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Sex-Specific Association of Apolipoprotein E
With Cerebrospinal Fluid Levels of Tau
Timothy J. Hohman, PhD; Logan Dumitrescu, PhD; Lisa L. Barnes, PhD; Madhav Thambisetty, MD, PhD;
Gary Beecham, PhD; Brian Kunkle, PhD, MPH; Katherine A. Gifford, PsyD; William S. Bush, PhD;
Lori B. Chibnik, PhD; Shubhabrata Mukherjee, PhD; Philip L. De Jager, MD, PhD; Walter Kukull, PhD;
Paul K. Crane, MD; Susan M. Resnick, PhD; C. Dirk Keene, MD, PhD; Thomas J. Montine, MD, PhD;
Gerard D. Schellenberg, PhD; Jonathan L. Haines, PhD; Henrik Zetterberg, MD, PhD; Kaj Blennow, MD, PhD;
Eric B. Larson, MD, MPH; Sterling C. Johnson, PhD; Marilyn Albert, PhD; David A. Bennett, MD;
Julie A. Schneider, MD; Angela L. Jefferson, PhD; for the Alzheimer’s Disease Genetics Consortium and the
Alzheimer’s Disease Neuroimaging Initiative

IMPORTANCE The strongest genetic risk factor for Alzheimer disease (AD), the apolipoprotein
E (APOE) gene, has a stronger association among women compared with men. Yet limited
work has evaluated the association between APOE alleles and markers of AD neuropathology
in a sex-specific manner.

OBJECTIVE To evaluate sex differences in the association between APOE and markers of AD
neuropathology measured in cerebrospinal fluid (CSF) during life or in brain tissue at autopsy.

DESIGN, SETTING, AND PARTICIPANTS This multicohort study selected data from 10
longitudinal cohort studies of normal aging and AD. Cohorts had variable recruitment criteria
and follow-up intervals and included population-based and clinic-based samples. Inclusion in
our analysis required APOE genotype data and either CSF data available for analysis. Analyses
began on November 6, 2017, and were completed on December 20, 2017.

MAIN OUTCOMES AND MEASURES Biomarker analyses included levels of β-amyloid 42, total
tau, and phosphorylated tau measured in CSF. Autopsy analyses included Consortium to
Establish a Registry for Alzheimer’s Disease staging for neuritic plaques and Braak staging for
neurofibrillary tangles.

RESULTS Of the 1798 patients in the CSF biomarker cohort, 862 were women, 226 had AD,
1690 were white, and the mean (SD) age was 70 [9] years. Of the 5109 patients in the
autopsy cohort, 2813 were women, 4953 were white, and the mean (SD) age was 84 (9)
years. After correcting for multiple comparisons using the Bonferroni procedure, we
observed a statistically significant interaction between APOE-ε4 and sex on CSF total tau
(β = 0.41; 95% CI, 0.27-0.55; P < .001) and phosphorylated tau (β = 0.24; 95% CI, 0.09-0.38;
P = .001), whereby APOE showed a stronger association among women compared with men.
Post hoc analyses suggested this sex difference was present in amyloid-positive individuals
(β = 0.41; 95% CI, 0.20-0.62; P < .001) but not among amyloid-negative individuals
(β = 0.06; 95% CI, −0.18 to 0.31; P = .62). We did not observe sex differences in the
association between APOE and β-amyloid 42, neuritic plaque burden, or neurofibrillary tangle
burden.

CONCLUSIONS AND RELEVANCE We provide robust evidence of a stronger association
between APOE-ε4 and CSF tau levels among women compared with men across multiple
independent data sets. Interestingly, APOE-ε4 is not differentially associated with autopsy
measures of neurofibrillary tangles. Together, the sex difference in the association between
APOE and CSF measures of tau and the lack of a sex difference in the association with
neurofibrillary tangles at autopsy suggest that APOE may modulate risk for neurodegen-
eration in a sex-specific manner, particularly in the presence of amyloidosis.
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A polipoprotein E (APOE) is the strongest genetic risk fac-
tor for sporadic Alzheimer disease (AD),1 explaining ap-
proximately 13% of the phenotypic variance.2 The ε4

allele increases risk for AD in a dose-dependent manner, and
the strength of the association varies by age and sex.3 The ef-
fect of APOE-ε4 is strongest prior to age 70 years, declines af-
ter age 85 years, and is more robust among women compared
with men,3 especially women between age 55 and 70 years.4

Although this sex difference has been well established after a
2017 comprehensive meta-analysis,4 very little is known about
the underlying mechanism. APOE has been implicated in a va-
riety of neuropathological cascades relevant to AD, including
alterations in cerebral glucose metabolism,5,6 cerebrovascu-
lar disease,7 amyloidosis,8,9 neurodegeneration,10 and tau
tangle pathology.11 This article will focus on amyloid and tau
as potential contributors to sex differences in the clinical ef-
fects of APOE.

In the case of amyloid pathology, APOE-ε4 has a strong
association with amyloidosis,8,9 even among older adults with-
out dementia,12 likely through its role in amyloid clearance.13

Research leveraging in vivo biomarkers of amyloid has indi-
cated that the association between APOE-ε4 and amyloidosis
is consistent across sexes,8,14-16 yet other work has found evi-
dence of age-dependent sex differences in the effects of
APOE-ε4 on amyloidosis.17,18 In the case of tau pathology,
APOE-ε4 is associated with higher levels of cerebrospinal fluid
(CSF) tau19 and more neurofibrillary tangles at autopsy,11 al-
though these associations are relegated to individuals with high
levels of amyloid pathology.16 The evidence of a sex differ-
ence in the association between APOE and tau pathology is also
mixed, with some biomarker15,19 and autopsy18 work suggest-
ing women show a more robust association between APOE-ε4
and tau, while other work has reported no sex difference.14,20,21

Collectively, the amyloid and tau findings to date provide
mounting, although inconclusive, evidence of a sex difference
in the association between APOE and both of the primary neu-
ropathological hallmarks of AD. The objective of this study was
to provide a comprehensive understanding of the sex-specific
associations between APOE and AD neuropathology in older
adulthood. The pooled data resources for this project provide
the opportunity to evaluate sex differences across the spec-
trum of normal aging and AD including a broad range of age and
cognitive status. The first set of analyses focused on 4 in vivo
data sets that include CSF biomarkers of AD neuropathology.
The second set focused on 6 autopsy data sets of AD leverag-
ing direct measures of AD neuropathology. Together, these
analyses provide a thorough and needed investigation into sex-
specific effects of APOE on AD neuropathology.

Methods
Data were acquired from well-characterized studies of AD
(Tables 1 and 2). The biomarker database included 4 cohort
studies. The Vanderbilt Memory & Aging Project (VMAP),
launched in 2012, recruited participants 60 years and older
from the community who were magnetic resonance imaging
eligible and free of dementia and clinical stroke.22 The Wis-

consin Registry of Alzheimer’s Prevention began in 2001, re-
cruiting participants aged 40 to 65 years. Seventy-two per-
cent (n = 1112) have a parent with either probable AD dementia
ascertained through medical history review or autopsy-
confirmed AD.23 The Biomarkers of Cognitive Decline Among
Normal Individuals study began in 1995. Enrollees were middle
age at baseline and cognitively intact; 75% of participants
(n = 266) had a first-degree relative with AD. The study stopped
in 2005 and was reestablished in 2009, with annual
assessments.24 The Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) launched in 2003 and includes more than 1500
adults aged 55 to 90 years with normal cognition, mild cogni-
tive impairment, or AD (http://www.adni-info.org).

The autopsy database was derived from data published by
Beecham et al25 evaluating genetic markers of AD neuropa-
thology, which includes cohort descriptions.25 The Transla-
tional Genomics Research Institute, National Institute on Ag-
ing Late-Onset Alzheimer’s Disease Family Study, and Mayo
Clinic were analyzed directly from the published data.25 The
data set was updated using data from the Religious Orders
Study and Rush Memory and Aging Project, the Adult Changes
in Thought study, and the National Alzheimer’s Coordinating
Center data set. Briefly, the Religious Orders Study began in
1994 and involves older Catholic nuns, priests, and brothers
recruited from across the United States. Rush Memory and Ag-
ing Project began in 1997 and involves older lay persons re-
cruited from retirement communities, subsidized housing
facilities, and social service agencies in the Chicago, Illinois,
metropolitan area. Persons in both studies enrolled without
dementia and agreed to annual clinical evaluations and or-
gan donation at death.26,27 The Adult Changes in Thought
began in 1994 and recruited a random sample of older adults
without dementia from the Seattle, Washington, metropoli-
tan area. A subset of participants in Adult Changes in Thought
(25%-30%) also agreed to brain donation.28 The National Alz-
heimer’s Coordinating Center maintains a database of partici-
pant information collected from 34 past and present National
Institute of Aging–funded Alzheimer’s Disease Centers. In
2005, the National Alzheimer’s Coordinating Center imple-
mented a standard protocol (ie, Uniform Data set) including
clinical, medical, neurological, and cognitive data. We only in-
cluded autopsy participants who were 60 years and older at

Key Points
Question Does the association between apolipoprotein E (APOE)
and Alzheimer disease neuropathology differ by sex?

Findings In this multicohort study, women showed a stronger
association between APOE and cerebrospinal fluid tau levels when
compared with men, particularly among amyloid-positive
individuals. There was no sex difference in the association
between APOE and amyloidosis or between APOE and autopsy
measures of neurofibrillary tangles.

Meaning The sex difference in the association between APOE and
cerebrospinal fluid measures of tau and the lack of a sex difference
in the association with neurofibrillary tangles at autopsy suggests
that APOE may modulate risk for neurodegeneration in a
sex-specific manner, particularly in the presence of amyloidosis.
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death. The collection of VMAP data and secondary analyses
of all data were approved by the Vanderbilt University Medi-
cal Center institutional review board. All study participants pro-
vided written consent to the data collection and laboratory
analyses proposed as part of their participation in the pri-
mary studies.

APOE Genotyping
As previously reported,29 APOE haplotypes (ε2, ε3, and ε4)
were determined using single-nucleotide polymorphisms
rs7412 and rs429358 in Adult Changes in Thought, Biomark-
ers of Cognitive Decline Among Normal Individuals, Mayo
Clinic, National Alzheimer’s Coordinating Center, National
Institute on Aging Late-Onset Alzheimer’s Disease Family
Study, VMAP, and the Wisconsin Registry of Alzheimer’s Pre-
vention. Pyrosequencing, restriction fragment length poly-
morphism analysis, and high-throughput sequencing of APOE
codons 112 and 158 were performed in ADNI, the Religious Or-
ders Study and Rush Memory and Aging Project, and Trans-
lational Genomics Research Institute data sets to derive APOE
haplotypes.

Quantification of Biomarker Outcomes
Cerebrospinal fluid biomarkers have been measured in ADNI,
Biomarkers of Cognitive Decline Among Normal Individuals,
the Wisconsin Registry of Alzheimer’s Prevention, and VMAP
previously. The ADNI30 and Biomarkers of Cognitive Decline
Among Normal Individuals31 were analyzed by the same labo-
ratory using the same procedure. Similarly, the Wisconsin Reg-
istry of Alzheimer’s Prevention32 and VMAP22 were analyzed

by the same laboratory using the same procedure. Given known
batch effects, we analyzed variables as continuous square-
root–transformed outcomes within each data set individu-
ally and used an analysis based on standardized coefficients
to summarize results across data sets.

Quantification of Neuropathology Outcomes
Within the autopsy data sets, we used a measure of neurofi-
brillary tangles (Braak staging)33 and a measure of neuritic
plaques (Consortium to Establish a Registry for Alzheimer’s Dis-
ease [CERAD] neuritic plaque score)34 in each data set. Both
measures were analyzed as binary outcomes and as ordinal out-
comes. The binary neuritic plaque positive score was defined
based on CERAD, whereby scores of none or sparse neuritic
plaques were considered neuritic plaque negative, and scores
of moderate or frequent neuritic plaques were considered neu-
ritic plaque positive. The binary neurofibrillary tangles posi-
tive score was defined based on Braak staging, whereby stages
none, I, or II were considered neurofibrillary tangle negative
and stages III, IV, V, or VI were considered neurofibrillary tangle
positive.

Statistical Analyses
Statistical analyses were completed using RStudio, version
1.0.136 (RStudio). The threshold for statistical significance was
set a priori at P less than .001 using a 2-sided test correcting
for 35 total comparisons. For the neuropathology analyses, 2
primary models were run. The first was a binary logistic re-
gression with tangle positivity or neuritic plaque positivity set
as the outcome. The second model was a proportional odds

Table 1. Participant Characteristics for Biomarker Data Sets

Characteristic

No. (%)
BIOCARD
(n = 275)

WRAP
(n = 154)

ADNI
(n = 1213)

VMAP
(n = 156)

Men Women Men Women Men Women Men Women
Total No. (%) 113 (41) 162 (59) 53 (34) 101 (66) 665 (55) 548 (45) 105 (67) 51 (33)

Age, mean (SD), y 62 (10) 59 (9) 62 (6) 63 (7) 74 (7) 72 (7) 72 (6) 72 (7)

White race/ethnicity 110 (97) 157 (97) 51 (96) 95 (94) 624 (94) 508 (93) 99 (94) 47 (92)

Clinical diagnosis

Normal cognition 101 (90) 159 (99) 44 (83) 88 (87) 175 (26) 199 (36) 58 (55) 25 (49)

Mild cognitive
impairment

11 (10) 2 (1) 9 (17) 12 (13) 358 (54) 255 (47) 46 (45) 26 (51)

Alzheimer disease 0 0 0 0 132 (20) 94 (17) 0 0

APOE ε4 count

0 ε4 Alleles 75 (66) 104 (64) 36 (68) 62 (61) 357 (54) 297 (54) 68 (65) 35 (69)

1 ε4 Allele 29 (26) 51 (31) 17 (32) 34 (34) 234 (35) 203 (37) 29 (28) 10 (20)

2 ε4 Alleles 9 (8) 7 (4) 0 5 (5) 70 (11) 47 (9) 8 (8) 6 (12)

APOE ε2 carriers 11 (10) 24 (15) 7 (13) 15 (15) 59 (9) 57 (10) 9 (9) 8 (16)

Amyloid positive 55 (49) 60 (37) 5 (9) 13 (13) 426 (64) 334 (61) 21 (20) 16 (31)

Tau positive 38 (43) 51 (31) 4 (8) 14 (14) 217 (33) 224 (41) 33 (31) 21 (41)

Aβ42, pg/mL, mean (SD) 370 (89) 395 (99) 714 (179) 736 (217) 172 (55) 178 (54) 751 (247) 634 (226)

Total tau, pg/mL,
mean (SD)

68 (35) 70 (32) 308 (116) 321 (116) 86 (49) 96 (61) 404 (190) 474 (282)

Phosphorylated tau, pg/mL,
mean (SD)

38 (13) 40 (17) 45 (16) 48 (15) 38 (21) 41 (27) 59 (23) 66 (30)

Abbreviations: Aβ42, β-amyloid 42; ADNI, Alzheimer’s Disease Neuroimaging
Initiative; BIOCARD, Biomarkers of Cognitive Decline Among Normal

Individuals; VMAP, Vanderbilt Memory and Aging Project; WRAP, Wisconsin
Registry of Alzheimer’s Prevention.
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ordinal logistic regression, setting either Braak stage or CERAD
neuritic plaque score as the ordinal outcome. Predictors in the
model included age at death, sex, APOE, and a sex by APOE
interaction. APOE-ε2 and APOE-ε4 were evaluated in sepa-
rate models, and the main effect models were assessed ex-
cluding the sex by APOE interaction term. We used a domi-
nant model for ε2 and an additive model for ε4. Follow-up
analyses were run stratified by sex. All models were run within
each data set individually.

For the biomarker analyses, the same prediction models
and covariates were assessed using linear regression with base-
line CSF β-amyloid 42, CSF total tau (t-tau), or CSF phosphory-
lated tau set as the continuous outcome. Age at CSF acquisi-
tion was used as the age covariate term. Follow-up models were
run stratified by sex. All models were run within each data set
individually.

Analyses within the CSF and autopsy cohorts were com-
pleted separately using the metafor package in R (R Program-
ming), including estimation of fixed effects and heterogeneity
across data sets. Correction for multiple comparisons was per-
formed using the Bonferroni procedure accounting for main ef-
fects and interactions on 3 biomarker outcomes (CSF β-amy-
loid 42, t-tau, and phosphorylated tau) and 4 autopsy outcomes
(ordinal and binary outcomes of CERAD and Braak staging), re-
sulting in 35 independent tests (corrected α = .0014).

Post hoc analyses evaluated sex by APOE-ε4 interactions on
CSF t-tau and phosphorylated tau among amyloid-positive and
amyloid-negative individuals. Additional post hoc analyses re-
stricted the sample to cognitively normal individuals, stratified
by age group, covaried for education level, restricted autopsy re-
sults to longitudinal cohort studies, removed ADNI from the CSF
analyses, and restricted to APOE-ε4 homozygotes.

Results
Participant characteristics are presented in Tables 1 and 2. The
biomarker data set included individuals who were, on aver-
age, younger, with a higher percentage of men than the au-
topsy data sets.

Sex Differences and Main Effects of APOE
Main effect results are presented in Table 3. Women showed
higherlevelsofCSFt-tau,CERADneuriticplaquescore,andBraak
tau tangle stage. Similarly, APOE-ε4 was associated with higher
levels of biomarker levels and pathology and ε2 was associated
with lower biomarker levels and pathology for all metrics.

Sex by APOE Interactions: CSF Biomarker Results
Interaction results are presented in Table 3. A sex by APOE-ε4
interaction was observed on both t-tau (Figure 1) and phos-
phorylated tau wherein the association between APOE-ε4 and
tau levels was stronger in women than in men (Figure 2).

Sex by APOE Interactions: Autopsy Results
Autopsy interaction results are also presented in Table 3. There
were no significant interactions between sex and APOE on neu-
ropathology.Ta
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Post Hoc Analyses
In post hoc analyses stratified by amyloid status, the sex by
APOE-ε4 interaction was present among amyloid-positive in-
dividuals (β = 0.41; 95% CI, 0.20 to 0.62; P < .001; eTable 1 in
the Supplement) but not amyloid-negative individuals
(β = 0.06; 95% CI, −0.18 to 0.31; P = .62; eTable 2 in the Supple-
ment). Additional post hoc analyses stratified by age, restrict-
ing the sample to cognitively normal individuals, adjusting for
education, restricted to longitudinal cohort studies, remov-
ing the ADNI data set, and restricted to APOE-ε4 homozy-
gotes are presented in eTables 3-9 in the Supplement.

Discussion
These findings provide, to our knowledge, the most robust
evidence to date of sex differences in the association
between APOE-ε4 and CSF tau levels, whereby the effect of
APOE is stronger among women compared with men. The
observed sex difference was driven by amyloid-positive indi-
viduals, suggesting APOE may confer sex-specific risk for
downstream neurodegeneration in the presence of enhanced
amyloidosis. In contrast to CSF tau levels, we did not observe
sex differences in the association between APOE and any bio-
markers of amyloidosis or autopsy measures of neurofibril-
lary tangles.

These analyses provide strong evidence of an enhanced
association between APOE-ε4 and CSF tau levels among
women compared with men, particularly among amyloid posi-
tive women. Previous work in ADNI has reported similar sex
differences in CSF tau,14,20 although results have been some-
what mixed depending on the sample included21 and had never
been replicated in an independent cohort. We were able to rep-
licate the sex difference of APOE effects on CSF tau in 3 addi-
tional data sets that differ substantially in baseline age and di-
agnostic status. We also provide evidence of a comparable sex
difference in the association between APOE-ε4 and CSF phos-
phorylated tau for the first time. Several mechanisms could

underlie this sex difference in tau, and the hormonal changes
that take place during and following menopause represent 1
strong candidate pathway. For example, there is evidence that
changes in estrogen levels among women could drive a more
severe downstream response to amyloidosis,35-37 an effect that
could be enhanced among ε4 carriers given evidence that es-
tradiol treatment drives APOE release from microglia.38 A sec-
ond possibility is that late-life changes in estrogen levels among
women have a direct effect on tau. For example, estradiol
appears to protect against tau hyperphosphorylation, par-
ticularly among female rats,39 and estrogen receptor α colo-
calizes with neurofibrillary tangles at autopsy.40 Interest-
ingly, the α receptor also appears to be responsible for the
estrogen-mediated upregulation of APOE expression,41 sug-
gesting a third possible mechanism in which estrogen and
APOE act synergistically in postmenopausal women.
Thoughtful, modern experimental approaches are needed to
better understand the potential contribution of gonadal hor-
mone differences between men and women in driving the
observed APOE sex differences.42

In contrast to the CSF biomarker results, we did not ob-
serve a sex difference in the association between APOE and
neurofibrillary tangle load at autopsy. There are a few poten-
tial explanations for this counterintuitive observation. Nota-
bly, there is growing evidence that CSF tau is a better marker

Figure 2. APOE Association With CSF Total Tau Stratified by Sex

–0.6 –0.4 –0.2 0.4 0.60.2
Standardized β (95% CI)

0

Standardized β
(95% CI)

BIOCARD –0.04 (–0.22 to 0.14)

WRAP –0.20 (–0.47 to 0.07)

ADNI 0.26 (0.19 to 0.34)

VMAP 0.28 (1.10 to 0.46)

0.20 (0.14 to 0.27)Summary estimate 
P value = 6.12e–11

APOE ε4 association with tau in menA
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(95% CI)

BIOCARD 0.10 (–0.04 to 0.25)
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ADNI 0.47 (0.39 to 0.54)

VMAP 0.38 (0.09 to 0.66)

0.37 (0.31 to 0.43)Summary estimate 
P value = 3.65e–31

APOE ε4 association with tau in womenB

A, APOE-ε4 association with CSF tau in men. B, APOE-ε4 association with CSF
tau in women. Forest plot summarizing the sex-stratified analysis of APOE ε4 on
CSF total tau modeled as a continuous outcome. Squares represent
standardized β of the APOE ε4 term within each data set; confidence interval is
represented by the line segment. The size of the square indicates precision of
the estimate based on study variance. The fixed-effect β is represented by the
diamond at the bottom of the figure. BIOCARD indicates Biomarkers of
Cognitive Decline Among Normal Individuals; WRAP, Wisconsin Registry of
Alzheimer’s Prevention; ADNI, Alzheimer’s Disease Neuroimaging Initiative;
VMAP, Vanderbilt Memory and Aging Project.

Figure 1. APOE Interaction With Sex on CSF Total Tau
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Forest plot summarizing the analysis of APOE ε4 × sex interactions on CSF total
tau modeled as a continuous outcome. Squares represent standardized β of the
interaction term within each data set; confidence interval is represented by the
line segment. The size of the square indicates precision of the estimate based
on study variance. The fixed-effect β is represented by the diamond at the
bottom of the figure. BIOCARD indicates Biomarkers of Cognitive Decline
Among Normal Individuals; WRAP, Wisconsin Registry of Alzheimer’s
Prevention; ADNI, Alzheimer’s Disease Neuroimaging Initiative; VMAP,
Vanderbilt Memory and Aging Project.
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of the intensity of neurodegeneration than the stage of neu-
rofibrillary tangle deposition,43 suggesting the autopsy and bio-
marker metrics may represent 2 distinct processes. There-
fore, 1 possibility is that sex-specific effects of APOE contribute
to differences in neurodegeneration that are not directly me-
diated by changes in neurofibrillary tangle burden. Other mark-
ers of neurodegeneration, including hippocampal volume44,45

and cerebral hypometabolism,21 show sex-specific effects of
APOE-ε4 that may underlie the observed differences in CSF
tau levels. A second possibility is that the age difference be-
tween the autopsy cohorts and biomarker cohorts in this analy-
sis contribute to the observed discrepancy between CSF and
autopsy measures of tau. Evidence indicates that both the det-
rimental effect of APOE-ε4 and the sex difference in APOE-ε4
effect diminishes among the oldest elderly individuals,3,4 sug-
gesting that subtle age differences could have a large influ-
ence on results. In support of such a possibility, we do ob-
serve the strongest effects on CSF tau in the younger individuals
when stratifying the CSF sample into younger elderly and older
elderly adults (eTables 3 and 4 in the Supplement). However,
even among the younger elderly adults, we did not observe a
sex-specific effect of APOE on autopsy metrics, suggesting this
age difference does not fully account for the discrepancy.

In all analyses, we observed a strong association between
APOE and amyloidosis that was consistent across men and
women. APOE appears to drive risk for clinical AD through an
amyloid clearance pathway,13 so it is not surprising that both
here and previously46 APOE shows a stronger association with
amyloid deposition than tau. Notably, we did not observe dif-
ferences in the APOE association when comparing younger el-
derly with older elderly individuals (eTables 3 and 4 in the
Supplement), although age differences have been reported.47

The larger sample (and enhanced power) in this analysis likely
explains the discrepant findings because Ghebremedhin et al47

observed patterns consistent with our findings but failed to ob-
serve a statistically significance association in the younger
group. Importantly, our primary and post hoc analyses sup-
port the notion that APOE shows a consistent association with
amyloidosis across sex and age and is unlikely to drive ob-
served sex differences in the association between APOE and
clinical AD.48

Strengths and Limitations
This study has multiple strengths, including the large sample
size, the integration of both CSF biomarker data and autopsy
data, and the extensive sensitivity analyses including explo-
rations into diagnostic status, age, amyloid status, and edu-
cational attainment. However, the study is not without limi-
tations. One important limitation is the potential influence of
sex differences in survival to older adulthood, which could
contribute to a robust survivor effect amongmen compared
with women. As others have previously highlighted, selec-
tive survival of men with substantially lower cardiovascular
risk profiles may contribute to sex differences in AD risk in
older adulthood.49 It is also notable that the sex-specific
effect of APOE-ε4 on microbleeds is actually in the inverse
direction,50 with men showing a stronger association than
women, suggesting that sex-specific effects of APOE-ε4 may
have differential effects on AD and non-AD pathologies, even
in the face of potential survivor bias. Future work is needed
to develop and integrate modern statistical approaches to
estimate and account for the effect of survival bias, particu-
larly in analyses of sex-specific molecular drivers of AD and
non-AD neuropathologies. The cross-sectional nature of the
biomarker and autopsy data also limits our ability to make
causal inferences, particularly with respect to the sequential
ordering of neuropathologies or CSF biomarker deposition.
Finally, the cohorts were relatively homogeneous across race
and ethnicity, with some cohorts being exclusively white.
Thus, findings may not be generalizable to other racial and
ethnic groups that may be at greater risk of AD. Results will
need to be extended to cohorts with greater diversity.

Conclusions
These results provide strong evidence of sex differences in
the association between APOE and CSF tau levels that do not
appear to reflect differences in neurofibrillary tangle deposi-
tion. Future work should evaluate the genetic drivers of
plaques, tangles, neurodegeneration, and cognitive impair-
ment in a sex-specific manner to identify novel pathways of
risk.
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