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ABSTRACT OF THE DISSERTATION

Large-Scale Multi-Agent Transport: Theory, Algorithms and Analysis

by

Vishaal Krishnan

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California San Diego, 2019

Professor Sonia Martı́nez, Chair

The problem of transport of multi-agent systems has received much attention in a wide

range of engineering and biological contexts, such as spatial coverage optimization, collective

migration, estimation and mapping of unknown environments. In particular, the emphasis

has been on the search for scalable decentralized algorithms that are applicable to large-scale

multi-agent systems.

For large multi-agent collectives, it is appropriate to describe the configuration of the

collective and its evolution using macroscopic quantities, while actuation rests at the microscopic

scale at the level of individual agents. Moreover, the control problem faces a multitude of

information constraints imposed by the multi-agent setting, such as limitations in sensing,

xiii



communication and localization. Viewed in this way, the problem naturally extends across scales

and this motivates a search for algorithms that respect information constraints at the microscopic

level while guaranteeing performance at the macroscopic level.

We address the above concerns in this dissertation on three fronts: theory, algorithms

and analysis. We begin with the development of a multiscale theory of gradient descent-based

multi-agent transport that bridges the microscopic and macroscopic perspectives and sets out a

general framework for the design and analysis of decentralized algorithms for transport. We then

consider the problem of optimal transport of multi-agent systems, wherein the objective is the

minimization of the net cost of transport under constraints of distributed computation. This is

followed by a treatment of multi-agent transport under constraints on sensing and communication,

in the absence of location information, where we study the problem of self-organization in swarms

of agents. Motivated by the problem of multi-agent navigation and tracking of moving targets,

we then present a study of moving-horizon estimation of nonlinear systems viewed as a transport

of probability measures. Finally, we investigate the robustness of multi-agent networks to agent

failure, via the problem of identifying critical nodes in large-scale networks.
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Introduction

Multi-agent systems are, broadly, collections of autonomous agents with sensing, com-

munication and computational capabilities. Often to ensure scalability, these systems are char-

acterized by the absence of centralized decision-making, where the agents use information

locally available to them to make decisions. An important class of problems in the context of

multi-agent systems is that of transport, which arises in a wide range of scenarios in engineering

and biology. This includes (i) seeking the extrema of a scalar field, for instance, in scenarios

such as collective chemotaxis in biology and estimating and controlling wildfires; (ii) achieving

a desired coverage of a spatial region, as in the case of mobile sensing networks [27, 35, 88] and

emerging applications such as autonomous mobility-on-demand; (iii) mapping, navigation and

tracking of moving targets; (iv) collective manipulation.

In problems of multi-agent transport such as the above, particularly when they involve

large collectives of agents, it is more appropriate to track the configuration of the collective

and its evolution by macroscopic quantities (such as the distribution of agents over a spatial

region in coverage problems). This involves a scale transformation, wherein a description of the

system at the microscopic scale is mapped onto a macroscopic description, and the objectives

of transport are specified at the macroscopic scale. However, the actuation still rests at the

microscopic scale at the level of individual agents, and the control problem faces a multitude of

constraints imposed by the multi-agent setting, broadly catergorized into information constraints

(such as the need for online, decentralized algorithms for scalability; limitations in sensing,

communication and localization) and physical constraints (collision and obstacle avoidance,

to name a few). In the macroscopic scale, theoretical tools from infinite-dimensional analysis
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are often more appropriate, while at the microscopic scale, multi-agent control problems with

the above constraints have been more appropriately dealt with using tools of finite-dimensional

analysis. However, a formal theory bridging the two scales in the context of multi-agent transport

has been elusive, and this poses a challenge to control and algorithm design and analysis for

large-scale multi-agent systems. There is a need for such a bridge theory because it is important

to understand how macroscopic transport objectives translate into the microscopic scale and

conversely, how the microscopic control laws and algorithms affect macroscopic behavior and

scale as the number of agents N→ ∞.

Models of multi-agent transport

We begin the study of multi-agent transport in Chapter 2 with the formulation of an

iterative optimization-based transport scheme. We model the transport of agents as an iterative

proximal descent scheme in a compact Euclidean domain Ω⊂ Rd , of the form:

x+ = argmin
z∈Ω

1
2τ
|x− z|2 +ϕ(z). (1)

Macroscopically, the objective of multi-agent transport is formulated as the minimization of a

(strictly) convex functional F : P(Ω)→ R on the space of probability measures P(Ω) over

Ω. We then address the question of how this macroscopic objective can be achieved by the

scheme (1). With an appropriate choice of ϕ , we show that the “lift” of the scheme (1) to the

space of probability measures P(Ω) corresponds to a transport scheme that minimizes F . This

establishes the connection between the microscopic and macroscopic perspectives, i.e., between

an iterative proximal descent scheme for the agents in the Euclidean space and the minimization

of F in the space of probability measures that describes the transport of the collective.

We then propose an implementable multi-agent transport scheme for a finite N number

of agents as a proximal descent w.r.t. a discretization of the functional F , and show convergence

to critical points, and in some cases the local minimizers, of such a scheme. In the limit N→ ∞,
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we show that we recover the scheme (1) and convergence to the global minimizer of F . We

also investigate the asymptotic stability of the continuous-time gradient flow in the space of

absolutely continuous probability measures, obtained from the lift of (1) in the limit τ → 0, and

this serves as the candidate continuous-time model for multi-agent transport. We then use these

results to shed light on some multi-agent coverage control algorithms from the literature.

In summary, Chapter 2 sets up the theory and framework for the design of algorithms for

multi-agent transport in the rest of the thesis.

Multi-agent optimal transport

In multi-agent transport scenarios there is, typically, an associated cost of transport owing

to energy considerations. Optimal transport theory [117], which deals with the problem of

rearranging probability measures while minimizing the cost of transport, presents the appropriate

theoretical tools. Continuing in the spirit of Chapter 2, the objective of Chapter 3 is to set

up a scheme similar to (1) for the problem of multi-agent optimal transport with the goal of

minimizing the net cost of transport of the collective. We consider costs c : Ω×Ω→ R that

are continuous and satisfy the properties of a metric. Lifting the cost c using the optimal

transport formulation, we obtain a metric C : P(Ω)×P(Ω)→ R in the space of probability

measures. Fixing a target probability measure µ∗ ∈P(Ω), we define an objective functional

F(µ) =C(µ,µ∗), as the cost of optimal transport from µ∗. We then set up an iterative proximal

descent-based transport scheme to minimize F . The particular challenges to multi-agent optimal

transport come from the contraints of online and distributed computation. In other words, the

estimates of the local objective functions for the agents, to be used in the proximal descent

scheme, are to be computed online by a distributed algorithm. This results in a coupling between

the transport and the distributed online computation of the local objective functions, and we

investigate in Chapter 3 the asymptotic stability of the transport under such a coupling.
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Self-organizing multi-agent transport

Self-organization in swarms refers broadly to the emergence of patterns of long-range

order in large groups of dynamic agents which interact locally with each other. It is a pervasive

phenomenon in nature, observed in biological [28] and other natural systems [120]. These in-

stances are characterized by primitive agents functioning under severe constraints on information,

in the form of limitations on sensing and communication. Moreover, the agents are constrained

to operate in the absence of location information. Formulating self-organization as a problem

of multi-agent transport, we explore in Chapter 4 mechanisms that enable large-scale multi-

agent transport towards a target measure in the absence of location information. In examples

of biological transport and pattern formation, the absence of location information is typically

mitigated, if only partially, by a process of (cellular) differentiation that assigns to every agent an

identifier which modulates the behavior of the agent. Adopting this perspective in our context,

the transport scheme is to be accompanied by an identifier-assignment algorithm that serves to

modulate the local objective function that the agent seeks to minimize via a descent scheme. We

call this identifier-assignment algorithm pseudo-localization, as it serves to partially mitigate the

absence of location information.

To further illustrate the problem, we refer again to the proximal descent scheme (1).

In order to implement such a scheme, every agent must be able to evaluate its local objective

function ϕ at a point z ∈ Ω, typically in its vicinity (from its location x ∈ Ω). In the absence

of access to its location x ∈Ω, such a scheme is not implementable. We therefore reformulate

the problem as one of composite optimization, where we replace the local objective function

ϕ with ϕ̃ ◦X , where X is the identifier-assignment map resulting from the pseudo-localization

algorithm. In other words, the agents do not have access to their locations in Ω but to the image

of their locations in X(Ω), i.e., their identifiers.

We note that in Chapter 4, we work entirely with a macroscopic model of transport

in continuous-time, described by a coupled system of PDEs, with the continuity equation
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describing the motion of the collective, and a PDE describing the process of pseudo-localization

(differentiation). We target setting up the transport to minimize the squared L2-distance
∫

Ω
|ρ−

ρ∗|2 dvol from the (absolutely continuous) target measure. Using Lyapunov-based methods,

we derive control laws for the coupled system of PDEs, in order that the transport converges

asymptotically to the target measure.

State estimation for tracking and navigation

Chapters 2, 3 and 4 consider the problem of multi-agent transport where the target

probability measure, or the objective functional F : P(Ω)→ R, is fixed. We present a version

of the time-varying case in Chapter 5, motivated by applications of navigation and tracking

of moving targets. We let a discrete-time nonlinear system of the form xk+1 = f (xk,wk) (with

process noise wk) describe a moving point target, with measurements of the underlying state

given by yk = h(xk)+ vk (with measurement noise vk), where the objective of the multi-agent

transport is to track the true underlying state xk. We consider the case where all the agents

have access to the measurements yk, and formulate the multi-agent tracking problem as one

of transport by defining an appropriate objective functional using a finite moving window of

measurements. Owing to the underlying discrete-time nonlinear system, this objective functional

is time-varying.

Viewed another way, this problem is essentially one of optimization-based state estima-

tion, in particular, moving-horizon estimation formulated as a transport of probability measures,

and the material in Chapter 5 is presented entirely from this point of view. We also investigate

the allied concern of guaranteeing privacy in state estimation, and design differentially private

moving-horizon estimation schemes via an entropy regularization of the objective functional.
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Robustness of multi-agent networks

Chapter 6 contains an investigation of robustness of multi-agent networks to failure of

agents, posed as a problem of identifying the critical nodes in a large-scale spatial network. The

identification of critical nodes in a network, motivated by the question of network robustness,

is crucial to improving its resilience to attacks and failures. The notion of critical nodes refers

to the subset of nodes in the network whose removal results in the maximum deterioration of

a given performance metric. In the context of robustness of networks/graphs, a widely studied

metric [58, 75] is the second smallest eigenvalue of the graph Laplacian matrix (also called the

algebraic connectivity of the graph). In addition to being an indicator of how well connected

the graph is, it is typically of significance in the context of agreement dynamics on networks

(such as consensus and synchronization), as it governs the convergence rate of the dynamics.

The problem of identifying critical nodes in a network graph leads to combinatorial optimization

problems. Thus, for large-scale networks any algorithm that solves the problem exactly is of

high complexity. Motivated by this, we study a relaxation of the problem through a continuum

approximation of the network to the spatial domain where the nodes are distributed.
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Chapter 1

Notation and Preliminaries

Let ‖ · ‖ : Rd → R≥0 denote the Euclidean norm on Rd and | · | : R→ R≥0 the absolute

value function. We denote by ∇ =
(

∂

∂x1
, . . . ∂

∂xn

)
the gradient operator in Rd . As a shorthand, we

let ∂

∂ z(·) = ∂z(·) for a variable z.

Let ∂Ω denote the boundary of Ω, Ω̄ = Ω∪∂Ω its closure and Ω̊ = Ω\∂Ω its interior

with respect to the standard Euclidean topology. For M ⊆ Ω, let the distance d(x,M) of a

point x ∈Ω to the set M be given by d(x,M) = infy∈M ‖x− y‖. For any x ∈Ω⊂ Rd , we denote

by Bm
r (x) the closed d-ball of radius r > 0, with respect to a metric m, centered at x. Let 1M : Ω→

{0,1} be the indicator function on Ω for the subset M. We denote by 〈 f ,g〉 the inner product of

functions f ,g : Ω→ R with respect to the Lebesgue measure, given by 〈 f ,g〉= ∫
Ω

f gdvol.

Let µ ∈P(Ω) be an absolutely continuous probability measure on Ω⊂ Rd , with ρ the

corresponding density function (where d µ = ρ dvol), with vol being the Lebesgue measure.

We denote by Eµ the expectation w.r.t. the measure µ . Given a map T : Ω → Γ and a

measure µ ∈P(Ω), we let ν = T#µ denote the pushforward measure of µ by T , where for

a measurable set B ⊂ T (Ω), we have ν(B) = T#µ(B) = µ(T −1(B)). Let F : P(Ω)→ R

be a smooth real-valued function on the space of probability measures on Ω⊂ Rd . We denote

by δF
δ µ

(x) the first variation of F with respect to the measure µ , such that a perturbation δ µ of

the measure results in a perturbation δF =
∫
X

δF
δ µ

d(δ µ).

We denote by Ck(Ω) the space of k-times continuously differentiable functions on Ω,
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and by Lip(Ω) the space of Lipschitz continuous functions on Ω. The Lp space of functions

on a measurable space U is given by Lp(U) = { f : U → R |‖ f‖Lp(U) = (
∫

U | f |p dvol)1/p < ∞},

where ‖ · ‖Lp(U) is the Lp norm. Of particular interest is the L2 space, or the space of square-

integrable functions. In this paper, we denote by ‖ f‖L2(Ω) the L2 norm of f with respect to the

Lebesgue measure, and by ‖ f‖L2(Ω,µ) =
(∫

Ω
| f |2 d µ

)1/2 the weighted L2 norm. The Sobolev

space W 1,p(Ω) is defined as W 1,p(Ω) = { f : Ω→ R |‖ f‖W 1,p = (
∫

Ω
| f |p + ∫

Ω
|∇ f |p)1/p < ∞}.

For two functions f : R×Ω→ R and g : Ω→ R, denote f (t, ·)≡ ft and further denote f →L2 g

the convergence in L2 norm of ft to g as t→ ∞, that is, limt→∞ ‖ ft−g‖L2 = 0. Convergence in

H1 norm is denoted similarly by f →H1 g.

We now state some well-known results that will be used in the subsequent chapters in

this thesis.

Lemma 1 (Divergence Theorem [32]). For a smooth vector field F over a bounded open set

Ω⊆ Rd with boundary ∂Ω, the volume integral of the divergence ∇ ·F of F over Ω is equal to

the surface integral of F over ∂Ω:

∫

Ω

(∇ ·F) dvol =
∫

∂Ω

F ·n dS, (1.1)

where n is the outward normal to the boundary and dS the surface measure on the boundary.

For a scalar field ψ and a vector field F defined over Ω⊆ Rd:

∫

Ω

(F ·∇ψ) d dvol =
∫

∂Ω

ψ(F ·n) dS−
∫

Ω

ψ(∇ ·F) dvol .

Lemma 2. (Leibniz Integral Rule [32]). Let f ∈ C ∞(R×Rn) and Ω : R ⇒ Rn be a smooth

one-parameter family of bounded open sets in Rn generated by the flow corresponding to the

smooth vector field v on Rn. Then:

d
dt

(∫

Ω(t)
f (t,r) dµ

)
=
∫

Ω(t)
∂t( f (t,r)) dµ +

∫

∂Ω(t)
f (t,r)v ·n dS.
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Corollary 1. (Derivative of Energy Functional). Let U be an energy functional defined as

follows:

U =
1
2

∫

Ω

| f |2 dµ,

for some function f : Ω→ R. Then,

U̇ =
∫

Ω

f
(

d f
dt

)
dµ +

1
2

∫

Ω

| f |2∇ ·v dµ.

where d
dt = ∂t +v ·∇ is the total derivative.

Proof. We have included the proof for this corollary for the sake of completeness. Using the

Leibniz integral rule and the Divergence theorem, we have (it is understood that the integrations

are with respect to the measure µ):

∂U
∂ t

=
∫

Ω

f ∂t f +
1
2

∫

∂Ω

| f |2v ·n

=
∫

Ω

f ∂t f +
1
2

∫

Ω

∇ · (| f |2v)

=
∫

Ω

f ∂t f +
∫

Ω

f · (v ·∇) f +
1
2

∫

Ω

| f |2∇ ·v

=
∫

Ω

f (∂t f +(v ·∇) f )+
1
2

∫

Ω

| f |2∇ ·v

=
∫

Ω

f
(

d f
dt

)
+

1
2

∫

Ω

| f |2∇ ·v.

Lemma 3 (Rademacher’s Theorem [84]). Let Ω ⊂ Rd be open and f : Ω→ Rm be Lipschitz

continuous. Then f is differentiable at almost every x ∈Ω.

Lemma 4 (Poincaré-Wirtinger Inequality [84]). For p ∈ [1,∞] and Ω, a bounded connected

open subset of Rd with a Lipschitz boundary, there exists a constant C depending only on Ω and
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p such that for every function u in the Sobolev space W 1,p(Ω):

‖u−uΩ‖Lp(Ω) ≤C‖∇u‖Lp(Ω),

where uΩ = 1
|Ω|
∫

Ω
udµ , and |Ω| is the Lebesgue measure of Ω.

Lemma 5 (Rellich-Kondrachov Compactness Theorem [55]). Let Ω ⊂ Rd be open, bounded

and such that ∂Ω is C1. Suppose 1≤ p < n, then W 1,p(Ω) is compactly embedded in Lq(Ω) for

each 1≤ q < pn
n−p . In particular, we have W 1,p(Ω) is compactly contained in Lp(Ω).

We now state the following version of the LaSalle invariance principle for Banach spaces,

which will be used later:

Lemma 6 (LaSalle Invariance Principle [70, 118, 119]). Let {C (t) | t ∈ R≥0} be a continuous

semigroup of operators on a Banach space U (closed subset of a Banach space with norm ‖ ·‖U ),

and for any u ∈U, define the positive orbit starting from u at t = 0 as Γ+(u) = {C (t)u | t ∈

R≥0} ⊆ U. Let V : U → R be a continuous Lyapunov functional on G ⊂ U for C (such

that V̇ (u) = d
dtV (C (t)u) ≤ 0 in G ). Define E = {u ∈ Ḡ |V̇ (u) = 0}, and let Ẽ be the largest

invariant subset of E. If for u0 ∈ G , the orbit Γ+(u0) is pre-compact (lies in a compact subset

of U), then limt→+∞ dU(C (t)u0, Ẽ) = 0, where dU(y, Ẽ) = infx∈Ẽ ‖y− x‖U (where dU is the

distance in U).

Harmonic diffeomorphisms

Let (M,g) and (N,h) be two Riemannian manifolds of dimensions m and n, and Rie-

mannian metrics g and h, respectively. A map φ : M→ N is called harmonic if it minimizes the

functional:

E(φ) =
∫

M
|∇φ |2dvg, (1.2)
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where dvg is the Riemannian volume form on M. The Euler-Lagrange equation for the functional

E, which also yields the minimum energy, is given by ∆φ = 0, the Laplace equation [74]. It is

useful to note that the solutions to the heat equation, in the limit t→ ∞, approach the harmonic

map. We now state a lemma on harmonic diffeomorphisms of Riemann surfaces (i.e., m = n = 2

above).

Lemma 7. (Harmonic diffeomorphism [48]). Let (M,g) be a compact surface with boundary

and (N,h) a compact surface with non-positive curvature. Suppose that ψ : M → N is a

diffeomorphism onto ψ(M). Assume that ψ(M) is convex. Then there is a unique harmonic map

φ : M→ N with φ = ψ on ∂M, such that φ : M→ φ(M) is a diffeomorphism.

We note that the non-positive curvature constraint in the lemma is essentially a constraint

on the metric h on N, and the curvature is zero for the Euclidean metric.

The space of probability measures and its weak topology

Let Ω = D̄, with D ⊂ Rd an open, bounded set in the d-dimensional Euclidean space

Rd . Let B(Ω) be the collection of Borel sets (the Borel σ -algebra) in Ω, which we take in this

paper to be the collection of measurable sets. The space of probability measures, P(Ω), is the

collection of functions µ ∈P(Ω) satisfying:

1. Values in the unit interval: µ : B(Ω)→ [0,1], with µ ( /0) = 0 and µ (Ω) = 1.

2. Countable additivity: For a pairwise disjoint sequence {Ai}i∈N of measureable sets,

µ (∪i∈NAi) = ∑i∈N µ(Ai).

We denote by Pr(Ω)⊂P(Ω) the space of atomless probability measures, where a measure

µ ∈P(Ω) is said to be atomless if for any A ∈B(Ω) with µ(A)> 0, there exists B ∈B(Ω),

B ⊂ A, such that µ(A) > µ(B) > 0. It follows that for an atomless measure µ , we will have

µ({x}) = 0 for all x ∈Ω. We consider this a notion of regularity of probability measures in this

paper, in that atomless measures are regular, and hence the superscript r in Pr(Ω).
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We now define absolutely continuous probability measures over Ω.

Definition 1 (Absolutely continuous probability measures). A probability measure µ ∈P(Ω)

is said to be absolutely continuous if for any A ∈B(Ω), we have µ(A) = 0 if vol(A) = 0 (where

vol is the Lebesgue measure).

This allows us to define a density function ρ corresponding to µ (where d µ = ρ dvol).

We now introduce the notion of pushforward of a measure under a mapping T : Ω→Ω.

Definition 2 (Pushforward measures). Given a map T : Ω→Ω and a measure µ ∈P(Ω), we

let ν =T#µ denote the pushforward measure of µ by T , where for a measurable set B⊂T (Ω),

we have ν(B) = T#µ(B) = µ(T −1(B)).

We now introduce the notions of weak convergence in P(Ω), the topology of weak

convergence, the metrizability of this topology, the compactness of collections of probability

measures and the underlying connections between them. These will be crucial for the devel-

opment of the theoretical results contained in this paper, and a detailed account can be found

in [24].

Definition 3 (Weak convergence). A sequence of measures {µk}k∈N in P(Ω) is said to con-

verge weakly to µ ∈P(Ω) if for any bounded and continuous function f on Ω, it holds

that limk→∞

∫
Ω

f dµk =
∫

Ω
f dµ .

Equivalently, in the definition above, the sequence {µk}k∈N in P(Ω) is said to converge

to µ in P(Ω) equipped with the weak topology. The space of probability measures P(Ω)

equipped with the weak topology is metrizable [24]. In other words, there exists a metric on

P(Ω) such that the weak topology is obtained as the topology induced by the metric. One

such metric is the Wasserstein distance, which will be defined below. We now state Prokhorov’s

theorem [24] on the equivalence between tightness and precompactness of a collection of

probability measures over a separable and complete metric (Polish) space.
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Lemma 8 (Prokhorov’s theorem). A set S ⊆P(Ω) (with Ω a separable, complete metric

space) is precompact w.r.t. the topology of weak convergence if and only if it is tight; i.e., for any

ε > 0 there exists a compact Kε ⊆Ω such that µ(Kε)> 1− ε for all µ ∈S .

Corollary 2 (Compactness of P(Ω)). Prokhorov’s theorem in Lemma 8 implies that, for

compact set Ω, P(Ω) is precompact since it is tight (where for any ε > 0, we choose Ω itself as

the compact set and have µ(Ω) = 1 > 1− ε for any µ ∈P(Ω)). Moreover, since P(Ω) is also

closed, it is therefore compact.

The L2-Wasserstein distance

The L2-Wasserstein distance between two probability measures µ,ν ∈P(Ω) is given

by:

W 2
2 (µ,ν) = min

π∈Π(µ,ν)

∫

Ω×Ω

|x− y|2 dπ(x,y), (1.3)

where Π(µ,ν) is the space of joint probability measures over Ω×Ω with marginals µ and

ν . The definition of L2-Wasserstein distance in (1.3) follows from the so-called Kantorovich

formulation of optimal transport. An alternative formulation, called the Monge formulation of

optimal transport, is given below:

W 2
2 (µ,ν) = min

T :Ω→Ω
T#µ=ν

∫

Ω

|x−T (x)|2 dµ(x). (1.4)

In the Monge formulation (1.4), the minimization is carried out over the space of maps T : Ω→Ω

for which the probability measure ν is obtained as the pushforward of µ . This can be viewed

as a deterministic formulation of optimal transport, where the transport is carried out by a map,

whereas the Kantorovich formulation (1.3) can be seen as a relaxation where the transport plan

is described by a joint probability measure π over Ω×Ω, with µ and ν as its marginals. It is to

be noted that the Monge formulation does not admit a solution for all probability measures µ
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and ν , while the Kantorovich formulation does. However, the two formulations (1.3) and (1.4)

are equivalent under certain conditions and in the sense laid out in the ensuing lemma. We refer

the reader to [106] for detailed proofs.

Lemma 9 (Existence and Uniqueness). There exists a unique minimizer π∗ to the Kantorovich

formulation (1.3) of the L2-Wasserstein distance. Moreover, if the measure µ is atomless, the

Monge formulation (1.4) has a unique minimizer T ∗ and it holds that π∗ = (id,T ∗)#µ .

The Kantorovich formulation (1.3) admits a dual formulation for which strong duality

holds, so that the L2-Wasserstein distance is also be given by:

W 2
2 (µ,ν) = sup

φ∈L1(Ω);ψ∈L1(Ω)

∫

Ω

φ dµ +
∫

Ω

ψ dν

φ(x)+ψ(y)≤ |x− y|2.
(1.5)

Equivalently, the above can be formulated as:

W 2
2 (µ,ν) = sup

φ∈L1(Ω)

s.t. φ c∈L1(Ω)

∫

Ω

φ dµ +
∫

Ω

φ
c dν , (1.6)

where φ c(y) = infx∈Ω{|x−y|2−φ(x)}. The space of probability measures P(Ω) endowed with

the L2-Wasserstein distance W2 will equivalently be referred to as the L2-Wasserstein space

(P(Ω),W2) over Ω.

We now present the following lemma, which follows from Theorem 6.9 in [117], on

the equivalence between convergence in the weak topology sense and convergence in the L2-

Wasserstein metric sense.

Lemma 10 (Convergence in (P(Ω),W2)). For bounded Ω ∈ Rd , the L2-Wasserstein distance

W2 metrizes the weak convergence in P(Ω), i.e., a sequence of measures {µk}k∈N in P(Ω)

converges weakly to µ ∈P(Ω) if and only if limk→∞W2(µk,µ) = 0.
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Convexity of functionals on the Wasserstein space

Before we can define any notion of convexity, we need to introduce an appropriate

notion of interpolation. We first recall that a function f : Rd → R is convex if f ((1− t)x+ ty)≤

(1− t) f (x)+ t f (y), for any x,y ∈ Rd and t ∈ [0,1]. In this way, the definition of convexity

involves interpolation along the straight line segment γ between x and y, or the geodesic γ(t) =

(1− t)x+ ty, for t ∈ [0,1], connecting x and y in Rd . The generalization of convexity to the space

of probability measures also requires a notion of interpolation between probability measures,

such as the following. Given x,y ∈Ω and Dirac measures δx,δy ∈P(Ω), we define its linear

interpolation as (1− t)δx + tδy, for t ∈ [0,1]. Similarly, the displacement interpolation of δx and

δy is given by δ(1−t)x+ty, for t ∈ [0,1]. Notice that the support of the linear interpolation of δx,δy,

is given by {x,y}, for each t ∈ [0,1]. However, support of the displacement interpolation is located

along the geodesic segment connecting x to y, for t ∈ [0,1]. The displacement interpolation is

more appropriate for defining convexity of functionals over the space of probability measures

and the transport schemes we construct in our work. More generally, we provide the following

definition:

Definition 4 (Displacement interpolation). For µ,ν ∈P(Ω) such that there exists an optimal

transport map T : Ω→ Ω from µ to ν in the L2-Wasserstein space over Ω, the displacement

interpolant of µ and ν is given by γt = ((1− t)id + tT )# µ , for t ∈ [0,1].

Observe that the displacement interpolant of µ and ν ∈P(Ω) corresponds to the notion

of geodesic from µ to ν in the L2-Wasserstein space. Moreover, in the definition of the displace-

ment interpolant above, we have assumed the existence of an optimal transport map from µ to

ν , which restricts the class of probability measures considered. The following lemma, which

is a consequence of Proposition 9.1.11 in [25], states that the existence of a transport map is

guaranteed when the source measure is atomless.

Lemma 11 (Existence of pushforward map). For two probability measures µ,ν ∈P(Ω), there
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exists a map T : Ω→Ω such that ν = T#µ if µ is atomless.

In order for a definition of interpolation to apply to the entire space P(Ω), the interpolants

must be constructed using an optimal transport plan, which is a joint probability measure with

marginals µ and ν . We refer to [8], where this notion is explored in greater detail. However, for

the purposes of this work, we do not need such a general definition, because splitting of masses

by transport plans is not relevant to the setting of multi-agent transport. Alternatively, we can

work with the notion of generalized geodesics introduced below:

Definition 5 (Generalized displacement interpolation). Let µ,ν ∈P(Ω), and θ ∈Pr(Ω) be

an atomless probability measure, such that Tθ→µ : Ω→ Ω and Tθ→ν : Ω→ Ω are optimal

transport maps from θ to µ , and θ to ν resp. in the L2-Wasserstein space over Ω. A (generalized)

displacement interpolant of µ and ν w.r.t. θ is given by γt =
(
(1− t)Tθ→µ + tTθ→ν

)
# θ , for

t ∈ [0,1].

We first state the following lemma before introducing the notion of geodesic convexity.

Lemma 12 (Geodesic convexity of P(Ω)). The L2-Wasserstein space (P(Ω),W2) is geodesi-

cally convex (w.r.t. generalized displacement interpolations or geodesics) if Ω is convex.

Proof. Let µ,ν ∈P(Ω) be two probability measures over Ω and let θ ∈P(Ω) be an atomless

probability measure. Moreover, let Tθ→µ : Ω→Ω and Tθ→ν : Ω→Ω be the optimal transport

maps from θ to µ and θ to ν respectively, such that Tθ→µ #θ = µ and Tθ→ν #θ = ν . The

L2-Wasserstein generalized geodesic from µ to ν is generated as the pushforward by the one-

parameter family of maps Tt = (1− t)Tθ→µ + tTθ→ν with t ∈ [0,1], given by µt = Tt#θ . From

the convexity of Ω, for any x ∈Ω, we have that Tt(x) ∈Ω since Tt(x) is a convex combination of

Tθ→µ(x) ∈Ω and Tθ→ν(x) ∈Ω, and therefore lies on the straight line segment between them.

This implies that Tt : Ω→ Ω. Moreover, since µt = Tt#θ , the mass of µt is concentrated on
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Tt(Ω), and we have:

µt(Ω) = µt(Tt(Ω)) =
∫

Tt(Ω)
dµt =

∫

Tt(Ω)
d (Tt#θ) =

∫

Ω

dθ = θ(Ω) = 1.

Therefore, we have µt ∈P(Ω) and that (P(Ω),W2) is convex.

Now, under the assumption of convexity of Ω, we have:

Definition 6 (Geodesic convexity). A functional F : P(Ω)→ R is geodesically convex if for

µ,ν ∈P(Ω) such that there exists an optimal transport map T : Ω→Ω from µ to ν (T#µ = ν)

in the L2-Wasserstein space over Ω, we have:

F(((1− t)id + tT )# µ)≤ (1− t)F(µ)+ tF(ν), ∀ t ∈ [0,1].

It is useful to generalize the notion of geodesic convexity to accommodate functionals that

are not convex in the sense of Definition 6. An example of a functional that is not convex in the

sense of Definition 6 is F(µ) =W 2
2 (µref,µ) [8], defined as the squared L2-Wasserstein distance

from a reference measure µre f , which is nevertheless an attractive candidate for gradient flow-

based transport as will be seen later. This motivates a definition of convexity along generalized

geodesics, as given below:

Definition 7 (Generalized geodesic convexity). Let µ,ν ∈P(Ω) and θ ∈P(Ω) be an atomless

probability measure, such that Tθ→µ : Ω→ Ω and Tθ→ν : Ω→ Ω are the optimal transport

maps from θ to µ and from θ to ν respectively, in the L2-Wasserstein space over Ω. A functional

F : P(Ω)→ R is (generalized) geodesically convex if:

F(
(
(1− t)Tθ→µ + tTθ→ν

)
# θ)≤ (1− t)F(µ)+ tF(ν), ∀ t ∈ [0,1].

We note that F(µ) =W 2
2 (µre f ,µ) is convex [8] in the sense of Definition 7.
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Derivatives of functionals on the space of atomless measures

We first introduce the notion of first variation of a functional as follows:

Definition 8 (First variation of a functional on P(Ω)). Consider a functional F : P(Ω)→ R,

and a µ0 ∈P(Ω). Let {µε}ε∈R be any a smooth one-parameter family of probability measures

such that the limit ∂ε µ|
ε=0 = limε→0

µε−µ0
ε

exists. Suppose that there exists a unique δF
δ µ

(µ0)

such that d
dε

F(µε)
∣∣
ε=0 =

∫
Ω

δF
δ µ

(µ0)d (∂ε µ|
ε=0), for any {µε}ε∈R. Then, δF

δ µ
(µ0) is called the

first variation of F evaluated at µ0.

With the above definition on first variation of functionals in place, we are ready to intro-

duce the notion of Fréchet derivative of a functional on the L2-Wasserstein space (Pr(Ω),W2):

Definition 9 (Derivative of a functional on (Pr(Ω),W2)). The Fréchet derivative ξ of a dif-

ferentiable (over the space of atomless probability measures) functional F : P(Ω)→ R at an

atomless measure µ ∈P(Ω), is given implicitly by:

lim
ν→µ

F(ν)−F(µ)− ∫
Ω

〈
ξ ,Tµ→ν − id

〉
dµ

W2 (µ,ν)
= 0,

where ξ = ∇ϕ and ϕ = δF
δ µ

.

We now introduce the notion of directional derivative of a functional over probability

measures. For this, let v =
Tµ→ν−id

t which implies that ν = (id + tv)#µ . We also have:

W2(µ,ν) =

√∫

Ω

∣∣Tµ→ν − id
∣∣2 dµ = t

√∫

Ω

|v|2dµ,

and we get:

lim
t→0

F((id + tv)#µ)−F(µ)− t
∫

Ω
〈ξ ,v〉dµ

t
√∫

Ω
|v|2dµ

= 0.
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Therefore, the directional derivative of F along v is

d
dt

∣∣∣∣
v
F(µ) = lim

t→0

F((id + tv)#µ)−F(µ)

t
=
∫

Ω

〈ξ ,v〉dµ,

where ξ is the Fréchet derivative of F .

Lipschitz-continuous derivatives

We now introduce the notion of l-smoothness that will be useful for the development of

gradient descent-based transport schemes later in the paper. We begin with a definition of this

notion in the Euclidean space and then generalize it in the Wasserstein sense.

Definition 10 (l-smoothness). A function f : Ω→ R is called l-smooth (or Lipschitz differen-

tiable) if for any x,y ∈Ω, we have |∇ f (y)−∇ f (x)| ≤ l‖y− x‖.

It is easy to prove the following lemma on l-smooth functions, which is used later to

define the notion of l-smoothness of functionals over (P(Ω),W2):

Lemma 13 (l-smooth functions). For an l-smooth function f : Ω→R and any x,y ∈Ω, we have

| f (y)− f (x)−〈∇ f (x),y− x〉| ≤ l
2‖y− x‖2.

We now generalize the above notion to functionals over the space of probability measures

using Lemma 13.

Definition 11 (l-smoothness of functionals on (P(Ω),W2)). A functional F : P(Ω)→ R is

called l-smooth (or Lipschitz differentiable) if for any µ,ν ∈P(Ω), we have:

√∫

Ω

∣∣ξµ −ξν

∣∣2 dν ≤ lW2(µ,ν),

where ξµ = ∇

(
δF
δ µ̃

∣∣∣
µ

)
, ξν = ∇

(
δF
δ µ̃

∣∣∣
ν

)
and Tν→µ is the optimal transport map from ν to µ .

Lemma 14 (l-smooth functionals). A functional F : P(Ω)→R that is l-smooth on (P(Ω),W2)

satisfies:
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1.
∣∣F(ν)−F(µ)− ∫

Ω

〈
ξµ ,Tµ→ν − id

〉
dµ
∣∣≤ l

2W 2
2 (µ,ν),

2.
∣∣∫

Ω

〈
ξµ −ξν ,Tν→µ − id

〉
dν
∣∣≤ lW 2

2 (µ,ν),

for atomless probability measures µ,ν ∈Pr(Ω).

We also define the proximal operator on Ω with respect to a function f : Ω→ R as

follows:

prox f (x) = argmin
z∈Ω

1
2
‖z− x‖2 + f (z).
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Chapter 2

A multiscale theory of multi-agent trans-
port by gradient descent

In this chapter, we set out to establish a multiscale theory of gradient descent-based

transport of multi-agent systems, with three main goals:

1. To present a macroscopic description of the behavior of multi-agent gradient descent

algorithms as transport in the space of probability measures.

2. To shed new light on the behavior of coverage optimization algorithms as the number of

agents N→ ∞.

3. To provide a framework for the development of algorithms based on iterative, gradient-

based transport schemes in the space of probability measures.

2.1 Bibliographical comments

In the context of robotic systems, problems of deployment and formation control of

groups of robots have been extensively studied [27, 35, 72, 88, 108]. More recently, research

efforts have been undertaken to massively increase the scale of these robotic systems [104]. In

the context of robotic swarms, programmable self-assembly of two-dimensional shapes with a

thousand-robot swarm is demonstrated in [105]. These robots are capable of measuring distances
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to nearby neighbors which they use to localize themselves relative to other localized robots. Each

robot then uses its position to implement an edge-following algorithm.

From a theoretical perspective, as the number of agents increases, the design and analysis

of efficient distributed transport laws poses new challenges, starting with the choice of appropriate

mathematical abstractions. The need for parsimonious descriptions of the collectives, along with

the fact that tasks for these systems are more likely to be specified at a high level, calls for the

use of macroscopic models. Among the approaches to the coverage control and deployment

problem for large-scale multi-agent systems are transport by synthesis of Markov transition

matrices [14, 16, 41], the use of continuum models [53, 80] for transport, coverage control by

parameter tuning and/or boundary control of the reaction-advection-diffusion PDE [52, 60, 123],

and mean-field stabilization [42, 50, 51].

2.2 Models for large-scale multi-agent transport

We consider a collection of N ∈ N identical agents with indices i ∈ I = {1, . . . ,N},

distributed across a spatial region, we recall, Ω = D̄, with D ⊂ Rd an open, bounded set in

the d-dimensional Euclidean space Rd . Let xi ∈ Ω be the position of the i-th agent, and let

x = (x1, . . . ,xN). Since the problem of transport additionally involves the dimension of time, we

consider the positions of the agents (and of other variables) as parametrized by time steps k ∈ N

in the discrete-time case, as xi(k), or time t ∈ R≥0 in the continuous-time case, as xi(t)

We view the problem of multi-agent transport as one of updating the positions xi(k) (or

xi(t) in continuous-time) according to a specified rule. Moreover, the specified rule is such that

the motion of an agent is seen as the result of computations that generate the successive positions

of the agent (or its instantaneous velocity). In other words, the physical motion is is merely the

physical realization of the results of underlying computations. Once we take this computational

perspective, that the problem of collective motion is essentially one of collective computation or

information processing, characterizing the flow of information within the collective becomes
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crucial. This is essentially due to the fact that in the absence of a centralized decision maker,

collective computation is enabled by information flow between the agents, and it is important to

characterize the nature of this information flow. To this end, we define a graph G =(I ,E ), where

the edge-set E specifies the sensing/communication model for the collective and characterizes

the information flow between the agents. In the ensuing applications, we often consider G to be

a proximity graph over the set of agents (vertices) I , given the corresponding set of positions of

the agents {xi}N
i=1.

We recall that the (microscopic) configuration of the collective is specified as

x = (x1, . . . ,xN) ∈ ΩN , and for an N ×N permutation matrix P, we take that the configura-

tion (P⊗ Id)x is equivalent to x, since the agents are assumed to be identical. We thereby

look for a permutation-invariant description of the collective, which leads us to specifying its

configuration (macroscopically) as a probability distribution over Ω, as µ̂N
x = 1

N ∑
N
i=1 δxi . If we

are further given that the positions xi of the agents are independently and identically distributed

according to a (absolutely continuous) probability measure µ ∈P(Ω) (where P(Ω) is the

space of probability measures over Ω), it follows from the Glivenko-Cantelli theorem [23] that in

the limit N→ ∞ the discrete probability measure µ̂N
x converges uniformly, almost surely to the

probability measure µ . In this way, µ̂N
x is seen as a discretization of the underlying measure µ .

In particular, this constitutes the sampling perspective, in that µ̂N
x is generated by N i.i.d. samples

of the probability measure µ . Alternatively, we can view µ̂N
x as being obtained by quantization

of the measure µ , wherein µ is discretized over an equitable partition of Ω (i.e., the individual

cells are of equal mass) to obtain the discrete measure µ̂N
x . We explore these ideas in greater

detail later in this chapter, but it suffices to say at present that for a large N number of agents, the

probability measure µ approximates closely the macroscopic configuration µ̂N
x of the collective.

We begin by considering a (discrete-time) deterministic update rule for the transport,

specified by a map Tk : Ω→Ω at time instant k, such that the position update for the i-th agent

is given by xi(k+ 1) = T (xi(k)). While the microscopic configuration undergoes the update

x(k) = (x1(k), . . . ,xN(k)) 7→ (Tk(x1(k)), . . . ,Tk(xN(k))) = x(k + 1), the updated macroscopic
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configuration is obtained as the pushforward of the measure µ̂N
x (k) by the map Tk, given by

µ̂N
x (k+1) = Tk#µ̂N

x (k).

2.3 Iterative proximal descent schemes in the space of prob-
ability measures

In this section, we set up iterative descent schemes in the space of probability measures

P(Ω) to converge to the minimizer of a convex functional. We then obtain descent schemes in

Ω that transport probability measures in accordance with the descent schemes in the space of

probability measures, and establish that they result in weak convergence to the minimizer.

Assumption 1. Ω⊂ Rd is the closure of an open, bounded subset of Rd and is convex.

Under Assumption 1, we have from Lemma 12 that the space of probability measures

P(Ω) equipped with the L2-Wasserstein metric is geodesically convex (w.r.t. generalized

geodesics). We now construct an l-smooth and strictly geodesically convex functional F :

P(Ω)→R with ∇

(
δF
δν

)
·n= 0 on ∂Ω (where n is the outward normal to ∂Ω) for all ν ∈P(Ω),

such that µ∗ = argminν∈P(Ω)F(ν) is absolutely continuous, and set up the following proximal

recursion in P(Ω) to converge to µ∗ from any absolutely continuous µ0 ∈P(Ω):

µk+1 ∈ arg min
ν∈P(Ω)

1
2τ

W 2
2 (µk,ν)+F(ν). (2.1)

Remark 1 (Neumann boundary condition). The Neumann boundary condition on the derivative

of the functional F, ∇

(
δF
δν

)
·n = 0 on ∂Ω (where n is the outward normal to ∂Ω), yields a zero-

flux boundary condition in the context of gradient descent w.r.t. F. This ensures conservation of

mass and that the solutions of gradient descent w.r.t. F, which are sequences of measures, are

contained in P(Ω) as probability measures over Ω.

Lemma 15 (Compactness and convexity of sublevel sets). The sublevel sets of the functional F

are compact and convex.

24



Proof. For any µ ∈P(Ω) (with the Wasserstein metric W2 on P(Ω)), we have that the sublevel

set S (µ) = {ν ∈P(Ω)|F(ν) ≤ F(µ)} is closed, since F is continuous and P(Ω) is closed

and compact (from Prokhorov’s theorem in Lemma 8 and Corollary 2 on the compactness of

P(Ω)), which implies that S (µ) is also compact since it is a closed subset of a compact set.

Moreover, for any ν0,ν1 ∈S (µ), and νt ∈P(Ω) on the generalized geodesic between

ν0 to ν1 with t ∈ [0,1] (which follows from Lemma 12), we have from the (generalized) geodesic

convexity of F that F(νt)≤ (1− t)F(ν0)+ tF(ν1)≤ F(µ) (since F(ν0)≤ F(µ) and F(ν1)≤

F(µ) by definition of S (µ)). This implies that νt ∈S (µ) for any t ∈ [0,1], from which we

infer convexity of S (µ).

Corollary 3 (Completeness of sublevel sets). It follows from Lemma 15 that the sublevel sets of

F in the L2-Wasserstein space are complete, in that every Cauchy sequence in a sublevel set of F

is convergent.

Lemma 16 (Strong convexity of objective functional). The objective functional in (2.1) is
(1

τ
− l
)
-strongly geodesically convex in Pr(Ω) for τ < 1/l.

Proof. Since F is l-smooth, by applying Lemma 14 we get:

∣∣∣∣
∫

Ω

〈ξ2−ξ1,Tν1→ν2− id〉dν1

∣∣∣∣≤ lW 2
2 (ν1,ν2). (2.2)

Let G(ν) = 1
2τ

W 2
2 (µ,ν)+F(ν) and η = ∇

(
δG
δν

)∣∣∣
ν
. Also, let φ = 1

2
δW 2

2 (µ,ν)
δν

∣∣∣
ν

be the Kan-

torovich potential for the transport from ν to µ . We now have:

∫

Ω

〈η2−η1,Tν1→ν2− id〉dν1 =
∫

Ω

〈
1
τ

∇φ2−
1
τ

∇φ1−ξ1 +ξ2,Tν1→ν2− id
〉

dν1

=
1
τ

∫

Ω

〈∇φ2−∇φ1,Tν1→ν2− id〉dν1 +
∫

Ω

〈ξ2−ξ1,Tν1→ν2− id〉dν1

≥ 1
τ

∫

Ω

〈∇φ2−∇φ1,Tν1→ν2− id〉dν1− lW 2
2 (ν1,ν2)

=

(
1
τ
− l
)

W 2
2 (ν1,ν2),
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where the inequality above follows from (2.2). Moreover, we have used the fact that ∇φ2−∇φ1 =

Tν1→ν2− id, which implies that
∫

Ω
〈∇φ2−∇φ1,Tν1→ν2− id〉dν1 =W 2

2 (ν1,ν2). Since τ < 1
l , we

get that the functional G, which is the objective functional in (2.1), is strongly-convex with

parameter 1
τ
− l.

Assumption 2 (Atomless sequence). We assume that for any τ < 1
l , the sequence {µk}k∈N

generated by (2.1) is such that µk ∈Pr(Ω) for all k ∈ N.

We remark here that sufficient regularity of the functional F would guarantee validity

of Assumption 2, and we conjecture that this is indeed the case if F is twice continuously

differentiable. Since we do not offer a proof for this claim, we retain Assumption 2 in establishing

the following theorem:

Theorem 1 (Convergence of proximal recursion (2.1)). Under Assumption 2, the proximal

recursion (2.1) converges weakly to µ∗ as k→ ∞.

Proof. It follows from (2.1) that:

1
2τ

W 2
2 (µk,µk+1)+F(µk+1)≤ F(µk)

⇒ F(µk+1)≤ F(µk)−
1

2τ
W 2

2 (µk,µk+1)

This implies that for µk 6= µk+1, we have F(µk+1)< F(µk). Therefore, the sequence {F(µk)} is

decreasing, and given an initial µ0, the sequence {µk}k∈N is contained in the sublevel set S (µ0)

of F(µ0). From Lemma 15, we have that S (µ0) is convex and compact in the L2-Wasserstein

space (P(Ω),W2), and by Corollary 3, complete. Moreover, we have:

1
2τ

W 2
2 (µk,µk+1)≤ F(µk)−F(µk+1),
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and by summing over k ∈ {0, . . . ,K}, we get:

1
2τ

K

∑
k=0

W 2
2 (µk,µk+1)≤ F(µ0)−F(µK+1).

Since F(µK+1)≤ F(µ0) and is bounded (as the sequence {µk}k∈N is contained in the sublevel set

S (µ0) and F is bounded below by F(µ∗)), we get that limK→∞ ∑
K
k=0W 2

2 (µk,µk+1) is bounded,

which implies that limK→∞W 2
2 (µK,µK+1) = 0. Therefore, the sequence {µk}k∈N is Cauchy, and

since S (µ0) is complete, it is also convergent. Thus we have limK→∞W 2
2 (µK, µ̄) = 0 for some

µ̄ ∈S (µ0).

Now, since the sequence {µk}k∈N is generated by the iterative proximal descent scheme

(2.1), we must have that µ̄ is a fixed point of (2.1). By the strong convexity of the objective

functional in (2.1) and since the functional F is strictly convex in (P(Ω),W2), with µ∗ as the

only minimizer, we infer that µ∗ is the only fixed point of (2.1) and µ̄ = µ∗.

We now consider the following proximal recursion in Ω from an initial condition x0 ∈Ω:

xk+1 = argmin
z∈Ω

1
2τ
|xk− z|2 +gk(z), (2.3)

where {gk}k∈N is a sequence of functions on Ω. We now let µ0 be the probability distribution of

the initial condition x0 (denoted x0 ∼ µ0) and obtain an assignment for the sequence {gk}k∈N to

target the recursion (2.1). In other words, we are interested in defining the dynamics in Ω that

would result in the transport of the initial measure µ0 according to the recursion (2.1).

Theorem 2 (Target dynamics in Ω). The proximal recursion (2.1) from µ0 ∈Pr(Ω) is obtained

as the transport of µ0 by (2.3) with x0 ∼ µ0 and the choice gk =
δF
δν

∣∣∣
µk+1

.

Proof. We rewrite the single-step update in (2.1) from a probability measure µ ∈P(Ω) as
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follows, for the purposes of this proof:

µ
+ = arg min

ν∈P(Ω)

1
2τ

W 2
2 (µ,ν)+F(ν). (2.4)

It follows from Lemma 16 that the minimizer µ+ in (2.4) is unique. Thus, for a one-parameter

family of absolutely continuous probability measures {νε}ε∈R generated by a transport vector

field vε (according to ∂ενε +∇ · (νεvε) = 0), with ν0 = µ+, we have:

0 =
d

dε

(
1

2τ
W 2

2 (µ,νε)+F(νε)

)∣∣∣∣
ε=0

=
1
τ

∫

Ω

〈
∇φµ+→µ ,v

〉
dµ

++
∫

Ω

〈ξ ,v〉dµ
+

=
∫

Ω

〈
1
τ

∇φµ+→µ +ξ ,v
〉

dµ
+.

where ξ = ∇

(
δF
δν

)∣∣∣
ν=µ+

and ∇φµ+→µ = id−T µ+→µ , with T µ+→µ : Ω→Ω being the optimal

transport map from µ+ to µ . Since
∫

Ω

〈1
τ
∇φµ+→µ +ξ ,v

〉
dµ+ = 0 for all v, it implies that

1
τ
∇φµ+→µ +ξ = 0 (µ+ a.e. in Ω), and we get:

1
τ

∇φµ+→µ +ξ =
1
τ

(
id−T µ+→µ

)
+ξ = 0,

which implies that:

T µ+→µ = id + τξ .

Let ϕ =
(

δF
δν

)∣∣∣
ν=µ+

. For any y∈Ω and τ < 1/l, we have a unique y+ defined as follows (which

corresponds to the single-step update in (2.3)):

y+ = argmin
z∈Ω

1
2τ
|y− z|2 +ϕ(z). (2.5)
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If y+ ∈ Ω̊, it is a critical point of (2.5) and satisfies y+ = y− τ∇ϕ(y+). Since ξ = ∇ϕ , we

therefore have y+ = (id + τξ )−1 (y). We note here that when the image of a y ∈ Ω under the

argmin map in (2.5) is a critical point in the interior of Ω, it is also the inverse image of y under

the optimal transport map T µ+→µ .

Now, for a y ∈ Ω̊, consider the objective function in (2.5) β (z) = 1
2τ
|y− z|2 +ϕ(z). The

inner product of its gradient at any point z ∈ ∂Ω on the boundary of Ω with the outward normal

n to ∂Ω at z is given by ∇β ·n =
(1

τ
(z− y)+∇ϕ(z)

)
·n = 1

τ
(z−y) ·n > 0, since ∇ϕ ·n = 0 and

z− y points outward to Ω (as z ∈ ∂Ω and y ∈ Ω̊ and Ω is convex). This implies that there exists

a point z̃ in the interior of Ω in a neighborhood of z such that β (z̃)< β (z), which implies that z

cannot be the minimizer. Thus, for any y ∈ Ω̊, the minimizer of β (z) = 1
2τ
|y− z|2 +ϕ(z) cannot

lie on the boundary ∂Ω, and must therefore lie in the interior of Ω and be a critical point of the

objective function β . Now, when y ∈ ∂Ω, if y+ /∈ Ω̊, it must be that y+ = y (otherwise we obtain

a contradiction for the same reason as above, that the inner product of ∇β with the outward

normal would be strictly positive) and the argmin map (and the optimal transport map) is an

identity in this case.

It therefore follows that for any y ∈ Ω, its image y+ under the argmin map is also its

inverse image under the optimal transport map T µ+→µ . Therefore, we get that the argmin

map in (2.5) is also the inverse of the optimal transport map T µ+→µ . Thus, we have that the

map T µ+→µ = id + τξ is well-defined and so is its inverse, we have that
(

T µ+→µ

)−1

#
µ =

(id + τξ )−1
# µ = µ+, and (2.4) is the lift to the space of probability measures of (2.5).

We therefore conclude that the proximal recursion (2.1) starting from µ0 is the transport

of µ0 by (2.3) with x0 ∼ µ0.

From a computational perspective, we note from Theorem 2 that to implement the proxi-

mal recursion (2.1) by the dynamics (2.3), we need to evaluate at a given time instant k the first

variation δF
δν

at µk+1, the transported measure at the time instant k+1. To circumvent the need to

evaluate the first variation one time step ahead, we alternatively consider the dynamics (2.3) with
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the choice gk =
δF
δν

∣∣∣
µk

, where for a given time instant k, the function gk is obtained by evaluating

the first variation of F at the transported measure µk.

Theorem 3. The sequence {µk}k∈N obtained as the transport of measure µ0 ∈Pr(Ω) by (2.3)

with τ < 1/l, x0 ∼ µ0 and the choice gk =
δF
δν

∣∣∣
µk

, converges weakly to µ∗ as k→ ∞.

Proof. By the l-smoothness of the functional F and Lemma 14, we have:

∫

Ω

〈
∇

(
δF
δν

∣∣∣∣
µk

− δF
δν

∣∣∣∣
µk+1

)
,Tµk+1→µk− id

〉
dµk+1 ≤ lW 2

2 (µk,µk+1).

We have that Tµk+1→µk = id + τ∇

(
δF
δν

∣∣∣
µk

)
, which from the above implies:

τ

∫

Ω

〈
∇

(
δF
δν

∣∣∣∣
µk

− δF
δν

∣∣∣∣
µk+1

)
,∇

(
δF
δν

∣∣∣∣
µk

)〉
dµk+1 ≤ lW 2

2 (µk,µk+1).

and we therefore have:

τ

∫

Ω

〈
∇

(
δF
δν

∣∣∣∣
µk+1

)
,∇

(
δF
δν

∣∣∣∣
µk

)〉
dµk+1 ≥

(
1
τ
− l
)

W 2
2 (µk,µk+1).

Moreover, by convexity of the functional F , we have:

F(µk)≥ F(µk+1)+
∫

Ω

〈
∇

(
δF
δν

∣∣∣∣
µk+1

)
,Tµk+1→µk− id

〉
dµk+1.

Subsituting in the above inequality, we get:

F(µk)≥ F(µk+1)+

(
1
τ
− l
)

W 2
2 (µk,µk+1).

From the above inequality we get that µk+1 belongs to the F-sublevel set of µk, and consequently

that the sequence {µk}k∈N is contained in S (µ0), the F-sublevel set of µ0. Following the same

arguments as in the proof of Theorem 1, we get that the sequence {µk}k∈N is convergent and
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limK→∞W 2
2 (µK, µ̄) = 0 for some µ̄ ∈S (µ0).

Now, since {µk}k∈N is a sequence of measures generated by (2.3) with the choice

gk =
δF
δν

∣∣∣
µk

and initial condition x0 ∼ µ0, in order to characterize the limit µ̄ , we first formulate

the corresponding iterative descent scheme in P(Ω). The descent in P(Ω) corresponding to

(2.3) with the choice gk =
δF
δν

∣∣∣
µk

is given by:

µk+1 = arg min
ν∈P(Ω)

1
2τ

W 2
2 (µk,ν)+Eν

[
δF
δ µ

∣∣∣∣
µk

]
. (2.6)

As the sequence {µk}k∈N is generated by (2.6), the limit µ̄ must be one of its fixed points. It

again simply follows from the properties of F that the objective functional in (2.6) is strongly

convex with Eν

[
δF
δ µ

∣∣∣
µk

]
being convex, and that the only fixed point of (2.6) is µ∗. We therefore

have that µ̄ = µ∗.

Theorem 3 allows us to consider the transport in P(Ω) by the following proximal scheme

in Ω for minimizing F :

x+ = argmin
z∈Ω

1
2τ
|x− z|2 +g(z), (2.7)

where x∼ µ and g = δF
δν

∣∣∣
µ

.

2.4 Multi-agent transport

We recall that the configuration of the collective is given by x = (x1, . . . ,xN), with xi ∈Ω

for i ∈ {1, . . . ,N}. Let µ̂N
x = 1

N ∑
N
i=1 δxi , be the discrete measure in P(Ω) corresponding to the

configuration x. For a macroscopic description of the transport, we first let the macroscopic

configuration be specified by an absolutely continuous probability measure, and since µ̂N
x is is

not absolutely continuous, we define an absolutely continuous probability measure µ̂
h,N
x through
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its density function using a smooth kernel K, as follows:

µ̂
h,N
x (x) =

1
N

N

∑
i=1

K(x− xi,h), (2.8)

where h > 0 is the bandwidth of the kernel. We allow µ̂
h,N
x to denote both the absolutely

continuous measure and its corresponding density function. We also denote, for x ∈ Ω, µ̂
h,1
x

simply by µ̂h
x . Thus, for x ∈ΩN , we have µ̂

h,N
x = ∑

N
i=1 µ̂h

xi
.

Assumption 3 (Properties of K). For h > 0 and z ∈ Ω, the probability measures µ̂h
z defined

using the kernel K as in (2.8), we have:

1. Smoothness: The kernel K(·,h) ∈C∞(Ω) for every h > 0.

2. Monotonicity of support: For any z ∈Ω and h1 < h2, we let supp
(

µ̂
h1
z

)
⊂ supp

(
µ̂

h2
z

)
.

3. Containment: For every h> 0, there exists a set Ω̃h⊂Ω such that for z∈ Ω̃h, the support of

the measure µ̂h
z satisfies supp(µ̂h

z )⊂Ω. Moreover, limh→0 Ω̃h = Ω in Hausdorff distance.

4. Total variation convergence: With M being the space of measureable functions over Ω,

we have limh→0 sup f∈M {
∫

Ω
f (z)K(x− z,h)dvol(z)− f (x)}= 0.

2.4.1 Discretization of F : P(Ω)→ R

We now define a function Fh,N as the discretization of the functional F , for h > 0, as

follows:

Fh,N(x) = F(µ̂h,N
x ). (2.9)

We note that, clearly, Fh,N is invariant under permutation, in that, for x ∈ Ω̃N
h and P ∈ RN a

permutation, we have Fh,N(x) = Fh,N((P⊗ Id) x).

Lemma 17 (Convergence as h→ 0, N→ ∞). Under Assumption 3, for xi ∼ µ independent and

identically distributed, we have limh→0 limN→∞ Fh,N(x1, . . . ,xN) = F(µ), µ-almost surely.

32



Proof. We have Fh,N(x) = F(µ̂h,N
x ) and that limh→0 limN→∞ µ̂

h,N
x = µ uniformly, almost surely

(u.a.s) by the Glivenko-Cantelli theorem and Assumption 3. Therefore, by continuity of F we

have:

lim
h→0

lim
N→∞

Fh,N(x) = lim
h→0

lim
N→∞

F(µ̂h,N
x )

= lim
µ̂

h,N
x →u.a.s µ

F(µ̂h,N
x )

= F(µ), µ− almost surely.

On the derivative of Fh,N

We begin by relating, through the following lemma, the derivative ∂1Fh,N of the function

Fh,N to the derivative of the functional F :

Lemma 18 (Derivative of Fh,N). The derivative of the function Fh,N satisfies:

∂1Fh,N(z,ξ ) =
∫

supp(µ̂h
z )

∇ϕ
h,N dµ̂

h
z ,

where dµ̂h
z = ρh

z dvol with ρh
z (x) = K(x− z,h), and ϕh,N = δF

δν
|
µ̂h,N .

Proof. Let x(t)= (x1(t), . . . ,xN(t)) be a curve parametrized by t ∈R and ẋ(0)= v=(v1, . . . ,vN).

d
dt

Fh,N(x(0)) =
N

∑
i=1

〈
∂iFh,N ,vi

〉
,

and using the fact that Fh,N(x) = F(µ̂h,N
x ), we also get:

d
dt

Fh,N(x(0)) =
N

∑
i=1

∫

Ω

〈
∇ϕ

h,N ,vi

〉
dµ̂

h
xi(0)

=
N

∑
i=1

〈∫

Ω

∇ϕ
h,N dµ̂

h
xi(0),vi

〉
.
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Since the above applies for all v = (v1, . . . ,vN), we get:

∂iFh,N(x) =
∫

Ω

∇ϕ
h,N dµ̂

h
xi
.

The above can be rewritten as:

∂1Fh,N(z,ξ ) =
∫

Ω

∇ϕ
h,N dµ̂

h
z =

∫

supp(µ̂h
z )

∇ϕ
h,N dµ̂

h
z ,

where dµ̂h
z = ρh

z dvol with ρh
z (x) = K(x− z,h), and ϕh,N = δF

δν
|
µ̂h,N , which proves the statement

of the lemma.

Lemma 19 (α-smoothness of Fh,N). If the function ϕ = δF
δ µ̃

∣∣∣
µ

is continuously differentiable on

Ω for all µ , then there exists an α > 0 such that Fh,N is α-smooth.

Proof. We have:

‖∇F(y)−∇F(x)‖=
√

N

∑
i=1
|∂1F(yi,y−i)−∂1F(xi,x−i)|2

=

√
N

∑
i=1

∣∣∣∣
∫

Ω

∇ϕ
h,N
y dµ̂h

yi
−
∫

Ω

∇ϕ
h,N
x dµ̂h

xi

∣∣∣∣
2

=

√
N

∑
i=1

∣∣∣∣
∫

Ω

[
∇ϕ

h,N
y (z+(yi− xi))−∇ϕ

h,N
x (z)

]
dµ̂h

xi
(z)
∣∣∣∣
2

≤
∫

Ω

∣∣∣∇ϕ
h,N
y (z)−∇ϕ

h,N
x (z)

∣∣∣dµ̂
h,N
x (z)

+
N

∑
i=1

∫

Ω

∣∣∣∇ϕ
h,N
y (z+(yi− xi))−∇ϕ

h,N
y (z)

∣∣∣dµ̂
h
xi
(z)

≤ lW2(µ̂
h,N
x , µ̂h,N

y )+M‖y−x‖

≤ α‖y−x‖,

where the penultimate inequality results from the l-smoothness of F and the continuous differen-

tiability of ϕ over compact Ω (which implies ϕ has a Lipschitz-continuous gradient). Moreover,
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the final inequality results from the fact that W2(µ̂
h,N
x , µ̂h,N

y )≤ ‖y−x‖.

We now characterize the behavior of the discretization Fh,N along the boundary through

the following assumption:

Assumption 4 (Boundary conditions). The function Fh,N satisfies the boundary condition

∂1Fh,N(z,ξ ) ·n(z) = 0 for z ∈ ∂ Ω̃h and all ξ ∈ Ω̃
N−1
h .

On the (non)convexity of Fh,N

The function Fh,N : ΩN → R is in general non-convex, although it is the discretization of

a strictly geodesically convex functional F : P(Ω)→R. This is because the notion of convexity

of functions over ΩN , which is the domain of the function Fh,N , is not equivalent to the notion

of geodesic convexity over the space of probability measures over Ω, in that for x,y ∈ΩN with

∑
N
i=1

1
N δxi,∑

N
i=1

1
N δyi ∈P(Ω) being the corresponding discrete measures, the supports of the

geodesics (when they exist) between ∑
N
i=1

1
N δxi and ∑

N
i=1

1
N δyi in P(Ω) do not correspond to the

straight line segment between x and y in ΩN . This is a source of non-convexity of FN .

Definition 12 (Cyclical monotonicity). A set Γ⊂Ω×Ω is cyclically monotone if any sequence

{(xi,yi)}N
i=1, with (xi,yi) ∈ Γ, satisfies:

N

∑
i=1
|xi− yi|2 ≤

N

∑
i=1
|xi− yσ(i)|2,

where σ is any permutation.

We define a subset ∆⊂ΩN (with δ > 0) as follows:

∆ =
{

z = (z1, . . . ,zN) ∈ Ω̊
N
∣∣∣ |zi− z j|> δ , ∀ i 6= j

}
.
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For every x ∈ ∆, we now define a set Γx ⊂ΩN such that for all y ∈ Γx, we have:

N

∑
i=1
|xi− yi|2 ≤

N

∑
i=1
|xi− yσ(i)|2,

for any permutation σ . In other words, Γx is the subset of ΩN such that for any y ∈ Γx, we have

(xi,yi) ∈ Γ ⊂ Ω×Ω, i.e., {(xi,yi)}N
i=1 is cyclically monotone. We now establish through the

following lemma that the set Γx contains an open neighborhood of x:

Lemma 20 (Γx contains an open neighborhood of x). For any x ∈ ∆, there exists an open

neighborhood N (x)⊂ΩN of x such that N (x)⊂ Γx.

Proof. For x ∈ ∆⊂ΩN , let y ∈ Ω̊N such that for all i ∈ {1, . . . ,N}, we have yi ∈ Bδ/2(xi), where

Bδ/2(xi) is the open δ/2-ball centered at xi ∈ Ω. Thus, there exists an open neighborhood

N (x) ⊂ ΩN of x, such that y ∈ N (x). Now for any j ∈ {1, . . . ,N} with j 6= i, we have

|yi− x j|= |yi− xi + xi− x j| ≥ |xi− x j|− |yi− xi|> δ −δ/2 > δ/2, since |xi− x j|> δ as x ∈ ∆

and |yi− xi|< δ/2. Thus, among all (non-identity) permutations σ , we have:

1
N

N

∑
i=1
|xi− yσ(i)|2 >

δ 2

4
>

1
N

N

∑
i=1
|xi− yi|2.

Thus, we infer that y ∈ Γx. Since the same holds for any ỹ ∈N (x), we get that N (x)⊂ Γx.

It follows from Lemma 20 that for an x ∈ ∆ with a given δ > 0, under an appropriate

choice of h > 0, the supports of the components µ̂h
xi

of the measure µ̂
h,N
x can be made disjoint.

Lemma 21 (Relaxation to atomless measures). For any x ∈ ∆ and y ∈ Γx, there exists h̄ > 0

such that for 0 ≤ h ≤ h̄ and the probability measures µ̂
h,N
x , µ̂h,N

y defined in (2.8), the optimal

transport map T
µ̂

h,N
x →µ̂

h,N
y

from µ̂
h,N
x to µ̂

h,N
y satisfies:

(
T

µ̂
h,N
x →µ̂

h,N
y
− id

)
(z) = yi− xi, ∀ z ∈ supp

(
µ̂

h
xi

)
.
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Proof. The proof is based on a generalization of Brenier’s Theorem [87]. We consider convex

functions χi : Ω→ R for i ∈ {1, . . . ,N} defined by:

χi(z) =
1
2
|z+ yi− xi|2 .

We note that the gradient of χi, ∇χi(z) = z+yi−xi defines a map that transports the measure µ̂h
xi

to µ̂h
yi

simply by translation. Since by the generalized Brenier’s Theorem [87] such a transport

map (defined by the gradient of a convex function) is unique and is also the optimal transport

map, the statement of the lemma follows.

Lemma 21 essentially establishes that for x ∈ ∆ and any y ∈ Γx, the optimal transport

from µ̂
h,N
x to µ̂

h,N
y is simply achieved by the translation of components µ̂h

xi
along the rays yi− xi

to µ̂h
yi

for each i ∈ {1, . . . ,N}.

Corollary 4 (L2-Wasserstein distance). For any x ∈ ∆ and y ∈ Γx:

W 2
2

(
µ̂

h,N
x , µ̂h,N

y

)
=

1
N

N

∑
i=1
|xi− yi|2,

for any 0 < h≤ h̄.

With the above results and the convexity of the functional F , we establish the following

comparison lemma:

Lemma 22 (Comparison lemma for Fh,N on cyclically monotone sets). For any x ∈ ∆, h ∈ (0, h̄]

and y ∈ Γx, we have:

Fh,N(y)≥ Fh,N(x)+
〈

∇Fh,N(x),y−x
〉
.
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Proof. From convexity of the functional F and the fact that x ∈ ∆ and y ∈ Γx, it follows that:

Fh,N(y) = F(µ̂h,N
y )≥ F(µ̂h,N

x )+
∫

Ω

〈
∇ϕ

h,N
x ,T

µ̂
h,N
x →µ̂

h,N
y
− id

〉
dµ

h,N
x

= F(µ̂h,N
x )+

N

∑
i=1

∫

Ω

〈
∇ϕ

h,N
x ,T

µ̂
h,N
x →µ̂

h,N
y
− id

〉
dµ

h
xi

= F(µ̂h,N
x )+

N

∑
i=1

∫

supp(µ̂h
xi
)

〈
∇ϕ

h,N
x ,T

µ̂
h,N
x →µ̂

h,N
y
− id

〉
dµ

h
xi

= F(µ̂h,N
x )+

N

∑
i=1

∫

supp(µ̂h
xi
)

〈
∇ϕ

h,N
x ,yi− xi

〉
dµ

h
xi

= F(µ̂h,N
x )+

N

∑
i=1

〈∫

supp(µ̂h
xi
)
∇ϕ

h,N
x dµ

h
xi
, yi− xi

〉

= Fh,N(x)+
N

∑
i=1

〈
∂1Fh,N(xi,x−i),yi− xi

〉
,

thereby establishing the claim.

We remark here that Fh,N is convex in the limited sense established by the comparison

result in Lemma 22, and this does not necessarily generalize to the entire domain ΩN , due to

which the function Fh,N can be non-convex in general.

Estimate on the minimum value of Fh,N

From the l-smoothness of the functional F , we have:

F(µ̂h,N
x )−F(µ∗)≤ l

2
W 2

2

(
µ̂

h,N
x ,µ∗

)
.

Moreover, from convexity of F , we get:

F(µ̂h,N
x )−F(µ∗)≥ 0.
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We generalize from the above inequalities, with m≥ 0:

m
2

W 2
2

(
µ̂

h,N
x ,µ∗

)
≤ F(µ̂h,N

x )−F(µ∗)≤ l
2

W 2
2

(
µ̂

h,N
x ,µ∗

)
.

In particular, if the functional F is strongly convex, we will have 0 < m < l. Since F(µ̂h,N
x ) =

Fh,N(x), we therefore have the following estimate on the minimum value of Fh,N :

m
2

min
x∈ΩN

W 2
2

(
µ̂

h,N
x ,µ∗

)
≤ min

x∈ΩN
Fh,N(x)−F(µ∗)≤ l

2
min
x∈ΩN

W 2
2

(
µ̂

h,N
x ,µ∗

)
. (2.10)

2.4.2 Multi-agent proximal descent

We formulate the proximal descent on the function Fh,N as follows:

x+ = arg min
z∈Ω̃N

1
2τ
‖x− z‖2 +Fh,N(z), (2.11)

where ‖x− z‖2 = ∑
N
i=1 |xi− zi|2. We now establish strong convexity of the proximal descent

objective function in (2.11) through the following lemma, under α-smoothness of Fh,N from

Lemma 19:

Lemma 23. The objective function in (2.11) is
(1

τ
−α

)
-strongly convex for τ < 1

α
.

Proof. From Lemma 19 on α-smoothness of Fh,N , we have:

∣∣∣
〈

∇Fh,N(y)−∇Fh,N(x),y−x
〉∣∣∣≤ α‖y−x‖2.
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With Gh,N
x (z) = 1

2τ
‖x− z‖2 +Fh,N(z) being the objective function of (2.11), we have:

〈
∇Gh,N

x (z1)−Gh,N
x (z2),z1− z2

〉

=

〈
1
τ
(z1−x)+∇Fh,N(z1)−

1
τ
(z2−x)−∇Fh,N(z2) , z1− z2

〉

=

〈
1
τ
(z1− z2)+∇Fh,N(z1)−∇Fh,N(z2) , z1− z2

〉

=
1
τ
‖z1− z2‖2 +

〈
∇Fh,N(z1)−∇Fh,N(z2) , z1− z2

〉

≥ 1
τ
‖z1− z2‖2−α‖z1− z2‖2

=

(
1
τ
−α

)
‖z1− z2‖2,

thereby establishing the claim.

Now, with x−i = (x1, . . . ,xi−1,xi+1, . . . ,xN) ∈ Ω̃N−1, we can write:

Fh,N(x1, . . . ,xN) =
1
N

N

∑
i=1

Fh,N(x1, . . . ,xN) =
1
N

N

∑
i=1

Fh,N(xi,x−i).

The proximal gradient descent (2.11) can be decomposed into the following agent-wise update

scheme:

x+i = argmin
z∈Ω̃

1
2τ
|xi− z|2 +Fh,N(z,x+−i).

Note that the above scheme requires as argument x+−i. From a computational perspective, to

implement the above algorithm, every agent i at time instant k requires the positions of the other

agents at time k+1, which poses a hurdle for implementation. Therefore, to avoid this problem

we instead consider the following proximal descent scheme for every agent i:

x+i = argmin
z∈Ω̃

1
2τ
|xi− z|2 +Fh,N(z,x−i). (2.12)
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It follows from Lemma 23 that the objective function in (2.12) is also strongly convex, and

thereby has a unique minimizer. We now present the following result on the convergence of

(2.12) to the local minimizers of Fh,N :

Theorem 4 (Convergence of (2.12) to critical points of Fh,N). For τ < 2
3α

, the sequence

{x(k)}k∈N generated by the update scheme (2.12) converges to a critical point x∗ of Fh,N

that is not a local maximizer, for all initial conditions x(0) ∈ Ω̃N . Moreover, if the critical point

x∗ ∈ ∆, it is a local minimizer.

Proof. We first consider the objective function in (2.12), ηxi(z) =
1

2τ
|xi− z|2 +Fh,N(z,x−i). The

inner product of the gradient of η on the boundary ∂ Ω̃ with the outward normal ñ to ∂Ω, is

given by:

∇η(z) · ñ(z) = 1
τ
(z− xi) · ñ(z)+∂1Fh,N(z,x−i) · ñ(z)

=
1
τ
(z− xi) · ñ(z)

≥ 0,

with the inequality being strict when xi /∈ ∂ Ω̃. This implies that the x+i ∈ ∂ Ω̃ cannot be a

minimizer if xi /∈ ∂ Ω̃, and if xi ∈ ∂ Ω̃, we will have x+i = xi. In both cases, we will then have

that the minimizer x+i is also a critical point of the function η . This allows us to express (2.12)

equivalently by:

x+i = xi− τ∂1Fh,N(x+i ,x−i). (2.13)

We note that in the limit τ→ 0, we get a gradient flow that can be shown to converge to a critical

point of Fh,N . We therefore hope that this property is preserved over a neighborhood of τ = 0. In

what follows, we establish that this is indeed the case and provide a sufficient strict upper bound

on τ for which the property is preserved.
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From α-smoothness of Fh,N , we get:

∣∣∣∣∣F(x+)−F(x)−
N

∑
i=1

〈
∂1Fh,N(xi,x−i),x+i − xi

〉∣∣∣∣∣≤
α

2
‖x+−x‖2.

We can rewrite the above as:

∣∣∣∣∣F(x+)−F(x)−
N

∑
i=1

〈
∂1Fh,N(x+i ,x−i),x+i − xi

〉

−
N

∑
i=1

〈
∂1Fh,N(xi,x−i)−∂1Fh,N(x+i ,x−i),x+i − xi

〉∣∣∣∣∣≤
α

2
‖x+−x‖2.

We now have −∑
N
i=1
〈
∂1Fh,N(x+i ,x−i),x+i − xi

〉
= 1

τ
‖x+− x‖2 and by α-smoothness of Fh,N

again that:

∣∣∣∣∣
N

∑
i=1

〈
∂1Fh,N(xi,x−i)−∂1Fh,N(x+i ,x−i),x+i − xi

〉∣∣∣∣∣≤ α‖x+−x‖2.

From the above inequalities, we therefore get:

Fh,N(x+)≤ Fh,N(x)−
(

1
τ
− 3α

2

)
‖x+−x‖2.

Thus, for τ < 2
3α

, when every agent follows the update (2.12), we get a descent in Fh,N , and x+

belongs to the Fh,N-sublevel set of x. We can express the above inequality for any time instant

k ∈ N as:

F(x(k+1))≤ F(x(k))−
(

1
τ
− 3α

2

)
‖x(k+1)−x(k)‖2.

Summing over k = 0, . . . ,K−1, we get:

F(x(K))≤ F(x(0))−
(

1
τ
− 3α

2

) K

∑
k=1
‖x(k)−x(k−1)‖2,
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and it follows that:

K

∑
k=1
‖x(k)−x(k−1)‖2 ≤

(
1

1
τ
− 3α

2

)
(F(x(0))−F(x(K))) ,

and since the sequence {x(k)}k∈N belongs to the Fh,N-sublevel set of x(0) (for all x(0) ∈ Ω̃N),

which is a subset of Ω̃N (compact), it is precompact. By the boundedness above, in the limit

K→∞, we get that limK→∞ ‖x(K)−x(K−1)‖2 = 0, which implies that the sequence is Cauchy.

Moreover, since the sequence is contained in a compact Ω̃N , which is also complete, we get that

{x(k)}k∈N is convergent. Let the limit limk→∞ x(k) = x∗, and from (2.13) we thereby get:

∂1Fh,N(x∗i ,x
∗
−i) = 0, ∀ i ∈ {1, . . . ,N},

which implies that ∇Fh,N(x∗) = 0. Therefore, the sequence {x(k)}k∈N converges to a criti-

cal point of Fh,N which cannot be a local maximizer since {F(x(k))}k∈N is decreasing and

consequently every neighborhood of x∗ contains atleast one point with a higher value of Fh,N .

Moreover, if x∗ ∈ ∆, from Lemmas 22 and 20, we get that there exists an open ball

B(x∗)⊂ΩN such that for all x ∈ B(x∗), we have F(x)≥ F(x∗), which implies that x∗ must be a

local minimizer.

Theorem 4 establishes that the multi-agent proximal descent converges to critical points

of the function Fh,N , which is a discretization of the functional F , and that those critical points

are not local maximizers. This is a weaker result than Theorem 2, which established convergence

of transport of measures by the scheme (2.7) to the global minimizer µ∗ of F . The weakening

of the guarantee is due to the discretization of F , involved in defining the multi-agent transport

scheme. However, we can still hope to achieve convergence to the global minimizer in the

limit N→ ∞, thereby guaranteeing best performance asymptotically. In what follows, we show

that this is indeed the case and that we can retrieve the property of convergence to the global

minimizer µ∗ of F in the limit N→ ∞ of the multi-agent proximal descent.
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N→ ∞ and continuous-time limit

We now begin with a macroscopic model of multi-agent transport in continuous-time

under a vector field v ∈ L∞([0,T ]×Lip(Ω)d), where the agent dynamics are given by ẋi(t) =

v(t,xi(t)) and xi(0)∼i.i.d µ0, for i ∈ {1, . . . ,N}.

Proposition 1 (Continuity equation as the model of transport in the continuous-time and N→ ∞

limit). The sequence of solutions {xN = (x1, . . . ,xN)}N∈N (with xi(0)∼i.i.d µ0 for i ∈ N) to the

multi-agent transport by the vector field v ∈ L∞([0,T ]× Lip(Ω)d) converge to a solution µ

(where dµ(t) = ρ(t)dvol and µ(0) = µ0) of the continuity equation:

∂ρ

∂ t
+∇ · (ρv) = 0, (2.14)

satisfied in the distributional sense.

Proof. Let the flow corresponding to the vector field v ∈ L∞([0,T ]×Lip(Ω)d) be given by:

∂tX t(x) = v(t,X t(x)),

with X0(x) = x, and let µ(t) = X t
#µ0 be the pushforward of µ0 by the flow at time t ∈ R≥0. Now,

with dµ̂N
x(t)(z) =

1
N ∑

N
i=1 δxi(t)(z)dvol(z) (δ here is the Dirac Delta function), we can write:

∂ρ
h,N
x

∂ t
(t,x) =− 1

N

N

∑
i=1

∇xK(x− xi(t),h) ·v(t,xi)

=−
∫

Ω

v(t,z) ·∇xK(x− z,h) dµ̂
N
x(t)(z).

We note that, by the Glivenko-Cantelli Theorem, the measure µ̂N
x(0) converges uniformly almost

surely to µ0. This implies that µ̂N
x(t) converges uniformly almost surely to the pushforward
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µ(t) = X t
#µ0 at time t. We therefore have:

lim
h→0

lim
N→∞

ρ
h,N
x (t,x) = lim

h→0
lim

N→∞

∫

Ω

K(x− z,h) dµ̂
N
x(t)(z)

= lim
h→0

(
lim

N→∞

∫

Ω

K(x− z,h) dµ̂
N
x(t)(z)

)

=a.s. lim
h→0

∫

Ω

K(x− z,h) dµ(t,z)

= lim
h→0

∫

Ω

ρ(t,z)K(x− z,h) dvol(z)

= ρ(t,x).

(2.15)

From the above, we get that for a smooth test function ζ ∈C∞([0,T ]×Ω) such that ζ (0) = 0 =

ζ (T ), we have:

∫

[0,T ]

∫

Ω

∂ζ

∂ t
ρ dvol dt =a.s. lim

h→0
lim

N→∞

∫

[0,T ]

∫

Ω

∂ζ

∂ t
ρ

h,N
x dvol dt

= lim
h→0

lim
N→∞
−
∫

[0,T ]

∫

Ω

ζ
∂ρ

h,N
x

∂ t
dvol dt

= lim
h→0

lim
N→∞

∫

[0,T ]

∫

Ω

ζ (t,x)
∫

Ω

v(t,z) ·∇xK(x− z,h) dµ̂
N
x(t)(z)dvol(x) dt

= lim
h→0

lim
N→∞
−
∫

[0,T ]

∫

Ω

∫

Ω

ρ
h,N
x (t,z)∇xζ (t,x) ·v(t,z)K(x− z,h) dvol(z) dvol(x) dt

=−
∫

[0,T ]

∫

Ω

∇ζ ·vρ dvol dt.

(2.16)

The above is the distributional sense of the continuity equation (2.14).

We now obtain the vector field corresponding to the multi-agent transport scheme (2.12)

in the N→ ∞ and continuous-time limit. We first rewrite (2.12) as follows:

x+ = argmin
z∈Ω̃

1
2τ
|x− z|2 +Fh,N(z,ξ )

x∼ 1
N

N

∑
i=1

δxi, ξ ∼⊗N
i=1,
xi 6=x

1
N

δxi,
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where ⊗N
i=1,
xi 6=x

1
N δxi is the product measure describing the independent coupling between the

discrete measures 1
N δxi . From the arguments in the proof of Theorem 4, the above update scheme

can be expressed equivalently as:

x+ = x− τ∂1Fh,N(x+,ξ )

x∼ 1
N

N

∑
i=1

δxi, ξ ∼⊗N
i=1,
xi 6=x

1
N

δxi.

For xi ∼i.i.d µ , we know that limN→∞
1
N ∑

N
i=1 δxi = µ uniformly, almost surely. Now, in the limit

N→ ∞ and h→ 0, with sufficient regularity of the kernel K ensuring uniform integrability of
{

∇ϕh,N}, we will have:

lim
h→0

lim
N→∞

∂1Fh,N(z,ξ ) = lim
h→0

lim
N→∞

∫

Ω

∇ϕ
h,Ndµ

h
z = ∇ϕ(z),

with ξ ∼⊗N
i=1,
xi 6=x

1
N δxi and ϕ = δF

δν
|
µ

above, and we therefore get:

x+ = x− τ∇ϕ(x+),

x∼ µ.

or equivalently:

x+ = argmin
z∈Ω

1
2τ
|x− z|2 +ϕ(z)

x∼ µ.

(2.17)

We thereby retrieve (2.7) from (2.12) in the N→ ∞ and h→ 0 limit. We know from Theorem 2

that transport of a probability measure µ0 by (2.7) (which is identical to (2.17)) is guaranteed to

converge to the global minimizer µ∗ of F .
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Informally, we see that as τ → 0 in (2.17), we have x+→ x and we let:

v(x) = lim
τ→0

x+− x
τ

=−∇ϕ(x).

We can therefore expect the solutions to (2.17) converge to the solution of the gradient flow

under the vector field v =−∇ϕ . We now show, in a weak sense, that the above reasoning holds.

Proposition 2 (Continuous-time limit of (2.17)). For every decreasing sequence {τn}n∈N sat-

isfying τ0 < 1
l and limn→∞ τn = 0, the sequence of solutions {xn}n∈N to (2.17) (with τ = τn)

contains a convergent subsequence, and the limit is a weak solution to the gradient flow given

by:

∂tX t(x) =−∇ϕt(X t(x)), (2.18)

with X0(x) = x, µ(t) = X t
#µ0 and ϕt =

δF
δν

∣∣∣
µ(t)

.

Proof. We begin by noting from (2.17) that 1
2τ
|x+− x|2 ≤ ϕ(x)−ϕ(x+) (where τ < 1

l , x ∼ µ

and ϕ = δF
δν

∣∣∣
µ

). Now let {τn}n∈N be a decreasing sequence such that τ0 <
1
l and limn→∞ τn =

0. Let {xn} be the sequence of solutions to (2.17) starting from the same initial condition

x0. We note that xn(k) ∈ Ω for all n,k ∈ N. We now define continuous curves x̄n, such that

x̄n(t) =
(

1+ b t
τn
c− t

)
xn(b t

τn
c)+

(
t−b t

τn
c
)

xn(b t
τn
c+1). From compactness of Ω, we get that
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the sequence {x̄n} is uniformly bounded. Moreover, we have for 0≤ k′ ≤ k that:

∣∣xn (k)− xn (k′
)∣∣≤

k

∑
m=k′+1

|xn(m)− xn(m−1)|

≤
(

k

∑
m=k′+1

|xn(m)− xn(m−1)|2
)1/2 (

k− k′
)1/2

=
√

2τn

(
k

∑
m=k′+1

1
2τn
|xn(m)− xn(m−1)|2

)1/2 (
k− k′

)1/2

≤
√

2τ0

(
∑

m∈N

1
2τn
|xn(m)− xn(m−1)|2

)1/2 (
k− k′

)1/2

≤
√

2τ0

(
ϕ0(x0)− lim

m→∞
ϕm(xn(m))

)1/2 (
k− k′

)1/2
,

where φm = δF
δν

∣∣∣
µ(m)

, µ(m) = Tm−1# . . .T0#µ0 and Tk = (id + τn∇ϕk−1)
−1. From Theorem 2, it

follows that limm→∞ ϕm = δF
δ µ

∣∣∣
µ∗

=C, a constant function. We therefore have:

∣∣xn (k)− xn (k′
)∣∣≤

√
2τ0 (ϕ0(x0)−C)1/2 (k− k′

)1/2
. (2.19)

It now follows for 0≤ t ′ ≤ t that:

∣∣x̄n(t)− x̄n(t ′)
∣∣=
∣∣∣∣x̄n(t)− xn

(⌊
t
τn

⌋)
+ xn

(⌊
t
τn

⌋)
− xn

(⌊
t ′

τn

⌋
+1
)
+ xn

(⌊
t ′

τn

⌋
+1
)
− x̄n(t ′)

∣∣∣∣

≤
∣∣∣∣x̄n(t)− xn

(⌊
t
τn

⌋)∣∣∣∣+
∣∣∣∣xn
(⌊

t
τn

⌋)
− xn

(⌊
t ′

τn

⌋
+1
)∣∣∣∣+

∣∣∣∣xn
(⌊

t ′

τn

⌋
+1
)
− x̄n(t ′)

∣∣∣∣

≤
∣∣∣∣x̄n(t)− xn

(⌊
t
τn

⌋)∣∣∣∣+

⌊
t′
τn

⌋
−1

∑
m=
⌊

t′
τn

⌋
+1

|xn(m+1)− xn(m)|+
∣∣∣∣xn
(⌊

t ′

τn

⌋
+1
)
− x̄n(t ′)

∣∣∣∣

≤
√

2τ0 (ϕ0(x0)−C)1/2 (t− t ′
)
,

where the final inequality follows from the definition of x̄n and (2.19). The above inequality holds

for any n ∈ N, and it thereby follows that the sequence {x̄n} is equicontinuous. Therefore, from

the Arzelá-Ascoli Theorem, we have that {x̄n} contains a uniformly convergent subsequence,
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and let the limit be the curve {x(t)}t∈R≥0 . Moreover, by isolating the uniformly convergent

subsequence and using a smooth test function ζ ∈C∞([0,T ]), we have:

∫

[0,T ]

dζ

dt
x(t) dt = lim

n→∞

∫

[0,T ]

dζ

dt
x̄n(t) dt = lim

n→∞

∫

[0,T ]

(
ζ (t + τn)−ζ (t)

τn

)
x̄n(t) dt

= lim
n→∞

∫

[τn,T ]
ζ (t)

(
x̄n(t− τn)− x̄n(t)

τn

)
dt

=
∫

[0,T ]
ζ (t)∇ϕt(x(t)) dt,

where the final equality follows from (2.17). The above is the weak form of the gradient flow

(2.18).

We observe that the vector field v = −∇ϕ satisfies a zero-flux boundary condition

v ·n = ∇ϕ ·n = 0 on ∂Ω owing to the definition of the functional F .

Definition 13 (Gradient flows in the space of probability measures). For a C1 function F :

P(Ω) → R, the transport by (2.14) (satisfied in the distributional sense (2.16)) with v =

−∇

(
δF
δ µ

)
is called a gradient flow on F.

The following theorem establishes the asymptotic stability of the gradient flow on the

functional F , with convergence to µ∗ ∈P(Ω), the global minimizer of F as t→ ∞:

Theorem 5 (Asymptotic stability of gradient flow). The solutions to the gradient flow w.r.t F

converge to µ∗ in the limit t→ ∞.

Proof. Let {µt}t≥0 be an orbit of the gradient flow w.r.t. F in P(Ω). We have:

d
dt

F(µt) =
∫

Ω

〈
∇

(
δF
δ µ

)
,v
〉

dµt

=−
∫

Ω

∣∣∣∣∇
(

δF
δ µ

)∣∣∣∣
2

dµt

≤ 0.
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This implies that F(µt)≤ F(µ0) for all t ≥ 0, and therefore {µt}t≥0 is contained in the sublevel

set S (µ0) = {ν ∈P(Ω)|F(ν)≤ F(µ0)}. From Lemma 15, we have that S(µ0) is compact in

(P(Ω),W2), which implies that the orbit {µt}t≥0 is precompact. Moreover, the functional F

is lower bounded in S(µ0) by F(µ∗). By the LaSalle invariance principle for Banach spaces,

in Lemma 6, we therefore have that the orbit converges in (P(Ω),W2) (also weakly, from

Lemma 10) asymptotically to the largest invariant set contained in Ḟ−1(0). We have:

Ḟ−1(0) =
{

µ ∈P(Ω)

∣∣∣∣∇
(

δF
δ µ

)
= 0, µ− a.e. in Ω

}
,

which implies that the Fréchet derivative of F is zero in the set Ḟ−1(0). This corresponds to

the set of critical points of F and from the strict geodesic convexity of F , we therefore get that

Ḟ−1(0) = {µ∗}.

2.5 Multi-agent coverage control

We now investigate the problem of multi-agent coverage control within the theoretical

framework developed in this section. The multi-agent coverage control problem is characterized

by the objective of deploying a group of agents across a spatial domain to maximize an appropriate

notion of coverage, specified as a locational optimization problem given a target coverage

profile [36]. This is accomplished by distributed algorithms that steer the agents towards the

(often local) minima of the aggregate objective function of the locational optimization problem.

This can alternatively be viewed as a problem of optimally quantizing an absolutely continuous

target probability measure by a discrete probability measure, minimizing a quantization cost,

where the discrete measure is supported on the set of agent positions. The quantization cost

can be formulated as the optimal transport cost between the absolutely continuous probability

measure and the discrete probability measure, and is called the semi-discrete optimal transport

problem [26, 66].
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The general theory developed in this paper allows for investigation of the behavior of

the locational optimization algorithms in the limit N→ ∞, and the convergence to the global

minimizer of the aggregate objective function. This is in addition to the macroscopic perspective

of coverage control offered by analysis within this framework. The order of presentation in this

section is reversed in comparison to the rest of the paper, in that we begin with the discretized

perspective, i.e., widely used aggregate objective functions in locational optimization, and search

for their functional counterparts in the space of probability measures from which they can be

seen to be discretized. The same approach is taken for the locational optimization algorithms.

2.5.1 Aggregate objective functions

In what follows, we study a widely used aggregate objective function for locational

optimization, the quantization energy, interpret it as the optimal transport cost between the target

probability measure and a weighted discrete measure, and investigate its behavior in the limit

N→ ∞. We then discuss the limitations of this function and seek to mitigate its limitations by

considering an alternative function used in the context of area/weight-constrained locational

optimization. This alternative objective function is again interpreted as an optimal transport cost

and its behavior is investigated in the limit N→ ∞, and its convexity is established.

Optimal transport cost

We first define the cost of optimal transport between measures µ and ν with the unit cost

of transport c(x,y) = f (|x− y|), where f : R→ R is a non-decreasing differentiable function

with f (0) = 0, as:

C f (µ,ν) = inf
T :Ω→Ω
T#µ=ν

∫

Ω

f (|x−T (x)|) dµ(x). (2.20)

Moreover, if the function f is strictly convex and µ ∈Pr(Ω), it also follows that there exists a

unique optimal transport map [106] minimizing C f (µ,ν) in (2.20). Assuming strict convexity of
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f , we now establish the following result on the strict convexity of C f (·,µ∗):

Lemma 24 (Strict convexity of C f (·,µ∗)). Fix µ∗ ∈P(Ω) (absolutely continuous) as the

reference measure and let µ0,µ1 ∈P(Ω). Let Tµ∗→µ0 and Tµ∗→µ1 be optimal transport maps

from µ∗ to µ0 and µ∗ to µ1 respectively, corresponding to the optimal transport cost C f , and let

Tt = (1− t)Tµ∗→µ0 + tTµ∗→µ1 for t ∈ [0,1]. For µt = Tt#µ∗, we have:

C f (µt ,µ
∗)< (1− t)C f (µ0,µ

∗)+ tC f (µ0,µ
∗).

Proof. We have:

C f (µt ,µ
∗)≤

∫

Ω

f (|Tt(x)− x|)dµ
∗(x) =

∫

Ω

f
(∣∣(1− t)Tµ∗→µ0(x)+ tTµ∗→µ1(x)− x

∣∣)dµ
∗(x)

=
∫

Ω

f
(∣∣(1− t)

[
Tµ∗→µ0(x)− x

]
+ t
[
Tµ∗→µ1(x)− x

]∣∣)dµ
∗(x)

≤
∫

Ω

f
(
(1− t)

∣∣Tµ∗→µ0(x)− x
∣∣+ t

∣∣Tµ∗→µ1(x)− x
∣∣)dµ

∗(x),

where the final inequality is a consequence of the fact that f is non-decreasing. Further, if f is

strictly convex in Ω, we will have:

C f (µt ,µ
∗)<

∫

Ω

[
(1− t) f

(∣∣Tµ∗→µ0(x)− x
∣∣)+ t f

(∣∣Tµ∗→µ1(x)− x
∣∣)]dµ

∗(x)

= (1− t)
∫

Ω

f
(∣∣Tµ∗→µ0(x)− x

∣∣)dµ
∗(x)+ t

∫

Ω

f
(∣∣Tµ∗→µ1(x)− x

∣∣)dµ
∗(x)

= (1− t)C f (µ0,µ
∗)+ tC f (µ0,µ

∗).

The lemma above can be applied to the quadratic case f (x) = x2, where we get the

squared L2-Wasserstein distance and convexity can similarly be shown. In the case of the squared

L2-Wasserstein distance, the interpolants essentially turn out to be generalized geodesics with

µ∗ as the reference measure, and we thereby get (generalized) geodesic convexity. This is noted
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in the following corollary:

Corollary 5 (Strict convexity of squared L2-Wasserstein distance to µ∗). The squared L2-

Wasserstein distance functional W 2
2 (·,µ∗) is (generalized) geodesically strictly convex.

We now establish the following result on the l-smoothness of C f (·,µ∗):

Lemma 25 (l-smoothness of C f (·,µ∗)). If the function h : Rd → R such that h(v) = f (|v|) is

l-smooth, then the functional F(µ) =C f (µ,µ
∗), with ξµ being the Fréchet derivative of F at

µ ∈Pr(Ω), satisfies:

∣∣∣∣
∫

Ω

〈
ξµ1−ξµ2 ,Tµ2→µ1− id

〉
dµ2

∣∣∣∣≤
∫

Ω

∣∣Tµ2→µ1− id
∣∣2 dµ2,

where Tµ2→µ1 is the optimal transport map from µ2 to µ1 w.r.t. the cost C f .

Proof. Let φµ =
δC f (µ,µ

∗)
δ µ

the Kantorovich potential for the optimal transport from µ to µ∗. We

now have the following relation [106]:

Tµ→µ∗ = id− (∇h)−1 (∇φµ).

With the above, and from the l-smoothness of h, we have:

∣∣∣∣
∫

Ω

〈
ξµ1−ξµ2 ,Tµ2→µ1− id

〉
dµ2

∣∣∣∣=
∣∣∣∣
∫

Ω

〈
∇h
(
id−Tµ1→µ∗

)
−∇h

(
id−Tµ2→µ∗

)
,Tµ2→µ1− id

〉
dµ2

∣∣∣∣

≤
∫

Ω

∣∣〈∇h
(
id−Tµ1→µ∗

)
−∇h

(
id−Tµ2→µ∗

)
,Tµ2→µ1− id

〉∣∣dµ2

≤ l
∫

Ω

∣∣Tµ2→µ1− id
∣∣2 dµ2.

The corollary below follows immediately from Lemma 25:

Corollary 6 (l-smoothness of squared L2-Wasserstein distance to µ∗). The functional 1
2W 2

2 (·,µ∗)

is 1-smooth.
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Quantization energy

We now define an aggregate objective function for the locational optimization prob-

lem [36], also known as the quantization energy, as follows:

H f (x) =
∫

Ω

min
i∈{1,...,N}

f (|x− xi|)dµ
∗(x). (2.21)

Now, the following lemma establishes the relationship between the aggregate objective function

in (2.21) and the optimal transport cost defined in (2.20):

Lemma 26 (Optimal transport formulation of locational optimization objective). The aggregate

objective function H for the locational optimization problem, as defined in (2.21), satisfies:

H f (x) = min
w∈RN

≥0

C f

(
N

∑
i=1

wiδxi , µ
∗
)

=C f

(
N

∑
i=1

µ
∗(Vi)δxi , µ

∗
)
.

Proof. Now, let µ̂N
x,w = ∑

N
i=1 wiδxi be a weighted discrete probability measure corresponding to

the set of points {xi}N
i=1 with corresponding weights {wi}N

i=1, such that wi ∈ [0,1] and ∑
N
i=1 wi = 1.

The optimal transport cost between µ̂N
x,w and µ∗ is given by:

C f (µ̂
N
x,w,µ

∗) = inf
T :Ω→Ω

T#µ∗=µ̂N
x

∫

Ω

f (|x−T (x)|) dµ
∗(x),

where the infimum is over the set of maps T that pushforward µ∗ to µ̂N
x,w (we note that since µ̂N

x,w

has finite support, pushforward maps exist only from µ∗ to µ̂N
x,w and not the other way around).

The maps T : Ω→ {xi}N
i=1 partition Ω into N regions {Wi}N

i=1 of mass µ∗(Wi) = wi. Let T ∗ :
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Ω→{xi}N
i=1 be the optimal transport map from µ∗ to µ̂N

x,w, which allows us to write:

C f (µ̂
N
x,w,µ

∗) = inf
T :Ω→Ω

T#µ∗=µ̂N
x,w

∫

Ω

f (|x−T (x)|) dµ
∗(x)

=
∫

Ω

f (|x−T ∗(x)|) dµ
∗(x)

≥
∫

Ω

min
i∈{1,...,N}

f (|x− xi|) dµ
∗(x).

(2.22)

The above inequality is due to the fact that for a family G of bounded functions over Ω, we

have infg∈G
∫

Ω
g(x)dvol(x)≥ ∫

Ω
ming∈G g(x)dvol(x). Since f is non-decreasing, we also have:

∫

Ω

min
i∈{1,...,N}

f (|x− xi|) dµ
∗(x) =

N

∑
i=1

∫

Vi

f (|x− xi|) dµ
∗(x),

where {Vi}N
i=1 is such that V̊i∩ V̊ j = /0 for i 6= j and ∪N

i=1Vi = Ω, is the Voronoi partition of Ω.

We now define a map TV : Ω→ Ω such that TV (x) = xi for x ∈ Vi, with TV (Ω) =

{x1, . . . ,xN}, and we get:

∫

Ω

f (|x−TV (x)|) dµ
∗(x) =

N

∑
i=1

∫

Vi

f (|x− xi|) dµ
∗(x)

=
∫

Ω

min
i∈{1,...,N}

f (|x− xi|) dµ
∗(x).

From (2.22) and the above, we therefore get:

∫

Ω

f (|x−TV (x)|) dµ
∗(x)≤C f (µ̂

N
x,w,µ

∗).

For the particular choice of the weights wi = µ∗(Vi) such that µ̂N
x,µ∗(V ) = ∑

N
i=1 µ∗(Vi)δxi , we

also get the reverse inequality:

∫

Ω

f (|x−TV (x)|) dµ
∗(x)≥C f (µ̂

N
x,µ∗(V ),µ

∗).
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This is because:

C f

(
N

∑
i=1

µ
∗(Vi)δxi,µ

∗
)

= inf
T :Ω→Ω

T#µ∗=∑
N
i=1 µ∗(Vi)δxi

∫

Ω

f (|x−T (x)|) dµ
∗(x)

≤
∫

Ω

f (|x−TV (x)|) dµ
∗(x),

and we therefore get:

C f

(
N

∑
i=1

µ
∗(Vi)δxi,µ

∗
)

=
∫

Ω

min
i∈{1,...,N}

f (|x− xi|) dµ
∗(x),

which establishes that:

min
w∈RN

≥0

C f

(
N

∑
i=1

wiδxi,µ
∗
)

=
∫

Ω

min
i∈{1,...,N}

f (|x− xi|) dµ
∗(x) = H f (x),

with the minimizing weights w∗i = µ∗(Vi).

Lemma 26 establishes the connection between the locational optimization problem and

the problem of semi-discrete optimal transport. Moreover, we also observe the connection to

quantization of probability measures, wherein the aggregate objective function is expressed as

the optimal transport cost between the absolutely continuous target probability measure µ∗ and a

discrete probability measure. For this reason, the aggregate objective function H f is also known

as the quantization energy.

Corollary 7 (Aggregate objective function as L2-Wasserstein distance). It follows from Lemma 26

that with a quadratic cost f (x) = x2 (and the corresponding aggregate objective function H2),

we have:

H2(x) = min
w∈RN

≥0

W 2
2

(
N

∑
i=1

wiδxi,µ
∗
)
,

where the minimizing weights w∗i = µ∗(Vi).
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We now investigate the properties of the aggregate objective function H f in the limit

N→ ∞. Recall that we have:

H f (x) =C f

(
N

∑
i=1

µ
∗(Vi)δxi,µ

∗
)
.

Now let xi ∼i.i.d µ , where µ ∈P(Ω) is any absolutely continuous probability measure

such that supp(µ) ⊇ supp(µ∗). In the limit N → ∞, the weighted measure ∑
N
i=1 µ∗(Vi)δxi

converges weakly almost surely to µ∗ (this can be seen by evaluating the expectation w.r.t.

∑
N
i=1 µ∗(Vi)δxi of any simple function, in the limit N → ∞, along with the application of the

Glivenko Cantelli Theorem). Therefore, by continuity of C f , in the limit N → ∞ the value

of the aggregate objective function converges to zero almost surely, i.e., limN→∞ H f (x) =

limN→∞C f
(
∑

N
i=1 µ∗(Vi)δxi,µ

∗)=C f (µ
∗,µ∗) = 0 a.s. In other words, the value of the aggregate

objective function H f converges almost surely to zero in the limit N→ ∞ irrespective of the

configuration of the points {xi}N
i=1. While the empirical measure 1

N ∑
N
i=1 δxi corresponding to

the points {xi}N
i=1 sampled i.i.d. from µ converges uniformly almost surely to µ (Glivenko-

Cantelli theorem), the quantization energy H f , by converging to zero, does not reflect the

discrepancy between the measures µ and µ∗. The quantization energy H f therefore suffers from

this deficiency as a candidate aggregate function for coverage control.

Constrained quantization energy

To mitigate the above deficiency, let us define another aggregate function H̄ f as follows:

H̄ f (x) =C f

(
1
N

N

∑
i=1

δxi , µ
∗
)
. (2.23)

The function H̄ f is again a commonly used aggregate objective function in the literature, used

in the area (weight)-constrained coverage control problem (where the weights wi = 1/N are
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balanced in the case of (2.23)). This can be seen from the following:

H̄ f (x) =C f

(
1
N

N

∑
i=1

δxi , µ
∗
)

= min
T :Ω→{xi}N

i=1
T#µ∗= 1

N ∑
N
i=1 δxi

f (|x−T (x)|)dµ
∗(x)

= min
T :Ω→{xi}N

i=1

{
f (|x−T (x)|)dµ

∗(x)
∣∣∣∣ µ
∗ (T−1({xi})

)
=

1
N
, ∀ i

}
.

As was the case with H f (x), the quantization energy, that it could be decomposed into the sum

of energies evaluated over the Voronoi partition of Ω with {xi}N
i=1 as its generators (we recall

this from the proof of Lemma 26), a similar statement could be made of H̄ f , except that this

case involves a generalized Voronoi partition {Wi}N
i=1, with ∪N

i=1Wi = Ω, W̊i∩ W̊ j = /0 for i 6= j,

where:

Wi =
{

x ∈Ω
∣∣ f (|x− xi|)−ωi ≤ f (|x− x j|)−ω j

}
,

where {ω1, . . . ,ωN} are chosen such that µ∗(Wi) = 1/N for all i ∈ {1, . . . ,N}. We refer the

reader to [33] for a detailed treatment of the computation of (ω1, . . . ,ωN). We can now write:

H̄ f (x) =
N

∑
i=1

∫

Wi

f (|x− xi|) dµ
∗(x). (2.24)

We again investigate the properties of H̄ f in the limit N → ∞. By letting xi ∼i.i.d µ ,

where µ ∈P(Ω) is any absolutely continuous probability measure, in the limit N→ ∞, we will

have 1
N ∑

N
i=1 δxi converging uniformly almost surely to µ , and by the continuity of C f , we will

have:

lim
N→∞

H̄ f (x) =C f (µ,µ
∗) , µ−a.s. (2.25)
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2.5.2 Generalized Lloyd proximal descent

We now turn our attention to the generalized Lloyd descent algorithm, which is a gradient

descent algorithm on the aggregate objective function H̄ f for the quadratic case f (x) = x2. We

begin with its formulation, introduce a proximal descent version and investigate its convergence

to the global minimizer in the limit N→ ∞.

We now formulate the multi-agent proximal descent on the aggregate objective function

H̄ f , with f (x) = x2, as follows:

x+i = argmin
z∈Ω

1
2τ
|xi− z|2 +H̄ f (z,x−i). (2.26)

Theorem 6 (Convergence to centroidal generalized Voronoi partition). The Lloyd proximal

descent (2.26), with f (x) = x2, converges to a local minimizer of H̄ f .

Proof. The statement of the theorem follows from Corollary 6 and the application of Theorem 4.

It is known that the generalized Lloyd descent algorithm results in convergence to centroidal

generalized Voronoi partitions [33], in which case, the generators {x1, . . . ,xN} of the generalized

Voronoi partition are also the centroids of their respective generalized Voronoi cells. The

centroidal generalized Voronoi partition is, however, not unique, and this relates to the fact

that the convergence is to the local minimizers of H̄ f , which is typically nonconvex. From

Section 2.4.2, we have that in the limit N→∞, the proximal descent scheme (2.26) converges to:

x+ = argmin
z∈Ω

1
2τ
|x− z|2 +φ(z), (2.27)

with x∼ µ and φ =
δW 2

2 (ν ,µ
∗)

δν

∣∣∣
µ

is the Kantorovich potential for optimal transport from µ to µ∗.

Theorem 7 (Convergence of (2.27)). The sequence {µk}k∈N obtained as the transport of mea-

sure µ0 ∈Pr(Ω) by (2.27), with x0 ∼ µ0, converges weakly to µ∗ as k→ ∞.
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Proof. The claim follows from Theorem 3, with F(ν) =W 2
2 (ν ,µ

∗) and the strict (generalized)

geodesic convexity of W 2
2 (·,µ∗).

2.6 Summary

In this chapter, we presented a macroscopic description of the behavior of multi-agent

gradient descent algorithms as transport in the space of probability measures, and developed a

multiscale theory bridging the microscopic and macroscopic scales. The chapter also contributes

a framework for developing iterative, gradient-based algorithms for multi-agent transport with

provable convergence, based on descent schemes in the space of probability measures. Within the

above framework, we investigated the behavior of coverage optimization algorithms, particularly

the asymptotic convergence to the global minimizer, in the limit that the number of agents

N→ ∞.

The material in this chapter is currently being prepared for submission as Multiscale

Analysis of Multi-Agent Transport by Gradient Descent, V. Krishnan and S. Martı́nez. The

dissertation author was the primary investigator and author of this paper.
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Chapter 3

Multi-agent optimal transport

In this chapter, we propose and investigate an iterative scheme for large-scale optimal

transport of multi-agent collectives based on a scalable, distributed online optimization. Working

with a reduction of the Kantorovich duality for metric costs conformal to the Euclidean metric,

we note that the Kantorovich potential is almost everywhere differentiable and obtain a bound on

the norm of its gradient. We then obtain an iterative scheme for optimal transport of probability

measures based on Kantorovich duality, showing it to be equivalent to optimal transport along

geodesics. We propose a distributed primal-dual algorithm to be implemented online by the

agents to obtain local estimates of the Kantorovich potential, which are then used as local

objectives in a proximal algorithm for transport. In the continuous-time limit and as N → ∞,

we derive a PDE-based flow for optimal transport, and obtain convergence results for an online

implementation of the transport. The material in this chapter contains a novel scalable, distributed

algorithm for multi-agent optimal transport, addressing a longstanding concern in the research

on multi-agent systems.

3.1 Bibliographical comments

The applications of optimal transport in image processing and various engineering do-

mains has motivated a search for efficient computational methods for the optimal transport

problem, and we refer the reader to [100] for a comprehensive account. Entropic regularization
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of the Kantorovich formulation has been an efficient tool for approximate computation of the

optimal transport cost using the Sinkhorn algorithms [37], [39]. Data-driven approaches to the

computation of the optimal transport cost between two distributions from their samples have

been investigated in [82, 114], and with an eye towards large-scale problems in [61], [109], [93].

A related problem of computation of Wasserstein barycenters was addressed in [38]. Optimal

transport from continuous to discrete probability distributions has been studied under the name of

semi-discrete optimal transport, with connections to the problem of optimal quantization of prob-

ability measures, in [26]. While computational approaches to optimal transport often work with

the static, Monge or Kantorovich formulations of the problem, investigations involving dynami-

cal formulations was initiated by [20], where the authors recast the L2 Monge-Kantorovich mass

transfer problem in a fluid mechanics framework. This largely owes to notion of displacement

interpolation originally introduced in [87]. The underlying rationale is that the optimal transport

cost defines a metric in the space of probability measures, which allows for the interpretation

of optimal transport between two probability measures as transport along distance-minimizing

geodesics connecting them. [98] and [21] are other works in this vein. The problem of optimal

transport was also explored from a stochastic control perspective in [91] and [30], where the

latter further explored connections to Schrodinger bridges. However, there has remained a gap

in this literature with regard to distributed computation of optimal transport, which arises as a

rather stringent constraint in multi-agent transport scenarios. We note that despite the potential

for the application of optimal transport ideas to the multi-agent setting, it has hitherto largely

remained unsuccessful. The papers [57] and [15] represent attempts in this direction, while

in the first paper the problem is formulated as one of optimal control, the second is placed

in the framework of optimal transport. These works, however, present significant limitations

either because they require centralized offline planning [57], or because of a need for costly

computation and information exchange between agents [15]. This serves as a strong motivation

for the distributed iterative scheme for optimal transport presented in this chapter.

Markov Chain Monte Carlo (MCMC) methods [9, 63, 103] present another framework
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for the problem of rearranging probability measures, and can be traced back to early works by

Metropolis [90] and Hastings [67]. MCMC methods involve the construction of a Markov chain

with the target probability measure as its equilibrium measure, and yield samples of the target

measure as t→∞. From a computational perspective, MCMC methods allow for the agents to be

transported independently of one another, which results in a fully decentralized implementation.

However, MCMC methods are inefficient with respect to the cost of transport. On the other hand,

an optimal transport-based approach suffers from the need for a centralized implementation, as

the optimal transport plan is computed using global information of the intial and target probability

measures. This further motivates our search for scalable, distributed iterative algorithms that

occupy the middle ground. We attempt to improve the cost of transport by imposing more

structure to the set of agents in the form of a nearest-neighbor network and using the information

from the neighbors to compute the successive iterates. From a computational standpoint, such

an approach would neither be decentralized to the point of complete independence between

agents as in the case of MCMC, nor would it be centralized as is typical of conventional optimal

transport-based methods.

3.2 On the Monge and Kantorovich formulations of optimal
transport

We begin this section with an overview of the Monge and Kantorovich formulations of

optimal transport, followed by preliminary results used later in the paper.

Let µ,ν ∈P(Ω) be absolutely continuous probability measures on Ω. Let c : Ω×Ω→

R≥0 be such that for x,y ∈Ω, c(x,y) is the unit cost of transport from x to y. We now make the

following assumptions on the cost c:

Assumption 5. The cost c is continuous and is a metric on Ω conformal to the Euclidean metric

(with strictly positive conformal factor ξ ∈C1(Ω)).

In the Monge (deterministic) formulation, the optimal cost of transporting the probability
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measure µ onto ν is defined as the infimum of the transport cost over the set of all maps for

which ν is obtained as the pushforward measure of µ , as given below:

CM(µ,ν) = inf
T :Ω→Ω
T#µ=ν

∫

Ω×Ω

c(x,T (x))dµ(x). (3.1)

The Kantorovich formulation relaxes the above formulation by minimizing the transport cost

over the set of joint probability measures Π(µ,ν) ⊂P(Ω×Ω), for which µ and ν are the

respective marginals over Ω. The optimal transport cost from µ to ν is defined as follows:

CK(µ,ν) = inf
π∈Π(µ,ν)

∫

Ω×Ω

c(x,y) dπ(x,y). (3.2)

We now present the following lemma on the existence of minimizers to the Monge and Kan-

torovich formulations and the equivalence between them. We refer the reader to [6] for proofs.

Lemma 27 (Existence of minimizers). Under Assumption 5, there exists a minimizer π∗ to the

Kantorovich problem. Moreover, if the measure µ is atomless (i.e., µ({x}) = 0 for all x ∈Ω),

the Monge formulation has a minimizer T ∗ and it holds that π∗ = (id,T ∗)#µ .

Following Lemma 27, we denote by C(µ,ν) =CM(µ,ν) =CK(µ,ν) the optimal trans-

port cost from µ to ν . We now present the following key result that the optimal transport cost C

defines a metric on the space of probability measures P(Ω):

Lemma 28 (Corollary 3.2, 3.3 [106]). Under Assumption 5, the optimal transport cost C :

P(Ω)×P(Ω)→ R≥0 defines a metric on P(Ω).
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Kantorovich duality

The Kantorovich formulation (3.2) allows the following dual formulation [117]:

K(µ,ν) = sup
φ∈L1(Ω);ψ∈L1(Ω)

∫

Ω

φ(x)dµ(x)+
∫

Ω

ψ(y)dν(y)

s.t φ(x)+ψ(y)≤ c(x,y), ∀x,y ∈Ω.

(3.3)

The maximizers of the above dual formulation are pairs of functions (φ ,ψ), called Kantorovich

potentials, which occur at the boundary of the inequality constraint, and satisfy the equations:

φ(x) = inf
y∈Ω

(c(x,y)−ψ(y)) , ψ(y) = inf
z∈Ω

(c(z,y)−φ(z)) . (3.4)

We refer to (φ ,ψ) defined above as a c-conjugate pair, and write ψ = φ c to denote that ψ is the

conjugate of φ . We therefore have:

φ(x) = inf
y∈Ω

[
c(x,y)− inf

z∈Ω
(c(z,y)−φ(z))

]
. (3.5)

The Kantorovich duality (3.3) can now be rewritten as:

K(µ,ν) = sup
φ∈L1(Ω)

∫

Ω

φ(x)dµ(x)+
∫

Ω

φ
c(y)dν(y). (3.6)

We recall the following lemma on the strong duality property of the Kantorovich formulation.

We refer the reader to Theorem 5.10 in [117] for a detailed proof.

Lemma 29 (Theorem 5.10, [117]). Strong duality holds for the Kantorovich formulation. In

other words, the gap between the costs defined in the Kantorovich formulation (3.2) and its

dual (3.3) is zero, i.e., C(µ,ν) = K(µ,ν).

Under Assumption 5 on the transport cost function c, we can obtain a further reduction

of the Kantorovich duality (3.6). The following key lemma allows for such a reduction:
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Lemma 30. Under Assumption 5 and from (3.5), the conjugate of the Kantorovich potential

satisfies φ c =−φ and |φ(x)−φ(y)| ≤ c(x,y) for all x,y ∈Ω.

Proof. From (3.4), we have:

φ(x) = inf
y∈Ω

(
c(x,y)− inf

z∈Ω
(c(z,y)−φ(z))

)
= inf

y∈Ω
sup
z∈Ω

(
c(x,y)− c(z,y)+φ(z)

)

≥ inf
y∈Ω

(
c(x,y)− c(z,y)+φ(z)

)
= inf

y∈Ω

(
c(x,y)− c(z,y)

)
+φ(z)

≥−c(x,z)+φ(z),

where we have used the fact that c is a metric to obtain the final inequality (for any y, we

have c(x,y)−c(z,y) = c(x,y)−c(y,z)≥−c(x,z), which implies that infy∈Ω (c(x,y)− c(z,y))≥

−c(x,z)). Moreover, since the above inequality holds for any x,z ∈Ω, we have |φ(x)−φ(z)| ≤

c(x,z).

Now, when |φ(x)−φ(y)| ≤ c(x,y), we have that −φ(x)≤ c(x,y)−φ(y), which implies

that −φ(x)≤ infy (c(x,y)−φ(y)) = φ c(x). Equivalently, we obtain the relation φ(x)≥−φ c(x).

Similarly, from (3.4) φ c(x) = infy c(x,y)−φ(y), we obtain φ c(x) ≤ c(x,y)−φ(y). By

setting y = x in the above inequality, and using c(x,x) = 0 we get φ(x)≤−φ c(x).

In all, we have that φ c(x) =−φ(x) when |φ(x)−φ(y)| ≤ c(x,y).

Following Lemma 30, we can now reduce the Kantorovich duality (3.6) to obtain:

K(µ,ν) = sup
φ∈L (Ω)

Eµ [φ ]−Eν [φ ] ,

where L (Ω) = {φ ∈ L1(Ω) : |φ(x)−φ(y)| ≤ c(x,y), ∀ x,y ∈Ω}.
(3.7)

Remark 2. We note from (3.7) that functions φ ∈L (Ω) are Lipschitz continuous (since c is

conformal to the Euclidean metric from Assumption 5, and Ω is compact). It then follows

from Rademacher’s theorem (in Lemma 3) that φ is differentiable µ-almost everywhere in Ω.

Moreover, its (pointwise a.e.) derivative is equal to its weak derivative, and we interpret the
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derivative of the Kantorovich potential in the weak sense in the rest of the paper. Moreover, we

have that the Kantorovich potential φ is differentiable at every x ∈Ω that is not a fixed point of

the optimal transport map T ∗ [106].

Furthermore, we would like to obtain a bound on the gradient of functions in the

set L (Ω), with the added assumption that they are everywhere differentiable. To this end,

we characterize the set L (Ω)∩C 1(Ω) through the following lemma:

Lemma 31. Under Assumption 5, the set L (Ω)∩C 1(Ω) is given by:

L (Ω)∩C 1(Ω) =
{

φ ∈ L1(Ω)∩C 1(Ω) : |∇φ | ≤ ξ in Ω
}
. (3.8)

Proof. Let φ ∈L (Ω)∩C 1(Ω), and x,y ∈ Ω̊ with x 6= y such that the line segment joining x

and y is contained in Ω. By the Mean Value Theorem and the definition of L (Ω) in (3.7), for

some m ∈ [0,1], we get:

|φ(y)−φ(x)|
|y− x| =

|∇φ((1−m)x+my) · (y− x)|
|y− x| ≤ c(x,y)

|y− x| .

With y = x+ tv, where v ∈TxΩ (tangent space of Ω at x ∈Ω), in the limit t→ 0, we get:

|∇φ(x) · v|
|v| ≤ ξ (x),

where the above inequality holds for all v ∈ TxΩ and ξ is the conformal factor for the metric c

w.r.t the Euclidean metric, which implies that |∇φ(x)| ≤ ξ (x) for any x ∈ Ω̊.

Now, to prove the converse, we suppose that |∇φ(x)| ≤ ξ (x) for any x ∈ Ω̊. For x,y ∈ Ω̊

with x 6= y, along the geodesic γ (w.r.t the metric c) joining x and y, we have:

|φ(y)−φ(x)|=
∣∣∣∣
∫ 1

0
∇φ(γ(t)) · γ̇(t) dt

∣∣∣∣≤
∫ 1

0
|∇φ(γ(t))| |γ̇(t)| dt

≤
∫ 1

0
ξ (γ(t)) |γ̇(t)| dt = c(x,y)
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We now define the restricted Kantorovich duality as follows:

K(µ,ν) = sup
φ∈L (Ω)∩C 1(Ω)

Eµ [φ ]−Eν [φ ], (3.9)

where it is restricted in the sense that the constraint set is L (Ω)∩C 1(Ω) as opposed to L (Ω)

as given in (3.7).

3.3 Iterative scheme for multi-stage optimal transport

In this section, we establish a framework for multi-stage optimal transport of probability

measures.

Let µ0 ∈P(Ω) be a given initial probability measure and µ∗ ∈P(Ω) the target proba-

bility measure. Our objective is to optimally transport µ0 onto µ∗ by an iterative scheme. To

this end, we begin by constructing a finite sequence {µk}K
k=1 such that µK = µ∗, and carrying

out optimal transport in stages {µk−1→ µk}K
k=1. The net cost of transport along the sequence

would then be given by ∑
K
k=1C(µk−1,µk), the sum of the (optimal) stage costs. We now have the

following lemma on the retrieval of the optimal transport cost:

Lemma 32. Given atomless probability measures µ0,µ
∗ ∈P(Ω), the cost of optimal transport

from µ0 to µ∗ satisfies:

C(µ0,µ
∗) = min

(µ1,...,µK)
µk∈P(Ω)

µK=µ∗

K

∑
k=1

C(µk−1,µk) (3.10)

Proof. We begin by noting that there clearly exists at least one minimizing sequence for the

optimization problem (3.10) (the trivial sequence µk = µ∗ for all k = 1, . . . ,T , minimizes the

cost).
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From the Monge formulation (3.1) and Lemma 27, we have:

C(µ0,µ
∗) = min

T :Ω→Ω
T#µ0=µ∗

∫

Ω

c(x,T (x)) dµ0(x),

and let T ∗ be a minimizing map above. Let T0 be the identity map on Ω and let {Tk}K
k=1 be a

sequence of maps on Ω such that TK ◦ . . .◦T0 = T ∗, with µk = (Tk ◦ . . .◦T0)#µ0 = Tk# . . .T0#µ0.

Since c is a metric, we have:

c(x,T ∗(x))≤
K

∑
k=1

c(Tk−1 ◦ . . .◦T0(x),Tk ◦ . . .◦T0(x)).

It then follows that:

C(µ0,µ
∗) =

∫

Ω

c(x,T ∗(x)) dµ0(x)

≤
∫

Ω

K

∑
k=1

c(Tk−1 ◦ . . .◦T0(x),Tk ◦ . . .◦T0(x))dµ0(x)

=
K

∑
k=1

∫

Ω

c(Tk−1 ◦ . . .◦T0(x),Tk ◦ . . .◦T0(x))dµ0(x)

=
K

∑
k=1

∫

Ω

c(x,Tk(x))dµk−1(x)

=
K

∑
k=1

C(µk−1,µk).

We also have:

c(x,T ∗(x)) = min
T1,...,TK
Tk:Ω→Ω

TK◦...◦T0=T ∗

K

∑
k=1

c(Tk−1 ◦ . . .◦T0(x),Tk ◦ . . .◦T0(x)),

where the minimum is attained when the point Tk ◦ . . .◦T0(x) lies on the geodesic from Tk−1◦ . . .◦

T0(x) to T ∗(x). This can be seen from the fact that for any x1,x2 ∈Ω, z∗ ∈ argminz∈Ω c(x1,z)+
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c(z,x2) lies on the geodesic from x1 to x2. Thus, we get:

C(µ0,µ
∗) = min

T1,...,TK
Tk:Ω→Ω

TK◦...◦T0=T ∗
Tk#µk−1=µk

K

∑
k=1

C(µk−1,µk).

We further note that any minimizing sequence {µk}K
k=1 must be generated by a sequence of

maps {Tk}K
k=1 such that for any x ∈Ω, Tk ◦ . . .◦T0(x) lies on the geodesic from Tk−1 ◦ . . .◦T0(x)

to T ∗(x), which yields (3.10).

From the set of minimizing sequences characterized by Lemma 32, we are interested in

those sequences for which the individual stage costs are upper bounded by an ε > 0. We thereby

consider the following optimization-based iterative scheme to generate a minimizing sequence:

µk+1 ∈ arg min
ν∈P(Ω)

C(µk,ν)+C(ν ,µ∗)

s.t. C(µk,ν)≤ ε,

(3.11)

where the iterative scheme (3.11) additionally satisfies the constraint limk→∞ µk = µ∗. Now,

let T ∗k be an optimal transport map from µk to µ∗. We now construct the following optimization-

based iterative process:

x(k+1) ∈ argmin
z∈Ω

c(x(k),z)+ c(z,T ∗k (x(k)))

s.t. c(x(k),z)≤ ε,

(3.12)

where x(k+1) obtained from the above process lies on the geodesic connecting x(k) and T ∗k (x(k)).

We now have the following lemma on the connection between the process (3.12) and the iterative

scheme (3.11):

Lemma 33. The law of the process (3.12), when x(0)∼ µ0, evolves according to (3.11).

Proof. This result follows from the arguments in the proof of Lemma 32.
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Following Lemma 33, it is clear that if we can compute the optimal transport map T ∗k ,

then (3.12) defines an iterative scheme for multi-stage optimal transport from an initial µ0 to µ∗.

We achieve this equivalently using the Kantorovich duality via the following process:

x(k+1) ∈ arg min
z∈Bc

ε (x(k))
c(x(k),z)+φµk→µ∗(z), (3.13)

We recall that Bc
ε(x(k)) is the closed ε-ball with respect to the metric c, centered at x(k). The

following lemma establishes that the processes (3.12) and (3.13) are equivalent.

Lemma 34. The processes (3.12) and (3.13) are equivalent. The equivalence is in the sense that

the sets of minimizers in (3.12) and (3.13) are equal.

Proof. We recall from (3.4) and Lemma 30 that for the transport µk→ µ∗, and for any x ∈Ω,

we have:

φµk→µ∗(x) = inf
y∈Ω

c(x,y)+φµk→µ∗(y). (3.14)

Also, for any x,y ∈ Ω, we have the inequality φµk→µ∗(x) ≤ c(x,y)+φµk→µ∗(y). This implies

in particular that for any transport map Tk from µk to µ∗, we get φµk→µ∗(x) ≤ c(x,Tk(x))+

φµk→µ∗(Tk(x)). It then follows that:

∫

Ω

(
φµk→µ∗(x)−φµk→µ∗(Tk(x))

)
dµk(x) =

∫

Ω

φµk→µ∗dµk−
∫

Ω

φµk→µ∗dµ
∗

≤
∫

Ω

c(x,Tk(x))dµk(x).

We see that the LHS is the optimal transport cost obtained from the Kantorovich dual formulation,

while an infimum over the RHS w.r.t. Tk would again yield the optimal transport cost from the

Monge formulation and an equality would then be attained. Therefore, we get that the equality is

attained when Tk = T ∗k , the corresponding optimal transport map from µk to µ∗. Thus, we infer

that φµk→µ∗(x) = c(x,T ∗k (x))+φµk→µ∗(T ∗k (x)) µk-almost everywhere in Ω. Since c(x,T ∗k (x)) =
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c(x,z)+ c(z,T ∗k (x)) for any (and only) z on the geodesic from x to T ∗k (x), we can write:

φµk→µ∗(x)−φµk→µ∗(z)+φµk→µ∗(z)−φµk→µ∗(T ∗k (x)) = c(x,z)+ c(z,T ∗k (x)),

which implies that:

[
φµk→µ∗(x)−φµk→µ∗(z)− c(x,z)

]
+
[
φµk→µ∗(z)−φµk→µ∗(T ∗k (x))− c(z,T ∗k (x))

]

= 0.

Moreover, since the expressions on the LHS are each non-positive, and their sum is zero, we get

that they are individually zero. In other words, for any (and only) z on the geodesic from x to T ∗k (x)

we get φµk→µ∗(x)− φµk→µ∗(z)− c(x,z) = 0, and these z ∈ Ω are in fact minimizers in (3.14).

Therefore, set of minimizers obtained from (3.13) is essentially the segment of the geodesic

from x(k) to T ∗k (x(k)) contained in the ball Bc
ε(x(k)) which is also the set of minimizers obtained

from (3.12), establishing equivalence in this sense between the processes (3.12) and (3.13).

3.4 Multi-agent optimal transport

Working within the framework established in Section 3.3, we develop in this section the

algorithm for multi-agent optimal transport based on distributed online optimization.

Let {xi(0)}N
i=1 be the positions of the N agents, distributed independently and identically

according to a probability measure µ0. The idea is to transport the agents by the iterative

scheme (3.13) to obtain {xi(k)}N
i=1 at any time k. Let µ̂N(k) = 1

N ∑
N
i=1 δxi(k) be the empirical

measure generated by the agents {xi(k)}N
i=1 at time k. To this end, we formulate a (finite) N-

dimensional distributed optimization to be implemented by the agents to obtain local estimates

of the Kantorovich potential. We approximate the true Kantorovich potential by a Φd : N×

Ω→ R generated by an (finite) N-dimensional vector φ(k) = (φ 1(k), . . . ,φ N(k)) ∈ RN , such

that Φd(k,xi(k)) = φ i(k) for i ∈ {1, . . . ,N} and Φd(k,x) for x ∈Ω\{x1(k), . . . ,xN(k)} is defined
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by a suitable multivariate interpolation. In particular, let {Vi(k)}N
i=1 be the Voronoi partition of Ω

generated by {x1(k), . . . ,xN(k)}w.r.t. the metric c, and Φd =∑
N
i=1 φVi(k) (decomposed into a sum

of N functions φVi(k) with supports Vi(k)). We assume that at time k, the agents i, j corresponding

to neighboring cells Vi(k) and V j(k) are connected by an edge, which defines a connected graph

G(k) =
(
{xi(k)}N

i=1,E(k)
)

(where E(k) is the edge set of the graph G(k) at time k).

Dropping the index k (as is clear from context), the finite dimensional approximation of

the Kantorovich duality (3.7) for the transport between µ̂N and µ∗, restricted to the graph G, is

given by:

max
(φ 1,...,φ N)

N

∑
i=1

(
1
N
·φ i−Eµ∗[φ

Vi]

)

s.t. |φ i−φ
j| ≤ c(xi,x j), ∀(i, j) ∈ E.

(3.15)

We call (3.15) a restriction of (3.7) to the graph G because we only impose the constraint |φ i−

φ j| ≤ c(xi,x j) on neighbors i, j on the graph.

We solve the optimization problem (3.15) by a primal-dual algorithm, and its solution

is used to update the agent positions by (3.13). We take Φd here to be a simple function, such

that φVi(x) = φ i for x ∈ Vi. The Lagrangian for the problem (3.15), with Φd a simple function

and c(xi,x j) = ci j, is given by:

Ld =
N

∑
i=1

φ
i
(

1
N
−µ

∗(Vi)

)
− 1

2

N

∑
i=1

∑
j∈Ni

λi j

(∣∣φ i−φ
j∣∣2− c2

i j

)
.

The primal-dual (primal-ascent, dual-descent) algorithm (with step size τ) is then given by:

φ
i(l +1) = φ

i(l)− τ ∑
j∈Ni

λi j(l)
(
φ

i(l)−φ
j(l)
)
+

(
1
N
−µ

∗(Vi)

)
,

λi j(l +1) = max
{

0,λi j(l)+ τ

(
1
2

∣∣φ i(l)−φ
j(l)
∣∣2− c2

i j

)}
, where j ∈Ni.

(3.16)

We note from the structure of the above algorithm that it renders itself to a distributed imple-
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mentation by the agents, where agent i uses information from its neighbors j ∈Ni to update φ i

and {λi j} j∈Ni . The primal algorithm is in fact a weighted Laplacian-based update.

At the end of every step xi(k) 7→ xi(k+1) from (3.13), the agent i assigns φ i←Φd
k (xi(k+

1)) as the initial condition for the primal algorithm (3.16) at the time step k+1 of the transport.

Moreover, we are interested in an on-the fly implementation of the transport, in that the agents

do not wait for convergence of the distributed primal-dual algorithm but carry out n iterations of

it for every update step (3.13), as outlined formally in the algorithm below..

Algorithm 1. Multi-agent (on-the-fly) optimal transport
Input: Target measure µ∗, Transport cost c(x,y), Bound on step size ε , Time step τ

For each agent i at time instant k of transport:
1: Obtain: Positions x j(k) of neighbors within communication/sensing radius r (r ≤ diam(Ω),

large enough to cover Voronoi neighbors)
2: Compute: Voronoi cell Vi(k), Mass of cell µ∗(Vi(k)), Voronoi neighbors Ni(k)
3: Initialize: φ i←Φd

k−1(xi(k)), λi j← λi j(k−1) (with Φd
0 = 0, λi j(0) = 0)

4: Implement n iterations of primal-dual algorithm (3.16) (synchronously, in communication
with neighbors j ∈Ni) to obtain φ i(k), λi j(k)

5: Communicate with neighbors j ∈Ni to obtain φ j(k), construct local estimate of Φd
k by

multivariate interpolation
6: Implement transport step (3.13) with local estimate of Φd

k (which approximates φµk→µ∗)

3.5 Analysis of PDE model

We investigate the behavior of the multi-agent transport by the update scheme (3.13) by

studying the candidate system of PDEs for the continuous time and N→ ∞ limit. The results

contained in this section are summarized below:

1. The candidate PDE model for transport in the continuous-time and N→ ∞ limit of the

transport scheme (3.13) is derived formally in Section 3.5.1. The transport is described by

the continuity equation (2.14) with the transport vector field (3.17).

2. In Section 3.5.2, we first derive the candidate PDE model (3.20) for the primal-dual

algorithm (3.16) in the continuous-time and N→ ∞ limit. We then establish analytically

74



that the solutions to (3.20) converge as t→∞ to the optimality condition of the Kantorovich

duality, in Lemma 36.

3. Section 3.5.3 deals with the stability of the feedback interconnection between the transport

PDE (continuity equation with the transport vector field (3.17)) and the primal-dual

flow (3.20). Convergence of the probability density (as solutions to the transport PDE) to

the target density in the limit t→ ∞, provided that the primal-dual flow is always at steady

state, is first established in Theorem 8. On-the-fly implementation is considered next,

and a convergence result is obtained under a second-order relaxation of the dual flow in

Theorem 9. Although the primal-dual flow is asymptotically stable and the transport PDE

under the action of the field (3.17) is asymptotically stable, the stability of the feedback

interconnected system of PDEs, in general, does not follow. This motivates the second-

order relaxation of the dual flow, and we are able to establish asymptotic stability of the

feedback interconnected system through a backstepping control of the dual flow. We

reserve the feedback interconnection of the transport PDE directly with the primal-dual

flow (3.20) for investigated by numerical simulations in Section 4.5. Although we are only

able to obtain analytical stability results for the feedback interconnection with a relaxed

dual flow, we observe convergence in simulation of the original feedback interconnected

system, which motivates us to conjecture that it is indeed stable.

3.5.1 Transport PDE

We recall that the continuous-time evolution of a probability density function is described

by the continuity equation (2.14):

∂tρ +∇ · (ρv) = 0,

where v is the underlying transport vector field. In what follows, we derive the transport vector

field which is the candidate for the continuous-time limit of the update scheme (3.13). We
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assume that all the probability measures considered have the same support Ω.

Let x∈Ω, µ ∈P(Ω) and x+ ∈ argminz∈Bc
ε (x) c(x,z)+φµ→µ∗(z), where x+ is the update

by the scheme (3.13). It then follows that:

c(x,x+)+φµ→µ∗(x+)≤ φµ→µ∗(x),

where x+ ∈ Bc
ε(x). We interpret the iterative scheme as a discrete-time dynamical system

with uniform timestep ∆t between successive instants, and derive the continuous-time limit

by letting ∆t = g(ε)→ 0 (where g : R→ R is a monotonically increasing function). We have

that φµ→µ∗ is bounded and continuously differentiable, which implies that limε→0 x+ = x and

limx+→x ∇φµ→µ∗(x+) = ∇φµ→µ∗(x). Let v(x) = lim∆t→0
1
∆t (x

+− x) (we note that this limit

indeed exists), and we have:

lim
∆t→0

1
∆t

c(x,x+)≤ lim
∆t→0

1
∆t

(
φµ→µ∗(x)−φµ→µ∗(x+)

)
,

and it follows that:

ξ (x) |v(x)| ≤ −∇φµ→µ∗(x) ·v(x).

The above inequality is satisfied only if v(x) = −α∇φµ→µ∗(x) when λ 6= 0 (the Lagrangian

dual function corresponding to the constraint |∇φµ→µ∗| ≤ ξ ) and for any α ≥ 0. This follows

from the fact that |∇φµ→µ∗|= ξ , as φµ→µ∗ is the solution to (3.9) for the transport from µ to µ∗,

satisfies (3.8) and occurs at the boundary of the constraint. Therefore, as ∆t→ 0, we have the

candidate velocity field:

v =−α∇φµ→µ∗ , (3.17)

where α can be any non-negative function on Ω. The implementation of the transport with the
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vector field (3.17) requires the computation of the Kantorovich potential φµt→µ∗ at any time t.

Thus, we set up a primal-dual flow to obtain the Kantorovich potential as the solution to (3.9) (to

which (3.15) is seen as the discrete counterpart as noted earlier).

3.5.2 Primal-Dual flow

The Lagrangian functional corresponding to the restricted Kantorovich duality (3.9) (to

which (3.15) is seen as the discrete counterpart as noted earlier) for the optimal transport from µ

to µ∗ is given by:

L(φ ,λ ) =
∫

Ω

φ(ρ−ρ
∗)− 1

2

∫

Ω

λ (|∇φ |2−|ξ |2), (3.18)

where all the integrals are with respect to the Lebesgue measure, and λ ≥ 0 is the Lagrange

multiplier function for the constraint |∇φ | ≤ ξ (which corresponds to the set L (Ω)∩C 1(Ω)),

as specified in (3.8), which we have rewritten here as |∇φ |2 ≤ |ξ |2.

Lemma 35 (Optimality conditions). The necessary and sufficient conditions for a feasible

solution φ̄ of (3.9) to be optimal are:

−∇ ·
(
λ̄∇φ̄

)
= ρ−ρ

∗, (in Ω)

λ̄∇φ̄ ·n = 0, (on ∂Ω)

λ̄ ≥ 0, |∇φ̄ | ≤ ξ , (Feasibility)

λ̄ (|∇φ̄ |−ξ ) = 0 a.e., (Complementary slackness)

(3.19)

where λ̄ is the optimal Lagrange multiplier function.

Proof. We consider the Lagrangian (3.18), for which the first variation with respect to a varia-
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tion δφ , is given by:

〈
δL
δφ

,δφ

〉
=
∫

Ω

(ρ−ρ
∗)δφ −

∫

Ω

λ∇φ ·∇δφ

=
∫

Ω

(ρ−ρ
∗)δφ +

∫

Ω

∇ · (λ∇φ)δφ −
∫

∂Ω

λ∇φ ·nδφ ,

where we have used the divergence theorem to obtain the final equality. We have
〈

δL
δφ

,δφ

〉
= 0

for any variation δφ around the stationary point (φ̄ , λ̄ ). Therefore, we obtain −∇ ·
(
λ̄∇φ̄

)
=

ρ−ρ∗ in Ω and λ̄∇φ̄ ·n = 0 on ∂Ω. Also, λ̄ ≥ 0 is the feasibility condition for the Lagrange

multiplier, |∇φ̄ | ≤ ξ is the feasibility condition on φ and λ̄ (|∇φ̄ |−ξ ) = 0 is the complementary

slackness condition. These correspond to the necessary KKT conditions, which for this problem

(linear objective function and a convex constraint) are also the sufficient conditions for optimality.

We now define a primal-dual flow to converge to the saddle point of the Lagrangian (3.18).

For this, we henceforth consider the functions φ and λ to be additionally parametrized by time t.

The primal-dual flow for the Lagrangian (3.18) is given by:

∂tφ = ∇ · (λ∇φ)+ρ−ρ
∗,

∇φ ·n = 0, on ∂Ω,

∂tλ =
1
2
[
|∇φ |2−|ξ |2

]+
λ
,

φ(0,x) = φ0(x), λ (0,x) = λ0(x),

(3.20)

where [ f ]+
λ
=





f if λ > 0

max{0, f} if λ = 0
is a projection operator.

We note that ∂tφ = δL
δφ

and ∂tλ =
[
− δL

δλ

]+
λ

, and we have a gradient ascent on L(φ ,λ )

w.r.t. φ and a projected gradient descent on L(φ ,λ ) w.r.t. λ .

Remark 3 (On the connection between (3.20) and (3.16)). The primal-dual algorithm (3.16)
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is the discretization of the primal-dual flow (3.20) over a graph G (as defined in the previous

subsection) with a step size τ . The term −∑ j∈Ni λi j(l)
(
φ i(l)−φ j(l)

)
in (3.16) is the action of

the weighted Laplacian matrix (with weights λi j(l)) on φ(l), which is the discretization over the

graph of the term ∇ · (λ∇φ) in (3.20).

Remark 4 (Existence and Uniqueness of solutions to (3.20)). We first note that (3.20) gener-

ates a strongly continuous semigroup of operators and we interpret any solution of (3.20) as

generated by this operator semigroup. We now consider the evolution of the Lagrange mul-

tiplier function λ . Letting λ0 ≡ 0 and h = 1
2

[
|∇φ |2−|ξ |2

]+
λ

, we note that at any x ∈ Ω, we

have λ (t,x) =
∫ t

0 h(τ,x)dτ . Thus, a unique solution λ exists if h(t,x) = 1
2

[
|∇φ |2−|ξ |2

]+
λ

is

integrable in time at every x ∈Ω, which depends on the regularity of the solution φ . However,

we do not apriori characterize or establish the desired level of regularity of the solutions φ ,

but instead assume that λ ∈ L∞(0,T ;L∞(Ω)) for any given T > 0. For any given T > 0, under

the assumptions that λ ∈ L∞(0,T ;L∞(Ω)) and ρ,ρ∗ ∈ L2(0,T ;L2(Ω)), there exists a unique

weak solution φ ∈ L2(0,T ;H1(Ω)) to the primal-dual flow (3.20) (we recall that we impose

the Neumann boundary condition as ∇φ ·n = 0 on ∂Ω). The existence and uniqueness results

follow by adapting the arguments presented in [55], Section 7.1 to the current problem (a

homogenous second order parabolic PDE with a Neumann boundary condition). We note that

the solution φ completely determines λ . To guarantee that λ ∈ L∞(0,T ;L∞(Ω)) is consistent

with the solution φ , it may be necessary to add further regularity assumptions on ρ,ρ∗. However,

further investigation into the regularity of solutions of the primal-dual flow is beyond the scope

of this present work.

Assumption 6 (Well-posedness of primal-dual flow). We assume that (3.20) is well-posed,

with solution (φ ,λ ) such that φ ∈ L∞(0,∞;H1(Ω)) and the Lagrange multiplier function λ ∈

L∞(0,∞;L∞(Ω)) and is precompact in L2(Ω).

The following lemma establishes the convergence of solutions of (3.20) to the optimality

conditions (3.19):
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Lemma 36 (Convergence of primal-dual flow). Solutions (φt ,λt) to the primal-dual flow (3.20),

under Assumption 6 on the well-posedness of the primal-dual flow, converge to an optimizer (φ̃ , λ̃ )

given in (3.19) in the L2 norm as t→ ∞, for any fixed ρ,ρ∗ ∈ L2(Ω).

Proof. Let (φ̃ , λ̃ ) be an optimizer of (3.19) and let:

V (φ ,λ ) =
1
2

∫

Ω

∣∣φ − φ̄
∣∣2 dvol+

1
2

∫

Ω

∣∣λ − λ̄
∣∣2 dvol .

Clearly, V (φ ,λ )≥ 0 for all φ ,λ ∈ L2(Ω). The time-derivative of V along the solutions of the

primal-dual flow (3.20) is given by:

V̇ =

〈
δL
δφ

,φ − φ̄

〉
+

〈[
− δL

δλ

]+

λ

,λ − λ̄

〉

=

〈
δL
δφ

,φ − φ̄

〉
−
〈

δL
δλ

,λ − λ̄

〉
+

〈
δL
δλ

+

[
− δL

δλ

]+

λ

,λ − λ̄

〉
.

Since L is concave in φ and convex in λ , we get:

V̇ ≤ L(φ ,λ )−L(φ̄ ,λ )+L(φ , λ̄ )−L(φ ,λ )+

〈
δL
δλ

+

[
− δL

δλ

]+

λ

,λ − λ̄

〉

= L(φ̄ , λ̄ )−L(φ̄ ,λ )+L(φ , λ̄ )−L(φ̄ , λ̄ )+

〈
δL
δλ

+

[
− δL

δλ

]+

λ

,λ − λ̄

〉
.

We have that L(φ̄ , λ̄ )−L(φ̄ ,λ ) ≤ 0 and L(φ , λ̄ )−L(φ̄ , λ̄ ) ≤ 0 (recall that (φ̄ , λ̄ ) is a saddle

point of L). Moreover, by definition, when λ (t,x)> 0, we have
[
− δL

δλ

]+
λ
=− δL

δλ
at (t,x), and

when λ (t,x) = 0 (which implies that λ − λ̄ ≤ 0), we have
[
− δL

δλ

]+
λ
≥− δL

δλ
at (t,x). This implies

that
〈

δL
δλ

+
[
− δL

δλ

]+
λ
,λ − λ̄

〉
≤ 0 at any (t,x). We therefore can say that V̇ ≤ 0. Moreover, by

Assumption 6, it holds that the orbit φ is bounded in H1(Ω) which, by Lemma 5, is compactly

embedded in L2(Ω). It then follows that the orbit is precompact in L2(Ω). Moreover, by Assump-

tion 6, we have that λ is precompact in L2(Ω). We get that V̇ = 0 only at an optimizer (φ̃ , λ̃ ),

which implies that the flow converges asymptotically to a (φ̃ , λ̃ ).
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3.5.3 Convergence of PDE-based transport

Following the outline from earlier in the section, we now investigate the convergence

properties of transport by the vector field:

v =−α∇φµ→µ∗ .

However, as discussed earlier, the scenario of particular interest to us is that of an on-the-fly

implementation of the transport, where we do not wait for the convergence of the primal-dual

flow to its steady state to obtain φµ→µ∗ . This results in a coupling between the transport PDE

and the primal-dual flow, and we investigate the convergence of solutions of this system of PDEs

later in this section.

Lemma 37. The transport (2.14) by the vector field (3.17) is a gradient flow, in the sense of

Definition 13, on the optimal transport cost C(·,µ∗) : P(Ω)→ R≥0.

Proof. From Lemma 29, we have the strong duality K(µ,µ∗) = C(µ,µ∗). The Kantorovich

potential φµ→µ∗ is such that ∇φµ→µ∗ = ∇

(
δK
δ µ

)
(since φµ→µ∗ =

δK
δ µ

, and we refer the reader to

Chapter 7 in [106] for a proof). Therefore, the transport vector field v =−α∇φµ→µ∗ yields a

gradient flow on the optimal transport cost C(µ,µ∗).

Remark 5 (Existence and uniqueness of solutions to the transport PDE). We refer the reader

to [7] for a detailed treatment of existence and uniqueness results for the continuity equation,

for transport vector fields with Sobolev regularity. We make the necessary well-posedness

assumption for our purposes.

Assumption 7 (Well-posedness of gradient flow on optimal transport cost). We assume that

the desired distribution µ∗ is absolutely continuous (with density function ρ∗ in H1(Ω)) with

supp(µ∗) = Ω. Further, we assume that (2.14) is well-posed for the gradient flow on the optimal

transport cost, with solution ρ ∈ L∞(0,∞;H1(Ω)).
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Theorem 8. Under Assumption 7 on the well-posedness of the gradient flow on the optimal

transport cost and for absolutely continuous initial distributions µ0 with supp(µ0) = Ω, the

solutions ρ to the transport (2.14) by the vector field v = −λµ→µ∗
ρ

∇φµ→µ∗ (where φµ→µ∗ and

λµ→µ∗ are the Kantorovich potential and the optimal Lagrange multiplier function for the

transport µ → µ∗) converge exponentially to ρ∗ in the L2 norm as t→ ∞.

Proof. From the optimality conditions (3.19), we have that ∇ ·(λµ→µ∗∇φµ→µ∗) = ρ∗−ρ , which

implies that ∂tρ =−∇ · (ρv) = ∇ · (λµ→µ∗∇φµ→µ∗) = ρ∗−ρ when ρ > 0. Moreover, we have

that ρ0 and ρ∗ are strictly positive in Ω. Therefore, for any t ∈ [0,∞] and x ∈ Ω̊, we have

ρ(t,x) > 0. Consequently, since ρ(t,x) > 0, the transport vector field v = −λµ→µ∗
ρ

∇φµ→µ∗ is

well-defined on Ω. Let V : L2(Ω)→ R≥0 be defined by V (ρ) = 1
2
∫

Ω
|ρ−ρ∗|2 dvol, where ρ is

the density function of the absolutely continuous probability measure µ . The time derivative V̇ ,

under the transport (2.14) by v =−λµ→µ∗
ρ

∇φµ→µ∗ is given by:

V̇ =
∫

Ω

(ρ−ρ
∗)∂tρ =−

∫

Ω

(ρ−ρ
∗)∇ · (ρv)

=
∫

Ω

(ρ−ρ
∗)∇ · (λµ→µ∗∇φµ→µ∗).

Further, from (3.19), we get:

V̇ =−
∫

Ω

|ρ−ρ
∗|2 =−2V,

which implies that V is a Lyapunov functional for the transport by the vector field v =

−λµ→µ∗
ρ

∇φµ→µ∗ . Moreover, by Assumption 7, we have that the solution ρ is bounded in H1(Ω),

which by the Rellich-Kondrachov theorem 5 is compactly contained in L2(Ω). We then infer

that the solution ρ to the transport (2.14) by the vector field v =−λµ→µ∗
ρ

∇φµ→µ∗ is precompact,

and therefore by the invariance principle in Lemma 6, converges to ρ∗ in the L2-norm in the

limit t→ ∞, i.e. limt→∞ ‖ρ−ρ∗‖L2 = 0. Moreover, since we have V̇ =−2V , we note that the

convergence is exponential.
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Remark 6 (Adaptation to tracking of time-varying target distributions). The exponential con-

vergence result in the above theorem permits adaptation of the transport scheme to multi-agent

tracking scenarios involving target distributions that evolve on a much slower timescale.

We now present an on-the-fly implementation of the transport, where we do not wait for

the primal-dual flow to reach steady state, but instead set the transport vector field as v =−λ

ρ
∇φ ,

where φ and λ are supplied by (3.20). This results in a coupling between the transport PDE (2.14)

and the primal-dual flow (3.20), and we investigate the behavior of the transport in simulation in

Section 4.5.

We now establish the convergence of the on-the-fly transport under the primal flow and a

fixed dual function λ > 0, which we define as follows:

∂tφ = ∇ · (λ∇φ)+ρ−ρ
∗,

∇φ ·n = 0, on ∂Ω,

λ = λ (x)> 0.

(3.21)

We note that transport under the relaxed primal-dual flow differs from the transport under (3.20)

only in that the Lagrange multiplier function λ that weights the primal flow is fixed and does not

vary in time.

Remark 7 (Existence and uniqueness of solutions to on-the-fly transport). We note that (3.21)

generates a strongly continuous semigroup of operators and we interpret any solution of (3.21) as

generated by this operator semigroup. We recall from Remark 4 that a unique weak solution φ ∈

L2(0,T ;H1(Ω)) to the primal flow exists if ρ,ρ∗ ∈ L2(0,T ;H1(Ω)) and λ ∈ L∞(Ω).

Assumption 8. We assume that the desired distribution µ∗ is absolutely continuous (with density

function ρ∗ in H1(Ω)) and supported on Ω. Further, we assume that the primal flow (3.21) and

the transport (2.14) are well-posed, with solutions φ and ρ such that φ ∈ L∞(0,∞;H1(Ω)), and

strictly positive ρ ∈ L∞(0,∞;H1(Ω)).
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Theorem 9 (Convergence of on-the-fly transport). Under Assumption 8, the solutions ρ to (2.14)

with the transport vector field v =−λ

ρ
∇φ , with φ from (3.21), converge in the L2-norm to ρ∗

as t→∞, while the solutions to the primal flow (3.21) converge to the optimality condition (3.19)

corresponding to ρ = ρ∗.

Proof. We first note that since ρ > 0 from Assumption 8, the transport vector field v =−λ

ρ
∇φ

is well-defined on Ω. We now consider the following Lyapunov functional:

E =
1
2

∫

Ω

λ |∇φ |2 + 1
2

∫

Ω

|ρ−ρ
∗|2,

where all the integrals are with respect to dvol. The time derivative of E under the flow (3.21)

and v =−λ

ρ
∇φ is given by:

Ė =
∫

Ω

λ∇φ ·∇∂tφ +
∫

Ω

(ρ−ρ
∗)∂tρ.

Applying the divergence theorem and using the boundary condition for the first term, and the

continuity equation (2.14) for the second, we obtain:

Ė =−
∫

Ω

∇ · (λ∇φ)∂tφ −
∫

Ω

(ρ−ρ
∗)∇ · (ρv)

=−
∫

Ω

|∇ · (λ∇φ)|2−
∫

Ω

∇ · (λ∇φ)(ρ−ρ
∗)

+
∫

Ω

(ρ−ρ
∗)∇ · (λ∇φ)

=−
∫

Ω

|∇ · (λ∇φ)|2.

By Assumption 8 we have that the orbits φ and ρ are bounded in H1(Ω) and by Lemma 5

(Rellich-Kondrachov theorem) we have that the orbits are precompact in L2(Ω). Now, from the

invariance principle in Lemma 6, we infer that the orbits of the system converge to the largest

invariant set in Ė−1(0). We have that Ė = 0 implies ‖∇ ·(λ∇φ)‖L2(Ω) = 0, from which it follows

by substitution in (3.21) that the transport (2.14) with v = −λ

ρ
∇φ yields ρ →L2 ρ∗, while φ
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converges to the optimality conditions corresponding to ρ = ρ∗.

This leads us to the following algorithm for on-the-fly multi-agent transport under fixed,

positive dual weighting:

Algorithm 2. Multi-agent (on-the-fly) optimal transport with fixed (dual) weighting
Input: Target measure µ∗, Weights (dual variable) λi j, Bound on step size ε , Time step τ

For each agent i at time instant k of transport:
1: Obtain: Positions x j(k) of neighbors within communication/sensing radius r (r ≤ diam(Ω),

large enough to cover Voronoi neighbors)
2: Compute: Voronoi cell Vi(k), Mass of cell µ∗(Vi(k)), Voronoi neighbors Ni(k)
3: Initialize: φ i←Φd

k−1(xi(k)) (with Φd
0 = 0)

4: Implement n iterations of primal algorithm (3.21) (synchronously, in communication with
neighbors j ∈Ni) to obtain φ i(k)

5: Communicate with neighbors j ∈Ni to obtain φ j(k), construct local estimate of Φd
k by

multivariate interpolation
6: Implement transport step (3.13) with local estimate of Φd

k (which approximates φµk→µ∗)

3.6 Simulation studies and discussion

In this section, we present simulation results for multi-agent optimal transport in R2,

based on the the iterative multi-stage transport scheme (3.13) (with c being the Euclidean metric

and ε = 0.02), where the local estimates of the Kantorovich potential are computed by the

distributed online algorithm (3.16) with a step size τ = 1. We also present simulation results for

the PDE-based transport (2.14) under the primal-dual flow (3.20).

We considered a bivariate Gaussian distribution with covariance Σ =




2 0

0 2


 and mean

randomly chosen in [0,1]2 as the target probability measure, and N = 30 agents for the transport.

Figure 3.1 shows the agents along with the corresponding Voronoi partition of the domain, at

three different stages (time instants k = 0,5,10) during the course of their transport. We observe

that the agents are transported towards the target probability measure and that a quantization of

the target measure is obtained. This is clarified further in Figure 3.2, as described below.
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Figure 3.1. Positions of agents along with the Voronoi partition generated by them at three
different stages (time instants k = 0,5,10) of transport by the iterative scheme (3.13) with local
estimates of Kantorovich potential supplied by (3.16). Target probability measure shown in
grayscale with a darker shade indicating a region of higher target density. The plots show
convergence in time of the agents to full coverage of the target coverage profile (represented by
the target probability distribution).

As we had noted in the previous section, there exists a fundamental trade-off between

optimality and an on-the-fly implementation of the distributed optimal transport. We sought

to investigate the extent of this trade-off in simulation by running multiple iterations n of the

primal-dual algorithm (3.16) for every iteration of the transport (3.13). The underlying rationale

is that the distributed computation is many times faster than the transport. Figure 3.2 shows the

rate of convergence (w.r.t. the variance in target mass µ∗(Vi) across the partition) for various

values of n. Figure 3.3 is a plot of the net cost of transport w.r.t. n.
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Figure 3.2. Variance in target mass µ∗(Vi) across the partition vs time for various iteration
steps n of the primal-dual algorithm (3.16) for every step of the transport (3.13).

Figure 3.3. Net cost of transport for various iteration steps n of the primal-dual algorithm (3.16)
for every step of the transport (3.13).

Figure 3.4 shows the evolution of the distribution of the agents over time. The grayscale

images show the distribution of the agents in the domain, with darker shades representing higher

density of agents at any given location. The domain is a 50× 50 grid, and the PDE (3.20)

was discretized over the grid. The initial distribution value was randomly generated (a random
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number was generated by the rand function in MATLAB for each cell of the grid and then

normalized to obtain the probability distribution over the grid). The target density was defined by

a grayscale image, as seen in the final subfigure in Figure 3.4. The cost of transport was chosen

to be ci j = 1 between neighboring cells i and j in the grid.

Figure 3.4. Distribution at various stages of the PDE-based transport (2.14) under the primal-
dual flow (3.20). The figure shows convergence in time of the distribution to the target distribution
represented by the final image.

We observe convergence of the on-the-fly transport under the primal-dual flow (3.20).

Although we have established convergence of the transport analytically only under a primal

flow with a fixed dual function, we conjecture that an on-the-fly transport under the primal-dual

flow (3.20) also possesses the asymptotic stability property.

Figure 3.5. Density error ‖ρ−ρ∗‖L2(Ω) vs time for various multiples n of the time scale of
primal-dual flow (3.20) w.r.t the time scale of transport (2.14). The plot shows the rate of

convergence to the optimal transport gradient flow (represented by n = 10).

Figure 3.5 is the plot of the L2-density error e(t) = ‖ρ−ρ∗‖L2(Ω) as a function of time,

for various iteration steps of the primal-dual flow (to converge to the optimal gradient flow
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velocity) for every iteration of the transport PDE. We notice a significant improvement in the

tracking performance (as measured by e(t)) within a few iterations of the primal-dual flow per

iteration of the transport PDE, and the convergence to true optimal transport (in the sense of

decay rate of the error e(t)) is obtained with approximately an order (n≈ 101) of magnitude time

scale separation between computation and transport.

3.7 Summary

In this chapter, we proposed a scalable, distributed iterative proximal point algorithm for

large-scale optimal transport of multi-agent collectives. We obtained a dynamical formulation

of optimal transport of agents, for metric transport costs that are conformal to the Euclidean

distance. We proposed a distributed primal-dual algorithm to be implemented by the agents to

obtain local estimates of the Kantorovich potential, which are then used as local objectives in a

proximal point algorithm for transport. We studied the behavior of the transport in simulation

and presented an analysis of the candidate PDE model for the continuous time and N→ ∞ limit,

establishing asymptotic stability of the transport. We explored in simulation the suboptimality of

the on-the-fly implementation.

The material in this chapter, in full, has been submitted for publication to the SIAM

Journal on Control and Optimization and is under review. It may appear as Distributed Online

Optimization for Multi-Agent Optimal Transport, V. Krishnan and S. Martı́nez. A preliminary

version of the work appeared in the proceedings of the IEEE Conference on Decision and Control,

Miami Beach, USA, December 2018, as Distributed optimal transport for the deployment of

swarms, V. Krishnan and S. Martı́nez. The dissertation author was the primary investigator and

author of these papers.

89



Chapter 4

Self-organizing multi-agent transport

In this chapter, we adopt a viewpoint outlined in [13], wherein we make an amorphous

medium abstraction of the swarm, which is essentially a manifold with an agent located at each

point. We then model the system using PDEs and design distributed control laws for them.

An important component of this paper is the Laplacian-based distributed algorithm which we

call pseudo-localization algorithm, which the agents implement to localize themselves in a new

coordinate frame. The convergence properties of the graph Laplacian to the manifold Laplacian

have been studied in [19], which find useful applications in this paper.

The main contribution of this paper is the development of distributed control laws for

the index- and position-free density control of swarms to achieve general 1D and a large class

of 2D density profiles. In very large swarms with thousands of agents, particularly those

deployed indoors or at smaller scales, presupposing the availability of position information or

pre-assignment of indices to individual agents would be a strong assumption. In this paper, in

addition to not making the above assumptions, the agents are only capable of measuring the local

density, and in the 2D case, the density gradient and the normal direction to the boundary.

Under these assumptions, we present distributed pseudo-localization algorithms for one

and two dimensions that agents implement to compute their position identifiers. Since every

agent occupies a unique spatial position, we are able to rigorously characterize the resulting

position assignment as a one-to-one correspondence between the set of spatial coordinates and
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the set of position identifiers, which corresponds to a diffeomorphism of the continuum domain.

Based on this assignment, we then design control strategies for self-organization in one and two

dimensions under the assumption that the motion control of agents is noiseless. The extension to

the 2D case leads to new difficulties related to the control of the swarm boundaries. To address

these, we implement a variant of the 1D pseudo-localization algorithm at the boundary during an

initialization phase.

4.1 Bibliographical comments

In the literature, Markov chain-based methods have been widely used in addressing

some of the key theoretical problems pertaining to swarm self-organization. By means of it,

the swarm configuration is described through the partitioning the spatial domain in a finite

number of larger size disjoint subregions, on which a probability distribution is defined. Then,

the self-organization problem is reduced to the design of the transition matrix governing the

evolution of this probability density function to ensure its convergence to a desired profile. A

recent approach to density control using Markov chains is presented in [41], which includes

additional conflict-avoidance constraints. In this setting every agent is able to determine the bin

to which it belongs at every instant of time, which essentially means that individual agents have

self-localization capabilities. Also, the dimensional transition matrix is synthesized in a central

way at every instant of time by solving a convex optimization problem. In [14], the authors make

use of inhomogeneous Markov chains to minimize the number of transitions to achieve a swarm

formation. In this approach, the algorithm necessitates the estimation of the current swarm

distribution, and computes the transition Markov matrices for each agent, at each instant of

time. The fact that every agent needs to have an estimate of the global state (swarm distribution)

at every time may not be desirable or feasible. The localization of each agent still remains a

main assumption. Under similar conditions, one can find the manuscripts [12] and [29], which

describe probabilistic swarm guidance algorithms. In [22], the authors present an approach to

91



task allocation for a homogeneous swarm of robots. This is a Markov-chain based approach,

where the goal is to converge to the desired population distribution over the set of tasks.

Many works in the literature use PDE-based methods to model swarm behaviour, where

control action is applied along the boundary of the swarm. Previous works on PDE-based

methods with boundary control include [60], where the authors present an algorithm for the

deployment of agents onto families of planar curves. Here, the swarm collective dynamics are

modeled by the reaction-advection-diffusion PDE and the particular family of curves to which

the swarm is controlled to is parametrized by the continuous agent identity in the interval of unit

length. An extension of this work to deployment on a family of 2D surfaces in 3D space can

be found in [101]. The problem of planning and task allocation is addressed in the framework

of advection-diffusion-reaction PDEs in [49]. In [59] and [57], the authors present an optimal

control problem formulation for swarm systems, where microscopic control laws are derived

from the optimal macroscopic description using a potential function approach. The problem

of position-free extremum-seeking of an external scalar signal using a swarm of autonomous

vehicles, inspired by bacterial chemotaxis, has been studied in [89].

4.2 Problem description and conceptual approach

In this section, we provide a high-level description of the proposed problem and explain

the conceptual idea behind our approach. The technical details can be found in the following

sections.

The problem at hand is to ultimately design a distributed control law for a swarm to

converge to a desired configuration. Here, a swarm configuration is a density function ρ of the

multi-agent system and the objective is that agents reconfigure themselves into a desired known

density ρ∗. To do this, an agent at position x is able to measure the current local density value,

ρ(t,x); however, its position x within the swarm is unknown. Thus, given ρ∗, an agent at x

cannot directly compute ρ∗(x) nor a feedback law based on ρ−ρ∗. To solve this problem, we
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devise a mechanism that allows agents to determine their coordinates in a distributed way in an

equivalent coordinate system.

Note that, given a diffeomorphism Θ∗ from the spatial domain of the swarm onto the

unit interval or disk (i.e. a coordinate transformation), we can equivalently provide the agents

with a transformed density function p∗, such that p∗ = ρ∗ ◦ (Θ∗)−1. In this way, instead of ρ∗

the agents are given p∗, but still do not have access to Θ∗. The pseudo-localization algorithm

is a mechanism that agents employ to progressively compute an appropriate (configuration-

dependent) diffeomorphism by local interactions.

In 1D, the pseudo-localization algorithm is a continuous-time PDE system in a new

variable or pseudo-coordinate X which plays the role of an “approximate x coordinate” that

agents can use to know where they are. The input to this system is the current density value

ρ , see Figure 4.1 for an illustration, and the objective is that X converges to a ρ-dependent

diffeomorphism. On the other hand, the variable X and the function p∗ are used to define

the control input of another PDE system in the density ρ . In this way, we have a feedback

interconnection of two systems, one in X and one in ρ , with the goal to achieve X → Θ∗ (the

pseudo-coordinate X converges to a true coordinate given by Θ∗) and ρ → ρ∗.

∂tX = G(X, ρ)

∂tρ = F (ρ, X, p∗)

{
X → Θ∗ (coordinates)

ρ → ρ∗ (objective)

Figure 4.1. Feedback interconnection of pseudo-localization system in X and system in ρ in
the 1D case. The function p∗ is an equivalent density objective provided to agents in terms of
a diffeomorphism Θ∗. The variables X play the role of coordinates and eventually converge to
the true coordinates given by Θ∗. Agents use p∗ and X to compute the control in the equation ρ .
In turn, agents move and this will require a re-computation of coordinates or update in X . The
control strategy in the 2D case (stages 2 and 3) can be interpreted similarly.

As for the control design methodology, we follow a constructive, Lyapunov-based
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approach to designing distributed control laws for the swarm dynamics modeled by PDEs. For

this, we define appropriate non-negative energy functionals that encode the objective and choose

control laws that keep the time derivative of the energy functional non-positive. This, along with

well-known results on the precompactness of solutions as in Lemma 5, the Rellich Kondrachov

compactness theorem, allows us to apply the LaSalle Invariance Principle in Lemma 6 and other

technical arguments to establish the convergence results that we seek.

In the 1D case, we can identify a set of diffeomorphisms Θ associated with any ρ that

eventually converge to Θ∗, and simultaneously control boundary agents into a desired final

domain (the support of ρ∗). These are given by the cumulative distribution function associated

with the density function; see Section 4.3.1. The 2D case is more complex, and analogous results

could not be derived in their full generality. Unlike the 1D case, estimating the cumulative

distribution is not straightforward in the 2D case. Instead, we set out to find diffeomorphisms as

the result of a distributed algorithm. Given that the discretization of heat flow naturally leads to

distributed algorithms, we investigate under what conditions this is the case via harmonic map

theory. On the control side, there also are additional difficulties, and because of this, we simplify

the control strategy into three stages. In the first stage, the boundary agents are re-positioned

onto the boundary of the desired domain while containing the others in the interior. Once this is

achieved, the second and third stages can be seen again as the interconnection of two systems in

pseudo-coordinates R = (X ,Y ) (instead of X) and ρ , analogously to Figure 4.1. However, we

apply a two time-scale separation for analysis by which coordinates are computed in a fast-time

scale and reconfiguration is done in a slow-time scale, which allows for a sequential analysis of

the two stages. We then study the robustness of this approach.

4.3 Self-organization in one dimension

In this section, we present our proposed pseudo-localization algorithm and the distributed

control law for the 1D self-organization problem.
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For each t ∈ R≥0, let M(t) = (0,L(t))⊂ R be the interval (with boundary {0,L(t)}) in

which the agents are distributed in 1D, and let ρ : R×R→ R≥0 be the normalized density

function supported on M̄(t), for all t ≥ 0 (with ρ(t,x)> 0, ∀x ∈ M̄(t)), describing the swarm on

that interval. Without loss of generality, we place the origin at the leftmost agent of the swarm.

We also assume that the leftmost and the rightmost agents, l and r, are aware that they are at the

boundary. Let ρ∗ : M̄∗ = [0,L∗]→ R>0 be the desired normalized density function.

Since a direct feedback control law can not be implemented by agents because they

do not have access to their positions, we introduce an equivalent representation of the density

ρ∗, p∗, depending on a particular diffeomorphism Θ∗. First, define Θ∗ : M̄∗→ [0,1] such that

Θ∗(x) =
∫ x

0 ρ∗(x̄)dx̄ and Θ∗(L∗) = 1.

Now, let p∗ : [0,1]→ R>0, and θ ∗ ∈Θ∗(M̄∗) = [0,1], be such that:

p∗(θ ∗) = ρ
∗((Θ∗)−1(θ ∗)) = ρ

∗(x).

ρ∗(x) = p∗(θ ∗)

x ∈ [0,L∗] Θ∗(x) = θ ∗ ∈ [0,1]

ρ∗

Θ∗
p∗

The function p∗, which represents the desired density function mapped onto the unit

interval [0,1], is computed offline and is broadcasted to the agents prior to the beginning of

the self-organization process. We use p∗ to derive the distributed control law which the agents

implement. We assume that p∗ is a Lipschitz function in the sequel.

Assumption 9 (Uniform boundedness of density function). We assume that the density function

and its derivative are uniformly bounded in its support, that is, for ρ(t, ·) and ∂xρ(t, ·) there exist

uniform lower bounds dl,Dl and uniform upper bounds du,Du (where 0 < dl ≤ du < ∞ and 0 <

Dl ≤Du < ∞) (that is, dl ≤ ρ(t,x)≤ du for all t ∈R≥0 and x ∈ [0,L(t)] and Dl ≤ ∂xρ(t,x)≤Du

for all t ∈ R≥0 and x ∈ (0,L(t))).
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4.3.1 Pseudo-localization algorithm in one dimension

We first consider the static case, that is, the design of the pseudo-localization dynamics

on X of the upper block in Figure 4.1, when the agents and ρ are stationary. We define

Θ : M̄ = [0,L]→ [0,1] as:

Θ(x) =
∫ x

0
ρ(x̄)dx̄, (4.1)

such that Θ(L) = 1. In other words, Θ is the cumulative distribution function (CDF) associated

with ρ . (Note that the domains are static and hence the argument t has been dropped, which will

be reintroduced later.)

Lemma 38 (The CDF diffeomorphism). Given ρ : M̄ → R>0, a C1 function, the mapping

Θ : M̄→ [0,1] as defined above, is a diffeomorphism and Θ(M̄) = [0,1].

Proof. Since ρ(x) > 0, ∀x ∈ M̄, it follows that Θ is a strictly increasing function of x, and is

therefore a one-to-one correspondence on M̄. Moreover, Θ is atleast C1 and has a differentiable

inverse, which implies it is a diffeomorphism. Finally, since Θ(L) = 1, we have Θ(M̄) =

[0,1].

Our goal here is to set up a partial differential equation with appropriate boundary

conditions that yield the diffeomorphism Θ as its asymptotically stable steady-state solution.

We begin by setting up the pseudo-localization dynamics for a stationary swarm (for which

the spatial domain M and the density function ρ are fixed). Let X : R× M̄→ R be such that

(t,x) 7→ X(t,x) ∈ R, with:

∂tX =
1
ρ

∂x

(
∂xX
ρ

)
,

X(t,0) = α(t), X(t,L) = β (t), X(0,x) = X0(x),

α̇(t) =−α(t), β̇ (t) = 1−β (t),

(4.2)
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where α : R→ R is a control input at the boundary x = 0 and β : R→ R is a control input at the

boundary x = L. From (4.1), we observe that ∂x

(
∂xΘ

ρ

)
= 0. Letting w = X−Θ denote the error,

we obtain:

∂tw =
1
ρ

∂x

(
∂xw
ρ

)
,

d
dt

w(t,0) =−w(t,0),
d
dt

w(t,L) =−w(t,L), w(0,x) = X0(x)−Θ(x).
(4.3)

Assumption 10 (Well-posedness of the pseudo-localization dynamics). We assume that the

pseudo-localization dynamics (4.2) (and (4.3)) is well-posed, that the solution is sufficiently

smooth (at least C 2 in the spatial variable, even as t→ ∞) and belongs to H1(M).

Lemma 39 (Pointwise convergence to diffeomorphism). Under Assumption 10, on the well-

posedness of the pseudo-localization dynamics, and Assumption 9 on the boundedness of ρ ,

the solutions to PDE (4.2) converge pointwise to the CDF diffeomorphism Θ defined in (4.1),

as t→ ∞, for all C2 initial conditions X0.

In this case, the swarm is stationary, which implies that the distribution ρ is fixed (and so

is its support M̄), and the uniform boundedness assumption 9 simply becomes a boundedness

assumption.

Proof. We prove that the solutions to the PDE (4.2) converge pointwise to the diffeomorphism Θ

by showing that w→ 0, as t→∞, pointwise for (4.3). For this, we consider a functional V , given

by (integrations are with respect to the Lebesgue measure):

V =
1
2

∫

M
ρ|w|2 + 1

2

∫

M

1
ρ
|∂xw|2.

The time derivative V̇ is given by:

V̇ =
∫

M
ρw(∂tw)+

∫

M

1
ρ
(∂xw)(∂t∂xw).
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Here, replace ∂tw in the first integral with the dynamics in (4.3), and then use ∂t∂x = ∂x∂t in the

second integral together with the Divergence Theorem in Lemma 1. We obtain:

V̇ =
∫

M
w∂x

(
∂xw
ρ

)
−
∫

M
∂x

(
∂xw
ρ

)
∂tw+

∂xw
ρ

∂tw
∣∣∣∣
L
− ∂xw

ρ
∂tw
∣∣∣∣
0

=−
∫

M

1
ρ
|∂xw|2−

∫

M

1
ρ

∣∣∣∣∂x

(
∂xw
ρ

)∣∣∣∣
2

+
w+∂tw

ρ
∂xw
∣∣∣∣
L
− w+∂tw

ρ
∂xw
∣∣∣∣
0
.

(After the second equal sign, apply again the Divergence Theorem on the first integral of the

previous line, and replace ∂tw from (4.3).) Substituting from (4.3), we have:

V̇ =−
∫

M

1
ρ
|∂xw|2−

∫

M

1
ρ

∣∣∣∣∂x

(
∂xw
ρ

)∣∣∣∣
2

.

Clearly, V̇ ≤ 0, and w(t, ·) ∈ H1(M), for all t. Moreover, since V (t) ≤ V (0) and since ρ is

uniformly bounded according to Assumption 9, we have that w(t, ·) is bounded in H1(M).

Moreover, by the Rellich-Kondrachov Theorem of Lemma 5, H1(M) is compactly contained

in L2(M). Then it follows that the solutions w(t, ·) are precompact. Thus, by the LaSalle

Invariance Principle of Lemma 6, the solution to (4.3) converges in L2-norm to the largest invari-

ant subset of V̇−1(0). Note that V̇ = 0 implies
∫

M
1
ρ
|∂xw|2 = 0. Thus, limt→∞

∫
M

1
ρ
|∂xw|2 = 0.

Since ρ is bounded (supρ < ∞), we have limt→∞
1

supρ

∫
M |∂xw|2 ≤ limt→∞

∫
M

1
ρ
|∂xw|2 = 0,

which implies limt→∞

∫
M |∂xw|2 = limt→∞ ‖∂xw‖2

L2(M)
= 0. Now, limt→∞ |w(t,x)| =

limt→∞ |w(t,0) +
∫ x

0 ∂xw(t, ·)| ≤ limt→∞ |w(t,0)| +
∫ x

0 |∂xw(t, ·)| ≤ limt→∞ |w(t,0)| +
√

L(t)‖∂xw(t, ·)‖L2(M) = 0 (since limt→∞ w(t,0) = 0 and limt→∞ ‖∂xw(t, ·)‖L2(M) = 0).

Thus, limt→∞ w(t,x) = 0, for all x ∈ M. Therefore, the solutions to (4.3) converge to w ≡ 0

pointwise, as t→ ∞, from any smooth initial w0 = X0−Θ.

We now have that the solution to the pseudo-localization dynamics converges to the

diffeomorphism Θ in the stationary case. For the dynamic case, we modify (4.2) to account

for agent motion. Let X : R×R→ R be supported on M̄(t) = [0,L(t)] for all t ≥ 0. Using the
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relation dX
dt = ∂tX + v∂xX , where v is the velocity field on the spatial domain, we consider:

∂tX =
1
ρ

∂x

(
∂xX
ρ

)
− v∂xX ,

X(t,0) = 0, X(t,L(t)) = β (t), X(0,x) = X0(x).

(4.4)

In the dynamic case, and w.l.o.g. we have set α(t) = 0 for all t ≥ 0, for simplicity. We will

use the above PDE system in the design of the distributed motion control law, redesigning the

boundary control β to achieve convergence of the entire system. We now discretize (4.4) to

obtain a distributed pseudo-localization algorithm. Let Xi(t) = X(t,xi), where xi ∈ M̄(t) is the

position of the ith agent. We identify the agent i with its desired coordinate in the unit interval at

time t, i.e., Θ(t,x) = θ ∈ [0,1], where Θ(t,x) =
∫ x

0 ρ(t, x̄)dx̄ from (4.1), which now shows the

time dependency of ρ . In this way, ρ(t,x) = ∂xΘ(t,x). It follows that ∂x(·) = ∂θ (·)∂xθ = ∂θ (·)ρ .

Therefore, 1
ρ

∂x(·) = ∂θ (·). From (4.4), we have:

dX
dt

= ∂tX + v∂xX =
1
ρ

∂x

(
∂xX
ρ

)
= ∂θ (∂θ X) =

∂ 2X
∂θ 2 . (4.5)

Now, we discretize (4.5) with the consistent finite differences dX
dt ≈

Xi(t+1)−Xi(t)
∆t

and ∂ 2X
∂θ 2 ≈ Xi+1−2Xi+Xi−1

(∆θ)2 (that is, we have that lim∆t→0
Xi(t+1)−Xi(t)

∆t = dX
dt and that

lim∆θ→0
Xi+1−2Xi+Xi−1

(∆θ)2 = ∂ 2X
∂θ 2 ). Now, with the choice 3∆t = (∆θ)2, and from (4.4), we obtain for

i ∈S \{l,r}:

Xi(t +1) =
1
3
(Xi−1(t)+Xi(t)+Xi+1(t)) ,

Xl(t) = 0, Xr(t) = β (t), Xi(0) = X0i.

(4.6)

Equation (4.6) is the discrete pseudo-localization algorithm to be implemented synchronously

by the agents in the swarm, starting from any initial condition X0. The leftmost agent holds its

value at zero while the rightmost agent implements the boundary control β . In the following

section we analyze its behavior together with that of the dynamics on ρ .
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4.3.2 Distributed density control law and analysis

In this subsection, we propose a distributed feedback control law to achieve ρ → ρ∗ and

w→ 0, as t→ ∞, through a distributed control input v and a boundary control β . We refer the

reader to [81] for an overview of Lyapunov-based methods for stability analysis of PDE systems.

From (2.14) and (4.4), we have the dynamics:

∂tρ =−∂x(ρv),

∂tX =
1
ρ

∂x

(
∂xX
ρ

)
− v∂xX ,

X(t,0) = 0, X(t,L(t)) = β (t), X(0,x) = X0(x).

(4.7)

This realizes the feedback interconnection of Figure 4.1.

Assumption 11 (Well-posedness of the full PDE system). We assume that (4.7) is well posed,

and that the solutions (ρ(t, ·),X(t, ·)) are sufficiently smooth (both in t and x ∈ [0,L(t)]), satisfy

Assumption 9 on the uniform boundedness of ρ and ∂xρ , and are bounded in the Sobolev

space H1((0,1/dl)).

We also assume that the agent at position x at time t is able to measure ρ(t,x). However,

the agents in the swarm do not have access to their positions, and therefore cannot access ρ∗(x),

which could be used to construct a feedback law. To circumvent this problem, we propose

a scheme in which the agents use the position identifier or pseudo-localization variable X to

compute p∗ ◦X(t,x), using this as their dynamic set-point. The idea is to then design a distributed

control law and a boundary control law such that ρ → p∗ ◦X and X →Θ∗, as t→ ∞, to obtain

ρ → p∗ ◦Θ∗ = ρ∗. Recall that the function p∗ is computed offline and is broadcasted to the

agents prior to the beginning of the self-organization process, and that p∗ is assumed to be a

Lipschitz function. Consider the distributed control law, defined as follows for all time t:

v(t,0) = 0, ∂xv = (ρ− p∗ ◦X)− ∂X p∗

ρ(ρ + p∗ ◦X)
∂x

(
∂xX
ρ

)
, (4.8)
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together with the boundary control law:

X(t,0) = 0, βt = k

(
2−β (t)− Xx

ρ

∣∣∣∣
L(t)

)
. (4.9)

We remark again that the agents implementing the control laws (4.8) and (4.9) do not require

position information, because for the agent at position x at time t, ρ(t,x) is a measurement,

X(t,x) is the pseudo-localization variable, through which p∗ ◦X(t,x) can be computed.

Theorem 10 (Convergence of solutions). Under the well-posedness Assumption 11, the so-

lutions (ρ(t, ·),X(t, ·)) to (4.7), under the control laws (4.8) and (4.9), converge to (ρ∗,Θ∗),

ρ → ρ∗ in L2−norm and X → Θ∗ pointwise as t→ ∞, from any smooth initial condition (ρ0,

X0).

Proof. Consider the candidate control Lyapunov functional V :

V =
1
2

∫ L(t)

0
|ρ− p∗ ◦X |2dx+

1
2

∫ L(t)

0
ρ|w|2dx+

1
2
|w(L(t))|2.

Taking the time derivative of V along the dynamics (4.7), using Lemma 2 on the Leibniz integral

rule, and applying Corollary 1 on the derivative of energy functionals, we obtain:

V̇ =
∫ L(t)

0
(ρ− p∗ ◦X)

(
dρ

dt
− d(p∗ ◦X)

dt

)
dx+

1
2

∫ L(t)

0
|ρ− p∗ ◦X |2∂xv dx

+
∫ L(t)

0
ρw∂tw dx+

1
2

∫ L(t)

0
(∂tρ)|w|2 dx+

1
2

ρ|w|2v
∣∣∣∣
L(t)

0
+w(L)

dw(L(t))
dt

.

Now, dρ

dt = ∂tρ + v∂xρ = −ρ∂xv (since ∂tρ = −∂x(ρv), from (4.7)), and ∂tw = 1
ρ

∂x

(
∂xw
ρ

)
−

101



v∂xw. Thus, we obtain:

V̇ =
∫ L(t)

0
(ρ− p∗ ◦X)

[
−ρ∂xv−∂X p∗

1
ρ

∂x

(
∂xX
ρ

)]
dx+

1
2

∫ L(t)

0
|ρ− p∗ ◦X |2∂xv dx

+
∫ L(t)

0
w∂x

(
∂xw
ρ

)
dx−

∫ L(t)

0
ρvw∂xw dx− 1

2

∫ L(t)

0
∂x(ρv)|w|2 dx+

1
2

ρ|w|2v
∣∣∣∣
L(t)

0

+w(L)
dw(L(t))

dt
.

Now, using the above equation, applying the Divergence theorem (1.1) (integration by parts) and

rearranging the terms, we obtain:

V̇ =− 1
2

∫ L(t)

0
(ρ− p∗ ◦X)

[
(ρ + p∗ ◦X)(∂xv)+

∂X p∗

ρ
∂x

(
∂xX
ρ

)]
dx

+
w∂xw

ρ

∣∣∣∣
L(t)

0
−
∫ L(t)

0

|∂xw|2
ρ

dx−
∫ L(t)

0
ρvw∂xw dx− 1

2
ρv|w|2

∣∣∣∣
L(t)

0

+
∫ L(t)

0
ρvw∂xw dx+

1
2

ρ|w|2v
∣∣∣∣
L(t)

0
+w(L)

dw(L(t))
dt

.

Since w(0) = 0, the above equation reduces to:

V̇ =− 1
2

∫ L(t)

0
(ρ− p∗ ◦X)

[
(ρ + p∗ ◦X)(∂xv)+

∂X p∗

ρ
∂x

(
∂xX
ρ

)]
dx

−
∫ L(t)

0

|∂xw|2
ρ

dx+w(L(t))
(

d
dt

w(L(t))+
∂xw
ρ

)
.

From (4.8) and (4.9), we have ∂xv = (ρ− p∗ ◦X)− ∂X p∗
ρ(ρ+p∗◦X)∂x

(
∂xX
ρ

)
, and

dw
dt

∣∣∣∣
L(t)

=−
(

∂xw
ρ

+ kw
)∣∣∣∣

L(t)
,

and we obtain:

V̇ =− 1
2

∫ L(t)

0
(ρ + p∗ ◦X)|ρ− p∗ ◦X |2dx−

∫ L(t)

0

|∂xw|2
ρ

dx− k |w(L(t))|2 . (4.10)

102



Clearly, V̇ ≤ 0, and ρ(t, ·),w(t, .)∈H1((0,1/dl)), for all t. By Lemma 5, the Rellich-Kondrachov

Compactness Theorem, the space H1((0,1/dl)) is compactly contained in L2((0,1/dl)), and the

bounded solutions (by Assumption 11) in H1((0,1/dl)) are then precompact in L2((0,1/dl)).

Moreover, the set of (ρ,X) satisfying Assumption 11 is dense in L2((0,1/dl)). Then, by the

LaSalle Invariance Principle, Lemma 6, we have that the solutions to (4.7) converge in the L2-

norm to the largest invariant subset of V̇−1(0). This implies that:

lim
t→∞
‖ρ(t, ·)− p∗ ◦X(t, ·)‖L2((0,L(t))) = 0,

lim
t→∞
‖∂xw

ρ
‖L2((0,L(t)),ρ) = 0, lim

t→∞
w(t,L(t)) = 0.

Thus, we have:

lim
t→∞

∥∥∥∥
∂xw
ρ

∥∥∥∥
L2((0,L(t)),ρ)

= 0 ⇒ lim
t→∞
‖∂xw‖L2((0,L(t))) = 0.

Using the Poincaré-Wirtinger inequality, Lemma 4, again, we note that this implies limt→∞ ‖w−
∫ L(t)

0 w‖L2((0,L(t))) = 0. We have limt→∞ |
∫ L(t)

0 w|= |∫ L(t)
0

∫ x
0 ∂xw| ≤ L(t)3/2‖∂xw‖L2((0,L(t))) = 0,

which implies that limt→∞

∫ L(t)
0 w = 0 and therefore limt→∞ ‖w‖L2((0,L(t))) = 0. Thus, we

get limt→∞ ‖w(t, ·)‖H1((0,L(t))) = 0, or in other words, w →H1 0. Now, limt→∞ |w(t,x)| =

limt→∞ |w(t,0) +
∫ x

0 ∂xw(t, ·)| ≤ limt→∞ |w(t,0)| +
∫ x

0 |∂xw(t, ·)| ≤ limt→∞ |w(t,0)| +
√

L(t)‖w(t, ·)‖H1((0,L(t))) = 0, which implies that w→ 0 pointwise. Given that w = X−Θ, we

have limt→∞ X(t, ·)−Θ(t, ·) = 0. Let limt→∞ L(t) = L and limt→∞ Θ(t, ·) = Θ̄(·), which implies

that X → Θ̄ pointwise.

From the above, we have limt→∞ ‖ρ(t, ·)− p∗ ◦ Θ̄‖L2((0,L(t))) = limt→∞ ‖ρ(t, ·)− p∗ ◦

X(t, ·)+ p∗ ◦X(t, ·)− p∗ ◦ Θ̄‖L2((0,L(t))) ≤ limt→∞ ‖ρ(t, ·)− p∗ ◦X(t, ·)‖L2((0,L(t)))+‖p∗ ◦X(t, ·)

− p∗ ◦ Θ̄‖L2((0,L(t))) = 0 (this follows from the assumption that p∗ is Lipschitz, since ‖p∗ ◦X−

p∗ ◦ Θ̄‖L2 ≤ c‖X− Θ̄‖L2 for some Lipschitz constant c). Thus, we have ρ →L2 p∗ ◦ Θ̄.

Now, we are interested in the limit density function ρ̄ = p∗ ◦ Θ̄, and by the definition of Θ̄

103



we have Θ̄(x) =
∫ x

0 ρ̄ . We now prove that this limit (ρ̄,Θ̄) is unique, and that (ρ̄,Θ̄) = (ρ∗,Θ∗).

From the definition of Θ̄, we get dΘ̄

dx (x) = ρ̄(x) = p∗(Θ̄(x)) > 0, ∀Θ̄(x) ∈ [0,1]. We therefore

have:

x =
∫

Θ̄(x)

0
(p∗(θ))−1 dθ .

Recall from the definition of p∗ and (4.1) that p∗ ◦Θ∗(x) = ρ∗(x), and d
dxΘ∗(x) = ρ∗(x) =

p∗ ◦Θ∗(x), which implies that dΘ∗
dx = p∗(θ ∗)> 0, where θ ∗ = Θ∗(x). Therefore:

x =
∫

Θ∗(x)

0
(p∗(θ))−1 dθ .

From the above two equations, we get:

∫
Θ̄(x)

0
(p∗(θ))−1 dθ =

∫
Θ∗(x)

0
(p∗(θ))−1 dθ ,

for all x, and since p∗ is strictly positive, it implies that Θ̄ = Θ∗, and we obtain ρ̄ = p∗ ◦ Θ̄ =

p∗ ◦Θ∗ = ρ∗. And we know that ρ →L2 p∗ ◦ Θ̄ = p∗ ◦Θ∗ = ρ∗. In other words, ρ converges

to ρ∗ in the L2 norm.

Physical interpretation of the density control law

For a physical interpretation of the control law, we first rewrite some of the terms in a

suitable form. From (4.7), we know that:

1
ρ

∂x

(
∂xX
ρ

)
=

∂X
∂ t

+ v∂xX =
dX
dt

.

The second term in the expression for ∂xv in the law (4.8) can thus be rewritten as:

∂X p∗

ρ(ρ + p∗ ◦X)
∂x

(
∂xX
ρ

)
=

1
(ρ + p∗ ◦X)

∂X p∗
dX
dt

=
1

(ρ + p∗ ◦X)

d p∗

dt
.
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Now, from above and (4.8), we obtain:

v(t,x) =
∫ x

0
(ρ− p∗ ◦X)−

∫ x

0

1
(ρ + p∗ ◦X)

d p∗

dt
. (4.11)

Equation (4.11) gives the velocity of the agent at x at time t. Now, to interpret it, we first consider

the case where the pseudo-localization error is zero, that is, when X = Θ∗. This would imply

that p∗ ◦X = p∗ ◦Θ∗ = ρ∗, dX
dt = dΘ∗

dt = 0, and we obtain:

v(t,x) =
∫ x

0
(ρ−ρ

∗). (4.12)

The term
∫ x

0 (ρ−ρ∗) =
∫ x

0 ρ−∫ x
0 ρ∗ is the difference between the number of agents in the interval

[0,x] and the desired number of agents in [0,x]. If the term is positive, it implies that there are

more than the desired number of agents in [0,x] and the control law essentially exerts a pressure

on the agent to move right thereby trying to reduce the concentration of agents in the interval

[0,x], and, vice versa, when the term is negative. This eventually accomplishes the desired

distribution of agents over a given interval. This would be the physical interpretation of the

control law for the case where the pseudo-localization error is zero (that is, the agents have full

information of their positions).

However, in the transient case when the agents do not possess full information of their

positions and are implementing the pseudo-localization algorithm for that purpose, the control law

requires a correction term that accounts for the fact that the transient pseudo coordinates X(t,x)

cannot be completely relied upon. This is what the second term
∫ x

0
1

(ρ+p∗◦X)
d p∗
dt in (4.11) corrects

for. When this term is positive, that is,
∫ x

0
1

(ρ+p∗◦X)
d p∗
dt > 0, it roughly implies that the “estimate”

of the desired number of agents in the interval [0,x] is increasing (indicating that an increase in

the concentration of agents in [0,x] is desirable), and the term essentially reduces the “rightward

pressure” on the agent (note that this term will have a negative contribution to the velocity (4.11)).
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4.3.3 Discrete implementation

In this section, we present a scheme to compute p∗ (the transformed desired density

profile) and a consistent discretization scheme for the distributed control law. We follow that

up with a discussion on the convergence of the discretized system and a pseudo-code for the

implementation.

On the computation of p∗

We now provide a method for computing p∗ from a given ρ∗ via interpolation. Let the

desired domain M∗ = [0,L∗] be discretized uniformly to obtain M∗d = {0 = x1, . . . ,xm = L∗} such

that x j− x j−1 = h (constant step-size). Note that m is the number of interpolation points, not

equal to the number of agents. The desired density ρ∗ : [0,L∗]→R>0 is known, and we compute

the value of ρ∗ on M∗d to get ρ∗(x1, . . . ,xm) = (ρ∗1 , . . . ,ρ
∗
m). We also have Θ∗(x) =

∫ x
0 ρ∗dµ ,

for all x ∈ [0,L∗]. Now, computing the integral with respect to the Dirac measure for the

set M∗d , we obtain Θ∗d(x1, . . . ,xm) = (θ ∗1 , . . . ,θ
∗
m), where θ ∗1 = 0 and θ ∗k = 1

2 ∑
k
j=1(ρ

∗
j−1 +ρ∗j )h,

for k = 2, . . . ,m (note that 0 = θ ∗1 ≤ θ ∗2 ≤ . . .≤ θ ∗m ≤ 1 and limh→0 θ ∗m = Θ∗(L∗) = 1). Now, the

value of the function p∗ at any X ∈ [0,1] can be now obtained from the relation p∗(θ ∗k ) = ρ∗k , for

k = 1, . . . ,m, by an appropriate interpolation.

(ρ∗1 , . . . ,ρ
∗
m) = p∗(θ ∗1 , . . . ,θ

∗
m)

(x1, . . . ,xm) (θ ∗1 , . . . ,θ
∗
m)

ρ∗

Θ∗
p∗

Discrete control law

A discretized pseudo-localization algorithm is given by (4.6). We now discretize (4.8)

to obtain an implementable control law for a finite number of agents i ∈S , and a numerical

simulation of this law is later presented in Section 4.5.

Let i ∈S \{l,r}. First note that ∂xv = (∂θ v)
∣∣∣∣
θ=Θ(x)

(∂xΘ) = (∂θ v)
∣∣∣∣
θ=Θ(x)

ρ (where v≡

v(Θ(x))). Using a consistent backward differencing approximation, and recalling that ∆θ = ε ,
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we can write:

(∂xv)i ≈ ρi
vi− vi−1

∆θ
= ρi

vi− vi−1

ε
, i ∈S

where ρi is agent i’s density measurement.

From Section 4.3.1, recall the consistent finite-difference approximation:

1
ρ

∂x

(
∂xX
ρ

)

i
≈ 1

ε2 (Xi−1−2Xi +Xi+1).

With κ = 1
2ε

, from (4.8) and the above equation, we obtain the law for agent i as:

vi = vi−1 +
ρi− p∗(Xi)

2κρi
− 2κ

ρi(ρi + p∗(Xi))
· p∗(Xi+1)− p∗(Xi−1)

Xi+1−Xi−1
· (Xi−1−2Xi +Xi+1) (4.13)

with vl = 0. The computation in v can be implemented by propagating from the leftmost agent to

the rightmost agent along a line graph Gline (with message receipt acknowledgment). Note that

this propagation can alternatively be formulated by each agent averaging appropriate variables

with left and right neighbors, which will result in a process similar to a finite-time consensus

algorithm. Now, the boundary control (4.9) is discretized (with ∂tβ ≈ β (t+1)−β (t)
∆t ), with the

choice k = 1
ε

to:

β (t +1) = β (t)+ k∆t(2−β (t)−2κ (β (t)−Xr−1(t))) =
4−2ε

3
β (t)+

1
3

Xr−1(t) (4.14)

On the convergence of the discrete system

The discretized pseudo-localization algorithm (4.6) with the boundary control law (4.9),

can be rewritten as:

X(t +1) = X(t)− 1
3

LX(t)+u(t), (4.15)
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where X(t) = (Xl(t), . . . ,Xr(t)), L is the Laplacian of the line graph Gline and the input

u(t) =
(
0, . . . ,0, ε

3(2−β (t))
)
. This discretized system is stable and we thereby have that the

discretized pseudo-localization algorithm is consistent and stable. Thus, by the Lax Equivalence

Theorem [112], the solution of (4.15) converges to the solution of (4.4) with the boundary con-

trol (4.9) as N→∞. Due to the nonlinear nature of the discrete implementation of the equation in

ρ , we are only certain that we have a consistent discrete implementation in this case (no similar

convergence theorem exists for discrete approximations of nonlinear PDEs.)

Algorithm 3. Self-organization algorithm for 1D environments
1: Input: ρ∗, K (number of iterations), ∆t (time step)

2: Requires:

3: Offline computation of p∗ as outlined in Section 4.3.3

4: Initialization Xi(0) = X0i, vi = 0

5: Leftmost and rightmost agents, l, r, resp., are aware they are at boundary

6: for k := 1 to K do

7: if i = l then

8: agent l holds onto Xl(k) = 0 and vl(k) = 0

9: else if agent i ∈ {l +1, . . . ,r−1} then

10: agent i receives Xi−1(k) and Xi+1(k) from its left and right neighbors

11: agent i implements the update (4.6)

12: else if i = r then

13: agent r receives Xr−1(k) from its left neighbor

14: agent r implements the update (4.14)

15: for i := l to r do

16: agent i computes velocity vi from (4.13)

17: agent i moves to xi(k+1) = xi(k)+ vi(k)∆t

4.4 Self-organization in two dimensions

In this section, we present the two-dimensional self-organization problem. Although our

approach to the 2D problem is fundamentally similar to the 1D case, we encounter a problem
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in the two-dimensional case that did not require consideration in one dimension, and it is the

need to control the shape of the spatial domain in which the agents are distributed. We overcome

this problem by controlling the shape of the domain with the agents on the boundary, while

controlling the density function of the agents in the interior.

Let M : R ⇒ R2 be a smooth one-parameter family of bounded open subsets of R2,

such that M̄(t) is the spatial domain in which the agents are distributed at time t ≥ 0. Let

ρ : R×R2 → R≥0 be the spatial density function with support M̄(t) for all t ≥ 0; that is,

ρ(t,x)> 0, ∀x ∈ M̄(t), and t ≥ 0. Without loss of generality, we shift the origin to a point on

the boundary of the family of domains, such that (0,0) ∈ ∂M(t), for all t. Let ρ∗ : M∗→ R>0

be the desired density function, where M∗ is the target spatial domain. From here on, we view M̄

as a one-parameter family of compact 2-submanifolds with boundary of R2. Just as in the 1D

case, the agents do no have access to their positions but know the true x- and y-directions.

In what follows we present our strategy to solve this problem, which we divide into

three stages for simplicity of presentation and analysis. In the first stage, the agents converge to

the target spatial domain M∗ with the boundary agents controlling the shape of the domain. In

stage two, the agents implement the pseudo-localization algorithm to compute the coordinate

transformation. In the third stage, the boundary agents remain stationary and the agents in the

interior converge to the desired density function. This simplification is performed under the

assumption that, once the agents have localized themselves at a given time, they can accurately

update this information by integrating their (noiseless) velocity inputs. Noisy measurements

would require that these phases are rerun with some frequency; e.g. using fast and slow time

scales as described in Section 4.2.

4.4.1 Pseudo-localization algorithm for boundary agents

To begin with, we propose a pseudo-localization algorithm for the boundary agents which

allows for their control in the first stage. To do this, we assume that the agents have a boundary

detection capability (can approximate the normal to the boundary), the ability to communicate
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with neighbors immediately on either side along the boundary curve, and can measure the density

of boundary agents.

Let M0 ⊂R2 be a compact 2-manifold with boundary ∂M0 and let (0,0)∈ ∂M0. To local-

ize themselves, the agents on ∂M0 implement the distributed 1D pseudo-localization algorithm

presented in Section 4.3.1. This yields a parametrization of the boundary Γ : ∂M0→ [0,1), with

Γ(0,0) = 0, such that the closed curve which is the boundary ∂M0 is identified with the interval

[0,1). We have that, for γ ∈ [0,1), Γ−1(γ) ∈ ∂M0. For γ ∈ [0,1), let s(γ) be the arc length of the

curve ∂M0 from the origin, such that s(0) = 0 and limγ→1 s(γ) = l. We assume that the boundary

agents have access to the unit outward normal n(γ) to the boundary, and thus the unit tangent

s(γ).

Let q : [0, l)→ R>0 denote the normalized density of agents on the boundary, such that

we have
∫ l

0 q(s)ds = 1. Now the 1D pseudo-localization algorithm of Section 4.3.1 serves to

provide a 2D boundary pseudo-localization as follows. Note that ds
dγ

= 1
q(γ) , and (dx,dy) = sds,

which implies (dx,dy) = 1
q(γ)s(γ)dγ . Therefore, we get the position of the boundary agent at

γ , (x(γ),y(γ)), as (x(γ),y(γ)) =
∫ γ

0
1

q(γ̄)s(γ̄)dγ̄ , and the arc-length s(γ) =
∫ γ

0
1

q(γ̄)dγ̄ , which is

discretized by a consistent scheme to obtain:

(xi,yi) =
1
2

∆γ

i−1

∑
k=0

(
sk

qk
+

sk+1

qk+1

)
, for i ∈ ∂M0, (4.16)

and we recall that the agents have access to q and s. The computation of (xi,yi) can be imple-

mented by propagating from the agent with γi = 0 along the boundary agents in the direction as

γi→ 1, along a line graph Gline (with message receipt acknowledgment). Note that this propaga-

tion can alternatively be formulated by each agent averaging appropriate variables with left and

right neighbors, which will result in a process similar to a finite-time consensus algorithm.

This way, the boundary agents are localized at time t = 0, and they update their position

estimates using their velocities, for t ≥ 0.
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4.4.2 Pseudo-localization algorithm in two dimensions

In this subsection, we present the pseudo-localization algorithm for the agents in the

interior of the spatial domain. We first describe the idea of the coordinate transformation (diffeo-

morphism) we employ and construct a PDE that converges asymptotically to this diffeomorphism.

We then discretize the PDE to obtain the distributed pseudo-localization algorithm.

The main idea is to employ harmonic maps to construct a coordinate transformation

or diffeomorphism from the spatial domain of the swarm onto the unit disk. We begin the

construction with the static case, where the agents are stationary. Let M ⊆ R2 be a compact,

static 2-manifold with boundary and N = {(x,y) ∈ R2 |(x−1)2 + y2 ≤ 1} be the unit disk. The

manifolds M and N are both equipped with a Euclidean metric g = h = δ .

First, we define a mapping for the boundary of M. Let Γ : ∂M→ [0,1) be a parametriza-

tion of the boundary of M, as outlined in Section 4.4.1. Let ξ : M̄→ N be any diffeomorphism

that takes the following form on the boundary of M:

ξ (Γ−1(γ)) = (1− cos(2πγ),sin(2πγ)), γ ∈ [0,1), (4.17)

and we know that Γ−1[0,1) = ∂M.

Now, from Lemma 7, on harmonic diffeomorphisms, there is a unique harmonic dif-

feomorphism, Ψ : M→ N, such that Ψ = ξ on ∂M. We know that, by definition, the mapping

Ψ = (ψ1,ψ2) satisfies:





∆ψ1 = 0,

∆ψ2 = 0,
for r ∈ M̊,

Ψ = ξ , on ∂M,

(4.18)

where ∆ is the Laplace operator. Let Ψ∗ be the corresponding map from the target domain M∗ to

the unit disk N. Now, we define a function p∗ : N→ R>0 by p∗ = ρ∗ ◦ (Ψ∗)−1, the image of the
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desired spatial density distribution on the unit disk, which is computed offline and is broadcasted

to the agents prior to the beginning of the self-organization process. We later use p∗ to derive the

distributed control law which the agents implement.

ρ∗(r) = p∗(Ψ∗(r))

r ∈M∗ Ψ∗(r) ∈ N

ρ∗

Ψ∗
p∗

We now construct a PDE that asymptotically converges to the harmonic diffeomorphism,

which we then discretize to obtain a distributed pseudo-localization algorithm. We use the heat

flow equation as the basis to define the pseudo-localization algorithm, which yields a harmonic

map as its asymptotically stable steady-state solution. We begin by setting up the system for a

stationary swarm, for which the spatial domain is fixed.

Let M ⊂ R2 be a compact 2-manifold with boundary, N be the unit disk of R2, and

R = (X ,Y ) : M→ N. The heat flow equation is given by:





∂tX = ∆X ,

∂tY = ∆Y,
for r ∈ M̊,

R = ξ , on ∂M.

(4.19)

The heat flow equation has been studied extensively in the literature. For well-known existence

and uniqueness results, we refer the reader to [48].

Lemma 40. [Pointwise convergence of the heat flow equation to a harmonic diffeomorphism]

The solutions of the heat flow equation (4.19) converge pointwise to the harmonic map satisfy-

ing (4.18), exponentially as t→ ∞, from any smooth initial R0 ∈ H1(M)×H1(M).

Proof. Let Ψ be the solution to (4.18), which is a harmonic map by definition. Let R̃ = R−Ψ be
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the error where R = (X ,Y ) is the solution to (4.19). Subtracting (4.18) from (4.19), we obtain:





∂tX = ∆X ,

∂tY = ∆Y,
for r ∈ M̊,

R̃ = 0, on ∂M.

(4.20)

The Laplace operator ∆ with the Dirichlet boundary condition in (4.20) is self-adjoint and

has an infinite sequence of eigenvalues 0 < λ1 < λ2 < .. ., with the corresponding eigen-

functions {φi}∞
i=1 forming an orthonormal basis of L2(M) (where φi ∈ L2(M) and ∆φi = λiφi

for all i, with φi = 0 on the boundary) [55]. Let the initial condition be X̃0 = ∑
∞
i=1 aiφi and

Ỹ0 = ∑
∞
i=1 biφi (where ai and bi are constants for all i). The solution to (4.20) is then given

by X̃(t,r) = ∑
∞
i=1 aie−λitφi(r) and Ỹ (t,r) = ∑

∞
i=1 bie−λitφi(r). Since λi > 0, for all i, we obtain

limt→∞ X̃(t,r) = 0 and limt→∞ Ỹ (t,r) = 0, for all r ∈ M̄. Therefore, limt→∞ R(t,r) = Ψ(r), for

all r ∈ M̄, and the convergence is exponential.

We now have a PDE that converges to the diffeomorphism given by (4.18) for the

stationary case (agents in the swarm are at rest). For the dynamic case, and to describe the

algorithm while the agents are in motion, we modify (4.19) as follows. Let R = (X ,Y ) :

R×R2→ R. We are only interested in the restriction to M(t), R|M(t), at any time t, so we drop

the restriction and just identify R≡ R|M(t)
. Using the relation dX

dt = ∂tX +∇X ·v, where v is a

velocity field, we obtain:





∂tX = ∆X−∇X ·v,

∂tY = ∆Y −∇Y ·v,
for r ∈ M̊(t),

R = ξ , on ∂M(t).

(4.21)

We now discretize (4.21) to derive the distributed pseudo-localization algorithm. Now, we have

ρ : R×R2→ R≥0 with support M(t), the density function of the swarm on the domain M(t).
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We view the swarm as a discrete approximation of the domain M(t) with density ρ , and the PDE

(4.21) as approximated by a distributed algorithm implemented by the swarm.

Here, we propose a candidate distributed algorithm, which would yield the heat flow

equation via a functional approximation. Our candidate algorithm is a time-varying weighted

Laplacian-based distributed algorithm, owing to the connection between the graph Laplacian

and the manifold Laplacian [19]:

Xi(t +1) = Xi(t)+ ∑
j∈Ni(t)

wi j(t)(X j(t)−Xi(t)), (4.22)

and a similar equation for Y . We show how to derive next the values for the weights wi j(t) ∈ R,

for all t. First, the set of neighbors, j ∈Ni(t), of i at time t, are the spatial neighbors of i in M(t),

that is, Ni(t) = { j ∈S |‖r j(t)−ri(t)‖ ≤ ε} ≡ Bε(ri(t)). Using Xi(t +1)−Xi(t) = dX
dt δ t, for a

small δ t, we make use of a functional approximation of (4.22):

dX
dt

δ t =
∫

Bε (ri(t))
w(t,ri,s)(X(t,s)−X(t,ri)) ρ(t,s)dµ, (4.23)

where dν = ρ dµ is a density-dependent measure on the manifold, and the weighting function

w satisfies w(t,ri(t),r j(t)) = wi j(t), for all i, j ∈ S . We note that the summation term in

(4.22) is a special form of the integral in (4.23) with a Dirac measure dν supported on the set

{r1(t), . . . ,rN(t)} at time t. Now, with the choice w(t,ri,s) = 1∫
Bε (s(t)) ρ(t,s̄)dµ

and for very small ε

(making O(ε3) terms negligible), (4.23) reduces to:

dX
dt

δ t = a∆X ,

where a = 1
4ε

∫
Bε (ri(t))(s− ri(t)) · (s− ri(t))dµ is a constant. Now, with the choice δ t = a, we
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obtain:

dX
dt

=
∂X
∂ t

+v ·∇X = ∆X ,

which is the PDE (4.21). Let d(t,ri(t)) =
∫

Bε (ri(t))ρ(t,s)dµ and di(t) = |Ni(t)|, for i ∈ S .

Substituting wi j(t) = w(t,ri(t),r j(t)) = 1∫
Bε (r j(t))

ρ(t,s̄)dµ
= 1

d(t,r j(t))
≈ 1

d j(t)
, in (4.22), we get the

distributed pseudo-localization algorithm for the agents in the interior of the swarm to be:

Xi(t +1) = Xi(t)+ ∑
j∈Ni(t)

1
d j(t)

(X j(t)−Xi(t)),

Yi(t +1) = Yi(t)+ ∑
j∈Ni(t)

1
d j(t)

(Yj(t)−Yi(t)).
(4.24)

For the agents on the boundary ∂M(t), we have:

Ri = (Xi,Yi) = ξi,

where ξi = ξ (ri(t)), for ri(t) ∈ ∂M(t). Note that the discretization scheme is consistent, in that

as the number of agents N→∞, the discrete equation (4.24) converges to the PDE (4.21). In this

way, from (4.24), the pseudo-localization algorithm is a Laplacian-based distributed algorithm,

with a time-varying weighted graph Laplacian.

4.4.3 Distributed density control law and analysis

In this section, we derive the distributed feedback control law to converge to the desired

density function over the target domain in the two-dimensional case. The swarm dynamics are

given by:

∂tρ =−∇ · (ρv), for r ∈ M̊(t),

∂tr = v, on ∂M(t).
(4.25)
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Assumption 12 (Well-posedness of the PDE system). We assume that (4.25) is well-posed, and

that its solution ρ(t, ·) is sufficiently smooth and is bounded in the Sobolev space H1(∪tM(t)),

the components of the velocity field v are bounded in the Sobolev space H1(∪tM(t)) and of the

parametrized velocity on the boundary are bounded in the Sobolev space H1((0,1)).

In what follows, we describe the control strategy based on three different stages.

Stage 1

In this stage, the objective is for the swarm to converge to the target spatial domain M∗.

Let r∗ : [0,1]→ ∂M∗ be the closed curve describing the desired boundary. Let e(γ) =

r(γ)−r∗(γ) be the position error of agent γ on the boundary, where r(γ) is the actual position of

agent γ computed as presented in Section 4.4.1. We define a distributed control law for swarm

motion as follows:





v =−∇ρ

ρ
, for r ∈ M̊(t),

∂tv =−e−v, on ∂M(t).
(4.26)

Theorem 11 (Convergence to the desired spatial domain). Under the well-posedness Assump-

tion 12, the domain M(t) of the system (4.25), with the distributed control law (4.26) converges

to the target spatial domain M∗ as t→ ∞, from any initial domain M0 with smooth boundary.

Proof. We consider an energy functional E given by:

E =
1
2

∫

∂M(t)
|e|2 + 1

2

∫

∂M(t)
|v|2.

Its time derivative, Ė, using (4.26), is given by:

Ė =
∫

∂M(t)
e ·v+

∫

∂M(t)
v ·∂tv =

∫

∂M(t)
(e+v) ·∂tv =−

∫

∂M(t)
|v|2.

Clearly, Ė ≤ 0, and considering a parametrization of ∂M(t) by the interval [0,1), we have
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v(t, ·) ∈ H1((0,1)) and bounded. By Lemma 5, the Rellich-Kondrachov Compactness theorem,

H1((0,1)) is compactly contained in L2((0,1)) (and we also have that H1((0,1)) is dense in

L2((0,1))). Thus, by the LaSalle Invariance Principle, Lemma 6, we have that the solutions

to (4.25) with the control law (4.26) converge in the L2-norm to the largest invariant subset

of Ė−1(0), which satisfies:

lim
t→∞
‖|v|‖L2(∂M(t)) = 0, lim

t→∞
∂t‖|v|‖L2(∂M(t)) = lim

t→∞

∫

∂M(t)
v ·∂tv = 0.

The set Ė−1(0) is characterized by the first equality above and the second equality is further

satisfied by the invariant subset of Ė−1(0). We know from (4.26) that ∂tv =−e−v on ∂M(t),

which upon multiplying on both sides by v, integrating over ∂M(t) and applying the previous

equality on the integral of v ·∂tv, yields limt→∞

∫
∂M(t) e ·v= 0. Now, we have |∂tv|2 = |e|2+ |v|2+

2e · v, which on integrating over ∂M(t) yields limt→∞ ‖|∂tv|‖L2(∂M(t)) = limt→∞ ‖|e|‖L2(∂M(t)).

By multiplying ∂tv = −e− v on both sides by ∂tv, integrating over ∂M(t), and using the

Cauchy-Schwarz inequality, we obtain:

lim
t→∞
‖|∂tv|‖2

L2(∂M(t)) = lim
t→∞
−
∫

∂M(t)
e ·∂tv≤ lim

t→∞

∫

∂M(t)
|e||∂tv|

≤ lim
t→∞
‖|e|‖L2(∂M(t))‖|∂tv|‖L2(∂M(t)) = lim

t→∞
‖|∂tv|‖2

L2(∂M(t))

In this way, the Cauchy-Schwarz inequality becomes an equality, which implies that

limt→∞

∫
∂M(t) [|e||∂tv|− (−e) ·∂tv] = 0 (since the integrand is non-negative and its integral is

zero, it is zero almost everywhere), thus limt→∞ ∂tv =− limt→∞ e almost everywhere (a.e.) on

the boundary, and, in turn, implies that limt→∞ v = 0 a.e. on the boundary (since ∂tv =−e−v

and limt→∞ ∂tv = − limt→∞ e). From here, and owing to the Invariance Principle, we have

limt→∞ ∂tv = 0 = limt→∞ e a.e. on the boundary. Thus, we have that limt→∞ M(t) = M∗.
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Stage 2

Here, the agents in the swarm implement the pseudo-localization algorithm presented in

Section 4.4.2. Since the agents are distributed across the target spatial domain M∗, implementing

the pseudo-localization algorithm yields the coordinate transformation Ψ∗ characteristic of the

domain M∗. We therefore have ∂tΨ
∗ = 0, which implies that dΨ∗

dt = ∂tΨ
∗+∇(Ψ∗)v = ∇(Ψ∗)v,

which will be used in Stage 3.

Stage 3

In this stage, the boundary agents of the swarm remain stationary and interior agents

converge to the desired density function.

Consider the distributed control law, defined as follows for all time t:





dv
dt =−ρ∇(ρ− p∗ ◦Ψ∗)+(v ·∇)v+∆v−v, for r ∈ M̊∗,

v = 0, on ∂M∗,
(4.27)

where dv
dt at r ∈ M is the acceleration of the agent at r, the control input. Using the relation

d
dt = ∂t +v ·∇, it follows from (4.27) that ∂tv =−ρ∇(ρ− p∗ ◦Ψ∗)+∆v−v.

Theorem 12 (Convergence to the desired density). The solutions ρ(t, ·) to (4.25) for the fixed

domain M∗, under the distributed control law (4.27) and the well-posedness Assumption 12,

converge to the desired density distribution ρ∗ in the L2-norm as t→ ∞.

Proof. We consider an energy functional E given by:

E =
1
2

∫

M∗
|ρ− p∗ ◦Ψ

∗|2 + 1
2

∫

M∗
|v|2.

Using Corollary 1, to compute the derivative of energy functionals, we obtain Ė (letting ∇̄ =
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(∂X ,∂Y )) as follows:

Ė =
∫

M∗
(ρ− p∗ ◦Ψ

∗)
(

dρ

dt
− d(p∗ ◦Ψ∗)

dt

)
+

1
2

∫

M∗
|ρ− p∗ ◦Ψ

∗|2∇ ·v+
∫

M∗
v ·∂tv

=−
∫

M∗
(ρ− p∗ ◦Ψ

∗)
(

ρ∇ ·v+ ∇̄p∗ · dΨ∗

dt

)
+

1
2

∫

M∗
|ρ− p∗ ◦Ψ

∗|2∇ ·v+
∫

M∗
v ·∂tv

=−1
2

∫

M∗
(ρ2− (p∗ ◦Ψ

∗)2)∇ ·v−
∫

M∗
(ρ− p∗ ◦Ψ

∗)∇̄p∗ · dΨ∗

dt
+
∫

M∗
v ·∂tv,

where, to obtain the third equality, we expand the square |ρ− p∗ ◦Ψ∗|2 in the second integral of

the second equality. Since v = 0 on ∂M∗ and from Section 4.4.3, we have dΨ∗
dt = ∇(Ψ∗)v, we

obtain:

Ė =
1
2

∫

M∗
∇(ρ2− (p∗ ◦Ψ

∗)2) ·v−
∫

M∗
(ρ− p∗ ◦Ψ

∗)∇̄p∗ · (∇Ψ
∗v)+

∫

M∗
v ·∂tv.

We have ∇̄p∗∇Ψ∗ = ∇(p∗ ◦Ψ∗), and ∇(ρ2− (p∗ ◦Ψ∗)2) = (ρ− p∗ ◦Ψ∗)∇(ρ + p∗ ◦Ψ∗)+(ρ +

p∗ ◦Ψ∗)∇(ρ− p∗ ◦Ψ∗). Thus, we get:

Ė =
1
2

∫

M∗
(ρ + p∗ ◦Ψ

∗)∇(ρ− p∗ ◦Ψ
∗) ·v+ 1

2

∫

M∗
(ρ− p∗ ◦Ψ

∗)∇(ρ + p∗ ◦Ψ
∗) ·v

−
∫

M∗
(ρ− p∗ ◦Ψ

∗)∇(p∗ ◦Ψ
∗) ·v+

∫

M∗
v ·∂tv.

We therefore get:

Ė =
∫

M∗
ρ∇(ρ− p∗ ◦Ψ

∗) ·v+
∫

M∗
v ·∂tv =

∫

M∗
v · (ρ∇(ρ− p∗ ◦Ψ

∗)+∂tv) .

From (4.27), we have ∂tv =−ρ∇(ρ− p∗ ◦Ψ∗)+∆v−v, and we obtain:

Ė =−
∫

M∗
|v|2−

∫

M∗
|∇vx|2−

∫

M∗
|∇vy|2.

Clearly, Ė ≤ 0, with ρ(t, .),v ∈ H1(M∗) and bounded (by Assumption 12). By Lemma 5, the

Rellich-Kondrachov Compactness theorem, H1(M∗) is compactly contained in L2(M∗) (and we
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also know that the set of all (ρ,v) satisfying Assumption 12 is dense in L2(M∗)). Thus, by the

Invariance Principle, Lemma 6, we have that the solution to (4.25) converges in the L2-norm to

the largest invariant subset of Ė−1(0), which satisfies:

‖|v|‖H1(M∗) = 0,
1
2

∂t‖|v|‖2
L2(M∗) =

∫

M∗
v ·∂tv = 0. (4.28)

The set Ė−1(0) is characterized by the first equality above and the second equality is further

satisfied by the invariant subset of Ė−1(0). We know from (4.27) that

∂tv =−ρ∇(ρ− p∗ ◦Ψ
∗)+∆v−v, (4.29)

which substituted in (4.28) yields
∫

M∗ ρv · ∇(ρ − p∗ ◦ Ψ∗) = 0. Now, from (4.29),

we obtain ‖|∂tv|‖2
L2(M∗) =

∫
M∗ |ρ∇(ρ − p∗ ◦Ψ∗)|2 + ∫M∗ |v|2 + 2

∫
M∗ ρv · ∇(ρ − p∗ ◦Ψ∗) =

∫
M∗ |ρ∇(ρ − p∗ ◦Ψ∗)|2; that is, ‖|∂tv|‖L2(M∗) = ‖|ρ∇(ρ − p∗ ◦Ψ∗)|‖L2(M∗). By multiply-

ing (4.29) by ∂tv on both sides and applying the Cauchy-Schwarz inequality, we can

also get that ‖|∂tv|‖2
L2(M∗) = −

∫
M∗ ρ∂tv · ∇(ρ − p∗ ◦Ψ∗) ≤ ∫M∗ |∂tv||ρ∇(ρ − p∗ ◦Ψ∗)| ≤

‖|∂tv|‖L2(M∗)||ρ∇(ρ− p∗◦Ψ∗)|‖L2(M∗) = ‖|∂tv|‖2
L2(M∗). Thus, the Cauchy-Schwarz inequality is

in fact an equality, which implies that ∂tv =−ρ∇(ρ− p∗ ◦Ψ∗) almost everywhere in M∗, which,

from (4.29) implies in turn that v= 0 a.e. in M∗. It thus follows that ∂tv= 0 and ∇(ρ− p∗◦Ψ∗)=

0 a.e in M∗, and therefore ρ− p∗ ◦Ψ∗ is constant a.e. in M∗. Using the Poincare-Wirtinger in-

equality, Lemma 4, we obtain that ‖(ρ− p∗ ◦Ψ∗)−(ρ− p∗ ◦Ψ∗)M∗‖ ≤C‖∇(ρ− p∗ ◦Ψ∗)‖= 0,

where (ρ − p∗ ◦Ψ∗)M∗ =
1
|M∗|

∫
M∗(ρ − p∗ ◦Ψ∗). Since

∫
M∗ ρ =

∫
N p∗ =

∫
M∗ p∗ ◦Ψ∗ = 1, we

have that (ρ− p∗ ◦Ψ∗)M∗ = 0, and therefore ‖ρ− p∗ ◦Ψ∗‖L2(M∗) = 0.

Robustness of the distributed control law

The self-organization algorithm in 2D has been divided into three stages, where asymp-

totic convergence is achieved in each stage (with exponential convergence in the second stage).

We now present a robustness result for convergence in Stage 3 under incomplete convergence in
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the preceding stages.

Lemma 41 (Robustness of the control law). For every δ > 0, there exist T1,T2 < ∞ such

that when Stages 1 and 2 are terminated at t1 > T1 and t2 > T2 respectively, we have that

limt→∞ ‖ρ(t, ·)−ρ∗‖L2(M(t1)) < δ .

Proof. In Stage 1, it follows from Theorem 11 on the convergence to the desired spatial domain

that limt→∞ M(t) = M∗. Then for every ε1 > 0, we have T1 < ∞, such that dH(M(t),M∗)< ε1 for

all t > T1, where dH is the Hausdorff distance between two sets. (Note that any appropriate notion

of distance can alternatively be used here.) Let Stage 1 be terminated at t1 > T1, which implies

that the swarm is distributed across the domain M(t1). In Stage 2, it follows from Lemma 40

on the convergence of the heat flow equation to the harmonic map, that for a domain M(t1), we

have that limt→∞ R(t, ·) = ΨM(t1) pointwise, where ΨM(t1) is the harmonic map from M(t1) to N

(the unit disk). Then, for every ε2 > 0, we have a T2 < ∞, such that ‖R(t, ·)−ΨM(t1)‖∞ < ε2

for all t > T2. Let Stage 2 be terminated at t2 > T2, which implies that the map from the

spatial domain to the disk is R(t2, ·). In Stage 3, it follows from the arguments in the proof of

Theorem 12 (on the convergence to the desired density function) that limt→∞ ρ(t, ·) = p∗◦R(t2, ·)

a.e. in M(t1) if the map at the end of Stage 2 is R(t2, ·). We characterize the error as limt→∞ ‖ρ−

ρ∗‖L2(M(t1)) = ‖p∗ ◦R(t2, ·)− p∗ ◦Ψ∗‖L2(M(t1)) = ‖p∗ ◦R(t2, ·)− p∗ ◦ΨM(t1)+ p∗ ◦ΨM(t1)− p∗ ◦

Ψ∗‖L2(M(t1)) ≤ ‖p∗ ◦R(t2, ·)− p∗ ◦ΨM(t1)‖L2(M(t1))+ ‖p∗ ◦ΨM(t1)− p∗ ◦Ψ∗‖L2(M(t1)). Recall

that ‖R(t2, ·)−ΨM(t1)‖∞ < ε2, and since p∗ is Lipschitz, we can get the bound ‖p∗ ◦R(t2)−

p∗ ◦ΨM(t1)‖L2(M(t1)) < δ1 = cε2 (where c is the Lipschitz constant times the area of M(t1)).

The harmonic map also depends continuously on its domain [68], which yields the bound

‖ΨM(t1)−Ψ∗‖∞ < ε3, since dH(M(t1),M∗)< ε1. Thus, we get another bound ‖p∗◦ΨM(t1)− p∗◦

Ψ∗‖L2(M(t1)) < δ2 = cε3, and that ‖ρ−ρ∗‖L2(M(t1)) < δ1 +δ2 = δ . Therefore, going backwards,

for all δ > 0, we can find T1 and T2 such that the density error is bounded by δ , when the Stages 1

and 2 are terminated at t1 > T1 and t2 > T2 respectively.
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4.4.4 Discrete implementation

In this section, we present consistent schemes for discrete implementation of the dis-

tributed control laws (4.26) and (4.29), where the key aspect is the computation of spatial

gradients (of ρ in Stage 1, and of ρ , Ψ∗ and the components of velocity v in Stage 3). The

network graph underlying the swarm is a random geometric graph, where the nodes are dis-

tributed according to the density function over the spatial domain. According to this, every agent

communicates with other agents within a disk of given radius (say r) determined by the hardware

capabilities, which reduces to the graph having an edge between two nodes if and only if the

nodes are separated by a distance less than r. We recall the earlier stated assumption that the

agents know the true x- and y-directions.

On the computation of p∗

We first begin with an approach to compute offline the map p∗ via interpolation. Let

the desired domain M∗ ∈ R2 be discretized into a uniform grid to obtain M∗d = {r1, . . . ,rm}

(the centers of finite elements, where rk = (xk,yk)). The desired density ρ∗ : M∗ → R>0 is

known, and we compute the value of ρ∗ on M∗d to get ρ∗(r1, . . . ,rm) = (ρ∗1 , . . . ,ρ
∗
m). We also

have Ψ∗(x,y) = (X∗,Y ∗) ∈ N, for all (x,y) ∈M∗. Now, computing the integral with respect to

the Dirac measure for the set M∗d , we obtain Ψ∗(r1, . . . ,rm) = (Ψ∗1, . . . ,Ψ
∗
m). The value of the

function p∗ at any (X ,Y )∈N can be obtained from the relation p∗(Ψ∗1, . . . ,Ψ
∗
m) = ρ∗(r1, . . . ,rm)

for k = 1, . . . ,m by an appropriate interpolation.

(ρ∗1 , . . . ,ρ
∗
m) = p∗(Ψ∗1, . . . ,Ψ

∗
m)

(r1, . . . ,rm) (Ψ∗1, . . . ,Ψ
∗
m)

ρ∗

Ψ∗
p∗

Commutative diagram
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Discrete control law

As stated earlier, for the discrete implementation of the distributed control laws (4.26)

and (4.29), the key aspect is the computation of spatial gradients (of ρ in Stage 1, and of ρ ,

Ψ∗ and the components of velocity v in Stage 3). In the subsequent sections we present two

alternative, consistent schemes for computing the spatial gradient (of any smooth function, with

the above being the ones of interest), one using the Jacobian of the harmonic map and the other

without it.

Computing the Jacobian of the harmonic map

Let J(r) = ∇Ψ(r) be the (non-singular) Jacobian of the harmonic diffeomorphism Ψ :

M → N. When the steady-state is reached in the pseudo-localization algorithm (4.24) (i.e.,

Xi(t +1) = Xi(t) = ψ i
1 and Yi(t +1) = Yi(t) = ψ i

2), we have, ∀ i ∈S :

∑
j∈Ni

1
d j
(ψ

j
1−ψ

i
1) = 0, ∑

j∈Ni

1
d j
(ψ

j
2−ψ

i
2) = 0,

where i is the index of the agent located at r ∈M and Ni is the set of agents in a disk-shaped

neighborhood Bε(r) of area ε centered at r. Rewriting the above, we get, ∀ i ∈S :

ψ
i
1 =

∑ j∈Ni
1
d j

ψ
j

1

∑ j∈Ni
1
d j

, ψ
i
2 =

∑ j∈Ni
1
d j

ψ
j

2

∑ j∈Ni
1
d j

. (4.30)

We assume that the agents have the capability in their hardware to perturb the disk of communi-

cation Bε(r) (by moving an antenna, for instance). The Jacobian J = ∇Ψ , where Ψ = (ψ1,ψ2)

is computed through perturbations to Ni (i.e., the neighborhood Bε(r)) and using consistent

discrete approximations:

∂xψ1 ≈
ψ1(r+δxe1)−ψ1(r)

δx
, ∂yψ1 ≈

ψ1(r+δye2)−ψ1(r)
δy

,

123



and similarly for ψ2. Now, ψ1(r+ δxe1) is computed as in (4.30) for N δx
i , the set of agents

in Bε(r+δxe1) and ψ1(r+δye2) from Bε(r+δye2).

Computing the spatial gradient of a smooth function using the Jacobian of Ψ

Let ∇ = (∂x,∂y) and ∇̄ =
(
∂ψ1,∂ψ2

)
, where Ψ = (ψ1,ψ2). We have ∂x = (∂xψ1)∂ψ1 +

(∂xψ2)∂ψ2 and ∂y = (∂yψ1)∂ψ1 + (∂yψ2)∂ψ2 . Therefore, ∇ = J>∇̄. For a smooth function

f : M→ R, we have, ∇ f = J>∇̄ f , and the agents can numerically compute ∇̄ by:

(
∂ f

∂ψ1

)

i
≈ 1
|Ni| ∑

j∈Ni

f j− fi

ψ
j

1−ψ i
1

,

(
∂ f

∂ψ2

)

i
≈ 1
|Ni| ∑

j∈Ni

f j− fi

ψ
j

2−ψ i
2

,

where i is the index of the agent located at r ∈M and Ni is the set of agents in a ball Bε(r).

Computing the spatial gradient of a smooth function without the Jacobian of Ψ

In the absence of a Jacobian estimate, we use the following alternative method for

computing an approximate spatial gradient estimate of a smooth function. This is used in Stage 1

of the self-organization process.

Let f̄ (r) be the mean value of f over a ball Bε(r):

f̄ (r) =
1
ε

∫

Bε (r)
f dµ ≈ 1

|Ni| ∑
j∈Ni

f j.

We have:

1
ε

∂ f̄
∂x
≈ 1

ε

f̄ (r+δxe1)− f̄ (x)
δx

=
1
ε

∫
Bε (r+δxe1)

f dµ− ∫Bε (r) f dµ

δx

=
1
ε

∫

Bε (r)

( f (r+δxe1)− f (r))
δx

dµ ≈ 1
ε

∫

Bε (r)

∂ f
∂x

dµ =

(
∂ f
∂x

)
.

Similarly,

1
ε

∂ f̄
∂y
≈ 1

ε

f̄ (r+δye2)− f̄ (x)
δy

≈
(

∂ f
∂y

)
.
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In all, for any scalar function f , each agent can use the approximation:

(∇ f )i ≈
((

∂ f
∂x

)
,

(
∂ f
∂y

))
=

1
ε

(
∂ f̄
∂x

,
∂ f̄
∂y

)
, (4.31)

to estimate of the gradient ∇ f .

On the convergence of the discrete system

We have noted earlier that the pseudo-localization algorithm (4.24) satisfies the consis-

tency condition in that as N → ∞, Equation (4.24) converges to the PDE (4.21). The pseudo-

localization algorithm is also essentially a weighted Laplacian-based distributed algorithm that

is stable. Thus, by the Lax Equivalence theorem [112], the solution of (4.24) converges to the

solution of (4.21) as N → ∞. However, for the distributed control laws in Stages 1-3, we are

only able to provide consistent discretization schemes. The dynamics of the swarm (4.25) with

the control laws (4.26) and (4.27) are nonlinear for which is no equivalent convergence theorem.

Further analysis to determine convergence is required, which falls out the scope of this present

work.

4.5 Numerical simulations

In this section, we present numerical simulations of swarm self-organization, that is, of

the control laws presented in Sections 4.3.2 and of Section 4.4.3.

4.5.1 Self-organization in one dimension

In the simulation of the 1D case, we consider a swarm of N = 10000 agents, the desired

density function is given by ρ∗(x) = asin(x)+b, where a = 1− π

2N and b = 1
N , x ∈

[
0, π

2

]
. We
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Algorithm 4. Self-organization algorithm for 2D environments
1: Input: M∗, ρ∗ and k1, k2, K (number of iterations for each stage), ∆t (time step)
2: Requires:
3: Offline computation of p∗ similar to the outline in Section 4.3.3
4: Boundary agents are aware of being at boundary or interior of domain, can
5: communicate with others along the boundary, can approximate the normal
6: to the boundary, and can measure density of boundary agents,
7: Agents have knowledge of a common orientation of a reference frame
8: Initialize: ri (Agent positions), vi = 0 (Agent velocities)
9: Boundary agents localize as outlined in Section 4.4.1

10: Stage 1:
11: for k := 1 to k1 do
12: if agent i is at the interior of domain then
13: compute vi(k) =− (∇ρ)i

ρi
(k) from (4.26)

14: move ri(k+1) = ri(k)+vi(k)∆t
15: else if agent i is at the boundary of domain then
16: compute vi(k+1) = vi(k)−(ri(k)−r∗i (k)+vi(k))∆t from (4.26), and move ri(k+1) = ri(k)+vi(k)∆t
17: End Stage 1
18: Stage 2:
19: Boundary agents map themselves onto unit circle according to (4.17)
20: for k := 1 to k2 do
21: for agent i in the interior do
22: compute Xi(k+1), Yi(k+1) according to (4.24)
23: Stage 3:
24: for k := 1 to K do
25: for agent i in the interior do
26: compute vi(k+ 1) = vi(k)+ (−ρi(k)(∇(ρ − p∗ ◦Ψ∗))i(k)+ (vi(k) ·∇)vi(k)− vi(k))∆t from (4.27) ,

with (∇(ρ− p∗ ◦Ψ∗))i(k) as in (4.31)
27: update ri(k+1) = ri(k)+vi(k)∆t
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use a kernel-based method to approximate the continuous density function, which is given by:

ρ(t,r) = ∑
i∈S

K
(‖r− ri(t)‖

d

)
, K(x) =





cd
dn , for 0≤ x < 1,

0, for x≥ 1,

is a flat kernel and cd ∈R>0 is a constant [31]. We discretize the spatial domain with ∆x = 0.001

units, and use an adaptive time step. The self-organization begins from an arbitrary initial density

distribution. Figure 4.2 shows the initial density distribution, an intermediate distribution and the

final distribution. We observe that there is convergence to the desired density function, even with

noisy density measurements.

Figure 4.2. Density ρ(x) plotted against position x at different instants of time.

4.5.2 Self-organization in two dimensions

In the simulation of the 2D case, we first present in Figure 4.3 the evolution of the

boundary of the swarm in Stage 1, where the swarm converges to the target spatial domain M∗

from an initial spatial domain. The target spatial domain, a circle of radius 0.5 units, given

by M∗ = {(x,y) ∈ R2 |(x− 0.6)2 + y2 ≤ 0.25}, with the desired density function ρ∗ given by

ρ∗(x,y) = 1
((x−0.4)2+y2)

0.3 .

We present in Figures 4.4 and 4.5 the result of implementation of the pseudo-localization

algorithm with the steady state distributions of Ψ∗ = (ψ∗1 ,ψ
∗
2 ) respectively. We note that the
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Figure 4.3. Evolution of the swarm boundary in Stage 1.

steady state distribution Ψ∗ as a function of the spatial coordinates (x,y) in this case is linear.

Figure 4.4. Steady-state distribution of ψ∗1 .

Figure 4.5. Steady-state distribution of ψ∗2 .

Next, we focus on Stage 3 of the self-organization process, where the agents already

distributed over the target spatial domain, converge to the desired density function. The initial den-

sity function of the swarm is uniform, and the distributed control law of Stage 3 in Section 4.4.3
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is implemented. Figure 4.6 shows the density function at a few intermediate time instants of

implementation and figure 4.7 shows the spatial density error plot, where e(ρ) =
∫

M∗ |ρ−ρ∗|2

is the spatial density error. The results show convergence as desired.

Figure 4.6. Evolution of density function in Stage 3.

Figure 4.7. Spatial density error e(ρ) =
∫

M∗ |ρ−ρ∗|2 vs time,

4.6 Summary

In this chapter, we considered the problem of self-organization in multi-agent swarms

in one and two dimensions. The primary contribution of the work is the analysis and design
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of position and index-free distributed control laws for swarm self-organization, aided by a

distributed pseudo-localization algorithm for the assignment of agent identifiers.

The material in this chapter, in full, is a reprint of the material as it appears in the publi-

cation Distributed Control for Spatial Self-Organization of Multi-Agent Swarms, V. Krishnan

and S. Martı́nez, SIAM Journal on Control and Optimization, 56(5), pp. 3642–3667, 2018.

A preliminary version of the work appeared in the proceedings of the International Sympo-

sium on Mathematical Theory of Networks and Systems, Minneapolis, USA, July 2016 as

Self-Organization in Multi-Agent Swarms via Distributed Computation of Diffeomorphisms, V.

Krishnan and S. Martı́nez. The dissertation author was the primary investigator and author of

these papers.
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Chapter 5

State estimation for tracking and naviga-
tion

In this chapter, we begin with the well-studied notion of strong local observability of

nonlinear, discrete-time systems and investigate its relationship to the optimization-based state

estimation problem. To handle uncertain initial conditions and the possible non-uniqueness

of solutions to the estimation problem, we adopt a generalized problem formulation over the

space of probability measures over the state space. More precisely, we define the MHE as a

proximal gradient descent in the space of probability measures, with a non-convex, time-varying

cost function. This distributional setting serves as a unifying framework for moving-horizon

estimation and allows us to develop different classes of moving-horizon estimators by simply

varying the metric used to define the proximal operator, and to obtain implementable filters by

Monte Carlo methods. We then consider the Wasserstein metric and the KL-divergence, which

yield the more familiar MHE and a particle filter, respectively. Following this, we present an

analysis of the convergence and robustness properties of these estimators in the distributional

setting, under assumptions of strong local observability. Further, we modify the distributional

optimization problem via an entropic regularization to derive conditions that guarantee a desired

level of differential privacy for these filters.
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5.1 Bibliographical comments

The origins of MHE can be traced back to the limited memory optimal filters introduced

in [76]. In principle, its optimization-based formulation enables it to handle nonlinearities and

state constraints much more effectively than other known methods. This, coupled with the

adoption of increasingly powerful, inexpensive computing platforms has brought new impetus

to the adoption of moving-horizon estimation in various data-driven applications. Theoretical

investigations on MHE have broadly been directed at their asymptotic stability [3, 102, 121] and

robustness [73, 77, 94] properties. These properties have primarily been built upon underlying

assumptions of input/output-to-state (IOSS) stability, which is adopted as the notion of detectabil-

ity, wherein the norm of the state is bounded given the sequences of inputs and outputs. However,

alternative foundations for the stability results in other classical notions of observability, such

as strong observability [95], have remained unexplored. The connection between nonlinear

observability theory and estimation problems runs deep, see [83] and more recently [115], and it

is worthwhile to explore this connection in the context of optimization-based estimation methods

such as moving-horizon estimation.

Another important consideration in the MHE problem is the cost of computation. The

problem formulation more commonly involves solving an optimization problem at every time

instant, with the state estimate and disturbances as decision variables in the optimization, where

the dimension of the problem scales with the size of the horizon. This approach, in general, tends

to be computationally intensive, which poses a hurdle for implementation in real-time. This has

motivated the search for fast MHE that implement one or more iterations of the optimization at

every time instant. Recently, in [4], [5], the authors develop such a method for noiseless systems

and provide theoretical guarantees on convergence. However, these works assume the convexity

of the cost function, which is restrictive for general nonlinear systems, and not well connected to

notions of observability.

The problem of state estimation is fundamentally about dealing with uncertainty, mani-
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fested as uncertainty in the initial conditions and/or in the evolution of the system in the presence

of unknown disturbances. This is appropriately formulated in the space of probability measures

over the state space of the system. Advances in gradient flows in the space of probability

measures [8], [107], and the corresponding discrete-time movement-minimizing schemes [99]

present powerful theoretical tools that can be applied to recursive optimization-based estimation

methods such as moving-horizon estimation, and can serve as a unifying framework for their

design and analysis.

In many applications, the measurement data is acquired from particular individuals or

users, which introduces new ethical concerns about data collection and manipulation, highlighting

an increasing need for data privacy. Such is the case in home monitoring and traffic estimation

(with vehicle GPS data) applications, to name a few. Differential privacy [46] has emerged

over the past decade as a benchmark in data privacy. The typical setting assumes independence

between the records in static databases; however, basic existing mechanisms fail to provide

guarantees when correlations exist between the records in the database. This is the case when

data is employed by a state estimation process whose output is then released: there is a dynamic

system from which a time series of sensor measurements is obtained, and the measurement data

and the released estimates are correlated.

In [43, 44], the authors generalize the definition of differential privacy to include general

notions of distance between datasets and design differentially private mechanisms for Bayesian

inference. In [85,113], the authors investigate privacy-preserving mechanisms for the case where

correlations exist between database records. Privacy-preserving mechanisms for functions and

functional data were investigated in [65]. The work [97] studies the problem of differentially-

private state estimation, introducing the formal notion of differential privacy into the framework

of Kalman filter design for dynamic systems. The authors of [56] consider the problem of optimal

state estimation for linear discrete-time systems with measurements corrupted by Laplacian noise.

A finite-dimensional distributed convex optimization is considered in [96], where differential

privacy is achieved by perturbation of the objective function. We refer the reader to [34] for a
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broad overview of the systems and control-theoretic perspective on differential privacy.

5.2 Observability, Estimation and Differential Privacy

The notion of observability used in this paper is intricately related to solutions of inverse

problems, with an associated notion of well-posedness that is introduced below:

Definition 14 (Well posedness [78]). Let X and Y be normed spaces, and P : X → Y a

mapping. The equation P(x) = y is called well-posed if:

1. Existence: For every y ∈ Y , there is (at least one) x ∈X such that P(x) = y.

2. Uniqueness: For every y ∈ Y , there is at most x ∈X such that P(x) = y.

3. Stability: The solution x depends continuously on y, that is, for any sequence {xi} ⊂X

such that P(xi)→ P(x), it follows that xi→ x.

We now introduce the notion of lower semicontinuity of set-valued maps, which underlies

some of the results on optimization-based state estimation in this paper.

Definition 15 (Lower semicontinuity of set-valued maps). A point-to-set mapping H : Z ⊂R⇒

Rd is lower semicontinuous at a point α ∈Z if for any x ∈ H(α) and sequences {αi} ⊆Z ,

{xi} ⊆ Rd with {αi}→ α , {xi}→ x such that xi ∈ H(αi) for all i, it holds that x ∈ H(α). If H

is lower semicontinuous at every α ∈Z , then H is said to be lower semicontinuous on Z .

In this paper, we consider systems of the form:

Ω :





xk+1 = f (xk,wk),

yk = h(xk)+ vk,

(5.1)

where f : X×W→ X and h : X→ Y, wk ∈W is the process noise, vk ∈ V is the measurement

noise at time instant k, and X⊂ RdX , Y⊂ RdY , W⊂ RdW , and V⊂ RdV .
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Assumption 13 (Lipschitz continuity). The functions f and h are Lipschitz continuous,

with ‖ f (x1,w1)− f (x2,w2)‖≤ c(1)f ‖x1−x2‖+c(2)f ‖w1−w2‖ and ‖h(x1)−h(x2)‖≤ ch‖x1−x2‖.

Assumption 14 (Noise characteristics). The noise sequences {wk}k∈N and {vk}k∈N are i.i.d

samples from distributions ω and ν (with supports in W and V). The sets W and V are bounded,

with |wk| ≤W and |vk| ≤V . Moreover, we assume that Eω [wk] = 0 and Eν [vk] = 0.

We also introduce the following autonomous system corresponding to (5.1):

Σ :





xk+1 = f (xk,0) = f0(xk),

yk = h(xk).

(5.2)

With a slight abuse of notation, for any x ∈ X, we let ΣT (x) =
(
h(x),h◦ f0(x), . . . ,h◦ f T

0 (x)
)
, the sequence of outputs over a horizon of length T + 1

for the system (5.2) from the state x ∈ X. Similarly, for the system (5.1), we let:

Ω(x,wi: j) = (h(x),h◦ f (x,wi), . . . ,h◦ f (. . . f ( f (x,wi),wi+1), . . . ,w j),

for some sequence of process noise samples {wk}, where wi: j = (wi, . . . ,w j).

The theoretical results in the moving-horizon estimation literature have largely been

derived in the setting of input/output-to-state (IOSS) stability, as in [73, 77, 102] to name

a few, which is a notion of norm-observability, see [71], wherein the norm of the state is

bounded using the sequences of inputs and outputs. However, there are other classical notions of

observability based on the notion of distinguishability, which generalize the approach taken to

linear systems. For a detailed treatment, we refer the reader to [95] and [2]. In this paper, we

explore the connection between the classical notion of strong local observability and moving-

horizon estimation.

We now introduce the notion of strong local observability used in this paper:
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Definition 16 (Strong local observability). The system Σ defined in (5.2) is called strongly locally

observable if there exists a T0 ∈ N such that for any given yT = ΣT (x) ∈ YT+1 and T ≥ T0, we

have that ΣT
−1(yT ) is a set of isolated points, and, in addition, ΣT1

−1(y1) = ΣT2
−1(y2), for

all y1 = ΣT1(x) and y2 = ΣT2(x), and T1,T2 ≥ T0. We call T0 the minimum horizon length of Σ.

The above definition is equivalent to the definitions contained in [2, 95], which has been

restated it in a manner suitable for the optimization-based estimation framework considered here.

For systems with process noise, of the form Ω in (5.1), we introduce the notion of almost

sure strong local observability.

Definition 17 (Almost sure strong local observability). The system Ω defined in (5.1) is called

almost surely strongly locally observable if there exists a T w ∈ N such that, given a process

noise sequence w0:T−1 ∈WT , for T ≥ T w, any y0:T = Ωw0:T−1(x) ∈ YT+1, and T ≥ T w, we

have that Ω−1
w0:T−1

(y0:T ) is a set of isolated points almost surely. More precisely, the set of noise

sequences w0:T−1 for which Ω−1
w0:T−1

(y0:T ) is not a set of isolated points, is of measure zero.

Moreover, we call T w the minimum horizon length of Ω.

We now present a fundamental result that characterizes strong local observability via a

rank condition.

Lemma 42 (Observability rank condition [95]). The system Σ is locally strongly observable with

minimum horizon length T0 if and only if Rank(∇ΣT (x)) = dim(X) for all T ≥ T0 and x ∈ X.

The system Ω is almost surely locally strongly observable with minimum horizon length T w if

and only if Rank(∇Ωw0:T−1(x)) = dim(X) almost surely for all T ≥ T w and x ∈ X.

We now present an example to illustrate these concepts.

Example 1. Consider a system with the state space X=(0,∞), with xk+1 = f0(xk) and yk = h(xk),
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such that:

f0(x) =





3x, for x ∈ (0,aπ− ε],

γ(x) for x ∈ (aπ− ε,aπ + ε],

2x+aπ, for x ∈ (aπ + ε,∞),

for some a∈N, ε small and a smooth function γ such that γ(aπ−ε)= 3(aπ−ε) and γ(aπ+ε)=

2(aπ + ε)+aπ . Moreover, let the output h(x) = sinx. We note that ∇h(x) = cosx which implies

that ∇h((2m+ 1)π/2) = 0 for all m ∈ N. Applying Lemma 42 for this system, we can infer

that for a = 2, we get that the minimum horizon length T0 = 3. This is because the system

becomes strongly locally observable at x = π/2 only over a horizon of length T0 = 3, that

is ∇Σk(π/2) = 0k+1 for k ∈ {0,1,2}. This is a case of a one-dimensional system which is

strongly locally observable with a minimum horizon of length T0 = 3. With larger values of a,

the minimum horizon length is further increased.

We make the following assumption in the rest of the paper:

Assumption 15 (Strong local observability). 1. The system Σ in (5.2) is strongly locally ob-

servable with minimum horizon length T0.

2. The system Ω in (5.1) is almost surely strongly locally observable with minimum horizon

length T w.

The KL-divergence from µ1 to µ2 is given by:

DKL(µ1||µ2) =
∫

X
log
(

dµ1(x)
dµ2(x)

)
dµ1(x)

=
∫

X
ρ1(x) log

(
ρ1(x)
ρ2(x)

)
dvol(x).
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The max-divergence between µ1 and µ2 is defined as:

Dmax(µ1,µ2) = sup
x∈X

∣∣∣∣log
(

ρ1(x)
ρ2(x)

)∣∣∣∣ .

We refer the reader to [62] for a detailed overview of the relations between the various metrics

and divergences in probability spaces.

We define an estimator E : Y →P(X ) as a function that accepts as input data y from

the metric space Y and releases as output E [y], a probability measure over the space X .

Definition 18 (Differential privacy). Given δ , an estimator E is ε-differentially private if for any

two δ -adjacent measurements y1,y2 ∈ Y (that is dY (y1,y2)≤ δ ), and any measurable A⊆X ,

we have E [y1](A)≤ eεE [y2](A).

Note that the condition dY (ym
1 ,y

m
2 )≤ δ is a generalization of the notion of adjacency to

arbitrary metric spaces that we adopt in this paper. We now have the following lemma on the

connection between the notions of differential privacy and max-divergence introduced above:

Lemma 43 (Differential privacy and max-divergence). An estimator E is ε-differentially private

iif Dmax(E [y1],E [y2])≤ ε for any y1,y2 ∈ Y with dY (y1,y2)≤ δ .

Proof. Clearly, if for any y1,y2 ∈Y with dY (y1,y2)≤ δ , we have Dmax(E [y1],E [y2])≤ ε , then:

ε ≥ Dmax(E [y1],E [y2]) = sup
x∈X

∣∣∣∣log
(

ρ1(x)
ρ2(x)

)∣∣∣∣

≥
∣∣∣∣log

(
ρ1(x)
ρ2(x)

)∣∣∣∣ .

This implies that for any x ∈ X , we have ρ1(x) ≤ eερ2(x), from which differential pri-

vacy follows. Now, for any A ⊆X , we have E [ym
1 ](A) =

∫
A ρ1(x)dvol ≤ ∫A eερ2(x)dvol =

eε
∫
A ρ2(x)dvol = eεE [ym

2 ](A), which implies that E is ε-differentially private. It is easy to

verify the forward implication holds.
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Thus, ε-differential privacy essentially imposes an upper bound on the sensitivity of the

estimate generated by E (in the sense of the max-divergence Dmax), to the measurement.

5.3 Optimization-based state estimation

We now begin by addressing the state estimation problem for the autonomous system Σ,

and develop a recursive moving-horizon estimator for it.

5.3.1 Full-Information Estimation (FIE)

Let {yk}k∈{0}∪N be a sequence of measurements generated by the system Σ.

Let {0, . . . ,T} be a time horizon such that T ≥ T0, the minimum horizon length of the sys-

tem Σ, and denote y0:T = (y0, . . . ,yT ). The problem of estimation essentially aims at characteriz-

ing ΣT
−1(y0:T ), which is an inverse problem, and optimal estimation formulates this problem as

an optimization. Assumptions 13, and 15, on Lipschitz continuity and strong local observability,

respectively, ensure that the inverse problem is locally well-posed as in Definition 14.

To formulate the inverse problem as an optimization, consider a convex func-

tion JT (y0:T , ·) : YT+1 → R≥0 such that JT (y0:T ,ξ ) = 0 if and only if ξ = y0:T . Moreover,

let limT→∞ JT (y0:T ,ΣT (x)) = ∞ if x /∈ ΣT
−1(y0:T ) for T ≥ T0. Now, the problem of interest

becomes:

x0 ∈ argmin
x∈X

JT (y0:T ,ΣT (x)). (5.3)

In the above, y0:T is the data in the estimation problem, which is given. Since the objective is to

solve the original inverse problem, and we would like to use gradient descent-based methods,

we would like for every local minimizer of JT (y0:T ,ΣT (x)) to belong to the set ΣT
−1(y0:T ), or,

in other words, that every local minimizer is also global. We therefore make the following

additional assumption on the system Σ and the choice of JT . For a conciseness of notation, in

the following assumption and lemma, we let JT (·) = JT (y0:T , ·), suppressing the data y0:T in the
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notation where useful, and is understood from context.

Assumption 16 (Lower semicontinuity of sublevel sets). We assume that, for all T ≥

T0, the convex function JT : YT+1 → R is such that the set-valued map SX(α) =

ΣT
−1
(
S JT

YT+1(α)∩ΣT (X)
)

is lower semicontinuous, where S JT
YT+1(α) = {ξ ∈ YT+1|JT (ξ )≤

α}.

The above assumption ensures that the function JT (y0:T ,ΣT (·)) satisfies the condition

for the local minimizers to be global (Theorem 1 from [122]). The following lemma provides a

sufficient condition for it to hold.

Lemma 44 (Second-order sufficient condition for lower semicontinuity). Assumption 16 holds

if for any x ∈ X such that ∇(JT (y0:T ,ΣT (x))) = 0 we have JT (y0:T ,ΣT (x)) = 0, or the following

condition holds when JT (y0:T ,ΣT (x)) 6= 0 for any v ∈ RdX , v 6= 0:

〈
∇2ΣT [v,v](x),∇JT

∣∣∣∣
ΣT (x)

〉

‖∇ΣT [v]‖2 ≤−λmax

(
HessJT

∣∣∣∣
ΣT (x)

)
,

where HessJT is the Hessian of JT .

The final inequality in Lemma 44 merely states that those critical points at which the cost

function does not reach the global minimum value are local maximizers.

We are now ready to present the following theorem that establishes the equivalence

between the inverse problem of characterizing the set ΣT
−1(y0:T ) and the optimization (5.3).

Theorem 13 (Inverse as minimizer). Under Assumptions 15 and 16, for any T ≥ T0, it holds

that z ∈ ΣT
−1(y0:T ) if and only if z is a minimizer of JT (y0:T ,ΣT (·)).

Proof. If z ∈ ΣT
−1(y0,T ), we have that h ◦ f k

0 (z) = yk for all k ∈ {0, . . . ,T}. It now follows

that JT (y0:T ,ΣT (z)) = 0. Since, JT (y0:T ,ΣT (z)) ≥ 0 by definition, we infer that z is a global

minimizer of JT (y0:T ,ΣT (·)).
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Suppose that z is a local minimizer of JT (y0:T ,ΣT (·)). By Assumption 16 and Theo-

rem 1 in [122], we get that the local minima of JT (y0:T ,ΣT (·)) are also global, which implies

that JT (y0:T ,ΣT (z)) = 0, and therefore ΣT (z) = y0:T .

Theorem 13 suggests that the state estimates for the system Σ can be obtained by mini-

mizing JT (y0:T ,ΣT (·)) over a horizon of length T ≥ T0. This is also called the full information

estimation (FIE) problem in the optimal state estimation literature [73, 102], as it works with the

entire sequence of output measurements over the horizon {0, . . . ,T}.

Now, from Assumption 15 and Theorem 13, we have that ΣT
−1(y0:T ) is a set of isolated

points which are minimizers of JT (y0:T ,ΣT (·)). It then follows that ΣT
−1(y0:T ) is the set of

stable fixed points of the negative gradient vector field of JT (y0:T ,ΣT (·)). We let C0 be the basin

of attraction of this set. Moreover, we note that f k(ΣT
−1(y0:T )) is the set of stable fixed points

of the negative gradient vector field of JT
(
yk:k+T , f k ◦ΣT (·)

)
, and we let Ck be the basin of

attraction of ΣT
−1(yk:k+T ). We have used above the fact that ΣT

−1(yk:k+T ) = f k
0 (ΣT

−1(y0:T )),

which follows from the definition of strong local observability.

We now lift the FIE problem (5.3) to the space of probability measures over X, as a

minimization in expectation of the estimation objective function:

µ0 ∈ arg min
µ∈P(X)

Eµ [JT (y0:T ,ΣT (·))] . (5.4)

The above formulation allows us to capture information about the (probably many) optimal

estimates through a probability measure µ0, and help encode distributional constraints, which

will be considered in a forthcoming publication.

In the following, we develop recursive moving-horizon estimators that generate se-

quences {µk}k∈N of probability measures in P(X) as estimates. We then obtain practically

implementable estimators using Monte Carlo methods to sample from the measures µk.
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5.3.2 Moving-Horizon Estimation (MHE)

In the previous section, we presented a formulation of the full information estimation

(FIE) problem for the autonomous system Σ, which uses the entire measurement sequence

over a horizon of length T ≥ T0. However, the minimum horizon length T0 may be large,

which would make the estimation computationally intensive. Moreover, we would like to

progressively assimilate the incoming measurements online. We therefore adopt a moving-

horizon estimation method which, at any time instant k+N, uses the output measurements from

the horizon {k+1, . . . ,k+N} (of length N < T0), and the state estimate at the time instant k−1,

to obtain the state estimate at instant k, recursively.

We let GN
k (z) = JN−1 (yk+1:k+N ,ΣN(z)) be the objective function over the horizon {k+

1, . . . ,k+N}, at the time instant k+N, where yk+1:k+N = (yk+1, . . . ,yk+N).

Assumption 17 (Moving-horizon cost). We make the following assumptions on the cost func-

tion GN
k :

1. the cost GN
k is l-smooth,

2. it holds that |GN
k+1( f0(z))−GN

k (z)| ≤ L‖∇GN
k (z)‖2,

3. the previous constants are such that lL≤ 1
2 ,

4. for any two δ -adjacent measurements y, ỹ ∈ YT+1, such that ‖y− ỹ‖ ≤ δ and with

corresponding costs GN
k and G̃N

k , for k ∈ {0, . . . ,T} and N ≤ T − k, we have ‖∇(GN
k −

G̃N
k )(x)‖ ≤ lδ for all x ∈ X.

We now formulate the general moving-horizon estimation method as follows:

µk ∈ arg min
µ∈P(X)

D(µ, f0#µk−1)+ηEµ

[
GN

k
]
,

given µ0 ∈P(X),
(5.5)
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where D : P(X)×P(X)→ R≥0 is a placeholder for a metric, divergence or transport cost

on P(X). We obtain implementable observers from the above formulation by sampling from the

measures, by Monte Carlo methods. As discussed in the ensuing sections, using the 2-Wasserstein

distance W2 yields the more familiar MHE formulation, whereas with the KL-divergence we

obtain a moving-horizon particle filter. Hence, this formulation is proposed as a distributional

unifying framework for moving-horizon estimation, where different estimators are generated by

different choices of D.

We now introduce the following asymptotic stability notion for estimators that will be

used in investigating the properties of the estimators we design.

Definition 19 (Asymptotic stability of state estimator). We call an estimator of the form (5.5) an

asymptotically stable observer for the system Σ if the sequence of estimates {µk}k∈N is such that

limk→∞ µk(ΣT
−1(yk:k+T )) = 1 for T ≥ T0.

5.4 A W2-Moving-Horizon Estimator

In this section, we derive a moving-horizon estimator, which we refer to as the W2-MHE,

to generate a sequence of probability distributions {µk}k∈N. This is based on the one-step

minimization scheme of [107] in P(X) w.r.t. the Wasserstein metric W2, which we extend to the

moving-horizon setting. For every k > 0, consider:

µk ∈ arg min
µ∈P(X)

1
2

W 2
2 (µ, f0#µk−1)+ηEµ

[
GN

k
]
,

given µ0 ∈P(X).
(5.6)

We let Kk be the support of µk, with K0 ⊆ C0, where C0 is as defined earlier in Section 5.3.1.

5.4.1 Sample update scheme for W2-MHE

We now derive a sample update scheme for W2-MHE, which also yields an implementable

filter for the W2-MHE formulation.
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We note that any local minimizer µk of (5.6) is a critical point of the objective functional,

and, therefore, it satisfies:

c =
δ

δ µ

[(
1
2

W 2
2 (µ, f0#µk−1)+ηEµ

[
GN

k
])]∣∣∣∣

µ=µk

= φk +ηGN
k ,

where φk is the Kantorovich potential [107] associated with the transport from µk to f0#µk−1,

and c is a constant (from the constraint
∫
X dµ(x) = 1, for µ ∈P(X), due to which the first

variation is defined up to an additive constant). From the above equation, we now obtain:

∇φk(x)+η∇GN
k (x) = 0.

The gradient of the Kantorovich potential φk defines the deterministic optimal transport map Tk

(note that this notation is not to be confused with that of the time horizon T ) w.r.t. the W2-

distance from µk to f0#µk−1, which determines ∇φk(x) = x−T−1
k (x) (where µk = Tk# f0#µk−1).

We therefore get:

x = T−1
k (x)−η∇GN

k (x). (5.7)

The above equation allows us to design an implementable filter for the W2-MHE (5.6). We

let zk ∼ µk, that is, zk ∈Kk is sampled from the distribution µk. From (5.7), it holds that zk =

T−1
k (zk)−η∇GN

k (zk). Since (T−1
k )#µk = f0#µk−1, we let T−1

k (zk) = f0(zk−1), a sample of the

distribution f0#µk−1, and we obtain the following recursive estimator:

zk = f0(zk−1)−η∇GN
k (zk), k > 0. (5.8)

We now note that the estimate zk in (5.8) corresponds to a critical point of the following
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minimizing movement scheme:

zk ∈ argmin
z

1
2
‖z− f0(zk−1)‖2 +ηGN

k (z), k > 0,

z0 ∼ µ0 ∈P(X).
(5.9)

Lemma 45 (Strong convexity). For η < l−1, the objective function in (5.9) is strongly convex,

and therefore prox
ηGN

k
( f0(x)) is a singleton for any x ∈ X.

Proof. Let Θ(z) = 1
2 ‖z− f0(z̃)‖2 + ηGN

k (z). We have ∇Θ(z1) − ∇Θ(z2) = z1 − z2 +

η
(
∇GN

k (z1)−∇GN
k (z2)

)
. It now follows that 〈∇Θ(z1)−∇Θ(z2),z1− z2〉 = ‖z1 − z2‖2 +

η
〈
∇GN

k (z1)−∇GN
k (z2),z1− z2

〉
. From Assumption 17-(1), on the moving-horizon cost, we

now get 〈∇Θ(z1)−∇Θ(z2),z1− z2〉 ≥ (1−η l)‖z1− z2‖2, and since η l < 1, we infer that Θ is

strongly convex, and therefore has a unique minimizer. Thus, prox
ηGN

k
( f0(z̃)) = argminz Θ(z) is

a singleton.

We note that the minimization (5.9) defines a proximal mapping w.r.t. the Euclidean

metric, which we represent in a compact form using the proximal operator as:

zk = prox
ηGN

k
( f0(zk−1)), k > 0,

z0 ∼ µ0 ∈P(X),
(5.10)

where supp(µ0) = K0 ⊆ C0.

5.4.2 Asymptotic stability of W2-MHE

We present the asymptotic stability result for W2-MHE in this section, before which we

introduce the following assumption on positive invariance of the discrete-time dynamics defined

by the map prox
ηGN

k
◦ f .

Assumption 18 (Positive invariance). We assume that there exists α > (1−
√

1−2lL)l−1 such

that for all η ∈ (0,α), we have prox
ηGN

k
( f (Ck−1))⊆ Ck.
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The above assumption ensures that under the discrete-time dynamics defined by the

map prox
ηGN

k
◦ f , any sequence starting in the basin of attraction C0 of ΣT

−1(y0:T ) remains

within the basins of attraction Ck of ΣT
−1(yk:k+T ) at the subsequent instants of time k ∈ N.

We are now ready to present the asymptotic stability result for W2-MHE:

Theorem 14 (Asymptotic stability of W2-MHE). The estimator (5.6), under Assumptions 15

to 18, with a constant step size η ∈
(

1−
√

1−2lL
l

,min
{

α,
1
l

})
, is an asymptotically stable

observer for the system Σ.

Proof. By Assumption 17-(1), on the moving-horizon cost, and Lemma 13, we have:

|GN
k ( f0(zk−1))−GN

k (zk)−〈∇GN
k (zk), f0(zk−1)− zk〉|

≤ l
2
‖ f0(zk−1)− zk‖2.

Substituting from (5.8) into the above, we get:

|GN
k ( f0(zk−1))−GN

k (zk)−η‖∇GN
k (zk)‖2|

≤ η
2 l

2
‖∇GN

k (zk)‖2.

It now follows that:

GN
k (zk)≤ GN

k ( f0(zk−1))−η

(
1− l

2
η

)
‖∇GN

k (zk)‖2.

From Assumption 17-(2), on the moving-horizon cost, we have:

GN
k (zk)≤ GN

k−1(zk−1)+L‖∇GN
k−1(zk−1)‖2

−η

(
1− l

2
η

)
‖∇GN

k (zk)‖2.
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Summing the above inequality from k = 1 to K, we get:

η

(
1− l

2
η

) K

∑
k=1
‖∇GN

k (zk)‖2−L
K

∑
k=1
‖∇GN

k−1(zk−1)‖2

≤ GN
0 (z0)−GN

K(zK).

From here, we obtain:

[
η

(
1− l

2
η

)
−L
] K

∑
k=1
‖∇GN

k (zk)‖2

≤ GN
0 (z0)−GN

K(zK)+L‖∇GN
0 (z0)‖2

≤ GN
0 (z0)+L‖∇GN

0 (z0)‖2.

Since η ∈
(

1−
√

1−2lL
l

,
1
l

)
, we have that η

(
1− l

2η
)
− L > 0 and therefore, taking lim-

its in the previous inequality, we deduce that the series is summable. The latter implies

that limk→∞ ∇GN
k (zk) = 0, and from (5.8), we have that limk→∞ ‖zk− f (zk−1)‖= 0.

It now follows, by definition, from the above that:

lim
k→∞

∇GT+1
k (zk) = lim

k→∞
∇(JT (yk:k+T ,ΣT (zk))) = 0,

over a horizon of length T + 1 (with T ≥ T0). We now have that the initial condition z0 ∈

K0 ⊆ C0 and Assumption 18 ensure that zk ∈ Ck, the basin of attraction of f k (ΣT
−1(y0:T )

)

and from the fact that limk→∞ ∇(JT (yk:k+T ,ΣT (zk))) = 0, we infer that {zk} converges to the

local minima of JT (yk:k+T ,ΣT (·)). By Theorem 13, it now follows that {zk} converges to the

set Σ
−1

T (yk:k+T ). Therefore limk→∞ d(zk,ΣT
−1(yk:k+T )) = 0.

Moreover, since limk→∞ d(zk,ΣT
−1(yk:k+T )) = 0 for all z0 ∈ K0, it follows

that limk→∞ Kk = ΣT
−1(yk:k+T ). We know that supp(µk) = Kk, and therefore we get

that limk→∞ µk
(
ΣT
−1(yk:k+T )

)
= 1.
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5.4.3 Robustness of W2-MHE

We now characterize the performance of the estimator (5.6) on the system Ω in (5.1).

Since the true process and measurement noise sequences remain unknown, we are interested in

the robustness properties of the estimator (5.11), in the form of an upper bound by the norms of

the disturbance sequences on the estimation error.

We begin by constructing a reference estimator that recursively generates the estimate

sequence, given the true disturbance sequences {wk}k∈N and {vk}k∈N, as follows:

µ̄k ∈ arg min
µ∈P(X)

1
2

W 2
2 (µ, f0#µ̄k−1)+ηEµ

[
ḠN

k
]
,

given µ̄0 ∈P(X).
(5.11)

where, we employ for conciseness w ≡ wk:k+N−1 = (wk, . . . ,wk+N−1) and v ≡ vk+1:k+N =

(vk+1, . . . ,vk+N), so that ḠN
k (z)≡ ḠN

k (z,w,v) = JN−1
(
yk+1:k+N ,Ωwk:k+N−1(z)+vk+1:k+N

)
. Note

that GN
k = ḠN

k

∣∣
w=0,v=0. We let ¯Kk be the support of µ̄k, with ¯K0 ⊆ C̄0, where the definition

of C̄k is similar to that of Ck but taking the noise {wk} and {vk} into account.

Assumption 19 (l-Smoothness w.r.t. disturbances). We assume that ‖∇GN
k (z)−∇ḠN

k (z)‖ ≤

lw‖(wk:k+N−1,vk+1:k+N)‖ for all z ∈ X.

Following the proof of Theorem 14, under the same set of underlying assumptions, we

infer that the reference estimator (5.11) is almost surely an asymptotically stable observer for the

system Ω, given a particular realization of the disturbances {wk}k∈N and {vk}k∈N.

We now present the following theorem on the robustness of the estimator (5.6), charac-

terized by a bound on the error in the estimates generated by (5.6) with respect to the estimates

generated by the reference estimator (5.11):

Theorem 15 (Robustness of W2-MHE). Under Assumptions 13, 15, 17, and 19, given the estimate

sequences {µk}k∈N generated by (5.6) and {µ̄k}k∈N generated by the reference estimator (5.11),
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with µ0 = µ̄0, we have W2(µk, µ̄k) ≤
c(2)f

c(1)f

WCk +
η lw
√

N
c(1)f

(W +V )Ck, for all k ∈ N, where Ck =

∑
k
`=1(

c(1)f
1−η l )

`.

Proof. The estimator (5.11) yields the following reference recursive scheme:

z̄k = f (z̄k−1,wk−1)−η∇ḠN
k (z̄k), (5.12)

where the above is derived similarly to the noiseless case. Let {zk}k∈N and {z̄k}k∈N be the

estimate sequences generated by (5.8) and (5.12) respectively, with z0 = z̄0, for which we have:

‖zk− z̄k‖

= ‖ f0(zk−1)− f (z̄k−1,wk−1)−η∇GN
k (zk)+η∇ḠN

k (z̄k)‖

= ‖ f0(zk−1)− f0(z̄k−1)+ f0(z̄k−1)− f (z̄k−1,wk−1)

−η∇GN
k (zk)+η∇GN

k (z̄k)−η∇GN
k (z̄k)+η∇ḠN

k (z̄k)‖

≤ c(1)f ‖zk−1− z̄k−1‖+ c(2)f ‖wk−1‖+η l‖zk− z̄k‖

+ lwη‖(wk:k+N−1,vk+1:k+N)‖,

where the final inequality follows from Assumptions 13, 17, and 19, on the several Lipschitz

properties of f the gradient of GN
k , and ḠN

k , respectively. Further, since η l < 1, we obtain from
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the above that:

‖zk− z̄k‖

≤
(

1
1−η l

)(
c(1)f ‖zk−1− z̄k−1‖+ c(2)f ‖wk−1‖

+η lw‖(wk:k+N−1,vk+1:k+N)‖)

≤


 c(1)f

1−η l




k

‖z0− z̄0‖+
c(2)f

c(1)f

k

∑
`=1


 c(1)f

1−η l




`

‖wk−`‖

+
η lw

c(1)f

k

∑
`=1


 c(1)f

1−η l




`

‖(wk−`+1:k−`+N ,vk−`+2:k−`+N+1)‖

≤
c(2)f

c(1)f

WCk +
η lw
√

N

c(1)f

(W +V )Ck.

We note that if
c(1)f

1−η l < 1, we have that limk→∞Ck =
c(1)f

1−η l−c(1)f

is finite, and therefore, ‖zk− z̄k‖ is

bounded as k→ ∞. We note here that even when z0 6= z̄0, the effect of this initial discrepancy

vanishes as k→ ∞.

Now, let Tk : Kk→ ¯Kk be a map such that for sequences {zk} and {z̄k} generated by (5.8)

and (5.12) respectively, with z0 = z̄0, we have Tk(zk) = z̄k. It then follows that Tk#µk = µ̄k. Now,

from the above, and by definition of the 2-Wasserstein distance, we have:

W2(µk, µ̄k)≤
(∫

z∈Kk

‖z−Tk(z)‖2dµk(z)
) 1

2

≤



∫

z∈Kk

∣∣∣∣∣∣
c(2)f

c(1)f

WCk +
η lw
√

N

c(1)f

(W +V )Ck

∣∣∣∣∣∣

2

dµk(z)




1
2

≤
c(2)f

c(1)f

WCk +
η lw
√

N

c(1)f

(W +V )Ck.
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5.5 A KL-Moving-Horizon Estimator

In this section, we derive a moving-horizon estimator, which we refer to as KL-MHE, to

generate a sequence of probability distributions {µk}k∈N. Using the KL-divergence DKL as the

choice of divergence in the moving-horizon formulation (5.5), we obtain:

µk ∈ arg min
µ∈P(X)

DKL(µ‖ f0#µk−1)+ηEµ

[
GN

k
]
,

given µ0 ∈P(X).
(5.13)

We note that any local minimizer µk of (5.13) is a critical point of the objective functional,

and, therefore, it satisfies:

c =
δ

δ µ

[
DKL(µ‖ f0#µk−1)+ηEµ

[
GN

k
]]∣∣∣∣

µ=µk

,

where c is a constant (from the constraint
∫
X dµ(x) = 1, for µ ∈P(X), due to which the first

variation is defined up to an additive constant). From the above, we get:

c = log
(

ρk

f0#ρk−1

)
(x)+ηGN

k (x),

where for any ` ∈ {0,1, . . .}, ρ` is the density function corresponding to the measure µ`. There-

fore, the corresponding recursive update scheme for the density function is given by:

ρk(x) = ck ( f0#ρk−1(x))exp
(
−ηGN

k (x)
)
, (5.14)

where ck is the normalization constant. We note that the above is a particle filter formulation,

with the horizon cost GN
k defining the weighting function. Implementable filters are obtained by

a Sequential Monte Carlo method, see [45]. We now present the asymptotic stability result for

KL-MHE:
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Theorem 16 (Asymptotic stability of KL-MHE). The estimator (5.13), under Assumptions 13

to 16, is an asymptotically stable observer for the system Σ.

Proof. We know that for any map T and measure µ , we have that dT#µ(x) = dµ
(
T −1(x)

)
. It

then follows from (5.14) that:

ρk(x) = ckρk−1( f−1
0 (x))exp

(
−ηGN

k (x)
)
.

We now rewrite the above as:

ρk( f0(x)) = ckρk−1(x)exp
(
−ηGN

k ( f0(x))
)
.

Repeating the above process k times, we obtain:

ρk( f k
0 (x)) =Ckρ0(x)exp

(
−η

k

∑
`=1

GN
` ( f `0(x))

)
,

where Ck = ckck−1 . . .c1 is the normalization constant. If x /∈ ΣT
−1(y0:T ), we have

limk→∞ ρk( f k
0 (x)) = 0, since ∑

k
`=1 GN

` ( f `0(x))→ ∞ as k→ ∞ for all x /∈ ΣT
−1(y0:T ) (by defi-

nition of the cost function, the sum diverges over an infinitely long horizon). Thus, we get:

lim
k→∞

µk

(
f k
0
(
ΣT
−1(y0:T )

))
= lim

k→∞
µk
(
ΣT
−1(yk:k+T )

)
= 1.

5.6 Differential privacy

In this section, we discuss the mechanism for encoding the desired level of differential

privacy in moving-horizon estimators. We then apply this mechanism to the two estimators

presented in the previous sections, the W2-MHE and KL-MHE. We conclude the section with a
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discussion on differential privacy of the estimators over a time horizon.

Given the framework (5.5), we encode differential privacy by an entropic regularization

of the estimation objective function, as follows:

µk ∈ arg min
µ∈P(X)

[
skD(µ, f0#µk−1)+ skηEµ

[
GN

k
]

−(1− sk)SKk(µ)
]
,

given µ0 ∈P(X),

(5.15)

where sk ∈ [0,1] is a tunable time-dependent parameter and Kk is the support of f0#µk−1 (with K0

being the support of µ0). Moreover, SA(µ) =
∫

A ρ log(ρ)dvol, where A⊂ X and dµ = ρ dvol.

We note that when sk = 1, the above formulation reduces to (5.5) and when sk = 0, it is equivalent

to an entropy maximization problem, yielding a uniform distribution over the set f0(Kk−1) as the

solution. Clearly, the uniform distribution is insensitive to the measurements, and therefore offers

maximum privacy, while being of no value to the estimation objective. The ensuing analysis in

this section is directed at determining upper bounds on the parameter sequence {sk}k∈N such that

the MHE offers ε-differential privacy. We rewrite the optimization problem (5.15) for sk ∈ (0,1]

as follows:

µk ∈ arg min
µ∈P(X)

[
D(µ, f0#µk−1)+ηEµ

[
GN

k
]

−
(

1− sk

sk

)
SKk(µ)

]
,

given µ0 ∈P(X),

(5.16)

Let y, ỹ ∈ YT+N+1 be two δ -adjacent measurement sequences as in Definition 18, over a hori-

zon {0, . . . ,T +N}, such that ‖y− ỹ‖ ≤ δ and let {µk}k∈N and {µ̃k}k∈N be the sequences

of estimates derived from (5.16). In the following, we determine conditions on {sk}k∈N that

guarantee differential privacy for each of the estimators derived in previous sections.
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5.6.1 Differentially private W2-MHE

We now design a differentially private W2-moving-horizon estimator. We begin by

considering:

µk ∈ arg min
µ∈P(X)

[
1
2

W 2
2 (µ, f0#µk−1)+ηEµ

[
GN

k
]

−
(

1− sk

sk

)
SKk(µ)

]
,

given µ0 ∈P(X),

(5.17)

for sk ∈ (0,1].

The following theorem provides a sufficient upper bound on sT such that the entropy-

regularized W2-MHE in (5.17) is εT -differentially private at a time instant T .

Theorem 17 (Sensitivity of W2-MHE). Given two δ -adjacent measurement sequences y, ỹ ∈

YT+N+1, under Assumption 17, we have that the estimates generated by (5.17) sat-

isfy Dmax (µT , µ̃T )≤ εT if sT ≤ εT

(
εT + cT

f diam(K0)
(

η lδ + cT
f diam(K0)q(δ )

))−1
, where q :

R≥0→ R≥0 is a class-K function that satisfies q(0) = 0.

Proof. Let GN
k and G̃N

k be the estimation objective functions at time instant k, corresponding to

the measurement sequences y and ỹ respectively, and let µk and µ̃k be the respective estimated

probability measures, with ρk, ρ̃k the corresponding density functions. From (5.17), we get

that for all k ∈ {0, . . . ,T}, µk, being the local minimizer is also a critical point of the objective

functional. We therefore obtain:

φk(x)+GN
k (x)+

(
1− sk

sk

)
log(ρk(x)) = c,

where φk is the Kantorovich potential associated with the transport from µk to f0#µk−1 and c is a
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constant. It now follows that:

∇φk(x)+∇GN
k (x)+

(
1− sk

sk

)
∇ log(ρk)(x) = 0.

Similarly, we have:

∇φ̃k(x)+∇G̃N
k (x)+

(
1− sk

sk

)
∇ log(ρ̃k)(x) = 0.

Taking the difference between the above two equations:

∇

[
log
(

ρk

ρ̃k

)]
(x) =−

(
sk

1− sk

)[
∇(φk− φ̃k)(x)

+∇(GN
k − G̃N

k )(x)
]
.

We have that ∇φk(x) = x−T−1
k (x), where µk = Tk# ( f0#µk−1). This implies that ∇(φk− φ̃k)(x) =

−(T−1
k (x)− T̃−1

k (x)). However, T−1
k (x), T̃−1

k (x) ∈ f0(Kk−1) = f k
0 (K0), and therefore ‖∇(φk−

φ̃k)(x)‖ ≤ ck
f diam(K0)q(δ ), for all x ∈ f k

0 (K0) and some class-K function q. We let q charac-

terize the dependence of φ on the measurement sequence, and we get that ‖∇(φk− φ̃k)(x)‖= 0

for all x ∈ X, when δ = 0. Moreover, by Assumption 17, we get ‖∇(GN
k − G̃N

k )(x)‖ ≤ lδ .

Therefore, we obtain:

∥∥∥∥∇

[
log
(

ρk

ρ̃k

)]∥∥∥∥≤
(

sk

1− sk

)(
ck

f diam(K0)q(δ )+ lδ
)
. (5.18)

We also have that for any x ∈ f k
0 (K0):

log
(

ρk

ρ̃k

)
(x) = log

(
ρk

ρ̃k

)
(x̄)

+
∫ 1

0
∇

[
log
(

ρk

ρ̃k

)]
(γ(t)) · γ̇(t)dt,

(5.19)

where γ(0) = x̄ and γ(1) = x. Since ρk and ρ̃k are continuous, with
∫

f k
0 (K0)

(ρk− ρ̃k) = 0 (since
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∫
f k
0 (K0)

ρk =
∫

f k
0 (K0)

ρ̃k = 1), there exists an x̄ ∈ f k
0 (K0) such that ρk(x̄) = ρ̃k(x̄), which implies

that log
(

ρk
ρ̃k

)
(x̄) = 0. From (5.18) and (5.19), for a straight line segment γ , we therefore obtain:

∣∣∣∣log
(

ρk

ρ̃k

)
(x)
∣∣∣∣≤
(

sk

1− sk

)(
ck

f diam(K0)q(δ )+ lδ
)
×

ck
f diam(K0),

where we have used the fact that
∫ 1

0 |γ̇(t)|dt = ‖x− x̄‖ ≤ diam( f k
0 (K0))≤ ck

f diam(K0). Thus,

for k = T , we let:

∣∣∣∣log
(

ρT

ρ̃T

)
(x)
∣∣∣∣≤
(

sT

1− sT

)(
cT

f diam(K0)q(δ )+ lδ
)
×

cT
f diam(K0)

≤ εT ,

from which we obtain that:

sT ≤
εT(

εT + cT
f diam(K0)

(
η lδ + cT

f diam(K0)q(δ )
)) ,

and since
∣∣∣log

(
ρT
ρ̃T

)
(x)
∣∣∣ ≤ εT for all x ∈ f T

0 (K0), we have that supx∈ f T
0 (K0)

∣∣∣log
(

ρT
ρ̃T

)∣∣∣ =

Dmax(µT , µ̃T )≤ εT .

As noted earlier, Theorem 17 provides a sufficient upper bound on sT for differential

privacy of the estimate at T . The goal, however, is to guarantee the desired level of differential

privacy over a time horizon {0, . . . ,T}. The key issue here is that the recursive update scheme

of the estimator introduces a dependence between the estimates at different time instants. This

essentially means that imposing an upper bound on sensitivity for the marginal distributions µk

individually, without regard to the dependence between these distributions, may not be sufficient.

Therefore, to guarantee the desired level of differential privacy over the time horizon, we must
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impose an upper bound on the sensitivity of the joint distribution σ ∈P(XT+1), where the

estimates µk are the marginals of σ over X.

The following theorem provides a sufficient upper bound on {sk}T
k=1 such that the

entropy-regularized W2-MHE in (5.17) is ε-differentially private over a time horizon {0, . . . ,T}.

Theorem 18 (Differentially private W2-MHE). Given two δ -adjacent measurement se-

quences y, ỹ ∈ YT+N+1, under Assumption 17, we have that the estimates generated by (5.17)

satisfy Dmax (σ , σ̃)≤ ε if ∑
T
k=1

(
sk

1−sk

)
ck

f ≤ ε

lδdiam(K0)
.

Proof. Let GN
k and G̃N

k be the estimation objective functions at time instant k, corresponding

to the measurement sequences y and ỹ respectively, and let σ and σ̃ be the respective joint

probability measures over the horizon {0, . . . ,T}. With a slight abuse of notation, we allow σ

and σ̃ to also denote the joint density function. We now have:

σ(x0,x1, . . . ,xT ) = ρ0(x0)σ(x1, . . . ,xT |x0)

= ρ0(x0)ρ1(x1|x0)ρ2(x2|x1) . . .ρT (xT |xT−1),

where ρk(xk|xk−1) is the marginal density at xk at time instant k, given that the distribution at

time instant k−1 is concentrated at xk−1. Moreover, we note that the W2-MHE (5.17) yields a

Markov process, which allows us to express ρk(xk|xk−1, . . . ,x0) = ρk(xk|xk−1). Now, ρk(xk|xk−1)

is the density corresponding to the measure obtained by the following:

µk ∈ arg min
µ∈P(X)

[
1
2

W 2
2 (µ,∂ f0(xk−1))+ηEµ

[
GN

k
]

−
(

1− sk

sk

)
SKk(µ)

]
,

where ∂ξ is the Dirac measure concentrated at ξ . From the above, we get that for all k ∈

{0, . . . ,T}, µk, being the local minimizer is also a critical point of the objective functional.
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Applying similar steps to those in the proof of Theorem 17, we obtain:

∣∣∣∣log
(

ρk

ρ̃k

)
(x|xk−1)

∣∣∣∣≤
(

sk

1− sk

)
lδck

f diam(K0).

Now, we have:

∣∣∣log
(

σ

σ̃

)
(x0, . . . ,xT )

∣∣∣≤
T

∑
k=1

∣∣∣∣log
(

ρ

ρ̃

)
(xk|xk−1)

∣∣∣∣

≤
T

∑
k=1

(
sk

1− sk

)
lδck

f diam(K0).

By taking

lδdiam(K0)
T

∑
k=1

(
sk

1− sk

)
ck

f ≤ ε,

we obtain the following inequality:

T

∑
k=1

(
sk

1− sk

)
ck

f ≤
ε

lδdiam(K0)
,

and that Dmax(σ , σ̃)≤ ε .

We note that for a given ε , the upper bound on the sequence {sk} decreases with δ . In

other words, guaranteeing ε-differential privacy w.r.t. measurement sequences that are farther

apart requires the addition of more noise and a greater loss in estimation accuracy. This is

because the weighting on the entropic regularization term in the estimation objective increases

when sk is reduced. The same is the case when ε is reduced for a given δ , which corresponds to

a more stringent privacy requirement.
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5.6.2 Differentially private KL-MHE

We now design a differentially private KL-moving-horizon estimator. We begin by

considering the entropy-regularized KL-MHE formulation, given by:

µk ∈ arg min
µ∈P(X)

[
DKL(µ‖ f0#µk−1)+ηEµ

[
GN

k
]

−
(

1− sk

sk

)
SKk(µ)

]
,

given µ0 ∈P(X),

(5.20)

for sk ∈ (0,1]. The corresponding recursive update scheme for (5.20) is given by:

ρk(x) = ck ( f0#ρk−1(x))
sk e−ηskGN

k (x), (5.21)

which will be derived in the proof of Theorem 19 below.

The following theorem provides a sufficient upper bound on sk such that the entropy-

regularized KL-MHE in (5.20) is εT -differentially private at a time instant T , while ignoring the

correlations between the estimates µk across time.

Theorem 19 (Sensitivity of KL-MHE). Given two δ -adjacent mea-

surement sequences y, ỹ ∈ YT+N+1, under Assumption 17, we have

that the estimates generated by (5.20) satisfy Dmax (µT , µ̃T ) ≤ εT

if ∑
T
k=1
(
∏

T
i=k si

)
≤ εT

(
2η maxk∈{0,...,T}

(
αk + lck

f δdiam(K0)
))−1

, where

αk = min
ξ∈ f k

0 (K0)

∣∣∣
(

GN
k − G̃N

k

)
(ξ )
∣∣∣.

Proof. Let GN
k and G̃N

k be the estimation objective functions at time instant k, corresponding to

the measurement sequences y and ỹ respectively, and let µk and µ̃k be the respective estimated

probability measures, with ρk, ρ̃k the corresponding density functions. From (5.20), we get

that for all k ∈ {0, . . . ,T}, µk, being the local minimizer is also a critical point of the objective
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functional. We therefore obtain:

δ

δ µ

[
DKL(µ‖ f0#µk−1)+ηEµ

[
GN

k
]
−
(

1− sk

sk

)
SKk(µ)

]∣∣∣∣
µk

= c̄k,

from which we derive that:

log
(

ρk

f0#ρk−1

)
(x)+ηGN

k (x)+
(

1− sk

sk

)
logρk(x) = c̄k.

The above equation can be rewritten as follows:

ρk(x) = ck ( f0#ρk−1(x))
sk e−ηskGN

k (x)

= ck
(
ρk−1( f−1

0 (x))
)sk e−ηskGN

k (x),

where ck is the normalization constant. We therefore obtain:

ρk( f0(x)) = ck (ρk−1(x))
sk e−ηskGN

k ( f0(x)).

Expanding the above, we get:

ρT ( f T
0 (x)) =CT (ρ0(x))∏

T
k=1 sk e−η ∑

T
k=1(∏

T
i=k si)GN

k ( f k
0 (x)),

where CT = c1c2 . . .cT . Similarly, we have:

ρ̃T ( f T
0 (x)) = C̃T (ρ̃0(x))

∏
T
k=1 sk e−η ∑

T
k=1(∏

T
i=k si)G̃N

k ( f k
0 (x)),

where C̃T = c̃1c̃2 . . . c̃T and ρ0 = ρ̃0, as we assume that the estimator starts with the same initial µ0.
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From the above two equations, we obtain:

log
(

ρT

ρ̃T

)
( f T

0 (x)) = log
(

CT

C̃T

)

−η

T

∑
k=1

(
T

∏
i=k

si

)(
GN

k − G̃N
k

)
( f k

0 (x)).

The max-divergence between µT and µ̃T can be upper bounded now by:

Dmax(µT , µ̃T ) = sup
x∈K0

∣∣∣∣log
(

ρT

ρ̃T

)
( f T

0 (x))
∣∣∣∣

≤
∣∣∣∣log

(
CT

C̃T

)∣∣∣∣+ sup
x∈K0

η

T

∑
k=1

(
T

∏
i=k

si

)
×

∣∣∣
(

GN
k − G̃N

k

)
( f k

0 (x))
∣∣∣

≤ 2 sup
x∈K0

η

T

∑
k=1

(
T

∏
i=k

si

)∣∣∣
(

GN
k − G̃N

k

)
( f k

0 (x))
∣∣∣ ,

where the final inequality is due to the following (note that we use the fact that ρ = ρ̃ , as

mentioned earlier):

∣∣∣∣log
(

CT

C̃T

)∣∣∣∣

=

∣∣∣∣∣∣
log



∫

x∈K0
(ρ0(x))∏

T
k=1 sk e−η ∑

T
k=1(∏

T
i=k si)GN

k ( f k
0 (x))

∫
x∈K0

(ρ̃0(x))
∏

T
k=1 sk e−η ∑

T
k=1(∏

T
i=k si)G̃N

k ( f k
0 (x))



∣∣∣∣∣∣

≤ sup
x∈K0

∣∣∣∣∣log

(
e−η ∑

T
k=1(∏

T
i=k si)GN

k ( f k
0 (x))

e−η ∑
T
k=1(∏

T
i=k si)G̃N

k ( f k
0 (x))

)∣∣∣∣∣

≤ sup
x∈K0

η

T

∑
k=1

(
T

∏
i=k

si

)∣∣∣
(

GN
k − G̃N

k

)
( f k

0 (x))
∣∣∣ .
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We now have, for all k ∈ {1, . . . ,T}:

(
GN

k − G̃N
k

)
( f k

0 (x)) =
(

GN
k − G̃N

k

)
(ξk)

+
∫ 1

0
∇

(
GN

k − G̃N
k

)
(γk(t)) · γ̇k(t)dt,

where γk(0) = ξk and γk(1) = f k
0 (x). From Assumption 17, we have

∥∥∥∇

(
GN

k − G̃N
k

)
(ξ )
∥∥∥≤ lδ .

Moreover, let ξk ∈ f k
0 (K0) such that

∣∣∣
(

GN
k − G̃N

k

)
(ξk)

∣∣∣= min f k
0 (K0)

∣∣∣
(

GN
k − G̃N

k

)∣∣∣= αk, and we

obtain:

∣∣∣
(

GN
k − G̃N

k

)
( f k

0 (x))
∣∣∣≤ αk + lδdiam( f k

0 (K0))

≤ αk + lck
f δdiam(K0).

This yields the following inequality:

2 sup
x∈K0

η

T

∑
k=1

(
T

∏
i=k

si

)∣∣∣
(

GN
k − G̃N

k

)
( f k

0 (x))
∣∣∣

≤ 2η

T

∑
k=1

(
T

∏
i=k

si

)(
αk + lck

f δdiam(K0)
)

≤ 2η max
k

(
αk + lck

f δdiam(K0)
) T

∑
k=1

(
T

∏
i=k

si

)
.

We now let:

2η max
k

(
αk + lck

f δdiam(K0)
) T

∑
k=1

(
T

∏
i=k

si

)
≤ εT ,

which yields the bound

T

∑
k=1

(
T

∏
i=k

si

)
≤ εT

2η maxk

(
αk + lck

f δdiam(K0)
) ,
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and we get Dmax(µT , µ̃T )≤ εT .

We note here that, in practice, with the choice of a sufficiently large domain K0, we

can ensure that αk = min
ξ∈ f k

0 (K0)

∣∣∣
(

GN
k − G̃N

k

)
(ξ )
∣∣∣ = 0 for all k ∈ {0, . . . ,T}. This is ow-

ing to the fact that for a large enough K0, we will have min
ξ∈ f k

0 (K0)

(
GN

k − G̃N
k

)
(ξ ) ≤ 0 ≤

max
ξ∈ f k

0 (K0)

(
GN

k − G̃N
k

)
(ξ ). Moreover, since the function GN

k − G̃N
k is continuous, there must

therefore exist a point ξ ∗ such that
(

GN
k − G̃N

k

)
(ξ ∗) = 0.

As with the W2-MHE, we now characterize the differential privacy of the KL-MHE over a

horizon {0, . . . ,T}. We recall that the KL-MHE yields a sequence of distributions {µk}T
k=0 over

the time horizon. Differential privacy over the horizon requires an upper bound on the sensitivity

of the joint distribution σ over the horizon, where µk is the marginal of σ at the time instant k.

As before, with a slight abuse of notation, letting σ also denote the joint density function, we

have:

σ(x0,x1, . . . ,xT ) = ρ0(x0)σ(x1, . . . ,xT |x0)

= ρ0(x0)ρ1(x1|x0)ρ2(x2|x1) . . .ρT (xT |xT−1).

From the above, we infer that to estimate the sensitivity of the joint density function, we must

estimate the sensitivity of the conditionals ρk(xk|xk−1). The conditional ρk(xk|xk−1) at any time

instant k, is obtained from the coupling between the marginal distributions µk and µk−1.

We now obtain an upper bound for the case where the marginals µk are independently

coupled. In other words, we suppose that:

σ(x0,x1, . . . ,xT ) = ρ0(x0)σ(x1, . . . ,xT |x0)

= ρ0(x0)ρ1(x1)ρ2(x2) . . .ρT (xT ).

(5.22)

Theorem 20 (Differentially private KL-MHE). Given two δ -adjacent measurement se-

quences y, ỹ ∈ YT+N+1, under Assumption 17 and the independent coupling (5.22), we
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have that the estimates generated by (5.20) satisfy Dmax (σ , σ̃) ≤ ε if ∑
T
k=1 ∑

k
l=1
(
∏

k
i=l si

)
≤

ε

(
2η maxk

(
αk + lck

f δdiam(K0)
))−1

, where αk = min
ξ∈ f k

0 (K0)

∣∣∣
(

GN
k − G̃N

k

)
(ξ )
∣∣∣.

Proof. Let GN
k and G̃N

k be the estimation objective functions at time instant k, corresponding

to the measurement sequences y and ỹ respectively, and let σ and σ̃ be the respective joint

probability measures over the horizon {0, . . . ,T}. With a slight abuse of notation, we allow σ

and σ̃ to also denote the joint density function. From (5.22), we get:

log
(

σ

σ̃

)
(x0, . . . ,xT ) =

T

∑
k=1

log
(

ρk

ρ̃k

)
(xk),

which implies that:

Dmax(σ , σ̃)≤
T

∑
k=1

Dmax(µk, µ̃k).

From the proof of Theorem 19 on the sensitivity of KL-MHE, we further get:

Dmax(σ , σ̃)≤
T

∑
k=1

Dmax(µk, µ̃k)

≤ 2η max
k

(
αk + lck

f δdiam(K0)
) T

∑
k=1

k

∑
l=1

(
k

∏
i=l

si

)
.

Therefore, it holds that Dmax(σ , σ̃)≤ ε if:

T

∑
k=1

k

∑
l=1

(
k

∏
i=l

si

)
≤ ε

2η maxk

(
αk + lck

f δdiam(K0)
) .
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5.7 Simulation results

In this section, we present results from numerical simulations of the estimators studied in

this paper. The simulations were performed in MATLAB (version R2017a) on a 2.5 GHz Intel

Core i5 processor.

We considered the following nonlinear discrete-time system:

x1(k+1) = x1(k)+ τx2(k),

x2(k+1) = x2(k)− τ
x1(k)

1+ |x1(k)|2 + |x2(k)|2
+wk,

y(k) = x1(k)+ vk,

with τ = 0.1, wk and vk are i.i.d disturbances, sampled uniformly from the intervals [−0.1,0.1]

and [−0.15,0.15] respectively.

We first present the simulation results for W2-MHE. We ran 30 trials of the estimator (5.9)

on the same measurement sequence, with randomly generated initial conditions and over a

time horizon of length T = 100. The length of the moving-horizon was chosen to be N = 10.

Figure 5.1 contains the plots of the mean of the estimates along with the true states. The root mean

squared error (RMSE) for the mean state estimate sequences were found to be z1
RMSE = 0.0856

and z2
RMSE = 0.0846 for the estimates of x1 and x2, respectively. The average time for computing

the state estimate through the minimization (5.9) using the f minunc function in MATLAB was

observed to be tcomp = 0.012±0.02s.

We then implemented the estimator (5.13) with 30 samples, over a time horizon of

length T = 100. The length of the moving-horizon was chosen to be N = 10. Figure 5.2

contains the plots of the mean of the estimates along with the true states. The root mean

squared error (RMSE) for the mean state estimate sequences were found to be z1
RMSE = 0.1073

and z2
RMSE = 0.1144 for the estimates of x1 and x2, respectively. The average run-time for the

minimization (5.13) by a resampling method was observed to be tcomp = (4.8±0.4)×10−4s.
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Figure 5.1. Mean state estimates from 30 trials of W2-MHE

In simulation, with 30 samples, we find that the W2-MHE performs better with respect

to the root mean squared error, while the KL-MHE is much faster. The performance of the

KL-MHE is determined by the richness of the sample set and effectiveness of the resampling

procedure, choices that depend on context and experience. In this manuscript, we did not

attempt to investigate improvements in performance with respect to these choices. The perfor-

mance of W2-MHE does not necessarily improve with the richness of the sample set, but for

systems for which ΣT
−1(y0:T ) is not a singleton, a richer sample set allows for a more complete

characterization of the set of feasible estimates.

Figure 5.3 illustrates the typical trade-off between accuracy and privacy in moving-

horizon estimation. We considered constant weights sk = s for the entropic regularization terms

in (5.17) and (5.20). The values of s were chosen such that they satisfied the bounds specified in

Theorems 18 and 20 for ε-differential privacy of the estimators over the horizon. In Figure 5.3,

we plot the RMSE (for the estimates of the state x1) for W2-MHE, averaged over the 30 samples,

specifying the accuracy, for different values of ε , the privacy parameter. We recall that a higher

value of ε indicates a less stringent privacy requirement. We notice that the the accuracy of the
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Figure 5.2. Mean state estimates from KL-MHE with 30 samples

Figure 5.3. RMSE in estimates of state x1 for W2-MHE, averaged over 30 samples for different
values of ε
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estimators improves with an increase in the privacy parameter.

5.8 Summary

In this chapter, we laid out a unifying distributional framework for moving-horizon

estimation. We clearly established the connection between the classical notion of strong local

observability and the stability of moving-horizon estimation, for nonlinear discrete-time systems.

We then proposed a differentially private mechanism based on entropic regularization and derived

conditions under which ε-differential privacy is guaranteed at any given time instant and over

time horizons.

The material in this chapter, in full, has been submitted for publication to the IEEE

Transactions on Automatic Control and is under review. It may appear as A Distributional

Framework for Moving Horizon Estimation: Stability and Privacy Considerations, V. Krishnan

and S. Martı́nez. A preliminary version of the work appeared in the proceedings of the American

Control Conference, Philadelphia, USA, July 2019 as On Observability and Stability of Moving-

Horizon Estimation in a Distributional Framework, V. Krishnan and S. Martı́nez. The dissertation

author was the primary investigator and author of these papers.
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Chapter 6

Robustness of multi-agent networks

In this chapter, we study a critical node set identification problem for large-scale spa-

tial networks with an associated weight-balanced Laplacian matrix. By considering a graph

embedding technique, we reduce the problem to spatial networks with uniformly distributed

nodes and nearest-neighbors communication topologies. Then we consider a special case of

a hole-placement problem, which consists of identifying the optimal location of the center of

a ball in the domain that minimizes the smallest positive eigenvalue of the Laplace operator

for the residual domain. With the help of the Min-max theorem, we formulate our objective

as an infinite-dimensional, non-convex and nested optimization problem. This limits our goal

at the outset to achieving convergence to a local optimum. Since the solution is hard to obtain

analytically, we develop an algorithmic approach to such problem. First, we consider the inner

optimization or eigenvalue problem, whose KKT points include the eigenvalues of the Laplace

operator. We then provide a closed-form expression for the projected gradient flow in a Banach

space for this problem that converges to the set of KKT points. Exploiting further the special

properties of these dynamics, we prove that the only locally asymptotically stable equilibrium

point for the dynamics is the second eigenfunction of the Laplace operator. Moreover, since the

other KKT points are saddle points that are non-degenerate, we infer almost global asymptotic

stability of the second eigenfunction. Building on these results, we then design a novel hole-

placement dynamics for the nested-optimization problem, and prove its local asymptotic stability
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to strict local minima. Finally, we provide a characterization of critical balls in the interior of

the domain, and study the limiting case when its radius approaches zero. We conclude that the

location of such critical nodes is at the nodal set of the second eigenfunction of the Laplace

operator, which has an intuitive geometric interpretation in some cases.

6.1 Bibliographical comments

We first review some works that present combinatorial approaches to the problem of

critical node identification. In [1, 10, 111, 116], the authors investigate the problem of identifying

nodes whose deletion minimizes some network connectivity metric. An alternative approach

to improving network robustness involves incorporating redundancy in the network by adding

nodes and links, also called network augmentation [54]. In [47], the authors study the problem

of network design as a function of the comparative costs of augmentation and defense against

attack/failure.

The approximation of large networks by weighted graphs over a continuum set of infinite

cardinality appears in previous literature. In this way, in [86] large networks are approximated by

the so-called graphons, which result from the limit of convergent sequences of large dense graphs.

Extending this idea to spatial networks, where the nodes are embedded in a domain Ω ∈ RN , the

nodes can be thought to be indexed by their positions x ∈Ω, and interactions restricted between

the nearest spatial neighbors. Combining these notions in the context of network consensus

dynamics, the object of interest is the continuum counterpart of the graph Laplacian, the Laplace

operator on the domain. Theoretical results concerning the convergence of the graph Laplacian

to the Laplace operator can be found in [17] and [18], which motivates the approach adopted in

this paper.

There have been severals attempts to investigate problems linking the shape of a domain

with the sequence of eigenvalues of the Laplace operator, for various boundary conditions,

although those related to the critical subset identification are fewer in number. The work [69]
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contains an overview of the literature on extremum problems for eigenvalues of elliptic (e.g.

Laplace) operators. In [79], the authors consider the problem of placing small holes in a domain to

optimize the smallest Neumann eigenvalue of the Laplace operator (but with Dirichlet boundary

condition on the hole).

6.2 Problem Formulation

We begin this section with the necessary background for setting up the critical node

identification problem addressed in this paper. We begin by explaining how we employ a graph

embedding along with a continuum approximation to go from the graph Laplacian to the Laplace

operator on the domain. Using the Min-max theorem, we are then able to characterize the second

eigenvalue of the Laplace operator corresponding to the algebraic connectivity of the graph. We

finally point out to a connection to agreement algorithms in networked systems.

Let G = (V,E) be a weight-balanced directed graph such that |V | = n, and wi j be the

edge weight corresponding to (i, j) ∈ E. A map x : V →Ω⊂ RN , is called a graph embedding

(N� n and Ω bounded), if xi = x(i) ∈ RN is the (spatial) position assigned to node i ∈V , and

the map x preserves some proximity measure on the graph G. There exists a vast literature on

graph embeddings [64,110], of which we adopt the notion of the structure-preserving embedding.

Starting with the unweighted, undirected graph corresponding to G (where the weighted directed

edges in G are replaced by unweighted undirected edges), a structure preserving embedding can

be constructed such that any node j which is a neighbor of i in the graph G is within a ball of radius

h centered at at xi in the embedding. Once the graph is embedded in Ω⊂RN , we view the nodes V

as having been sampled from an underlying distribution µ ∈P(Ω) (with density function ρ ,

such that dµ = ρdvol). It is always possible to obtain the weighted adjacency matrix W = [wi j]

of the digraph G as the discretization of a smooth weight function W : Ω×Ω→ R≥0, such

that wi j = W (xi,x j). The weight function W encodes the weights and directionality of the

edges, and since the number of nodes V is finite, such a smooth weight function always exists.
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Let ϕ : Ω→R be a real-valued function on Ω and φ d : V →R such that φ d
i = φ d(i) = ϕ(xi). We

define the W -weighted average variation in ϕ around a point x ∈Ω, averaged over a ball Bh(x)

of radius h > 0 and centered at x as follows:

1
µ(Bh(x))

∫

Bh(x)
W (x,y)(ϕ(y)−ϕ(x))dµ(y).

We see next that the weighted Laplace operator on Ω can be obtained as the limit of a W -weighted

average variation as h→ 0. We first let w(x) = W (x,x) and ∇w(x) = 1
2(∂1W +∂2W )(x,x), and

we obtain the following by means of a Taylor expansion:

lim
h→0

c
h2

1
µ(Bh(x))

∫

Bh(x)
W (x,y)(ϕ(y)−ϕ(x))dµ(y)

=
1
ρ

∇ · (wρ∇ϕ),

where c is a constant. The graph Laplacian matrix L(G) corresponding to G can now be viewed

as the discretization of the (negative) w-weighted Laplace operator − 1
ρ

∇ · (wρ∇). Alternatively,

the w-weighted Laplace operator can be viewed as an approximation of L(G), with closer

approximations obtained as n = |V | → ∞ and h→ 0.

In addition, approximating the Laplacian matrix L(G) by the Laplace operator on Ω

requires the specification of a boundary condition. This condition is obtained by observing

that 1n ∈ Null(L>(G)), that is,
〈
1,L(G)φ d〉 = 1>n L(G)φ d = 0 for any φ d . In the continuous

setting, this translates into the Neumann boundary condition ∇ϕ · n = 0 on ∂Ω. This can

be seen from an application of the Divergence theorem, that is,
〈

1, 1
ρ

∇ · (wρ∇ϕ)
〉
=
∫

Ω
1
ρ

∇ ·

(wρ∇ϕ)dµ =
∫

∂Ω
wρ∇ϕ ·n dS = 0 (if ∇ϕ ·n = 0). Thus, the Neumann boundary condition is

imposed as the natural boundary condition here.

Remark 8 (Problem reduction to uniformly spatially embedded graphs). Based on the previous

considerations, and without loss of generality, in the following we focus on networks that

are spatially embedded in an open bounded domain Ω according to a uniform distribution
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(the distribution µ is uniform above) and such that the underlying graph is undirected and

unweighted. Note that the following derivations are analogous for the case of a non-uniform µ

and weight-balanced directed graph: all results carry through by keeping the weights w and ρ

in the weighted Laplace operator.

The Laplace operator ∆ with the Neumann boundary condition, has an infinite sequence

of eigenvalues 0 = λ1 ≤ λ2 ≤ . . .≤ λm ≤ . . ., whose corresponding eigenfunctions {ψi}∞
i=1 form

an orthonormal basis for L2(Ω), [55]. Using the Min-max theorem [55] for the operator ∆, one

can determine:

λ2(Ω) = inf
ψ∈{ψ1}⊥

〈ψ,∆ψ〉L2(Ω)

〈ψ,ψ〉L2(Ω)

, (6.1)

where {ψ1}⊥ = {ψ ∈ H1(Ω) |ψ 6= 0,
∫

Ω
ψ1ψ dν = 0}, and ψ1 is constant, the eigenfunction

corresponding to λ1 = 0. This implies {ψ1}⊥ = {ψ ∈ H1(Ω) | ∫
Ω

ψ dν = 0}. Thus, using the

Divergence theorem, applying the Neumann boundary condition, and normalizing the functions,

we obtain an equivalent reformulation of (6.1) as:

λ2(Ω) = inf
ψ∈H1(Ω),∫
Ω

ψdν=0,∫
Ω
|ψ|2dν=1

∫

Ω

|∇ψ|2dν . (6.2)

Remark 9 (Connection to agreement algorithms). The second eigenvalue is also of relevance

to Laplacian-based agreement/consensus algorithms in networked systems, as it governs the

convergence rate of these algorithms.

We now define the notion of criticality adopted in this manuscript. We define critical

nodes as those nodes in the graph whose removal results in the maximum deterioration in

algebraic connectivity for the residual network, making them the most crucial nodes to be

protected.

More precisely, this amounts to identifying a set K∗ ⊂Ω of given measure |K∗|= c > 0
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such that λ2(Ω\K∗) is an infimum. The problem of identifying the critical nodes, K∗, can be

formulated as:

K∗ ∈ arg inf
K⊂Ω,
|K|=c

inf
ψ∈H1(Ω\K),∫

Ω\K ψdν=0,
∫

Ω\K |ψ|2dν=1

∫

Ω\K
|∇ψ|2dν .

We restrict the search to a class of subsets K = Br(x) = {y ∈Ω | |y− x|< r} ⊂Ω, open balls of

radius r (such that |Br(x)|= c). This reduces the search space to Ω̃r = {x ∈Ω |dist(x,∂Ω)> r},

and the problem is reformulated as:

x∗ ∈ arg inf
x∈Ω̃r

inf
ψ∈H1(Ω\Br(x)),∫

Ω\Br(x) ψdν=0,
∫

Ω\Br(x) |ψ|2dν=1

∫

Ω\Br(x)
|∇ψ|2dν . (6.3)

which we refer to as the hole-placement problem in the sequel.

Remark 10 (Generalization using multiple balls). We note that any compact subset K ⊂Ω can

be covered by a finite number m of open balls of a given radius r, and with arbitrary precision

(as r→ 0 and m→∞). Given a finite collection {Br(xi)}m
i=1 of open balls, we can then formulate

the above optimization w.r.t. (x1, . . . ,xm), the positions of the m open balls. For simplicity, we

just focus on the one-ball case.

6.3 Functional optimization to determine the most critical
nodes

Here, we present our main results and algorithms to determine the most critical nodes in

the network, in a functional optimization framework. To do this, we begin with the eigenvalue

problem (6.2) (which is the inner optimization problem in (6.3)) for D, a fixed domain, and design

a projected gradient flow to converge to a local minimizer of the problem. This algorithm will

help us build subsequently the dynamics that can be employed to solve the full hole placement
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problem (6.3) in an algorithmic manner. The analysis of the projected gradient flow will also be

instrumental in evaluating the properties of the second dynamics.

6.3.1 Projected gradient flow to determine λ2(Ω)

In what follows, we study the eigenvalue problem (6.2), characterize its critical points,

construct and analyze a novel projected gradient flow to converge to the infimum. We write the

optimization problem (for the smallest positive eigenvalue of the Laplace operator on a domain D

with a C1, Lipschitz boundary) as:

inf
ψ∈H1(D)

∫

D
|∇ψ|2,

s.t
∫

D
|ψ|2 = 1,

∫

D
ψ = 0,

∇ψ ·n = 0 on ∂D.

Let SD = {ψ ∈ H1(D) | ∫D |ψ|2 = 1,
∫

D ψ = 0,∇ψ ·n = 0 on ∂D} and J(ψ) =
∫

D |∇ψ|2. We

can now express the above problem as infψ∈SD J(ψ).

Lemma 46 (Minimizer of J(ψ)). The eigenfunctions of ∆(D) are the critical points of the func-

tional J(ψ), and the second eigenfunction ψ2 of ∆(D) is the only minimizer of the functional J(ψ)

in SD. Moreover, the critical points of J(ψ) are non-degenerate, i.e., the Hessian of J(ψ) is

non-singular at the critical points.

Remark 11. The content of this Lemma follows from the Min-max theorem [55], and we provide

below an alternative proof. We explicitly compute the analytical expression for the Hessian of the

objective function J(ψ) in the proof of Lemma 46, which allows us to infer the non-degeneracy

of the saddle points of J(ψ) which is useful in establishing almost-global convergence of the

projected gradient flow that follows.

Proof. The first variation of the Lagrangian L(ψ,λ ,χ) = J(ψ)+λ
(
1− ∫D |ψ|2

)
+ χ

∫
D ψ , at

a critical point ψ∗ is zero (where
∫

D |ψ|2 = 1 and
∫

D ψ = 0 are the constraints, as ψ ∈ SD
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and the Neumann boundary condition is assumed implicitly.) Thus, for any δψ ∈ Tψ∗SD

the tangent space of SD at ψ∗, we have
〈

δL
δψ

,δψ

〉
(ψ∗,λ ∗,χ∗) = 2

∫
D ∇ψ∗ · ∇(δψ) −

2λ ∗
∫

D ψ∗δψ + χ∗
∫

D δψ = −2
∫

D(∆ψ∗+ λ ∗ψ∗− 1
2 χ∗) δψ = 0, for any δψ (note that the

Neumann boundary condition was used in obtaining the equation.) Additionally, we also

have
〈

∂L
∂λ

,δλ

〉
(ψ∗,λ ∗,χ∗) = 1− ∫D |ψ∗|2 = 0, and

〈
∂L
∂ χ

,δ χ

〉
(ψ∗,λ ∗,χ∗) =

∫
D ψ∗ = 0. Thus,

the critical points of the objective functional ψ∗ ∈SD are characterized by:

∆ψ
∗+λ

∗
ψ
∗− 1

2
χ
∗ = 0.

Integrating the previous equation over D and using the Neumann boundary condition, we

obtain χ∗ = 0. Therefore, the critical points ψ∗ satisfy:

∆ψ
∗+λ

∗
ψ
∗ = 0. (6.4)

Let ψ(x,ε,η), x ∈ D, be a smooth two-parameter family of functions in SD with
∫

D ψ(x,ε,η) = 0 for all ε and η . The first variation of J at ε = 0, η = 0 is given by:

δJ
δε

∣∣∣∣ε=0,
η=0

(ψ) = 2
∫

D
∇ψ ·∂ε∇ψ = 2

∫

D
∇ψ ·∇(∂εψ).

We let ∂εψ|ε=0,η=0 = X and ∂ηψ|ε=0,η=0 = Y . The second variation of J at ε = 0, η = 0 is

given by:

δ 2J
δηδε

(X ,Y ) = 2
∫

D
∇(∂ηψ) ·∇(∂εψ)+2

∫

D
∇ψ ·∇(∂ηεψ)

= 2
∫

D
∇(∂ηψ) ·∇(∂εψ)−2

∫

D
∆ψ(∂ηεψ)

= 2
∫

D
∇X ·∇Y −2

∫

D
∆ψ(∂ηεψ).
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Evaluating the second variation at a critical point ψ(x,0,0) = ψ∗, and from (6.4), we obtain:

δ 2J
δηδε

(X ,Y ) = 2
∫

D
∇X ·∇Y +2λ

∗
∫

D
ψ
∗(∂ηεψ

∗). (6.5)

Since ψ(x,ε,η) is a smooth two-parameter family of functions in SD, we have
∫

D |ψ(x,ε,η)|2 =

1 for all ε,η , which implies that
∫

D ψ(∂εψ) = 0 and
∫

D ∂ηψ∂εψ +
∫

D ψ(∂ηεψ) =
∫

D XY +

∫
D ψ(∂ηεψ) = 0. Substituting in (6.5), we obtain:

δ 2J
δηδε

(X ,Y ) = 2
∫

D
∇X ·∇Y −2λ

∗
∫

D
XY.

In particular, for X 6= 0, this implies:

δ 2J
δηδε

(X ,X) = 2
∫

D
|∇X |2−2λ

∗
∫

D
|X |2

= 2
(∫

D
|X |2

)(∫
D |∇X |2∫
D |X |2

−λ
∗
)
.

(6.6)

We also have that
∫

D ψ(x,ε,η) = 0, which leads to
∫

D ∂εψ =
∫

D X = 0. From (6.2), we have

that inf∫
D X=0

∫
D |∇X |2∫
D |X |2

= λ2, which implies that if λ ∗ > λ2 in (6.6), by the definition of infimum,

there exists an X such that δ 2J
δηδε

∣∣∣∣
ε=0,η=0

(X ,X) < 0. Therefore, the only critical point for

which δ 2J
δηδε

∣∣∣∣
ε=0,η=0

(X ,X) ≥ 0 is the second eigenfunction ψ∗ = ψ2. Note that, for this case,

δ 2J
δηδε

∣∣∣∣
ε=0,η=0

(X ,X) = 0 if and only if X = kψ2. Since
∫

D ψ2 X = 0, it must be that k = 0, and

therefore X = 0. Thus, for all X 6= 0, δ 2J
δηδε

∣∣∣∣
ε=0,η=0

(X ,X)> 0 at ψ∗ = ψ2. Therefore, the second

eigenfunction ψ2 is the only minimizer of the functional J(ψ) in SD.

It further follows from the above argument that the Hessian δ 2J
δηδε

∣∣∣∣
ε=0,η=0

is non-degenerate (or

non-singular) at the critical points of J(ψ), that is, δ 2J
δηδε

∣∣∣∣
ε=0,η=0

(X ,X) = 0 at the critical points

of J(ψ) if and only if X = 0.
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We now provide a novel closed-form expression for a projected gradient flow to con-

verge to the minimum value of J(ψ) in SD. For smooth one-parameter families of functions

{ψ(t,x)}t∈R≥0 (with x ∈ D), the derivative of the objective functional J is given by:

d
dt

[J(ψ(t))] = 2
∫

D
∇ψ ·∇(∂tψ) =−2

∫

D
∂tψ(∆ψ).

We obtain a gradient flow by setting ∂tψ = ∆ψ . We project this flow onto the tangent space of

the set SD. For ψ ∈SD, we require that 〈ψ,∂tψ〉 = 0 and
∫

D ∂tψ = 0, which are satisfied if

(this will be shown in Proposition 3):

∂tψ = ∆ψ− 〈∆ψ,ψ〉
‖ψ‖2 ψ = ∆ψ−〈∆ψ,ψ〉ψ,

since ‖ψ‖ = 1 for ψ ∈SD. Further, using J(ψ) = −〈∆ψ,ψ〉, we get the projected gradient

flow:

∂tψ = ∆ψ + J(ψ)ψ. (6.7)

The equilibria ψ∗ of (6.7) satisfy ∆ψ∗+ J(ψ∗)ψ∗ = 0 and the Neumann boundary condition

∇ψ∗ = 0 on ∂D. Clearly, J(ψ∗) is an eigenvalue, and so let λ ∗ = J(ψ∗). It is also clear that the

equilibria of the projected gradient flow are also the critical points of the functional J over the

set SD.

Proposition 3 (Convergence of gradient flow). The set SD is invariant with respect to the

flow (6.7), and the solutions to (6.7) in SD converge in an L2 sense to the set of equilibria

of (6.7). Moreover, the only locally asymptotically stable equilibrium in SD for (6.7) is the

second eigenfunction ψ2.

Proof of Proposition 3. Recall that SD = {ψ ∈ H1(D) | ∫D |ψ|2 = 1,
∫

D ψ = 0}. Therefore, for

a smooth one-parameter family {ψ(t,x)}t∈R≥0 , (with x ∈ D) to be in SD, we need to prove that
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∫
D ψ ∂tψ = 0 and

∫
D ∂tψ = 0, assuming that the initial condition is in SD. (Note that it will later

be shown that d
dt ‖∇ψ‖ ≤ 0, thus ψ(t, ·) ∈ H1(D) for all t ≥ 0 if ψ(0, ·) ∈SD).

From Equation (6.7), we have
∫

D ψ ∂tψ =
∫

D ψ(∆ψ + J(ψ)ψ). Using the Diver-

gence theorem and the Neumann boundary condition on ∂Ω, we get
∫

D ψ ∂tψ =−∫D |∇ψ|2 +

J(ψ)
∫

D |ψ|2 = 0 (since J(ψ) =
∫

D |∇ψ|2 and
∫

D |ψ|2 = 1).

We also have
∫

D ∂tψ =
∫

D ∆ψ + J(ψ)
∫

D ψ =
∫

D ∇ψ ·n+ J(ψ)
∫

D ψ = 0 because of the

Neumann boundary condition, ∇ψ ·n = 0 on ∂D, and
∫

D ψ = 0.

Let ψ(t,x) be a solution of (6.7) in SD, with t ∈ R≥0, x ∈ D, such that ψ(0,x) ∈SD.

We also have
∫

D |ψ|2 = 1, for all t ≥ 0. Thus, J(ψ) =
∫

D |∇ψ|2 =
∫

D |∇ψ|2∫
D |ψ|2

. The time derivative

of J is given by:

d
dt

J =
2∫

D |ψ|2
∫

D
∇ψ ·∇∂tψ−2

∫
D |∇ψ|2

(
∫

D |ψ|2)
2

∫

D
ψ∂tψ

=−2
∫

D
∆ψ ∂tψ−2J(ψ)

∫

D
ψ∂tψ

=−2
∫

D
(∆ψ + J(ψ)ψ)∂tψ

=−2
∫

D
|∆ψ + J(ψ)ψ|2 ≤ 0.

We have that J ≥ 0 and d
dt J ≤ 0. We also have SD ⊂ H1(D), D a bounded, open subset of RN

with ∂D being C1. Thus by the Rellich-Kondrachov Compactness Theorem [55], we get that

the orbit ψ is precompact in L2(D). Therefore, by the LaSalle invariance principle for infinite

dimensional spaces [70], the solutions converge in an L2 sense to largest invariant set contained

in {ψ∗ ∈SD |∆ψ∗+ J(ψ∗)ψ∗ = 0}, the set of equilibria of (6.7).

In what follows we use the shorthand ∂tψ = F(ψ), where F(ψ∗) = 0, for the dynam-

ics (6.7). We consider perturbations δψ ∈ TD along the tangent space of SD at ψ∗ (also note

that ψ∗ is an eigenfunction). Thus
∫

D δψ = 0 and
∫

D ψ∗ δψ = 0. We have:

F(ψ∗+δψ) = ∆(ψ∗+δψ)+ J(ψ∗+δψ)(ψ∗+δψ).
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Since ψ∗ is a critical point of J(ψ) it holds that J(ψ∗+ δψ) = J(ψ∗)+O(‖δψ‖2) = λ ∗+

O(‖δψ‖2). Thus, up to first-order we have that:

F(ψ∗+δψ) = ∆(ψ∗+δψ)+ J(ψ∗+δψ)(ψ∗+δψ)

=−λ
∗
ψ
∗+∆(δψ)+λ

∗
ψ
∗+λ

∗
δψ

= ∆(δψ)+λ
∗
δψ.

Therefore, we have ∂t(δψ) = ∆(δψ)+λ ∗δψ . Expressing δψ(t) = ∑
∞
i=2 αi(t)ψi, where ψi are

the eigenfunctions which form an orthonormal basis for TD, we have that:

∂t(δψ) =
∞

∑
i=2

d
dt

αi(t)ψi = ∆(δψ)+λ
∗
δψ

=
∞

∑
i=2

αi(t)(−λi +λ
∗)ψi,

which implies that δψ(t) = ∑
∞
i=2 e(λ

∗−λi)tαi(0)ψi. (Note that, from orthogonality, the previous

equality leads to d
dt αi(t) = αi(t)(−λi + λ ∗), for each i.) We claim that the latter converges

to δψ = 0 for all initial conditions δψ(0) ∈ TD at ψ∗ if and only if λ ∗ = λ2 (correspond-

ingly, ψ∗ = ψ2). To see this, first observe that, if λ ∗ = λ2 (correspondingly, ψ∗ = ψ2), we

have
∫

D ψ2 δψ(0) = 0 (since δψ ∈ TD at ψ∗ = ψ2), which implies that α2(0) = α2(t) = 0.

Hence δψ(t) = ∑
∞
i=3 eλ2−λiαi(0)ψi and the exponent λ2− λi < 0 for all i ≥ 3. Conversely,

if δψ(t) = ∑
∞
i=2 e(λ

∗−λi)tαi(0)ψi converges to δψ = 0 for all initial conditions δψ(0) ∈ TD

at ψ∗, and ψ∗ = ψi for some i ∈ {2,3, . . .}. We have that αi(0) = αi(t) = 0 (from orthogonality),

and that δψ(t) = ∑
∞
j=2, j 6=i e(λi−λ j)tα j(0)ψ j, which converges to δψ = 0 only if i = 2. Therefore,

the second eigenfunction ψ2 is the only locally asymptotically stable equilibrium in SD for the

projected gradient flow.

Remark 12 (Implication of Proposition 3). Proposition 3 states that we have global convergence

to the set of isolated equilibria of the gradient flow (6.7) and that only the second eigenfunction ψ2

is locally asymptotically stable among the set of isolated equilibria. Moreover, as seen in the
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proof of Lemma 46, we have that the other equilibria are saddle points of J(ψ) and are non-

degenerate (the Hessian of J at these saddle points are non-singular). From this we deduce

almost global asymptotic stability of the second eigenfuction ψ2 for the flow (6.7) , and we

therefore have convergence from almost all initial conditions, see [92] for an overview of this

property.

6.3.2 Design of hole-placement dynamics

We now consider the full optimization problem (6.3), which can be expressed as:

x∗ ∈ arg inf
x∈Ω̃r

λ2(Ω\Br(x))

Assumption 20 (Simplicity of the second eigenvalue). We assume that the second eigenvalue

λ2(Ω\Br(x)) is simple for any x ∈ Ω̃.

Remark 13 (Relaxing Assumption 20). The assumption that the eigenvalue λ2 is simple is

ensures differentiability of λ2(Ω \ Br(x)) w.r.t. x. The eigenvalues of ∆(Ω \ Br(x)) exist as

branches x 7→ λ (Ω\Br(x)), which can then be ordered as λ1 ≤ λ2 ≤ . . . for any given x. The

branches x 7→ λ (Ω\Br(x)) of eigenvalues are differentiable w.r.t. x (more generally w.r.t. the

perturbation of domains with Lipschitz boundaries [69]). The case of a non-simple eigenvalue λ2

occurs when multiple branches intersect, for some x, at which point the ordering of the branches

may change and we lose differentiability of λ2. This situation can however be mitigated by

considering the subdifferential of λ2 in place of the gradient of λ2. The dynamics presented later

in the paper can be modified in this sense, and the analysis would require further investigation

on the regularity/lower-semicontinuity properties of these subdifferentials. We nevertheless avoid

this problem through Assumption 20, which we leave as future work.

The following lemma allows for a characterization of the critical points of the functional

λ2 in the interior of the domain.
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Lemma 47 (Characterization of critical ball). The first-order condition for a critical point x∗ of

the functional λ2 in the interior of the domain is given by:

λ
∗
2

(∫

∂Br(x∗)
|ψ∗2 |2n

)
=
∫

∂Br(x∗)
|∇ψ

∗
2 |2n, (6.8)

where (λ ∗2 ,ψ
∗
2 ) is the second eigenpair such that λ ∗2

4
= λ2(Ω\Br(x∗)).

Proof. Let x(ε) for ε ∈R be a smooth curve contained in Ω̃r. Let ψε
2 be the second eigenfunction

of the Laplace operator with Neumann boundary condition in the domain Ω\Br(x(ε)). Thus, we

have λ ε
2 =

∫
Ωε
|∇ψε

2 |2, where Ωε = Ω\Br(x(ε)) and ‖ψε
2‖Ωε=1. The derivative dλ ε

2
dε

is given by:

dλ ε
2

dε
=

d
dε

∫

Ωε

|∇ψ
ε
2 |2 = 2

∫

Ωε

∇ψ
ε
2 ·∇

(
∂ψε

2
∂ε

)
+
∫

∂Ωε

|∇ψ
ε
2 |2v ·n, (6.9)

where v = dx(ε)
dε

, is constant on ∂Br(xε). Equation (6.9) becomes:

dλ ε
2

dε
= 2

∫

Ωε

∇ψ
ε
2 ·∇

(
∂ψε

2
∂ε

)
+v ·

(∫

∂Br(xε )
|∇ψ

ε
2 |2n

)

=−2
∫

Ωε

∂ψε
2

∂ε
∆ψ

ε
2 +v ·

(∫

∂Br(xε )
|∇ψ

ε
2 |2n

)

= 2
∫

Ωε

λ
ε
2 ψ

ε
2

∂ψε
2

∂ε
+v ·

(∫

∂Br(xε )
|∇ψ

ε
2 |2n

)
(6.10)

= λ
ε
2

d
dε

(∫

Ωε

|ψε
2 |2
)
−λ

ε
2 v ·

(∫

∂Br(xε )
|ψε

2 |2n
)

+v ·
(∫

∂Br(xε )
|∇ψ

ε
2 |2n

)

=−λ
ε
2 v ·

(∫

∂Br(xε )
|ψε

2 |2n
)
+v ·

(∫

∂Br(xε )
|∇ψ

ε
2 |2n

)
,

since
∫

Ωε
|ψε

2 |2 = 1 for all ε ∈ R, which implies that d
dε

(∫
Ωε
|ψε

2 |2
)
= 0. Let x(0) = x∗ ∈ Ω̃ be a

critical point of λ2(x), such that λ2(x∗) = λ ∗2 , with ψ∗2 being the second eigenfunction. Thus we
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have dλ ε
2

dε

∣∣
ε=0 = 0 for all v, which implies that:

λ
∗
2

(∫

∂Br(x∗)
|ψ∗2 |2n

)
=
∫

∂Br(x∗)
|∇ψ

∗
2 |2n.

This is the first-order condition for critical points of λ2 in the interior of the domain.

We now construct the gradient dynamics to converge to a critical point of λ2 in the

interior of the domain. Note that the function λ2(Ω\Br(x)) is not known explicitly for a general

domain Ω\Br(x). We reformulate the optimization problem (6.3) as:

x∗ = arg1 inf
(x,ψ)∈Ω̃×Ψ(x)

∫

Ω\Br(x)
|∇ψ|2dν , (6.11)

where the set Ψ(x) is defined as:

Ψ(x) =
{

ψ ∈ H1 (Ω\Br(x))
∣∣∣∣
∫

Ω\Br(x)
ψ = 0,

∫

Ω\Br(x)
|ψ|2 = 1

}
, (6.12)

where arg1 indicates the first argument x in (x,ψ). We also define the set Ψ = ∪x∈Ω̃r
Ψ(x).

We recall that Ω̃r = {x ∈ Ω |dist(x,∂Ω) > r}. Now let {x(t)}t∈R≥0 be a smooth curve in Ω̃r

and {ψ(t,y)}t∈R≥0 (with y ∈Ω\Br(x(t)),) a smooth one-parameter family of functions on Ω\

Br(x(t)). Also, let ñ(x) be the normal to the boundary ∂ Ω̃r at x ∈ ∂ Ω̃r. We now consider the

following hole-placement dynamics for our nested optimization problem:

dx
dt

=





vint , x ∈ int Ω̃r

vint− (vint · ñ)ñ, x ∈ ∂ Ω̃r

vint =−
∫

∂Br(x)
|∇ψ|2n+ J(ψ)

∫

∂Br(x)
|ψ|2n,

∂tψ = ∆ψ + J(ψ)ψ +aψ +b,

∇ψ ·n = 0, on ∂Ω∪∂Br(x),

(6.13)
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where a =−1
2v ·
(∫

∂Br(x) |ψ|2 n
)

and b =− 1
|Ω|−cv ·

(∫
∂Br(x)ψ n

)
, with c = |Br(x)|, for all x ∈

Ω̃r.

Theorem 21 (Convergence of the hole placement dynamics). The set Ψ in (6.12) is invariant

with respect to the dynamics (6.13). The solutions to the dynamics (6.13) converge to a critical

point of the objective functional λ2 in (6.11). A critical point of λ2 is locally asymptotically

stable with respect to the dynamics (6.13) only if it is a strict local minimum.

Proof. Let {x(t),ψ(t,y)}t∈R≥0 (with y ∈Ω\Br(x(t)),) be a one-parameter family of functions

that is a solution to the dynamics (6.13), and let ψ(0, ·) ∈ Ψ(x(0)). To prove the invariance

of Ψ(x(t)), we need to show that d
dt

(∫
Ω\Br(x(t)) |ψ|2

)
= 0 and d

dt

(∫
Ω\Br(x(t))ψ

)
= 0 (Note

that it will later be shown that d
dt ‖∇ψ‖ ≤ 0, thus ψ(t, ·) ∈ H1(Ω) for all t ≥ 0 if ψ(0, ·) ∈Ψ).

From (6.13), we have (with Ω(t) = Ω\Br(x(t))):

d
dt

(∫

Ω(t)
|ψ|2

)
= 2

∫

Ω(t)
ψ ∂tψ +v ·

∫

∂Br(x(t))
|ψ|2n

= 2
∫

Ω(t)
ψ ∆ψ +2J(ψ)

∫

Ω(t)
|ψ|2 +2a(t)×

∫

Ω(t)
|ψ|2 +2b(t)

∫

Ω(t)
ψ +v ·

∫

∂Br(x(t))
|ψ|2n

=−2
∫

Ω(t)
|∇ψ|2 +2J(ψ)+2a(t)

+v ·
∫

∂Br(x(t))
|ψ|2n

= 0,

because J(ψ) =
∫

Ω(t) |∇ψ|2,
∫

Ω(t) |ψ|2 = 1 and
∫

Ω(t)ψ = 0 (since ψ(t, ·) ∈ Ψ(x(t)).) We also
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have:

d
dt

(∫

Ω(t)
ψ

)
=
∫

Ω(t)
∂tψ +v ·

∫

∂Br(x(t))
ψ n

=
∫

Ω(t)
∆ψ + J(ψ)

∫

Ω(t)
ψ

+a(t)
∫

Ω(t)
ψ +b(|Ω|− c)

+v ·
∫

∂Br(x(t))
ψ n

= 0.

Since we also have that ψ(0, ·) ∈Ψ(x(0)), we conclude that the set Ψ is invariant with respect

to the dynamics (6.13).

Let {x(t),ψ(t,y)}t∈R≥0 (with y ∈Ω\Br(x(t))), be a one-parameter family of functions

that is a solution to the dynamics (6.13), and let ψ(t, ·)∈Ψ(x(t)) for all t ∈R≥0 (this assumption

is justified by the invariance of Ψ). We have J(ψ) =
∫

Ω(t) |∇ψ|2 =
∫

Ω(t) |∇ψ|2
∫

Ω(t) |ψ|2
≥ 0 for ψ(t, ·) ∈

Ψ(x(t)) (since
∫

Ω(t) |ψ|2 = 1). Now:

d
dt

J = 2
∫

Ω(t)
∇ψ ·∇∂tψ +v ·

∫

∂Br(x(t))
|∇ψ|2n

−2J(ψ)
∫

Ω(t)
ψ ∂tψ− J(ψ)v ·

∫

∂Br(x(t))
|ψ|2n

=−2
∫

Ω(t)
|∆ψ + J(ψ)ψ|2−v ·vint ≤ 0,

where we have used (6.13) to obtain the second equality. By the Rellich-Kondrachov Compact-

ness Theorem [55], we see that the orbit ψ is precompact in L2(Ω). Thus, by the invariance

principle [70], the solutions {x(t),ψ(t,y)}t∈R≥0 (with y ∈Ω\Br(x(t))), converge to x∗,ψ∗ (the

convergence ψ(t, ·)→ ψ∗, is in the sense of L2) such that v = 0 and ∆ψ∗+ J(ψ∗)ψ∗ = 0. We

already have that the only asymptotically stable case is when ψ∗ = ψ∗2 (the second eigenfunction

corresponding to Ω \Br(x∗)), which implies that J(ψ∗) = J(ψ∗2 ) = λ ∗2 . And v = 0 implies
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that
∫

∂Br(x∗) |∇ψ∗2 |2n = λ ∗2
∫

∂Br(x∗) |ψ∗2 |2n, the critical point of the functional λ2 from (6.8).

Consider perturbations δx and δψ , about an equilibrium (x∗,ψ∗2 ) such that x∗+δx ∈ Ω̃

and ψ̃2 = ψ∗2 +δψ ∈Ψ(x∗+δx) is the second eigenfunction of the domain Ω\Br(x∗+δx). In

other words, we consider perturbations purely in x to investigate the local asymptotic stability of

the critical points of λ2(x). The dynamics in x in this case, referring to (6.13), are given by:

d
dt
(x∗+δx) =−

∫

∂Br(x∗+δx)

(
|∇ψ̃2|2− λ̃2|ψ̃2|2

)
n.

This can be reduced to:

d
dt
(δx) =− ∂

∂x

∣∣∣∣
x=x∗

(∫

∂Br(x)

(
|∇ψ̃2|2− λ̃2|ψ̃|2

)
n
)

δx. (6.14)

From Equation (6.10), we recognize that
∫

∂Br(x)

(
|∇ψ̃2|2− λ̃2|ψ̃|2

)
n = ∂λ2

∂x . Therefore, the

linearized dynamics reduces to:

d
dt
(δx) =−∂ 2λ2

∂x2

∣∣∣∣
x=x∗

δx,

where ∂ 2λ2
∂x2

∣∣∣∣
x=x∗

is the Hessian of λ2 at x = x∗. Therefore, we have that the linearized dynamics

is asymptotically stable if and only if the Hessian of λ2 is positive definite, in other words, if

and only if x∗ is a strict local minimum of λ2. Therefore, the necessary condition for the local

asymptotic stability of the primal-dual dynamics at a critical point of λ2 is that it is a strict local

minimum.

Remark 14 (Implication of Theorem 21). Theorem 21 states that we have convergence to the

equilibria of the hole-placement dynamics which are also critical points of λ2(Ω\Br(x)). In

addition, we have that among the critical points of λ2(Ω\Br(x)), only the strict local minima

are locally asymptotically stable. For almost global convergence to these strict local minima, we

additionally require non-degeneracy of the saddle points of λ2(Ω\Br(x)) (i.e., that the Hessian
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is non-singular at the critical point), but this additional characterization is not contained in our

result.

We now consider the following question: if an initial failure happens with the removal of

a node, what is the most critical node? This is appropriately posed in the continuum setting as

the hole placement problem where the size of the hole is very small, i.e., as the radius r→ 0. For

this, we investigate the minimum of the function f (x) = limr→0
1

|∂Br(x)|
∂

∂ r λ2(Ω\Br(x)), which

quantifies as a function of the hole position, the rate of deterioration of the metric as failure

begins to occur.

Theorem 22. (Connection to the nodal set of eigenfunction). In the limit r→ 0 for the radius

of the hole, the hole-placement problem reduces to finding the minima x∗ ∈Ω of the function:

f (x) = µ
Ω
2 |ψΩ

2 (x)|2−|∇ψ
Ω
2 (x)|2,

where (µΩ
2 ,ψΩ

2 (x)) is the second eigenpair of the domain Ω. Moreover, if the family of level sets

of ψΩ
2 is locally flat at a point x∗ ∈Ω, then x∗ is a local minimizer of f if and only if ψΩ

2 (x∗) = 0.

In other words, under local flatness, the nodal points of ψΩ
2 are the local minimizers of f .

Proof. Let r :R→R≥0 with r(0) = 0 be a smooth non-negative function. Let Ω(t) =Ω\Br(t)(x)

for some x ∈Ω⊂ RN , be a one parameter family of spatial domains such that Ω(0) = Ω. Let

µ2(t) be the second eigenvalue of the domain Ω(t) and ψ2(t, ·) the corresponding normalized

eigenfunction (we assume that the family of spatial domains Ω(t) have simple eigenvalues). Thus,

we have µ2(t) =
∫

x∈Ω(t) |∇ψ2(t,x)|2. From [40], we have that µ2(t) and ψ2 are real-analytic

locally at t = 0. Thus, for small τ > 0, we have:

µ2(τ) = µ2(0)+
d
dt

µ2

∣∣∣∣
t=0

τ + . . .

ψ2(τ,x) = ψ2(0,x)+∂tψ2(t,x)
∣∣∣∣
t=0

τ + . . .

(6.15)

187



We note that µ2(0) and ψ2(0, ·) are the second eigenpair corresponding to Ω. At a given t > 0,

let the deformation of the domain be characterized by v = −εn, the velocity of points on the

boundary of the hole, Br(t)(x), where n is the normal to the domain Ω(t) on the boundary of

Br(t)(x), and ε > 0 is a small constant. We have:

d
dt

µ2 =
d
dt

∫

x∈Ω(t)
|∇ψ2(t,x)|2

= 2
∫

Ω(t)
∇ψ2 ∇∂tψ2 +

∫

∂Br(t)(x)
|∇ψ2|2v ·n

=−2
∫

Ω(t)
∆ψ2 ∂tψ2 +

∫

∂Br(t)(x)
|∇ψ2|2v ·n

= 2µ2(t)
∫

Ω(t)
ψ2 ∂tψ2 +

∫

∂Br(t)(x)
|∇ψ2|2v ·n

= µ2(t)

(
d
dt

∫

Ω(t)
|ψ2|2−

∫

∂Br(t)(x)
|ψ2|2v ·n

)

+
∫

∂Br(t)(x)
|∇ψ2|2v ·n

= µ2(t)ε
∫

∂Br(t)(x)
|ψ2|2− ε

∫

∂Br(t)(x)
|∇ψ2|2,

since
∫

Ω(t) |ψ2|2 = 1, for all t. For small τ > 0, we then substitute from (6.15) in the above
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equation, to obtain:

d
dt

µ2 = ε

(
µ2(0)+

d
dt

µ2

∣∣∣∣
t=0

τ + . . .

)
×

∫

y∈∂Br(τ)(x)
|ψ2(0,y)+∂tψ2(t,y)

∣∣∣∣
t=0

τ + . . . |2

− ε

∫

y∈∂Br(τ)(x)
|∇(ψ2(0,y)+∂tψ2(t,y)

∣∣∣∣
t=0

τ + . . .)|2

= µ2(0)ε
∫

y∈∂Br(τ)(x)
|ψ2(0,y)|2− ε

∫

y∈∂Br(τ)(x)
|∇ψ2(0,y)|2

+O(τ)

= µ2(0)SN−1r(τ)N−1
ε|ψ2(0,x)|2

−SN−1r(τ)N−1
ε|∇ψ2(0,x)|2 +O(r(τ)N−1

τ),

where SN is the surface area of th unit N-sphere. Now, given that v =−εn, we have r(τ) = ετ ,

and therefore:

d
dt

µ2 = µ2(0)SN−1ε
N

τ
N−1|ψ2(0,x)|2

−SN−1ε
N

τ
N−1|∇ψ2(0,x)|2 +O(τN).

Substituting for d
dt µ2 from the above equation into µ2(τ) = µ2(0)+ d

dt µ2
∣∣
τ̄
τ (where τ̄ ∈ [0,τ]),

we get:

µ2(τ) = µ2(0)+SN−1ε
N

τ̄
N−1

τ
(
µ2(0)|ψ2(0,x)|2−|∇ψ2(0,x)|2

)

+O(τ̄N
τ)

≤ µ2(0)+SN−1ε
N

τ
N (

µ2(0)|ψ2(0,x)|2−|∇ψ2(0,x)|2
)

+O(τN+1)

≈ µ2(0)+ c(τ)
(
µ2(0)|ψ2(0,x)|2−|∇ψ2(0,x)|2

)
,
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where we have ignored the O(τN+1) term in the final expression. We also

have r(τ) = ετ , and therefore the above can also be written as µ2(r) ≈ µ2(0) +

c(r)
(
µ2(0)|ψ2(0,x)|2−|∇ψ2(0,x)|2

)
as a function of the radius of the hole. We also note

that the function
(
µ2(0)|ψ2(0,x)|2−|∇ψ2(0,x)|2

)
= limr→0

1
|∂Br(x)|

∂

∂ r µ2(Ω\Br(x)).

We now show that the local minima of f (x) = µΩ
2 |ψΩ

2 |2 − |∇ψΩ
2 |2 occur along the nodal

set of ψΩ
2 , that is, in the set {x ∈ Ω|ψΩ

2 (x) = 0}, in the region where the family of level

sets of ψΩ
2 is locally flat. Let {r, t1, . . . , tN−1} be an orthonormal basis at x ∈ Ω, where r

is the unit normal to the level set of ψΩ
2 at x and {t1, . . . , tN−1} the unit tangents. We can

express the gradient operator in this coordinate system as ∇ = r ∂

∂ r + ∑
N−1
i=1 ti

∂

∂ ti
. We now

have ∇ψΩ
2 =

∂ψΩ
2

∂ r r (since the derivative of ψΩ
2 vanishes along the tangent space of its level

set). Moreover, the eigenvalue equation ∆ψΩ
2 + µΩ

2 ψΩ
2 = 0 expressed in this coordinate sys-

tem is given by ∂ 2ψΩ
2

∂ r2 +(N−1)H ∂ψ

∂ r +µΩ
2 ψΩ

2 = 0, where H(x) is the mean curvature at x ∈Ω

of the level set of ψ . Following some computation, we get that the gradient of f is given

by ∇ f = 4µΩ
2 ψΩ

2
∂ψΩ

2
∂ r r+2(N−1)H

∣∣∣∂ψΩ
2

∂ r

∣∣∣
2

r. Moreover, in computing the entries of the Hessian

of f in this coordinate frame, we first have:

∂ 2 f
∂ r2 = 4µ

Ω
2

(∣∣∣∣
∂ψΩ

2
∂ r

∣∣∣∣
2

−µ
Ω
2 |ψΩ

2 |2
)
−8(N−1)Hµ

Ω
2 ψ

Ω
2

∂ψΩ
2

∂ r

+

(
2(N−1)

∂H
∂ r
−4(N−1)2H2

)∣∣∣∣
∂ψΩ

2
∂ r

∣∣∣∣
2

.

Clearly, for any point x∗ where the family of level sets of ψΩ
2 is locally flat (which in particular

implies H(x∗) = 0), we have that x∗ is a critical point if and only if ψΩ
2 (x∗) = 0 or ∇ψΩ

2 (x∗) = 0.

Furthermore, we have ∂ 2 f
∂ r2 (x∗) = 4µΩ

2

(∣∣∣∂ψΩ
2

∂ r (x∗)
∣∣∣
2
−µΩ

2 |ψΩ
2 (x∗)|2

)
. Also, under local flatness

of the family of level sets, the off-diagonal entries ∂ 2 f
∂ r∂ ti

and ∂ 2 f
∂ ti∂ t j

vanish for all i∈ {1, . . . ,N−1},

and so do the rest of the diagonal entries of the Hessian, i.e. ∂ 2 f
∂ t2

i
(x∗) = 0 for i ∈ {1, . . . ,N−1}.

It thereby follows that the Hessian is positive semidefinite when ψΩ
2 (x∗) = 0 and negative

semidefinite when ∇ψΩ
2 (x∗) = 0. Therefore, under local flatness of the family of level sets of
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ψΩ
2 , the nodal points of ψΩ

2 correspond to the local minima of f .

Remark 15 (Geometry of nodal sets). The nodal sets of Neumann eigenfunctions have been

extensively investigated [11]. It is known that if the domain is symmetric about a subset, then

it contains the nodal set of ψ2. The nodal set for the second eigenfunction ψΩ
2 divides the

domain Ω into no more than two regions Ωa and Ωb. Now, λ Ω
2 is the first eigenvalue λ1 of

the Laplacian for Ωa and Ωb, with Neumann boundary condition on ∂Ω∩∂Ωa and Dirichlet

boundary condition on ∂Ωa∩∂Ωb.

Remark 16 (Implication for networks). Theorem 22 can be used to provide new insight on where

the most critical nodes in a network with a finite number of nodes are located, via a continuum

approximation. This is based on the fact that the entries vF
i of the Fiedler eigenvector vF of

the finite graph embedded in Ω can be approximated by the value of the eigenfunction ψΩ
2 at

the location xi of the node i. That is, vF
i ≈ ψΩ

2 (xi). Then the most critical nodes in the network

correspond to the zero entries of the Fiedler eigenvector. The Fiedler eigenvector, however, does

not necessarily contain zero entries for general finite graphs (this situation improves with the size

of the graph), in which case we may expect the critical nodes to be concentrated at the entries of

lowest magnitude. This is a heuristic obtained from the fact that ψΩ
2 is smooth and that ψΩ

2 more

closely approximates vF as n→ ∞.

6.4 Simulation results

In this section, we present some numerical simulation results that can illustrate the

concepts and algorithms of the previous sections.

First, we consider a disk-shaped domain Ω of unit radius, and the placement of a hole B of

radius of 0.1 units. Figure 6.1 shows a plot of λ2 for the residual domain Ω\B as a function of h

(distance between the center of the disk and the center of the hole). Since the hole is of radius 0.1

units and is contained in Ω, we note that h ∈ [0,0.9). We observe from Figure 6.1 that the second

(also the smallest positive) eigenvalue of the Laplace operator for a disk-shaped domain with
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Figure 6.1. λ2 as a function of h for a disk-shaped domain.

a hole increases with the distance between the centers of the domain and the hole, but also

appears to decrease as the hole approaches close to the domain boundary (around h = 0.85 units).

Moreover, λ2 as a function of h appears to be a convex in the interval h ∈ [0,0.85] and concave

for h ∈ (0.85,0.9).

We now present simulation results for the projected gradient flow (6.13). For the simula-

tion, we have separated the dynamics into two time scales, with x (the center of the hole) as the

slow-scale variable and ψ the fast-scale variable. We first consider the case of the disk-shaped

domain, that is, the dynamics (6.13) corresponds to hole placement for the disk-shaped domain

to minimize λ2 of the residual domain.

Figure 6.2 is a plot of x(t), the path of the center of the hole, on the spatial domain, for

two different initial conditions x(0) = (0.4,0.5) and x(0) = (−0.5,−0.5). We observe that the

hole center approaches the center of the disk with time, approximately along a straight line.

Figure 6.3 is a plot of x(t), the path of the center of the hole (from the dynamics (6.13))

for a convex polygonal spatial domain. The final location of the hole is also indicated in the

figure.

Figure 6.4 contains the results for a non-convex polygonal domain. The outer polygon
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Figure 6.2. Path of the center of the hole, x(t), from two different initial conditions
x(0) = (0.4,0.5) and x(0) = (−0.5,−0.5).
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Figure 6.3. Path of the center of the hole, x(t), from initial condition x(0) = (0.5,−0.5) for a
convex polygonal domain.

is the spatial domain Ω, while the inner polygon is the domain Ω̃ (the set of allowed positions

for the center of the hole). The heatmap shows the value of λ2 of the residual domain (which

was obtained by first sampling the domain uniformly at random at the points indicated by the

tiny circles, placing the hole at those points, computing λ2 of the residual domain, and then inter-

polating to obtain the plot). The paths of the center of the hole x(t) (from the dynamics (6.13))

from different initial conditions are also plotted. The paths do not all converge to the same point

in this case, but to a broader region (the darker region in the heatmap), which possibly contains
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more than one local minimum x∗.
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Figure 6.4. Paths of the center of the hole, x(t) from different initial conditions.

In Figure 6.5, we present a numerical validation of the discussion in Remark 16. We first

generated a random connected graph G with 50 nodes. We then computed the algebraic connec-

tivities of the residual graphs obtained by the removal of one node from the graph λ2(L(G\{i})),

for each node, plotting it against the corresponding entry of the Fiedler eigenvector vF
i (the

eigenvector corresponding to the second eigenvalue of the Laplacian, or algebraic connectivity)

of the original graph G. From the discussion in Remark 16, we expect that the local minima

of λ2(L(G \ {i})) are concentrated around nodes corresponding to the entries of the Fiedler

eigenvector of lowest magnitude, which is illustrated in the figure. We note that in the corre-

sponding hole-placement problem, the nodal sets of the second eigenfunction ψΩ
2 are only the

local minimizers of f (x) = λ Ω
2 |ψΩ

2 (x)|2− |∇ψΩ
2 (x)|2. We thereby do not expect all the zero

entries of the Fiedler eigenvector to correspond necessarily to global minimizers. However, the

figure shows that the global minimum is indeed concentrated around nodes corresponding to the

entries of the Fiedler eigenvector of lowest magnitude.

6.5 Summary

This chapter was devoted to the study of robustness of multi-agent networks, particularly

to the problem of identifying the critical nodes for consensus in large-scale spatial networks,
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Figure 6.5. Plot of algebraic connectivity of residual network with the removal of one node vs.
its corresponding entry in the Fiedler eigenvector, for a network with 50 nodes.

aided by an approximation of the Laplacian matrix of the graph by the Laplace operator on

the domain. In addition to being a natural step in the large-N limit, the real advantage of the

approximation is that it does not conceal the geometry of the problem, which is important for

spatial networks such as swarms and sensor networks.

The material in this chapter, in full, is a reprint of the material in Identification of critical

nodes in large-scale spatial networks, V. Krishnan and S. Martı́nez, IEEE Transactions on

Control of Network Systems, 6(2), pp. 842–851, 2019. A preliminary version of the work

appeared in the proceedings of the IFAC World Congress, Toulouse, France, July 2017 as

Identification of critical node clusters for consensus in large-scale spatial networks, V. Krishnan

and S. Martı́nez. The dissertation author was the primary investigator and author of these papers.
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Chapter 7

Conclusion

In this dissertation, we began with a presentation of a multiscale theory of large-scale

transport of multi-agent systems, and a framework for the design of (proximal) gradient descent-

based algorithms. The proposed framework in its current form requires that the agents possess

complete information about the states of the other agents. While specific instances of incomplete

information were dealt with in the design of algorithms in the subsequent chapters, future work

involves incorporating the notion of partial information into the formal framework . In subsequent

chapters, we proposed and analyzed algorithms for multi-agent optimal transport, swarm self-

organization and developed a unifying distributional framework for optimization-based state

estimation, with an eye towards applications of multi-agent deployment, navigation and tracking.

In the final chapter, we investigated the question of robustness of multi-agent systems, through

the critical node identification problem for large-scale spatial networks.
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[8] L. Ambrosio, N. Gigli, and G. Savaré. Gradient flows: in metric spaces and in the space
of probability measures. Springer, 2008.

[9] C. Andrieu, A. Doucet, and R. Holenstein. Particle Markov chain Monte Carlo methods.
Journal of the Royal Statistical Society: Series B, 72(3):269–342, 2010.

[10] A. Arulselvan, C. Commander, L. Elefteriadou, and P. Pardalos. Detecting critical nodes
in sparse graphs. Computers and Operations Research, 36(7):2193–2200, 2009.

[11] R. Atar and K. Burdzy. On nodal lines of Neumann eigenfunctions. Electronic Communi-
cations in Probability, 7:129–139, 2002.

197
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