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Optimal treatment allocation for placebo-treatment comparisons 
in trials with discrete-time survival endpoints

Mirjam Moerbeeka,* and Weng Kee Wongb

aDepartment of Methodology and Statistics, Utrecht University, Utrecht, the Netherlands 
bDepartment of Biostatistics, University of California at Los Angeles, USA

Abstract

In many randomized controlled trials, treatment groups are of equal size but this is not necessarily 

the best choice. This paper provides a methodology to calculate optimal treatment allocations for 

longitudinal trials when we wish to compare multiple treatment groups to a placebo group and the 

comparisons may have unequal importance. The focus is on trials with a survival endpoint 

measured in discrete time. We assume the underlying survival process is Weibull and show that 

values for the parameters in the Weibull distribution have an impact on the optimal treatment 

allocation scheme in an interesting way. Additionally, we incorporate different cost considerations 

at the subject and measurement levels and determine the optimal number of time periods. We also 

show that when many events occur at the beginning of the trial, fewer time periods are more 

efficient. As an application, we revisit a Risperidone maintenance treatment trial in schizophrenia 

and use our proposed methodology to redesign it and compare merits of our optimal design.
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1. Introduction

The optimal allocation of subjects to treatment groups is an important issue in the design of 

a randomized controlled trial. Many trials use equal allocation but this is not necessarily the 

best design. There are various reasons to allow for an unequal allocation scheme to the 

various treatment groups. A main and frequent reason is because some treatments may be 

more expensive than others or they are less readily available [1, 2, 3]. The practical 

implication is that if some treatment protocols are more expensive than others, it is cost-

efficient to allocate more subjects to the cheaper protocols and a larger number of subjects 

can be recruited at the same trial cost. Other reasons for unbalanced trials are to gain more 

experience with the new treatment or to expose fewer subjects to a treatment with 

potentially harmful side effects.
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From a statistical point of view, trials with unbalanced group sizes may be preferred if such 

designs provide narrower sets of confidence intervals for the parameters of interest or more 

powerful tests of the treatment effects. Optimal design methodology can provide guidance 

on group sizes that provide the best possible statistical inference at minimum cost. Some 

papers on optimal allocation schemes for two group randomized trials are available. For 

example, [4, 5, 6, 7] concern individually randomized trials, [8] deals with cluster 

randomized trials and multisite trials, and [9] describes trials with clustering in only one of 

the two treatment arms. An extension to trials with more than two treatment arms is in [10, 

11]. All assumed a continuous or dichotomous endpoint that was measured at one point in 

time after treatment was administered.

In longitudinal trials subjects are followed over a period of time to study changes to an 

outcome, which may be their opinion on a subject matter, a behavioral change, health habit, 

etc. A typical type of endpoint in longitudinal trials is the survival endpoint, which measures 

if and when a specific event occurs. Such events may include death, smoking initiation or 

treatment termination. Data of such trials are analyzed using survival analysis, which is also 

referred to by the less pejorative term event history analysis. The common statistical model 

is the Cox regression model [12] and sample size issues for comparing one treatment group 

with a placebo group given a pre-defined allocation ratio are discussed in [13, 14, 15, 16, 

17], among others. There are only a few papers that discuss optimal allocation problems for 

two-arm survival trials [18, 19].

The Cox regression model assumes the timing of the event can be measured very precisely 

while this is not always the case in practice. In many cases survival data are measured 

discretely rather than continuously. Survival data that are measured discretely are called 

discrete-time or grouped-time survival data regardless of whether the underlying survival 

process is continuous or discrete. Such data can be analyzed using a generalized linear 

model [20, 21]. Optimal designs for such data have only been studied recently and restricted 

to the comparison of one treatment group to a placebo group. The early focus was on the 

optimal number of subjects and time periods in trials with an equal allocation of subjects to 

treatment conditions [22, 23, 24]. Subsequent work considered optimal treatment allocations 

and the loss of efficiency in using a trial with equal-sized treatment groups [25].

A natural extension is to study optimal treatment allocation in trials when we want to 

compare multiple treatment groups to a placebo group and each comparison has an unequal 

emphasis. For example, the comparison of the placebo group to the treatment 1 group is 

more important than the comparison of the placebo group to the treatment 2 group, which in 

its turn is more important than the comparison of the placebo group to the treatment 3 group, 

and so forth. A multiple-objective optimal design provides the optimal allocation scheme of 

subjects to treatment groups such that more important comparisons have higher user-

specified efficiencies. After satisfying all the user-specified efficiency requirements, the 

multiple objective optimal design estimates the least important comparison with as high 

efficiency as possible. Of course, if the efficiencies are set too high, an optimal design will 

not exist because of the competing nature of the multiple objectives. A recent review on 

advances in optimal allocation designs for multi-arm clinical trials with multiple objectives 

is [26].
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The aim of this paper is to construct multiple-objective optimal designs for trials with 

discrete-time survival endpoints. As an example, we demonstrate our methodology using the 

flexible Weibull survival function, which allows increasing, constant or decreasing risk of 

event occurrence across time. The focus is on a trial with 12 time periods (i.e. months in a 

year) but we also provide optimal allocations for trials with fewer time periods. 

Additionally, we study the effect of the number of time periods on design efficiency when 

different cost structures are imposed on subject enrollment and measurement costs at each 

time period. As an application, we revisit a Risperidone maintenance treatment trial in 

schizophrenia and illustrate how optimal design methodology can capture study goals more 

realistically and, at the same time provide more accurate inference on the effects of various 

dose reduction schemes in the trial.

2. Statistical model for discrete time-survival data

The survival time T of a subject in a trial is a continuous random variable and the 

corresponding survival function is defined as S(t) = P(T > t). By definition, S(0) = 1, S(t) 

monotonically decreases as time increases and it cannot be negative. For discrete time 

survival data, survival status is only measured at the end of each time period at time points tk 

(k = 1, …, p). This implies that it is only known if a subject experienced the event in period 

k, not at which time within the period the event occurred. Given that the event has not 

occurred in previous time periods, the hazard probability for period k is defined as h(tk) = 

P(T = tk|T ≥ tk) with T a discrete random variable for time. We observe that the hazard 

probability is a conditional probability given by h(tk) = [S(tk−1) − S(tk)]/S(tk−1) with values in 

the range [0, 1]. For a fair comparison of hazard probabilities across time periods, it is 

important the time periods are of equal length.

The probability of event occurrence may vary across time periods and subjects. To explain 

part of the between-subject variability in hazard probability, we model it as a function of 

between- and within-subject predictor variables by formulating a generalized linear model 

for each time period and combining these models in one single equation. To fix ideas, we 

restrict ourselves to models with treatment assignment as the sole explanatory variable but, 

of course, such models can be readily extended to include some covariates from the subject. 

Subjects are randomly allocated to either the placebo or one out of q active treatments and 

all observations are assumed to be independent. The model for time period k = 1, …, p for 

subject j = 1, … ni in treatment i = 1, …, q is given by

(1)

Here, g is a link function and ηijk is the linear predictor. The dummy variable Djk is equal to 

1 if the observation is in time period k and 0 otherwise. The regression coefficient βi is the 

mean difference in the linear predictor ηijk between subjects in the placebo group and those 

in treatment condition i. Our model has two simplifying assumptions: (i) the effect of each 

treatment does not vary across time periods and so βi does not have a subscript k, and (ii) 

there are no cross-over treatments because the time period indicator k does not appear in the 

subscript of Zij and so treatment group membership is the same across time. The dummy 
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variable Zij takes on the value 1 if subject j is randomized to receive treatment i and equals 0 

otherwise. Subjects for whom all dummy variables Zij are equal to 0 are in the placebo 

group. This implies that the baseline hazard probability g−1(αk) in time period k is the hazard 

probability for subjects allocated to the placebo. The collection of all the values of g−1(αk), k 

= 1, 2, …, p, is the set of baseline hazard probabilities.

To estimate the model parameters the data should be presented in the person-period format. 

Each subject provides data for all time periods until and including the time period during 

which he or she experiences the event or drops out from the study for reasons other than 

event occurrence or because the study has reached its termination date. The event indicator 

yijk is binary and takes on the value 1 if the event has occurred and 0 otherwise. For fitting 

model (1), standard software for fitting generalized linear models can be employed. This is 

done by means of iteratively weighted least squares [27] after rewriting model (1) in matrix 

notation with g [(h(t)] = Xθ, where h(t) is a vector of probabilities of length 

 with nik the number of subjects in treatment condition i who enter period k, 

with the placebo indicated i = 0. The link function g is applied to each element of the vector 

h(t). The sample size nik is calculated from nik = ni0Si(tk−1) with ni0 the number of subjects 

in condition i at the beginning of the study and Si(tk) the survival function in condition i at 

the end of time period k. The total number of subjects required for the trial is predetermined 

and equal to .

The (p + q) × 1 vector of unknown parameters in the model is θ = (α1,…αp, β1,…, βq)′. Its 

estimator has asymptotic covariance matrix , where W is a diagonal 

matrix of dimension  with weights wijk that depend on the hazard 

probabilities h(tijk) and the link function g. For example, if we have the logit link g [h(tijk)] = 

ln {h(tijk)/[1 − h(tijk)]}, the weights are wijk = h(tijk)[1 − h(tijk)]. All subjects at the same time 

period in the same treatment arm have the same weights because we do not consider 

covariates of the subjects other than the treatment group the subject is assigned to. The 

design matrix X has  rows and (p + q) columns. Each row represents an 

observation from a subject at a particular period and the columns are such that the first p 

columns represent indicators for the time period and the next q columns correspond to 

treatment group indicators. Specifically, each row in the X matrix has length p + q with a 

value 1 at positions k and p + i if the observation is from period k and the subject is in the ith 

treatment group. If the observation comes from period k and the subject is in the placebo 

group, the row has a value 1 at position k and a value 0 elsewhere. We observe that the 

covariance matrix depends on the baseline sample sizes ni0 in the placebo and treatment 

conditions, the survival functions Si(tk−1) and the hazard probabilities through the weights 

wik.

3. Optimal allocations and multiple-objective optimal designs

In this section, we determine a multiple-objective optimal design for assigning subjects to 

various groups using the relationship between constrained optimal designs and compound 
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optimal designs described in Cook and Wong [28]. The approach is in general a graphical 

one using the idea of an efficiency plot. The optimal designs developed in this paper are 

suitable for multiple comparison problems with treatment group as a classification factor 

and a pre-determined number of treatment groups and total sample size. The solution to the 

optimization problem determines the number of subjects to be assigned to each group. This 

is in contrast to finding optimal designs for dose response models defined on a pre-specified 

continuous dose interval, when the number of doses, the optimal doses and the probability 

mass at each dose have to be additionally determined.

Specifically, we are concerned with approximate designs, which means that instead of 

finding the optimal number of subjects to be assigned for each treatment, we determine the 

optimal proportion of subjects to be assigned for each treatment. Such designs are 

characterized by the proportion πi of subjects assigned to the ith treatment group i = 1,…, q 

and the placebo group with i = 0. These proportions are called design weights and satisfy 0 ≤ 

πi ≤ 1 for all i and .

An obvious objective in the design of a treatment-placebo study is to find a design ξ that 

provides the most accurate estimate of the effect of each of the q treatments relative to the 

placebo group. The differential effect for the ith treatment group compared with the control 

group is estimated by  in model (1) and the quality of the estimate is measured by its 

variance. A suitable design criterion is to find a design that minimizes this or equivalently, 

one seeks a design to maximize the design efficiency given by 

, where  and  are the variances 

obtained from the optimal design  and the design ξ, respectively. This ratio compares the 

merit of the design ξ relative to the optimal design for estimating the effect of the ith 

treatment and clearly is a number between 0 and 1. If the ratio is 1/2, this means that the 

design has to be replicated twice to do as well as the optimal design for estimating βi. In 

practice, we always want to implement designs with high efficiencies. When there are 

multiple comparisons, one seeks a design to minimize a weighted combination of such 

differences with weights representing the importance of each of the differences, or 

equivalently, finds a design that maximizes a linear weighted combination of efficiencies.

A placebo-treatment study usually has several objectives of different importance. In our 

example, some of the q treatments to be compared with the placebo may be first line drugs 

and the rest are second line drugs. If there is greater interest in the former group, this 

suggests that we want a design to provide more accurate estimates of the effects of the first 

line drugs than second line drugs. This leads to a dual-objective optimal design problem, 

where the first objective is to compare first line drugs with the placebo group and the second 

objective is to compare second line drugs with the placebo with user-specified efficiency for 

the first set of comparisons. Our objectives are to minimize the variances of the estimators 

for the various differential effects by choice of a design, or equivalently maximize the 

efficiencies of the estimators. Because these variances can be on different scales, we 

recommend working with standardized optimality criteria defined in terms of weighted 

linear combinations of the −(Ei(ξ))−1's.
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For multiple-objective optimal design problems, we assume that the ith objective ϕi(ξ) can 

be formulated as a concave function of the information matrix and in terms of the efficiency 

Ei(ξ) of the design ξ, i = 1, …, q. As an example, if our goal is to minimize the variance of 

the estimate of the ith treatment effect, we set ϕi(ξ) = −(Ei(ξ))−1, see Example 1 in [28]. 

Further, we assume that these objectives can be ordered in terms of their importance so that 

the multiple-objective optimal design can provide higher efficiencies for the more important 

objectives. More specifically, let ei be the user-specified efficiency required of the design for 

the ith objective and let ei ≥ ei+1, i = 1, 2, …, q − 1. Our constrained optimization problem is 

then to find a constrained optimal design that maximizes Eq(ξ) among all designs ξ that have 

efficiencies at least ei for the ith objective, i = 1, 2, …, q − 1. Of course, if the efficiencies 

sought are too high, the multiple-objective optimal design may not exist. Such constrained 

optimal design problems are relatively easy to formulate but difficult to solve. However, 

they can be found indirectly from compound optimal designs defined as follows. For a fixed 

vector λ = (λ1, λ2, …, λq)′ with 0 ≤ λi ≤ 1 and , the compound optimal design ξλ 

maximizes the function

(2)

Compound optimal designs are easier to find than the constrained optimal designs because, 

for fixed λ, a convex combination of concave criteria is still concave and so standard 

algorithms can be directly used to find optimal designs for the single concave criterion. For 

each λ, the compound optimal design is generated and the desired constrained optimal 

design is then found indirectly from reviewing all the compound optimal designs and 

determining which one satisfies the constraints. Cook and Wong [28] provides details.

When q = 2, we have a dual-objective optimal design problem, which is our focus here. In 

this case, λ is a scalar and we may let λ1 = λ and λ2 = 1 − λ. If λ = 0, the dual-objective 

design criterion reduces to Φ(ξ|λ) = ϕ2(ξ), which measures the accuracy of the inference for 

comparing the treatment 2 group with the placebo group provided by the design ξ. The 

proportion of subjects assigned to the treatment 1 group is zero in this case but will increase 

with increasing values of λ. Conversely, the proportion of subjects in the treatment 2 group 

decreases to zero as the value of λ increases to 1. Our formulation ensures that the efficiency 

of the compound optimal design under the first objective increases with increasing values of 

λ but decreases under the second objective with increasing values of λ.

For dual-objective optimal design problems, the relationship between compound optimal 

designs and constrained optimal designs can be found analytically or graphically. In the 

latter case, this is done by first constructing an efficiency plot, where the two types of 

efficiencies are graphed against the values of λ between 0 and 1. We then draw a horizontal 

line where E1(ξ) = e1 is and read off the corresponding λ. The sought design is then ξλ with 

E1(ξλ) = e1. The graphical method relies on an efficiency plot and an example of such a plot 

is given in the next section for a two-objective optimal design.

In general, compound optimal designs have to be found numerically. For each fixed λ, we 

used the function constrOptim.nl in the R package Alabama [29] to maximize the function 
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Φ(ξ|λ) in (2) subject to the inequality constraints 0 ≤ πi ≤ 1 for all i and the equality 

constraint . Our search procedure uses the adaptive barrier method, which we 

briefly describe in the supplement.

4. Results for the Weibull survival function

The covariance matrix  depends on the design proportions πi and on the survival 

function S(t). There are many survival functions and our optimal design methodology 

described in Section 3 is applicable to all of them. For illustration, we use the popular 

Weibull survival function, which is very flexible as it allows for increasing, decreasing and 

constant hazard rates across time. The continuous time survival function is given by S(t) = 

exp(−γtτ) and the hazard rate by h(t) = γτtτ−1. The Weibull survival function has two 

parameters: γ ∈ [0,+∞) is a scale parameter and τ ∈ [0,+∞) is a shape parameter. For τ > 1 

the hazard rate increases across time, for τ < 1 it decreases and for τ = 1 it is constant across 

time. The time variable t is the amount of time that has elapsed in the study. Time is rescaled 

in such a way that the minimal value t = 0 corresponds to the beginning of the study and the 

maximal value t = 1 corresponds to the end of the study. For convenience, the scale 

parameter γ is replaced by −log(1 − ω) and ω is the proportion of subjects who have 

experienced the event by the end of the study (i.e. by t = 1). Under this reparametrization, 

the survival function is S(t) = (1 − ω)tτ and the hazard rate is h(t) = −τtτ−1 log(1 − ω). 

Survival in discrete time is calculated by evaluating S(t) at each discrete time point at t = tk = 

k/p, the value of the time variable t at the end of period k. The hazard probability is h(tk) = 

{S(tk−1) − S(tk)} /S(tk−1).

We now derive optimal designs for a trial with one placebo and two treatment conditions. 

We assumed the survival function in the placebo group has a Weibull distribution with three 

possible values for each of the parameters τ and ω : τ = 0.5, 1, and 2 and ω = 0.25, 0.5 and 

0.75. We construct optimal designs for a 12-month trial with twelve time periods and 

compare them with designs with fewer time periods. For instance, we study the effect of 

having 6 or 12 time periods on the survival and hazard probabilities in the study. The logit 

link function g[h(tijk)] = log {h(tijk)/[1 − h(tijk)]} is used to relate the hazard probability to 

treatment condition. The hazard probability function in the placebo condition is assumed to 

have a Weibull distribution and the two treatment effects β1 and β2 give the differences 

between the hazard probabilities in the placebo and the two treatment groups on the logit 

scale. We considered two possible sets of treatment effects: (β1, β2) = (−0.5, −1) and (β1, β2) 

= (0.5, 1). The two negative treatment effects in the first set imply that both treatments 

decrease the probability of event occurrence. An increased risk is represented by the second 

set. For both sets, the effect of the first treatment (β1) is smaller in absolute value than that of 

the second (β2). Even though the two sets only differ in the direction of the effects, they are 

not the same since the hazard probabilities in the two treatments do not only depend on β1 

and β2 but also on the baseline hazard probabilities.

There are two objectives in this problem, i.e. find a design to maximize the efficiencies of 

the two treatment effect estimators  and . Optimal designs are found when the 

comparison of the first or the second treatment is of primary importance. Accordingly, the 
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two single objectives are ϕ1(ξ) = −(E1(ξ))−1 and ϕ2(ξ) = −(E2(ξ))−1 and the compound 

optimality criterion is Φ(ξ|λ) = λϕ1(ξ) + (1 − λ)ϕ2(ξ) with 0 ≤ λ ≤ 1. We note that the two 

locally dual-objective optimal designs for the two cases are not the same unless they have 

the same nominal values with β1 = β2. To find them, we make the following assumptions: (i) 

the two treatment effects have nominal values (β1, β2) = (−0.5, −1), (ii) comparing treatment 

1 group with the placebo group is of primary interest, (iii) there are k = 12 periods, (iv) τ = 

1, (v) ω = 0.5 and (vi) select a grid with a step size of 0.001 to discretize the range of values 

for λ in [0, 1].

Figure 1 shows features of the dual-objective optimal design. The optimal design weights πi 

(i = 0, 1, 2) as a function of λ are shown in the left panel. For this example, the proportion of 

subjects in the placebo group depends only slightly on the value of λ and the design is 

unbalanced with varying proportions πi across the three treatment groups. The right panel of 

Figure 1 shows the efficiency plot, where efficiencies of the compound optimal designs ξλ 

for the two objectives are plotted against the values of λ.

The figure also shows that the two efficiency graphs intersect near λ = 0.5 suggesting that 

the compound optimal design with λ = 0.5 is about equally efficient under both criteria. This 

approximate value of λ = 0.5 was also found for other values of k, ω, τ, β1 and β2 that we 

studied. It is, however, not always found in dual-objective optimal design problems. We 

note in this problem, the two objectives are highly competitive since large efficiencies 

cannot be achieved for both of them simultaneously. In this particular example, if we want a 

design that has an efficiency of 0.9 for the first objective, we have from the efficiency plot, λ 

= 0.966 and note that the corresponding efficiency of the compound optimal design for the 

second objective is low and approximately equal to 0.26. More generally, the two objectives 

were found to be competitive for all values of k, ω, τ, β1 and β2 that we studied.

Figures 2 and 3 display how optimal design weights for positive treatment effects (β1, β2) = 

(0.5, 1) change when the model assumptions change. Figure 2 assumes that the primary 

objective is to compare treatment 1 with the placebo and Figure 3 assumes the primary 

objective is to compare treatment 2 with the placebo; in either case the sought efficiency of 

the generated design for the primary criterion is 0.9. In each figure, the number of time 

points is plotted versus the optimal design weights for treatment 1, 2 and the placebo group. 

The 9 subfigures in each figure show how optimal design weights change when a specific 

parameter in the design problem is changed. Effects of the changes in the optimal weights 

due to changes in ω are displayed row-wise and the corresponding changes due to changes 

in τ are displayed column-wise. There are no upper and lower bounds other than 0 and 1 for 

these treatment weights. Because the two treatment effects β1 and β2 are different, the 

optimal design weights in Figures 2 and 3 are also different and are far from being equal, 

suggesting that very different proportions of subjects are to be assigned to the various 

groups.

A weight near 0.1 is assigned to the treatment group whose comparison to the placebo is of 

least importance and this weight is hardly influenced by the number of time periods k, the 

shape parameter τ and the proportion of event occurrence ω. This weight was also near 0.1 

when both treatment effects were negative with (β1, β2) = (−0.5, −1). As expected a larger 

Moerbeek and Wong Page 8

Stat Med. Author manuscript; available in PMC 2016 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



weight is assigned to the treatment whose comparison to the placebo is more important and 

this weight is almost always smaller than the weight for the placebo group. The weight 

assigned to the placebo group seems to be always near 0.5, and in almost all cases, more 

subjects are assigned to the placebo group. Such an optimal design may appear 

counterintuitive to clinicians but assigning more subjects to the placebo group makes sense 

because the placebo group is used in all comparisons and so having more subjects in the 

placebo group provides a more accurate estimate of its effect. More specifically, if we have 

a total of n subjects for a placebo-treatment study and we are equally interested to compare 

the k treatment group means with the placebo group mean, allocating  number of 

subjects to the placebo group and the rest equally to the k treatment groups minimizes the 

sum of the variances of the estimated treatment effects (see page 116 of [30]). This implies 

that more subjects are assigned to the placebo group. For our design problems, it is therefore 

not surprising that about 50% of subjects are assigned to the placebo group. The exact 

percentage depends on the relative interest in the various objectives and the nominal values 

of the model parameters. For instance, in our problem when β1 = −0.5 and β2 = 1, our 

calculation shows about 40% of subjects are optimally allocated to the placebo group.

The above figures show that overall, the weights of the optimal design are hardly influenced 

by the number of time periods k when the shape parameter τ and/or the proportion event 

occurrence ω are small. This implies that changing the number of time periods during the 

course of the trial hardly influences the optimal design in these cases. However, when we 

have larger values of τ and/or ω, we observe larger changes in the optimal design weights as 

the number of time periods increases. Further, we note that for any value ω, the difference in 

weights between the placebo and the treatment of primary interest increases when τ 

increases. On the other hand, for any value τ, the difference in weights between the placebo 

and the treatment of primary interest group decreases when ω increases. Special attention 

should be paid to the case where ω = 0.75, τ = 0.5 and the comparison of the second 

treatment to the placebo is of primary importance (lower left panel in Figure 3). In this case 

the difference in weights between the placebo and the treatment 2 group is small. When 

there is a small number of time periods, we observe the optimal strategy is to assign more 

weight to the placebo group and when there is a large number of time periods, more weight 

is assigned to treatment 2.

The results change somewhat when another level of efficiency is required for the primary 

objective. When this efficiency is 0.8 then the weight for the treatment whose comparison to 

the placebo is least important is always near 0.2 (figures not shown). Again, the weights for 

the other treatment and placebo depend on the underlying survival function and the number 

of time periods. Similar figures were drawn for negative treatment effects (β1, β2) = (−0.5, 

−1). It appeared that the number of time periods k, the shape parameter τ and the proportion 

of event occurrence ω have smaller or negligible effects on the optimal allocation scheme. 

For this reason, we do not display these figures.

We compared the efficiencies of equal-weight designs relative to the optimal designs found 

in Figures 2 and 3. For all scenarios and for both objectives, the efficiencies of the equally 
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weighted design range between 0.7 and 0.75, suggesting that the equally weighted design 

does not perform well relative to the unequally weighted optimal design.

We close this section by noting that an advantage of the efficiency plot in a dual-objective 

design problem is that if the roles of the two objectives are interchanged, i.e the primary 

objective becomes the secondary objective, and vice versa, the new optimal allocation 

scheme can be readily worked out. One simply plots the same efficiencies against 1 − λ 

instead of λ and deduce the new constrained optimal design in the same way as before to 

obtain the sought dual-objective optimal design. This strategy applies for any dual-objective 

optimal design problem with concave optimality criteria.

5. Effect of the number of time periods

In the previous section the optimal proportions were presented for 2 to 12 time periods. 

Increasing the number of time periods results in smaller variances  and  but 

also in larger trial cost since subjects are measured more often and costs are associated with 

taking repeat measurements. To select the most cost-efficient number of time periods, the 

costs as a function of the number of time periods should be taken into account. We consider 

two cost functions in this paper. Cost function 1 assumes all the n subjects are measured at 

all time periods, even if they experience the event prior to the last time period. Such a cost 

function is realistic in trials where not only the event is of interest but also secondary 

measurements. An example is a school-based smoking prevention intervention where not 

only the target event, smoking initiation, is observed but also secondary measurements such 

as knowledge on smoking and health. The costs of taking one measurement are denoted cm. 

The costs to treat a subject vary across the treatment conditions and they are denoted by c0, 

c1, and c2 for the placebo, treatment 1 and treatment 2, respectively. Our cost function 1 is 

then calculated as

(3)

In the above equation, we note that the number of measurements per subject is (p + 1) 

because we also have a measurement at baseline. With cost function 2, we assume that 

subjects leave the study once they have experienced the event and measurements are not 

taken after event occurrence. This implies that for the same budget more subjects can be 

recruited. Cost function 2 is defined as

(4)

where S0(tk), S1(tk) and S2(tk) are, respectively, the survival functions for the placebo, 

treatment 1 and treatment 2 groups by the end of time period k and t0 = 0 is the baseline.

To determine the most cost-efficient number of time periods, we normalize the optimality 

criterion  or  by multiplying it by the costs C. As such, the optimality 

criterion is penalized by the amount of costs that follow from the number of time periods. A 
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design with a large number of time periods produces a smaller  or  than a 

design with a small number of time periods, but it also has higher costs and thus, we should 

impose a larger penalty. By using the normalized variance, a fair comparison on the number 

of time periods can be made. The optimal number of time periods is the one for which the 

normalized variance is minimal. All other designs with different numbers of time periods 

can then be evaluated relative to the design with the optimal number of time periods using 

the efficiency measure.

Table 1 shows the optimal number of time periods for multiple-objective optimal designs for 

which  is the main objective and an efficiency of 0.9 is achieved on this objective. 

The optimal number of time periods is calculated for ω = 0.25, 0.5 and 0.75, τ = 0.5, 1 and 2 

and for six combinations of the costs at the subject level. The costs at the measurement level 

are standardized to cm = 1. Table 2 gives results when  is the main objective. We 

first discuss results for cost function 1. Both tables show that the optimal number of time 

periods increases as the shape parameter τ increases. So, subjects should be measured more 

often, and hence be followed for a longer amount of time, if the probability of event 

occurrence is largest at the end of the trial. The optimal number of time periods decreases 

with increasing ω. Subjects may be measured less often if the proportion of event occurrence 

increases. The optimal number of time periods also increases with the subject level costs c0, 

c1, and c2, so more measurements should be taken if it becomes more expensive to include a 

subject in the trial. The optimal number of time periods is higher when cost function 2 is 

used and in most cases it is equal to 12. It follows that the optimal number of time periods 

required to follow subjects increases when subjects leave the trial after event occurrence. It 

is therefore important to carefully decide whether subjects should be followed after event 

occurrence since this can appreciably impact the optimal number of time periods.

6. An example: Risperidone maintenance treatment in schizophrenia

Prevention of relapse is a crucial task in the maintenance treatment of schizophrenia. For a 

long time, it has been believed that doses of antipsychotic drugs can be reduced during the 

maintenance period, but in recent years it has been suggested that the initial dose of 

antipsychotics should be maintained in long-term treatment regimes. Wang et al. [31] 

performed a randomized controlled trial to compare the effect of three different dose 

regimes. In the 4-week group, the initial optimal therapeutic dose of Risperidone was given 

for four weeks and then followed by a 50% reduction for the remainder of the trial. In the 

26-week group, a 50% reduction was performed at 26 weeks and maintained until the end of 

the trial. In the no-dose-reduction group, the initial optimal therapeutic dose was given 

throughout the trial. The authors performed a discrete-time survival analysis using a logistic 

regression model. For the purpose of analysis, the observations were grouped into 100 day 

periods; all subjects were observed until 500 days because the probability of event 

occurrence was negligible at longer study duration.

The baseline logit hazard probabilities in the no-dose-reduction group (i.e. the baseline 

group) were estimated to be (α1, α2, α3, α4, α5) = (−3.654, −3.706, −3.972, −4.363, −5.018). 
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The effects of the 4-week group and 26-week group on the logit scale were estimated to be 

1.219 and 0.822 respectively. In all three groups the risk of event occurrence decreases 

across time. Lowest risk of event occurrence is observed in the no-dose-reduction group, 

highest risk in the 4-week group. At 500 days the amount of relapse was 18%, 15% and 8% 

in the 4-week group, the 26-week group and the no-dose-reduction group. The three logit 

hazard probability functions are parallel, which implies the effect of treatment does not vary 

across time periods. That is, these functions are estimated on the basis of a proportional odds 

model. A non-proportional odds model was also fitted to the data but showed a non-

significant decrease in the -2 loglikelihood value as compared to the proportional odds 

model and is not further considered in the derivation of the optimal design.

Sample sizes at baseline were 125 in the 4-week group, 120 in the 26-week group and 129 in 

the no-dose-reduction group. In other words, the design was highly balanced with respect to 

the sizes of the treatment groups. We use optimal design methodology to study if a balanced 

design is indeed the best choice for a trial like this. Suppose the trial has two objectives: the 

comparison of the no-dose-reduction group to the 4-week group, and the comparison of the 

no-dose-reduction group to the 26-week group. Using multiple-objective optimal designs we 

derive optimal allocations. We use the estimated model parameter values to derive the 

optimal designs.

The optimal design weights rounded to two decimals are π0 = 0.57, π1 = 0.33 and π2 = 0.10 

in case an efficiency of 0.9 is to be achieved for the objective  and π0 = 0.54, π1 = 

0.10 and π2 = 0.36 in case an efficiency of 0.9 is to be achieved for the objective . 

These values hold for p = 2, 3, 4, and 5 so changing the number of time periods during the 

course of the trial does not affect the optimal design weights. Note that the design is 

unbalanced: about half of the subjects are allocated to the no-dose-reduction group and 

about a third to the dose-reduction group whose comparison to the no-dose-reduction group 

is of primary interest. For each number of time periods and for both objectives, the 

efficiency of the equally balanced design is between 0.69 and 0.72. This shows balanced 

designs can perform sub-optimally.

The optimal number of time periods depends on the costs per subject for each of the three 

treatment groups and the costs to take a measurement. Such costs are not given in [31] and 

we postulate that the subject level costs for the no-dose-reduction group are higher than 

those for the two dose-reduction groups and the costs for the 26-week group are higher than 

those of the 4-week group. Accordingly, one may choose as an example values c0 = 30, c1 = 

20 and c2 = 10 with cm = 1. Figure 4 shows that for both objectives, the optimal number of 

time periods is p = 5 when the cost function 1 is used and for the cost function 2, the best 

choice for the number of time periods is p = 4 periods. For both cost functions, a loss of 

efficiency is observed when p = 3 and more so when the number of time periods is p = 2.

7. Conclusions

Our results showed that equal treatment allocation is not always the best choice when we 

compare several treated groups with the placebo group. The weight assigned to a treatment 
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group depends on the importance of the comparison of the treatment relative to the placebo, 

the cost function and the values of the parameters in the Weibull model. It is therefore 

important that the ordering of the objectives is carefully justified in the design phase of a 

trial. Extra care should be exercised when the objectives are competitive because if the 

efficiency requirements in the constraints are too demanding, we may not be able to find a 

design that meets the multiple criteria. If testing effects of the various treatment effects is the 

primary goal, care should be taken to have a large enough sample size to have reasonable 

statistical power for the tests. Power analysis for trials with discrete-time survival endpoints 

is discussed in Jóźwiak and Moerbeek [32].

The optimal design weights may depend on the parameters ω and τ for the two-parameter 

Weibull distribution that we have assumed and so our optimal designs are locally optimal. It 

is therefore important that the values of these parameters are carefully specified a priori 

since incorrect values can result in a substantial loss of efficiency. Prior estimates may be 

obtained from similar studies or subject matter knowledge. If an experimenter cannot 

provide a single point estimate for each parameter but has a prior distribution for the model 

parameters, a Bayesian optimal design approach may be used [33]. Such a design strategy 

can provide some protection against misspecification of the nominal values of the 

parameters. In practice, robustness properties of an optimal design to other misspecifications 

such as in the link function or survival model (log-logistic or log-normal, etc.) should be 

studied before the design is implemented.

For our setup, we also observed that increasing the number of time periods results in a more 

efficient design but also comes with higher trial cost. A cost function was therefore 

incorporated in the optimization problem to ascertain the optimal number of time periods. 

However actual cost functions may not be known with certainty and therefore 

misspecification in the cost function can be a concern as well. In summary, before a design 

is implemented, it is important to routinely ascertain robustness properties of the design to 

all possible misspecifications in the model assumptions. We do not carry out such an 

investigation here for space consideration but it can be readily done using our proposed 

methodology, which is not limited by our illustrative model and the application used in this 

paper
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Figure 1. 
Optimal proportions and efficiency plot for two-objective optimal designs with k = 12 

periods, τ = 1, ω = 0.5 and the treatment effects are (β1, β2) = (−0.5, −1)
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Figure 2. 
Optimal design weights as a function of the number of time periods p, the proportion of 

event occurrence ω and the shape parameter τ for the case where (β1, β2) = (0.5, 1). Primary 

objective is the comparison of treatment 1 to the placebo and the related efficiency is 0.9.
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Figure 3. 
Optimal design weights as a function of the number of time periods p, the proportion of 

event occurrence ω and the shape parameter τ for the case where (β1, β2) = (0.5, 1). Primary 

objective is the comparison of treatment 2 to the placebo and the related efficiency is 0.9.

Moerbeek and Wong Page 18

Stat Med. Author manuscript; available in PMC 2016 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 

Efficiencies of  (left) and  (right) as functions of the number of time 

periods in the Risperidone maintenance treatment example.
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