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Abstract

Background: Excess adiposity in children is strongly correlated with obesity-related metabolic 

disease in adulthood, including diabetes, cardiovascular disease, and 13 types of cancer. Despite 

the many long-term health risks of childhood obesity, body mass index (BMI) Z-score is typically 

the only adiposity marker used in pediatric studies and clinical applications. The effects of 

regional adiposity are not captured in a single scalar measurement, and their effects on short- 

and long-term metabolic health are largely unknown. However, clinicians and researchers rarely 

deploy gold-standard methods for measuring compartmental fat such as magnetic resonance 

imaging (MRI) and dual X-ray absorptiometry (DXA) on children and adolescents due to cost or 

radiation concerns. Three-dimensional optical (3DO) scans are relatively inexpensive to obtain and 

use non-invasive and radiation-free imaging techniques to capture the external surface geometry of 

a patient’s body. This 3D shape contains cues about the body composition that can be learned from 
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a structured correlation between 3D body shape parameters and reference DXA scans obtained on 

a sample population.

Study Aim: This study seeks to introduce a radiation-free, automated 3D optical imaging 

solution for monitoring body shape and composition in children aged 5–17.

Methods: We introduce an automated, linear learning method to predict total and regional body 

composition of children aged 5–17 from 3DO scans. We collected 145 male and 206 female 

3DO scans on children between the ages of 5 and 17 with three scanners from independent 

manufacturers. We used an automated shape templating method first introduced on an adult 

population to fit a topologically consistent 60,000 vertex (60k) mesh to 3DO scans of arbitrary 

scanning source and mesh topology. We constructed a parameterized body shape space using 

principal component analysis (PCA) and estimated a regression matrix between the shape 

parameters and their associated DXA measurements. We automatically fit scans of 30 male and 38 

female participants from a held-out test set and predicted 12 body composition measurements.

Results: The coefficient of determination (R2) between 3DO predicted body composition and 

DXA measurements was at least 0.85 for all measurements with the exception of visceral fat on 

3D scan predictions. Precision error was 1–4 times larger than that of DXA. No predicted variable 

was significantly different from DXA measurement except for male trunk lean mass.

Conclusion: Optical imaging can quickly, safely, and inexpensively estimate regional body 

composition in children aged 5–17. Frequent repeat measurements can be taken to chart changes 

in body adiposity over time without risk of radiation overexposure.

Keywords

3D Scanning; Body Composition; Machine Learning; Pediatric obesity

INTRODUCTION

Obesity in childhood and adolescents strongly predicts lifelong obesity. More than half of 

obese children develop into obese adolescents, and around 70% of obese adolescents remain 

obese past age 30 [1]. Over the last 30 years, obesity has more than doubled in children 

under age 12, quadrupled in adolescents, and is linked to cardiovascular disease, insulin 

resistance, and 13 different types of cancer [2–6]. Body mass index (BMI) and its z-score 

(BMI-Z) are often used as analogues for adiposity but fail to capture both total and regional 

compositional differences between fat and lean mass, both of which are correlated with 

cardiometabolic risk. [7]

Despite the connections between pediatric obesity and lifelong metabolic disease risk, 

study of body composition analysis in pediatrics is limited. Gold standard imaging 

techniques to measure total and regional adiposity such as dual X-ray absorptiometry (DXA) 

requires exposure to ionizing radiation, which are potentially more harmful in children and 

adolescents and is used sparingly. MRI, although radiation free, is expensive to capture and 

unsustainable in both time and cost for frequent repeat monitoring. Children with behavioral 

conditions may be ineligible for both DXA and MRI due to compliance limitations at this 
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age bracket [8]. This is particularly problematic in pediatric research as people experience 

the largest rates of change in body mass and composition between the ages of 5 and 18 [9].

Intermediate alternatives to radiological imaging for adiposity measurement, such as 

bioelectric impedance, offer more information than BMI alone but have limited resolution in 

regional adiposity measurement. These methods extrapolate adiposity from scalar signals 

instead of directly imaging the body compartments contributing to total and regional 

adiposity [10, 11]. A non-radiological method that can accurately estimate the metrics 

measured by reference methods such as DXA without exposure to ionizing radiation could 

dramatically increase the survey frequency for metabolically at-risk children and adolescents 

during their critical developmental period of maximum compositional fluctuations.

3D optical (3DO) scanning is a radiation-free method of capturing external body shape 

using structured light (SL) or time of flight (ToF) imaging that is faster, safer, and relatively 

inexpensive compared to radiology. [12] 3DO scanning produces a 3D image of the surface 

geometry of a human body represented as a point cloud connected by edges in a graph 

structure. These 3D surfaces represented as unions of discrete points and their 3D spatial 

graph connections are defined as 3D meshes. Previous work on an adult cohort demonstrated 

that 3DO captured body shape is a strong signal for many of the body composition metrics 

measured by DXA. [13, 14] Additional studies on children aged 5–17 indicated similar 

correlations between 3D shape and body composition for a pediatric population [15]. A 3DO 

model for predicting body composition from scans for children would allow for safe and 

repeatable measurements of total and regional adiposity. As was the case in adults, this step 

was missing due to a lack of paired 3D to DXA data and the lack of standardized formats 

and interpretations for unstructured 3D mesh data. [16]

The purpose of our investigation was to develop a unified, input device-agnostic 3DO body 

composition prediction model for a pediatric population spanning the age range of 5–17. 

Our method standardizes randomly ordered point clouds captured by 3DO scanners into 

a common topology and builds a principal component parameterized shape space from 

the standardized mesh set. We derived predictions to DXA metrics from this shape space 

and tested its predictive capacity on held out 3DO scans. This method could be used for 

body composition monitoring in juvenile and adolescent patients without exposing them 

to potentially harmful radiation doses while also increasing the survey frequency for data 

acquisition, enabling longitudinal monitoring over shorter intervals. We hypothesized that 

our method would generate body composition predictions with accuracy and precision 

comparable to DXA, thus allowing for greater freedom and resolution in longitudinal studies 

of body composition for children and adolescents.

METHODS

This work builds upon the methods of [16] and is a cross-sectional study of a highly 

stratified sample of children that estimates body composition from unstructured 3DO scans 

and benchmarks accuracy against whole body DXA measures. We present an automated, 

device agnostic pipeline for converting raw, unorganized 3D optical scans into watertight 

and topologically consistent 60,001 vertex (60k) fitted mesh templates. From a set of 
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templated meshes produced by our method, we construct a parameterized 3D shape space 

using PCA and demonstrate its capacity to predict body composition measures with 

accuracies measured against DXA. The subset of DXA variables predicted in this study 

are fat mass, fat-free mass, percent fat, visceral fat, arm fat, leg fat, trunk fat, arm lean, 

leg lean, trunk lean, fat mass index, and fat-free mass index. In addition, we inverted 

the prediction equations to visualize how increments in certain body variables affect the 

3D shape of a scanned subject, potentially providing clinicians a visualization tool for 

estimating longitudinal differences in a pediatric population whose bodies change much 

more rapidly in short time scales than an adult cohort.

We used the methods from [16] to standardize 145 male and 206 female scans from 

three different 3DO scanners to construct statistical models of body shape using principal 

component analysis (PCA). We computed linear regressions between the shape parameters 

of the PCA model and paired DXA composition measurements for all participants in the 

training set. We tested the predictive accuracy of our model on 132 held out 3DO scans 

(52 males). We used our shape model to extrapolate the body shape and composition of a 

younger child to an older age to visualize both the effects of intervention and aging versus 

no intervention.

Experimental Cohort

Our method was trained and tested on children and adolescents from the Shape Up! 

Kids Study (NIH R01 DK111698) and were recruited in the Honolulu, HI area at the 

University of Hawaii Cancer Center (UH), in the San Francisco, CA area at the University 

of California, San Francisco (UCSF), and in the Baton Rouge, LA area at Pennington 

Biomedical Research Center (PBRC). This work represents an intermediate analysis of an 

in-progress data collection project.

This was a cross-sectional study stratified by age (5–17yr), ethnicity (non-Hispanic white, 

non-Hispanic black, Hispanic, Asian, and Native Hawaiian or Pacific Islander (NHOPI)), 

sex, and BMI z-score. [15] Recruitment quotas were designed to represent a continuum 

of body types spanning underweight, healthy, and overweight ranges as determined by 

BMI z-score. BMI z-score cutoff boundaries were −2, −1, 0, 1, and 2. Tanner staging was 

self-reported by participants and not used as a stratification variable. Age in years was 

used as the surrogate variable. This cohort was deliberately designed to continuously span 

the most comprehensive range possible of body shapes and compositions of children aged 

5–17. A diverse dataset with densely sampled examples across the spectrum of expected 

body compositions and ages enables the derivation of more accurate and body shape and 

composition models that generalize better to unseen data. The scope of inclusion of our 

study allows for our model to be compatible with any child who falls within the ranges of 

our dataset specified in Table 1.

Participants were screened for study eligibility via phone interview and excluded if they 

could not stand unassisted for two minutes or lie motionless for ten minutes, had metal 

implants, or had major body-shape-altering procedures (e.g., liposuction, amputations, etc.). 

No pregnant or lactating individuals were included in the study. Written informed consent 

was obtained from each participant upon arrival and all procedures were approved by 
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the Pennington Biomedical Research Center (PBRC; IRB study #2017–10, Federalwide 

Assurance #00006218); University of California, San Francisco (UCSF; IRB #16–20197); 

and University of Hawaii Office of Research Compliance (UH ORC; Center of Health 

Sciences #24282). The study is publicly listed on ClinicalTrials.gov as ID NCT03706612.

DXA Scans.—Reference total and compartmental body composition measurements were 

defined by DXA. We acquired single whole-body scans of each participant on either a 

Hologic Horizon/A system (UCSF) or a Discovery/A system (PBRC and UHCC) (Hologic 

Inc., Marlborough, MA, USA). Participants were positioned and scanned according to 

the respective manufacturer’s guidelines. All scans were analyzed by a single certified 

technologist at UHCC using Hologic Apex version 5.6 with the National Health and 

Nutrition Examination Survey (NHANES) Body Composition Analysis calibration option 

disabled [17]. DXA systems quality control was performed by monitoring the weekly values 

of the Hologic Whole Body Phantom. Cross-calibration was checked between sites using a 

whole-body phantom scanned at each site, and calibrations were performed to compensate 

for systemic bias in all DXA measurements.

3D Optical Scans.—Inputs to our prediction model for training and testing were 

collected via 3D optical scanning. Scanners output unordered and unstructured point clouds 

representing the 3D surface geometry of the scanned participant. Participants wore form-

fitting tights, a swim cap, and sports bra if female. Each participant was scanned in one or 

more 3DO systems pending availability at each recruiting location. We used three different 

3DO system manufacturers across all sites: System 1 (Fit3D Proscanner 4.x, Fit3D Inc, 

Redwood City, CA, USA), System 2 (Styku S100 4.1, Styku LLC, Los Angeles, CA, USA), 

and System 3 (Size Stream SS20, Size Stream, Cary, NC, USA). Scans from different 

systems differed slightly in pose, although all were upright with straight elbows and knees 

in a neutral A-pose, and differed significantly in vertex count, spanning three orders of 

magnitude from 4,000 to 400,000 points. Scans were scaled to metric units and rotated 

and translated to align with System 1 orientation and positioning. This rigid transformation 

aligned the feet of all scans were aligned with the ZX plane as the ground plane and 

the origin as the center point midway between the arches, as shown in Figure 1. Height 

normalization was not performed on a per-subject basis as scanners were calibrated to 

agree on metric length scales. No pose normalization was performed on the scans. Minor 

discrepancies in scale or pose on an individually varying basis after these preprocessing 

steps were treated as data sampling noise consistent with future in-the-wild applications that 

our model was expected to learn to be agnostic towards. No other variables from the 3D 

scanner other than the raw 3D position information of the body surface were used in our 

model. Each participant was scanned on all three devices. This was done to train the shape 

and regression models to behave agnostically with respect to scanning machinery specific 

variations. Pose and scan quality varied slightly based on scanning technology. Sampling 

each participant on multiple scanners allows us to generate augmentation data on a limited 

cohort and train the model to account for scanner induced noise in the input data [16]. 

Participants were scanned twice on each system to gather a test-retest precision evaluation 

data set. As these scanning devices were often designed for adult dimensions and were not 

calibrated for the stature of small children, some scans were excluded from the study due to 
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scanning defects. Scans were excluded using quality control procedures looking for a priori 

quality issues including scan artifacts, excessive spatial noise, and incomplete scans [15]. No 

differences were noted in the study outcome variables between scans included and excluded 

due to participant demographics. An example of the differences present in different device 

captures of the same individual is shown in Figure 1.

There were 145 and 206 meshes in the training set for males and females, respectively. For 

Systems 1, 2, and 3, respectively, there were 57, 53, and 35 males scans and 88, 68, and 50 

female scans in the training set. There were 52 and 80 meshes in the test set, with 26, 15, 

11 males and 35, 25, 11 females for Systems 1, 2, and 3 respectively. Using a standardized 

significance level of 0.05, a desired power level of 0.8, and a standardized effect size of 0.2, 

0.5, and 0.8 for small, medium, and large effect sizes respectively as suggested by Cohen’s 

d, the number of observations required for a well-powered study are 394, 64, and 26. 0.56 is 

the minimum effect size our study is powered to detect in the male model given the smaller 

52-member cohort while 0.45 is the minimum for females with 80 test scans. Our study is 

well-powered to detect a large effect size in males and a medium effect size in females.

Male and female models were trained and tested separately. All participants in the dataset 

were represented by between one and three scans. Data acquisition protocol specified two 

scans on each of three scanning devices in order to generate augmentation data and retest 

precision data. However, some scans were dropped from the dataset due to poor quality or 

incompleteness [15, 16]. Because participants were scanned with more than one scanning 

system, there were only 83 and 119 unique participants in the training set for males and 

females respectively, and 30 and 38 unique participants in the test set. The test set was a 

randomly selected set of 20% of the total unique participants.

3D Scan Templating and Shape Model Construction

In order to estimate the body composition of novel unorganized 3D scans, we constructed a 

unified PCA body shape model spanning the minor pose variance observed among our three 

scanning devices using an automatic templating procedure as specified in Tian et al. [16]. 

Our initial bootstrap sets consisted of 107, 28, and 25 fitted female meshes from System 1, 

2, and 3, respectively, and 75, 12, and 9 fitted male meshes. The bootstrap set meshes were 

template-fitted with manually annotated landmarks as specified in Allen et al. [18] using a 

topologically consistent 60k mesh and combined into a single initial bootstrap PCA shape 

model.

The bootstrap PCA model was used to initialize an automated fitting procedure to produce 

a final unified autofit PCA model consisting of 60k autofits of all training scan meshes. We 

created a random 80/20 training/test set split sorted on participant IDs instead of individual 

mesh files, resulting in 39 female and 30 male IDs in the test set. Since we split training and 

test by participant ID and not by mesh ID, we ensured no participant had one system’s scan 

in training while another separate mesh was in test. This resulted in a test set mesh count 

consisting of 80 female and 52 male raw scans as some participants were scanned in up to 

three different scanning systems. We deformed a 60k template by optimizing its principal 

component domain parameters in the bootstrap model to coarsely fit all raw training scans 
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from all devices, totaling 88, 68, and 50 female scans, and 57, 53, and 35 male scans from 

Systems 1, 2, and 3 respectively. This was done by optimizing the L2 regression objective:

E(w) = Aw − b 2 + Λ w − w0 2 (1)

where

b = y − μ (2)

for PCA transformation matrix A, PCA mean vector μ, regularization matrix Λ, target 

surface y, and initialization shape vector w0. We solve for w by performing iterative least 

squares optimization. At each step, we populate the target surface vector y with the closest 

points in the 3DO scan to the vertices of the current fitted surface estimate represented by 

Aw + b, and then solve for w via linear least squares. Since this method assumes rough 

anatomical alignment between the template and the target meshes, an initialization vector 

comprised of [height, weight, age] was used to seed the template mesh shape and start the 

vertex pairing from w0, the expected shape of an individual with those defined dimensions, 

instead of μ, the population mean. Λ was a diagonal matrix with λ
σi

 at each entry, where λ 

was a regularization strength hyperparameter (set to 0.001) and σi was the standard deviation 

of the ith PCA component. PCA parameters w were optimized and new pairings y were 

computed iteratively until norm of the difference between wk and wk−1 was less than a 

convergence hyperparameter (0.1) for iteration k.

This coarse PCA deformation resulted in an intermediate mesh shape that was close to the 

target raw scan and was anatomically constrained by the standard deviations of each PCA 

basis parameter instead of manually assigned vertex targets. This allowed us to automate 

the fitting procedure and scale our method to much larger datasets. A surface-to-surface 

alignment from [18] was used to create a final refined fit that brought the coarse-fit 60k 

template into close alignment with the raw scan. This method was described in greater 

mathematical detail in [16] for adult participants.

We constructed a new unified autofit PCA space from the automatically templated training 

meshes consisting of 206 females and 145 males from all three scanning systems. This 

PCA model is the final model used for test set fitting and body composition prediction. We 

repeated the automated fitting procedure using the unified autofit PCA model as specified in 

[16] on the raw test set scans. A diagram of this multi-step process is shown in Figure 3.

Statistical Considerations.—In this study, our goal was to generate estimates of body 

composition from 3DO scans. We learned body composition metrics from the projected 

PCA coordinates of our final refined training mesh fits in a manner similar to [16]. For all 

templated 60k meshes in the training set, we found the projected PCA coordinate vector w 
by multiplying its flattened 3D coordinate vector s with the transpose of the PCA basis, AT, 

which is also its inverse.
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w = ATs (3)

We learned a regression matrix M that best maps the projected PCA basis coefficients of all 

training meshes W to the DXA body composition measurement vector of all training meshes 

Y.

Y = MW (4)

Previous work learned the regression from shape PCA to body composition on the first 

k components that explained 95% of the shape variance in the training data [14] or all 

available PCA components using ordinary least squares (OLS). [16] In this work, we used 

a Least Angle Regression (LARS) [19] procedure to select the weights of our prediction 

model. We chose k=61 and k=40 for females and males respectively, as those were the 

number of components that explained 99.9% of the shape variance in the training set for 

each gender. Height, weight, age, and BMI were appended as additional regression features. 

We used this LARS model trained on the unified autofit training set to predict the body 

composition of the held-out test set scans after automatic template fitting and refined surface 

alignment. For comparison to LARS, we estimated body composition using four additional 

kinds of ensemble learning methods when mapping optimized PC coordinates to body 

composition: Decision tree [20], random forest [21], AdaBoost [22], and Gradient Boost 

[23].

We compared the predicted body composition values against DXA reference with the 

coefficient of determination (R2), root-mean-squared error (RMSE), and Student’s t-test.

A p-value of less than the Bonferroni corrected significance threshold of 0.004 for 12 

measurements is undesirable as it indicates a significant difference between the means of 

DXA and our predictions from 3D templated scans.

To visualize the effect of changing scalar metrics on body shape, we solved the inverse 

regression problem that maps changes in a set of metrics of interest ΔY to a change in 

principal component coefficients ΔW with matrix X analogous to section 4.3 of [18]:

ΔW = XΔY (5)

We apply the shape offset ΔW to the scanned shape as discussed in [16] and [18] to simulate 

a change in a body composition variable, or for growing children, an advancement in age.

A web-GUI implementation of this method is available for public trial at https://

shapeup.shepherdresearchlab.org/3do-bodycomp-analyzer/.

RESULTS

DXA reference values for the study population are shown in Table 1. Training and test set 

properties were not significantly different for any measured variable (p-value > 0.004 after 

Bonferonni correction). A visualization of the distribution of scans by device for each age 
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group in the training set is shown in Figure 2. Age categories were delimited based on 

recruitment stratification in Shape Up! Kids.

An example of an automated 60k templated fit from the test set fit using our method is 

shown in Figure 4.

Body composition prediction accuracy and t-tests against DXA from automated 3D optical 

scan fits for the LARS method are shown in Table 2. The values are mostly higher than 

the analogous results on adults in Tian et al. with the exception of male visceral fat. No 

predictions were significantly different from DXA measurements except for male trunk 

lean mass. The Demographics Only column shows the baseline regression accuracy using 

only the supplied initialization variables [height, weight, age] in the absence of any PCA 

shape information. Improvement upon these values justifies our methods for increasing the 

composition prediction accuracy beyond regressions from just the initialization scalars. All 

predicted metrics were better in our 3D template fit predictions than the baseline predicted 

by height, weight, and age with no shape fitting. Even in metrics that started at very high 

R2 values such as lean mass and trunk lean, the RMSE values improved by as much as 

20–40% after 3D fitting. A breakdown of prediction values by scanning device is shown 

in Table S1 of the Supplemental Data to detect biases in any single scanning system. Only 

visceral fat in both sexes was significantly different from DXA and underperformed relative 

to the combined cohort. No other biases were detected. None of the other ensemble learning 

methods (decision tree, random forest, AdaBoost, and Gradient Boost) performed as well as 

LARS method (data not shown). LARS regression was in practice only different from an 

OLS solution on the full component vector by around 0.02 R2 on test data, but was a more 

conservative model as it used less than a third of the total variables to learn the mapping.

Table 3 shows test-retest precision of the 3DO estimates as measured by the coefficient of 

variation (%CV) and defined in Glüer et al. [24]. Duplicate DXA scans were not acquired to 

be radiation dose conserving. Shepherd et al. [25] showed that the %CV of DXA in children 

aged 6–16 on bone mineral density and content was age dependent but typically less than 

2%. Although we lose some precision with our optical method, we note that we gain the 

ability to collect multiple data points in rapid succession or over a longitudinal study without 

risk of radiation exposure.

We computed the delta-weight vector corresponding to age changes, and added this vector 

to a templated scan multiplied by a constant to represent change in years as in section 4.3 

of [18]. This process can generalize to any number of variables, but in our visualization, we 

solved for a hyperplane over the age / BMI domain and kept BMI fixed while incrementing 

age in order to visualize the effect of aging for an individual of those particular dimensions. 

Figure 5 shows examples of extrapolating young children to 18 years of age while keeping 

predicted BMI constant. A high and a low BMI example was tested for a male and a female 

participant.

These extrapolated images capture the effects of puberty in its age-progression deformation, 

such as changes in limb proportions and development of secondary sex characteristics. Since 

Tanner staging was self-reported and thus not used as a stratification variable in this study, 
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age served as the prior for pubertal maturity in our model. Figure 6 shows expected body 

shapes generated using our PCA model for a female measuring 1.6m tall and 50kg at ages 

9, 13, and 17. This regularization allowed our model to disentangle pubertal maturity from 

individuals of similar stature, a distinction that was not necessary in prior work on adult 

cohorts.

Figure 7 shows Bland-Altman plots with associated best-fit lines for fat mass, lean mass, and 

visceral fat for female and male test set predictions respectively. Equations for the best-fit 

lines on each plot and the p-values for the coefficients are shown in the top right corners. 

This study was designed to develop a model that could perform generalized device, age, and 

shape agnostic body shape and composition predictions to any 3DO input that fell within 

the bounds of our training parameters and not to distinguish differences between scanners or 

groups. Prediction models learned continuous interpolations of densely sampled body shape 

variation within a representative population and thus required inclusion of a diverse range of 

training and testing examples in the experimental cohort. The plots on Figure 7 show that 

outliers are uniformly distributed. Our method achieves consistently accurate predictions 

across the range of body compositions in our test data without significant bias.

DISCUSSION

We presented the most complete 3DO-based solution for total and regional body 

composition analysis in children and adolescents at the time of writing. Wells et al. [26] 

studied a sample of 1484 children between the ages of 5–11 with 3DO scanning but 

only tested the accuracy of collecting scalar anthropometric features from scans without 

consideration of body composition. Santos et al. [27] used the features collected by this 

method to construct a PCA space similar to our work, but only analyzed the correlation 

between individual principal components with anthropometric and body composition 

measurements and did not actually predict the body composition metrics of test data. Our 

method takes raw, unformatted 3DO scans as input and predicts 12 body composition 

variables end-to-end with no intermediate manual processing required. Our automated 

system enabled fast processing of raw 3DO scans that yielded 3–5 times more templated 

meshes for some scanning systems than were previously available through the manual 

annotation pipeline. Our method worked on young children and adolescents despite the 

greater range of body size variation among this age group relative to an adult-only cohort.

Our study is currently underpowered for small effect sizes in females and medium effect 

sizes in males. With a target recruitment of 720 total individuals for Shape Up! Kids 

(NCT03706612) and an approximate 50/50 sex distribution, our study is not powered to 

detect a small effect size of d=0.2 between DXA and 3DO prediction. The power level of 

our study will not affect the primary metric of accuracy used for determining agreement 

between two measurements, R2 and RMSE, or the precision of repeat trials (%CV). A study 

underpowered for small effect sizes may prevent us from detecting a statistically significant, 

systemic bias between 3DO prediction and DXA as measured by the p-value in Table 2.

The wide variation of body shapes between young children and more mature teens 

presents additional challenges for evaluating body composition in a pediatric population. 
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For example, although a BMI of 17 in Figure 5B is not alarming, an associated 37% body 

fat increases cardiovascular disease risk by 2–4 times in adults [28]. Our model predicted 

this value to fall to 33% at age 18. Intervention could be recommended based on current 

body fat percentage but not current BMI. Additional work is required to accurately model 

how individual bodies change shape and composition over time as influenced by puberty and 

maturity.

We tried four kinds of ensemble learning methods when mapping optimized PC coordinates 

to body composition: Decision tree, random forest, AdaBoost, and Gradient Boost. We 

found that these alternatives to LARS did not perform as well with this data type. None of 

them were close to achieving an 0.85 R2 for fat mass on the test data. Such methods may 

be more useful when larger datasets are available, as fragmenting an age 5–17 cohort into 

many subsets creates heavily biased, weak estimators that do not perform well on test data 

that may be drastically different from the training data.

We tried alternatives to PCA for constructing a body shape latent space, namely supervised 

dimensionality reduction using linear discriminant analysis (LDA) [29] with percent fat 

and visceral fat mass as discriminant variables, and nonparameterized prediction methods 

such as Gaussian Process Regression (GPR) [30]. PCA had advantages over both methods. 

LDA created projections that cluster data points around their assigned labels, which did 

not translate well to continuous regression. GPR performed better than parameterized 

regressions in our previous adult study [16] but the test dataset was too small to adequately 

compare PCA to GPR.

Children have a lower safety tolerance for X-ray radiation than adults [29], and this imposes 

a single scan limit with a long minimum time interval between scans. Although the precision 

of our 3DO method for body composition estimation is 2–5 times lower that of DXA bone 

density precision on kids, this limitation can be mitigated due to the ease of repeating of 

3DO scanning. As we showed in Tian et al. [16], the least significant change (LSC) [32] is:

LSC = 2.77 * RMSEprecision

This value drops with the square root of the sample number [33]. The LSC for fat mass 

is around 2kg for children. Four samples at a given time point is enough to drop the LSC 

below 1kg, which is comparable to the LSC of DXA on adults from Tian et al [16]. As 

each scan takes around a minute, is radiation-free, and can be processed automatically, this 

increase in procedure time is an acceptable trade off to improving the monitoring precision. 

The speed of the scan capture is especially valuable for very young children, as they have 

greater difficulty staying still for the requisite amount of time needed for DXA or MRI 

(10–30 minutes).

2 scans on each of 3 scanning systems were collected as part of the data protocol to 

train our model to be robust and agnostic to pose variation and scanner specific geometry 

characteristics. However, some scans were dropped due to hardware or software errors on 

the side of the scanner manufacturer. Future data captures may opt to collect 3 or 4 scans 

on each system with the intent of both lowering the LSC and to build in redundancy in the 

Tian et al. Page 11

Clin Nutr. Author manuscript; available in PMC 2024 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



data capture such that a minimum floor of 6 scans, two on each device, can be guaranteed 

for every participant in the dataset.

Pose variation is more extreme in younger children than in adults or postpubescent teens. 

Fixed handrail and feet placements in some scanners will naturally cause more arm 

and leg abduction for smaller bodies and could introduce additional variations in the 

shape model that do not correlate well to body compositions. We experimented with a 

regression from all 60k vertices in the test set to body composition instead of from PCA 

coefficients, eliminating compression loss from the PCA encoding as a source of error. 

These results were similar (within 0.02 R2 in either direction) to PCA coefficient regression, 

suggesting the variance in the shapes themselves contribute to most of the inaccuracy. Pose 

normalization [34] may focus the variance of the 3D shapes on physiological change and 

decrease the impact of pose on the shape model, leading to more precise predictions of body 

composition.

This study has several limitations left to be addressed by future work. Shape differences 

between individuals of different ages are much more drastic in a 5–17 aged cohort than in 

an adult study and can vary substantially between individuals of the same age depending 

on rate of growth and maturity. It is necessary to have more data relative to an adult 

study to fully capture the continuum of growth and variation in the preteen to teen age 

range. The currently available participant cohort is about half the size of the adult study 

population in. Additional data availability may increase the accuracy of the predictions 

by fully representing the variance between age ranges and scanners, enabling the use of 

more flexible nonlinear models such as GPR. Furthermore, because the bodies of juveniles 

and adolescents can change dramatically in a period of time that may be shorter than a 

typical clinical follow-up, longitudinal studies in this age range are required to isolate the 

relationship between body composition and body shape controlled for natural growth and 

maturation.

CONCLUSION

3DO imaging technologies can estimate body composition in children and adolescents 

with accuracy well correlated to and not significantly different from reference DXA 

measurements and provides estimates on many variables not accounted for by commonly 

used body composition measurement proxies, such as BMI. Precision error of our 3DO 

method is within 2–5 times that of DXA, a tradeoff that can be compensated for with repeat 

measurements. We applied a method for automatically fitting a topologically consistent 60k 

template mesh to arbitrary 3DO scans and predicting body composition metrics from the 

standardized meshes. Our previous work using this technique was only trained and tested 

on an adult population (age 18+) and was not assumed a priori to work on children and 

adolescents. Although the precision error as measured by %CV was worse than DXA bone 

mineral density benchmarks, the rapid (<1 minute) scan time and the lack of ionizing 

radiation allows for multiple samples to be collected either in quick succession to mitigate 

prediction noise or over a monitoring period to plot longitudinal change. Future work can 

focus on further reducing the barrier to collecting body composition data by allowing for 

predictions on 2D image inputs such as in [35].
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Our method is safe and fast, with end-to-end automation between 3DO inputs and predicted 

outputs and can be deployed in non-clinical settings where radiological imaging would be 

prohibitively expensive. 3DO imaging is a promising tool for monitoring childhood obesity 

during a crucial developmental period that may have long-term implications on future health 

and metabolic risk.
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Figure 1. 
Scans of a 14-year-old male on Systems 1, 2, and 3 respectively.
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Figure 2. 
Scan count for each scanning device in each age category.
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Figure 3. 
Diagram showing workflow to produce body composition predictions for unseen test scans. 

Operations in each row corresponds to bootstrap, training, and test data respectively.
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Figure 4. 
Automated template fitting results on two females from the test set at opposite ends of 

the physical maturity spectrum. Top subject was a very tall 16-year-old and had adult like 

proportions, scanned on System 1 with 404k vertices in the raw file. Bottom subject was a 

very small 6-year-old scanned on System 2 with 51k vertices.
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Figure 5. 
(A) Two males scanned at 7 (top) and 8 (bottom) years of age with BMIs of 40 and 16, 

extrapolated to age 18. Starting DXA measured percent fats were 50% and 21% respectively. 

Extrapolated percent fats were 35% and 18%. (B) Two females scanned at 9 (top) and 

7 (bottom) years of age with BMIs of 29 and 17, extrapolated to age 18. Starting DXA 

measured percent fats were 47% and 37%. Extrapolated percent fats were 39% and 33% 

respectively.
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Figure 6. 
Generated average shapes for a 1.6m, 50kg female at ages 9, 13, and 17. Tanner staging was 

self-reported and not used in this study; we use age as a surrogate in this study to act as the 

prior for pubertal development in our model.
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Figure 7. 
Bland-Altman plots for fat mass, lean mass, and visceral fat for female and male test set 

predictions with best-fit line equations. Best fit line equation and p-value for the coefficients 

are shown in the top right corners. No significant biases were detected.

Tian et al. Page 23

Clin Nutr. Author manuscript; available in PMC 2024 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Tian et al. Page 24

Table 1.

DXA reference measurement statistics for unique individuals in the training and test sets. Plus-minus values 

are standard deviation. p-values represent significance values for the t-test between the means of training and 

test sets.

Male

Train (N = 83) Test (N = 30) p-value

Mean ± SD Min Max Mean ± SD Min Max

Age (Years) 11.7 ± 3.0 5 17 11.8 ± 2.8 7 17 0.9

Height (m) 1.5 ± 0.2 1.1 1.9 1.5 ± 0.2 1.3 1.8 1.0

Mass (kg) 55.2 ± 24.5 20.7 145.6 53.3 ± 21.5 23.0 107.2 0.7

BMI 22.1 ± 6.6 14.4 53.0 21.8 ± 5.8 14.6 39.5 0.8

BMI-z 0.8 ± 1.2 −2.3 3.2 0.7 ± 1.2 −2.1 3.0 0.8

% Fat 24.1 ± 9.6 8.5 46.7 23.7 ± 9.2 9.0 50.1 0.8

Lean Mass (kg) 41.2 ± 16.3 16.7 86.9 40.2 ± 15.7 17.0 80.1 0.8

Fat Mass (kg) 14.0 ± 11.2 3.9 68.0 13.1 ± 8.7 4.3 35.9 0.7

Visceral Fat (kg) 0.2 ± 0.1 0.02 0.9 0.2 ± 0.1 0.1 0.4 1.0

Leg Lean (kg) 7.0 ± 3.0 2.4 15.8 6.8 ± 2.9 2.4 14.1 0.8

Arm Lean (kg) 2.3 ± 1.1 0.8 5.6 2.3 ± 1.1 0.8 5.0 1.0

Trunk Lean (kg) 19.1 ± 7.7 7.3 39.7 18.3 ± 7.5 7.7 37.4 0.6

Trunk Fat (kg) 5.4 ± 5.5 1.0 34.9 4.9 ± 3.9 1.2 14.7 0.6

Leg Fat (kg) 3.0 ± 2.1 0.8 11.9 2.9 ± 1.8 1.0 8.0 0.8

Arm Fat (kg) 0.9 ± 0.8 0.2 4.1 0.8 ± 0.8 0.2 2.4 0.6

FMI 5.8 ± 3.9 1.6 21.9 5.5 ± 3.7 2.0 19.7 0.8

FFMI 16.6 ± 4.1 11.6 36.8 16.2 ± 3.1 10.8 24.1 0.6

Female

Train (N = 119) Test (N = 38) p-value

Mean ± SD Min Max Mean ± SD Min Max

Age (Years) 12.2 ± 3.2 5 17 12.9 ± 3.2 6 17 0.2

Height (m) 1.5 ± 0.1 1.1 1.8 1.5 ± 0.1 1.2 1.9 0.5

Mass (kg) 53.5 ± 20.8 18.4 140.4 59.6 ± 22.0 27.1 124.1 0.1

BMI 22.7 ± 6.4 13.1 52.2 25.0 ± 7.3 14.1 46.9 0.1

BMI-z 0.8 ± 1.2 −2.4 2.9 1.0 ± 1.2 −1.5 2.6 0.3

% Fat 31.2 ± 7.3 13.9 47.9 33.1 ± 8.0 17.7 47.2 0.2

Lean Mass (kg) 35.8 ± 11.0 13.3 74.4 38.8 ± 11.7 17.2 68.2 0.2

Fat Mass (kg) 17.7 ± 10.8 4.0 66.0 20.8 ± 11.4 6.2 55.9 0.1

Visceral Fat (kg) 0.2 ± 0.2 0.01 0.8 0.2 ± 0.2 0.03 0.7 0.5

Leg Lean (kg) 6.0 ± 2.1 1.7 12.3 6.5 ± 2.1 2.4 11.2 0.2

Arm Lean (kg) 1.9 ± 0.6 0.7 4.1 2.0 ± 0.7 0.9 3.9 0.1

Trunk Lean (kg) 16.9 ± 5.5 6.2 37.5 18.4 ± 5.8 8.0 34.3 0.2
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Female

Train (N = 119) Test (N = 38) p-value

Mean ± SD Min Max Mean ± SD Min Max

Trunk Fat (kg) 7.2 ± 5.4 1.1 33.4 8.9 ± 6.2 1.8 31.5 0.1

Leg Fat (kg) 3.7 ± 2.0 0.9 11.0 4.2 ± 1.9 1.5 7.9 0.2

Arm Fat (kg) 1.1 ± 0.8 0.2 4.8 1.3 ± 0.8 0.3 4.0 0.1

FMI 7.4 ± 3.8 2.2 24.4 8.7 ± 4.3 2.8 21 0.1

FFMI 15.2 ± 2.9 10.1 27.5 16.2 ± 3.3 10.7 25.7 0.1

Clin Nutr. Author manuscript; available in PMC 2024 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Tian et al. Page 26

Table 2:

Body composition prediction accuracy against DXA reference measurements on test data for 3D automated 

template fits. Shapes were fit using the full PCA basis (145 components for males, 206 components for 

females) but body composition was predicted on k components selected using LARS, where k = 40 for males 

and 61 for females. % fat was calculated as fat mass divided by known weight. p-values indicate difference 

from DXA measurement, where the Bonferroni corrected threshold for significance for 12 measurements is 

<0.004.

Male, d=145, n=52 Female, d=206, n=80

R2 (RMSE) p-value 
(comparison of 

means)

Demographics Only R2 

(RMSE)
R2 (RMSE) p-value 

(comparison of 
means)

Demographics Only 
R2 (RMSE)

% fat 0.88 (3.55) 0.09 0.70 (5.14) 0.85 (3.20) 0.52 0.68 (4.47)

Lean Mass 
(kg)

0.99 (1.74) 0.12 0.96 (3.30) 0.98 (1.68) 0.44 0.97 (2.17)

Fat Mass 
(kg)

0.96 (1.74) 0.12 0.86 (3.30) 0.98 (1.68) 0.44 0.97 (2.17)

Visc. Fat 
(kg)

0.65 (0.06) 0.004 0.45 (0.07) 0.78 (0.08) 0.004 0.64 (0.1)

Leg Lean 
(kg)

0.98 (0.4) 0.81 0.96 (0.61) 0.96 (0.45) 0.23 0.92 (0.6)

Arm Lean 
(kg)

0.96 (0.21) 0.81 0.87 (0.39) 0.90 (0.21) 0.020 0.88 (0.24)

Trunk Lean 
(kg)

0.98 (0.93) 0.002 0.96 (1.52) 0.98 (0.92) 0.14 0.96 (1.14)

Trunk Fat 
(kg)

0.91 (1.22) 0.93 0.81 (1.78) 0.96 (1.24) 0.24 0.93 (1.64)

Leg Fat (kg) 0.95 (0.43) 0.71 0.83 (0.76) 0.93 (0.5) 0.008 0.89 (0.64)

Arm Fat 
(kg)

0.93 (0.16) 0.07 0.87 (0.22) 0.95 (0.19) 0.22 0.91 (0.25)

FMI 0.97 (0.74) 0.08 0.90 (1.19) 0.97 (0.76) 0.41 0.96 (0.9)

FFMI 0.94 (0.74) 0.08 0.86 (1.19) 0.95 (0.76) 0.41 0.93 (0.9)
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Table 3.

Test retest precision for 3D auto templated composition predictions. All components were used for shape 

fitting. k components were selected using LARS for prediction regression, where k = 40 and 61 for males and 

females respectively.

This Work

Male n=43 Female n=65

%CV RMSE %CV RMSE

% fat - 1.88 - 1.77

Lean Mass (kg) 1.84 0.75 2.23 0.88

Fat Mass (kg) 6.09 0.75 4.01 0.88

Visc. Fat (kg) 10.1 0.02 10.75 0.03

Leg Lean (kg) 2.53 0.17 2.06 0.14

Arm Lean (kg) 3.52 0.08 4.67 0.09

Trunk Lean (kg) 1.77 0.34 1.96 0.37

Trunk Fat (kg) 10.14 0.47 4.44 0.42

Leg Fat (kg) 6.79 0.19 5.07 0.23

Arm Fat (kg) 8.71 0.06 3.19 0.04

FMI 6.99 0.35 4.28 0.39

FFMI 2.18 0.35 2.37 0.39
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