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Abstract

Background

Serological antibody levels are a sensitive marker of pathogen exposure, and advances in

multiplex assays have created enormous potential for large-scale, integrated infectious dis-

ease surveillance. Most methods to analyze antibody measurements reduce quantitative

antibody levels to seropositive and seronegative groups, but this can be difficult for many

pathogens and may provide lower resolution information than quantitative levels. Analysis

methods have predominantly maintained a single disease focus, yet integrated surveillance

platforms would benefit from methodologies that work across diverse pathogens included in

multiplex assays.

Methods/Principal findings

We developed an approach to measure changes in transmission from quantitative antibody

levels that can be applied to diverse pathogens of global importance. We compared age-

dependent immunoglobulin G curves in repeated cross-sectional surveys between popula-

tions with differences in transmission for multiple pathogens, including: lymphatic filariasis

(Wuchereria bancrofti) measured before and after mass drug administration on Mauke,

Cook Islands, malaria (Plasmodium falciparum) before and after a combined insecticide and

mass drug administration intervention in the Garki project, Nigeria, and enteric protozoans

(Cryptosporidium parvum, Giardia intestinalis, Entamoeba histolytica), bacteria (enterotoxi-

genic Escherichia coli, Salmonella spp.), and viruses (norovirus groups I and II) in children

living in Haiti and the USA. Age-dependent antibody curves fit with ensemble machine learn-

ing followed a characteristic shape across pathogens that aligned with predictions from

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0005616 May 19, 2017 1 / 20

a1111111111
a1111111111
a1111111111
a1111111111
a1111111111

OPENACCESS

Citation: Arnold BF, van der Laan MJ, Hubbard AE,
Steel C, Kubofcik J, Hamlin KL, et al. (2017)
Measuring changes in transmission of neglected
tropical diseases, malaria, and enteric pathogens
from quantitative antibody levels. PLoS Negl Trop
Dis 11(5): e0005616. https://doi.org/10.1371/
journal.pntd.0005616

Editor: Mathieu Picardeau, Institut Pasteur,
FRANCE

Received: February 7, 2017

Accepted: May 1, 2017

Published: May 19, 2017

Copyright: This is an open access article, free of all
copyright, and may be freely reproduced,
distributed, transmitted, modified, built upon, or
otherwise used by anyone for any lawful purpose.
The work is made available under the Creative
Commons CC0 public domain dedication.

Data Availability Statement: Data and all
replication files are available through the Open
Science Framework (https://osf.io/8tqu4).

Funding: This work was supported by National
Institute of Allergy and Infectious Diseases grants
K01AI119180 (BFA) and R01AI074345. The
research on lymphatic filariasis on Mauke was
supported by the Division of Intramural Research
of the National Institute of Allergy and Infectious
Diseases, National Institutes of Health. The original

https://doi.org/10.1371/journal.pntd.0005616
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0005616&domain=pdf&date_stamp=2017-06-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0005616&domain=pdf&date_stamp=2017-06-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0005616&domain=pdf&date_stamp=2017-06-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0005616&domain=pdf&date_stamp=2017-06-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0005616&domain=pdf&date_stamp=2017-06-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0005616&domain=pdf&date_stamp=2017-06-01
https://doi.org/10.1371/journal.pntd.0005616
https://doi.org/10.1371/journal.pntd.0005616
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://osf.io/8tqu4


basic mechanisms of humoral immunity. Differences in pathogen transmission led to shifts

in fitted antibody curves that were remarkably consistent across pathogens, assays, and

populations. Mean antibody levels correlated strongly with traditional measures of transmis-

sion intensity, such as the entomological inoculation rate for P. falciparum (Spearman’s

rho = 0.75). In both high- and low transmission settings, mean antibody curves revealed

changes in population mean antibody levels that were masked by seroprevalence measures

because changes took place above or below the seropositivity cutoff.

Conclusions/Significance

Age-dependent antibody curves and summary means provided a robust and sensitive mea-

sure of changes in transmission, with greatest sensitivity among young children. The

method generalizes to pathogens that can be measured in high-throughput, multiplex sero-

logical assays, and scales to surveillance activities that require high spatiotemporal resolu-

tion. Our results suggest quantitative antibody levels will be particularly useful to measure

differences in exposure for pathogens that elicit a transient antibody response or for moni-

toring populations with very high- or very low transmission, when seroprevalence is less

informative. The approach represents a new opportunity to conduct integrated serological

surveillance for neglected tropical diseases, malaria, and other infectious diseases with

well-defined antigen targets.

Author summary

Global elimination strategies for infectious diseases like neglected tropical diseases and
malaria rely on accurate estimates of pathogen transmission to target and evaluate control
programs. Circulating antibody levels can be a sensitive measure of recent pathogen expo-
sure, but no broadly applicable method exists to measure changes in transmission directly
from quantitative antibody levels. We developed a novel method that applies recent
advances in machine learning and data science to flexibly fit age-dependent antibody
curves. Shifts in age-dependent antibody curves provided remarkably consistent, sensitive
measures of transmission changes when evaluated across many globally important patho-
gens (filarial worms, malaria, enteric infections). The method’s generality and perfor-
mance in diverse applications demonstrate its broad potential for integrated serological
surveillance of infectious diseases.

Introduction

There is large overlap in the distribution of global disease burdens attributable to neglected
tropical diseases (NTDs), malaria, enteric infections and under-vaccination. Despite nearly a
decade of advocacy for integrated monitoring and control [1], prevailing surveillance efforts
maintain a single-disease focus, and the high cost of fielding surveys to collect specimens
means that programs conduct surveillance infrequently or not at all. High throughput, multi-
plex antibody assays enable the simultaneous measurement of quantitative antibody responses
to dozens of pathogens from a single blood spot [2]. When coupled with existing surveillance
platforms, multiplex antibody assays could enable the global community to more quickly
identify public health gaps, including: recrudescence of NTD or malaria transmission in
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elimination settings, stubborn areas of high transmission, emerging infectious diseases, and
under-vaccination. Of particular interest are methods to analyze measurements collected in
cross-sectional surveys because most large-scale global surveillance efforts use this design (e.g.,
immunization coverage surveys, malaria indicator surveys, transmission assessment surveys
for NTD elimination programs, demographic and health surveys).

A unique attribute of antibody measurements is that they provide an immunological record
of an individual’s exposure or vaccination history, and thus integrate information over time
[3]. Yet, the information contained in circulating antibodies varies greatly by pathogen and
antibody measured, and it is this complexity that presents challenges to the use of antibody
measurements for integrated surveillance. Most previous studies have reduced quantitative
antibody measurements to seropositive and seronegative groups by choosing a cut point, and
then have used models to estimate seroconversion rates from age-dependent seroprevalence as
a measure of pathogen transmission [3,4]. The choice of seropositivity cut point can be ambig-
uous for many pathogens, as examples in this article will illustrate, and can vary widely in
lower transmission settings depending on the reference population or statistical method used
[5]. A second challenge in lower transmission settings is that seropositive individuals are
extremely rare, and so accurate estimates of seroprevalence require large samples [6]. Con-
versely, in high transmission settings, seroprevalence can fail to capture the immune response
from repeated infections where antibody levels increase following each exposure and wane
over time [7,8]. Thus, analytical methods that use the quantitative response directly avoid the
difficulty of defining cut points, accommodate complex, dynamic changes in antibody levels
that can present difficulties to seroconversion models [4], and may provide higher resolution
information in very low- or very high transmission settings.

To our knowledge there has not been a broad-based assessment for whether quantitative
antibody measurements present an opportunity for integrated surveillance across diverse path-
ogens. Two recent contributions in the malaria literature proposed mathematical models to
measure changes in transmission from quantitative antibody responses [8,9]. Both models
require strong parametric assumptions such as constant rates of antibody acquisition and loss
over different ages, or constant transmission over time, which may be difficult to justify for
many pathogens of interest in an integrated surveillance platform.

Our objective was to develop a general and parsimonious method to measure changes in
infectious disease transmission from quantitative antibodies. We approached the problem
from a different perspective than mathematical modeling, and instead focused on recent
advances in machine learning and statistical estimation theory to measure differences in trans-
mission within or between populations. We also aimed to assess whether the method could
generalize across diverse pathogens that can be measured in multiplex assays, such as neglected
tropical diseases, malaria, and enteric pathogens. A widely observed phenomenon across infec-
tious diseases is that changes in pathogen transmission result in a “peak shift” of infection
intensity by age: as transmission intensity declines in a population, the age-specific prevalence
and intensity of infection tends to rise more slowly at younger ages and peak at lower overall
levels [10]. We sought to extend this observation to measure changes in transmission using
quantitative antibody levels rather than measures of patent infection-an approach suggested
by mathematical models of parasite immunity [10,11] with empirical support in a comparison
of populations with varying helminth transmission intensity [12].

We focused on a general mechanism of acquired immunity elicited by most infectious path-
ogens. Children are born with maternal immunoglobulin G (IgG) antibodies that wane over
the first 3–6 months of life, and from ages 4–6 weeks begin to produce their own IgG antibod-
ies in response to antigen exposure [13]. The aggregation of individual IgG responses gener-
ates a curve of population average IgG levels that rises in the first years of life until it plateaus
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at adult levels [14]. Transferred maternal immunity-a function of maternal immunologic
memory-likely influences the magnitude of the population-average IgG curve’s intercept near
birth [13]. Antigen exposure is needed to maintain antibodies in blood, either by stimulating
the proliferation of memory B-cells to replenish short-lived plasma cells or by stimulating the
production of non-germinal center short-lived plasma cells [14]. Antigen exposure induces
rapid proliferation and differentiation of short-lived B-cells, with somatic hypermutation lead-
ing to increased affinity following each exposure. As transmission declines, population-average
serum IgG levels should rise more slowly as the age of first infection increases and repeated
exposures become infrequent. For pathogens that elicit antibody responses that wane over
time, the number of long-lived antibody secreting cells should decline without recent antigen
exposure [14], which in turn should be reflected in a lower plateau of the age-dependent anti-
body curve. We therefore hypothesized that reduced pathogen transmission would cause path-
ogen-specific IgG antibody curves to increase more slowly with age and plateau at lower levels,
and that quantifying changes in the curves would provide a robust and sensitive measure of
changes in transmission within or between populations.

Methods

Overview of the approach

To test this hypothesis, we examined age-dependent antibody responses (“age-antibody
curves”) to diverse pathogens in populations with likely differences in transmission intensity.
We fit age-antibody curves with a data adaptive, ensemble machine learning algorithm that
can include additional covariates to control for potential confounding [15]. The curves repre-
sent a predicted mean antibody level by age (a) for each exposure group (x), which we denote
E(Ya,x) in the statistical methods. We used the age-adjusted mean antibody response within
each group (x) as a summary measure of transmission, denoted E(Yx), and estimated differ-
ences between group means. For example, below we describe an analysis of age-antibody
curves using antibody response to the Wuchereria bancrofti Wb123 antigen in a population
before (X = 0) and after (X = 1) mass drug administration (MDA). We estimated a separate
curve in the population before E(Ya,0) and after E(Ya,1) MDA, and tested for differences
between the curves by comparing summary mean Wb123 response between the two measure-
ments, E(Y1)—E(Y0), averaged over age and potentially other confounding covariates (statisti-
cal methods include details).

The age-adjusted mean antibody response equals the area under the age-antibody curve (S1
Text). The approach thus integrates the steepness of the curve’s initial rise at young ages as
well as its sustained magnitude at older ages, with lower transmission measured by reductions
in group means. Comparing group means intuitively represents an average difference between
groups across all points in the curves. If particular age ranges are of interest, such as young
children, then the mean can be estimated over restricted regions of the age-antibody curve.

Lymphatic filariasis transmission on Mauke Island

Mauke, Cook Islands was endemic for W. bancrofti in decades past, and in 1987 there was an
island-wide MDA of all individuals�5 years old with diethylcarbamazine. The present analy-
sis included serum samples from two cross-sectional measurements of the permanent resident
population; the first in 1975 (N = 362, approximately 58% of the population) and the second in
1992, 5 years after the island-wide MDA (N = 553, approximately 88% percent of the popula-
tion) [16]. Both studies preserved serum samples by freezing them in liquid nitrogen within
hours of collection and storing them at -80˚C. Serum samples were tested for IgG antibody lev-
els to the Wb123 antigen using a Luciferase Immunoprecipitation System (LIPS) assay, as
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previously described in detail [17]. Data presented are in luminometer units from averaged
duplicate samples.

We re-analyzed data from the original assessment of the effect of the MDA campaign on
Wb123 antibody levels [16] using the statistical methods described below. We estimated sepa-
rate age-antibody curves in 1975 and 1992. To make statistical comparisons between the
curves, we estimated means for each survey year and differences between surveys, stratified by
5 year age group for ages20 years old. For a subsample of 114 individuals who were mea-
sured in both 1975 and 1992, we compared Wb123 antibody levels in subgroups defined by
whether they had circulating antigen to adult W. bancrofti—an indication of active infection-
at one or both time points. We plotted individual changes in Wb123 antibody levels to visual-
ize antibody acquisition and loss in different subgroups.

Malaria transmission in the Garki Project, Nigeria

The Garki Project, led by the World Health Organization and the Government of Nigeria,
included a comprehensive malaria intervention study that took place in 22 villages in the rural
Garki District, Nigeria (1970–1976) [18]. We obtained publicly available study datasets for this
analysis (http://garkiproject.nd.edu). The intervention included a combination of insecticide
spraying and mass drug administration of surfanene-pyrimethamine in 1972–1973, along with
targeted distribution of chloroquine to children <10 and self-reporting fever cases in the
1974–75 post-intervention period. The study documented large reductions in the proportion
of individuals testing positive for Plasmodium falciparum infection by microscopy as a result
of the intervention.

In a subset of two control villages and six intervention villages, the study collected multiple
serological measures that have been described in detail [18]. Briefly, the study collected serum
from all members present in a village in eight rounds that alternated between wet and dry sea-
sons. We limited the analysis to 4,774 specimens collected from individuals <20 years old
because that age range captured nearly all of the change in the age-antibody curve (median
serum samples per round in each village: 74, range: 19–158). Serological survey rounds 1–2
took place in the wet and dry season before the intervention started, rounds 3–5 took place
during the active intervention period at 20, 50, and 70 weeks after intervention initiation, and
rounds 6–8 took place at 20, 40, and 90 weeks after the conclusion of intervention activities.
The sixth measurement was collected in the intervention villages only. From each participant,
finger prick blood samples were collected in two 0.4-ml heparinized Caraway tubes for immu-
nological testing. Individuals contributed between 1 and 8 samples over the course of the study
(median = 3). We focused on P. falciparum antibody response measured with the IgG indirect
fluorescent antibody (IFA) test. We converted IFA titers to the log10 scale and then estimated
mean IFA titre by age separately for intervention and control villages in each measurement
round. We compared curves using the difference between age-adjusted means. We repeated
the analysis at the village level to make separate comparisons of each individual intervention
village against control to examine curves and measures of transmission at smaller spatial scale.

The study collected extensive wet season entomological measurements in three of the vil-
lages with serological monitoring. The co-located entomological and serological measure-
ments enabled us to compare village-level mean antibody levels and seroprevalence with the
wet season entomological inoculation rate (EIR) as the transmission intensity changed in the
intervention villages. EIR estimates from Table 4 of the original study [18] were used in the
analysis. The EIR represents the number of sporozoite positive bites per person over each wet
season, and was estimated by multiplying the man-biting rate by the sporozoite positive rate in
night-bite collections. Night-bite collections were conducted every 2 weeks using 2 indoor and
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2 outdoor stations per village, with 2 human bait collectors in each station throughout the
night. We estimated village level mean IFA antibody titers restricted to serum samples col-
lected during the same periods of EIR monitoring, and we measured the association between
village level mean antibody titers and the EIR with the Spearman rank correlation coefficient.

After completing the primary analysis that estimated age-antibody curves by survey for
control and intervention villages, we noticed a reduction in age-adjusted geometric mean anti-
body titers between wet and dry survey rounds 1–2. We followed-up this observation with a
secondary analysis, restricted to the control villages, that estimated age-antibody curves sepa-
rately by survey round, which corresponded to wet and dry seasons: 1971 wet (survey 1), 1972
dry (survey 2), 1972 wet (survey 3), 1973 dry (survey 4), and 1973 wet (survey 5) [18]. Control
villages were not measured in survey 6, and surveys 7–8 took place in the 1974 and 1975 wet
seasons; we excluded surveys 7–8 from the secondary analysis because we were interested in
comparing transmission in adjacent wet and dry seasons.

Enteric pathogen transmission in Haiti and the United States

Our analysis of enteric pathogen antibody measurements relied on two existing data sources.
Haiti samples were collected from a longitudinal cohort of 142 children, enrolled between the
ages of 1 month and 6 years on a rolling basis from 1991–1999 to monitor lymphatic filariasis,
and the selection of samples from the Haiti cohort has been described in detail [19]. Children
were followed up to 9 years (median 5 years) and each child was measured approximately once
per year. At each measurement, the study collected finger prick blood samples. The multiplex
bead assay techniques and antibody results for the Cryptosporidium parvum recombinant
17-kDa and 27-kDa antigens [20], the VSP-5 fragment of Giardia intestinalis variant-specific
surface protein 42e [21], and the Entamoeba histolytica lectin adhesion molecule (LecA) [22]
have been described [19,23]. Enterotoxigenic Escherichia coli (ETEC) heat labile toxin β sub-
unit [24] and lipopolysaccharide (LPS) from Salmonella enterica serotype Typhimurium
(Group B) [25] were purchased from Sigma-Aldrich (St. Louis, MO). Purified recombinant
norovirus GI.4 and GII.4 New Orleans [26] virus-like particles from a baculovirus expression
system [27] were kindly provided by J. Vinje and V. Costantini (CDC, Atlanta, GA). Proteins
and LPS were coupled to SeroMap beads (Luminex Corp. Austin, TX) at 120 μg per 12.5 x 106
beads in phosphate-buffered saline at pH 7.2 and were included in the multiplex bead assays
previously described [19].

As part of a serologic study in the United States (USA) [28], our lab (JWP, PJL) had banked
86 anonymous blood lead samples collected in 1999 from children ages 0–6 years. The USA
samples were tested contemporaneously with the Haiti longitudinal cohort using the same
techniques and bead preparations [19]. We used these anonymous samples from the USA to
compare antibody curves with the Haitian children.

For each enteric antibody, we estimated separate age-antibody curves in the USA and Haiti
using all measurements collected at ages <5.5 years (ages of overlap between the sample sets).
We then estimated geometric means for each population and differences between means as
described in the statistical methods.

Statistical methods

A cross-sectional survey measures an individual’s quantitative antibody level (Y), age (A), and
other characteristics (W). Many surveillance efforts are also interested in differences in anti-
body levels by one or more exposures (X), which could be confounded by A and W. We
assumed the observed data O = (Y, A, W, X) ~ P0 arose from a simple causal model (S2 Text
includes additional details): W = fW(UW); A = fA(UA); X = fX(A, W, UX); Y = fY(X, A, W, UY).
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Estimation of age-dependent antibody curves. We estimated the mean antibody level by
age, conditional on exposure to X, E(Ya,x), and potentially adjusted for covariates W:

EÖYa;xÜ à EWfEÖYjA à a; X à x; WÜ g Ö1Ü

The functional form between antibody response and age can be very nonlinear and differ
depending on the population, pathogen, and antibody studied. Data adaptive machine learn-
ing provides a robust and flexible estimation approach for the curves [4]. We used an ensemble
algorithm called “super learner” that uses cross-validation to combine many different algo-
rithms into a single prediction [15]; the ensemble prediction has cross-validated prediction
error less than or equal to any of its constituent algorithms. Ensemble approaches are particu-
larly useful for applications like integrated surveillance when no single model or algorithm will
consistently provide the best fit to the data across pathogens and populations. Including a
diverse library of models and algorithms in the ensemble ensures the best estimation of the
age-antibody relationship across diverse applications. We fit age-dependent antibody curves
using the ensemble, and then estimated the marginally adjusted antibody level for each age in
the observed data (additional details in S2 Text).

Summary of the curve. We targeted the mean antibody response adjusted for age (A) and
potential covariates (W), conditional on exposure group (X = x):

EÖYxÜ à EA;WfEÖY jX à x; A; WÜ g Ö2Ü

The mean antibody response is a smooth functional of the curve, which makes it tractable and
efficient to estimate from a statistical perspective. The mean equals the area under the age-anti-
body curve (AUC) when age is independent of covariates W; if the independence assumption
does not hold, then it is equivalent to estimating the AUC within strata of W (S1 Text). The
mean (equal to AUC) is a useful summary measure because it incorporates both the steepness
of the initial rise in the curve at early ages as well as the sustained height of the curve at older
ages-for these same reasons this summary measure is widely used for vaccine response in indi-
viduals over time and in bioequivalence studies [29].

We compared mean antibody levels in populations with different levels of exposure (X), for
example comparing Wb123 antibody levels to W. bancrofti before (X = 0) versus after (X = 1)
mass drug administration. Our target parameter of interest was the marginal difference
between groups in mean antibody levels, averaged over age (A), and potentially confounding
covariates (W):

EÖY1Ü � EÖY0Ü à EA;WfEÖYjX à 1; A; WÜ � EÖYjX à 0; A; WÜg Ö3Ü

We estimated the difference in mean antibody levels using with targeted maximum likelihood
estimation (TMLE) [30]. TMLE is a double-robust, efficient estimation approach that naturally
incorporates machine learning in the estimation process and still recovers accurate statistical
inference [31]. We estimated influence curve-based standard errors and P-values, which
accounted for repeated observations if that was a feature of the design [30]. Stratified analyses
(e.g., village estimates or estimates within age bands) stratified the data, estimated the mean
difference within strata, and then adjusted P-values using a Bonferroni correction (additional
details in S2 Text).

Interpretation using binary outcomes (seroprevalence). Many current rapid diagnostics
for neglected tropical diseases and malaria provide dichotomous (seropositive/seronegative)
results [32,33]. The nonparametric method is very general and can, in principle, be applied to
dichotomous test results, where E(Ya,x) then estimates the age-dependent seroprevalence curve
and E(Yx) estimates age-adjusted mean seroprevalence. We compared quantitative antibody

Measuring changes in infectious disease transmission from quantitative antibody levels

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0005616 May 19, 2017 7 / 20

https://doi.org/10.1371/journal.pntd.0005616


curves with seroprevalence curves for the Mauke lymphatic filariasis and Garki malaria exam-
ples where we could establish clear seropositivity cutoffs. In the Mauke study, a previous analy-
sis found a cutoff value of 10968 light units had sensitivity >98% and specificity ranging from
94–100% when compared with negative and positive control samples, including those co-
infected with other helminths [17]. In the Garki study, we treated any response to P. falcipa-
rum in the IFA test as positive [18]. For enteric pathogens, we used finite mixture models to
estimate 2 gaussian components [34], and then estimated the seropositivity cutoff values using
the mean plus 3 standard deviations of the first component; we compared three separate cut-
offs using USA samples alone, Haiti samples alone, and combined USA and Haiti samples.

Software and replication files. We used the R statistical software (version 3.2.4, www.R-
project.org) for analysis and data visualization. Replication files (datasets, scripts) and an R
software package to implement the approach (tmleAb) are available through GitHub and the
Open Science Framework: https://osf.io/8tqu4. S1 Table includes a Strengthening the Report-
ing of Observational Studies in Epidemiology (STROBE) checklist.

Ethics statement

Study protocols for Mauke were approved by the government of the Cook Islands and the
NIAID Institutional Review Board, and all adult subjects provided written informed consent.
Consent for children was obtained by verbal assent as well as written consent from legal guard-
ians. The Haiti study protocol was reviewed and approved by the Centers for Disease Control
and Prevention’s Institutional Review Board and the Ethical Committee of St. Croix Hospital
(Leogane, Haiti) and all subjects provided verbal consent. Human subjects review boards
approved a verbal consent process because the study communities had low literacy rates.
Mothers provided consent for young children, and children 7 years or older provided assent.

Results

Lymphatic filariasis in Mauke

There was a distinct shift in the W. bancrofti Wb123 age-antibody curve before and five years
after a single diethylcarbamazine MDA (Fig 1a), and differences between curves show more
gradual antibody acquisition with age in the post-MDA measurement (Fig 1b). As previously
noted [16], mean Wb123 antibody levels declined in individuals who tested positive for circu-
lating filarial antigen before MDA (a sign of active infection) but had no detectable circulating
antigen post-MDA, as well as among those who tested negative for circulating antigen at both
time points (Fig 1c). Together, these results show that slower antibody acquisition combined
with antibody loss, presumably a reflection of lowered transmission potential post-MDA,
underlie the curve shift. Seroprevalence estimates for Wb123 followed a similar pattern as the
quantitative antibody response (S1 Fig). A caveat of the Wb123 seroprevalence analysis was
that the seropositivity cutoff, chosen to have near perfect sensitivity and specificity with respect
to controls [17], fell in the center of the Wb123 distribution in the post-MDA measurement
(lower transmission) (S1 Fig). This observation makes it more difficult to argue that there were
two distinct seropositive and seronegative populations-an assumption avoided when relying
directly on quantitative antibody levels.

Malaria in the Garki Project, Nigeria

Compared to control villages, there was a consistent shift in P. falciparum age-antibody curves
with increased length of the insecticide spraying and MDA intervention in the Garki project
(Fig 2a). During the active intervention period, children in intervention villages exhibited a
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sharp drop in antibody levels from birth and a more gradual increase in antibody levels com-
pared with children in control villages. Mean IFA titers demonstrated group comparability
before intervention, reduced transmission during intervention, and a transmission resurgence
after the intervention period (Fig 2a)—a pattern that corresponded closely with rates of patent

Fig 1. A shift in the Wuchereria bancrofti Wb123 age-antibody curve measures a reduction in transmission due to mass drug
administration (MDA) on Mauke Island. IgG antibody response to the Wb123 antigen for W. bancrofti measured in blood specimens from
residents in 1975 (N = 362) before MDA and again in 1992 (N = 553), five years following a single, island-wide MDA with diethylcarbamazine. a,
Mean antibody levels E(Ya,x) by age (a) and survey year (x); individual antibody responses (points) are shown along with summary curves. b,
Age-adjusted geometric mean antibody response, E(Yx), and 95% confidence intervals before (1975) and five years after (1992) MDA, stratified
by 5 year age category (all differences significant at P 0.0001 after Bonferroni correction). c, Wb123 antibody response in 1975 and 1992
stratified by the presence of circulating filarial antigens (Ag) at each measurement in the subsample of 112 individuals who were measured at
both time points (two individuals not shown were Ag- in 1975 and Ag+ in 1992), along with age-adjusted geometric means, E(Yx), and 95%
confidence intervals. Differences between means are significant (Bonferroni corrected P 0.01) except for the Ag+/Ag+ group. Individual
trajectories are colored by the higher of the two measurements: decreases are orange, increases are blue. The source data used to generate this
figure are here: https://osf.io/8tqu4 (mauke), and the scripts used to generate the figure are here: https://osf.io/ek3sx (mauke).

https://doi.org/10.1371/journal.pntd.0005616.g001
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parasitemia measured in the original study [18]. Age-dependent seroprevalence curves fol-
lowed a similar pattern to the quantitative antibody results, but changes due to intervention
were less pronounced because reductions in seroprevalence were only detectable among
children < 5 years old (Fig 2b). When estimated at the finer resolution, village level rather
than in aggregate, mean antibody titers more clearly distinguished intervention and control
villages compared with seroprevalence (S2 Fig). Village level mean antibody titers correlated
strongly with wet season EIR (Spearman’s ρ = 0.75) and with seroprevalence (Spearman’s
ρ = 0.93, Fig 3).

Fig 2. Shifts in the Plasmodium falciparum age-antibody curve measure changes in malaria transmission due to intervention in the Garki
Project, Nigeria (1970–1976). Antibody response measured with the IgG indirect fluorescent antibody (IFA) test for P. falciparum using semi-quantitative
antibody titers (a) or reduced to seroprevalence (b). Estimates stratified by pre-intervention period wet and dry seasons (survey rounds 1–2), active
intervention period (survey rounds 3–5, at 20, 50, and 70 weeks following the start of intervention), and the post-intervention period (survey rounds 6–8 at
20, 40, and 90 weeks following the end of the intervention). N = 4,774 total measurements, with 153–442 measurements per curve. Control measurements
were combined across survey rounds within each period when plotting the curves to facilitate visual comparison of shifts in transmission between surveys.
Age-adjusted means by intervention group, E(Yx), provide summary differences between curves at each survey round. Error bars show 95% confidence
intervals for the age-adjusted geometric means or seroprevalence and differences between groups are significant P 0.01 (Bonferroni corrected) for all
rounds except pre-intervention surveys 1 and 2. Control villages were not measured in survey 6. The source data used to generate this figure are here:
https://osf.io/8tqu4 (garki), and the scripts used to generate the figure are here: https://osf.io/ek3sx (garki).

https://doi.org/10.1371/journal.pntd.0005616.g002
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Malaria transmission was highly seasonal during the study, with more intense vector trans-
mission and incident infections in the wet seasons [18]. In a secondary analysis, we restricted
the population to control villages and fit age-antibody curves separately by survey rounds 1–5,
which corresponded to sequential wet and dry seasons. We observed a distinct shift in the age-
antibody curve, consistent with lower transmission in the dry season, but only among children
<5 years old; older children exhibited far less seasonal variation in mean IFA antibody titers
compared with children <5 years (Fig 4).

Fig 3. Comparison of mean Plasmodium falciparum IFA antibody titers with wet season entomological inoculation rate
(EIR) and IFA seroprevalence in the three study villages with paired entomological and serological measurements. a, P.
falciparum IFA titers versus EIR. b P. falciparum IFA titers versus seroprevalence. c, P. falciparum seroprevalence versus EIR.
Ajura was a control village (no treatment) while Rafine Marke and Nasakar were intervention villages. A single data point outside
the figure range is not shown in EIR plots (Nasakar 1972, EIR value = 0, E(Yx) = 103.0591), but was included in the Spearman’s
rank correlation estimates (ρ). The source data used to generate this figure are here: https://osf.io/8tqu4 (garki), and the scripts
used to generate the figure are here: https://osf.io/ek3sx (garki).

https://doi.org/10.1371/journal.pntd.0005616.g003
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Enteric pathogens in Haiti and the USA

Age-antibody curves for IgG antibody responses to protozoan, bacterial, and viral enteric path-
ogens were consistent with lower levels of enteric pathogen transmission in the USA (Fig 5).
The Haiti and USA populations likely illustrate enteric antibody curves near the bounds of
high and low transmission environments, and show that as transmission declines the curves
flatten. The results illustrate both the consistency of the general pattern across diverse taxa as
well as the facility with which the analysis method generalizes to multiplex applications where
numerous antibodies can be measured from a single blood spot. In most cases, enteric patho-
gen antibody distributions did not show obvious seropositive and seronegative subpopula-
tions, and seropositivity cutoff values varied when estimated using different sample sets (S3
Fig). In most cases, seropositivity cutoffs using the Haiti specimens alone fell outside the
observed range of the antibody distributions (S3 Fig).

Discussion

Key findings

We have shown that diverse, pathogen-specific serum IgG levels follow a characteristic shape
with increasing age, and that changes in transmission are reflected in a shift of the age-anti-
body curve that can be summarized by changes in mean antibody levels. Consistent with our
hypothesis, reduced transmission produced age-antibody curves that rose more slowly and
plateaued at lower levels. The generality and consistency of the age-antibody relationship
across diverse infectious diseases, populations, and diagnostic platforms suggest that this sim-
ple, robust methodology constitutes a useful way to measure changes in transmission for path-
ogens with serum IgG antigen targets.

Interpretation

Our results support the use of quantitative antibody levels to measure changes in pathogen
transmission as a complement or alternative to seroprevalence and other metrics based on a

Fig 4. Higher sensitivity among children <5 y to seasonal changes in Plasmodium falciparum transmission as depicted by age-antibody curves
estimated within control villages in the Garki Project, Nigeria (1970–1976). Antibody response measured with the IgG indirect fluorescent antibody
(IFA) test for P. falciparum. a, Mean antibody levels by age (a) and season (x), E(Ya,x). b, Age-adjusted geometric means by age category and season, E
(Yx), summarize the curves. Error bars show 95% confidence intervals and P-values mark significant differences (Bonferroni corrected) between adjacent
seasons. The source data used to generate this figure are here: https://osf.io/8tqu4 (garki), and the scripts used to generate the figure are here: https://osf.
io/ek3sx (garki).

https://doi.org/10.1371/journal.pntd.0005616.g004
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binary response. For infections that generate lifelong immunity, a characteristic of many vac-
cine preventable diseases, seroprevalence provides information about population-level immu-
noprotection and information beyond the first exposure is lost. However, for infections that
are partially or transiently immunizing, examples from this study illustrate that mapping a
quantitative antibody measurement to seroprevalence can lose substantial information. For
example, the Garki project analysis illustrated that in a high transmission setting, the intensive
insecticide spraying and MDA intervention reduced P. falciparum antibody titer across ages
0–20 years, but reduced seroprevalence only among children <5 years (Fig 2). The reduction
of antibody levels across a broader age range in the quantitative analysis was presumably
caused by less immune system boosting in older individuals living in intervention villages-an
effect missed when using seroprevalence. Conversely, in lower transmission settings where
seropositive individuals are rare, quantitative antibody levels can still provide information
about reduced exposure. Waning W. bancrofti Wb123 antibody levels among individuals in
Mauke without circulating antigen (Fig 1c) provided another example for how quantitative
responses could provide more information about gradations in exposure that are lost with
binary, positive/negative assays. These findings are broadly consistent with recent comparisons
of quantitative antibody and seroprevalence estimates in the malaria context [9]. Indeed, quan-
titative antibody levels could provide complementary, high resolution information alongside
more traditional metrics of infection to identify heterogeneous transmission in populations-a
recent example illustrated the value of using malarial antibody levels directly to identify

Fig 5. Differences in enteric pathogen transmission between children in Leogane, Haiti (N = 511) and the United States (USA) (N = 86) measured
by age-antibody curves. Antibody response measured as median fluorescence intensity (MFI) minus background in multiplex bead assays on the
Luminex platform. In each panel, individual antibody responses (points) are shown along with age-dependent means. Each panel also includes the
geometric mean by country, E(Yx), with error bars marking 95% confidence intervals (all differences significant at P 0.001 after Bonferroni correction). a.
Cryptosporidium parvum recombinant 17-kDa antigen; b. Cryptosporidium parvum recombinant 27-kDa antigen; c. Giardia intestinalis variant-specific
surface protein-5 (VSP-5); d. Entamoeba histolytica lectin adhesion molecule (LecA); e. enterotoxigenic Escherichia coli (ETEC) heat labile toxin β
subunit; f. Salmonella spp. lipopolysaccharide (LPS) Group B; g. Norovirus Group I.4; h. Norovirus Group II.4 New Orleans. The source data used to
generate this figure are here: https://osf.io/8tqu4 (enterics), and the scripts used to generate the figure are here: https://osf.io/ek3sx (enterics).

https://doi.org/10.1371/journal.pntd.0005616.g005
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transmission hotspots in Cambodia [35], and similar applications could be possible for NTDs
and other infectious diseases.

Many pathogens whose infections elicit partial or waning immunity have complex immu-
nology that results in a unimodal distribution of antibody levels in a population, which makes
it difficult or impossible to identify distinct seropositive and seronegative groups. The W. ban-
crofti and enteric pathogen analyses provided many examples where seropositivity cutoffs
either could not be estimated or fell in the center of unimodal (rather than bimodal) distribu-
tions (S1 and S3 Figs). In those cases, a comparison based on mean antibody levels obviated
the need to choose a cutoff.

Mean antibody levels should require fewer observations to estimate precisely than seroprev-
alence since reducing a quantitative measure to a binary measure results in a theoretical loss of
>36% of Fisher’s information [36]. A sample of 20 individuals is unlikely to provide accurate
information about seroprevalence or seroconversion rates [6], but could provide a reliable esti-
mate of mean antibody levels-the village-level analyses in the Garki project showed that use of
P. falciparum quantitative antibodies led to larger and more precise estimates of differences
between control and intervention groups than seroprevalence when estimated in small samples
(S2 Fig). This could be a particular advantage for serological surveillance in population-based
surveys where sampling clusters often include fewer than 30 people [37], and our labs are cur-
rently working on more formal guidance for sampling designs based on quantitative antibody
levels.

The use of data-adaptive, ensemble machine learning to fit antibody curves and compare
means has several strengths in the context of developing a generalized methodology for
integrated surveillance. The approach is: implemented in open-source software, extremely
flexible, easy to adjust for potential confounding covariates, minimally biased, and highly
efficient [15,30,38]. Ensemble approaches have been successful in cases where no single
model is likely to be correct across diverse applications-for example, cause of death classifica-
tion in the Global Burden of Disease studies [39], mortality prediction in intensive care units
[40], or predicting malaria incidence from diverse antibody panels [41]. An ensemble library
can include a range of models or algorithms, and if simpler models perform better they will
be upweighted in the estimation [15]. Previous statistical methods have used quantitative
antibody levels to measure differences in pathogen transmission by estimating parameters
such as infection rates [41–43], seroconversion rates [3,4,44], or antibody acquisition rates
[8,9,44]. Incidence and seroconversion rates are epidemiologically useful, but to estimate
them from quantitative antibody levels requires strong modeling assumptions, or well-char-
acterized longitudinal cohorts that directly measure the parameter of interest to train mod-
els, or both. Measuring differences in transmission directly from antibody levels with age-
antibody curves requires neither modeling assumptions nor well-characterized cohorts to
train models or fit parameters. This could be an advantage for integrated surveillance
platforms where pathogens vary greatly in their specific immunology and most lack detailed
longitudinal cohorts to characterize their antibody infection profiles. The ensemble fits
revealed consistent shifts in the age-antibody curve with lower transmission, but individual
curves followed age-dependent patterns that varied by pathogen and setting. Data-adaptive,
nonparametric algorithms tended to perform better than simpler models in terms of cross-
validated R2, but there was no member of the ensemble that performed best across all patho-
gens and transmission settings (S4 Fig). We included in the ensemble library an antibody
acquisition model developed for malaria [9], but that particular model underperformed in
comparison with more flexible algorithms such as smoothing splines (S4 Fig). This result
suggests it may be difficult to develop a single model that describes the full diversity of age-
dependent antibody response across very different infectious diseases, and underscores the
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value of considering an ensemble approach for broad analyses envisioned through integrated
surveillance.

The specific antibody kinetics and the age range in which the curves are estimated will
influence the sensitivity of this approach to detect changes in transmission. Curves fit using
antibodies with shorter half-lives should theoretically exhibit shifts more quickly with changes
in transmission. Microarray screening efforts to identify malarial antibodies with a range of
half-lives [41] open the possibility for discovering antibodies with high sensitivity to measure
changes in transmission over short periods. With antibodies measured in multiplex, future
work could develop methods to combine multiple antigens expressed by the same pathogen
into a single quantitative response-a composite measure could prove more robust to differen-
tial immunogenicity arising from differences in host genetics.

Our results show that serological surveillance among children captures the period of great-
est change in the age-antibody curve, and analyses using children would be less susceptible to
longer-term “cohort effects” that could influence the age-antibody relationship for antibodies
with long half-lives [45]. Children are likely the most sensitive population to measure reduc-
tions in transmission: age-specific immunological profiles of malaria and vaccine response to
diverse pathogens show that young children lose antibodies more quickly than adults because
short-lived B cells predominate in young children, and antigen presentation and helper T-
cell function increase with age [7,46,47]. Seasonal reductions in P. falciparum antibody titers
among children <5 during the dry season when transmission was less intense were consistent
with this observation (Fig 4). Surveillance activities that measure a very narrow age range,
such as transmission assessment surveys to monitor lymphatic filariasis elimination programs
(which only measure children ages 6–7 years), cannot estimate a full age-antibody curve but
the summary mean would still provide a robust measure of adjusted mean antibody levels to
compare populations (Fig 1b).

Quantitative IgG antibody response integrates information about an individual’s pathogen
exposure over time [3] - a characteristic of particular import for community-based surveillance
of pathogens with low annual incidence and pathogens that cause many asymptomatic infec-
tions. Low incidence and asymptomatic presentation make community-based surveillance of
changes in transmission difficult because either scenario requires very large numbers of speci-
mens to be tested to identify incident infections. For example, Cryptosporidium parvum is
implicated as a major pathogen of concern due to its contribution to hospitalized cases and
prolonged episodes of diarrhea [48], but community-based studies of Cryptosporidium sp.
require the collection of thousands of stool specimens. Large studies are needed because, even
in hyper-endemic settings, rates of incident infections fall below a single episode per person-
year [49], and because intermittent shedding of small numbers of oocysts in the stools of some
infected individuals can make detection difficult [50]. We have illustrated that full age-anti-
body curves can be estimated with as few as 100–300 observations spread over different ages,
which suggests they could be useful in the surveillance of pathogens with low annual incidence,
or asymptomatic infections that clinical surveillance activities typically miss.

Limitations and next steps

There are two main limitations of the approach. First, mean antibody levels do not estimate a
direct epidemiologic transmission parameter, such as the incidence or force of infection.
Thus, while mean antibody levels provide a flexible, sensitive method to measure differences
in transmission within- or between populations, they provide only indirect information about
the relative importance or health burden of different pathogens. Using the same underlying
statistical method with binary outcomes to estimate seroprevalence (Fig 2, S1 Fig) partly
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addresses this limitation at the cost of losing some information, and our labs are actively work-
ing to extend these general methods to estimate a pathogen’s force of infection. A second limi-
tation is that if a quantitative antibody assay has no global reference standard to translate
arbitrary units into antibody titers, it will be difficult to make direct comparisons of mean anti-
body levels across different assays and studies. Until such reference standards exist, direct
comparisons based on quantitative age-antibody curves and their summary means are only
possible when comparing two or more surveys-or separate groups within a survey-for the
same antibody response measured using the same assay. Assay standardization is a common
challenge of any serological surveillance, so this limitation is shared by all methods that mea-
sure changes in transmission from antibody assays. The development of global reference stan-
dards for antibody assays used in infectious disease surveillance [51], as currently exist for
many vaccine-preventable diseases, would facilitate between-study comparisons.

This study focused on IgG responses to lymphatic filariasis, malaria, and enteric pathogens
measured in blood, but the method should apply to other immunoglobulin isotypes, other
specimen types, and other infectious diseases. For example, similar shifts in IgE curves have
been documented in populations with different soil transmitted helminth transmission [12],
salivary IgG and IgA norovirus assays have been developed [52], and NTDs such as trachoma
[53], dengue [54], and chikungunya [55] all have well-defined antigens that would be amena-
ble to this methodology. Mean antibody response in defined geographic areas over time could
translate directly to mapping activities used to target intervention programs and monitor
transmission or immunization coverage. The ability to combine dozens of recombinant anti-
gens into multiplex bead assays opens the possibility for high-throughput, integrated infectious
disease surveillance that includes pathogens targeted for elimination such as NTDs and
malaria alongside newly emerging pathogens, and vaccine preventable diseases [51]. The
methods developed here provide a very general tool for integrated surveillance of antibody
response from such data.
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Measuring changes in transmission of neglected tropical diseases,

malaria, and enteric pathogens from quantitative antibody levels

S1 Text: Relationship between the age-adjusted mean antibody re-

sponse and the area under the curve

As in the main text Methods, the observed data on individuals include a quan-

titative antibody response (Y ), age (A), a categorical exposure of interest (X),

and a set of potentially confounding covariates (W ). We observe n i.i.d. copies

of O = (Y,A,X,W ) with probability distribution O ⇠ P0. Age-antibody curves

are the mean antibody response by age (A = a) and exposure (X = x), marginally

averaged over W :

E(Y
a,x

) = E
W

{E(Y |X = x,A = a,W )} (1)

A smooth function of the age-antibody curve is the overall mean antibody level

conditional on exposure group (X = x):

E(Y
x

) = E
A,W

{E(Y |X = x,A,W )} (2)

The following illustrates the relationship between this marginal mean and the

area under the age-antibody curve:

E(Y
x

) =

Z

w

Z

a

E(Y |X = x,A = a,W = w)P (A = a|W = w)P (W = w)

=

Z

w

Z

a

E(Y
a,x

|W = w)P (A = a|W = w)P (W = w)

=

Z

w

Z

a

E(Y
a,x

|W = w)P (A = a|W = w)

�
P (W = w)

= E
W

Z

a

E(Y
a,x

|W = w)P (A = a|W = w)

�

The term inside the brackets is area under the age-antibody curve (AUC), within

strata defined by W = w and weighted by P (A = a|W = w). E(Y
x

) is thus the

1



marginal average across the straum-specific AUCs. In a special case where age is

independent of other covariates, or investigators do not need to condition on potential

confounders, P (A = a|W ) = P (A = a), and the above expression further reduces to:

E(Y
x

) =

Z

a

E(Y
a,x

)P (A = a) (3)

This quantity is the AUC of the age-antibody curve in exposure group X = x.

2



Measuring changes in transmission of neglected tropical diseases,

malaria, and enteric pathogens from quantitative antibody levels

S2 Text: Technical details of estimating age-dependent antibody

curves and changes in mean antibody levels

Targeted maximum likelihood estimation (TMLE) is a double-robust, e�cient es-

timation approach that targets the fit of the likelihood to the target parameter

of interest [1, 2]. Below, we describe details of the estimation process and link

the statistical estimation procedure directly to the observed data through a causal

model [3]. TMLE is implemented in R using the tmle package (see [4] for a help-

ful overview of the package and methodology). A full set of replication files to

implement the analyses described in this article, including a companion R package

(tmleAb) and vignette, are available through GitHub and the Open Science Frame-

work: https://osf.io/8tqu4.

Observed data and causal model

As in the main text Methods, a cross-sectional survey measures an individual’s quan-

titative antibody level (Y ), age (A), and other characteristics (W ). Many surveil-

lance e↵orts are also interested in di↵erences in antibody levels by one or more

exposures (X), which may be confounded by W . We assume the observed data

O = (Y,A,W,X) ⇠ P0 arise from a simple causal model:

X

W

A

YY

W = f
W

(U
W

)

A = f
A

(U
A

)

X = f
X

(A,W,U
X

)

Y = f
Y

(X,A,W,U
Y

)

For simplicity, the graph on the left omits unmeasured characteristics (U) that,
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together with each variable’s parents, determine what value it takes (e.g., the error

term for X is denoted U
X

). The equations encode assumptions about time-ordering

between variables in the data (e.g., X, A, and W precede Y ), but make no assump-

tions about the functional form of the relationship between them. The equations

make no formal assumption about the relationship between errors that generate the

data, but under the untestable assumption of no unmeasured common causes of Y

and X, (independence of U
Y

and U
X

), then conditional on A and W mean di↵erences

between groups defined by X have a causal interpretation.

Fitting age-dependent antibody response curves

We are interested in a nonparametric model the mean antibody response as a function

of age A, exposure X and potential additional covariates W (all defined above).

E(Y
a,x

) = E
W

[E(Y |A = a,X = x,W )], (1)

where the outside expectation marginally averages over the covariates W . A flexible

approach to modeling the mean is to use an ensemble of models and algorithms to

predict the mean over observed values of age and exposure. To accomplish this,

we used the “super learner” algorithm, which is a stacked regression approach that

combines individual predictions from each model or algorithm in its library into a

single prediction that minimizes the cross-validated loss – in this case the mean

squared error [5]. The algorithm is implemented in the SuperLearner package in R,

and the companion R package for this paper (tmleAb) includes a convenient interface

for flexibly estimating antibody curves.

In this analysis, we included in the ensemble: the simple mean, generalized linear

models, antibody acquisition models with constant rates [6], locally weighted regres-

sion (lowess) [7], generalized additive models with natural splines [8], multivariate

adaptive regression splines [9], and Random Forest [10]. We used default tuning pa-

rameters with two exceptions. First, for generalized additive models we selected the

degrees of freedom smoothing parameter in natural splines for each fit using cross-

validation [11]. Second, the default Random Forest implementation in R can overfit

2
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the data by growing trees that are too deep (i.e., have too small nodes), so for each

fit we selected the minimum node size in Random Forest using cross-validation.

After fitting the ensemble, we generated curves by predicting the mean outcome

for each level of age and exposure each analysis. Nonparametric estimates of an

exposure-response curve with a continuous exposure (here: age) do not converge at

a n1/2 rate [12] so pointwise confidence intervals will typically have poor coverage,

even under a semi-parametric generalized additive model [13]. Below, we propose a

summary function of the curve, the mean averaged over a range of ages, which can

be estimated consistently and e�ciently under a nonparametric model.

Target parameter of interest (estimand) to compare groups

Our parameter of interest of the observed data distribution P0 was the di↵erence

in the age- and covariate-adjusted population average antibody response in di↵erent

groups. For example, in the Mauke study the exposed group (X = 1) included

measurements after mass drug administration (MDA), and unexposed (X = 0) was

pre-MDA:

 (P0) =  0 = E
P0 [EP0(Y |X = 1, A,W )� E

P0(Y |X = 0, A,W )] , (2)

where the outer expectation is the mean averaged over the empirical distribu-

tion of A and W .  represents a mapping from a probability distribution P0 to a

real number – namely, the di↵erence in means. This target parameter depends on

the probability distribution P0 of O through two quantities: the conditional mean,

E
P0(Y |X,A,W ), and the marginal distribution of (A,W ). Due to the high dimen-

sionality of the statistical model, standard maximum likelihood estimation, which

maximizes the likelihood over all possible probability distributions, is not possible

or results in overfitted estimators. Instead, targeted maximum likelihood (TMLE) is

a two stage procedure that first uses ensemble machine learning to obtain an initial

fit of these quantities and subsequently targets the fit so that it is optimal for the

resulting plug-in estimator of  0.
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Targeted maximum likelihood estimation (TMLE)

For n observations from the probability distribution O ⇠ P0, we define a plug-in

estimator of  0 with the form:

 ̂ =
1

n

nX

i=1

h
Ê⇤(Y

i

|X
i

= 1, A
i

,W
i

)� Ê⇤(Y
i

|X
i

= 0, A
i

,W
i

)
i
. (3)

TMLE estimates  ̂ using a two-stage process. The first stage makes an initial

estimate of Ê⇤(Y |X,A,W ), denoted Ê0(Y |X,A,W ). This could be done using a

highly parametric approach, such as linear regression, but the relationship between

antibody response, exposure group, age, and other characteristics could be very

complex. As with the estimation of age-dependent antibody curves, we used the

“super learner” algorithm to flexibly estimate Ê0(Y |X,A,W ), which are predicted

antibody levels conditional on X, A, and W .

The second stage of TMLE updates the the initial fit, Ê0(Y |X,A,W ), using a

targeting step. If the initial estimate of Ê0(Y |X,A,W ) is consistent then the TMLE

estimate is consistent, but if it is biased then the updating step helps remove residual

bias in the estimation of  0. It involves first estimating a nuisance parameter: the

probability of treatment given observed characteristics, sometimes called the propen-

sity score [14]. In randomized trials P (X = x|A,W ) is known, but in observational

studies P (X = x|A,W ) is typically not known and must be estimated. We estimated

P̂ (X = x|A,W ) using the super learner algorithm with the same library of learners

described above, but with X as a binary outcome variable. The analysis assumes

that P0(X = 1|A = a,W = w) > 0 and P0(X = 0|A = a,W = w) > 0 are positive.

Without this assumption, the conditional expectations of Y in  (P0) are not well

defined. In practice, this second assumption means that exposure groups need to

have good overlap in age and any other covariates included in the analysis.

TMLE then uses P̂ (X = x|A,W ) to construct an individual-level covariate, which

is chosen specifically for our parameter of interest (equation 2) to solve the e�cient

4



influence curve and thus minimize the bias in the estimate of  0 [2]:

h(X,A,W ) =

 
I(X = 1)

P̂ (X = 1|A,W )
� I(X = 0)

P̂ (X = 0|A,W )

!
(4)

The targeted update is achieved using a univariate generalized linear model that

includes Ê0(Y |X,A,W ) as the o↵set with h(X,A,W ) as a single covariate. For

continuous outcomes such as Y , it has been shown that a conducting the update on

the linear scale works in many cases (i.e., a generalized linear model with an identity

link), but if h(X,A,W ) can take on large values then there are important robustness

advantages to conducting the update on the logistic scale using a re-scaled version

of the outcome bound between (0,1) [15]. If Y is bounded by (a, b) then a re-scaled

version Y ⇤ = (Y �a)/(b�a) is bounded by (0,1). The logistic model is then fit using

maximum likelihood:

logit[Ê1(Y ⇤|X,A,W )] = logit[Ê0(Y ⇤|X,A,W )] + ✏̂h(X,A,W ) (5)

Predicted antibody levels from this update, transformed back to their original scale,

are then used in the plug-in estimator: Ê1(Y |X,A,W ) = Ê⇤(Y |X,A,W ) in equation

3. TMLE is a regular, asymptotically linear estimator. For this reason, standard

errors, confidence intervals, and P -values are estimated using the influence curve

[1, 2], and readily accommodate repeated measures data if that is a feature of the

design [4].
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Wb123 age-dependent seroprevalence curves. b, mean Wb123 seroprevalence by age category. Wb123
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(Kubofcik et al. PLOS Negl Trop Dis. 2012;6: e1930) and used in the seroprevalence analyses. The
source data used to generate this figure are here: https://osf.io/8tqu4 (mauke), and the scripts used
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S2 Figure : Caption on the following page.



S2 Figure: Plasmodium falciparum age-antibody curves estimated separately for each intervention village
(a-f) measure reductions in malaria transmission due to intervention in the Garki Project, Nigeria (1970-
1976). Antibody response measured with the indirect fluorescent antibody (IFA) test for P. falciparum

during the active intervention period (survey rounds 3-5, at 20, 50, and 70 weeks following the start of
intervention). The left column includes curves and means using quantitative antibody titers and the right
column includes estimates using seroprevalence. Each curve and mean was estimated with between
19 and 119 observations, depending on the village and survey round. Error bars show 95% confidence
intervals for the summary means. Each village panel includes the same curve for the two control villages
(black) for comparison. Control measurements were combined across survey rounds within each period
when plotting the curves to facilitate visual comparison of shifts in transmission between surveys. The
source data used to generate this figure are here: https://osf.io/8tqu4 (garki), and the scripts used to
generate the figure are here: https://osf.io/ek3sx (garki).
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S3 Figure : Kernel density smoothed distributions of enteric antibody response in children < 5.5 years old in the United States
(USA) and Haiti. Antibody response measured in multiplex on the Luminex platform using median fluorescence intensity minus
background (MFI-bg). Triangles below the distributions indicate seropositivity cutoffs determined using finite gaussian mixture
models fit to each country’s measurements (filled triangles) or the combined sample set (open triangle), where cutoffs were
determined using the mean+3*SD of the first gaussian component. Cutoff values beyond the range of observed measurements
are not shown. a. Cryptosporidium parvum recombinant 17-kDa antigen; b. Cryptosporidium parvum recombinant 27-kDa
antigen; c. Giardia intestinalis variant-specific surface protein-5 (VSP-5); d. Entamoeba histolytica lectin adhesion molecule
(LecA); e. enterotoxigenic Escherichia coli (ETEC) heat labile toxin � subunit. Note: the Y-axis is truncated at 1.0 but extends
to 10.0 for this antibody; f. Salmonella spp. lipopolysaccharide (LPS) Group B; g. Norovirus Group I.4; h. Norovirus Group II.4
New Orleans. The source data used to generate this figure are here: https://osf.io/8tqu4 (enterics), and the scripts used
to generate the figure are here: https://osf.io/ek3sx (enterics).
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S4 Figure : Performance of the ensemble and individual models/algorithms. The super learner algorithm combines predictions from an ensemble by selecting a
weighted combination of individual model predictions using cross-validation to optimize the bias-variance tradeoff – in this case, mean squared error (MSE). We
estimated the cross-validated MSE and the related cross-validated R

2 of the super learner along with each of its constituent models/algorithms across a range of
populations and pathogens in the analysis. Cross-validated R

2 represents the percentage of outcome variability explained beyond estimating the simple mean.
a, Cross-validated estimates of R2 for the super learner ensemble and its constituent models/algorithms across example populations and pathogens. Horizontal
lines represent twice the standard error of the R

2 estimates measured across 10 cross-validation splits. In all cases, the algorithms only included age as a feature
in antibody level prediction. In the Garki Project, where additional information was available, including additional covariates (sex, wet vs. dry season, village
membership) did not markedly improve R

2 for any algorithm or the ensemble. b Super learner ensemble estimates of age-dependent antibody curves for different
populations and pathogens including the full library (all members listed in a) as well as a restricted library that excluded two highly adaptive algorithms (Random
Forest and MARS).The most highly adaptive algorithms that we considered (random forest and MARS) often led to jagged age-antibody curves, and excluding
them led to consistent but smoother curves. We therefore used the restricted library in other analyses. Abbreviations: GAM: generalized additive models with
natural splines; GLM: generalized linear model; LOESS: Locally weighted regression; MARS: Multivariate adaptive regression splines; Yman2016: Antibody
acquisition model proposed by Yman et al. [Sci Rep 2016; 6:19472]. The source data used to generate this figure are here: https://osf.io/8tqu4, and the
scripts used to generate the figure are here: https://osf.io/ek3sx.




