrix and node vectors, which are briefly given here using basic
linear algebra operations for implementation speed in an algorithm. The signed distances in
each dimension for each cable are

dx = H>Cx, dy = H>Cy, dz = H>Cz. (5.14)

The lengths of each cable `i can then be calculated quickly by concatenating these vectors,
and performing a row-wise 2-norm:

D =
[
dx dy dz

]
∈ Rs×3. (5.15)
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`i = ||Di,∗||2, (5.16)

` = [`1, . . . , `s]
> ∈ Rs (5.17)

L = diag(`) ∈ Rs×s. (5.18)

A vector of the squared length of each cable can be found without using a norm:

`2 = H>diag(Cx)Cx + H>diag(Cy)Cy + H>diag(Cz)Cz ∈ Rs (5.19)

L2 = diag(`2) ∈ Rs×s. (5.20)

Two-dimensional versions of these quantities follow similarly.

Removal of Anchor Nodes

For non-mobile tensegrity robots, for which reaction forces with the environment are not
relevant to the problem, these forces can be neglected by eliminating the constraints asso-
ciated with the body’s anchor nodes. Anchor nodes are those that are assumed to support
arbitrary reaction forces. Such an assumption is consistent with the body being rigidly fixed
to the ground, and takes advantage of the static indeterminacy of the structure. For exam-
ple, the 2D spine robot in Fig. 5.1 has its leftmost vertebra assumed to be rigidly fixed to
the ground, nodes 1-4 act as anchor nodes: any reaction forces may exist there, such that
the remainder of the robot is in equilibrium. Note that this does not imply the presence of
reaction moments at these nodes; only reaction forces are allowed to vary.

The material in this section does not apply when external reaction forces are specified
by another part of the control problem. For example, if the robot was connected to other
moving components (for example, when the hips and shoulders in a quadruped with a spine
are moving or the shoulder joint in [114] is moving), then the anchoring nodes have their
reactions specified beforehand also.

To remove anchoring nodes from the equilibrium constraint, specify a vector of binary
numbers with each entry corresponding to a node, where a 1 signifies that a node is to be
kept and a 0 for an anchor node:

w ∈ {0, 1}n. (5.21)

For example, removing the rigidly-fixed body of the 2D single-vertebra spine (Fig. 5.1)
corresponds to

w =
[
0 0 0 0 1 1 1 1

]>
. (5.22)

Setting w = 1>n recovers the original problem formulation.
Denote the number of remaining nodes as h ≤ n, equivalent to the number of nonzeros

in w. Then, diagonalize this matrix, and remove the zero-ed rows:
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W = nonzero rows(diag(w)) ∈ {0, 1}h×n. (5.23)

Pattern this matrix out along the diagonal, corresponding to the number of dimensions
d of the problem,

Wf = Id ⊗W ∈ {0, 1}hd×nd. (5.24)

The equilibrium constraint (eqn. 5.7) with the anchors removed can then be posed as

WfAq = Wfp (5.25)

Conceptually, this eliminates the force balance constraint at any nodes with a 0 in w.

Force balance per rigid body

The nodal force balance, eqn. (5.7), can be converted into a force balance per-body by
combining the above concepts. Assume that w has been chosen such that the assumptions
in the problem hold: i.e., after eliminating anchor nodes, the tensegrity robot has b bodies
and a configuration matrix is block-organized by bodies of η nodes, and that Wf from eqn.
(5.24) is used as per eqn. (5.25). Note here that if a body was removed via Wf , then b
must be decremented accordingly from the original problem formulation. For example, the
structure in Fig. 5.1 has b = 1 body remaining, though b = 2 were initially present.

The rows corresponding to the remaining bodies can be collapsed by a matrix

K = Idb ⊗ 1>η ∈ R(db)×(dbη), (5.26)

which combines the per-node balance (each row) for each body in all d directions. Performing
this operation on both the internal member forces (left-hand side) and external forces (right-
hand side) from eqn. 5.7) produces

KWfAq = KWfp. (5.27)

Now, the forces in the bar members must be removed, since they have no physical meaning.
Introducing H does so, as per eqn. (5.13),

KWfAHqs = KWfp. (5.28)

Therefore, the constraint from eqn. (5.7) can now be posed as

Afqs = pf , (5.29)

where

Af = KWfAH ∈ R(db)×s, (5.30)

p = KWfp ∈ R(db), (5.31)
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which is a linear system of equations, just as is the original.

Moment balance per rigid body

A moment balance for each body is now required, since the robot is treated as a set of rigid
bodies. To do so, this section calculates the induced moment by each cable (and external
force) on each node, then combines those moments per-body in the same way as with the
force balance.

Moments due to all forces can be summed around any point in the structure (not neces-
sarily the centers of mass) in static equilibrium. A convenient point is therefore the origin,
so that the moment arms are simply the nodal coordinates. Moments can then be expressed
using matrix multiplication as the following.

In three dimensions, the moment applied by the force in member i upon node k at
coordinates ak, calculated around the origin, is

Mk
i = ak × Fi ∈ R3.

Recall that the cross product can be expressed using a skew-symmetric matrix, as is common
in robotics applications [140]. In this case, let

Bk =

 0 −zk yk
zk 0 −xk
−yk xk 0

 ,
then

Mk
i = BkFi.

From the previous sections, Aq ∈ R(nd) are the forces applied by each member at each node,
expressed component-wise in each direction. Therefore, the moment in each direction due
to all members on each node (for d=3) is

M = BAq ∈ R3n, (5.32)

with

B =

 0 −Z Y
Z 0 −X
−Y X 0

 ∈ R3n×3n (5.33)

X = diag(x) (5.34)

Y = diag(y) (5.35)

Z = diag(z) (5.36)
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In two dimensions, the moment applied by member i acting on one of its anchors at node
k is a scalar quantity:

Mk
i = −ykF x

i + xkF
z
i .

So, by defining the moment arm matrix in two dimensions,

B2D = [−Y X] ∈ Rn×2n, (5.37)

a similar result arises:

M = B2DAq ∈ Rn. (5.38)

As with the force balance per body, the moment contributions from the bar members
can be removed and the moment balance at the anchor nodes can be removed. Applying
the same arguments as with eqn. (5.30) modifies eqn. (5.32) to become, per body, for the
cables only,

Mc = KWfBAHqs ∈ R3b. (5.39)

In d=2 dimensions, since there is only one moment per body, the moments from the cables
can be expressed as

K2D = Ib ⊗ 1>η , (5.40)

M2D
c = K2DWB2DAHqs ∈ Rb. (5.41)

The same can be done with the external forces,

p2D
m = K2DWBp, (5.42)

pm = KWfBp. (5.43)

So, the moment balance for the system is

Amqs = pm, (5.44)

where Am is defined as

Am = KWfBAH or Am = K2DWB2DAH. (5.45)
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Combined static equilibrium constraint

The force and moment balance conditions, eqns. (5.29) and (5.44), can then be combined
by stacking the systems of equations, as in

Ab =

[
Af

Am

]
, pb =

[
pf
pm

]
, (5.46)

so that the full static equilibrium condition is

Abqs = pb. (5.47)

Though the static equilibrium constraint has been fundamentally transformed from a per-
node force balance into a per-body force and moment balance, the constraint is still linear.
This allows the application of the same approaches to solving eqn. (5.47) as are done in
prior literature for eqn. (5.7).

For the example two-dimensional, two-vertebra spine, eqn. (5.47) has solutions, whereas
none existed using the vanilla force-density formulation. Its constraint matrix Ab ∈ R6×4 has
rank 3 in all poses in the tests below, thus a null space of dimension 4− 3 = 1. Simulations
below also show that eqn. (5.47) is consistent. So, even though Ab is still a ‘tall’ matrix, the
rigid body formulation admits solutions here whereas the node-graph formulation does not.

5.3 Inverse Statics Optimization

With the static equilibrium condition in hand, an inverse statics optimization problem can
be posed to find the optimal cable tensions that satisfy eqn. (5.47). The term ‘inverse statics’
is used here to emphasize that a control system chooses a qs. For comparison, the forward
statics problem would specify the cable model by fixing ū, and solving for the q that evolves
naturally due to the applied load p. Here, instead, the trajectory generation problem solves
for an optimal qs for a given load p, and back-calculates the corresponding inputs ū.

The following linear elastic model of the cables is used in the remainder of this chapter.
For cable i with total length (node-to-node) as `i, with (scalar) force Fi, a controller is
assumed to provide an input ui, where

Fi = κi(`i − ui) (5.48)

with κi ∈ R+ as the linear spring constant. Here, the sign convention is chosen so that
tension forces are positive, in consideration of the same sign convention for q.

This is equivalent to a motor retracting or extending a flexible cable. In the tests in
sec. 5.5, a mechanical spring will be attached to a stiff cable that is wound around a spool.
Later, given this model of the cables, the total potential energy is formulated to be used as
an objective function.
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5.3.1 Constraints on Equilibrium Cable Tension Solutions

The following section introduces two inter-related constraints to be imposed on the inverse
statics problem. First, the cables cannot have negative tension: a minimum is imposed on
the force densities for all cables. Second, given a model of the cables, an input saturation
constraint is applied that prevents negative rest lengths (since negative length is not possible.)
These two constraints provide both upper and lower bounds on the force density.

Minimum Tension

In order to enforce positive cable force densities, a scalar lower-bound constant is introduced,
with its corresponding column vector,

c ∈ R+, c = c1s ∈ Rs
+ (5.49)

which are used to define the minimum force density in every cable as qi ≥ c, ∀ i = 1...s. The
constraint is then (in standard optimization program form)

−qs ≤ −c. (5.50)

The magnitude of c determines the amount of pretension in the structure: a higher c, the
stiffer the structure. From a control systems perspective, setting c = 0 is therefore possible
but not advisable, since qi = 0 indicates that a cable has become slack and the equations
of motion of the robot change as a consequence. Choosing a larger c therefore operates the
robot in a region of its state space that’s further away from the switching surface of these
hybrid dynamics, but a high pretensioning constraint comes at the design cost of a higher
total potential energy in the cables. In addition, setting c too high may conflict with the
input saturation constraint below, and result in no solutions.

Input Saturation Constraint

A maximum force density constraint can be added to the problem in order to prevent input
saturation. Input saturation arises from the physical condition that an actuator cannot
command negative rest length; it must always be that

ui > 0 ∀ i = 1 . . . s. (5.51)

For purposes of robustness, introduce a minimum cable rest length of umini , or in vector
form for all inputs, umin. Selecting a umin can be done from physical considerations of a
robots’ cables: there are mechanical components at the ends of a cable, such as springs,
that could not be retracted by a motor. Attempting to do so would cause collisions between
the actuator and the robot’s cable connectors. For example, if a mechanical spring plus its
connectors attached at the end of a cable had some length `0

i , then a reasonable choice would
be umini = `0

i + ε, where ε is some safety factor.
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Using umin also allows the inequality to be non-strict, as with the cable pretensioning
constraint. Via the relationship between rest length and cable force (the input model from
eqn. 5.48), this inequality becomes

umini ≤ `i −
Fi
κi
, (5.52)

and with the definition of force density (eqn. 5.5), can be written linearly as

umini ≤ `i −
`i
κi
qi ⇐⇒ `iqi ≤ κi(`i − umini ). (5.53)

Eqn. (5.53) can therefore also be understood as Fi ≤ Fmax
i .

Define the matrix κκκ = diag(κ) ∈ Rs×s
+ , which contains the spring constants along its

diagonal. The constraint then becomes, in vector form,

Lqs ≤ κκκ(`− umin). (5.54)

This input saturation constraint constraint can be combined with the pretensioning con-
straint (eqn. (5.50)) to become [

L
−Is

]
qs ≤

[
κκκ(`− umin)
−c

]
. (5.55)

The use of the combined constraint 5.55 guarantees that, if solutions exist, they result in
valid inputs to the control problem while also maintaining tension on all cables.

Finally, it is notable that if umin = 0, the input saturation constraint simplifies to the
remarkable expression

qs ≤ κ, (5.56)

which emphasizes the deep connection between selection of appropriate spring constants for
the robots’ design and the range of allowable control inputs.

5.3.2 The Inverse Statics Optimization Program

Since eqn. (5.47) is a linear equality constraint, and eqn. (5.55) is a linear inequality
constraint, solving for an optimal q∗s can be done with a convex program. In the following,
an energy-based objective function is derived, then a quadratic program is proposed that
solves the problem.
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Total Cable Potential Energy

Given the linear elastic cable model of eqn. (5.48), the total potential energy in the system
can be formulated. As a function of the control input, the potential energy in the cable
system is

PE =
1

2

s∑
i=1

κi(`i − ui)2. (5.57)

Relating the energy in a cable to its force density can be done by using eqn. (5.48), as

qi =
κi
`i

(`i − ui) ⇒ (`i − ui)2 = q2
i

`2
i

κ2
i

,

and therefore that

PEi =
1

2
q2
i

`2
i

κi
.

The sum in eqn. (5.57) is quadratic in qs, and has the form

PE =
1

2
q>s κκκ−1L2qs. (5.58)

The scaling factor of 1
2

will be dropped for convenience below, since it does not affect the
optimizer q∗.

Solution via a Quadratic Program

With the above quadratic cost and linear constraints, the following quadratic program can
be used to solve the inverse statics problem for one pose of the robot.

q∗s = arg min
qs

q>s Rqs (5.59)

s.t. Abqs = pb (5.60)

Sqs ≤ v, (5.61)

with

R = κκκ−1L2, S =

[
L
−Is

]
, v =

[
κκκ(`− umin)
−c

]
. (5.62)

Similar optimization problems have been termed “inverse kinematics” in the literature
[68, 70]. However, this approach contributes two advances in comparison. First, the reformu-
lated constraint (5.60) allows for solutions to exist here for a much wider array of tensegrity
robots. No solutions existed for tensegrity spines using the approach from [68]. Second, the
above problem accounts for input saturation, preventing infeasible solutions and enabling
safer implementation on hardware robots.
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5.4 Inverse Statics Optimization as Open-Loop

Control for Tensegrity Robots

The optimization program (5.59-5.61) can generate an optimal q∗s for a desired pose ξ of the
robot (sec. 5.1.2). Open-loop control can therefore be performed by solving for a q∗s(t) over
a time series of poses, ξ̄(t), t = 1 . . . T , and applying the corresponding control inputs ū(t)
for each pose. The implied assumptions, such as pseudo-static motions, may or may not be
valid for different problem settings.

5.4.1 Inverse Statics Optimization Algorithm

The inverse statics procedure first calculates the constraint eqn. (5.60) for each ξ̄(t) in the
reference state trajectory, via eqns. (5.8)-(5.47). Then (5.59-5.61) is solved for each q∗s(t) via
an optimization solver, and ū(t) is calculated using eqns. (5.48) and (5.5). The procedure
follows Algorithm (1), where `i and ki are the length and spring constant for cable i as per
eqn. (5.48).

Algorithm 1 Inverse Statics Optimization

procedure InvStat(ξ̄)
for t← 1, T do

Ab ← Ab(x(ξ̄(t)), z(ξ̄(t)))

pb ← pb(x(ξ̄(t)), z(ξ̄(t)))

q∗
s(t)← OptForceDens(Ab, pb) . solve (5.59-5.61)

for i← 1, s do

ūi(t)← `i(t)−
`i(t)q

∗
i (t)

ki

return ū

Algorithm (1) was implemented with MATLAB’s quadprog solver in the software that ac-
companies this research1.

5.4.2 Inverse Statics Optimization For Motion of a Tensegrity
Spine

Algorithm 1 was used to generate the first control solutions for a tensegrity spine performing
the bending motions suggested in Chap. 4. The following considers a five-vertebra version of
the two-dimensional spine from Fig. 5.1 for clarity of exposition. Three dimensional versions
of this problem follow similarly. In both cases, the C matrix is extended from that of sec.
5.1.3 to include sets of cables and bodies with the same block structure as for two vertebrae.

1https://github.com/apsabelhaus/tiso



CHAPTER 5. INVERSE STATICS OPTIMIZATION FOR DESIGN AND CONTROL
OF TENSEGRITY SPINE ROBOTS 63

Problem Setup for a Two-Dimensional Bending Spine

The spine is assumed to have its leftmost vertebra fixed to the ground, with the remaining
vertebrae under the influence of gravity. Therefore, external forces py are −mg at each node.
The removal of the leftmost vertebra via the w vector eliminates the force balance at the
fixed nodes, so no reaction forces are needed and the reaction force calculation is skipped.

Many different motions are possible that might be called ‘bending’, as motivated by the
bio-inspiration for this problem. The biomechanics literature does not commonly define a
specific sequence of states of each vertebra in a spine when undergoing a motion. Therefore,
the test in this chapter chooses one possible state trajectory among many: each vertebra is
swept out along an arc from an initial horizontal configuration. Future work will examine
different trajectories for representing the three motion primitives from Chap. 4 and their
implications for design and control.
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(a) Initial pose of the five-vertebra, 2D spine,
for the inverse statics optimization example.
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(b) Final pose of the five-vertebra, 2D spine,
for the inverse statics optimization example.

Figure 5.2: Setup and kinematics for the inverse statics optimization example, with the five-
vertebra two-dimensional spine. The test calculated optimal cable tensions for T = 30 poses
between the initial (a) and final pose (b).

Fig. 5.2 shows this spine in its initial configuration and final configuration. The test
calculated the optimal cable tensions for T = 30 poses between the initial and final. The
state trajectory ξ̄ along this path consists of translations and rotations of each of the four
moving vertebrae. Each of the bars of the vertebra were `b = 4 inches long, and each
vertebra was translated in the x-direction from the previous by 1.5`b in their initial poses.
Specifically, counting the first moving vertebra as j = 1, with the state vector ξ̄(t) containing
center-of-mass coordinates x̄j(t) and ȳj(t),

x̄j(0) = (1.5`b)j . (5.63)
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The vertebrae are swept upward along an arc for each pose. The initial x-translations
also define the radius of the rotation: rj = x̄j(0). Consequently, the reference positions of
each vertebra over time, x̄j(t) and ȳj(t), are:

x̄j(t) = rj sin(βj(t)), ȳj(t) = rj cos(βj(t)). (5.64)

The maximum sweep angle for each vertebra βj(T ) := βmaxj was defined as 4/5 of the
previous vertebra’s maximum sweep angle, counting backwards from the rightmost vertebra
J . Specifically,

βmaxJ =
π

10
, βmaxj =

4

5
(βmaxj+1 ), j = (J − 1) . . . 1. (5.65)

In addition, the desired rotation θ̄j(t) of each vertebra about its inertial z-axis is defined
to be the same as the sweep angle βj(t) for that vertebra. This keeps the x-axis of each
vertebra’s local frame aligned with the vector rj:

θ̄j(t) = βj(t). (5.66)

The spring constant in the cables was chosen to be 4.8 lbf/in, from a set of example
springs used later for prototyping. The minimum force density was chosen to be c = 0.5,
and the minimum rest length was umini = 1 cm.

Inverse Statics Optimization Results for a Two-Dimensional Bending Spine

Applying Alg. 1 to the problem above generates a set of optimal forces, force densities, and
inputs. The optimal cable forces are shown in Fig. 5.3, plotted against the 30 chosen poses
between the initial and final configurations. Solutions existed in all poses.

Here, the individual cables (as extrapolated from Fig. 5.1) are given labels. The hori-
zontal top (HT) and horizontal bottom (HB) cables are the first two rows of the example
C matrix. The remaining two are termed ‘saddle’ cables, from the observation that the
corresponding cables in three-dimensional version of this spine resemble a saddle point.

Three important observations are possible from this data, each of which has an effect
on the design and control approaches in the following sections. First, the optimal forces
can occasionally be counter-intuitive upon initial inspection. As the spine bends upward,
the tensions decrease in most cables (a downward trend evident in the figure.) Here as
with the rest of this dissertation, the cables each adjust the structure’s pose in complicated
ways. However, more analysis often leads to intuition: in particular, as the spine bends up,
the total moment arm from the mass of the tip vertebra becomes lower (versus the gravity
vector), so reduced tensions on the top cables are a reasonable result.

Second, there are much larger variations between cables, and between sets of cables, than
between poses. The leftmost set of cables (red) must support the cantilevered load of the
remaining vertebrae, for example. Even within one set, some cables may support most of
the structure’s weight. For example, the bottom saddle cables (SB) are the only ones which
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Figure 5.3: Inverse statics optimization results for the two-dimensional, five-vertebra spine
performing the motion in Fig. 5.2. Cables are colored according to sets between vertebra, in
order from left to right (red, green, blue, magenta.) Marker indicates cables within the set,
numbered according to the C matrix from sec. 5.1.3. Here, HB = horizontal bottom, HT
= horizontal top, SB = saddle bottom, ST = saddle top. There are significant variations
according to cable, but smaller variations between poses.

provide a force in the positive y direction, and thus carry a large load. On the other hand,
the horizontal bottom (HB) cables are only barely tensioned due to the chosen c, with forces
so small as to not appear in the plot.

Finally, small variations in tension lead to significant changes in pose. The bend from
Fig. 5.2 produces difficult-to-distinguish trends in most cables in Fig. 5.3. This has signif-
icant implications for calibration: with a small mismatch in initial cable length, errors will
propogate throughout a test. Adjusting the initial lengths of cables before performing a test
- manual calibration - is the most significant source of error in the hardware experiments in
this dissertation.

5.5 Hardware Testing and Verification

The new inverse statics optimization algorithm was tested in a hardware experiment. These
tests were designed to validate the reformulated rigid-body equilibrium constraint in the
optimization problem. Results also consider the validity of using open-loop inputs for control.

The test setup consisted of a single vertebra, constrained in a two-dimensional plane,
of the same form as Fig. 5.1. Choosing this simple model reduced many of the hardware
difficulties of three dimensional structures (such as state tracking in higher dimensions) as
well as with multiple vertebrae (such as actuator placement.) Though the test was performed
on a reduced-order model, the very promising results below indicate the applicability of the
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approach to higher dimensions with more vertebrae.
All work in this section was performed collaboratively with Kimberly Sover and Jacob

Madden. Designs and CAD models are used in this dissertation with permission from all
team members.

5.5.1 Test Setup

The full test setup is shown in Fig. 5.4. The test consists of a single vertebra, mechanically
constrained to two dimensions via a series of acrylic plates and bearings. The vertebra is
of the same geometry as described in sec. 5.1.3, with four cables. As the motors adjust
the lengths of the cables, a camera tracks the position of the markers on the vertebra and
calculates its state.

Figure 5.4: Hardware test setup for validating the proposed inverse statics optimization
procedure. Motor and cable assembly on left. Shown here is the vertebra pinned in its
calibration pose, via two rods that insert through the rear plate of the test setup, located
underneath the red and blue tracking markers.

Mechanical Assembly

The mechanical assembly of the test setup consists of a single 3D-printed vertebra, placed
in between a white-colored back plate and a clear acrylic front plate (Fig. 5.5). With the
vertebra placed between the plates, and with thrust bearings to reduce friction, the vertebra
was constrained to move in only three degrees of freedom: horizontal (x), vertical (y), and
rotation (expressed in the vertebra’s local frame, θ).

A series of standoffs and washers were used to align the two plates so the vertebra could
move freely. The vertebra contains notches for attaching springs, to which the cables were



CHAPTER 5. INVERSE STATICS OPTIMIZATION FOR DESIGN AND CONTROL
OF TENSEGRITY SPINE ROBOTS 67

Figure 5.5: CAD render of the test setup assembly, exploded view, demonstrating its com-
ponents. (a) Calibration markers for the computer vision tracker, fixed to the clear front
plate. (b) Clear front plate, constraining the vertebra to two dimensional movement. (c)
3D-printed vertebra, with thrust bearings in blue. (d) Motor assembly, attached to the rear
plate, controlling the vertebra’s cables. (e) Rear plate supporting the test setup.

fixed via a screw adjustment mechanism. Cables were wound around spools attached to the
shafts of each motor so that motor rotation provided the input ui. A series of eye bolts were
used to route the cables such that their orientation coincided with Fig. 5.1. The motors
were four 30W Maxon brushless DC motors, fixed to the rear plate.

Sizing of all components was chosen to minimize calibration error (with a smaller test
setup) against mechanical challenges for a much larger setup. The vertebra had bar lengths
of 20cm for the two rear bars, and 16cm for the front cantilevered bar with the markers. It
had a mass of 0.5kg. Spring constants were 4.8 lbf/in for the horizontal cables, and 25.4
lbf/in for the saddle cables. These were chosen to balance calibration error (stiffer springs)
against spring deformation (more flexible springs.)

Electronics

The brushless DC motors were operated with the VESC 6.0 motor controller2, one for each
motor, configured for sensorless operation. These controllers accepted a pulse-width modu-
lation signal for velocity input. A Cypress PSoC microcontroller was attached to the encoder
on each motor, and controlled the system by varying that PWM signal to each motor driver.
The microcontroller was connected to a laptop computer via USB, communicating over the

2https://vesc-project.com/
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UART protocol. A webcam was also connected to that computer for the computer vision
system.

Software

For control of the motors, the microcontroller generated the PWM signal via a SISO PID
controller. The tracked output was the error in motors’ rotation, the difference between
recorded encoder ticks versus the commands sent over UART. Controller gains were cali-
brated as per the VESC’s documentation. The laptop computer sent cable rest lengths over
UART at specified intervals.

A computer vision system was used to track the state of the vertebra as it moved. The
camera was pointed at the clear front plate of the test setup, with the same perspective
as Fig. 5.4. The system used OpenCV libraries in ROS, running on the attached laptop
computer.

Calibration of the camera frame was performed at the start of each test. The eight
black markers fixed to the front acrylic plate (Fig. 5.5) were detected, and a homography
transformation was automatically calculated between the camera frame and the test setup
frame. That transformation was applied to all pixel values to determine the locations of the
blue and red markers in the test setup frame.

The camera was operated at 640 x 480 resolution for use with the computer vision
libraries. This implied a tolerance of approximately +/- 1 mm in the computer vision
system, which corresponds to the width of one camera pixel in the hardware frame.

The state tracking procedure, after the automatic calibration, consisted of blob detection
of the red and blue markers on the vertebra. These dots, placed at known locations in the
vertebra’s local frame, were used to calculate the center of mass and local rotation of the
vertebra. No statistical state estimation or smoothing was implemented; the raw pixel data
was used to calculate the state for each frame.

The attached laptop computer recorded the calculated vertebra state, and recorded times-
tamps for both states and cable rest length commands sent to the microcontroller. Data was
then post-processed to correlate timestamps.

5.5.2 Experimental Results

The chosen reference trajectory of the vertebra was similar to that of sec. 5.4.2, but with the
vertebra sweeping and angle from −π/8 to π/8. The inverse statics optimization algorithm
was executed, results were saved, and then replayed during each hardware test. There were
N = 10 tests performed with the same cable rest length calculations.

Test Procedure

The procedure for one test consisted of first calibrating the cable lengths. The vertebra was
pinned in a known pose (Fig. 5.4) by fixing it in place with rods through the rear test setup
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plate. Each cable was then manually tensioned by visual and physical inspection, with the
goal to have each cable only slightly tensioned, approximating zero force as best as possible.
The offset from the cable rest lengths in that known pose was incorporated with the inverse
statics optimization results before transmission to the microcontroller.

After calibrating the vertebra’s cables for each test, the vertebra was unpinned and
allowed to move freely, and the cable rest length commands were sent while tracking with
the computer vision system. Each test was discretized into 80 poses, with a one-second pause
between commanding each pose.

Vertebra Movement Results

Fig. 5.6 shows the initial pose and final pose from one representative test. During the 80-
second test, the vertebra moved slowly between these positions. Visually, this test verifies
that a bending motion is not only possible with a tensegrity spine, but that control inputs
for such a motion can be calculated analytically.

(a) Initial pose. (b) Final pose.

Figure 5.6: Representative hardware test, (a) initial pose and (b) final pose of the vertebra
during its trajectory. Red dot indicates the center of mass of the vertebra, calculated by the
computer vision system, as it moves along its sweeping motion.

Data Analysis

The recorded states and tracking errors are plotted in Fig. 5.7. Results show extremely close
tracking to the expected series of poses.

Fig. 5.7a plots the center of mass of the vertebra in the x-y plane as it moves through
its test. Points are averaged per-pose over all 10 tests, with standard deviation plotted as a
pink shaded circle behind each mean. Blue points correspond to the poses specified to the
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(a) Averaged trajectory of the center of mass of
the vertebra.
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Figure 5.7: Data analysis from the 10 experiments. Means in red, standard deviations in
pink shading, reference trajectory in blue. The vertebra followed its proscribed path very
closely in all experiments, with some minor drift as expected from an open-loop control test.
Errors are extremely small in comparison to the test geometry, and in many cases (e.g. the
x-errors) are below the 1 mm-per-pixel resolution of the computer vision system.

inverse statics optimization algorithm. Qualitatively, the vertebra moves as expected, with
some offset as expected from an open-loop control test.

Fig. 5.7b plots the errors for each individual state, again with red as the mean and pink
shading for standard deviation. Calculated state errors were close to measurement tolerance
for the test setup, in some cases less than 1mm. All errors were extremely small overall in
comparison to the size of the body and the length of the trajectory. For example, the robot
moves 12.5 cm in the y-direction during its test, so with the largest y-error as 0.5 cm (Fig.
5.7b), the largest errors in the test are on the order of 4% total movement.

Both plots show an observable, small drift. This is partially due to the test setup’s
calibration procedure and partially due to the approximations used in the statics model. The
pins which held the vertebra in place allowed for some play, so the vertebra’s configuration
pose was not always fixed. The drift may be due to the unmodeled dynamics of the system,
including the weight of the springs and friction as the vertebra pulls upward. However, the
results appear to justify the validity of the new static equilibrium constraint, giving correct
poses up to some expected test error.

5.6 Conclusion

This chapter established an inverse statics algorithm for calculating control inputs that
position a tensegrity robot in a desired pose. The inverse statics optimization problem
introduced a reformulation of the static equilibrium constraint, to extend prior work to a
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much wider range of tensegrity robots. This section also addresses practical considerations for
the control problem, such as input saturation, while maintaining linear inequality constraints
for a convex program. Simulation examples show how the approach can be used to calculate
inputs for tensegrity spines in bending motions. A hardware test validated the new static
equilibrium constraint, and the inverse statics optimization algorithm which uses it, on a
reduced-order hardware prototype. Open-loop control results demonstrated that this simple
approach provides a reasonable method for simple control of tensegrity spines.

The work in this chapter focused on two-dimensional spines; however, physical prototypes
of quadruped robots require three-dimensional spines. The core contribution in this chapter
(the reformulated equilibrium constraint) applies equally to both two-dimensional and three-
dimensional structures, so it is expected that the approach will also be valid when used in
three dimensions. However, the sources of error described in Sec. 5.5.2 will become more
problematic as the dimension and number of vertebrae increases within a spine model. As
more cables are introduced, pretensioning and calibration may cause offsets in vertebra
movement that are more challenging to address.

As such, future work could incorporate closed-loop control with this open-loop approach.
Closing the loop using a state tracking controller would help reject the modeling error that
would arise from mis-calibration. Part III of this dissertation proposes ways to do so.
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Chapter 6

Design, Simulation, and Testing of an
Actuated Tensegrity Spine for
Quadruped Robots

This chapter presents the first prototype of an actuated tensegrity spine for quadruped
robots. The robot Laika, named after the first dog in space, is designed with this tensegrity
spine as its body. The following chapter presents the first set of hardware designs for Laika’s
spine, a physical prototype of those designs, and a set of tests in both simulation and
hardware which show the benefits of the three motion primitives from Chap. 4.

First, actuation is discussed, and using the inverse statics optimization approach from
the previous chapter, it is justified that Laika’s spine can be controlled in a bending motion
with a reduced number of actuators. Then, a prototyping method for tensioning the spine’s
cables, via a pretensioned elastic lattice, is introduced. Hardware designs of the prototype
spine, and a version of Laika with stiff (non-actuated) legs, are presented. Simulations are
performed that show specific combinations of bending and rotation can lift each of Laika’s
legs. Hardware experiments are performed that verify which combinations of motions lift
each leg. Ongoing work and future work seeks to design a version of Laika with moving legs,
so that walking locomotion can be performed.

6.1 Motion Primitives with Underactuation

Prototypes of tensegrity robots often suffer from the challenges discussed during the inverse
statics optimization test in Chap. 5. Specifically, there are a large number of cables within a
structure, and controlling the lengths of each cable presents a significant mechanical design
challenge. Motivated by other work in tensegrity robots which leaves some cables unactuated
[167], this section evaluates the example tetrahedral tensegrity spine for patterns in motion
that may allow for reduced actuation.

In the context of this work, the term ‘underactuation’ is used in two meanings. As with
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most tensegrity robots, the dynamics model of the spine has fewer possible control inputs
(cables) than states (rigid body poses and velocities), and is therefore underactuated in the
control systems sense of the term. However, in the context of a cable-driven system, the spine
can also be underactuated in the sense of leaving some cables uncontrolled. The designs below
will also propose to control multiple cables with one actuator, with such coupled actuation
also informally implying a form of underactuation.

6.1.1 Inverse Statics Testing of a 3D, Five-Vertebra Tetrahedral
Spine

A series of tests were conducted with a three-dimensional version of the tetrahedral-vertebra
spine. These tests examined bending motions under gravity, with the spine oriented verti-
cally. The choice of a vertical spine arises from previously-motivated research, before the
application of the spine to a quadruped robot was selected; however, the principles of un-
deractuation discussed here apply to the motion itself, not the orientation.

Using the same static equilibrium calculation as in Chap. 5, cable tensions in the spine
were calculated in a series of poses in Fig. 6.1. Cable force data was then examined for
trends. A linear relationship was observed between poses for the vertical cables, which run
along the sides of the spine, corresponding to the horizontal cables from Chap. 5’s spines.
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(a) Initial pose of the vertical spine.
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(b) Final (bent) pose of the vertical spine.

Figure 6.1: Inverse statics simulation for a vertical five-vertebra spine performing a bending
motion. This orientation was chosen for analysis based on earlier studies of the spine;
however, the observations from motion primitives are generalizable to other orientations.

To examine the relationship between cable segments, consider if actuators were only
located at the bottom-most vertebra’s nodes for each set of vertical cables. In this case,
a cable attached to a subsequent vertebra from the single actuator at the bottom, routed
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through the structure, could be modeled by adding the lengths of each vertical segment.
Along one edge of the spine, let the length of a cable segment between two adjacent vertebrae
be `i+1

i . Then total length of the cable that connected the bottom vertebra to vertebra
j = 2...5 would be of the form Lj as in

Lj =

j−1∑
i=1

`i+1
i ,

i.e., the sum of all the edge lengths. By assumption of linear elastic behavior of the cables,
if all cables have the same spring constant, the rest length (control input u := L0

j) follows
this same additive relationship. For the analysis here, each vertebra had a mass of 1.6kg,
and cables had spring constants of 1220 N/m.

Examining the change in cable rest length generated by the inverse statics procedure, and
adding lengths along the edge, allows the calculation of relative length change between each
L0
j . Taking the difference between the initial pose (Fig. 6.1a) and final pose (Fig. 6.1b), and

normalizing against the shortest cable (L2), gives the results in Tables 6.1 and 6.2. Table
6.1 shows the results for the edge that is elongating in the test, whereas table 6.2 shows the
corresponding result for the cable that is contracting.

Cable Segment j j = 2 j = 3 j = 4 j = 5
Initial Rest Length L0

j [m] 0.04748 0.09497 0.14250 0.23910

Final Rest Length L0
j [m] 0.05978 0.11960 0.17940 0.18990

∆L0
j [m] 0.01230 0.02463 0.03690 0.04920

Ratio × 1.00 × 2.00 × 3.00 × 4.00

Table 6.1: Rest Length Ratio Computation with Elongating Vertical Cables. The shortest
cable is arbitrarily normalized for illustration purposes.

Cable Segment j j = 2 j = 3 j = 4 j = 5
Initial Rest Length L0

j [m] 0.04610 0.09219 0.13820 0.18410

Final Rest Length L0
j [m] 0.03056 0.06059 0.08745 0.11170

∆L0
j [m] 0.01554 0.03160 0.05075 0.07240

Ratio × 1.00 × 2.03 × 3.26 × 4.66

Table 6.2: Rest Length Ratio Computation with Contracting Vertical Cables. The shortest
cable is arbitrarily normalized for illustration purposes.

For Table 6.1, taking any two poses along the trajectory leads to the same ratio of rest
lengths. For Table 6.2, the ratio of rest lengths does change between subsequent poses, albeit
by small amounts.
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6.1.2 Motivation for Multiple-Spool Actuators

The relationships in Tables 6.1 and 6.2 demonstrate a fixed (or slowly varying) relationship
between the amount of cable along vertical edges of the spine that would be retracted or
extended during a bending motion. Consequently, if only a bending motion is desired (as
opposed to arbitrary placements of vertebrae in space), a single actuator might be used. One
actuator with multiple spools attached, with diameter ratios corresponding to those above,
with cables routed to the appropriate vertebrae, would perform the desired amount of rest
length change for a single vertical edge.

There are a variety of caveats to these observations. For example, the inverse statics
algorithm varied the saddle cables’ force densities also, so positioning the spine into the
desired pose would not occur at the above rest lengths unless those saddle cables were also
actuated. In addition, a comparison of the horizontal spine versus this vertical spine implies
that gravitational forces could change the result: a horizontal spine has a different gravity
vector than the vertical.

However, as discussed in Chap. 5’s simulation of the five-vertebra spine, the ‘bending’
motion primitive does not have a precise meaning in terms of specific vertebra positions.
Therefore, as opposed to attempting to re-create a very specific (arbitrarily chosen) motion,
a proof-of-concept prototype could instead choose an actuation scheme that leads to bending-
like motion and define the result as ‘bending.’ Such is the approach taken here. Future work
would investigate exactly how fixed retraction/extension ratios move the spine.

6.2 Prototype Construction with Elastic Lattices

In addition to the challenge of actuation, accurately pretensioning a large three-dimensional
spine presents significant challenges. As discussed in the hardware tests of Chap. 5, manually
adjusting a tensegrity’s cables to the desired rest lengths can be the most significant source
of error in a test. One method to address assembly error in this situation is instead to
manufacture a structure with components that do not require manual adjustment. This
section presents such a method.

As originally proposed by other members of the Berkeley Emergent Space Tensegrities lab,
in collaboration with the team working on Laika’s spine, strips of elastic material could be
laser-cut to specific lengths and then attached to a tensegrity structure as a set of passive (un-
actuated) cables. Taking a larger sheet of material and cutting multiple segments attached
to one another results in a ‘lattice’ of elastic material [47]. All work in this subsection
was performed in collaboration with Lee-Huang Chen, Mallory C. Daly, Lara A. Janse van
Vuuren, Hunter J. Garnier, Mariana I. Verdugo, Ellande Tang, Carielle U. Spangenberg, and
Faraz Ghahani.

A prototype of the five-vertebra 3D spine was created that used an elastomer lattice
‘jacket’ that wraps around the vertebrae (Figure 6.2). The prototype’s vertebrae consist of
3D-printed octahedra as the center node, into which thin-walled aluminum rods are inserted,
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and a bolt and screw act for ‘endcaps’ that clamp onto the lattice and fit into the rods.
A fully assembled spine tensegrity structure utilizes one lattice, twenty bolt endcaps, and
twenty of the aluminum rods. Figure 6.2 illustrates the sequence required to assemble the
spine tensegrity structure using one full lattice and five vertebrae. The material used for this
lattice is a 0.0625 in. thick silicone rubber, 60A durometer.

Figure 6.2: Step-by-step assembly sequence of a five-vertebra spine with a single-piece elastic
lattice ‘jacket.’ Top left image shows the two-dimensional cutout from the silicone elastomer.
Credit to Hunter Garnier, used with permission.

An initial static prototype of the spine with legs is shown in Fig. 6.3. This image
demonstrates how the use of the lattice evenly pretensions the robot.

6.3 Actuated Prototype Mechanical Design

With suitable methods to address the major design and assembly concerns for an actuated
tensegrity spines, a prototype was created that could demonstrate the bending and rotation
motions studied here. This initial prototype of Laika consists of a spine supported by rigid
hips, shoulders, and legs. As its spine bends and rotates, Laika’s center of mass shifts in
three dimensions. These motions are shown to lift each of the robot’s legs, in preparation for
locomotion. Actuated legs will be added in future work to test the spine with locomotion.
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Figure 6.3: Prototype of a tensegrity spine for a quadruped robot, manufactured using an
elastic lattice for a pretensioned cable structure. This prototype does not include actuators,
but demonstrates how the lattice achieves even pretensioning. Credit to Hunter Garnier,
used with permission.

6.3.1 Actuated Spine Topology

Laika’s spine is composed of five vertebrae, out of which the second and the fourth vertebrae
are active, with actuators, and the third vertebra in the center provides rotation. Vertebrae
1 and 5 connect to the hips and shoulders, and are passive, without actuation. The active
vertebrae contain motors which adjust the lengths of these cables, as motivated by Sec. 6.1.
Fig. 6.4 shows the lattice network of cables for the spine, where the attachment points for
the cables are labeled based on the vertebra and the side of the spine they belong to.

The cables are numbered and labeled for identification in later simulation tests. These
designations are chosen based on a biological view of the robot. The horizontal cables
connect the different vertebrae on each of the four sides of the spine: top, bottom, left, or
right, respectively (Fig. 6.4). Each set of horizontal cables consists of four individual cables,
running from one vertebra’s motor to attachment points on each of the other vertebrae. For
example, in Fig. 6.4, four separate cables run from the actuated end at T2 to T1 and T3...5.

6.3.2 Hardware Overview

The current prototype of Laika attaches the actuated spine the same a 3D printed hip and
shoulder that stand on stiff, rapid-prototyped legs as in Fig. 6.3. Varying sizes of legs can
be attached. A representative model of Laika (Fig. 6.5) is approximately 52.8 cm long and
stands 41.4 cm tall, and weighs 1.62 kg.
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Figure 6.4: Spine Topology. Laika’s spine consists of five tetrahedral vertebrae with two
types of connecting cables (horizontal and saddle). The second and fourth vertebrae contain
actuators for an even mass distribution.

Figure 6.5: Assembly of a version of Laika with long legs. The spine is mounted onto the
four legs attached to the hip and shoulder. This CAD render does not show the cables.

The robot’s tension-network cables are implemented using a combination of two structural
elements. First, the passive under-structure from Sec. 6.2. Then, a set of stiff cables,
attached to mechanical springs, are used for actuation. These run alongside the lattice on
the horizontal edges. The horizontal cables are actuated, whereas the saddle cables are only
held in place by the elastomer lattice.

Two different materials are used for the lattice along different edges. The majority of
the robot’s lattice is a silicone rubber described above and seen alongside the motor spools
in Fig. 6.7. An additional Buna-N rubber, with a higher stiffness, is used for the ventral
horizontal cable. This stiffer strip of lattice counteracts the robot’s weight.

There are thus three sets of properties for modeling the robot’s cables. These are sum-
marized in table 6.3. The elastomers are inexpensive materials for which no manufacturer
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data was available; thus, a set of tests were done to estimate a linear spring constant. The
variability in these constants serves as a way to calibrate the simulations in Sec. 6.5.

Table 6.3: Hardware Prototype Material Properties.

Cable Material Spring Constant (N/m) Std Dev. (N/m)
Silicone Rubber 237 11
Buna-N Rubber 810 132
Mechanical Springs 187 – (exact)

All actuated components of this prototype use a brushed DC motor with a 1000:1 gearbox,
are position-controlled using an encoder.

6.3.3 Vertebra and Actuator Design

Figure 6.6: Actuator assembly. Each active
vertebrae has two of these actuators that con-
nect a motor to a spool in order to adjust the
lengths of the horizontal cables.

Each vertebra has a 3D printed core which
holds either the actuator assemblies (active
vertebrae) or lattice and spring attachment
points (on both passive and active.) For
the passive vertebrae, the core has four rods
with end caps that hold the attachment
points. The active vertebrae have two rods
with end caps, and two motor assemblies.
These actuator assemblies have a bracket
that connects to the core, and holds the mo-
tor and cable spool (Fig. 6.6).

As motivated by the inverse statics
observations above, Laika’s spine uses a
3D printed spool which has four different
grooves, one for each cable in a given set
of four horizontal cables (Fig. 6.7). The di-
ameters of these spool grooves have a ratio
of 1-1-2-3 (since the actuators are at verte-
brae 2 and 4). When the spool rotates, each
cable’s length changes proportionally to the
diameter of that groove, retracting the ca-
bles at different rates.

6.3.4 Rotating Vertebra Design

An additional, different actuator is included as the middle vertebra of the spine, and provides
its rotational degree-of-freedom (Fig. 6.8.) This vertebra is composed of two halves, one
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Figure 6.7: Spool prototype on an active vertebra. The spool is 3D printed such that the
diameters of the gears match the varying horizontal cable rest lengths.

driving and one driven, which are connected through a shoulder screw that also acts as the
shaft. The same motor as in Fig. 6.6 and 6.7 is mounted on the driving half and its torque
is transmitted through a 4:1 spur gear pair to the driven half. This design was chosen for its
structural and actuation simplicity, allowing for the straightforward generation of rotational
motion.

Figure 6.8: Rotating vertebra structure, used as vertebra 3 in the prototype. The moving
halves of the structure allow for axial rotation of the spine.
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6.4 Test Setups in Simulation and Hardware

In order to use Laika’s spine to balance and lift its feet, in anticipation of developing a walking
gait, both simulations and hardware tests were performed that demonstrated and correlated
the spine’s behavior with the robot’s feet. Though both simulation and hardware have the
capability to bend the robot in the sagittal plane, pulling the robot’s dorsal (top) and ventral
(bottom) cables, only coronal (left/right) bending is shown in this proof-of-concept. Shifts
in the spine’s center-of-mass in the coronal plane are what differentiate which foot is lifted.

The simulation, using numerical integration of rigid-body mechanics, can predict foot
position as a function of spine motions. Although there is some intuition about which
motions of the spine would lift which foot (for example, how the center of mass shifts as the
robot bends), these simulations were used to quantify exactly how much movement would be
required for different foot positions. These tests were performed using the NASA Tensegrity
Robotics Toolkit1.

Hardware tests were performed to show Laika’s spine lifting its feet and to calibrate the
simulation for future use. Multiple tests were performed per foot, all using the same lattice
under the same conditions.

6.4.1 Simulation Setup

The NASA Tensegrity Robotics Toolkit (NTRT, or NTRTsim) is an open source package for
modeling, simulation, and control of tensegrity robots based on the Bullet Physics engine [34].
Prior work has validated both the kinematics [38] and dynamics [131] of the simulator, and
it has been extensively used in prior tensegrity robotics work [68, 70, 114, 105, 48, 169, 130],
although minor technical details (due to friction, etc.) are present. Mirletz et al. (2015)
describes the simulation parameters and models used for the core tenesgrity library in NTRT
[131].

Cables tensions are modeled in NTRT as virtual spring-dampers, as in:

Fi =

{
k(`i − ui)− c ˙̀

i, if k(`i − ui)− c ˙̀
i ≥ 0

0, if k(`i − ui)− c ˙̀
i < 0,

(6.1)

where Fi is the tension force applied by cable i when its total length is `i, and the spring’s
rest length is ui. The simulations controlled the rest lengths ui, as if motors retracted the
cables. This model corrects for cables that may go slack.

Like the hardware, the robot model consists of a spine with its rotating vertebra plus
shoulders, hips, and legs (Fig. 6.9). The spine is rendered as a simplified model consisting
of cylindrical rods. This is similar to the structure used in [169, 130]. The rotating vertebra
is constructed out of two constrained rigid bodies, placed inside the spine, and is position-
controlled by specifying a rotation between the two halves.

1http://irg.arc.nasa.gov/tensegrity/ntrt
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Figure 6.9: Model of Laika and its spine in the NASA Tensegrity Robotics Toolkit simulation,
with the rotating vertebra. Feet labeling are: (a) front right, (b) front left, (c) back right,
(d) back left.

6.4.2 Simulation Test Procedure

The initial simulations presented in this work represent a small subset of the robot’s motions
that may lift a foot, chosen in order to make a hardware comparison tractable. Specifically,
bending in the coronal plane is restricted to two simple motions (left, or right), leaving the
rotational degree-of-freedom as the primary variable.

Thus, simulation tests followed a two-step procedure. First, one set of horizontal cables
were retracted to a percent P of their original rest length, as in:

ui(t) = P ui(0), t > 0 (6.2)

in order to create a set left-or-right bend. Using observations from a first round of simula-
tions, and the prototype itself, a horizontal length-change of P = 80% best represented a
bending motion that sufficiently shifted the spine’s center-of-mass.

Then, once the robot settled, the center vertebra was slowly rotated until one foot left
the ground. Positions of the feet were recorded alongside the angle of rotation of the center
vertebra. The center vertebra rotations for quasi-static motion were commanded as a slow
ramp-input over 40 sec. up to 60 deg. in either direction, as in:

θ(t) = ±
(
t

40

)(π
3

)
(6.3)

Multiple tests were performed in order to calibrate the simulation parameters against
hardware, as is common for this simulator [38]. Since one of the major assumptions in the
simulation is the linearity of the cable spring force, the variation in the spring constant for
the robot’s cables (Table 6.3) provides a convenient method of calibration.

Five spring constants were tested with each of the four foot-lifting motions, varying both
the silicone and Buna-N cable constants simultaneously. This adjusts the spine’s overall
tension, calibrating for both the unknowns and nonlinearities in the materials as well as
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modeling simplifications. Table 6.4 shows the spring constants chosen, evenly spaced from
-2 to +2 standard deviations of the mean from Table 6.3.

Table 6.4: Five spring constant test points (in N/m) for the simulation, adjusting the overall
tension of the robot.

Material Low (−2σ) Med-Low Mean (µ) Med-High High (+2σ)
Silicone 216 227 237 248 258
Buna-N 547 678 810 941 1073

6.4.3 Hardware Test Setup and Procedure

The prototype of Laika was set up in placed of a camera, with off-board power and control
(Fig. 6.10). The robot’s control system consisted of microcontroller connected to a power
supply, with two connected motors: one for a horizontal cable set, and one for the center
vertebra. Power cables were wound through the spine to connect the motors to the controller.
During testing, the motors’ encoders were used to track rotations, which were converted to
percent-length-change in the controller.

Figure 6.10: One test of Laika’s spine. An offboard control circuit powered the motors and
tracked rotations, and an LED was activated at the start of the test such that the video
camera (out-of-frame) could correlate timestamps.

For each test, the spine was actuated along the same trajectories as in sec. 6.4.2 for
the simulation. Switching between tests involved rotating the robot, re-routing the motors’
cables, and if needed, attaching and detaching the required horizontal cables. The robot was
rotated by 180 degrees when switching between the tests for its anterior and posterior ends.
This required re-routing the motors’ cables, causing a slight change in center-of-mass.

Prior to each test, the single set of actuated horizontal cables were tensioned until just
past slackness, as an approximation to the simulation’s initial conditions. Markers were
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Figure 6.11: Lifting of each of Laika’s feet in simulation (top) and hardware (bottom).
Images left-to-right are for feet A, B, C, D (Front Right, Front Left, Back Right, Back Left).
Hardware images taken just as liftoff occurs.

placed on the bed of the test setup, and the robot was re-positioned to the same state
between tests.

For each test, the video camera recorded the feet as the controller tracked the rotations.
A small LED, placed within the viewing frame of the camera, was activated at the start of
the test, and a time series of data was recorded from the microcontroller. After each test,
the video was analyzed for the time at which the LED activated, and at which the desired
foot just began to lift. This time difference was then indexed into the controller data to find
the rotation at that time.

6.5 Results: Laika’s Spine Lifts Its Feet

By choosing four combinations of rotation direction and coronal-plane bending, Laika’s spine
was able to lift each of its four feet. Each of the four motions are summarized in Table 6.5,
and shown in Fig. 6.11. These motions can be interpreted as a rotation lifting one diagonal
set of legs, and bending shifting the robot’s mass to raise one foot or the other.

Table 6.5: Motion combinations of spine for foot lifting.

Bend Dir. / Cabled Pulled Vert. Rotation Dir. Foot Lifted?
Left Bend / Horiz. Right (+), CCW A, Front Right
Right Bend / Horiz. Left (+), CCW C, Back Left
Left Bend / Horiz. Right (-), CW B, Front Left
Right Bend / Horiz. Left (-), CW D, Back Right
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6.5.1 Foot Position and Required Rotation

The results of five hardware tests per foot are plotted against the simulation results in Fig.
6.12. The center-vertebra rotations at foot lift-off, observed in hardware, are plotted as
black vertical lines representing the minimum and maximum data points. Colored curves
are simulation data at the different lattice tension levels from Table 6.4.
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Figure 6.12: Simulations and hardware results of foot-lifting tests for Laika’s spine. Black
dashed lines represent the range of lift-off points in hardware. Colored curves represent
vertical position of each foot (A, B, C, D) at varying levels of lattice tension in simulation.
The highest-tension simulation result (red) matches hardware most closely, and represents a
calibration of the simulation for future work.

The rotations for foot lift-off are summarized in Table 6.6. The hardware minimum and
maximum correspond to the black dashed lines in Fig. 6.12. The simulation data listed are
the points where each curve leaves the y-axis in Fig. 6.12, with the variation arising from
lattice tension.

Across all tests, the maximum-tension lattice (red lines in Fig. 6.12) was most represen-
tative of hardware, falling within the range for feet A and D and closest to the range for feet
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Table 6.6: Range of center vertebra rotations that produced foot lift-off, in simulation and
hardware. All angles in radians (abs. val.)

Foot Simul., Min Simul., Max HW, Min HW, Max
A 0.33 0.47 0.44 0.50
B 0.35 0.47 0.57 0.60
C 0.25 0.44 0.51 0.54
D 0.25 0.43 0.41 0.43

B and C. The simulation results for feet B and C fall close to the hardware range, but not
within. Such results can be expected with the small amount of testing that was performed
in hardware, and with the variation in the test setup.

6.5.2 Discussion

Simulation data produced a calibration (highest lattice tension) that can reasonably be
used for future work in developing balancing motions and gait cycles of the robot. The
error in the B/C foot simulations, which did not strictly lie within the hardware range, can
be attributable to the simplifications made in the simulation model. These simplifications
include a combination of frictional effects at the robot’s feet, the variation due to manual
tensioning of the hardware robot’s cables, and the simplified geometry in the simulation.

In addition to the differences observed between simulation and hardware for feet B and
C, there were also differences between each foot with respect to lift-off angle as well as height
after lift-off. These differences are expected, due to the spine’s geometry.

Feet C and D, the back feet, lifted with less rotation than their front-opposite counterparts
(C versus B, and D versus A.) This anterior-posterior difference is attributed to Laika’s
asymmetry in that direction, with more weight (due to the spine) at the robot’s shoulders.

Feet B and C, which lifted with clockwise rotation, raised more rapidly after the initial
lift-off. Such a difference is expected due to the geometry of the robot’s saddle cables. These
cables do not lie completely in the transverse plane of the spine: they pull the vertebrae
forward and backward as well (Fig. 6.4.) Thus, when the center vertebra rotates, it also
creates a small amount of additional bending in both the horizontal (coronal) and front-
back vertical (sagittal) plane, as its saddle cables adjust. The clockwise/counterclockwise
difference is attributed to center-of-mass shifts in the transverse (left-right vertical) plane
from this extra bending.

6.6 Ongoing Work

An actuated tensegrity spine, as a body of a quadruped robot, can lift and balance a robot’s
feet. Ongoing work seeks to demonstrate full locomotion of such a robot, using the results
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above as part of a gait cycle. This work is proceeding in two ways: first, incorporating moving
legs into the robot, and second, reposition and redesigning the actuators for reliability.

Fig. 6.13 shows an early design of Laika’s successor, named Belka, after the second dog
in space. Belka incorporates motors at each of its shoulder joints to move each leg in a
single degree of freedom. It is anticipated that, when these designs are completed, that the
left-lifting motions can be combined with leg-swinging motions to produce a walking gait.

Figure 6.13: Prototype for Belka, the successor to Laika, with actuated legs. Credit to
authors of [124], used with permission.

Additionally, Fig. 6.14 demonstrates a new prototype of a rotational actuator for Belka.
Belka’s designs alleviate some issues observed with the rotating vertebra on Laika, such as
motor stall, by adjusting the rest lengths of saddle cables.

(a) Belka, with its spine in a neutral position. (b) Belka, with its spine rotated.

Figure 6.14: Belka, the successor to Laika, with a new rotational actuation mechanism that
replaces Laika’s rotating vertebra. The additional spool underneath Belka’s shoulders adjusts
saddle cables to rotate the spine. Credit to authors of [124] with permission.

There is much work left before walking locomotion can be implemented. For example,
a gait cycle has yet to be investigated. However, the results with Laika present promising
directions towards walking.
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Part III

Dynamics and Control
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Chapter 7

Model-Predictive Control of
Tensegrity Spines

This dissertation seeks to demonstrate that tensegrity spines can be modeled, designed, man-
ufactured, and controlled in ways such that their use in quadruped robots are practical. To
that end, this part of the dissertation addresses closed-loop control of these structures. The
following chapter presents two controllers for tensegrity spine robots, using model-predictive
control (MPC), one of which also incorporates inverse statics optimization. Chapter 8 takes
an alternative approach to addressing some of the fundamental analysis and control issues
encountered with tensegrity spines, though does not yet provide a controller for the spines
themselves.

This chapter presents two controllers for Laika’s spine, both of which track state-space
trajectories using the spine’s dynamics model. These controllers use combinations of model-
predictive control (MPC) with the inverse statics (IS) algorithm from Chap. 5. Both frame-
works are motivated by the practical challenges with computational complexity of nonlinear,
optimization-based control. The first controller employs a variety of smoothing and tun-
ing terms in the MPC optimization problem. It was the first controller to demonstrate
closed-loop tracking of a state space trajectory with a tensegrity spine.

The second controller incorporates an inverse statics optimization problem to generate
reference input trajectories that are then used with MPC. The second approach is signifi-
cantly more general, with less tuning than the smoothing approach (Table 7.1), and with
more favorable computational characteristics since the inverse statics are solved offline. This
approach contributes a new architecture for addressing computationally-complex state track-
ing problems in robots such as these spines. The controller’s novelty arises from both this
new solution to the inverse statics problem as well as its interconnection with MPC, forming
a new approach to control of such systems (Sec. 7.3.3 and Fig. 7.3b).
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Table 7.1: Controller formulations: MPC with smoothing vs. MPC with tracking of inverse
statics (IS) input trajectories

Controller formulation # Tuning constants Time discr. Simulation setup Max. Error Refs.

Smoothing terms 14 1e−3 sec. 3 vertebra, 3D < 0.5 cm [166]
IS input traj. tracking 5 1e−5 sec. 1 vertebra, 2D See Sec. 7.4.4 -

The two controller formulations presented in this paper have different benefits with respect to tuning and
performance. The five tuning constants (column two) of the more general controller with the inverse statics
optimization algorithm are straightforward to chose. All have physical interpretations (e.g., minimum cable
tension, vertebra anti-collision distance) or are common to many optimal control problems (e.g., the Q and
R weighting matrices in eqns. (7.37)-(7.38), and MPC horizon length.)

7.1 Motivation

When quadruped robots are constructed with spine-like flexible bodies that include ac-
tuation, significant control challenges are often encountered [174]. Few dynamics-based
closed-loop control approaches have been developed for robots like these. Instead, authors
commonly use kinematics-only models [123, 90], model-free control using machine learning
[202, 62, 92], decoupled controllers for different parts of the robot [174], or the replaying
of open-loop inputs [126] among other approaches. This chapter presents one of the first
closed-loop, model-based controllers for actuated spines for quadruped robots.

7.1.1 Control Challenges for Tensegrity Robots: Nonlinearities,
Saturation, and Constraints

Control challenges for tensegrity robots are commonly due to dynamics which are inherently
nonlinear and often high-dimensional. Various saturation issues also exist, as cables within
the structure exert no force in compression, and the controller cannot retract the spine’s
flexible cables to a negative ‘rest length’ (defined in Sec. 7.2.2.) Consequently, state-space
control for tracking or regulation has been mostly limited to low-dimensional structures,
particularly those with only bars [6, 210, 178, 179, 128], which assume, a-priori, that all
cables are initially tensioned. Open-loop methods have also been used for this purpose
[186, 187, 37, 68], but cannot reject disturbances.

This chapter proposes controllers based on model-predictive control (MPC) for three
primary reasons. First, using an optimization program for control can address constraints
on the system (actuator saturation and tensioned cables). Second, computational tractability
can be addressed by using a receding horizon. These two features define an MPC problem.
Finally, an MPC formulation allows straightforward introduction of smoothing weights and
constraints for hard-to-control systems [209, 63].

Model-predictive control for nonlinear systems (NMPC) is a well-studied topic with many
implementations [7], particularly in low dimensions where nonconvex optimization is compu-
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tationally feasible [209]. For high-dimensional nonlinear systems, practical options include
modifying the NMPC problem or using more efficient solvers [39]. Alternatively, linearized
dynamics can be used at later points in the horizon [217], or linearizations can be performed
at each timestep in the problem to create a linear time-varying MPC [63]. A time-varying
linearization is used in this chapter for computational tractability purposes. As opposed to
attempting to solve an NMPC problem in real time for this high-dimensional system, the
proposed control architecture addresses linearization error via two other methods. In partic-
ular, one approach here includes smoothing terms, while the other tracks an approximated
input reference trajectory generated by inverse statics.

7.1.2 Controller Verification via Simulations

This chapter employs a set of simulations that demonstrate the performance of the proposed
controllers and show proof-of-concept. There are fewer traditional sources of modeling error
in this problem than in other tensegrity robotics control problems, which commonly involve
locomotion on the ground [153, 215]. Locomotion requires modeling complex interactions
with the ambient environment [24]. This spine instead moves freely in space without surface
contact, therefore simulation inaccuracies due to contact friction modeling are not present.
Here, the most significant sources of error are anticipated to arise from unmodeled actuator
dynamics and manufacturing differences of hardware prototypes versus the nonlinear dy-
namics model. Prior work has confirmed that rigid body models of free-standing tensegrity
robots match hardware results reasonably well under similar conditions [25, 38].

This chapter uses a three-dimensional model of the spine, with multiple vertebrae,
for evaluating the smoothing controller (from [166].) Meanwhile, a reduced-order two-
dimensional model, with only a single moving vertebra, is used for the controller with the
IS optimization for input trajectory generation. Although the controller with the IS opti-
mization is tested on a lower-dimensional system than the smoothing controller, the tracked
states of the vertebrae are the same. Therefore, the results are compared quantitatively in
Sec. 7.4, and the limitations of this comparison are discussed in Sec. 7.5.

7.2 Spine Model and Movement Goals

The geometry of the spine is the same as that considered in Chap. 5 and Chap. 6: the
tetrahedral vertebra. The following section briefly describes the state-space model used for
both the two-dimensional and three-dimensional spine, as well as the desired state trajectory
to be tracked. Full knowledge of the system states at each timestep is assumed; the controllers
in this chapter are state-feedback.
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7.2.1 Vertebra Geometry and State Space

Each spine vertebra is a rigid body, approximated by a system of point masses (Fig. 7.1), as
has been justified in past literature [38, 68]. The local frame of one vertebra contains point
mass k at position ak, k = 1 . . . K (Fig. 7.1.) The local frames of each node from Fig. 7.1a
and 7.1b are, in centimeters,

[
a1 a2 a3 a4 a5

]
=

0 13 −13 0 0
0 0 0 13 −13
0 −7.5 −7.5 7.5 7.5

 (7.1)

[
a1 a2 a3 a4

]
=

[
0 13 −13 0
0 −7.5 −7.5 7.5

]
. (7.2)

The mass at each node is assigned to evenly distribute the m = 0.13 kg mass of each vertebra.
The robot’s state space is parameterized by the coordinates of the center of mass and a

set of Euler angles (3-2-1) for each vertebra, in addition to their respective time-derivatives.
The continuous-time equations of motion have the form

ξ̇ = g(ξ,u), (7.3)

where ξ ∈ R36 in 3D (for three moving vertebrae) or R6 in 2D (for one moving vertebra)
is the state vector, and u ∈ R24 in 3D or R4 in 2D is the input vector, which has the same
dimension as number of cables.

(a) A single 3D spine vertebra in its local
coordinate system.

(b) A single 2D spine vertebra in its local
coordinate system.

Figure 7.1: Geometry of spine vertebrae in both 3D and 2D. Point mass locations {a1...a4, a5}
shown in red. Certain coordinates (X-axis and θ, γ rotations) are flipped from the right-hand
convention in order to match a simulation environment used in prior research [68, 169, 168].

The system state ξ parameterizes the position of each point mass within a vertebra. For
a local frame of particle positions ak in vertebra j, the particle’s position in the global frame
is bkj as in



CHAPTER 7. MODEL-PREDICTIVE CONTROL OF TENSEGRITY SPINES 93

bkj(ξ) = Rφ
j (ξ)Rγ

j (ξ)Rθ
j(ξ)ak + rj(ξ),

with the vertebra’s center of mass rj and rotation matrices Rj a function of the generalized
coordinates. The 2D model removes the y, θ, φ coordinates, but is otherwise expressed in the
same manner.

The continuous-time function g(ξ,u) can be symbolically solved by considering bkj as
a system of particles. These models have J vertebrae and K point masses per vertebra.
Lagrange’s equations were used to express the dynamics of the system. With the particles’
total kinetic energy T , gravitational potential energy U , and Lagrangian L = T − U ,

d

dt

∂L

∂ξ̇i
− ∂L

∂ξi
=

J∑
j=1

K∑
k=1

Fkj ·
∂bkj
∂ξi

, i = 1...6J, (7.4)

The right-hand side and left-hand side of (7.4) are solved symbolically, then equated to solve
for g(ξ,u), noting that ξ̇i = ξi+6J .

7.2.2 Cable Model as System Inputs

The cables suspending the vertebrae provide the control input to the system. Unlike work
such as [210, 178, 6], it is not assumed that the controller specifies forces in the robot’s
cables, since this becomes challenging to implement on physical hardware. Instead, the
control inputs are the rest lengths of a virtual spring-damper. Specifically, let the vector
between the two connection points of cable i be `i, with scalar length `i = ||`i||. Then the
applied force due to a cable, directed away from its attachment point, is

Fi = Fi(`i, ˙̀
i) ˆ̀

i,

so that tension forces are positive. Here ˆ̀
i is a normalized direction vector. The scalar

tension force on cable i is a rectified spring-damper, so the cables apply no compression
forces:

Fi =

{
k(`i − ui)− c ˙̀

i, if k(`i − ui)− c ˙̀
i ≥ 0

0, if k(`i − ui)− c ˙̀
i < 0,

(7.5)

where the input ui is the rest length of cable i. In addition, the controller cannot command
a negative ui, since retracting a cable to a negative length is not physically possible.

7.2.3 Reference State Trajectory

The desired trajectory ξ̄ for the spine robot is a bending motion in the X-Z plane, consisting
of translations and rotations for each moving vertebra (Fig. 7.2.) As no a-priori dynamic
trajectories were available for this model, the controllers in Sec. 7.3 do not include the track-
ing of vertebrae velocities. Consequently, this trajectory is not guaranteed to be dynamically
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feasible. However, this sequence of states has been observed as the output of prior qualitative
simulation studies in Chap. 6, and is therefore judged as a reasonable control goal.

Figure 7.2: Bending trajectory for the j-th vertebra of the spine in the X-Z plane. The
vertebra rotates counterclockwise around the origin at a constant radius rj (dashed blue
line), swept out by angle βj (solid gray line). Solid blue line shows the center of mass of the
vertebra.

The desired state trajectory ξ̄ separates the vertebrae by 10cm vertically in their starting
positions. For vertebra j = 1 . . . J ,

z̄j(0) = 0.1j . (7.6)

These initial heights also define the radius of the rotation: rj = z̄j(0). Consequently, the
reference positions of each vertebra over time, x̄j(t) and z̄j(t), are:

x̄j(t) = rj sin(βj(t)), z̄j(t) = rj cos(βj(t)). (7.7)

In addition, the desired rotation γ̄j(t) of each vertebra about its inertial Y -axis is defined to
be the same as the sweep angle βj(t) for that vertebra,

γ̄j(t) = βj(t). (7.8)

The maximum sweep angles for each vertebra are the following. The 2D model with one
vertebra only uses βmax1 .
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[βmax1 , βmax2 , βmax3 ] =

[
π

16
,

π

12
,

π

8

]
. (7.9)

7.3 Controller Formulations

This chapter introduces two controllers for the tensegrity spine robots under consideration.
The first uses a model-predictive control (MPC) law, and incorporates smoothing terms
into the optimization problem (Fig. 7.3a.) The second uses the inverse statics routine,
Algorithm (1) from Chap. 5, for reference input trajectory generation, and a simplified
version of the model-predictive control law to close the control loop (Fig. 7.3b.) Both
controllers incorporate a linearization of the equations of motion, eqn. (7.3), in the control
calculations; however, all are simulated against the ground-truth nonlinear system.

(a) Block diagram for the model-predictive
controller with smoothing terms, no input
trajectory generation.

(b) Block diagram of the proposed controller that
combines inverse statics (IS) for input trajectory
generation with model-predictive control (MPC)
to close the loop.

Figure 7.3: Block diagrams of the two controllers considered in this chapter. Both controllers
are simulated against the ground-truth nonlinear dynamics g(ξ,u).

These controllers prioritize practicality over theoretical guarantees. For this reason, nei-
ther formulation contains terminal constraints, and thus stability can only be shown exper-
imentally, not proven.

The following sections use subscripts (e.g., ut) to represent predicted values of vectors
at a time instance, and parentheses (e.g., u(t)) to represent a measured or applied value at
that time instance. Note that these are the same for the reference trajectory (ū(t) = ūt)
and so the notation is used interchangeably. Superscripts (e.g., ξ(i)) index into a vector.
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7.3.1 Model-Predictive Controller Formulation

For both controllers, the MPC block generates a control input u(t) via the following. At each
timestep t, a constrained finite-time optimal control problem (CFTOC) is solved, generating
the sequence of optimal control inputs U∗t→t+N |t = {u∗t|t, ...,u∗t+N |t}, over a horizon of N

timesteps ahead. The notation t+ k|t represents a value at the timestep t+ k, as predicted
at timestep t (from [28], Ch. 4.) The first input u∗t|t is applied, as in u(t) = u∗t|t, closing the
loop. The following sections define this CFTOC problem for each case, fully specifying the
controllers.

7.3.2 Controller with MPC and Smoothing Terms

The first controller adapts the standard linear time-varying MPC formulation by adding a
variety of hand-tuned weights and constraints. This is a common approach to establishing
proof-of-concept control [63].

Constrained Finite-Time Optimal Control Problem Formulation

The following CFTOC problem is solved at each timestep t using a quadratic programming
solver.

min
Ut→t+N|t

p(ξt+N |t,∆ξt+N |t) +
N−1∑
k=0

q(ξt+k|t,∆ξt+k|t,∆ut+k|t) (7.10)

s.t. ξt+k+1|t = Atξt+k|t + Btut+k|t + ct (7.11)

∆ξt+k|t = ξt+k|t − ξt+k−1|t (7.12)

∆ut+k|t = ut+k|t − ut+k−1|t (7.13)

ξt|t = ξ(t) (7.14)

umin ≤ ut+k ≤ umax (7.15)

‖ut|t − ut−1‖∞ ≤ w1 (7.16)

‖ut+k|t − ut|t‖∞ ≤ w2, k = 1..(N − 1) (7.17)

‖ut+N |t − ut|t‖∞ ≤ w3 (7.18)

‖∆ξ(1:6)
t+k|t‖∞ ≤ w4 (7.19)

‖∆ξ(13:18)
t+k|t ‖∞ ≤ w5 (7.20)

‖∆ξ(25:30)
t+k|t ‖∞ ≤ w6 (7.21)

ξ
(3)
t+k|t + w7 ≤ ξ(15)

t+k|t (7.22)

ξ
(15)
t+k|t + w7 ≤ ξ(27)

t+k|t. (7.23)
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Here, N = 10 is the horizon length and w1...w7 are constant scalar weights. The functions
p and q represent the terminal cost and stage cost of the objective function, not to be confused
with the inverse statics force balance of Chap. 5. The objective function, and the use and
purpose of the constraints, are given in subsections 7.3.2 to 7.3.2.

Dynamics Constraint

The dynamics constraint (7.11) consists of a time-varying linearization of the system, as in:

At =
∂g(ξ,u)

∂ξ

∣∣∣
ξ=ξt−1
u=ut−1

(7.24)

Bt =
∂g(ξ,u)

∂u

∣∣∣
ξ=ξt−1
u=ut−1

(7.25)

ct = g(ξt−1,ut−1)−Atξt−1 −Btut−1. (7.26)

This linearization (7.24-7.26) is implemented as a finite difference approximation. This
approach is chosen due to computational issues with calculating additional analytical deriva-
tives of the dynamics. The calculated At,Bt, ct are used over the entire horizon. For the
start of the simulation, u0 = 0 is used. Since these linearizations are not at equilibrium
points, the linear system is affine, with ct being a constant vector offset.

Here, the continuous-time linearized dynamics are used as a constraint, and are not
discretized. Since the timesteps in the simulations below are small (dt = 0.001 sec.), a
discretization does not significantly alter the values of At,Bt, ct.

Other Constraints

The remaining constraints are either smoothing terms, constraints motivated by the physical
robot, or miscellaneous housekeeping terms.

Constraints (7.12) and (7.13) define the ∆u and ∆ξ variables, which are used for the
smoothing constraints on the inputs and states. Constraint (7.14) assigns the state variable
at the start of the optimization horizon, ξt|t, to the actual observed value of the state from
the previous simulation timestep, ξ(t).

Constraint (7.15) is a bound on the inputs, limiting the length of the cable rest lengths,
with umin,umax ∈ R24 but having the same value for all inputs (Table 7.2).

Constraints (7.16-7.21) are smoothing terms to compensate for the lack of an reference
input trajectory. Of these, (7.16-7.18) are for the inputs, where ut−1 is the most recent
input at the start of the CFTOC problem. Constraints (7.19-7.21) are smoothing terms on
the states, limiting the deviation between successive states in the trajectory. These reduce
linearization error, and are split so that the positions and angles of each vertebra could be
weighted differently. No velocity terms are constrained.
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Finally, since states {ξ(3), ξ(15), ξ(27)} are the vertebra z-positions, constraints (7.22-7.23)
prevent vertebra collisions.

Objective Function

The objective function has a terminal cost p and a stage cost q defined as the following.
Here, shortened notation such as ‖∆ξt+k|t‖2

Sk denotes a weighted quadratic term, as in
(∆ξt+k|t)

>Sk(∆ξt+k|t).

p(ξt+N |t,∆ξt+N |t) = ‖ξt+N |t − ξ̄t+N |t‖2
QN + ‖∆ξt+N |t‖2

SN , (7.27)

q(ξt+k|t,∆ξt+k|t,∆ut+k|t) = ‖ξt+k|t − ξ̄t+k|t‖2
Qk + ‖∆ξt+k|t‖2

Sk + w8‖∆ut+k|t‖∞. (7.28)

As before, w8 is a scalar, while Q and S are constant diagonal weighting matrices which
are exponentiated by the timestep in the optimization horizon. Here, Q penalizes the track-
ing error in the states, S penalizes the deviation in the states at one timestep to the next,
and w8 penalizes the deviations in the inputs from one timestep to the next. These matrices
are diagonal, with blocks corresponding to the Cartesian and Euler angle coordinates, with
zeros for all velocity states, according to vertebra.

Raising each diagonal element of Q or S to the power of k or N puts a heavier penalty
on terms farther away on the horizon. These are defined as:

Q̄k = diag(wk9 , w
k
9 , w

k
9 | wk10, w

k
10, w

k
10 | 0...0) ∈ R12×12

S̄k = diag(wk11, w
k
11, w

k
11 | wk11, w

k
11, w

k
11 |0...0) ∈ R12×12

Qk = I3 ⊗ Q̄k, Sk = I3 ⊗ S̄k. (7.29)

Table 7.2 lists all the constants for this controller, including the constraints and the objective
function, with units.

7.3.3 Controller with MPC and Inverse Statics Optimization

A major contribution of this chapter is a controller that combines the inverse statics (IS)
optimization, via Algorithm (1), with an MPC block. As shown in Fig. 7.3b, the IS block
generates a reference input trajectory ū that is tracked alongside ξ̄ as part of the MPC
problem. This approach contributes a new method to address computational complexity and
tuning. The IS solutions can be solved offline, reducing the load on the MPC optimization
problem. This approach also significantly reduces hand-tuning. As discussed in this section,
the controller is formulated for the 2D, single-vertebra spine model.
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Table 7.2: Smoothing controller weights and constants.

Constant: Value: Interpretation:
N 10 no units Horizon Length
umin 0.0 meters (cable) Min. Cable Length
umax 0.20 meters (cable) Max. Cable Length
w1 0.01 meters (cable) Input Smooth., Horiz. Start
w2 0.01 meters (cable) Input Smooth., Horiz. Middle
w3 0.10 meters (cable) Input Smooth., Horiz. End
w4 0.02 meters and radians State Smooth., Bottom Vert.
w5 0.03 meters and radians State Smooth., Mid. Vert.
w6 0.04 meters and radians State Smooth., Top Vertebra
w7 0.02 meters Vertebra Anti-Collision
w8 1 no units Input Smoothing
w9 25 no units State Tracking, Vertebra Pos.
w10 30 no units State Tracking, Vert. Angle
w11 3 no units Input Difference Penalty

Constrained Finite-Time Optimal Control Problem Formulation

The following CFTOC problem is solved at each timestep t using a quadratic programming
solver.

min
Ut→t+N|t

p(ξt+N |t) +
N−1∑
k=0

q(ξt+k|t,ut+k|t) (7.30)

s.t. ξt+k+1|t = Atξt+k|t + Btut+k|t + ct (7.31)

ξt|t = ξ(t) (7.32)

ut+k|t ≥ umin (7.33)

ξ
(2)
t+k|t ≥ w1. (7.34)

This formulation (7.30-7.34) is significantly simpler than the smoothing formulation
(7.10-7.23), with only one scalar tuning weight w1, and a much smaller horizon length (Table
7.3). As above, p and q represent the terminal cost and stage cost of the objective function.
The following sections define the objective function, and use and purposes of the constraints.

Dynamics Constraint

Constraint (7.31) enforces the time-varying linearized system dynamics, just as with the
smoothing controller, via eqns. (7.24-7.26). The two-dimensional controller also applies
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a zero-order hold to (7.31) for increased prediction fidelity. However, due to the small
timesteps involved, the values of At, Bt, and ct remained mostly unchanged after this
operation, with no noticeable effect on simulation results.

Other Constraints

The remaining constraints have the same interpretations as their counterparts in the
smoothing controller formulation. Constraint (7.32) assigns the initial condition at the
starting time of the CFTOC problem. Constraint (7.33) is a linear constraint on the inputs
so that the cables cannot have negative rest lengths. Finally, constraint (7.34) denotes a
minimum bound on the second element in the state, the z-position, which prevents collision
between the moving vertebra and the static vertebra.

Objective Function

The objective function for this formulation is comprised of quadratic weights on the state
and input tracking errors. As opposed to the smoothing formulation, which included non-
traditional terms, the objective function here is exactly the same as with standard MPC.
Using similar notation as in equations (7.27) and (7.28),

p(ξt+N |t) =‖ξt+N |t − ξ̄t+N |t‖2
Q, (7.35)

q(ξt+k|t,ut+k|t) =‖ξt+k|t − ξ̄t+k|t‖2
Q + ‖ut+k|t − ūt+k|t‖2

R. (7.36)

Here, Q and R are constant diagonal weighing matrices which penalize state and input
tracking errors respectively, defined similarly to the smoothing formulation, but do not vary
with the horizon step as with the Qk terms in eqn. (7.28). Specifically, these weights are

Q = diag(w2, w2, w2 | 0...0) ∈ R6×6, (7.37)

R = diag(w3, w3, w3, w3) ∈ R4×4. (7.38)

As with eqn. (7.29), the Q matrix does not penalize velocity states. Table 7.3 lists all
the constants for this controller, including the constraints and the objective function, with
units.

7.3.4 Controller Comparison

The differences between the two controller formulations (Sec. 7.3.2 and 7.3.3) are summarized
in Table 7.1. In addition to the inherent difference between the tracking of one vertebra versus
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Table 7.3: Input tracking controller weights and constants.

Constant: Value: Interpretation:
N 4 no units Horizon Length
umin 0.0 meters (cable) Min. Cable Length
w1 0.075 meters (vertebra position) Vertebra Anti-Collision
w2 1 no units State Tracking Penalty
w3 10 no units Input Tracking Penalty

3 vertebrae, and the difference between the 2D and 3D models that are tracked, three major
considerations are present.

First, the controller with the IS optimization is much more general, and does away with
the smoothing terms. This reduces the complexity of the CFTOC problem, thus removing
most of the need for tuning optimization weights (compare Table 7.2 versus Table 7.3).
Second, the controller with the IS optimization moves some computational load offline, since
the MPC problem now has fewer terms. Third, in contrast to those benefits, the MPC plus
IS controller required a faster simulation rate as tested here, with the discretization timestep
of dt = 1e−5 versus 1e−3 for the smoothing controller. These three changes represent the
tradeoffs between tuning requirements and performance implications of either controller.

7.4 Simulation Results

Two sets of simulations are presented here, one for the controller with MPC and smooth-
ing terms, and one for the controller with MPC and inverse statics reference input gener-
ation/tracking. All simulation work used the YALMIP toolbox in MATLAB [116], with
Gurobi as the solver. All code is available online1.

Both controllers tracked the vertebrae states with sufficiently low error as to justify their
use. The smoothing controller tracked with lower error, after an initial transient response,
but had higher computational complexity and tuning requirements. The more general input-
tracking controller exhibited lag, and thus larger tracking errors, but with lower computa-
tional overhead and with significantly less hand-tuning.

7.4.1 Noise Model

For both models and controllers, simulations are also performed with noise, in order to test
closed-loop performance. Process noise is implemented by adding a sample from a normally-
distributed random variable to the system dynamics during the simulation. For example,
denoting the timestep as ∆t, the forward-Euler-simulated model for the 2D spine is

ξt+1 = ξt|t + g(ξt|t,u
∗
t|t)(∆t) +Eεt (7.39)

1https://github.com/BerkeleyExpertSystemTechnologiesLab/ultra-spine-simulations
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where εt is a sample drawn from ε ∼ N (02, I2) ∈ R2 at time t. The the weighting matrix E
scales the variance of the random variable. The simulation of the 3D model, using Runge-
Kutta integration, works similarly.
E has different weights according to the position (and angle) states or the velocities, and

is sized appropriately for either the 3D or 2D state model:

E3D = 13⊗
[
w1216 06

06 w1316

]
∈ R36×2 (7.40)

E2D =

[
w1413 03

03 w1513

]
∈ R6×2 (7.41)

Table 7.4 lists the values for {w12 . . . w15}. These values are selected such that the standard
deviation of ε is scaled to roughly 33% of the maximum position displacement (or maximum
velocity, respectively) of the robot between timesteps in the reference state trajectory.

Table 7.4: Noise model weights.

Constant: Value: Interpretation:

w12 5e−4 meters, rad. Noise std. dev., positions/angles, 3D model

w13 2e−4 m/s, rad/s Noise std. dev., velocities, 3D model

w14 1.6e−5 meters, rad. Noise std. dev., positions/angles, 2D model

w15 6.6e−6 m/s, rad/s Noise std. dev., velocities, 2D model

7.4.2 Computational Performance

The optimization problem for the MPC plus smoothing controller, applied to the 3D model
(from Sec. 7.3.2) took 0.5 − 1 sec. to solve at each timestep, using the Gurobi solver. The
optimization problem for the MPC plus inverse statics reference input tracking controller,
applied to the 2D model (from sec. 7.3.3), took 0.15−0.2 sec. to solve at each timestep. The
inverse statics optimization procedure (Alg. 1) is performed offline before the closed-loop
tests begin, so is not timed; however, it solves rapidly enough for practical use.

The optimization problem for the smoothing controller, applied to the 3D model (from
sec. 7.3.2) took 0.5 − 1 sec. to solve at each timestep, using the Gurobi solver. The
optimization problem for the reference input tracking controller, applied to the 2D model
(from sec. 7.3.3), took 0.15 − 0.2 sec. to solve at each timestep. The inverse statics inputs
for the reference input tracking controller are calculated offline, so are not included in these
statistics, but are of low enough computational load so as to be negligible in comparison.
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7.4.3 Controller with MPC and Smoothing Terms
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(a) Positions of all three vertebrae.
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(b) Position of the top vertebra.

Figure 7.4: Positions in the X-Z plane for the
3D, three-vertebra model with the smoothing con-
troller, as the robot performs a counterclockwise
bend.

Fig. 7.4a shows the paths of the ver-
tebrae in the 3D, three-vertebra simu-
lation, using the smoothing constraint
controller, in the X-Z plane as they
sweep through their counterclockwise
bending motion.

Fig. 7.4a includes the reference tra-
jectory (blue), the resulting trajectory
with the smoothing MPC controller and
no noise (green), and a representative
result of controller with added noise
(magenta). Fig. 7.4b shows a larger
view of the top vertebra center of mass,
which had the largest tracking errors
of the three vertebrae, and which is
used for comparison with the 2D single-
vertebra model below.

The tracking errors for each state,
for each vertebra, for both simulations
(with and without noise) are shown in
Fig. 7.5. In both simulations, an initial
transient is observed in the X-position
and γ-angle states. This is possibly
due to a zero initial velocity of the ver-
tebrae, requiring the spine to rapidly
move at the start of its simulation to
“catch up” with the trajectory. After
that, all errors trend to zero, with the
expected oscillations in the simulation
with noise.

7.4.4 Controller with MPC and Inverse Statics Optimization

Fig. 7.6a shows the path of the single vertebra in the 2D simulation, using the controller with
MPC plus inverse statics reference input tracking, as it sweeps through its counterclockwise
bending motion. As with Fig. 7.4a and 7.4b, the reference state trajectory is included (in
blue) alongside results from the controller with no noise (green) and from a representative
simulation with noise (magenta.) The vertebra follows the path of the of the kinematic states,
but experiences some accumulation of lag. The results show that the closed-loop controller
is noise-insensitive, alongside accurate tracking, but that the lag occurs in all circumstances.
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Figure 7.5: Tracking errors in system states for the 3D, three-vertebra model using the
smoothing controller, with and without noise. Position states (x, y, z) on the left with units
of cm, Euler angles (θ, γ, ψ) on the right with units of degrees.

The tracking errors for each state are shown in Fig. 7.6b, using the same convention as
Fig. 7.5. The controller accumulates lag throughout the simulation, and the errors do not
converge. This is expected, since the tracked inputs are inverse statics and not dynamics,
and this simulation setup violates the assumption of quasi-static movement. Since the results
presented here are used to compare with the smoothing controller, the simulations use the
same setup with only dynamic movement. It is expected that given a setup where the
controller has the opportunity to settle, the errors would converge.

7.4.5 Control of Different Spines

The proposed controller that combines MPC with inverse statics for reference input tracking
has significantly fewer tuning parameters. It is thus easily extendable to different sizes and
shapes of spines, whereas a large amount of tuning may have otherwise been required. In
order to illustrate this, the controller was tested on a different 2D spine, with a different size
and shape of vertebra.
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(a) Positions in the X-Z plane as the robot
performs a counterclockwise bend. The ver-
tebra tracks the trajectory, but accumulates
more lag than the smoothing controller.
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Figure 7.6: Simulations results for the 2D single-vertebra model, using the controller with
MPC plus inverse statics reference input trajectory generation/tracking.
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Figure 7.7: Additional test of the reference in-
put tracking controller with the larger, differently-
shaped vertebra. This controller tracks this verte-
bra in the same way as Fig. 7.6a with no need to
change any tuning constants.

Control results (Fig. 7.7) show
equivalent performance to the original
vertebrae of Sec. 7.4, despite the size
and geometry change. For these tests,
no changes were made to the inverse
statics algorithm, nor to any of the con-
stants in Table 7.3.

This differently-shaped spine still
retained the same number of point
masses, and is symmetric (to satisfy the
assumptions of the inverse statics algo-
rithm), but is now larger and heavier,
with different angles between its bars.
The vertebra weighed a total of 0.2 kg,
and the positions of its point masses
(nodes) are, in cm,

[
a1 a2 a3 a4

]
=

[
0 20 −20 0

0 −20 −20 20

]
(7.42)

The reference state trajectory is adjusted to match the new size, with the same βmax1

but a height and radius of z̄1(0) = r1 = 0.3 m. Simulated noise is scaled in the same way.
Accounting for the number of timesteps and distance traveled in comparison to the top
vertebra of the 3D model, the weights for the noise are w14 = 5e−4 and w15 = 2e−4.
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7.5 Discussion

Both controllers exhibit state tracking characteristics which could be used in different envi-
ronments for effective closed-loop control. The smoothing controller tracked with lower error,
after an initial transient response, but had higher computational complexity and tuning re-
quirements. The controller with inverse statics tracking, which is more general, exhibited
lag and thus larger tracking errors, but with lower computational overhead and with signif-
icantly less hand-tuning. These are the first controllers that track a state-space trajectory
of a tensegrity spine robot in closed-loop, and the first which shows noise insensitivity.

7.5.1 Computational Performance

The lengths of time taken to solve the optimization problem for each controller (0.5-1 sec.
and 0.15-0.2 sec.) were longer than the timesteps of each respective simulation (1e−3 and
1e−5 sec.). Thus, the optimization procedure will need to be made more efficient before using
this controller in hardware. One approach that may reduce solver time is the calculation
of a symbolic Jacobian for the At and Bt matrices, reducing the computational load in the
linearization.

7.5.2 Tracking Performance Comparison

The controller with MPC and the inverse statics optimization removed the need for hand-
tuned smoothing terms, but exhibited lag in tracking a highly-dynamic state trajectory.
This motivates the use of either controller in different settings. The MPC plus smoothing
controller may be appropriate for high-performance dynamic tracking, when the control
system designer is able to tune the weights and constraints. In contrast, the MPC plus
inverse statics optimization controller may be appropriate for more pseudo-static movements,
but can be implemented more reliably and on more systems without the tuned smoothing
terms.

Both approaches demonstrated noise insensitivity as well as some robustness to model
mismatch (since both controllers utilize a time-varying linearization.) However, these con-
trollers have yet to be tested with unknown external loads or disturbances. It is anticipated
that such settings may have more impact on the controller with MPC plus inverse statics,
since it relies more heavily on open-loop behavior. In this case, approaches may exist for
tuning disturbance rejection, such as increasing pretension in the reference input trajectory
via the lower bound c in eqn. (5.50).

7.5.3 Limitations Of Comparison

The results provided here compare the top vertebra of the 3D model to the single vertebra
in the 2D model. This comparison is chosen to demonstrate the largest errors of each
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simulation. Thus, Fig. 7.4b and 7.6a represent the same geometry of state trajectory, but
do not represent the exact same system model.

Though the controller with inverse statics optimization is prototyped in a reduced-order
version of the spine, the formulation is general enough to be applied to a multiple-vertebra,
3D spine. However, such simulations have not been implemented, and as such, it is unknown
if some combination of both optimization problems in Sec. 7.3.2 and 7.3.3 may still be
required for the higher-dimensional system.

7.5.4 Future Work

Future work will focus in two areas. First, performance improvements are needed. In
addition to the computational aspects mentioned above, better tracking may be achieved
using inverse dynamics instead of inverse statics solutions. Using higher-fidelity models, or
more sophisticated numerical techniques, may allow for a lower-frequency controller to show
good tracking performance.

In addition, hardware experiments using such a lower-frequency controller will be con-
ducted in future work. Significant mechanical design challenges remain before an appropriate
physical prototype can be constructed, particularly with actuation (the dimension of u) and
sensing (since this chapter uses state feedback.) Work is ongoing on the robot from Chap.
6, which may eventually be the test platform for these experiments.
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Chapter 8

Stability and Control of Lagrangian
Systems with Statically Conservative
Forces

The tensegrity spine robot studied in this dissertation exhibits a number of properties that
make control challenging, such as high dimensionality, nonlinearities, input saturation, and
the hybrid behavior of cables that become slack. The previous chapter addressed these
issues through model-predictive control, using a constrained optimization program. However,
the MPC approach also showed significant drawbacks. The controller had computational
challenges and was not real time. More importantly, no stability proof was possible, given
the variety of approximations for tractability.

This chapter proposes a different method for addressing similar challenges in robotics con-
trol. Here, an energy-based approach, modified from the passivity-based control framework
reviewed in Chap. 3, addresses the same issues in ways that do not come with computational
challenges, while also providing a stability proof. The energy-based analysis inherently ap-
plies to nonlinear systems, distributed control is used for issues of dimensionality, and hybrid
system behavior is directly accounted for in the stability analysis.

The class of systems considered here are those with statically conservative applied forces,
a relatively obscure concept that nonetheless captures a wide range of mechanical models.
In particular, this chapter proves that models of slack or viscoelastic cables in a cable-driven
robot are statically conservative. These systems are then analyzed in the new framework.
Though a controller for tensegrity spines is not derived here, the proposed framework ad-
dresses each major challenge in control of such systems (nonlinearities, dimensionality, hybrid
behavior), with a clear framework for future application to systems of rigid bodies.

The following chapter first addresses the concept of statically conservative forces, adapt-
ing the theory from Chap. 3 to the new case. The new stability proofs are then applied to
particles with damped central forces, as a model for a robot’s cables. A simplified model
of a cable-driven robot, as an example with this structure, is then controlled in setpoint
regulation.



CHAPTER 8. STABILITY AND CONTROL OF LAGRANGIAN SYSTEMS WITH
STATICALLY CONSERVATIVE FORCES 109

8.1 Motivation: Challenges with Slack Cables in

Cable-Driven Robots

A variety of challenges remain in the control of tensegrity spines using the optimization-based
control approaches from Chap. 7. These challenges are not necessarily due to tensegrity
spines themselves, but instead are representative of larger problems in robotics:

1. Hybrid dynamics. The cables of a tensegrity spine can go slack, changing the equations
of motion in a system.

2. High dimensionality. The structure consists of many rigid bodies, with a high-
dimensional state space, making computational procedures such as model-predictive
control either inefficient or impractical.

3. Stability. Tensegrity spines are nonlinear in addition to hybrid, and so the linearized
controllers in Chap. 7 could not provide stability guarantees.

Identifying these challenges prompts the use of inherently nonlinear control systems, par-
ticularly those which can be developed in a distributed manner to eliminate dimensionality
problems. The following chapter develops such a controller, based on energy-theoretic con-
cepts of stability. Though the results here have not yet been applied to tensegrity spines,
the fundamental framework and its verification on a related system address each problem
listed above. The results prompt future use of these controllers on tensegrity spines.

8.1.1 Lagrange’s Equations Facilitate Energy Analysis

Lagrange’s equations of motion were used in Chap. 7 to derive the dynamics of a tenseg-
rity spine. Recall from Chap. 3 that Lagrange’s equations are a method of writing the
dynamics of mechanical systems from an energy-focused perspective, and are equivalent to
using Newton’s laws. A mechanical system with n degrees of freedom is parameterized by
its generalized coordinates q = [q1 . . . qn]> ∈ X n ⊆ Rn, the corresponding generalized veloc-
ities q̇ ∈ Rn, and the applied generalized forces Q = [Q1 . . . Qn]> ∈ Rn, all of which have
application-dependent interpretations (Chap. 3.) The system is modeled via its kinetic (T )
and potential (U) energy. The sum of these is the Hamiltonian (H), and the difference is
the Lagrangian (L),

T ∈ R, U ∈ R, L := T − U, H := T + U.

Then, the following set of equations, referred to as Lagrange’s equations, hold based on a
the use of Hamilton’s principle from the calculus of variations.

d

dt

(
∂L

∂q̇j

)
−
(
∂L

∂qj

)
= Qj, j = 1 . . . n. (8.1)
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Equivalently, expressed in vector form,

d

dt

(
∂L

∂q̇

)
−
(
∂L

∂q

)
= Q, (8.2)

with the partial derivative notation discussed in Chap. 3.

8.1.2 Using Passivity-Based Control for Stability

There are a variety of ways that systems of this form could be analyzed for stability, including
optimization-based methods. However, an intuitive approach is analyzing the system’s total
energy H as a Lyapunov candidate (Chap. 3), or for passivity, a storage function candidate.
An energy analysis is the underlying principle of passivity-based control (PBC) of Lagrangian
systems.

To do so, the generalized force is assumed to depend on the system states, Q = Q(q, q̇),
and is assumed to be a memoryless nonlinearity such that it does not have its own internal
state. The commonly-used presentation of PBC for Lagrangian systems [196, 144, 32] then
requires that Q(q, q̇) can be additively separated into one component that is a function of
coordinates and another a function of velocities, chosen with a negative sign convention,

Q(q, q̇) = −Qs(q)−Qd(q̇).

The coordinates-only component must then also be a conservative (generalized) force, as in

Qs
j =

∂U

∂qj
, j = 1, . . . , n, (8.3)

incorporating Qs into the potential energy U , and leaving the remaining nonconservative
component to determine the energy change in the system (Lemma 3.1.0.1 and Prop. 3.3.2)
via the work-energy principle,

Ḣ = −q̇>Qd(q̇).

Stability then comes if Qd(q̇) is an input-strictly passive (definition in Sec. 3.2.1) memoryless
nonlinearity,

q̇>Qd(q̇) ≥ γ2q̇>q̇, γ ∈ R > 0, ∀ q̇ ⇒ Ḣ ≤ 0,

via the arguments related to LaSalle’s Invariance Theorem in Prop. 3.3.3.
The canonical example of this situation is a one-dimensional (q ∈ R) nonlinear spring-

damper system [171],

F (q, q̇) = −F s(q)− F d(q̇),

with the linear case F s = kq and F d = cq̇ clearly stable via the above with a positive
damping constant c > 0.
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8.1.3 Energy Analysis when Forces are not Separable

However, what happens if the (generalized) force is not separable into one conservative and
another input-strictly-passive nonconservative component? For example, a flexible cable
with length ` that goes slack could have a model (autonomous version of that from Chap.
7) of the form

F =

{
k`+ c ˙̀, if k`+ c ˙̀ ≥ 0

0, if k`+ c ˙̀ < 0,
(8.4)

which cannot be separated into one function of only ` and another of only ˙̀. This is the
source of the hybrid dynamics of the tensegrity spines in this dissertation: cables have
different constitutive equations depending on both cable length ` and length change ˙̀.

The following issues arise.

1. The potential energy U may not be bounded, which is a requirement for applying Prop.
3.3.3. The tensegrity spine in Chap. 7 only has gravitational potential energy for U ,
which is unbounded below.

2. Despite this, there may still exist equilibrium points. The spine may oscillate with
cables becoming slack then re-tensioning, but if pretensioned properly, could settle to
an equilibrium.

3. The equilibrium point q̄, if it exists, is not at the point specified in Prop. 3.3.3.
By taking Lagrange’s equations and substituting for zero velocity (well known to be
the condition for equilibrium [77]), the kinetic energy is T = 0, and the equilibrium
condition for equation (8.2) becomes

∂U

∂q

∣∣∣∣
q=q̄

= Q(q̄,0). (8.5)

In comparison, as in Prop. 3.3.3, with Q separable and the damping force Qd(0) = 0,
the equilibrium is at the minimum of the potential energy:

∂U

∂q

∣∣∣∣
q=q̄

= 0.

Formulating a Lyapunov (or storage) function candidate that has its minimum at the
equilibrium would require combining the right-hand side of eqn. (8.5) with the left-hand side.
The following chapter does exactly so, proposing the new concept of augmented potential
energy that has the equilibrium as its minimum, and giving conditions under which the
augmented potential energy decreases via a modified version of the work-energy theorem.



CHAPTER 8. STABILITY AND CONTROL OF LAGRANGIAN SYSTEMS WITH
STATICALLY CONSERVATIVE FORCES 112

Defining and using the augmented potential energy for stability analysis requires condi-
tions on Q(q,0) so that it can be combined with U . Specifically, eqn. (8.5) implies that
Q(q,0) must be the gradient of some scalar potential function; i.e, Q must be a gradient
of some scalar function when the system is at rest. This is the definition of a statically
conservative force adopted here.

Definition 8.1.1. Statically Conservative Force.
A (generalized) force Qj(q, q̇) that is a function of both the generalized coordinates and

generalized velocities, in vector form Q = [Q1 . . . Qn]> ∈ Rn, is statically conservative if it is
the gradient of a scalar potential function when at rest. Specifically, defining

σj(q) := Qj(q,0), σ := [σ1 . . . σn]> ∈ Rn, (8.6)

then Q is statically conservative if

∃ U f s.t.
∂U f

∂qj
= σj, ∀ j = 1 . . . n, equivalently

∂U f

∂q
= σ. (8.7)

It appears that this concept is relatively obscure in the literature, with no commonly-
accepted nomenclature. The use of the term ‘statically conservative’ above comes from [58],
one of the few papers that considers a case similar to this one.

8.1.4 Other Approaches to Similar Problems

The above analysis is for an autonomous system, one in which the control loop has already
been closed. Such will be the case with the cables in the application below. However, there
are other assumptions that could be made on Q that lead to stabilizing control strategies.
For example, assuming that Q is affine in an external input allows incorporating it into the
Lagrangian in some cases [32],

Q(q,u) = J(q)u, L̄ := L+ q>Q(q,u),

or interconnecting the system with forces that have internal state [101]. However, none of
these are readily able to incorporate forces with coupled q and q̇ terms.

Other approaches to solving this equilibrium problem in the context of passivity have
recently been investigated in the literature. Specifically, Meissen et. al. [125] proposed a
controller that uses equilibrium-independent dissipativity (EID) for the similar issue of an
a-priori unknown equilibrium point. In that example, with a quadcopter carrying a cable-
suspended payload, the cables are considered as a separate interconnected subsystem for
which equilibrium is addressed in the EID framework. The analysis (and resulting controller)
proposed in this chapter can therefore be viewed as a different approach to a similar problem,
with particles suspended in networks of cables, where the system is analyzed as a whole but
distributed control is developed. The approach here also not only accounts for flexibility in
the cables, but exploits the energy dissipation therein for a stability proof.
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8.1.5 Controlling Systems of Particles as Progress Towards
Tensegrity Robots

Recall from Chap. 7 that a tensegrity spine can be represented by a system of particles with
integrable constraints imposed between them. These constraints define the shape of a rigid
body in the tensegrity spine, giving an approximation to rigid-body dynamics. Without
these constraints, these systems become a cable network, where particles move freely. Cable
networks have the convenient property that all forces between particles are central forces
(see Sec. 8.3), and it will be shown later that these forces are always statically conservative.
This chapter therefore chooses to address cable networks as an application for the proposed
control theory.

By addressing cable networks as a first application of the theory in this chapter, the
approach can be adapted for the more general case of constrained systems of particles,
which can then model a tensegrity spine as in Chap. 7. The control systems in this section
do not directly apply to tensegrity spines, and as such, are not used for those spines. Nor is
an unconstrained cable network intended as a model for a tensegrity structure. However, it
is hypothesized that the static conservation properties of cable networks will also apply to
tensegrity structures upon further analysis.

Though tensegrity spines are not studied in this chapter, a different cable-driven robot is
modeled as a cable network system in Sec. 8.6 for purposes of validating the theory presented
here. The approximation of the example cable-driven robot’s rigid body as a point mass is
only valid under certain conditions, such as small moments of inertia, and when forces are
applied close to the body’s center of mass. This is the case in some cable-driven robots [218],
but nonetheless introduces modeling error. Future work will examine the implications of this
approximation in various settings.

8.2 Passivity and Stability of Lagrangian Systems

with Statically Conservative Forces

The following sections derive passivity and stability conditions for Lagrangian systems with
applied forces that are statically conservative. Though the eventual goal for this control
purpose is stability, the first proposition addresses passivity: it is expected that, in future
work, there may be control frameworks which make use of interconnections with these sys-
tems. The passivity condition is also a subset of the stability condition, and thus the two
are addressed in sequence.

The following relies heavily on the proofs from prior work in Chap. 3. Any missing
background, context, or definitions are given there - for example, with equilibrium points
versus configurations, the use of partial derivatives in Rn versus the gradient in E3, etc.
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8.2.1 Passivity of Lagrangian Systems with Statically
Conservative Forces

For a passivity analysis, assume that a system modeled by Lagrange’s equations (8.2) has an
external input added to its generalized force, as with Prop. 3.3.1. The following then holds.

Proposition 8.2.1. Passivity of Lagrangian Systems with Statically Conservative Forces.
Consider a system that is described by Lagrangian mechanics, eqn. (8.2), with n gener-

alized coordinates, velocities, and forces: qj ∈ Xj ⊆ R, q̇j, Qj ∈ R, j = 1 . . . n. Assume that
there is an additional generalized force that is an input to the system, uj, j = 1 . . . n, that a
negative sign convention is chosen for Qj, and that Qj = Qj(q, q̇) is a function of both the
coordinates and velocities and is a memoryless nonlinearity (stateless.) Specifically,

d

dt

(
∂L

∂q̇j

)
−
(
∂L

∂qj

)
= −Qj(q, q̇) + uj, j = 1 . . . n,

or in vector form

d

dt

(
∂L

∂q̇

)
−
(
∂L

∂q

)
= −Q(q, q̇) + u, (8.8)

where L = T − U is the Lagrangian, T is the kinetic energy, and U is the potential energy.
If the following hold:

1. The generalized force Q is statically conservative, i.e. (from Defn. 8.1.1),

σ(q) := Q(q,0), ∃ U f s.t.
∂U f

∂q
= σ,

2. The augmented potential energy, defined as

Ū := U + U f , (8.9)

is bounded below by a constant, Ū ≥ c ∈ R,

3. The difference between Q and its statically conservative component σ, defined as

S(q, q̇) := Q(q, q̇)− σ(q), (8.10)

satisfies the following inequality:

q̇>S(q, q̇) ≥ 0 ∀q, q̇, (8.11)

or equivalently when written as the memoryless nonlinearity y = S(v1,v2), is dissipa-
tive with respect to the passivity-like quadratic supply rate v>2 y:
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s(v,y) =

v1

v2

y

>X

v1

v2

y

 ≥ 0 ∀ v1,v2, X =

0 0 0

0 0 1
2
I

0 1
2
I 0

 ,
Then, the system is passive from u to q̇, i.e. that

V (q(τ)), q̇(τ))− V (q(0)), q̇(0)) ≤
∫ τ

0

q̇>u dt (8.12)

for every input signal u and every time interval t = [0, τ) in the interval of existence of the
solution q(t), with the storage function V (·, ·) : X × Rn 7→ R chosen to be the augmented
total energy H̄ = T + Ū minus the bounding constant for the augmented potential energy,

V (q, q̇) := H̄(q, q̇)− c. (8.13)

Proof. Consider the storage function candidate,

V (q, q̇) = H̄(q, q̇)− c.

First, justify that this is a valid storage function. The total kinetic energy in mechanical
systems is always nonnegative, T ≥ 0. So,

T ≥ 0, Ū − c ≥ 0 ⇒ T + Ū − c ≥ 0 ⇒ H̄ − c ≥ 0.

Thus, V (·, ·) is nonnegative, and is a valid storage function. As with Prop. 3.3.3, the storage
function V (·, ·) is not necessarily zero for zero argument, which can be accounted for via a
coordinate transformation (not performed here.)

Next, from Lemma 3.1.0.1, the time derivative of the total system energy is

Ḣ = −q̇>Q + q̇>u. (8.14)

The time derivative of the storage function candidate is

V̇ = Ḣ + U̇ f , (8.15)

so via substitution,

V̇ = −q̇>Q + q̇>u + U̇ f . (8.16)

Expanding U̇ f using the chain rule, since U f is only a function of q,

U̇ f =
n∑
j=1

∂U f

∂qj
q̇j =

n∑
j=1

σj q̇j = q̇>σ. (8.17)
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Substituting eqn. (8.17) into the expression for the time derivative of the storage function
candidate (8.16),

V̇ = −q̇>Q(q, q̇) + q̇>u + q̇>σ(q) (8.18)

V̇ = −q̇>S(q, q̇) + q̇>u. (8.19)

The dissipativity assumption on the difference in generalized forces gives that q̇>S(q, q̇) ≥ 0,
so therefore

−q̇>S ≤ 0 ∀ q, q̇, (8.20)

V̇ − q̇>u ≤ 0 ∀ q, q̇, (8.21)

V (q(τ), q̇(τ))− V (q(0), q̇(0)) ≤
∫ τ

0

q̇(t)>u(t) dt ∀ q, q̇, (8.22)

and the map from u to q̇ is passive.

Remark. The above proof may at first seem to require finding a U f , of which there may be
many. In practice, this is not necessary: the above can be satisfied only examining Q and
σ. Determining if a U f exists can done via the common ‘curl test’ for forces in E3. Here,
the partial derivative for the generalized force σ becomes a gradient for a force f in E3 (see
Chap. 3),

∃ U f s.t. ∇U f = f iff curl(f) = 0.

Similarly, proving that Ū has a lower bound can be done by instead proving a strict minimum
via the second partial derivative test (as is needed anyway for the stability proof below.)
Taking advantage of the fact that the Hessian of a scalar function is also the Jacobian of its
gradient, a lower bound exists if

J(∇U + f) � 0.

Therefore, U f is never explicitly needed, and in addition, the proof holds independent of one
particular choice of a U f over another.

8.2.2 Stability of Lagrangian Systems with Statically
Conservative Forces

Assume now that the loop has been closed for the Lagrangian system with statically con-
servative forces, and that it is autonomous: there is no input u. The following proposition
gives a set of conditions under which the system is (asymptotically, globally) stable.
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Proposition 8.2.2. Stability of Lagrangian Systems with Statically Conservative Forces.
Consider an unforced system in the form of (8.8), i.e. with u ≡ 0,

d

dt

(
∂L

∂q̇j

)
−
(
∂L

∂qj

)
= −Qj(q, q̇), j = 1 . . . n. (8.23)

Assume that U f , Ū , and S := Q − σ meet the three conditions of existence, boundedness,
and dissipativity from Prop. 8.2.1. If also:

4. The augmented potential energy Ū(q) has a strict local minimum at coordinates q̄ in
a set Q ⊆ X ⊆ Rn, i.e., with both U and U f in C1,

Ū
∣∣
q=q̄

= c, Ū > c ∀q 6= q̄ ∈ Q, (8.24)

Then q̄ is an equilibrium point in Q, and the system is stable in the sense of Lyapunov
around that equilibrium point.

5. The inequality for S is strict in the second argument, i.e.,

q̇>S(q, q̇) > 0 ∀ q̇ 6= 0, ∀ q (8.25)

Then the system is also locally asymptotically stable around q̄ in Q.

6. The augmented potential energy Ū is radially unbounded (proper),

Then the system is also asymptotically stable in the sense of Lyapunov in all of Q, or if
Q = Rn, globally asymptotically stable.

Proof. The proof follows the form of Prop. 3.3.3.
First, establish the equilibrium point(s) of the system (8.23.) By the definition, equilibria

exist where q̇ = 0. Using the definition of L = T − U , as well as the fact that the total
potential energy is not a function of the generalized velocities, Lagrange’s equations (8.23)
at zero velocity become

d

dt

(
∂T

∂q̇j

∣∣∣
q̇=0

)
− ∂T

∂qj

∣∣∣
q̇=0

+
∂U

∂qj
= −Qj(q,0), j = 1 . . . n. (8.26)

By definition, kinetic energy is zero at zero velocity, so all T terms drop. In vector form,

∂U

∂q
+ Q(q,0) = 0. (8.27)

Substituting the definition of the augmented potential energy, where

σ(q) := Q(q,0),
∂U f

∂q
= σ, Ū := U + U f ,
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establishes that any equilibrium point therefore must exist at zero points of the augmented
potential energy:

∂U

∂q
+
∂U f

∂q
= 0, ⇒ ∂Ū

∂q
= 0. (8.28)

By the assumption that Ū is bounded below (and assumptions on continuous differentiability
giving extrema of Ū), there exist q that satisfy this property, which are subsequently the
equilibrium point(s):

Ū ≥ c, ∃ q̄ s.t. Ū
∣∣
q=q̄

= c, ⇒ ∃ q̄ s.t.
∂U

∂q

∣∣∣∣
q=q̄

= 0. (8.29)

Consider the storage function V = H̄ − c as a Lyapunov candidate. First establish that
it is a positive definite function. It was shown in the proof to Prop. (8.2.1) that V is
nonnegative. In addition, the storage function is zero at the equilibrium point’s coordinates:

V (q̄,0) = T
∣∣q=q̄
q̇=0

+ Ū
∣∣
q=q̄
− c,

V (q̄,0) = c− c = 0.

Given assumption 4, the augmented potential energy Ū has a strict local minimum at q̄ in
Q. Therefore,

Ū > c⇒ Ū − c > 0 ∀q 6= q̄ ∈ Q.

Since T ≥ 0 for any argument and T > 0 for q̇ 6= 0,

T + Ū − c > 0 ∀q 6= q̄ ∈ Q, ∀q̇ 6= 0

V (q, q̇) > 0 ∀q 6= q̄ ∈ Q, ∀q̇ 6= 0.

Therefore, V � 0 is a locally positive definite function around {q = q̄, q̇ = 0}.
Next, consider the time derivative V̇ of the Lyapunov candidate. Assuming (again)

continuous differentiability of V , it was derived in Prop. 8.2.1 that (with ū = 0),

V̇ = −q̇>S(q, q̇) ≤ 0 ∀q, q̇ (8.30)

Therefore, V̇ � 0, so V meets all conditions for a Lyapunov function, and the system is
stable in the sense of Lyapunov around q̄.

For asymptotic stability, assumption 5 gives strictness of the above inequality in the
second argument, and can be written as

q̇ 6= 0 ⇒ q̇>S > 0. (8.31)
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Consider the contrapositive of this statement, which must also be true:

q̇>S ≤ 0 ⇒ q̇ = 0. (8.32)

Since it is also known that q̇>S ≥ 0 always, the left-hand side of (8.32) is reduced to the
case when q̇>S is equal to zero, and

q̇>S = 0 ⇒ q̇ = 0.

It is clear also that

q̇ = 0 ⇒ q̇>S = 0,

then only solution to V̇ = 0 is

V̇ (q, q̇) = 0 ⇐⇒ q̇ = 0.

LaSalle’s Invariance Principle can then be used in the following way. From eqns. (8.27)-
(8.29), it was shown that

q̇ = 0 ⇒ ∂Ū

∂q
= 0.

It was also shown that the only solution here is the equilibrium point q̄, and that q̄ is a
unique point in Q via the assumption on a strict local minimum of Ū ,

∂Ū

∂q
= 0 ⇐⇒ q = q̄ q ∈ Q

Therefore,

V̇ (q, q̇) = 0 ⇐⇒ {q = q̄, q̇ = 0} q ∈ Q

indicating that the equilibrium point q̄ is the only point in Q at which V̇ = 0, and so is a
positively invariant set for the zero level set of this V̇ . This meets the conditions of LaSalle’s
Invariance Theorem, and the system is asymptotically stable around the point specified by
q̄ in Q.

Finally, for global stability, incorporate assumption 6. Then, since

V (q, q̇) = T + Ū + c,

lim
q,q̇→∞

V (q, q̇) = lim
q,q̇→∞

T + lim
q→∞

Ū + c.

By definition, the kinetic energy approaches infinity as velocity approaches infinity (for any
value of generalized coordinates):
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lim
q̇→∞

T =∞.

The assumption gives radial unboundedness of Ū , and since T goes to infinity in the second
argument, their sum is then radially unbounded with respect to both arguments:

lim
q,q̇→∞

T =∞, lim
q→∞

Ū =∞ ⇒ lim
q,q̇→∞

V (q, q̇) =∞.

Which meets the condition of radial unboundedness of the Lyapunov candidate. The sys-
tem is therefore asymptotically stable around q̄ in all of Q, and if Q = Rn, is globally
asymptotically stable.

Remark. The use of propositional logic (arguing the contrapositive of the strictness condition
on q̇>S) is not necessarily common in proofs such as these, and may seem out of place.
However, it provides a much cleaner solution than attempting to investigate the cases when

q̇>S(q, q̇) = 0,

since this is a nonlinear system of equations.
For example, in the cable-driven robot application below, it could be conceptually possible

that at some configuration with nonzero velocity, the cables ‘cancel out’ to give V̇ = 0 even
though q̇ 6= 0. Arguing against this case might then need tools from (for example) graph
theory to compare behavior of various cables with the strictness assumption. Instead, calling
upon the contrapositive above eliminates the need to examine these cases, showing that it’s
not possible for a nonzero velocity to give V̇ = 0, giving the ‘only if’ part of the asymptotic
stability proof via LaSalle’s Invariance Theorem.

Remark. The example of an inseparable force given at the start of this chapter, that of the
slack cable in eqn. (8.4),

F =

{
k`+ c ˙̀, if k`+ c ˙̀ ≥ 0

0, if k`+ c ˙̀ < 0,
,

will be shown to be statically conservative. A nonlinear version of this force will also satisfy
the dissipation inequality of eqn. (8.11) as well as the strictness condition of eqn. (8.25)
given a set of conditions on the scalar spring-like and damper-like components. The controller
example at the end of this chapter gives stability of a system with these forces using the
above proposition.

8.3 Particles with Damped Central Forces: Model

Modeling a mechanical system as a system of particles is a useful and informative abstraction
for control, and often is used as a step toward controlling a system with rigid body dynamics.
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Common examples include quadcopters with a suspended payload [125], or cable-driven
robots. In this chapter, a cable-driven robot will be considered as an application using this
model. The following section establishes a model and some properties related to statically
conservative forces for a (system of) particles.

One highly useful framework for which the concept of augmented potential energy can
be applied to a system of particles is that of central forces. A central force, commonly
encountered in the orbital mechanics community, is one where the force is directed along a
unit vector between two particles, and only depends on the distance between them (formal
definition given below.) A wide variety of commonly encountered forces are central, including
gravity, electrostatics, and spring forces.

However, unlike orbital mechanics, for which the energy of a body does not dissipate in
any appreciable manner, it is often necessary to model some energy dissipation in a network
of cables in order to obtain physical realistic models: an unforced, weighted cable net settles
to an equilibrium state. Therefore, a model of central forces with damping [52] can be
used. Though forces in systems of particles have been studied since the time of Keppler,
incorporating damping or dissipation is still an open problem [156, 17]. The work in this
chapter provides a framework for stability in these cases.

The following three sections establish the needed properties for an autonomous system,
with no input. When applied later in Sec. 8.6, an input will be allowed, a controller will be
proposed, and the loop will be closed before performing the needed analysis.

8.3.1 System Model

Single particles

Consider first a single particle of mass m in three-dimensional Euclidean space (Fig. 8.1).
Assuming a basis in E3, the particle’s position r is described by three generalized coordinates,

r = r(q1, q2, q3),

and has a velocity that is a function of the generalized velocities,

v = ṙ = ṙ(q̇).

As an example, in the Cartesian basis,

q = [x1, x2, x3]>, r = x1E1 + x2E2 + x3E3, v = ẋ1E1 + ẋ2E2 + ẋ3E3.

For simplicity, it will be assumed that v is not a function of the generalized coordinates q,
though this does not hold for some choices of basis (e.g., polar coordinates.) This assumption
will be relaxed in future work.

Next, assume there are a set of i = 1 . . . s other points fixed in space, bi ∈ E3, such as
anchor points for cables, from which forces will act on the particle. The vector between the
particle and one of these points - again, with cables as a motivation - is
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Figure 8.1: A particle of mass m with forces directed from fixed points. Each force i = 1 . . . s
has an anchor point bi fixed in space, a total (scalar) length between particle and anchor `i,
and a unit vector ˆ̀

i. A central force with damping has the form Fi = Φi(`i, ˙̀
i) ˆ̀

i, where the
function Φi(·, ·) : R2 7→ R describes the scalar applied force. The system-of-particles model
allows bi to be other particles rj.

`i = r− bi,

which has a scalar distance (‘length’ of the cable) as `i, with the unit vector from anchor to
point mass as ˆ̀

i,

`i = ||`i||, ˆ̀
i =

1

`i
`i,

where || · || is the Euclidean norm. As the particle moves in time, these distances change
(cables extend and retract.) The length change, ˙̀, will be defined as the rate of change of `,

˙̀
i =

d

dt
||`i||.

A quick calculation expresses ˙̀
i in terms of r and v (implicitly, q and q̇.) The time derivative

of the direction vector is

d

dt
`i = ˙̀

i =
d

dt
(r− bi) = v,

noting that ḃi = 0. By the full derivative of a norm, the time derivative of the length is
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˙̀
i =

d

dt
||`i|| =

˙̀
i · `i
||`i||

=
v · `i
||`i||

= v · ˆ̀
i.

Therefore, any length and length change are expressed as functions of the particle’s position
r and velocity v,

ˆ̀
i(r), `i(r), ˙̀

i(r,v).

Consider a force applied on the particle, directed toward an anchor point (Fig. 8.1.) The
following definitions describe such forces.

Definition 8.3.1. Central Force. A force applied to the particle is a central force if it
is directed along the vector from one point to that particle, and is only a function of the
distance from that point:

Fi(r) := φi(`i) ˆ̀
i, (8.33)

where φi(·) : R 7→ R is the scalar force.

Definition 8.3.2. Central Force With Damping. A force applied to the particle is a
central force with damping if it is central, but also is a function of the rate of change of the
distance between anchor to particle:

Fi(r,v) := Φi(`i, ˙̀
i) ˆ̀

i, (8.34)

where Φi(·, ·) : R2 7→ R will also be called the scalar force.

The term ‘scalar force’ arises since || ˆ̀|| = 1⇒ ||F|| = φ or Φ respectively.
If considered as a particle in a network of cables, central forces with damping capture the

behavior of a wide variety of idealized, massless models. For example, the traditional linear
spring-damper system arises with

Φi(`i, ˙̀
i) = k`i + c ˙̀

i.

A fact that will be used in the passivity and stability proofs later is the result of the
inner product of F with v: the work done by the force on the particle. For those proofs, the
following calculation will occur:

Fi · v = (Φi(`i, ˙̀
i) ˆ̀

i) · v = Φi(`i, ˙̀
i)(v · ˆ̀

i) = Φi(`i, ˙̀
i) ˙̀

i, (8.35)

by the definition of length change. Intuitively, then, the work done by a cable will be its
scalar force Φi multiplied by its length change, a somewhat remarkable result that will allow
treating each cable independently when analyzing the system’s energy exchange.
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Systems of particles

Extending the model above to a system of K particles can be done by allowing some anchors
bi to also be point masses in E3, with position vector rk and mass mk. The length vector
and its time derivative associated with force i directed from particle k to particle j are

`i = rj − rk, ˙̀
i = vj − vk,

and its scalar length change is

˙̀
i = ˙̀

i ·
`i
||`i||

= (vj − vk) · ˆ̀
i.

All other equations are the same as for the single particle case.
As with the single particle, it will be useful to note that the total work of this force on

both particles becomes the product of its scalar force and the cable’s velocity. If cable i is
defined along a length vector `i = rj − rk, then its applied force on particle j and k will be
designated as Fj

i and Fk
i . Note then that

Fj
i = Φi(`i, ˙̀

i) ˆ̀
i, Fk

i = −Φi(`i, ˙̀
i) ˆ̀

i,

since the length vector points “toward” particle j and “away” from particle k. The work
done by this force on the respective particles is

Fj
i · vj = Φi(`i, ˙̀

i) ˆ̀
i · vj (8.36)

Fk
i · vk = −Φi(`i, ˙̀

i) ˆ̀
i · vk. (8.37)

The total work is the sum, Fj
i · vj + Fk

i · vk, so

Fj
i · vj + Fk

i · vk = Φi(`i, ˙̀
i)( ˆ̀

i · vj − ˆ̀
i · vk) (8.38)

Fj
i · vj + Fk

i · vk = Φi(`i, ˙̀
i) ˙̀

i, (8.39)

and again, analyzing the system’s change in energy can be done per-cable (or per-force) as
opposed to per-particle.

8.3.2 Central Forces with Damping are Statically Conservative

In addition to the observation that networks of cables inherently consist of central forces
with damping, examining systems with these forces is also motivated by the following. In all
cases, central forces with damping are statically conservative. To show this, it is first shown
here that central forces are always conservative. This is a textbook result that bears briefly
repeating.
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Here, recall from Chap. 3 that the definition of conservation in E3 is equivalent to
the component-wise definition using generalized forces, under the required component-wise
projection from F to Q (see Sec. 3.1.4) for all particles k,

Q =
∂U

∂q
⇐⇒ Fk =

∂U

∂rk
∀ k.

For the remainder of this chapter, all forces will be worked with in E3 with the understanding
that Prop. 8.2.1 and 8.2.2 are satisfied via this equivalence.

Claim 8.3.1. Central forces acting on a single particle,

Fi(r) = φi(`i) ˆ̀
i, where `i(r) = r− bi,

are conservative, i.e.,

∃ Ui(r) s.t. ∇rUi(r) = Fi(r).

Proof. The following is a textbook proof [142]. Propose the following potential energy func-
tion, where a is a constant,

Ui(r) :=

∫ `i

a

φi(τ)dτ.

Differentiating,

∇rUi(r) =
∂Ui
∂`i

∂`i
∂r

=
∂Ui
∂`i

ˆ̀
i,

since as described in Sec. 8.3.1,

∂`i
∂r

=
∂

∂r
||`i|| =

`i
||`i||

= ˆ̀
i.

The partial derivative of Ui recovers the scalar force,

∂Ui
∂`i

=
∂

∂`i

∫ `i

a

φi(τ)dτ = φi(`i),

giving the central force as the gradient of the proposed potential energy function:

∇rUi(r) = φi(`i) ˆ̀
i = Fi.

The following extension to systems of particles is equally well-known. For systems of
particles, one potential function is used for all particles; there is no separate per-particle
potential. Instead, the sum below is over cables i.
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Claim 8.3.2. Consider a set of central forces i = 1 . . . s acting on a system of K particles,
where force i acts between particles j and k with `i = rk − rj, as in

Fk
i (rk, rj) = φi(`i) ˆ̀

i, Fj
i (rk, rj) = −φi(`i) ˆ̀

i.

Let particle k have u = 1...m of these forces directed towards it, and v = 1...p directed away,
such that the total force on that particle is

Fk =
m∑
u=1

Fk
u +

p∑
v=1

Fk
v (8.40)

=
m∑
u=1

φku(`u)
ˆ̀
u −

p∑
v=1

φkv(`v)
ˆ̀
v, (8.41)

where φk(·) represents the appropriate scalar force acting on particle k. These central forces are
conservative, i.e., the total force on particle k is the gradient of a scalar potential function,
for all particles,

∃ Ui(r1, . . . , rK), U =
s∑
i=1

Ui s.t. ∇rkU = Fk, ∀ k = 1 . . . K.

Proof. Propose the same potential energy function as with Claim 8.3.1, now recognizing that
the lengths are functions of multiple particles’ positions,

Ui(r1, . . . , rK) :=

∫ `i

a

φi(τ)dτ, U =
s∑
i=1

Ui.

Consider if `u = rk − rj. Then,

∇rkUu(r1, . . . , rK) =
∂Uu
∂`u

∂`u
∂rk

=
∂Uu
∂`u

ˆ̀
u (8.42)

= φku(`u)
ˆ̀
u (8.43)

= Fk
u. (8.44)

Consider instead if `v = rj − rk. Then,

∇rkUv(r1, . . . , rK) =
∂Uv
∂`v

∂`v
∂rk

= −∂Uv
∂`v

ˆ̀
v (8.45)

= −φkv(`v) ˆ̀
v (8.46)

= Fk
v . (8.47)
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The gradient of a cable’s the potential function Ui with respect to particle position rk will
only be nonzero for u or v, so

∇rkU =
s∑
i=1

∇rkUi (8.48)

=
m∑
u=1

∇rkUu +

p∑
v=1

∇rkUv (8.49)

=
m∑
u=1

Fk
u +

p∑
v=1

Fk
v (8.50)

= Fk. (8.51)

The argument can be repeated for all k = 1 . . . K particles.

Given these two proofs, the following important result can be established: central forces
with damping are statically conservative. For systems of particles that are only under the
action of either conservative forces, or central forces with damping, the augmented potential
energy always exists in the form needed for Prop. 8.2.1 and 8.2.2.

To do so, a formal definition of the statically conservative component of a force in E3

will be useful. Though this is potentially one of many decompositions of a force F into a
conservative and nonconservative component, it will be the only one considered here.

Definition 8.3.3. Statically conservative component of a force. Given a force F that
is a function of a particle’s (or many particles’) position and velocity, F(r,v), its statically
conservative component is defined as

f(r) := F(r,0), (8.52)

if f is conservative.

In the remainder of this chapter, the statically conservative component of a central force
with damping will use the same notation for its scalar force,

φi(`i) := Φi(`i, 0),

as for central forces.

Claim 8.3.3. Central forces with damping acting on a single particle,

Fi(r,v) = Φi(`i, ˙̀
i) ˆ̀

i, where `i(r) = r− bi,

are statically conservative, i.e.,
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∃ U f
i (r) s.t. ∇rU

f
i (r) = fi(r),

where

fi(r) := Fi(r,0) = Φi(`i, 0) ˆ̀
i (8.53)

:= φi(`i) ˆ̀
i (8.54)

is the force’s statically conservative component.

Proof. Propose the potential function

U f
i (r) :=

∫ `i

a

φi(τ)dτ.

The remainder follows from the same derivation as Claim 8.3.1.

Claim 8.3.4. Consider a set of central forces with damping i = 1 . . . s acting on a system
of K particles, where force i acts between particles j and k with `i = rk − rj, as in

Fk
i (rk, rj,vk,vj) = Φi(`i, ˙̀

i) ˆ̀
i, Fj

i (rk, rj,vk,vj) = −Φi(`i, ˙̀
i) ˆ̀

i.

Let particle k have u = 1...m of these forces directed towards it, and v = 1...p directed away,
such that the total force on that particle is

Fk =
m∑
u=1

Fk
u +

p∑
v=1

Fk
v (8.55)

=
m∑
u=1

Φk
u(`u,

˙̀
u) ˆ̀

u −
p∑
v=1

Φk
v(`v,

˙̀
v) ˆ̀

v. (8.56)

These central forces with damping are statically conservative, i.e., the sum of all statically
conservative force components on particle k is the gradient of a scalar potential function, for
all particles,

∃ U f
i (r1, . . . , rK), U f =

s∑
i=1

U f
i s.t. ∇rkU

f = fk, ∀ k = 1 . . . K,

where fi(rk, rj) := Fi(rk, rj,0,0) is the statically conservative component of each force just
as in Claim 8.3.3.
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Proof. Propose the same potential function as in Claim 8.3.2,

U f
i (r1, . . . , rK) :=

∫ `i

a

φi(τ)dτ, U f =
s∑
i=1

U f
i .

The remainder follows from the same derivation as Claim 8.3.2.

Finally, the following lemma proves that the first condition for the passivity and stabil-
ity proofs, that of existence of the augmented potential, holds for all systems of particles
considered in the model above.

Lemma 8.3.0.1. Existence of the augmented potential energy for systems of particles under
the action of central forces with damping.

Consider a system of particles. If these particles are only subject to either conservative
forces, or central forces with damping, the augmented potential energy always exists for the
system such that the system’s equilibria are at the extrema of the augmented potential energy.

Proof. Let all conservative forces be subsumed into the potential energy U . Via Claim 8.3.4,
there exists a U f for the set of all central forces with damping. Therefore,

Ū = U + U f ,

with all forces accounted for and no remaining nonzero forces at q̄.

This lemma can be interpreted, informally, that the passivity and stability approach in
this chapter can be applied to general networks under the influence of gravity, no matter the
possible couplings between generalized coordinates and generalized velocities.

8.3.3 Equations of Motion for the System of Particles

The remainder of this chapter will consider the common case of Lemma 8.3.0.1, where the
system of particles is only under the action of gravity and central forces with damping. This
model will be used for the cable-driven robot in later sections. Lagrange’s equations for this
system are briefly repeated here for future reference.

For the system of K particles, with the force from cable i on particle k as Fk
i , with the

gravitational force as −mkgE3, the Lagrangian is

T =
1

2

K∑
k=1

mkvk · vk, U =
K∑
k=1

mkgrk · E3, L = T − U,

and Lagrange’s equations are
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d

dt

(
∂L

∂q̇j

)
−
(
∂L

∂qj

)
= −

K∑
k=1

s∑
i=1

Fk
i ·
∂rk
∂qj

j = 1 . . . 3K, (8.57)

where Fk
i is taken to be Fk

i = 0 if cable i does not act on particle k. Equivalently, the sum
over i could be expressed as eqns. (8.55)-(8.56). Note that a negative sign convention is used
here to indicate that tension forces (away from the particle) are positive.

To analyze these equations in the vector form needed for Prop. 8.2.1 and 8.2.2, note
that the right-hand side of eqn. (8.57) are the generalized forces in the direction of each
generalized coordinate,

Qj =
K∑
k=1

s∑
i=1

Fk
i ·
∂rk
∂qj

.

So, although Fk
i are forces in E3, the Qj can be stacked into a vector Q ∈ R3K to recover

the basic form of Lagrange’s equations as considered above,

d

dt

(
∂L

∂q̇

)
−
(
∂L

∂q

)
= −Q. (8.58)

The control systems discussed in this chapter do not require that eqn. (8.58) is solved,

or even fully expressed: in particular, the time derivative of
(
∂L
∂q̇

)
does not need to be

calculated. Although it would be trivial to do so for the system of particles, it is not done
here, in order to highlight this surprising consequence of the control scheme: no full model
is needed. It is only required that Lagrange’s Equations can be posed, since the augmented
potential energy and the force difference S are all that is needed for analyzing the stability
of an equilibrium point.

8.4 Particles with Damped Central Forces: Energy

Analysis

For the system of particles under the influence of both gravity and central forces with damp-
ing, the system’s augmented potential energy can be written and analyzed for its minimum
points. This constitutes an implicit part of using the propositions above, and additionally,
addresses one of the motivations for using this approach over the framework of equilibrium-
independent dissipativity (EID) [86, 125]. Here, finding the system’s equilibrium point is a
solved problem; in particular, the inverse statics approach from Chap. 5 does so.

In addition, conditions on the convexity and strict minimum of Ū can be posed in terms
of the cables’ scalar forces. This section therefore addresses the first two of the three needed
conditions for Prop. 8.2.1 as well as the strictness needed for Prop. 8.2.2.
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8.4.1 Augmented Potential and Equilibrium for Particles with
Statically Conservative Forces

For the system (8.57), Lemma 8.3.0.1 gives the total augmented potential energy as the sum
of gravitational potential and the cables’ statically conservative potentials,

Ū = U +
s∑
i=1

U f
i =

K∑
k=1

mgrk · E3 +
s∑
i=1

U f
i , (8.59)

where it is relevant to note again that one sum is over particles, and the other over cables.
Recall from Chap. 3 that the relationship between the partial derivatives with respect

to the coordinates q versus the partial derivatives with respect to particles’ positions rk,
k = 1 . . . K, is given by eqn. (3.12), repeated here with Ū :

∂Ū

∂q
=



K∑
k=1

∇rkŪ ·
∂rk
∂q1

...
K∑
k=1

∇rkŪ ·
∂rk
∂q3K


∈ R3K . (8.60)

This identity gave the result in eqn. (3.57) from Sec. 3.3.4 that the equilibrium point is
located at the zero of the partial derivatives of U with respect to q or respect to r equivalently.
Substituting the augmented potential energy now gives the same result,

∂Ū

∂q

∣∣∣
q=q̄

= 0 ⇐⇒ ∇rkŪ(r1(q̄), . . . , rK(q̄)) = 0 ∀ k. (8.61)

In the case of separable forces, the gradients with respect to each particle simply gave
the conservative forces in static equilibrium. Now, substituting for the definition of the
augmented potential energy instead,

∇rkŪ = 0 ⇐⇒ ∇rkU +∇rkU
f = 0 (8.62)

⇐⇒ ∇rkU + fk(r̄) = 0 (8.63)

⇐⇒ ∇rkU = −Fk(r̄,0) ∀ k. (8.64)

(8.65)

This derivation demonstrates the following fact:

If all forces in the system of particles are conservative or statically conservative, a config-
uration {r̄k,0}, k = 1 . . . K, is an equilibrium point of the system if and only if gradient of
the augmented potential energy equals zero at the q̄ defining those points; equivalently, if
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and only if the static Newtonian force balance holds at that point.

In all uses of Prop. 8.2.2, then, the equilibrium point does not have to be found via
an analysis of the augmented potential energy. Instead, any other method may be used to
find q̄ or equivalently r̄1 . . . r̄K , particularly those based on a static Newtonian force balance.
Consider then the system of particles with gravity and central forces with damping, using
the convention of the cable direction indexing from Claim 8.3.4,

∇rkU = −fk(r̄k) ∀ k,

−mgE3 =
m∑
u=1

φku(`u)
ˆ̀
u −

p∑
v=1

φkv(`v)
ˆ̀
v ∀ k. (8.66)

Eqn. (8.66) exactly describes the force balance considered in the inverse statics problem
of Chap. 5, where cable forces counteract gravity. The directedness of the graph structure
of the network, via the connectivity matrix in eqn. (5.1), is visible in the cables’ forces’
directions in the right-hand side of eqn. (8.66).

It is therefore assumed in the remainder of this chapter that q̄ is known, since the
problem of finding cables forces that satisfy eqn. (8.66) has been previously addressed in
this dissertation. Such an assumption does imply that φi(`i) will be modified by a controller
to produce the desired point, as will be performed when a control input is introduced in
later sections. This is the approach used in all later examples and simulations, and will be
implied for the remainder of this chapter.

Using such an approach does however induce additional required assumptions on φi, the
cables’ scalar forces. Since the force density method (inverse statics optimization) calculates
equilibrium cable forces, finding a corresponding input (implied to be present in φi) requires
that φi be surjective: given a found φ̄i, there must exist a q̄. For uniqueness, needed for
stability, φi must also be invertible (with respect to whatever input.) The linear elastic case
satisfies this assumption via eqn. (5.10), and so when the slack-cable model is pretensioned
at its equilibrium point, can be used to obtain q̄.

8.4.2 Minima of the Augmented Potential for Networks of
Central Forces With Damping

To apply Prop. 8.2.2, it must be shown that the augmented potential Ū has a (strict)
minimum with respect to r1 . . . rK at the system’s equilibrium configuration. Fortunately, a
set of straightforward conditions on the cables’ statically conservative scalar forces φi(`i) give
this property. The following section presents conditions using the second partial derivative
test for both a single particle and a system of particles, then gives a lemma for when there
is a (strict) minimum at a given configuration.
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The following formal definition will be used throughout this section. Though it is used
in the context of cables providing forces between particles, the same concept applies to any
central forces with damping.

Definition 8.4.1. Pretension.
A cable i whose force is represented by Fi = Φi(`i, ˙̀

i) ˆ̀
i is pretensioned at a point q ⇐⇒

{r1, . . . rK} if its statically conservative scalar force is positive, i.e.

Φi(`i, 0) > 0, equivalently φi(`i) > 0.

The term ‘pretension’ is abundant in the literature, and this definition makes formal the
concept of a positive force at zero velocity. It is obvious, but worth noting, that tension
(positive force) and pretension are not the same: a cable that is pretensioned may have a
positive statically conservative scalar force but a negative scalar force, i.e.

φi(`i) > 0, Φi(`i, ˙̀
i) < 0

This could be caused by some length change ˙̀
i which is not part of the cable’s conservative

potential U f
i .

Eigenvalues of the Hessians of central forces with damping

Checking the convexity of a cable’s U f
i requires calculating its Hessian. Calculating the

eigenvalues of this Hessian has been done to some extent in the past (e.g., [125]), but is
made more general here for a system of K particles.

The following derivative will be needed for the calculations. For convenience, the re-
mainder of this section temporarily assumes that `i is expressed in a Cartesian basis so that
matrix calculus can be used. Future work will derive this same result using tensor calculus
to allow for other bases in E3.

For a cable with direction vector `i = rk − rj,

∂ ˆ̀
i

∂rk
=

∂

∂rk

(
`i
||`i||

)
=

1

`i
(I− ˆ̀

i
ˆ̀>
i ) (8.67)

∂ ˆ̀
i

∂rj
=

∂

∂rj

(
`i
||`i||

)
= − 1

`i
(I− ˆ̀

i
ˆ̀>
i ). (8.68)

The eigenvalues of the Hessian can now be calculated in both the single-particle and multi-
particle cases.

Lemma 8.4.0.1. Eigenvalues of the Hessian of a single cable’s statically conservative po-
tential, for a single particle.
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Consider the single-particle system. A cable that applies a central force with damping
Fi(r,v) has an associated statically conservative scalar force fi(r) and conservative potential
U f
i (r) where as defined above,

fi(r) := Fi(r,0), ∇U f
i (r) = fi(r) = φi(`i) ˆ̀

i.

The eigenvalues of the Hessian of U f
i , also those of the Jacobian of fi, are

σ(H(U f
i )) = σ(J(fi)) =

{
∂φi(`i)

∂`i
,
φi(`i)

`i
,
φi(`i)

`i

}
. (8.69)

Proof. The Hessian of a scalar function is also the Jacobian (transposed) of its gradient. Via
the product rule, where the argument to the function φi(`i) will be dropped to become φi
for clarity,

J(fi(r)) = φi
∂ ˆ̀

i

∂r
+
∂φi
∂r

ˆ̀
i. (8.70)

Using the chain rule,

∂φi
∂r

=
∂φi
∂`i

∂`i
∂r

=
∂φi
∂`i

ˆ̀>
i ,

and substituting eqn. (8.67) since `i = r− bi where bi is the (constant) anchor point,

J(fi) =
φi
`i

(
I− ˆ̀

i
ˆ̀>
i

)
+
∂φi
∂`i

ˆ̀
i
ˆ̀>
i (8.71)

=
φi
`i

I− φi
`i

ˆ̀
i
ˆ̀>
i +

∂φi
∂`i

ˆ̀
i
ˆ̀>
i (8.72)

=
φi
`i

I +

(
∂φi
∂`i
− φi
`i

)
ˆ̀
i
ˆ̀>
i . (8.73)

Since the matrix ˆ̀
i
ˆ̀>
i is a dyad, it has rank 1, and since || ˆ̀|| = 1, it has eigenvalues

σ( ˆ̀
i
ˆ̀>
i ) = {|| ˆ̀||, 0, 0} = {1, 0, 0},

therefore

σ

((
∂φi
∂`i
− φi
`i

)
ˆ̀
i
ˆ̀>
i

)
=

{(
∂φi
∂`i
− φi
`i

)
, 0, 0

}
.

A matrix bI has the property that, when added to another matrix A, as in A + bI, the
eigenvalues of the sum are the eigenvalues of A added to the constant b. This is shown since
all nonzero vectors are eigenvectors of bI,
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bIv = bv ⇒ bv = bv ∀v 6= 0, ∴ (A + bI)v = (λ+ b)v, ∀λ ∈ σ(A).

Therefore, the eigenvalues of the Jacobian, which is a sum of this form with b =
(
φi
`i

)
, are

σ(J(fi)) =

{(
φi
`i

+
∂φi
∂`i
− φi
`i

)
,
φi
`i
,
φi
`i

}
=

{
∂φi
∂`i

,
φi
`i
,
φi
`i

}
. (8.74)

Remark. The eigenvalue with multiplicity two,

φi
`i
,

has appeared before in this dissertation: it is the force density in a cable (Chap. 5.) The
force density method, as used in Chap. 5, was initially developed in the 1970s to transform
a set of nonlinear force balance equations for a cable network into a linear system [172].
Therefore, the reappearance of this quantity in an entirely different context, related to the
dynamic equilibrium of the system, is remarkable.

The multiple-particle case is more involved, since the statically conservative potential U f

cannot be split according to cable: one cable’s potential gives the forces for two particles.
However, an analysis can still be conducted considering only the cable’s scalar forces.

Lemma 8.4.0.2. Eigenvalues of the Hessian of the statically conservative potential for a
system of particles with multiple cables.

Consider a system of K particles, with position vectors rk expressed in a Cartesian coor-
dinate system. The set of cables which apply central forces with damping, where the force due
to cable i on particle k is Fk

i , has an associated statically conservative potential U f =
∑
U f
i

which gives the total statically conservative force on each particle fk as

∇rkU
f = fk, fk =

m∑
u=1

φku(`u)
ˆ̀
u −

p∑
v=1

φkv(`v)
ˆ̀
v,

where cable u is directed toward particle k and v is directed away, and φk(·) represents the
appropriate scalar force for the cable attached to particle k.

Let there be a total of sk cables attached to each particle k. Then, the eigenvalues of the
Hessian of U f , also those of the Jacobian of the partial derivative of U f with respect to the
generalized coordinates q, are

σ(H(U f )) = σ

(
J

(
∂U f

∂q

))
=

K⋃
k=1

{(
sk∑
i=1

∂φki
∂`i

)
,

(
sk∑
i=1

φki
`i

)}
(8.75)
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where each
∑sk

i=1
φki
`i

has multiplicity two. Informally, the eigenvalues are, for each particle,
the sum of the derivatives of the scalar forces and sum of the force densities of all cables
attached to that particle.

Proof. The Jacobian of the partial derivative vector ∂Uf

∂q
is

J

(
∂U f

∂q

)
=


∂2Uf

∂2q1
. . . ∂2Uf

∂q1∂q3K
...

. . .
...

∂2Uf

∂q3K∂q1
. . . ∂2Uf

∂2q3K

 ∈ R3K×3K (8.76)

with q ∈ R3K , three generalized coordinates per particle.
Assume the following for the dynamics of the system:

1. No integrable constraints are imposed on the system (each particle has no kinematic
relationship with any other.) This gives that each particle in the cable network moves
freely, an assumption implicit until this point, so that three coordinates are needed per
particle.

2. The generalized coordinates are ordered within q in blocks of three per particle, i.e.,
{q1, q2, q3}, . . . , {q3K−2, q3K−1, q3K}, each block parameterizing only one particle.

In this case, the second partial derivative ∂2Uf

∂qh∂qj
= 0 if h and j parameterize different particles,

then the Jacobian is block structured per particle:

J

(
∂U f

∂q

)
=




∂2Uf

∂2q1
. . . ∂2Uf

∂q1∂q3
...

. . .
...

∂2Uf

∂q3∂q1
. . . ∂2Uf

∂2q3

 0

. . .

0


∂2Uf

∂2q3K−2
. . . ∂2Uf

∂q3K−2∂q3K
...

. . .
...

∂2Uf

∂q3K∂q3K−2
. . . ∂2Uf

∂2q3K




. (8.77)

Define the set of coordinates for particle k as qk := [q3k−2, q3k−1, q3k]
>, and the block of the

Jacobian for that particle as

Jk
(
∂U f

∂qk

)
:=


∂2Uf

∂2q3k−2
. . . ∂2Uf

∂q3k−2∂q3k
...

. . .
...

∂2Uf

∂q3k∂q3k−2
. . . ∂2Uf

∂2q3k

 , (8.78)

allowing the Jacobian for the whole system to be written as
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J

(
∂U f

∂q

)
=


J1
(
∂Uf

∂q1

)
0

. . .

0 JK
(
∂Uf

∂qK

)
 . (8.79)

Since J is block diagonal, the set of its eigenvalues are the union of the set of eigenvalues of
each block,

σ

(
J

(
∂U f

∂q

))
=

K⋃
k=1

σ

(
Jk
(
∂U f

∂qk

))
. (8.80)

So, then, consider each Jk. By definition

∂U f

∂qj
= ∇rkU

f · ∂rk
∂qj

,

when the generalized coordinates are ordered into blocks. Employing the same assumption
of Cartesian coordinates as in Lemma 8.4.0.1, the partial with respect to qk can be analyzed
instead as the partial with respect to rk, neglecting the basis transformation from E3 to R3:

∂U f

∂qk
⇒ ∇rkU

f .

With this assumption, the gradient of the statically conservative potential with respect to
each particle can be considered:

Jk
(
∂U f

∂qk

)
= Jk

(
∇rkU

f
)

= J(fk). (8.81)

Substituting for the sum of all cable’s forces on one particle, and distributing the deriva-
tives over the sum,

J(fk) = J

(
m∑
u=1

fku −
p∑
v=1

fkv

)
(8.82)

=
m∑
u=1

J(φku(`u)
ˆ̀
u)−

p∑
v=1

J(φkv(`v)
ˆ̀
v) (8.83)

Following the same derivation as Lemma 8.4.0.1, the Jacobian of the cables directed either
towards or away from the particle are
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J(fku ) =
φku
`u

I +

(
∂φku
∂`u
− φku
`u

)
ˆ̀
u

ˆ̀>
u (8.84)

J(fkv ) = −φ
k
v

`v
I−

(
∂φkv
∂`v
− φkv
`v

)
ˆ̀
v
ˆ̀>
v , (8.85)

where eqn. (8.68) was used for the force directed away from the particle.
Substitution back into eqn. (8.83) shows that the negative signs for the force pointed

away cancel out, and the Jacobian is then the sum of that over any cables attached to the
particle under consideration. Specifically, recalling that each particle is defined to have sk
cables attached (m+ p = sk),

J(fk) =

sk∑
i=1

(
φki
`i

I +

(
∂φki
∂`i
− φki
`i

)
ˆ̀
i
ˆ̀>
i

)
(8.86)

J(fk) =

sk∑
i=1

φki
`i

I +

sk∑
i=1

(
∂φki
∂`i
− φki
`i

)
ˆ̀
i
ˆ̀>
i . (8.87)

And, by the same derivation as Lemma 8.4.0.1,

σ
(
J(fk)

)
=

{(
sk∑
i=1

∂φki
∂`i

)
,

(
sk∑
i=1

φki
`i

)
,

(
sk∑
i=1

φki
`i

)}
(8.88)

The eigenvalues of the Hessian of the total statically conservative potential are then the
union of these eigenvalues, for all particles k with each of their cable sums considered,

H(U f ) =
K⋃
k=1

σ

(
Jk
(
∂U f

∂qk

))
(8.89)

=
K⋃
k=1

σ(J(fk)) (8.90)

=
K⋃
k=1

{(
sk∑
i=1

∂φki
∂`i

)
,

(
sk∑
i=1

φki
`i

)}
, (8.91)

where the sum of the normalized scalar forces for each particle has multiplicity two.

Remark. The result for the single particle is consistent with the result for multiple particles
when combining all cables together, as opposed to analyzing each cable separately. However,
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the system of particles can only be considered as the total U f , not each U f
i , due to the

couplings between cables and particles.
Observing this difference also highlights that, when considering the convexity of the

statically conservative potential in either case, there are a large number of complicated
conditions under which all eigenvalues are nonnegative (or positive.) For example, one
particle may experience both one φki < 0 and another φki > 0 while still maintaining all
positive eigenvalues. Consequently, the results below employ the simpler requirement that
all scalar forces are positive and increasing, which is an artificial but useful restriction.

In addition, for the system of particles, the result demonstrates that all particles must
have at least one cable attached (or else there will always be at least one zero eigenvalue.)

Minimum via convexity of the augmented potential for networks of central
forces with damping

The second partial derivative test, examining the eigenvalues of the Hessian of a function,
gives conditions under which the function is convex. The following presents two lemmas that
consider two similar but slightly different approaches to using those conditions to meet the
strict minimum requirement for Ū in Prop. 8.2.2.

Lemma 8.4.0.3. Existence of a strict minimum of the augmented potential energy at the
equilibrium point for a single particle under central forces with damping.

Consider the augmented potential energy Ū for a single particle under the action of both
gravity and central forces with damping,

Ū(r) = mgr · E3 +
s∑
i=1

U f
i (r).

If, within a set B ⊆ E3 that does not include the anchor points bi of any cable, the
following conditions hold:

1. The system’s static force balance holds at a configuration r = r̄ ∈ B, i.e.

∇Ū(r)|r=r̄ = 0,

2. All cables i have scalar forces φi that are differentiable, nonnegative, and increasing for
arguments `i(r) with r ∈ B,

3. There is at least one cable j that is pretensioned has and which has φj strictly increasing
for arguments `j(r) with r ∈ B,

then the augmented potential energy Ū has a strict minimum in B at r = r̄, and in addition,
r̄ is the unique equilibrium configuration for the system in B.
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Proof. A scalar field U f
i is convex in a set B if its Hessian H(U f ) is positive semidefinite in

B, and is strictly convex if its Hessian is positive definite. Assumption 2 gives that, for all
cables,

∃ ∂φi
∂`i

,
∂φi
∂`i
≥ 0,

φi
`i
≥ 0 ∀ i = 1 . . . s, (8.92)

since the cable lengths `i are always positive when r 6= bi. These are the eigenvalues of H(U f
i )

by Lemma 8.4.0.1, thus H(U f
i ) � 0, and all U f

i are convex in B. Similarly, Assumption 3
gives that

∀ r ∈ B, ∃ fj(r) s.t.
∂φj
∂`j

> 0,
φj
`j
> 0. (8.93)

The eigenvalues for that cable’s Hessian are then all positive, H(U f
j ) � 0, and U f

j is strictly
convex.

Consider the sum Ū . Since mgr ·E3 is affine, it is convex, and therefore Ū is the sum of
convex functions. In addition, there is always at least one U f

i which is strictly convex. The
sum of convex functions is convex, and with at least one summand strictly convex is also
then strictly convex. Under these conditions Ū is strictly convex.

Finally, Assumption 1 gives that r̄ is an extremum of Ū(r) in B. Since Ū(r) is strictly
convex, it has at most one extremum, which is a minimum. Therefore, r̄ is a strict minimum,
and is unique in B. It was shown in Prop. 8.2.2 that r̄ is therefore an equilibrium, and since
it is unique, is the single equilibrium configuration in B.

Extending this result to the system of particles involves the same argument; however,
since the total U f must be considered together, requires slightly different phrasing.

Lemma 8.4.0.4. Existence of a strict minimum of the augmented potential energy at the
equilibrium point for the system of particles under central forces with damping.

Consider the augmented potential energy Ū for the system of K particles under the action
of both gravity and central forces with damping,

Ū =
K∑
k=1

mgrk · E3 +
s∑
i=1

U f
i ,

where some cables may be attached to one particle and one anchor point, and the others
attached to two particles. Consider also a region Q ⊆ R3K of the generalized coordinates’
space that parameterizes a set of points B ⊆ E3K in the configuration space of the particles’
position vectors. If B does not include any configurations where rj = rk nor the anchor
points bi of any cable, and the following conditions hold:

1. The system’s static force balance holds at a configuration {r̄1, . . . , r̄K} ∈ B parameter-
ized by q̄ ∈ Q, i.e.
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∇rkŪ(r1(q), . . . , rK(q))|q=q̄ = 0 ∀ k = 1 . . . K,

2. All cables i have scalar forces φi that are differentiable, nonnegative, and increasing for
arguments `i(rj, rk) for {r1, . . . , rK} ∈ B,

3. For all particles k, there is at least one cable h attached to k that is pretensioned and
which has φh(`h) strictly increasing for arguments `h(rj, rk) for {r1, . . . , rK} ∈ B,

then the augmented potential energy Ū has a strict minimum in B at {r̄1, . . . , r̄K} and equiv-
alently q̄ ∈ Q, and in addition, {r̄1, . . . , r̄K} is the unique equilibrium configuration for the
system in B.

Proof. As with Lemma 8.4.0.3, consider the definiteness of H(U f ), the Hessian of the stati-
cally conservative potential of all the cables. Assumption 2 gives that, just as with the single
particle lemma,

∃ ∂φi
∂`i

,
∂φi
∂`i
≥ 0,

φi
`i
≥ 0 ∀ i = 1 . . . s, (8.94)

since all `i > 0 when rj 6= rk ∀j, k and rk 6= bi if i is a cable attached to an anchor point.
The eigenvalues of H(U f ) are (via Lemma 8.4.0.2):

σ(H(U f )) =
K⋃
k=1

{(
sk∑
i=1

∂φki
∂`i

)
,

(
sk∑
i=1

φki
`i

)}
,

and so since eqn. (8.94) holds for all cables irrespective of their attached particles or anchor
points,

∂φi
∂`i
≥ 0 ∀i ⇒

sk∑
i=1

∂φki
∂`i
≥ 0 ∀k (8.95)

φi
`i
≥ 0 ∀i ⇒

sk∑
i=1

φki
`i
≥ 0 ∀k, (8.96)

⇒ λ ∈ σ(H(U f )) ≥ 0, (8.97)

so the Hessian is positive semidefinite, and U f is convex in the spaces Q and equivalently B.
Then, via Assumption 3,

∀ {r1, . . . rK} ∈ B, ∃ fkh (rj, rk) s.t.
∂φkh
∂`h

> 0,
φkh
`h

> 0. (8.98)

Therefore, for each particle, eqns. (8.95)-(8.96) become
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∃ h s.t.
∂φkh
∂`h

> 0 ⇒
sk∑
i=1

∂φki
∂`i

> 0 ∀k (8.99)

∃ h s.t.
φkh
`h

> 0 ⇒
sk∑
i=1

φki
`i
> 0 ∀k, (8.100)

i.e., at least one cable makes the inequality strict for both eigenvalues for every particle. All
eigenvalues for the Hessian are then positive,

⇒ λ ∈ σ(H(U f )) > 0, (8.101)

so the Hessian is positive definite, and U f is strictly convex in the spaces Q and equivalently
B. By the same arguments concerning Ū as with Lemma 8.4.0.3, the system then has the
unique equilibrium configuration {r̄1 . . . r̄K}.

As briefly mentioned above, this condition is restrictive: Ū could very well still be strictly
convex when some cables’ scalar forces (or their derivatives) are negative. A network-style
analysis, using techniques such as expressing the interconnections of particles with the con-
nectivity matrix C from Chap. 5, may be able to more eloquently describe the needed
conditions. Doing so is left for future work.

8.5 Particles with Damped Central Forces: Stability

The preceding sections gave conditions on Ū that are needed to use the stability proof from
Prop. 8.2.2. The remaining conditions, related to the time derivative of Ū , are derived here.
This section first considers the difference between a force and its statically conservative
component, then assembles all the above lemmas into a stability proof.

8.5.1 Augmented Total Energy Exchange for Particles with
Damped Central Forces

Prop. 8.2.1 and 8.2.2 require analyzing the time derivative of the augmented total energy,
V̇ = Ḣ + U̇ f . From Sec. 8.2,

V̇ = −q̇>Q(q, q̇) + q̇>σ(q) (8.102)

= −q̇>S(q, q̇), (8.103)

where S := Q−σ is the difference between a (generalized) force and its statically conservative
component.
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As discussed in the background in Chap. 3, the generalized forces Q ∈ R3K and total
forces on the particles Fk ∈ E3 can be interchanged:

q̇>Q =
K∑
k=1

Fk · vk,

for the sum over K particles. This identity also holds for the statically conservative compo-
nent σ, which becomes the forces fk in E3 by substitution. Eqns. (8.102)-(8.103) therefore
are equivalently,

V̇ = −

[
K∑
k=1

Fk · vk −
K∑
k=1

fk · vk

]
(8.104)

= −
K∑
k=1

Gk · vk, (8.105)

where the force difference for particle k in E3 has been defined as

Gk := Fk − fk. (8.106)

There is a clear parallel, then, between the work-energy theorem and the proposed modifi-
cation of that theorem:

H = T + U, Ḣ = −
K∑
k=1

Fk · vk

V = T + U + U f , V̇ = −
K∑
k=1

Gk · vk,

with the negative sign convention on the forces, as above, differing from the usual convention
in the field of dynamics in order to use the framework of dissipativity.

For the system of particles with damped central forces, the augmented total energy
balance can be further specified by defining

gi(`i, ˙̀
i) := Φi(`i, ˙̀

i)− φi(`i), (8.107)

i.e., the difference in the scalar forces (total applied versus statically conservative component)
for a cable. As with Φi and φi, the difference gi(·, ·) : R×R 7→ R is a scalar function. Then
Gk
i for cable i with `i = rk − rj, for particle k, is

Gk
i = Fk

i − fki = Φi(`i, ˙̀
i) ˆ̀

i − φi(`i) ˆ̀
i = gi(`i, ˙̀

i) ˆ̀
i,
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with the signed flipped for Gj
i . The following lemma then characterizes the total exchange

of augmented potential energy in terms of gi of the cables.

Lemma 8.5.0.1. Augmented Total Energy Exchange for Particles with Damped Central
Forces.

Consider a system of particles only acted upon by gravity and central forces with damping,
which have dynamics described by eqn. (8.57). The amount of augmented total energy
exchanged for the system over all particles, −V̇ , is equal to

−V̇ =
K∑
k=1

Gk · vk =
s∑
i=1

˙̀
igi(`i, ˙̀

i), (8.108)

i.e., V̇ can be analyzed per-particle or per-cable equivalently.

Proof. Expand the left-hand side of eqn. (8.108). Using the convention above where particle
k has u = 1 . . .m cables attached of which `u = rk − rj and v = 1 . . . p cables of which
`v = rj − rk,

K∑
k=1

Gk · vk =
K∑
k=1

[(
m∑
u=1

Gk
u +

p∑
v=1

Gk
v

)
· vk

]
(8.109)

=
K∑
k=1

[
m∑
u=1

gku(`u, ˙̀
u) ˆ̀

u · vk +

p∑
v=1

gkv (`v, ˙̀
v) ˆ̀

v · vk

]
. (8.110)

In comparison, consider the one cable `i = rh − rj. When attached to two particles, it
always emits exactly one u term, for particle h, and exactly one v term, for particle j, in
eqn. (8.110). Consequently, the sum can be expanded over all particles h and j, and terms
can be grouped per cable:

K∑
k=1

[
m∑
u=1

gku(`u, ˙̀
u) ˆ̀

u · vk +

p∑
v=1

gkv (`v, ˙̀
v) ˆ̀

v · vk

]
=

s∑
i=1

(
gi(`i, ˙̀

i) ˆ̀
i · vh − gi(`i, ˙̀

i) ˆ̀
i · vj

)
.

(8.111)
Since

˙̀
i = ˆ̀

i · vh − ˆ̀
i · vj,

the terms on the right-hand side of eqn. (8.111) become

gi(`i, ˙̀
i) ˆ̀

i · vh − gi(`i, ˙̀
i) ˆ̀

i · vj = gi(`i, ˙̀
i) ˙̀

i, (8.112)

proving the result:
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s∑
i=1

(
gi(`i, ˙̀

i) ˆ̀
i · vh − gi(`i, ˙̀

i) ˆ̀
i · vj

)
=

s∑
i=1

˙̀
igi(`i, ˙̀

i). (8.113)

The case where a cable connects to an anchor as one of its points, `i = rk − bi, follows
similarly since ḃi = 0.

Remark. The above lemma demonstrates the convenience of the central forces with damp-
ing framework. The somewhat complicated and unintuitive expression for V̇ , in terms of
generalized coordinates and forces, is now instead the sum of scalar functions per cable:

V̇ = −q̇>S(q, q̇) = −
s∑
i=1

˙̀
igi(`i, ˙̀

i).

The claim at the beginning of this chapter - that the framework here allows for developing
a distributed control system - is now more clearly motivated. Each cable can be analyzed
independently, and therefore individually, since no `i or ˙̀

i terms interact between cables.
The controller proposed below will therefore considers each `i (and ˙̀

i, in future work) for
feedback in a given φi.

8.5.2 Stability of Systems of Particles with Damped Central
Forces

Given this lemma, a stability proof can be constructed for these systems of particles with
damped central forces. As discussed in Sec. 8.4.2, there are potentially many other ways to
meet these conditions. However, applying the per-cable conditions of pretension, etc., allows
for scalar distributed controllers in later applications.

Proposition 8.5.1. Stability of Systems of Particles with Damped Central Forces.
Consider a system of particles only acted upon by gravity and central forces with damping,

which have dynamics described by eqn. (8.57), rewritten here:

d

dt

(
∂L

∂q̇j

)
−
(
∂L

∂qj

)
= −

K∑
k=1

s∑
i=1

Fk
i ·
∂rk
∂qj

j = 1 . . . 3K,

where force i acts between particles j and k with `i = rk − rj, as in

Fk
i (rk, rj,vk,vj) = Φi(`i, ˙̀

i) ˆ̀
i, Fj

i (rk, rj,vk,vj) = −Φi(`i, ˙̀
i) ˆ̀

i.

Consider also a region Q ⊆ R3K of the generalized coordinates’ space that parameterizes
a set of points B ⊆ E3K in the configuration space of the particles’ position vectors. If B
does not include any configurations where rj = rk nor the anchor points bi of any cable, and
the following conditions hold:
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1. The system’s static force balance holds at a configuration {r̄1, . . . , r̄K} ∈ B parameter-
ized by q̄ ∈ Q, i.e.

∇rkŪ(r1(q), . . . , rK(q))|q=q̄ = 0 ∀ k = 1 . . . K,

2. All cables i have scalar forces φi that are differentiable, nonnegative, and increasing for
arguments `i(rj, rk) for {r1, . . . , rK} ∈ B,

3. For all particles k, there is at least one cable h attached to k that is pretensioned and
which has φh(`h) strictly increasing for arguments `h(rj, rk) for {r1, . . . , rK} ∈ B,

4. The scalar force difference for each cable, considered as a memoryless nonlinearity
z = gi(x, y), satisfies the following inequality for all cables,

ygi(x, y) ≥ 0 ∀ x, y, ∀ i,

5. The scalar force difference for each cable additionally satisfies, for all cables,

ygi(x, y) > 0 ∀ x, ∀ y 6= 0, ∀ i,

then the configuration {r̄1, . . . , r̄K} is a locally asymptotically stable equilibrium in B. In
addition, if

6. All scalar conservative forces φi are radially unbounded:

lim
`i→∞

φi(`i) =∞ ∀ i,

then {r̄1, . . . , r̄K} is asymptotically stable in all of B.

Proof. The augmented potential energy always exists in this system, in the form needed to
satisfy Prop. 8.2.1, via Lemma 8.3.0.1. The conditions above also satisfy Lemma 8.4.0.4,
which gives that the system has a strict minimum of Ū at {r̄1, . . . , r̄K}, which is then in turn
a unique equilibrium configuration in B.

Via Lemma 8.5.0.1,

q̇>S(q, q̇) =
s∑
i=1

˙̀
igi(`i, ˙̀

i).

Assumption 4 above gives that
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ygi(x, y) ≥ 0 ∀ i, x, y ⇒
s∑
i=1

˙̀
igi(`i, ˙̀

i) ≥ 0 ∀ i, `i, ˙̀
i, (8.114)

⇒ q̇>S(q, q̇) ≥ 0 ∀ q ∈ Q, ∀ q̇, (8.115)

due to the dependence of `i on rk, rj and in turn q, similarly with ˙̀
i on vk,vj and in turn q̇.

Incorporating Assumption 5 gives strictness for this inequality in the same way,

ygi(x, y) > 0 ∀ x, ∀ y 6= 0, ∀i, ⇒
s∑
i=1

˙̀
igi(`i, ˙̀

i) > 0 ∀ `i, ∀ ˙̀
i 6= 0, ∀i (8.116)

⇒ q̇>S(q, q̇) > 0 ∀ q ∈ Q, ∀ q̇ 6= 0. (8.117)

The above satisfy all conditions of Props. 8.2.1 and 8.2.2, giving the desired local asymptotic
stability of {r1, . . . , rK} ∈ B, with v1, . . .vK = 0.

If in addition assumption 6 holds, then

lim
q→∞

`i(rj(q), rk(q)) =∞ ⇒ lim
q→∞

φi(`i) =∞

⇒ lim
q→∞

∫ `i

a

φi(τ)dτ =∞

⇒ lim
q→∞

U f
i =∞

⇒ lim
q→∞

s∑
i=1

U f
i =∞

⇒ lim
q→∞

Ū =∞,

since gravitational potential energy is also unbounded as q→∞. This meets the globalness
condition of Prop. 8.2.2, so the region of asymptotic stability becomes at least B ⊆ E3K .

Remark. Assumption 6 does not give that B is a region of attraction. It should instead
be understood to show that the local region of stability is not an arbitrary region around
the equilibrium, but extends (at least) to B. A condition on global asymptotic stability is
not possible here, since in E3K there are always configurations where, for example, particles
intersect with their anchor points (rk = bk). At these configurations, some cable lengths are
zero, and the Hessian of the augmented potential energy becomes semidefinite.

For the cable-driven robot with slack cables, studied below, this stability proof cannot
be applied directly. In particular, Assumption 5 will not hold. Instead, the following slightly
different proof can be used. It is less general than the above case.
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Corollary 8.5.1.1. Stability of Systems of Particles with Damped Central Forces, Zero
Compression Force.

Consider the same system as in Prop. 8.5.1. If the cables’ scalar forces do not satisfy
the strictness condition of Assumption 5, but instead, the following hold:

1. The region B (and equivalently the parameter space Q) is defined such that, in B, there
always exists one cable per particle whose length is increasing when that particle is in
motion:

∀ q ∈ Q and v1, . . . ,vK 6= 0, ∃ ˙̀
j > 0

2. All cables’ scalar force differences satisfy (same notation as Prop. 8.5.1)

ygi(x, y) > 0 ∀ x > 0, ∀ y > 0, ∀ i

then the system is locally asymptotically stable in B as per Prop. 8.5.1.

Proof. Assumption 1 gives that, via the dependence of all respective ˙̀
j on the v of their

attached particles and in turn q̇,

q̇ 6= 0 ⇒ v1, . . . ,vK 6= 0 ⇒ ∃ ˙̀
j > 0 ∀ q ∈ Q.

Also note again that `i(rk, rj) > 0 ∀rk, rj ∈ B, i.e., lengths are always positive when the
particles do not overlap or intersect. Therefore,

q ∈ Q ⇒ `i > 0 ∀ i.

Incorporating the second assumption, with the inequality from Prop. 8.5.1 Assumption 4
still holding, the above makes the inequality strict:

ygi(x, y) > 0 ∀ x > 0, ∀ y > 0 ∀i ⇒ ∃ ˙̀
jgj(`j, ˙̀

j) > 0 ∀ q̇ 6= 0 ∀ q ∈ Q

⇒
s∑
i=1

˙̀
igi(`i, ˙̀

i) > 0 ∀ q̇ 6= 0 ∀ q ∈ Q

⇒ q̇>S(q, q̇) > 0 ∀ q̇ 6= 0 ∀ q ∈ Q.

The above satisfy all conditions of Props. 8.2.1 and 8.2.2, giving the desired local asymptotic
stability of {r1, . . . , rK} ∈ B, with v1, . . .vK = 0, or equivalently in all of B with radial
unboundedness.
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Remark. An informal statement of this proof is:

Find a region of the state space where moving particles imply that one attached cable is
always extending. Then if the strictness condition on the scalar force difference, gi, holds for
positive arguments for all cables, the system is asymptotically stable in that region.

8.5.3 Cable Stretch Rates Within The Convex Hull of Anchor
Points

The above corollary motivates the question: when is it the case that at least one cable is
always extending if a particle is in motion? That is, where in E3K is it true that

v1, . . . ,vK 6= 0 ⇒ ∃ ˙̀
j > 0.

For the single particle, the answer can be shown geometrically: one cable is always
extending when the particle is in motion within the convex hull of its anchor points. Figure
8.2 shows a diagram of this lemma to help with intuition, since the proof relies on the
Separating Hyperplane Theorem [30].

Lemma 8.5.1.1. Inner products of vertex vectors with the normal to a separating hyperplane.

Consider a finite set of vectors X = {bi ∈ E3}, and their convex hull, P = Conv(X ).
Let a point r ∈ E3 be in the interior of P. Define the following:

• W = {wi ∈ E3} ⊆ X , the set of vertices of P, by definition a subset of X ,

• L = {`i ∈ E3 | `i = wi − r}, the set of vectors pointing to r from these vertices, by
definition a subset of L′ = {`′i ∈ E3 | `′i = bi − r}, the corresponding vectors from X .

• An arbitrary nonzero vector v pointing from r, as in v′ = r + v with respect to the
origin,

• A = {ai ∈ R | ai = v · `′i}, the inner products of this arbitrary vector with each `′i,

Then, at least one element of A is greater than zero and at least one is less than zero:
∃ ai > 0 and ∃ ak < 0.

Proof. Without loss of generality, change coordinates such that r = 0, so that the polytope
P now has vertices {wi − r = `i} = L. The following uses P to denote the new polytope,
abusing notation for clarity.

Given a nonzero v, its normal hyperplane that passes through the origin (now, 0 = r) is
defined as the set of points

H = {hk ∈ E3 | hk · v = 0}
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Figure 8.2: Diagram of the quantities from Lemma 8.5.1.1. The particle is at position r in
the interior of the convex hull of the cables’ anchor points bi. The proof shows that at least
one ˙̀

i = v · ˆ̀
i will be positive and one will be negative, for any direction of the particle

velocity v. The proof proceeds by partitioning the convex hull using the normal hyperplane
H for v. The result can visually intuited with this example v in the figure, and the angles
of each `i with respect to v. It is clear that v · ˆ̀

1 < 0 and v · ˆ̀
2 < 0, whereas v · ˆ̀

3 > 0.
Since r is in the interior of P , any direction of v results in at least one `i residing in each
partition.

Let the hyperplane partition P . This results in three proper, convex subsets by the property
of partitioning Euclidean space by a hyperplane. Denote the subsets

P = P1 ∪ P2 ∪H′ (8.118)

where H′ = H∪P is the portion of the hyperplane that lies within P . Here, P1 and P2 are
convex polyhedra since P is a convex polyhedron, are disjoint since each subset is proper,
and are open since neither contain their boundary H′.

Next, show that at least one of the original vertices in L is contained within P1, and
at least one (different) vertex is contained within P2. Since 0 is in the interior of P under
the change of coordinates, there exists an open ball of radius r > 0 centered at 0 which
is completely contained in P . Therefore, there are points within P along a vector in any
direction, with a distance that is slightly smaller than the radius 0 < ε < r of this ball.
Taking this direction to be the unit vector v̂ = v

||v|| , then the points

p1 = εv̂ ⊂ P , p2 = −εv̂ ⊂ P
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are both contained within P . By the chosen partition, then p1 ⊆ P1 and p2 ⊆ P2, and thus
both sets are nonempty in addition to being disjoint.

Since P1,2 are constructed from convex hulls around finite sets of points, and are
nonempty, they are polyhedra with their own sets of verticesW1 andW2. The partitioning of
P may add new vertices to W1,2 in addition to the original set of L. These vertices can only
be drawn from the hyperplane, where the partitioning occurs. Denote these new vertices
WH ⊂ H. Then, elements of W1,2 must be drawn either from WH or the original vertices L,
as in

W1 ⊂ (L ∪WH), W2 ⊂ (L ∪WH) (8.119)

Since WH are in a hyperplane which does not contain p1,2, in order for p1,2 to be convex
combinations ofW1,2, other vertices must exist inW1,2 other than those inWH. Specifically,
at least one element of L must be present in each set ofW1,2 in order to express p1,2 /∈ H, so

∃ {`i, `j} ∈ L s.t. `i ∈ W1 ⊂ P1, `j ∈ W2 ⊂ P2

Finally, the Hyperplane Separation Theorem [30] states that, given two disjoint, convex,
open, nonempty sets F and G, there exists a hyperplane defined by a normal vector z and
an offset c, as in H̄ = {h̄k ∈ E3 | h̄k · z = c}, such that

∀ x ∈ F , ∀ y ∈ G : x · z > c, y · z < c

By construction, H is one such hyperplane for P1 and P2, both of which are disjoint, convex,
open, and nonempty, so

∀ x ∈ P1, ∀ y ∈ P2 : x · v > 0, y · v < 0

or vice-versa depending on the naming convention for the subsets. This must also hold, then,
for all the sets’ vertices W1,2, and so

`i · v > 0, `j · v < 0

These inner products are elements of A, as in ak = `k · v, therefore ai > 0 and aj < 0,
completing the proof.

The above lemma gives that, for the single-particle case, Corollary 8.5.1.1 will hold for
B = Conv(bi).

8.6 Energy-Shaping Control of a Cable-Driven Robot

with Slack Cables

The stability conditions above apply to systems of particles, which could represent a large
number of systems ranging from cable networks to soft robotic skins to finite-element models
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of cloth. The following section applies the stability propositions to the motivating example
of a robot driven by cables, which may go slack at points in the state space. This application
consists of only one particle with multiple anchored cables.

Models of cable driven robots, suspended in space, are commonly represented with rigid
bodies and applied cable forces [44, 104, 218], etc. However, if the robot is very small
in comparison to its cables’ lengths, its rotational inertia could be neglected, and instead
the body could be approximated by a point mass (e.g. [125].) This approximated case is
useful for exposition of the proposed technique in this chapter, since it also addresses major
challenges related to tensegrity spines. Reformulating the conditions above for rigid bodies
is left for future work.

So, consider a point-mass cable-driven robot, of the form shown in Fig. 8.1. Its model
is that considered up to this point in the chapter, with K = 1 particle. Specifically, with
particle position r and velocity v, and with a set of cables `i = r − bi with anchor points
bi, the robot is described by Lagrange’s equations (8.57) rewritten here as

d

dt

(
∂L

∂q̇j

)
−
(
∂L

∂qj

)
= −

s∑
i=1

Fi ·
∂r

∂qj
j = 1 . . . 3,

where the force from cable i is

Fi(r,v) = Φi(`i, ˙̀
i) ˆ̀

i.

The control goal considered here is setpoint regulation of the robot: moving it to a pose in
its state space, i.e., a desired position r̄ ∈ E3. To do so, this section first specifies the control
input ui for each cable, and gives a more specific definition of the cable model Φi(`i, ˙̀

i). A
proof, using Corollary 8.5.1.1, is given for this case. Finally, a distributed output-feedback
controller is proposed, meeting stability condition. Simulations then validate the result for
a variety of initial conditions.

8.6.1 Cable Model

There are a variety of different possible models for incorporating control inputs into this
system. As mentioned before, a number of authors assume direct control over the tension
in the cables (for example, [15, 43, 44], among many others.) This is not appropriate for
designs with low-bandwidth motors that control cables. Instead, all models considered here
assume that the rest length of the cable can be controlled:

Φi(`i, ˙̀
i, ui) :=

{
ki(`i − ui) + ci ˙̀

i, if ki(`i − ui) + ci ˙̀
i ≥ 0

0, if ki(`i − ui) + ci ˙̀
i < 0,

(8.120)

with ki, ci > 0 ∈ R, and ui are inputs to the system, so u = [u1, . . . , us] is the input vector.
Assume that a distributed output-feedback controller is proposed for the system, of the

form ui = ui(`i), where the controller is a function of only that cable’s current length. The
closed loop model of a cable then only depends on `i and ˙̀

i,
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Φi(`i, ˙̀
i) =

{
ki(`i − ui(`i)) + ci ˙̀

i, if ki(`i − ui(`i)) + ci ˙̀
i ≥ 0

0, if ki(`i − ui(`i)) + ci ˙̀
i < 0.

(8.121)

Incorporating control inputs as cable stretch

Define the amount of stretch for cable i as the difference between its current length and rest
length, with ui(`i) assumed to be a pre-specified memoryless function,

εi(`i) := `i − ui(`i). (8.122)

Substitution into eqn. (8.121) emphasizes that the cable model is still only a (possibly)
nonlinear function of the length and its time derivative,

Φi(`i, ˙̀
i) =

{
kiεi(`i) + ci ˙̀

i, if kiεi(`i) + ci ˙̀
i ≥ 0

0, if kiεi(`i) + ci ˙̀
i < 0,

(8.123)

and can be analyzed with the tools in this chapter. It is clear that the existence of the
augmented potential energy (Lemma 8.3.0.1) holds for the model (8.123), since εi can be
incorporated into the function φi via composition.

Time derivative of the cable stretch

This model incorporates the control input (equivalently, cable stretch) into only the spring
term. Though this is an extremely common assumption [55, 19, 18] and is employed in the
most common simulator for tensegrity robots [38], it may not be accurate with large changes
in control input. Intuitively, the rate of change in a cable’s stretch is both a function of its
(time varying) length and (time varying) rest length treated as the input,

d

dt
εi =

d

dt
(`i − ui) = ˙̀

i − u̇i,

A more physically realistic model then incorporates the time derivative of the total stretch
for the damping term, as opposed to just that of the length:

Φi(`i, ˙̀
i) =

{
kiεi(`i) + ciε̇i( ˙̀

i), if kiεi(`i) + ciε̇i( ˙̀
i) ≥ 0

0, if kiεi(`i) + ciε̇i( ˙̀
i) < 0,

(8.124)

where it is implicitly assumed that ui(`i) is chosen such that its time derivative u̇i is only a
function of ˙̀

i and not `i, as in

du̇i
d`i

= 0.

Though this is the case with the proposed controller in later sections, it is not the case in
general, and the more general cases are left for future work with more optimal controllers.
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The analysis in this chapter will consider ciε̇i( ˙̀
i) as some nonlinear, memoryless function

of ˙̀
i. It will be shown that, under the condition that the controller guarantees

sgn(ε̇i( ˙̀
i)) = sgn( ˙̀

i),

then a controller which stabilizes model (8.123) will also work for model (8.124). Ensuring
this will be reduced to an additional minor condition on the proposed controller.

The filtered sum model

The above observation - that incorporating a control input corresponds to modeling a non-
linear spring/damper - prompts a further specification of the Φi(`i, ˙̀

i) model. In addition,
one of the original issues raised with control of a slack cable system is that of hybrid behavior
due to the function (8.124). The following subsection incorporates both these phenomena
into one model: that of the filtered sum.

First, notice that saturation can be written using the Heaviside step function, H(x),

y(x) =

{
x if x ≥ 0

0 if x < 0
⇐⇒ y(x) = xH(x), (8.125)

in other words, as a unit ramp. This piecewise linear function can therefore capture the
slack behavior of the cables.

Consequently, consider the following cable force model that is a filtered sum of nonlinear
memoryless functions,

Φi(`i, ˙̀
i) := Ai(Bi(`i) + Ci( ˙̀

i)), (8.126)

where Ai(·), Bi(·), Ci(·) : R 7→ R are each scalar. Writing the model (8.124) in terms of
(8.126) determines each function as the following.

Ai(x) := xH(x)

Bi(x) := kiεi(x)

Ci(x) := ciε̇i(x).

Again, it is assumed that ui has been specified, so that for example ε̇i(x) is itself a memoryless
nonlinear function. Notice also that this model specifies the statically conservative scalar
force as

φi(`i) := Ai(Bi(`i)). (8.127)
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Differentiability and hybrid behavior

The ramp function is continuous, though not continuously differentiable,

d

dx
(xH(x)) = H(x) ∀x 6= 0.

It may first seem that using xH(x) ∈ C0 as part of Φi might introduce theoretical
complications with differentiability. However, the augmented potential energy framework
offers a way around this problem, so that the slack-cable robot can be analyzed without
resorting to hybrid systems analysis techniques.

First recall that as discussed in Sec. 3.3.2, a (generalized) force will not need to be a
C1 function for analyzing the energy exchange in the system. It is instead the line integral
of that function, U f , that must be in C1, only requiring that its gradient ∇U f = f be
continuous. Issues of differentiability only arise when analyzing U f for a strict minimum.
The differentiability requirement specifically arises with φi for positive eigenvalues of H(U f )
as per Lemma 8.4.0.4.

Since the differentiability requirement is only needed for the minimum of U f , then the
requirement only applies to the static (no velocity) model φi, not the dynamic model with
Φi. Since the proof for Lemma 8.4.0.4 only considers a subset B of the state space, then a
controller could be chosen so that φi is always differentiable in B. To do so, note that the
ramp function is always differentiable for its argument x > 0, corresponding to a pretensioned
cable. Equivalently: though a cable may become slack when in dynamic motion (e.g., H(0)
will be relevant), if it remains pretensioned in B, the proof holds in B.

The proposed framework in this chapter can therefore elegantly deal with hybrid system
behavior:

If a dynamical system is hybrid in a region of its configuration space, but has a static system
model (no velocity) that is not hybrid in that same region, an augmented potential energy
analysis could show stability without analyzing the hybrid phenomena.

That said, doing so may be challenging in general. The slack cable model is a special case,
where the hybrid behavior can be expressed in terms of continuous, piecewise differentiable
functions. More work is needed to properly examine the implications here.

8.6.2 Asymptotic Stability of the Cable-Driven Robot with Slack
Cables

Having specified the cable model Φi and its statically conservative component φi as per
eqns. (8.126)-(8.127), conditions can be given on the nonlinear functions Ai, Bi, and Ci
for asymptotic stability of the cable-driven robot around a setpoint r̄. The following gives
one proof where the loop is assumed to have been closed (i.e., ui(`i) specified.) This is a
restrictive proof, but is convenient for distributed control.
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Proposition 8.6.1. Stability of the Cable-Driven Robot with Slack Cables via the Filtered
Sum Model.

Consider a point mass model of a cable-driven robot (Fig. 8.1). Specifically, with particle
position r and velocity v, and with a set of cables `i = r − bi with anchor points bi, the
robot’s dynamics are described by Lagrange’s equations (8.57) rewritten here as

d

dt

(
∂L

∂q̇j

)
−
(
∂L

∂qj

)
= −

s∑
i=1

Fi ·
∂r

∂qj
j = 1 . . . 3,

where the force from cable i is

Fi(r,v) := Φi(`i, ˙̀
i) ˆ̀

i.

Let these forces be described by the filtered-sum cable model with its corresponding statically
conservative component,

Φi(`i, ˙̀
i) := Ai(Bi(`i) + Ci( ˙̀

i)), φi(`i) := Ai(Bi(`i)),

where Ai, Bi, and Ci are memoryless nonlinear functions.
Consider also a set of points B ⊆ E3 in the particle’s configuration space. If B does not

include the anchor points bi of any cable, and the following conditions hold:

1. The system’s static force balance holds at a point r = r̄ ∈ B, i.e.

∇Ū(r)|r=r̄ = 0,

2. The region B is defined such that, in B, there always exists one cable whose length is
increasing when the particle is in motion:

∀ r ∈ B and v 6= 0, ∃ ˙̀
j > 0

3. For all cables i, the function Ci is input strictly passive, i.e. combining Defn. 3.2.3
and eqn. (3.38),

xCi(x) ≥ γ2
i x

2, ∀ x, ∀i, γi 6= 0 ∈ R

4. For all cables i, the function Ai is weakly increasing over its entire domain,

x1 ≥ x2 ⇒ Ai(x1) ≥ Ai(x2), ∀ x1, x2, ∀i,

5. For all cables i, the functions Ai and Bi are differentiable, positive, and strictly in-
creasing for positive argument:

Ai(x) > 0, Bi(x) > 0 A′i(x) > 0, B′i(x) > 0 ∀x > 0, ∀i,
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then the point r̄ is a locally asymptotically stable equilibrium point in B. If in addition,

6. For all cables i, the functions Ai and Bi are both unbounded at infinity, i.e.

lim
x→∞

Ai(x) =∞, lim
x→∞

Bi(x) =∞, ∀i,

then the point r̄ is asymptotically stable in all of B.

Proof. This proof uses the conditions of Corollary 8.5.1.1 and in turn Prop. 8.5.1. The first
assumption above directly gives the existence of the equilibrium needed for that proposition.
Since the set B does not contain any anchor points, then all lengths are positive, `i > 0 ∀i,
and the assumptions give

`i > 0 ⇒ Bi(`i) > 0 ⇒ Ai(Bi(`i)) > 0 ⇒ φi(`i) > 0 ∀i, ∀r ∈ B,

then via the chain rule and the assumptions on the scalar functions’ derivatives,

`i > 0 ⇒ ∂Bi

∂`i
> 0 ⇒ ∂Ai

∂Bi

∂Bi

∂`i
> 0 ⇒ ∂φi

∂`i
> 0 ∀i, ∀r ∈ B,

meeting the second and third conditions of Prop. 8.5.1.
Next, consider the scalar force difference for a cable, written as a memoryless function

gi(x, y) = Ai(Bi(x) + Ci(y))− Ai(Bi(x)).

Show that ygi(x, y) ≥ 0 ∀i, x, y. Consider first the case that y > 0. Since Ci is passive,

Ci(y) ≥ 0 (8.128)

Bi(x) + Ci(y) ≥ Bi(x), (8.129)

for all x. Since Ai is weakly increasing for all arguments,

Ai(Bi(x) + Ci(y)) ≥ Ai(Bi(x)) (8.130)

Ai(Bi(x) + Ci(y))− Ai(Bi(x)) ≥ 0 (8.131)

gi(x, y) ≥ 0, (8.132)

and since y > 0 is being considered,

⇒ ygi(x, y) ≥ 0.

Next, examine the case where y < 0. Again since Ci is passive,
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Ci(y) ≤ 0 (8.133)

Bi(x) + Ci(y) ≤ Bi(x) (8.134)

Ai(Bi(x) + Ci(y)) ≤ Ai(Bi(x)) (8.135)

Ai(Bi(x) + Ci(y))− Ai(Bi(x)) ≤ 0 (8.136)

gi(x, y) ≤ 0, (8.137)

and since y < 0 in this case,

⇒ ygi(x, y) ≥ 0.

It is clear from inspection that y = 0 ⇒ ygi(x, y) = 0. Therefore, the dissipativity condition
holds on gi,

ygi(x, y) ≥ 0 ∀ x, y, ∀i,

and condition 4 from Prop. 8.5.1 is satisfied.
Finally, show the strengthened inequality: ygi(x, y) > 0 ∀x > 0,∀y > 0,∀i. This

considers only y > 0 and x > 0. With the input strict passivity of Ci,

Ci(y) ≥ γ2
i y > 0 (8.138)

Bi(x) + Ci(y) ≥ Bi(x) + γ2
i y > Bi(x). (8.139)

Also, since the conditions on Bi give that

x > 0 ⇒ Bi(x) > 0,

then eqn. (8.139) is strict:

Bi(x) + Ci(y) ≥ Bi(x) + γ2
i y > Bi(x) > 0 (8.140)

The assumptions give that Ai is strictly increasing for strictly positive arguments, so applying
Ai to the above does not affect the inequality:

Ai(Bi(x) + Ci(y)) ≥ Ai(Bi(x) + γ2
i y) > Ai(Bi(x)) (8.141)

Ai(Bi(x) + Ci(y))− Ai(Bi(x)) ≥ Ai(Bi(x) + γ2
i y)− Ai(Bi(x)) > 0 (8.142)

gi(x, y) ≥ Ai(Bi(x) + γ2
i y)− Ai(Bi(x)) > 0, (8.143)

and with y > 0 gives the desired strictness condition on the cable’s scalar force difference:

ygi(x, y) > 0 ∀x > 0, ∀y > 0, ∀i.
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The final condition on Corollary 8.5.1.1 is met, so r̄ is a locally asymptotically stable equi-
librium point in B.

If assumption 6 also holds, since φi(`i) = Ai(Bi(`i)),

lim
x→∞

Ai(x) =∞, lim
x→∞

Bi(x) =∞ ⇒ lim
x→∞

Ai(Bi(x)) =∞,

meeting the radial unboundedness requirement for Prop. 8.5.1 and extending the region of
asymptotic stability to all of B.

8.6.3 The P+ Energy-Shaping Controller for Slack-Cable Robots

Given the above proof, the cable model with control inputs, eqn. (8.123) or (8.124) can
finally be considered. This subsection establishes three results, in order.

First, a set of conditions on possible output feedback controllers ui(`i) are given. With
those conditions in hand, a specific set of controllers are proposed. These will be called “P+”
controllers, by analogy with the “proportional plus gravity compensation” approach for a
robotic arm applied instead as “proportional plus pretensioning” for the cable-driven robot.
Finally, this subsection also includes a short note about the region B where the proof holds
with respect to the actuator saturation issues described with the model-predictive controllers
in Chap. 7.

Conditions on controllers for asymptotic stability

Corollary 8.6.1.1. Conditions on control inputs ui for asymptotic stability of the closed-loop
filtered-sum model.

Consider the cable-driven robot discussed in Prop. 8.6.1, with the corresponding region of
the state space B. Let the cables have the filtered sum model that incorporates cable slackness,
eqn. (8.123), i.e.,

Ai(x) := xH(x), Bi(x) := kiεi(x), Ci(x) := cix,

where εi is the cable stretch for cable i, with an output feedback controller specified as ui:

εi(`i) = `i − ui(`i).

If the following hold for the chosen controllers ui(`i):

1. The controllers apply an equilibrium control input ūi = ui(¯̀
i(r̄)) at the desired equilib-

rium point r̄, such that ūi satisfy the static equilibrium force balance and the system is
pretensioned at equilibrium,

∇Ū |r=r̄ = 0, ūi < ¯̀
i(r̄)),



CHAPTER 8. STABILITY AND CONTROL OF LAGRANGIAN SYSTEMS WITH
STATICALLY CONSERVATIVE FORCES 160

2. The controllers keep the system pretensioned,

ui(`i) < `i ∀`i > 0,

3. The controllers’ derivatives with respect to their input satisfy

dui
d`i

< 1 ∀`i > 0,

then Prop. 8.6.1 holds and the point r̄ is locally asymptotically stable in B defined in that
proposition. If also:

4. The controllers apply infinite stretch at an infinite length of the cable,

lim
`i→∞

(`i − ui(`i)) =∞,

then the point r̄ is asymptotically stable in all of B.
Finally, if instead the filtered sum model instead uses the time derivative of stretch for

the damping term as per eqn. (8.124),

Ci(x) = ciε̇i(x),

then r̄ is still (locally) asymptotically stable in B under the additional condition that the
controller guarantees

sgn( ˙̀
i) = sgn(ε̇i( ˙̀

i)) ∀ ˙̀
i.

Proof. Assumption 1 gives the first condition for Prop. 8.6.1 by inspection. Similarly, all
conditions on Ai are given by inspection:

x1 ≥ x2 ⇒ x1H(x1) ≥ x2H(x2) ∀x1, x2,

x > 0 ⇒ Ai(x) = x > 0,
dAi
dx

= 1 > 0,

lim
x→∞

xH(x) =∞.

And, the function Ci(x) is input strictly passive, also again by inspection, since it is linear:
let γ2

i = ci.
Then, consider the conditions on Bi. Expanding the definition, with the spring constant

ki > 0,

Bi(`i) = kiεi(`i) = ki(`i − ui(`i)).
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Therefore, under the pretensioning assumption,

ui(`i) < `i ∀`i > 0 ⇒ `i − ui(`i) > 0, ∀`i > 0

⇒ ki(`i − ui(`i)) > 0, ∀`i > 0

⇒ Bi(`i) > 0, ∀`i > 0.

Additionally, the derivative of Bi is

B′i(`i) = ki

(
1− dui

d`i

)
,

so incorporating the assumption on the derivative of ui,

dui
d`i

< 1 ∀`i > 0 ⇒
(

1− dui
d`i

)
> 0 ∀`i > 0,

⇒ ki

(
1− dui

d`i

)
> 0 ∀`i > 0,

⇒ B′i(`i) > 0 ∀`i > 0.

These meet all the conditions of Prop. 8.6.1, so r̄ is a locally asymptotically stable equilibrium
point in B. Incorporating the assumption on the applied stretch at infinite length gives the
unboundedness requirement on Bi for Prop. 8.6.1:

lim
`i→∞

(`i − ui(`i)) =∞ ⇒ lim
`→∞

Bi(`i) =∞,

and so r̄ is asymptotically stability in all of B.
Finally, consider the case that the time derivative of stretch is used for the damping term,

with the damping constant ci ∈ R > 0,

Ci( ˙̀
i) = ciε̇i( ˙̀

i).

If sgn( ˙̀
i) = sgn(ε̇i( ˙̀

i)), ∀ ˙̀
i, then Ci will be input strictly passive because

˙̀
i > 0 ⇒ ε̇i( ˙̀

i) > 0 ⇒ ˙̀
iε̇i( ˙̀

i) > 0,

˙̀
i < 0 ⇒ ε̇i( ˙̀

i) < 0 ⇒ ˙̀
iε̇i( ˙̀

i) > 0,

and therefore in either case

⇒ ci ˙̀
iε̇i( ˙̀

i) > γ2
i

˙̀2
i

for some (possibly small) constant γi. Clearly ˙̀
i = 0⇒ ci ˙̀

iε̇i( ˙̀
i) = 0, and so



CHAPTER 8. STABILITY AND CONTROL OF LAGRANGIAN SYSTEMS WITH
STATICALLY CONSERVATIVE FORCES 162

˙̀
iCi( ˙̀

i) ≥ γ2
i

˙̀2
i ∀ ˙̀

i.

This gives the input strict passivity condition on Ci, meeting the requirements of Prop. 8.6.1.

Remark. These conditions on the controller are relatively unsurprising. They are similar -
almost the same - as if the system did not have the slackness term, and so heavily resemble a
linear spring-mass-damper network. However, this proof addresses the challenging-to-handle,
nondifferentiable nonlinearity of slack cable behavior, and in doing so also addresses hybrid
behavior of the system. It is only after building up all the material in this chapter that the
simple proof above will hold.

Proportional-plus-pretensioning (P+) controllers

The above could be satisfied by a variety of controllers. Here, a simple choice is presented
that stabilizes the system of interest. The proposed controller stabilizes both the model that
incorporates length change for damping (8.123) or stretch rate for damping (8.124).

Corollary 8.6.1.2. Asymptotic stability of the cable-driven robot with P+ controllers within
the convex hull of its anchor points.

Consider the cable-driven robot discussed in Prop. 8.6.1 and Corollary 8.6.1.1. Choose
the region of interest in the robot’s state space to be B = Conv(bi), the convex hull of the
cables’ anchor points, minus the anchor points themselves. Let the cables have the filtered
sum model that incorporates cable slackness, eqn. (8.123), i.e.,

Ai(x) := xH(x), Bi(x) := kiεi(x), Ci(x) := cix or ciε̇i(x),

where εi is the cable stretch for cable i, with an output feedback controller specified as ui:

εi(`i) = `i − ui(`i).

Assume positive spring and damping constants, ki > 0 and ci > 0. Designate a desired
equilibrium point r̄ ∈ B. Then, choose a proportional plus pretensioning “P+” control law
for each cable:

ui(`i) = κi(`i − ¯̀
i) + ūi, (8.144)

where ¯̀
i = `i(r̄) and ūi < ¯̀

i is a pretensioned solution the system’s equilibrium force balance
at r̄, and the controller gains κi are chosen to be in the range

1 > κi >
ūi
¯̀
i

> 0. (8.145)

Then the cable-driven robot is asymptotically stable around the single equilibrium point r̄,
within the convex hull of its anchor points B.
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Proof. First, it is evident from observation that the equilibrium input is applied at r̄, since

ui(¯̀
i) = κi(¯̀

i − ¯̀
i) + ūi = ūi.

Then, expanding the control law,

ui(`i) = κi`i − κi ¯̀i + ūi.

The amount of cable stretch applied by the controller is therefore

εi(`i) = `i − ui(`i) = `i − κi`i + κi ¯̀i − ūi.

Since

κi >
ūi
¯̀
i

⇒ κi ¯̀i − ūi > 0,

and recalling that length is always positive in this choice of B,

κi < 1, `i > 0 ⇒ `i > κi`i ⇒ `i − κi`i > 0,

`i − κi`i + κi ¯̀i − ūi > 0 ⇒ `i > ui(`i),

satisfying the pretensioning requirement. Similarly,

dui
d`i

= κi < 1,

giving the condition on the controller’s derivative and satisfying the local asymptotic stability
requirements for Corollary 8.6.1.1 for the model with Ci( ˙̀

i) = ci ˙̀
i. Noting also the limit of

the cable’s stretch is

lim
`i→∞

(`i − ui(`i)) = lim
`i→∞

(1− κi)`i =∞,

since (1− κi) > 0, then r̄ is an asymptotically stable equilibrium in all of B.
Consider the case when Ci( ˙̀

i) = ciε̇i( ˙̀
i). The closed-loop stretch rate is

ε̇i( ˙̀
i) = ˙̀

i − u̇i( ˙̀
i) = (1− κi) ˙̀

i,

and since (1 − κi) > 0, so sgn(ε̇i) = sgn( ˙̀
i) and Corollary 8.6.1.1 holds for this model as

well.

Remark. As mentioned in Sec. 8.4.2, finding a pretensioned ūi can be done via the force
density method (inverse statics optimization) discussed in Chap. 5. The simulations below
calculate a set of ūi in this way.
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P+ as energy shaping

The use of the term energy shaping arises from prior work ([144], etc.), where the systems’
energy is shaped to have a minimum at the desired equilibrium point. Here, such shaping
corresponds to choosing ūi at the desired r̄, then also ensuring that the augmented potential
energy is strictly convex.

However, a notable difference between this proposed controller and that of prior work
is the lack of a derivative term ˙̀

i in feedback. When a system does not naturally have
damping or energy dissipation, such a “D” term is required. The resulting “PD+” controller
is ubiquitous for that reason. In contrast, here, the force difference gi includes that damping.
The P+ controllers in this section take advantage of the natural energy dissipation in the
system so that no derivative control effort is required. Consequently, another interpretation
of the augmented potential energy framework is the exploiting of the dissipation already
present in the system.

Control input saturation limits the region of asymptotic stability

A final note on this controller concerns input saturation. Motivated by the mechanical
system that may apply ui, for example a motor with a spool that retracts or extends a cable,
control inputs ui < 0 are physically unrealistic. In other words - cables cannot have negative
rest length. It is therefore worth considering the regions in which the controller above may
saturate. The following corollary derives the region in which the proof above holds, given
the controller saturation condition ui ≥ 0.

Corollary 8.6.1.3. Asymptotic stability region for the cable-driven robot with slack cables,
considering controller saturation.

Consider a system which satisfies Corollary 8.6.1.2. If the controller saturation condition

ui ≥ 0

is applied, i.e. that cables cannot have negative rest lengths, the region of provable asymptotic
stability is reduced to

B∗ = B \

(
s⋃
i=1

Ri

)
, (8.146)

where Ri is an open ball around anchor point i with radius ri, given by

Ri = {r : `i(r) < ri}, ri = ¯̀
i −

ūi
κi
. (8.147)

In other words, the region of asymptotic stability is the convex hull of the anchor points,
minus a ball around each anchor point where the controller for that anchor’s cable would
saturate.
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Proof. The control law would apply a negative ui when

ui < 0

κi(`i − ¯̀
i) + ūi < 0

κi`i < κi ¯̀i − ūi

`i < ¯̀
i −

ūi
κi

`i < ri.

In the region where `i < ri, assume the controller instead applies ui = 0 as a saturated
input. In these cases, the condition of a strictly increasing φi is lost. Removing the corre-
sponding points for each cable from the convex hull of anchors gives the set defined in eqn.
(8.146).

8.6.4 Simulations of the P+ Controller on a Cable-Driven Robot

Simulations were performed that verify the proposed controller in its associated region of
asymptotic stability (Fig. 8.3.) The following subsection presents the example setup, a
set of results with a variety of initial conditions, and a numerical analysis of the Lyapunov
candidate function V (·) that verifies the stability properties.

(a) Bounding box for the cable-driven robot
simulations.

(b) Bounding box with cables, as the convex
hull of anchor points.

Figure 8.3: Simulation setup for the cable-driven robot with slack cables, example initial
condition (blue dot). The robot is placed within a cube with eight connected cables (one
from each vertex), and a desired equilibrium condition (purple dot) is specified.
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Cable-driven robot simulation setup

Figure 8.4: Three timepoints of the simulation
example for one initial condition of the cable-
driven robot.

Corollary 8.5.1.1 designates that the stabil-
ity proof holds when the robot is within the
convex hull of its anchor points. A common
layout for cable anchors is a box or a cube,
such as is used with pick-and-place machines
[113, 112]. Simulations in this section there-
fore use a cube, with eight cables attached to
the robot (one from each corner of the cube.)
Fig. 8.3 shows this setup, with the convex
hull (left) and the robot in an initial pose
with cables attached (right.) The cube is 1
meter in each dimension, and the robot has a
mass of 4 kg. Cable spring and damping con-
stants ki and ci are varied among all cables,
and ūi for the equilibrium point is calculated
using the force density method from Chap.
5. Controller gains κi were chosen within
the range specified by Corollary 8.6.1.2.

Cable-driven robot simulation results

A variety of initial conditions were tested,
where r0 ∈ Conv(bi) and v0 6= 0. All
showed the robot stabilize to the desired
equilibrium point.

Fig. 8.4 shows three points along the re-
sulting trajectory in the simulation from the
initial point in Fig. 8.3b. An initial velocity
was chosen arbitrarily. At various points,
cables are tensioned (green) or slack (red),
highlighting the hybrid behavior of the sys-
tem’s equations of motion.

In all simulations, initial conditions were
chosen such that the robot does not exit the
cube due to an initial velocity. As empha-
sized before, B = Conv(bi) is not an in-
variant set, but instead a region where the
asymptotic stability proof holds. If the par-
ticle exists the cube, the asymptotic behav-
ior is reduced to stability in the sense of Lya-
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punov, since there may not be any extending
cables for certain velocities of the particle.
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(a) State error analysis (2-norm) for the cable-
driven robot simulations under a variety of initial
conditions. All converge to zero.
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(b) Analysis of the Lyapunov candidate for the
corresponding tests in Fig. 8.5a. All are descre-
sent.

Figure 8.5: Data analysis for the cable-driven
robot simulation tests.

Fig. 8.5a shows the total error in the sys-
tem states for four initial conditions. In all
cases, the error converges to zero. It is also
evident from this plot that the system is not
necessarily exponentially stable; future work
may derive a different controller (or set of
controller gains) that may make the system
overdamped.

Augmented potential energy and
Lyapunov analysis with slack cables

An analysis of the Lyapunov candidate V (·)
was also performed for each of the simulation
tests. To do so, the statically conservative
potential U f

i for each cable was required, and
is derived here. Although Ū and in turn U f

i

are not needed for the stability proof, they
are needed here to confirm the results.

From Prop. 8.6.1, the statically conser-
vative scalar force for this cable model is

φi(`i) = Ai(Bi(`i)),

where

Ai(x) = xH(x), Bi(x) = ki(x− u(x)).

The statically conservative potential (from
Claim 8.3.1) is then

U f
i (`i(r)) =

∫ `i

a

φi(τ)dτ

=

∫ `i

a

Ai(Bi(τ))dτ.

It was proven above that Bi(`i) ≥ 0 always, and so the Heaviside step function can be
dropped,
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U f
i =

∫ `i

a

Bi(τ)dτ

=

∫ `i

a

ki(τ(1− κi) + κi ¯̀i − ūi)dτ

=
1

2
kiαi`

2
i + kiβi`i,

where the constants have been defined as

αi := (1− κi), βi := κi ¯̀i − ūi.

This is not the same potential energy as is usually defined for a spring, which would have
integrated over εi as opposed to `i. This observation highlights one of the advantageous
properties of the approach in this section: it does not matter which U f

i is chosen, since there
are infinite many where ∇U f

i = fi. The above physically-unusual U f
i is equally valid for

analysis.
Fig. 8.5b shows the time series of V (·), using the derived U f

i for each cable, over each
simulation test. A numerical analysis confirmed that V (·) decreases with time for all tests.
In each of the curves in Fig. 8.5b, there are smooth ‘kinks’ that correspond to cables
becoming slack or re-tensioned. One interpretation is that the transition from slack-to-
tensioned appears as a force impulse: in this case, acceleration may not be continuously
differentiable, but velocity and position are at least in C1.

8.7 Conclusion

The control framework above has a variety of notable qualities that make it attractive for
practical use. In comparison to alternative nonlinear control techniques such as feedback
linearization, or more traditional passivity-based control, this energy-shaping approach:

• did not require a full derivation of the system’s equations of motion,

• does not require inverting the dynamics of the system, and

• did not require deriving the exact equation of the Lyapunov candidate itself (though
this was done in one case for verification purposes.)

The proposed P+ controller in particular also:

• has stabilizing control gains within a range defined by the system model’s parameters,
and is therefore somewhat robust to modeling error,
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• is a set of distributed, output-feedback laws, requiring only the most basic sensors for
feedback (length of each cable), without requiring state estimation,

• consists of scalar computations, lending itself readily to real-time control, and

• and has an intuitive interpretation of the controller gains and region of stability, leading
to a flexible and intuitive tuning procedure.

Tuning and Robustness to Modeling Error

The proposed P+ controller for cable-driven robots will exhibit some robustness to modeling
error. If various constants change (such as ki, ci, m, etc.), it is clear that the system’s stability
will hold if κi remains within the correct range. However, the equilibrium point will change.

The only model-dependent constants in the feedback laws ui are the equilibrium inputs
ūi. These depend on the cable’s corresponding potential energy U f

i and the particle’s mass
m, but only to the extent that a force balance for the system holds at r̄. Variation in the
model will thus change the force balance conditions, and change the ūi needed for the desired
equilibrium point r̄.

However, for small changes in the modeling parameters, and if r̄ is not close to a face of
B, it is likely that the nominal ūi will give a different r̄∗. In other words - modeling error does
not affect stability in most cases, just the equilibrium settling point, given the assumption
that the true model does not eliminate the equilibrium entirely.

The controller tuning process depends on these same modeling parameters. The gains
κi must be chosen from a limited range, between some amount of pretension ūi/¯̀

i and a
gain of 1. However, this range can be adjusted by the pretensioning tuning constant when
solving for ūi via the force density method. An increased pretension decreases ūi, leading
to a greater range for κi. The limitations on the gains correspondingly limit the transient
performance of the controller.

Similarly, for the input constraints, the tuning constants and pretension chosen will affect
the saturation region ui < 0. Therefore, a control system designer can balance practical
considerations such as transient performance versus region of stability.

Limitations of the Cable Network Model for Robots

For the proof-of-concept control in this chapter, an example cable-driven robot was modeled
as a point mass. Though such an assumption is prevalent in the literature in a variety of
cases, it is a significant simplification, and is not validated here on a hardware experiment.
Instead, as mentioned in Sec. 8.1.5, this controller and its simulation test apply only under
assumptions such as small moments of inertia of the robot, and when forces are applied close
to the body’s center of mass.

The test in this chapter simulates a robot with a small body but long cables. The
workspace is one meter long in each dimension of the cube, much larger than the scales of
the spine vertebra prototypes in Chap. 6. When the robot is physically small in comparison
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to a large workspace, the robot’s moment balance does not contribute a significant constraint
on the statics or dynamics, and can therefore be reasonably ignored [163]. This is also a rea-
sonable assumption when a robot’s moments of inertia are small enough that the rotational
dynamics are “fast” in comparison to the dynamics of the robot’s position in E3. Such is
the case in this chapter, where the robot’s small mass is intended to correspond to a small
moment of inertia of some robot design.

In addition, a point-mass approximation can be useful for exploratory studies that then
later transfer to robots with meaningful wrench balance requirements [161]. The point mass
assumption has been used for other proof-of-concept work in passivity-based control, such
as with quadcopters holding a suspended payload [125]. By demonstrating proof-of-concept
here for a simplified system, future work would adapt the framework for rigid bodies without
the limiting point-mass cable network assumptions.

Applications to Tensegrity Spines

Although this work addresses cable networks and systems of particles, the theory does not
yet apply to rigid bodies. As discussed in Sec. 8.1, the work in this chapter is therefore not
meant to represent tensegrity spines, but instead serves as progress towards eventual control
of such structures. In order to apply the framework to tensegrity spines, either constraints
must be imposed on the system of particles, or rigid bodies must instead be modeled with
rotational inertia and angular velocity. To do the latter, rigid body twists may be useful to
combine linear and angular motion into one signal.

Future Directions

The analysis above, including Prop. 8.2.2 up to Corollary 8.6.1.2, considers the problem of
setpoint regulation assuming full knowledge of the system model. Future work will address
tracking, and use adaptive control for modeling error purposes, as has been developed for
passivity-based control of other robots [144]. Now that the basic framework of the augmented
potential energy has been formulated, these extensions may be directly adaptable from prior
work.

The P+ controller is straightforward and easy to implement, but is not optimal, and does
not directly address performance requirements. Future controllers may be designed so that
the region of provable asymptotic stability is also an invariant set. This could be done either
by using more advanced nonlinear techniques to keep the conditions on the cables satisfied
in a larger region, or prevent the particle from exiting the convex hull. Such approaches may
include, for example, using passivity-based model predictive control for each ui.
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Chapter 9

Future Work

This dissertation established a set of modeling techniques, mechanical designs, and control
systems for both tensegrity spines and quadruped robots that incorporated those spines as
their bodies. Both static and dynamic models of the spine were derived, and an inverse statics
routine calculated the tensions in the robots’ cables for both design and control purposes.
An initial design of a quadruped robot with a flexible tensegrity spine was simulated and
prototyped, showing that the spine can control the robot’s balance and lift its feet. Finally,
control systems were presented for both the spine itself as well as similar robotic systems
with statically conservative forces.

The research here has rich potential for future work, not only for quadruped robots
with tensegrity spines, but also for soft robotic locomotion, control of soft systems, and
applications to transportation. Ongoing work on the hardware for this specific quadruped
robot, discussed in Chap. 6, would lead to tests of unique locomotion gaits as well as more
systematic studies of robotic transportation over rough terrain. Mechanical designs with
soft actuators and sensors would allow this robot to scale up, towards building soft robots
large enough to move out of the lab and into the field. Control systems research on state
estimation and localization for soft walking robots, such as those with tensegrity spines,
would allow large-scale soft robots to function autonomously in open environments. Finally,
theoretical advances in passivity-based control would allow for efficient, stabilizing, low-level
controllers for soft walking robots. Such work includes a full investigation of the proposed
energy-theoretic concepts in Chap. 8, as well as incorporating optimal control and predictive
control with energy shaping.

9.1 Locomotion of Quadruped Robots with

Tensegrity Spines

The prototypes of quadruped robots with tensegrity spines from Chap. 6 provide foun-
dational concepts for the mechanisms and processes that would govern their locomotion.
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Future work on these designs, once walking locomotion is demonstrated, would allow for a
variety of investigations into walking gaits, terrain, and transportation.

9.1.1 Design for Locomotion: Belka and Future Soft Robots

As mentioned in Chap. 6, a variety of ongoing work on Belka, the successor to the robot
Laika, seeks to demonstrate proof-of-concept walking locomotion. In addition to new mech-
anisms for the spine’s rotational movement, and single-degree-of-freedom legs for the robot,
there are a variety of unsolved problems with current designs. Ongoing work will seek
to answer research questions concerning manufacturing, assembly, robustness, and general
frameworks for developing these and other soft walking robots.

Though the designs for Laika address assembly of the robot’s cables by incorporating a
pretensioned elastic lattice [47], many other challenges in manufacturing and assembly have
yet to be addressed. Future work would investigate manufacturing of a soft cable-driven
robot’s materials and actuators, and seek to develop procedural methods for generating soft
walking robot designs. A variety of similar fields, such as microrobotics and bio-inspired
robotics, have methods such as smart composite microstructures [14, 208] for this purpose.
Soft cable-driven robots of Belka’s size and composition are currently designed by hand;
however, combining the statics modeling from Chap. 5 with the new manufacturing meth-
ods in Chap. 6 could allow for efficient procedurally-generated designs. Tensegrity robots,
with their graph-structured statics and dynamics, would be an ideal candidate for such a sys-
tem. Moving from hand-designed to procedurally-generated soft cable-driven robots would
increase robustness by exploring a wide range of designs at a much faster pace.

9.1.2 Locomotion Studies over Rough Terrain

Having developed a robot such as Belka, which would be able to demonstrate walking loco-
motion on flat terrain, future work would then turn toward studies of locomotion over uneven
or rough terrain. These environments are the initial motivation for quadruped robots with
tensegrity spines, and consequently, extensive studies would quantify and draw conclusions
about the use of soft spines during locomotion.

Studies of robots on uneven or rough terrain currently tend toward applications hand-
picked by researchers, focused on evaluating control systems in specific settings. These tests
include terrain that is randomly generated [141] or randomly assembled [33, 207]. However,
with soft quadrupeds such as Belka, tests would instead be focused on the different purpose of
evaluating robot designs, not control systems, and with an orientation towards the eventual
applications of space or disaster relief. Consequently, future work would study evaluation
criteria for the performance of different robot designs in these tasks, in collaboration with
NASA, for specific mission goals. Co-developing a platform similar to NIST’s stepfield pallets
[97] for space exploration would allow quantitative comparisons, in contrast to one-off proof-
of-concept work.
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The specific research questions to be answered using these terrain tests would address
the core thesis of this dissertation: that of the usefulness and implications of a soft spine
in a walking robot. For example, how much do soft components benefit a robot, in what
settings, and with what movements? Experiments would test different goals, such as reaching
an endpoint with the lowest rate of failure, following a predefined planned path, reaching
a desired pose, or traversing the largest possible obstacle. Comparisons with stiff-bodied
robots would facilitate complementary co-missions with different robot morphologies that
make the best use of different design paradigms in different mission stages.

9.1.3 Design for Transportation of Supplies

The vast majority of research on quadruped locomotion, to date, has focused on locomotion
for the sake of locomotion. Such research answers important, basic questions concerning
bio-inspired robotics design, control systems, and mechanisms. However, little work has
addressed the eventual uses of walking robots, such as design for transportation. Future
work on soft walking robots would pursue this path, since there is much potential for these
robots to overcome the locomotion challenges with rigid robots, and therefore serve as reliable
forms of transportation over rough terrain.

Transporting scientific equipment (in NASA missions) or supplies (in disaster relief) re-
quires a robot with carrying capacity. Beyond the saddle bags present in the military versions
of BigDog [159], there have been few proposed ways to add a payload to a quadruped robot.
Even fewer studies have examined designs or control systems for important considerations
such as shocks or sensitivity of equipment. There are some initial concepts to do so for soft
robots or tensegrity structures - for example, placing flexible containers of water or fuel in
the empty space inside the robot’s spine - but future work would develop new designs and
frameworks for the explicit goals of a given use case.

Future design work of this type would involve collaborations for field tests, both when
validating a robot’s design as well as evaluating the human-centered design component of an
eventual mission or task. This research has an ongoing collaboration with both NASA and
the Field Innovation Team [65] to do these tests of transporting supplies and equipment.
Designing for both disaster relief worker interaction, as well as deployment in space, would
help the field of robotics progress from academic to practical implementations.

9.2 Mechanical Design for Soft Walking Robots

Building soft robots for the tasks above will require overcoming intimidating challenges in
sensing, actuation, and size scales. Future work would expand beyond the principles of
tensegrity structures, and develop new sensors and actuators that take advantage of the
interplay between soft and hard subsystems. Robots that incorporate both soft and hard
components could then be designed much larger, so that large walking soft robots could
compare to the current state-of-the-art in rigid robots.
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9.2.1 Soft Sensing

As evidenced by the research in this dissertation, soft robots made from tensegrity structures
have simple models, with rigid body dynamics, made possible by the use of cables to hold
the structures’ bodies apart. Sensors for these cables’ tensions, then, are a major required
component for state estimation, and are also required for designs that incorporate other soft
systems alongside tensegrity structures. Future work will examine a variety of sensors for
this purpose, including capacitive force sensing [204], liquid metal strain sensors [152, 84],
and microfluidic pressure sensors [176]. However, these designs are not currently focused on
the size and force scales required for large walking quadruped robots. Therefore, research
on these sensors will also include redesigns, extensions, and combinations to new regimes of
much higher force loads, enabling the use of soft sensors for larger robots.

9.2.2 Soft Actuation

New actuation methods will also be needed for soft walking robots. For robots which use
tensegrity structures for their soft systems, this will involve replacing the robot’s cables with
soft actuators. As with soft sensors, there are a variety of designs that show promise for
this purpose, including soft pneumatic systems [212, 64, 164, 211], hydraulically amplified
dielectric actuators [3], and shape memory alloys [91, 133]. Like current soft sensors, these
actuators are also not focused on the size and force requirements for large soft quadrupeds.
Future work will both apply current techniques as well as extend those to new scales.

One focus of new mechanical designs may be continuing work on twisted-helix linear
actuators [213]. These designs combine the efficient size and mass properties of twisted-cable
actuators with large force transmission and large displacements, making them well-situated
for cable-driven robots. Incorporating these designs into soft systems would allow the use of
more traditional force creation methods (e.g., DC motors) with soft components.

9.2.3 Scaling up Soft Walking Robots

Incorporating both sensors and actuators for soft walking robots at large size scales is an
unsolved challenge. Current state-of-the-art quadruped designs require large motors for even
moderately-sized robots such as the MIT Cheetah [174]. A significant goal of future research,
then, is bridging this gap. What soft materials and designs could withstand the large loads
required to transport supplies? How do soft systems produce precise movements? How
does a designer create a softer version of the Boston Dynamics BigDog? The mechanics
of tensegrity structures may facilitate this transition, through their intentional placement
throughout sections of a robot that carry large forces. In the process of more thoroughly
validating this dissertation’s main thesis, new methods for large, soft designs would be made
useful and available to the larger world community.
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9.3 Control Systems for Soft Walking Robots

Much more work is required for reliable, robust locomotion of soft walking quadrupeds, both
with tensegrity spines and with other types of soft structures. Control systems for movement
on rough and uneven terrain, algorithms for state estimation and localization, and techniques
to develop walking gaits will all be developed in future work.

9.3.1 Reliable Quadruped Movements on Rough Terrain

This research seeks to develop walking robots for purposes of transporting supplies or equip-
ment in sensitive applications. Most work on control systems for quadrupeds has instead
focused on fast running [93, 151] or other types of rapid movement over uneven terrain.
Consequently, a focus of future work will be control systems which prioritize steady, sta-
ble, robust locomotion in extreme environments. Walking in pseudo-static locomotion may
involve control for topics ranging from robot balance in three dimensions to specific state
tracking in the robot’s soft components. It is unknown which types of controllers would
be best for these applications; however, since slower locomotion is less constrained by time
requirements, optimization-based control techniques for rigid quadrupeds [23, 57] may be
re-appropriated for soft systems.

9.3.2 State Estimation and Localization

Estimating a soft robot’s state is much more complicated than doing so with a rigid-link
robot. Research is only beginning on state estimation for control of soft robots; however,
some results have been shown for other tensegrity robots, again due to their convenient
graph-like rigid-body dynamics [36]. Future work would bring such algorithms to soft walk-
ing robots, so that closed-loop control could be performed in hardware. Research in localiza-
tion would bring current two-dimensional mobile robot algorithms into three dimensions in
extreme terrain, and solve new challenges with estimating terrain characteristics alongside
the soft robot’s state.

9.3.3 Gait Generation for Robots with Soft Bodies

To date, all observations on Laika’s movements have been experimentally derived, using
behaviors suggested by biology (Chap. 4.) However, what motions would most help such a
robot? How should a robot’s spine move, and what gaits are best for different situations?
Recently, a variety of results have been shown for deep reinforcement learning of walking
gaits for both quadruped robots [81] and tensegrity structures [117]. Future work would use
these techniques in machine learning to generate gaits for walking robots with soft, flexible
bodies.
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9.4 Energy-based Control for High-Dimensional,

Nonlinear, Hybrid Systems

Finally, in tandem with research on control for locomotion, future work will continue to
investigate the energy-theoretic control concepts proposed in Chap. 8. These controllers,
which provide certificates of stability, would be used alongside high-level planning algorithms
for locomotion. The analysis of a system’s augmented potential energy would have wide-
reaching implications in the field of robotics, where forces are not easily decomposable into
conservative and nonconservative components, and may find a variety of diverse applications.

9.4.1 Augmented Potential Energy for Control

The initial investigation into the concept of augmented potential energy, in Chap. 8, proposes
a concept parallel to the energy analysis in passivity-based control. Since its inception in
the 1980s [145], passivity-based controllers have been extended to adaptive control laws for
rejection of modeling error, trajectory tracking, underactuated systems, and much more
[144]. All these are required for the practical use of soft robots, and as such, the concepts
of augmented potential energy analysis will be extended to these same goals. Many results
may require new methods of analyzing energy dissipation.

In addition, analysis has yet to be performed on interconnections of systems that dissipate
augmented potential energy. Future work would show how these systems would fit into
the passivity theorem for interconnections [10]. There are rich commonalities between the
techniques in Chap. 8 and that of equilibrium-independent passivity [86], and ongoing work
would seek to combine these two concepts and compare with controllers such as those derived
in [125]. The energy-theoretic concepts from this dissertation may form a counterpart to the
energy analysis of rigid-link robots, but now for soft systems.

9.4.2 Optimal and Predictive Energy-Shaping Control

In addition to the use of the controllers in Chap. 8 for different stability goals, and their
use in interconnections, future work will seek to combine energy shaping with optimal and
predictive control for better performance. At the moment, most energy-based control systems
show stability, but performance is an ongoing issue. Recent work has sought to combine
passivity with (for example) optimal model-predictive control, showing better responses in
test systems [158, 189]. Using predictive control for decomposed subsystems in a control
problem may give high performance (similar to Chap. 7) with lower computational cost,
while certifying stability for the system at large (as per Chap. 8). The resulting control
systems will not only have strong applications in soft robotics, but also in general mechanical
systems that are nonlinear, high-dimensional, and hybrid.
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9.5 Conclusion and Future Prospects

The work in this dissertation presents a first set of modeling, design, and control frameworks
for quadruped robots with tensegrity spines. Along the way, new concepts in energy and
control were presented, which have future applications to many soft robots. The ongoing and
future work from this dissertation will not only develop and test these robots with flexible
spines in their intended environments, but will also extend to other soft robots and walking
robots with soft bodies. Continued work on large robots with both soft and hard components
may make quadruped locomotion both practical and efficient in harsh environments, leading
the way for more scientific discoveries on foreign planets, and better disaster response on
Earth.
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Birkhäuser Basel, Basel, 2000.

[8] Aaron D. Ames, Kevin Galloway, Koushil Sreenath, and Jessy W. Grizzle. Rapidly
Exponentially Stabilizing Control Lyapunov Functions and Hybrid Zero Dynamics.
IEEE Transactions on Automatic Control, 59(4):876–891, apr 2014.

[9] William J Anderst, Emma Baillargeon, William F Donaldson Iii, Joon Y Lee, and
James D Kang. Validation of a Non-Invasive Technique to Precisely Measure In Vivo
Three-Dimensional Cervical Spine Movement. Spine, 36(6):393–400, 2011.

[10] Murat Arcak, Chris Meissen, and Andrew Packard. Networks of Dissipative Systems.
SpringerBriefs in Electrical and Computer Engineering. Springer International Pub-
lishing, Cham, 2016.



BIBLIOGRAPHY 179

[11] Marc Arsenault and Clement M. Gosselin. Kinematic, Static, and Dynamic Analysis
of a Planar One-Degree-of-Freedom Tensegrity Mechanism. Journal of Mechanical
Design, 127(6):1152, 2005.

[12] Marc Arsenault and Clement M. Gosselin. Kinematic, Static, and Dynamic Analysis
of a Spatial Three-Degree-of-Freedom Tensegrity Mechanism. Journal of Mechanical
Design, 128(5):1061, sep 2006.

[13] R E Arvidson, J F Bell, P Bellutta, N A Cabrol, J G Catalano, J Cohen, L S Crumpler,
D J Des Marais, T A Estlin, W H Farrand, R Gellert, J A Grant, R N Greenberger, E A
Guinness, K E Herkenhoff, J A Herman, K D Iagnemma, J R Johnson, G. Klingelhöfer,
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