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Abstract

The role of balanced excitation and inhibition in cortical circuits

by

Brendan K. Murphy

Doctor of Philosophy in Biophysics

University of California, San Francisco

Professor Kenneth D. Miller, Chair

Cortical networks are thought to operate in a state of tightly balanced excitation

and inhibition. A typical cortical neuron receives thousands of synaptic inputs from other

cortical neurons. The majority of these inputs are excitatory and the network is stable

only because strong recurrent excitation is balanced by similarly strong feedback inhibition.

Theoretical models have shown that sparsely connected networks with strong, balanced ex-

citation and inhibition exhibit chaotic activity that is consistent with the highly variable

responses and large membrane potential fluctuations observed in cortex in vivo. In these

models, and hypothetically in cortical networks, large noise is a consequence of large exci-

tatory inputs being balanced by inhibitory inputs, keeping the mean membrane potential

below threshold but leaving large fluctuations about this mean. Direct experimental evi-

dence for this balanced state has been provided by measurements of synaptic conductances

in vivo and in cortical slices. In chapter two we show that noisy fluctuations in membrane

potential are an essential part of a mechanism by which neurons can modulate the gain of

their responses. Gain modulation is common in cortical responses and is thought to play

an important role in cortical computation.

Membrane potential fluctuations during spontaneous activity are not entirely ran-

dom. In cat primary visual cortex spontaneous activity has been shown to exhibit spatial

patterns similar to those evoked by a visual stimulus, in which neurons with similar preferred

orientations are co-active. This suggests that, from unstructured input, cortical circuits se-

lectively amplify activity patterns related to normal function. Current understanding of

such amplification involves elongation of the lifetime of a neural pattern by mutual synap-

tic excitation among the neurons involved. In chapter three we describe a new mechanism
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Chapter 1

Introduction

1.1 Background

An intricate network of neural circuits in the cerebral cortex carries out many

of the computations that make mammalian brains so interesting and humans conscious

and intelligent. The work in this dissertation aims to contribute, at least in a small way,

to the theoretical understanding of the properties of cortical circuitry that make these

computations possible. A substantial portion of cortex is devoted to the processing of

sensory information and I will focus mostly on primary visual cortex (V1), which has been

intensively studied for many years. Many of the features of V1 are common in other cortical

areas and thus results obtained in V1 are likely to have implications for cortical computation

in general. V1 is the first area of cortex to receive visual information from the retina, by

way of the Lateral Geniculate Nucleus (LGN). In turn, V1 projects to many other cortical

areas involved in processing visual information.

The properties of neurons in both V1 and the LGN are commonly characterized

by a receptive field, which is a region of the visual field where an appropriate visual stimulus

will cause a neuron to respond by firing action potentials. The primary distinction between

the responses of neurons in the LGN versus those in V1 is that V1 neurons are highly

selective for the orientation of visual stimuli. Neurons in V1 respond strongly to elongated

bar-like stimuli of a particular orientation, e.g. vertical or horizontal (Hubel and Wiesel

1962) (Fig. 1.1). LGN neurons are selective for the contrast of visual stimuli, e.g. light or

dark, but not for orientation.

In many animals (cats, ferrets, monkeys and others, but puzzlingly not rats, mice,
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Figure 1.1: Receptive fields in V1. Panel A shows a typical setup for characterizing
receptive fields in cat V1. The figure is taken from Purves (2001). Neurons in V1 respond
strongly to a bar of the correct orientation (vertical in this case) but not to bars of other
orientations, as shown in panel B.

or squirrels) cortex is organized into “columns” (Hubel and Wiesel 1962). Neurons that

are nearby each other on the cortical surface tend to prefer similar orientations and this

preference does not change through the depth of cortex, perpendicular to the surface. As

you move “horizontally” across the surface, the orientation preferences of neurons generally

change smoothly. At certain junctions, structures known as “pinwheels” occur where neu-

rons of many different orientations can be found close together. Using optical imaging it is

possible to record activity across large areas of the cortical surface and construct detailed

orientation maps that label each part of the surface according to the preferred orientation

of the neurons found there, as shown in Figure 1.2. As a general rule a roughly 1 mm2

patch of cortical surface will contain neurons representing all orientations.

In depth, V1 is organized into six layers (Callaway 1998). Most inputs from the

LGN are targeted to layer 4 where they make up a significant portion of the total input

in terms of the influence on spike output, if not the total number of synapses (Ahmed

et al. 1994, Chung and Ferster 1998, Ferster and Miller 2000, Ferster et al. 1996, LeVay and

Gilbert 1976, Peters and Payne 1993, Reid and Alonso 1995, Tanaka 1983). Orientation

selectivity arises from the feedforward arrangement of these LGN inputs onto V1 neurons
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Figure 1.2: Orientation map in V1. An example orientation map from V1 in tree shrew
obtained from optical imaging. The figure is taken from Bosking et al. (1997). The images
in panel A are looking down at the surface of V1 during the presentation of four orientated
visual stimuli (0◦, 45◦, 90◦ and 135◦). This causes areas with neurons preferring each
orientation to become active (dark areas). Panel B shows an orientation map obtained by
combining the data in panel A. Panel C shows enlargements of both pinwheels and areas
with smoothly changing orientation preferences.
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in this layer (Ferster and Miller 2000, Hubel and Wiesel 1962, Reid and Alonso 1995),

though selectivity may be enchanced by recurrent cortical interactions (Ben-Yishai et al.

1995, Somers et al. 1995, Sompolinsky and Shapley 1997). Neurons in other layers receive

input primarily from other V1 neurons. Even in layer 4, intra-cortical synapses are a large

source of input (Ahmed et al. 1994, Callaway 1998, Gilbert and Wiesel 1979, LeVay and

Gilbert 1976, Peters and Payne 1993). Most of these synaptic connections are made over a

fairly short horizontal distance of roughly 200 µm. Outside of layer 4, excitatory synapses

can extend over longer distances making patchy connections between areas with similar

functional reponse properites (Gilbert and Wiesel 1989).

The role of the recurrent circuitry in cortex and, in particular, the balance between

excitatory and inhibitory inputs, is the subject of much of this dissertation. Intracellular

recordings of membrane potentials and conductances in vivo suggest that cortical neurons

operate in a high conductance state in which large excitatory and inhibitory synaptic con-

ductances are balanced (Anderson et al. 2000b, Destexhe et al. 2003, Haider et al. 2006, Paré

et al. 1998, Steriade et al. 2001) (but, see Waters and Helmchen 2006). In addition, cortical

activity in vivo is often highly variable, with irregular spike times and large subthreshold

fluctuations in membrane potential (Anderson et al. 2000b, Shadlen and Newsome 1994).

The irregular activity of cortical neurons is not consistent with the integration of many small

excitatory inputs (Softky and Koch 1993). Rather, irregular spike times are the result of

neurons having a subthreshold mean membrane potential and firing when flucutations in the

membrane potential cross threshold (Shadlen and Newsome 1998, Troyer and Miller 1997).

Theoretical results show that this kind of activity can be generated in sparsely connected

networks with strong, balanced excitation and inhibition (Brunel 2000, van Vreeswijk and

Sompolinsky 1996). Similar results can be obtained in models of single neurons with large,

fluctuating excitatory and inhibitory background conductances (Destexhe and Paré 1999,

Destexhe et al. 2001). In all of these models, excitation and inhibition are balanced on

average, keeping the mean membrane potential below the threshold for spiking but leaving

large fluctuations about this mean. Together with the direct experimental measurements

of conductances, these theoretical results provide strong evidence that cortical networks

operate in a state of tightly balanced excitation and inhibition. Further evidence to supp-

port this idea comes from the observation that supression of inhibition in cortex results in

instability and runaway activity (Chagnac-Amitai and Connors 1989).

It is not obvious why cortical networks operate in such a noisy and carefully
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balanced state but there are a number of theories about why it might be advantageous. Van

Vreeswijk and Sompolinsky (1998) have shown that this state allows the network to respond

more quickly to inputs and noise has been shown to be important for the propagation of

firing rate signals through spiking neural networks (van Rossum et al. 2002, Vogels and

Abbott 2005). In this dissertation, we discuss two additional implications of this feature

of cortical networks. We show in Chapter 2 that noisy membrane potential fluctuations

are important for generating multiplicative changes in neural gain (see also Chance et al.

2002). In Chapter 3 we introduce another consequence of the balanced state: balanced

networks robustly support a mechanism of input amplification previously undescribed in

neural systems, which we call transient amplification.

1.2 Neuron Models

The results in this dissertation are all theoretical and based on models of cortical

activity. At one end of the spectrum of possible models are complicated multi-compartment

models that involve detailed descriptions of both the geometry of the cell body and the

neurites and the placement of ion channels on the cell membrane. Although these models

can be very realistic, they involve a large number of parameters and are computationally

expensive to simulate. At the other end of the spectrum are simple linear rate models that

describe a neuron using a single number to represent its firing rate at any given time. The

models used in this dissertation are largely in the less detailed end of the spectrum and are

briefly described below.

1.2.1 Spiking models

A very common model of cortical neurons is the conductance based integrate-and-

fire (IAF) model. It has the advantage of being computationally efficient, making it possible

to easily simulate large networks. For example, Chapter 3 describes a simulation consisting

of 50,000 IAF neurons. This model is relatively simple and has a single compartment,

ignoring details of cell morphology such as dendrites or axons.

The membrane potential (V) of the IAF model neuron is governed by the equation:

τm
dV

dt
= (Vleak − V ) +

∑
i

gi(Vi − V ) (1.1)
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Here τm is the resting membrane time constant, defined as C
gleak

where C is the capacitance

of the cell membrane and gleak is the leak conductance. Vleak is the reversal potential of

the leak conductance, the gi are synaptic conductances in units of the leak conductance,

and the Vi are the corresponding reversal potentials. We can define V∞ = Vleak+
P

i giVi

1+
P

i gi
and

rearrange things to obtain:

τeff
dV

dt
= V∞ − V (1.2)

where τeff = τm
1+

P
i gi

, the effective membrane constant when taking into account synaptic

conductances. Now it’s easy to see that the membrane potential of the neuron simply

approaches the value of V∞ with time constant τeff . Real neurons fire action potentials when

the membrane potential reaches a certain threshold. IAF models do not simulate the voltage

gated sodium and potassium channels responsible for action potential generation. Instead

they simply record that an action potential has occurred when the membrane potential

reaches threshold and then reset the membrane potential to a sub-threshold value, possibly

then holding it there for a refractory period.

Eq. 1.1 must be integrated numerically. Throughout this dissertation, I use a sec-

ond order algorithm described in Shelley and Tao (2001). This integration scheme corrects

for numerical errors introduced when the membrane potential is reset after a spike. Simpler

first order integration, such as Euler’s method, will also work, but a smaller timestep is

required to achieve similar accuracy.

More realistic spiking models simulate the generation of action potentials explicitly

by incorporating voltage gated sodium and potassium conductances, as in the Hodgkin-

Huxley model. For this type of model, and anything more complicated, the NEURON

simulation environment (Hines and Carnevale 1997) is very useful. NEURON allows you to

build very detailed models with multiple compartments, incorporating many different kinds

of conductances and cell geometries.

1.2.2 Rate models

It can be difficult to tell why a complicated numerical model, like the network of

IAF neurons in Chapter 3, produces the results that it does. Rate models are arguably less

realistic, but they are much more amenable to mathematical analysis and depend on fewer

assumptions about the detailed properties of real neurons.

In a rate model, the details of spiking are ignored and a neuron is described by its
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firing rate as a function of time r(t). In a short time interval ∆t, the probability that the

neuron will fire an action potential is given by r∆t. The firing rate of the neuron approaches

some function of it’s input, F (I), with time constant τ :

τ
dr
dt

= −r + F(Wr + h) (1.3)

Here, r is an N -dimensional vector representing the firing rates of a population of N neurons

(the ith element ri is the firing rate of the ith neuron). W is an N×N synaptic connectivity

matrix (Wij is the strength of connection from neuron j to neuron i). Wr represents input

from other neurons within the network and h represents external inputs to the network.

The vector F is just the firing-rate function F (I) operating on each part of the input vector

I = Wr + h, such that F(I) = (F (I1), . . . , F (IN ))T . The time constant τ is related to the

synaptic and membrane time constants of the individual neurons.

The model can be simplified further by assuming that F (I) is linear. Although

firing-rate functions for real neurons are clearly not linear for all levels of input, this ap-

proximation is often acceptable for certain ranges of firing rate over which F (I) is nearly

linear. Alternatively, a linear approximation may be sufficient to describe the dynamics of

relatively small fluctuations around a fixed point of the full non-linear system. In either case

the activity of a network of N neurons can be described by a simple linear vector equation:

τ
dr
dt

= −r + Wr + h (1.4)

The fact that these equations are linear greatly simplifies mathematical analysis

and makes available all the tools of linear algebra. For example, the rates seem to depend

in a complicated way on the connectivity of the network, specified by W. But because the

equations are linear they can be solved by changing coordinate systems to a basis consisting

of the eigenvectors of W. In this basis Eq. 1.4 is reduced to a set of N independent, one

dimensional equations that are then easily solved.

We show in Chapter 3 that the dynamics of a simple linear rate model are sur-

prisingly similar to that of a much more complicated network of integrate-and-fire neurons

when the network is responding to a steady, statistically stationary input. In general when

the activities of neurons in a network are not highly correlated and spiking is asynchronous

the dynamics of a spiking model can be approximated well by a rate model, though not

necessarily a linear one (Brunel 2000, Lerchner et al. 2006, Shriki et al. 2003, Sompolinsky

and White 2005).
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Chapter 2

Multiplicative Gain Changes

The material in this chapter was published in the Journal of Neuroscience as:

Multiplicative Gain Changes Are Induced By Excitation or Inhibition Alone

Brendan K. Murphy1 and Kenneth D. Miller1,2

2Depts. of Physiology and Otolaryngology
1Biophysics Graduate Program
1W.M. Keck Center for Integrative Neuroscience
2Sloan-Swartz Center for Theoretical Neurobiology at UCSF

University of California

San Francisco, CA 94143-0444

Email: murphy@phy.ucsf.edu, ken@phy.ucsf.edu

Abstract

We model the effects of excitation and inhibition on the gain of cortical neurons.

Previous theoretical work has concluded that excitation or inhibition alone will not cause a

multiplicative gain change in the curve of firing rate vs. input current. However, such gain

changes in vivo are measured in the curve of firing rate vs. stimulus parameter. We find

that when this curve is considered, and when the non-linear relationships between stimulus

parameter and input current and between input current and firing rate in vivo are taken

into account, then simple excitation or inhibition alone can induce a multiplicative gain

change. In particular, the power-law relationship between voltage and firing rate that is
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induced by neuronal noise is critical to this result. This suggests an unexpectedly simple

mechanism that may underly the gain modulations commonly observed in cortex. More

generally, it suggests that a smaller input will multiplicatively modulate the gain of a larger

one when both converge on a common cortical target.

2.1 Introduction

Gain modulation is a roughly multiplicative or divisive change in a neuron’s tuning

curve to one stimulus parameter as some other parameter or state is modified. Such gain

changes are frequently observed in the responses of cortical neurons, and are thought to

play an important role in neural computations (reviewed in Salinas and Thier 2000). A

particularly well studied example exists in monkey posterior parietal cortex, where the

responses of neurons to the retinal position of a visual stimulus are multiplicatively scaled by

eye position (Andersen and Mountcastle 1983, Andersen et al. 1985). Similar modulation of

responses by eye position is seen in a variety of visual areas (Boussaoud et al. 1993, Bremmer

et al. 1997b, Galletti and Battaglini 1989, Trotter and Celebrini 1999). This gain modulation

has been proposed to underlie coordinate transforms computed by these neurons, which are

necessary for visually guided reaching (Pouget and Sejnowski 1997, Pouget and Snyder 2000,

Salinas and Abbott 2001, 1995, Zipser and Andersen 1988). Gain modulations have also

been observed in the enhancement of neural responses by attention. McAdams and Maunsell

(1999a) showed that attention can increase the gain of the orientation tuning curves of

neurons in areas V1 and V4 of macaque visual cortex, while Treue and Martinez-Trujillo

(1999) found that attention increases the gain of direction tuning curves in macaque area

MT. Modulation of responses in V1 by stimuli outside the classical receptive field appears

to be divisive in character(Cavanaugh et al. 2002, Muller et al. 2003, Palmer and Nafziger

2002). Gain modulation can also be induced pharmacologically: Fox et al. (1990) found

that by iontophoretically applying NMDA to neurons in cat V1, they could increase the

gain of the neuron’s contrast response curve.

Despite the apparent importance of multiplicative gain modulation in the cortex,

the mechanisms responsible for producing such gain changes are not well understood (but,

see Chance et al. 2002, Doiron et al. 2001, Fox and Daw 1992, Mel 1993, Salinas and Abbott

1996, Smith et al. 2002, Srinivasan and Bernard 1976). In particular, it has been concluded

that simple excitation or inhibition alone cannot achieve a gain change (e.g. Chance et al.
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2002, Holt and Koch 1997), except at low firing rates (Doiron et al. 2001). Instead, it

has recently been shown that concurrent, balanced increases in background excitation and

inhibition together, which cause an increase in current noise and in conductance with no

net depolarization or hyperpolarization, can serve to divisively decrease gain (Chance et al.

2002). These conclusions were based on examining the gain of the relationship between

injected current and firing rate. However, multiplicative gain changes in cortex in vivo

are observed in the relationship between a stimulus parameter and firing rate. Here we

consider the non-linear relationship between stimulus parameter and injected current, as

well as the non-linear relationship between injected current and firing rate. We show that

multiplicative gain changes arise robustly from the simple addition of excitation or inhibition

alone, provided the modulating excitation or inhibition is small relative to the peak of the

tuning curve of the driving excitation. That is, the observed cortical gain changes can be

induced if the modulating influence simply adds or subtracts excitation or inhibition.

An important part of our model is the large background synaptic conductances to

which neurons are subject in vivo, which give rise to a noisy sub-threshold membrane po-

tential (Anderson et al. 2000b, Destexhe and Paré 1999). A noisy sub-threshold membrane

potential in turn gives rise to an expansive power law relationship between the average

membrane potential and the firing rate of a neuron (Hansel and van Vreeswijk 2002, Miller

and Troyer 2002). This non-linear relationship between voltage, or input current, and firing

rate, along with the non-linear relationship between stimulus parameter and input current,

together cause excitation or inhibition alone to yield roughly multiplicative gain changes in

neuronal responses. We demonstrate this using both numerical simulations and a simple

analytical model.

2.2 Methods

We simulate a cortical neuron using two models: a conductance-base, integrate-

and-fire model and a Hodgkin-Huxley type model.

2.2.1 Integrate-and-Fire Model

The integrate-and-fire model is described by the following equation:

C
dV

dt
= gleak(Eleak − V ) +

∑
i

gi(Ei − V ) + Iinj (2.1)
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where C is the capacitance, gleak is the leak conductance, Eleak is the resting membrane po-

tential, Iinj is the injected current, and the gi are conductances with corresponding reversal

potentials Ei. When the voltage reaches the spike threshold Vthresh, it is reset to Vreset and

held there for a refractory period trefract.

The parameters for the integrate-and-fire model and its synaptic and noise cur-

rents were selected to match cortical properties, primarily in the course of previous work

(Krukowski and Miller 2001, Palmer and Miller 2002, Troyer and Miller 1997, Troyer et al.

1998) but with minor adjustments in the present work. In particular the parameters were

designed without reference to (and before obtaining) the results presented in this paper.

The values for the following parameters are the same in each simulation: gleak = 10nS,

C = 488pF , Eleak = −70mV , Vthresh = −54mV , Vreset = −60mV , and trefract = 1.7ms. The

value of C was chosen so that, after taking into account additional background (noise) con-

ductances described below, the resting membrane time constant is 20mS. This is consistent

with values of 15− 24ms observed in vivo for cortical neurons (Hirsch et al. 1998).

There are two excitatory synaptic conductances, NMDA and AMPA, and two

inhibitory synaptic conductances, GABAA and GABAB. Their reversal potentials are

ENMDA = 0mV , EAMPA = 0mV , EGABAA
= −70mV , and EGABAB

= −90mV . The

NMDA conductance is voltage-dependent in accordance with the model described in Jahr

and Stevens (1990), using [Mg++] = 1.2 mM. The voltage we use to compute the NMDA

conductance is the “shadow voltage”, Vs. Vs is obtained by integrating the membrane po-

tential continuously in time in the absence of a spike threshold, e.g. it is not reset when

it reaches the spike threshold. This is meant to approximate the potential experienced by

NMDA channels located on the dendrites of the neuron, and to eliminate discontinuities

in the conductance at spike times. This model yields an NMDA conductance that is 3.7%

of maximum at the resting potential of the neuron (where maximum is defined to be the

conductance at a voltage of 100 mV) and 10.6% of maximum when Vs = −51mV (the

largest in this study).

The time courses of AMPA, GABAA, and GABAB conductances following pre-

synaptic action potentials are modeled as a difference of single exponentials:

g(t) =
∑
∆tj

ḡ
(
e−∆tj/τ fall − e−∆tj/Tr

)
(2.2)

Here ∆tj is defined as (t− tj), where tj is the time of the jth pre-synaptic action potential

and tj < t. Time constants are Tr AMPA = 0.25ms, τ fall
AMPA = 1.75ms, Tr GABAA

= 0.75ms,
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τ fall
GABAA

= 5.25ms, Tr GABAB
= 40ms, and τ fall

GABAB
= 80ms. Parameters for GABAergic

synaptic conductances are set to roughly match experimental data (Benardo 1994, Connors

et al. 1988). NMDA conductances decay as a double exponential with a fast and slow

component:

g(t, Vs) =
∑
∆tj

ḡ(Vs)
(
ffaste

−∆tj/τ fall
fast + fslowe−∆tj/τ fall

slow − e−∆tj/Tr
)

(2.3)

Parameters for NMDA conductances are taken from experimental data for adult rats (Carmignoto

and Vicini 1992): τ fall
fast = 63ms, τ fall

slow = 200ms, ffast = 0.88, and fslow = (1 − ffast). We

set Tr NMDA = 5.5ms to match the experimentally observed 10-90% rise time for NMDA

receptor mediated post synaptic currents (Lester et al. 1990).

The size of synaptic conductances evoked by pre-synaptic action potentials are

set in terms of their total conductance integrated over time in units of nS · ms. The

relative strengths of AMPA and NMDA conductances are set to match those observed

in thalamocortical slices (Crair and Malenka 1995). This, along with [Mg++]= 1.2 mM,

yields the result that, at Vthresh, the time integrated conductance for NMDA is 2.57 times

that of AMPA. The AMPA conductance evoked by a single excitatory pre-synaptic action

potential is set to 2.8 nS ·ms. At Vthresh, the evoked NMDA conductance is 7.2 nS ·ms.

The GABAA conductance resulting from a single inhibitory pre-synaptic action potential

is set to 8 nS ·ms, and the GABAB conductance to 2 nS ·ms.

In addition to the above described synaptic conductances, the model includes two

fluctuating background conductances, an inhibitory conductance gI(t) with Erev = −80mV

and an excitatory conductance gE(t) with Erev = 0mV . These conductances are meant

to simulate the background synaptic input received by cortical neurons in vivo. They are

produced by an Ornstein-Uhlenbeck process, as described in Destexhe et al. (2001):

dg(t)
dt

=
g0 − g(t)

τ
+ χ(t)

√
σ2

τ
(2.4)

where g0 is the mean conductance, τ is a noise time constant, σ2 is the variance of the

conductance, and χ(t) is a Gaussian random variable with zero mean and a standard de-

viation of one. Parameters were chosen by beginning with the parameters used in Palmer

and Miller (2002), and adjusting these to produce membrane potential fluctuations of about

5mV at rest and a rest potential of about -70mV. This is in accordance with recordings from

cortical cells in vivo (Anderson et al. 2000b). For the inhibitory background conductance,
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g0 = 12.0nS, τ = 34.1ms, and σ = 4.3nS. For the excitatory background conductance,

g0 = 2.4nS, τ = 34.1ms, and σ = 2.4nS. The noise time constant of 34.1 ms was chosen

to cause the power spectrum of the voltage noise to match that seen in experimental data

generously shared with us by Jeff Anderson and David Ferster (this matching was per-

formed by S.E. Palmer in the lab of KDM, Palmer and Miller 2002). The mean background

conductance, combined with gleak, gives the cell a resting input resistance (R) of 41MΩ.

The capacitance (C) is set to give the cell a resting membrane time constant (τm = RC) of

20ms.

2.2.2 Hodgkin-Huxley Model

Simulations of a more biophysically detailed single compartment model were pro-

duced using the NEURON simulation environment(Hines and Carnevale 1997). This model

includes fluctuating background conductances produced by an Ornstein-Uhlenbeck process,

voltage dependent sodium and potassium conductances to model action potentials, and a

non-inactivating potassium conductance responsible for spike frequency adaptation as de-

scribed in Destexhe et al. (2001) for a single compartment neuron model. Parameters for

the model were taken from Destexhe et al. (2001): gleak = 0.045mS/cm2, Eleak = −80mV ,

C = 1µF/cm2. For the inhibitory background conductance, g0 = 57.0nS, τ = 10.5ms,

and σ = 15.84nS. For the excitatory background conductance, g0 = 12nS, τ = 2.7ms,

and σ = 7.2nS. The densities of voltage dependent sodium and potassium channels are

480pS/µm2 and 100pS/µm2 respectively. The density of spike adaptation potassium chan-

nels is 3pS/µm2. The surface area of the simulated neuron is 34636µm2.

The model also includes a hyperpolarization-activated conductance (Ih) with ki-

netics modeled as in Migliore (2003). This conductance has a reversal potential of −43mV

(Stuart and Spruston 1998) and a density of 0.05mS/cm2.
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2.3 Results

Our results are divided into three sections. First we will present the results of a

series of numerical simulations of a single model neuron of the visual cortex. The model

neuron is a conductance-based integrate-and-fire neuron. Its input includes noise conduc-

tances designed to match voltage noise observed in vivo (Anderson et al. 2000b), which

make the RMS voltage noise about 5 mV. In the second section we will provide a simpli-

fied, but more intuitive, analytical model of the neuron which illustrates the generality and

robustness of the results obtained with the integrate-and-fire model. Finally, to further

illustrate the robustness of the results, we will show that the assumptions of the analyti-

cal model and the results of the integrate-and-fire model all hold for a more biophysically

detailed Hodgkin-Huxley type model neuron that also receives noise conductances. This

model includes conductances responsible for spike generation and spike frequency adapta-

tion, as well as a sub-threshold hyperpolarization-activated conductance (Ih). We will refer

to the two numerical models as either the integrate-and-fire model or the Hodgkin-Huxley

model.

Gain is defined here as the slope of a plot of a stimulus parameter, such as contrast

or orientation, versus the response of the neuron. A pure gain change is one in which the

curve of response vs. stimulus parameter is multiplicatively scaled, so that the gain is scaled

by a constant factor for all values of the stimulus parameter.

2.3.1 Integrate-and-Fire Simulations

Contrast Response Curve Gain

Neurons in the visual cortex respond to stimuli of increasing contrast with an

increasing firing rate. Plots of contrast versus firing rate are often well fit by a hyperbolic

ratio function (Albrecht and Hamilton 1982, Sclar et al. 1990):

R = Rmax

(
Cn

Cn + C n
50

)
+ S (2.5)

where C is the contrast, R is the firing rate, S is the spontaneous activity, and C50 is the

contrast that gives a half maximal firing rate. We will refer to a plot of contrast versus

firing rate as a Contrast Response (CR) curve. The gain of the neuron is the slope of the

CR curve.



15

We assume that our model neuron receives a stimulus-driven excitatory Poisson

input. The rate of this input is a hyperbolic ratio function of stimulus contrast, with

Rmax = 2000hz, C50 = 0.133, n = 1.2, and S = 0. This is designed to model synaptic

input from an earlier stage of visual processing. We then study how the gain of the model

neuron’s response to the stimulus is altered by additional excitation or inhibition in the

form of glutamate or GABA receptor binding drugs or direct injected current.

Iontophoresis We model iontophoretic application of drugs binding to NMDA, AMPA,

GABAA or GABAB receptors by opening a constant conductance of the appropriate type,

and study the effects on the neuron’s CR curve (Fig. 2.1A).
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Figure 2.1: Pharmacologically induced changes of contrast response curve gain.
(A) Plot of contrast versus firing rate for the model neuron without drugs (open circles),
and with iontophoretic NMDA (open squares), AMPA (open triangles), GABAA (closed
squares), or GABAB (closed triangles) applied. Each data point represents an average of
twenty 60 second trials. Solid lines are fits of the data to a hyperbolic ratio function (Eq.
2.5). Parameters for the fits were obtained using a non-linear least squares algorithm and
are given in Table 2.1. (B) Curves from A scaled to optimally (least squares) fit the Base
curve.

We first simulated the iontophoresis of NMDA onto the neuron by opening a

constant NMDA conductance equivalent to 10 nS if the neuron were held at +100 mV.

Because of the voltage dependence of NMDA channels, the mean iontophoretic NMDA
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conductance is 0.48 nS at zero contrast and increases to 1.1nS at maximum contrast. This

conductance increased the firing rate of the model neuron at all contrasts. Maximum firing

rate (at C = 1.0) increased to 50Hz from 34Hz in the baseline curve. The firing rate

at C = 0.0 increased to 0.96Hz from 0.26Hz. This corresponds to a 46% increase in the

average slope of the CR curve. One might imagine that this slope increase is caused by the

voltage dependent increase of the NMDA conductance. However, when we simulated the

iontophoresis of AMPA by opening a constant 1.0nS AMPA conductance, we observed a

similar increase in firing rates. Maximum firing rate increased to 48Hz, and the firing rate

at C = 0.0 increased to 0.81Hz. The average slope of the CR curve increased by 40%. Since

the AMPA conductance is not voltage dependent, this implies another mechanism of gain

change.

We next simulated the iontophoresis of inhibitory drugs binding to GABAA or

GABAB receptors. In both cases the firing rate of the model neuron was reduced at all

contrasts. A constant 2.0nS GABAA conductance decreased the maximum firing rate from

34Hz to 28Hz, and the firing rate at C = 0.0 from 0.26Hz to 0.15Hz. The average slope

of the CR curve decreased by 17%. A constant 2.0nS GABAB conductance had a larger

effect, decreasing the maximum firing rate to 20Hz and the firing at C = 0.0 to 0.06Hz.

The average slope decreased by 41%. The different effects of GABAA and GABAB can be

attributed to their different reversal potentials.

We scaled the iontophoretic CR curves to optimally fit the baseline curve (Fig. 2.1B).

The overlap of the scaled CR curves indicates that changes in firing rate caused by ion-

tophoretic conductances are very close to pure, multiplicative gain changes. Nonetheless,

there are clearly systematic deviations from a purely multiplicative scaling. These devi-

ations are made more clear by analyzing the fits of the CR curves to hyperbolic ratio

functions (shown as solid lines in Fig. 2.1A). Fit parameters are given in Table 2.1. The

most significant of these deviations are left and right shifts of the CR curve, indicated by

changes in C50 (from Eq. 2.5). NMDA and AMPA conductances shifted the baseline curve

left, decreasing C50 by 11% and 13% respectively. GABAA and GABAB shifted the curve

right, increasing the baseline C50 by 6% and 17% respectively. NMDA and AMPA also

increased spontaneous activity (C = 0.0) somewhat, while GABAA and GABAB reduced

it.
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Rmax C50 n S Scale
Base 39.5 0.325 1.66 0.0600 1.00
NMDA 56.5 0.290 1.61 0.452 1.50
AMPA 54.1 0.280 1.58 0.632 1.46
GABAA 32.5 0.346 1.71 -0.0294 0.800
GABAB 24.0 0.381 1.78 -0.0760 0.565

Table 2.1: Values of the fit parameters for the solid lines in Fig. 2.1A, and the scale factors
used in Fig. 2.1B. Parameters are defined in Eq. 2.5.

Injected Current In our model, iontophoresis causes both polarizing ionic current and

changes in conductance. The conductance changes are small relative to the neuron’s mean

resting conductance of about 24nS, rendering it unlikely that the conductance changes are

a significant cause of the gain change. However, to directly separate the effects of injected

current and conductance change, we next simulated the direct injection of current into the

model neuron.

The effects of current injection on CR curves are very much like the effects of

iontophoretic drugs (Fig. 2.2). Injection of depolarizing current into the neuron has effects

similar to an iontophoretic AMPA or NMDA conductance. 50 pA of current increased the

maximum firing rate from 34Hz to 47Hz, and the firing rate at C = 0.0 from 0.26Hz to

0.73Hz. The average slope of the CR curve increased by 37%. Conversely, injection of hyper-

polarizing current has effects similar to an iontophoretic GABAA or GABAB conductance.

-50 pA of current decreased the maximum firing rate to 24Hz, and the firing rate at C = 0.0

to 0.09Hz. The average slope of the CR curve decreased by 29%.

The changes in firing rate caused by injected current are close to purely multiplica-

tive gain changes (Fig. 2.2B). Deviations from purely multiplicative changes are indicated

by the fit parameters in Table 2.2. These deviations are in the same direction and of similar

magnitude to those seen above for iontophoresis. Positive current shifted the baseline CR

curve left, decreasing C50 by 12%. Negative current shifted the curve right, increasing the

baseline C50 by 12%. These results imply that polarizing current, and not a change in

conductance, is the primary factor responsible for changing the gain of the model neuron.

Our model of the effects of injecting current can be directly compared to existing

in vivo data. Sanchez-Vives et al. (2000) examined the effect on visual cortical contrast

response curves of injecting a hyperpolarizing current into the cell (Fig. 2.3A). Effects in
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Figure 2.2: Current induced changes of contrast response curve gain. (A) Plot of
contrast versus firing rate for the model neuron without injected current (circles) and with
+50 pA (squares) or -50 pA (triangles) of current injected. Each data point represents an
average of twenty 60 second trials. Solid lines are fits of the data to a hyperbolic ratio
function (Eq. 2.5). Parameters for the fits are given in table 2.2. (B) Curves from A scaled
to optimally (least squares) fit the Base curve.

Rmax C50 n S Scale
Base 39.5 0.325 1.66 0.0600 1.00
+50 pA 52.7 0.285 1.59 0.536 1.41
-50 pA 27.7 0.365 1.76 -0.0751 0.667

Table 2.2: Values of the fit parameters for the solid lines in Fig. 2.2A, and the scale factors
used in Fig. 2.2B. Parameters are defined in Eq. 2.5.
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the model are strikingly similar (Fig. 2.3B). The simulation produces a more purely multi-

plicative effect than is seen in the average experimental data (Fig. 2.3,D), but the deviations

are in the same directions in simulation as in the data. In particular, the hyperpolariza-

tion induces a statistically significant (Sanchez-Vives et al. 2000) increase in C50 in the

experimental data, as predicted by the model. It should be noted that the experimental

data is averaged over many cells; if each cell were modulated multiplicatively but different

cells had different contrast response curves and were modulated by different factors, then

the modulation of the average would not be purely multiplicative. Thus it is possible that

individual cells show a more purely multiplicative effect than the average data. In any case,

the overall resemblance suggests that our simple model gives a reasonable representation of

neurons in vivo.

Tuning Curve Gain

A number of influences, including attention and eye position, have been shown

to change the gain of tuning curves in cortex. Although the mechanisms by which these

gain changes occur are not clear, we will now demonstrate that, in our model neuron, one

synaptic input can modulate the gain of the response to another. To do so we introduce

two Poisson inputs to the neuron. The first is an excitatory driving input whose rate R is

a Gaussian function of an arbitrary stimulus parameter θ:

R(θ) = Rmax exp
(
− θ2

2σ2

)
+ S (2.6)

The second is a modulatory input, either excitatory or inhibitory, whose rate is independent

of θ. For the driving input, σ = 1.0, Rmax = 2000Hz, and S = 0Hz.

We constructed tuning curves for the model neuron by plotting average firing rate

versus θ, with and without modulatory inputs (Fig. 2.4A). The driving input alone produced

a maximum firing rate at θ = 0.0 of 41Hz, and a minimum firing rate at θ = ±3 of 0.29Hz.

We then added modulatory inputs to the neuron. A 250Hz excitatory input increased the

firing rate of the neuron for all values of θ. The maximum response increased to 55Hz, and

the firing rate at θ = ±3 increased to 0.86Hz. A 250Hz inhibitory input decreased the firing

rate of the model neuron for all values of θ. The maximum firing rate decreased to 31Hz,

and the firing rate at θ = ±3 decreased to 0.12Hz.

We scaled the tuning curves with modulatory input to best fit the baseline tuning

curve (Fig. 2.4B). As in Figs. 2.1 and 2.2, the tuning curves with modulatory input can be
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Figure 2.3: Model matches the effects of hyperpolarizing current on contrast
reponse curve gain in vivo. (A) Replotted data from Sanchez-Vives et al. (2000),
Fig. 12A, demonstrating the effects of hyperpolarizing injected current on the contrast
response functions of neurons in primary visual cortex. Circles: curves with no injected
current. Triangles: curves with hyperpolarizing current injected. (B) Our simulated CR
curves. Control curve (circles) uses input parameters Rmax = 1400Hz, C50 = 0.08, n = 1.6,
and S = 600Hz, designed to reproduce control curve in A. Curve with hyperpolarizing
current (triangles) used current of -90 pA, designed to produce a similar reduction of Rmax

as in A. Each data point represents an average of twenty 60 second trials. (C,D) Plots
from A and B with the hyperpolarized curve scaled to optimally (least squares) match the
control curve. Data in (A) are averages over multiple cells studied over four octaves of
contrast; we have plotted the four octaves as 5% to 80%. Solid lines are fits of the data
to a hyperbolic ratio function (Eq. 2.5). Fit parameters for the model are Rmax = 39Hz,
C50 = 0.13, n = 1.8, and S = 2.3Hz without and Rmax = 24Hz, C50 = 0.15, n = 1.9,
and S = 0.6Hz with hyperpolarizing current. Fit parameters for the experimental data are
Rmax = 38Hz, C50 = 0.15, n = 1.9, and S = 3.7Hz without and Rmax = 24Hz, C50 = 0.2,
n = 2.5, and S = 1.8Hz with hyperpolarizing current.
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Figure 2.4: Tuning curve gain is multiplicatively modulated by excitatory or
inhibitory synaptic input. (A) Plot of the tuning parameter in Eq. 2.6 versus firing
rate for the model neuron without modulatory input (circles) and with a modulatory 250
Hz excitatory (squares) or 250 Hz inhibitory (triangles) Poisson input. Each data point
represents an average of twenty 60 second trials. Solid lines are fits of the data to a Gaussian
function (Eq. 2.6). Parameter values for the fits are given in table 2.3. (B) Curves from A
scaled to optimally (least squares) fit the Base curve.



22

scaled to nearly fit the baseline curve. Parameters for Gaussian fits of the data in Fig. 2.4A

are given in Table 2.3. These fits show that in addition to the multiplicative scaling,

there are systematic changes in the width of the tuning curve caused by modulatory input.

Excitatory modulation caused an 8% increase in the width of the tuning curve. Inhibitory

modulation caused a 6% decrease in the width of the tuning curve.

Rmax σ S Scale Factor
Base 41.0 0.622 0.508 1.00
250hz Exc 54.3 0.669 1.14 1.39
250hz Inh 30.4 0.588 0.235 0.715

Table 2.3: Values of the fit parameters for the solid lines in Fig. 2.4A, and the scale factors
used in Fig. 2.4B. Parameters are defined in Eq. 2.6.

Results obtained by injecting constant current, instead of adding a modulatory

Poisson input, are very similar (data not shown). None of the modulatory inputs used in

any of these simulations had an affect on the response variability of the model neuron as

measured by the coefficient of variation of inter-spike intervals.

Although we have chosen the parameters for the integrate-and-fire model carefully

in order to match the experimentally measured properties of cortical neurons, our results

do not depend on the detailed parameters of the simulations. For example, nothing qual-

itatively changes if the membrane time constant is doubled or halved (by correspondingly

changing the capacitance), or if the stimulus-dependent Poisson input is replaced by an

injected current (so long as the current’s amplitude remains the same non-linear function

of the stimulus parameter). The reason for this robustness is illustrated by the following

simple analytical model, which shows the more general conditions required for these results

to hold.

2.3.2 Analytical Model

We express the neuron’s state in terms of the shadow voltage, defined to be the

voltage the neuron would have if it did not spike or undergo post-spike voltage resets. The

effect of the voltage noise in the model neuron is to make the neuron’s firing rate f depend

on its mean shadow voltage V as a power law (Hansel and van Vreeswijk 2002, Miller and

Troyer 2002) (Fig. 2.5):

f = kV α (2.7)
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Figure 2.5: Firing rate is a power law function of mean voltage A plot of the average
shadow voltage versus firing rate (circles) for the model neuron driven by an excitatory
Poisson input (the same input as the Base curve in Fig. 2.1). Each data point represents
an average of twenty 60 second trials. The voltage axis is shifted such that Vrest is 0mV.
The solid line is a fit of f = kV α to the data, with k = 0.0025 Hz/[mV]α and α = 3.4. The
shadow voltage is the voltage the neuron would have if spiking and post-spiking reset were
ignored, see text.
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Here, α is about 3.4. Furthermore the shadow voltage is linear in the mean input, so it can

be thought of as a function of a driving input and a modulatory input:

V = d(p) + m (2.8)

The modulatory input m is a constant, while the driving input d(p) is a function of an

input parameter p. In our numerical simulations p corresponds to either contrast or the

tuning parameter θ. Likewise m corresponds to iontophoretic application of drugs, injected

current, or modulatory synaptic inputs. Using these two equations we obtain an expression

for firing rate with respect to d(p) and m:

f = k
(
d(p) + m

)α
(2.9)

This equation is already sufficient to largely explain the results of our simula-

tions. Letting d(p) be a sigmoid (Fig. 2.6A) or a Gaussian (Fig. 2.6B), we can compare

k
(
d(p)

)α
(solid lines in Fig. 2.6) to k

(
d(p) + m

)α
for positive m, renormalized to best

match k
(
d(p)

)α
(dotted lines in Fig. 2.6). Here, positive m represents an excitatory modu-

latory input. We find that the effect of excitatory modulation is to approximately multiply

a sigmoidal contrast response curve, but with a slight left-shift of the curve (Fig. 2.6A); and

to approximately multiply a Gaussian tuning curve, but with a slight widening of the curve

(Fig. 2.6B). In both cases, the result of the simple model given by Eq. 2.9 is essentially

identical to the results of the integrate-and-fire simulations.

To further understand why Eq. 2.9 leads to a gain change, we define the gain as

the derivative of the firing rate with respect to the input parameter. Taking the derivative

of Eq. 2.9 with respect to p we obtain an expression for the gain:

∂f

∂p
= kα

(
d(p) + m

)α−1 ∂d(p)
∂p

(2.10)

Because α > 1 the gain is directly related to the modulatory input, m.

However, Chance et al. (2002) point out that a change in ∂f
∂p for a given p can arise

from either a “true” gain change, or a simple left or right shift of the non-linear f versus p

curve. To distinguish between these two cases they plot ∂f
∂p versus f . Using Eq. 2.9 we can

rewrite Eq. 2.10 as:
∂f

∂p
= kα

(
f

k

)α−1
α ∂d(p)

∂p
(2.11)
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Figure 2.6: A simple analytical explanation of gain changes. Plots of Eq. 2.9 with
α = 3.4 and k = 1.0 Hz/[mV]α. The solid lines correspond to a plot of d(p) with m = 0mV,
and the dashed lines correspond to m = 0.15mV. The dotted lines are the m = 0.15mV
curves optimally (least squares) scaled to fit the m = 0mV curves. (A) d(p) is a hyperbolic
ratio function with C50 = 0.133, n = 1.2, and Rmax = 1.0mV. (B) d(p) is a Gaussian with
σ = 1.0, and an amplitude of 1.0mV.
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When d(p) is linear in p, ∂d(p)
∂p is a constant. Therefore ∂f

∂p has no dependence on m, and

changes in modulatory inputs (m) do not affect the gain. This can be seen more directly

from Eq. 2.9: if d(p) = ap+b, then f = k (ap + b + m)α, so that m simply left- or right-shifts

the curve of f vs. p without changing its shape. In Chance et al. (2002) the driving input is

an injected current, and d(p) is a linear function of p. In our results, and in many biologically

relevant situations, d(p) is not linear. In this case ∂d(p)
∂p in Eq. 2.11 is not constant, but

depends on p; when reexpressed in terms of f , there will also be a dependence on m. That

is, the value of ∂f
∂p as a function of f depends on m. Thus changes in modulatory inputs do

not simply shift the f versus p curve, they change its gain – its slope for a given value of f .

The gain changes observed in our numerical simulations are very nearly multiplica-

tive – the slope at each point is changed by roughly the same factor. The above arguments

explain why there should be a gain change, but not why it should be nearly multiplicative.

To make this more clear it is useful to look at the expansion of Eq. 2.9 to first order in m
d(p) :

k
(
d(p) + m

)α
≈ k

(
d(p)α + αmd(p)α−1

)
(2.12)

With no modulatory input, m = 0, the firing rate is simply kd(p)α. If a non-zero modulatory

input had a purely multiplicative effect on firing rate we would expect it to add to the firing

rate an amount proportional to d(p)α. Equation 2.12 shows that a non-zero m actually

adds an amount proportional to d(p)α−1. Thus the multiplicative effects of modulatory

inputs in our model depend on d(p)α−1 being similar in shape to d(p)α, which in turn

depends on α being substantially larger than 1. Of course, d(p)α and d(p)α−1 cannot be

perfectly identical in shape unless d(p) is a constant, so small discrepancies from a perfectly

multiplicative scaling are predicted; similar discrepancies are seen in some experimental

results, as addressed in the Discussion.

From the inputs represented in our simulations the relationship between d(p)α

and d(p)α−1 is most easily seen when d(p) is a Gaussian function. In this case d(p)α =

exp(−α p2

2σ2 ) and d(p)α−1 = exp(−(α− 1) p2

2σ2 ). So when m = 0 the firing rate of the neuron

is a Gaussian, which is narrower than the Gaussian input d(p) by a factor of
√

α. A positive

m adds an amount proportional to a slightly wider Gaussian (narrower than the Gaussian

input by a factor of
√

α− 1). This produces a new tuning curve that is multiplicatively

scaled and wider than the curve with m = 0 by an amount that depends on m and α. The

width should increase by an amount no less than zero, and no more than a factor of
√

α√
α−1

.

For α = 3.4 the width should increase no more than 19%, which is consistent with results
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from the integrate-and-fire simulation in which modulatory excitation increased the width

of the tuning curve by 8%, and consistent with the slight widening observed in Fig. 2.6B.

The relationship between d(p)α and d(p)α−1 is less clear when d(p) is a hyperbolic

ratio function. However, it is easy to show that if d(p) ∝ Cn

Cn+C n
50

, then [d(p)]α reaches its

half-maximum at C = C n
50

[2
1
α−1]

1
n

, which increases with increasing α. That is, d(p)α−1 should

reach its half-maximum at a slightly lower value of C than d(p)α, so that adding d(p)α−1 to

d(p)α should cause a slight left-shifting of the sigmoid curve. This is the result of excitatory

modulation as seen in simulations and in Fig. 2.6A.

The approximation in Eq. 2.12 is justified in cases when m
d(p) is small. Clearly

this is not always the case in our simulations; for instance, d(p) goes to zero when contrast

is zero. In this case the value of the function goes to kmα, and the relative error of the

approximation is very large. However, as long as m is sufficiently small, the absolute error is

small, and the approximation is useful. The usefulness of this approximation in describing

our numerical results is demonstrated in Fig. 2.7, which plots the right hand side of Eq. 2.12

using values for d(p) and m taken from our integrate-and-fire simulations. d(p) is simply the

mean shadow voltage (without modulatory inputs) of the model neuron in the simulated

CR and tuning curves. m is the mean difference between the shadow voltage of the neuron

with a modulatory input and the baseline. The firing rates reconstituted using Eq. 2.12

(Fig. 2.7, solid lines) correspond well with the actual firing rates in the integrate-and-fire

simulations (Fig. 2.7, symbols). This indicates that this approximation is a reasonable one

for describing these simulations.

The analytical model assumes that inputs cause additive changes in the shadow

voltage. This is true for input currents. However, input conductances need not translate

additively into input currents. In order to completely describe the effects of an input

conductance, one has to consider reversal potential effects by which the current flowing

through a conductance depends not only on the size of the conductance but also on the

driving force. As such, the analytical model does not completely account for the effects of

conductances, particularly shunting inhibitory conductances with reversal potentials close

to rest. Nonetheless, we have found that shunting (GABA-A) conductances behave similarly

to injected currents in our numerical model, causing multiplicative changes in the curve of

stimulus parameter vs. firing rate. This is probably because, over the range of shadow

voltages for which the neuron’s firing rate is significantly different from zero, the changes



28

Contrast

R
at

e 
[H

z]
0

10
20

30
40

50
60

0.0 0.4 0.8

●

●

●

●
●

●
●

●
●●●●●

● Base
+50 pA
−50 pA

A

Tuning Parameter

R
at

e 
[H

z]
0

10
20

30
40

50
60

−2 0 2

●●●●
●

●

●

●

●

●

●

●

●

●

●
●●●●

● Base
Exc
Inh

B

Figure 2.7: Comparision of the analytical model to simulations. Comparison of
predictions of Eq. 2.12 (solid lines) to results of simulations (symbols). Solid lines are plots
of the right hand side of Eq. 2.12 using values for d(p) and m taken from the numerical
simulations. d(p) is the mean shadow voltage of the baseline curve without modulation.
m is the mean difference between the shadow voltage of the curve with modulation and
the baseline curve. Symbols are repeated from Figs. 2.2A and 2.4A. (A) d(p) and m taken
from CR curves generated by numerical simulation (Fig. 2.2). (B) d(p) and m taken from
tuning curves generated by numerical simulation (Fig. 2.4). Circles: tuning curves without
modulatory input. Squares: tuning curves with 50 pA injected current (A) or with 250 Hz
excitatory Poisson input (B). Triangles: tuning curves with -50 pA injected current (A) or
250 Hz inhibitory Poisson input (B).
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in the driving force are relatively small. Similar arguments (Holt and Koch 1997) lead to

the result that shunting conductances, like injected currents, have an additive effect on the

curve of input current vs. firing rate (Chance et al. 2002, Holt and Koch 1997).

We are arguing that addition of two inputs, followed by raising to a power, gives

an approximate multiplication. If the input-output function were an exponential (e.g.,

Gabbiani et al. 2002) rather than a power law, this relationship would be exact: ea+b = eaeb.

This raises the question whether a better analytic approximation to our results might be

given by an exponential rather than a power law. However, an exponential input-output

relationship for the stimulus-induced firing rate must have the form f = k(eV − 1) in order

that f = 0 when V = 0 (where 0 represents rest). We tried fitting a function of this

form to the neuron’s input-output relationship but the fit is visibly considerably worse than

that shown in Fig. 2.5 for a power law. Furthermore the fits to the simulation data using

this equation (equivalents of Figs. 2.6 and 2.7) are quite poor, particularly for excitatory

modulatory input. We conclude that the power law gives the better description of our

simulations.

The success of this simple analytical model in describing the more complex bio-

physical model used in simulations demonstrates the robustness of our results. The analyt-

ical model shows that achievement of multiplicative gain modulation depends on only two

features of the biophysical model: the shadow voltage should be a roughly linear function

of the mean input, and the output rate should be a power law of the shadow voltage with

an exponent significantly larger than 1. These are both attributes of a wide variety of

biophysical models with a wide variety of parameters. In particular, the robustness with

which noise induces a power law in a series of models has been demonstrated elsewhere

(Hansel and van Vreeswijk 2002, Miller and Troyer 2002), and we have also verified this:

the power α = 3.39 found in our integrate-and-fire model becomes α = 3.33 if only AMPA

and no NMDA is used for excitatory currents, α = 4.06 if the time constant is doubled and

α = 3.16 if the time constant is halved (the time constant was manipulated by changing

the capacitance), with excellent fits of a power law in all cases. The change in α with

a change in time constant is as expected theoretically: it has been shown that α should

primarily depend on the distance from rest to threshold in units of the standard deviation

of the noise (Miller and Troyer 2002); doubling the time constant decreases the noise and

hence increases this distance, which increases α, while halving the time constant increases

the noise and hence decreases this distance, which decreases α.
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Do these two features hold for real cortical neurons? The assumption that the

voltage of a neuron is approximately a linear sum of its inputs is often made, and indeed it

is under this assumption that a mechanism of gain modulation by inhibition or excitation

alone has proven elusive – if inputs can multiplicatively influence one another, multiplica-

tive gain modulations are likely to be easier to attain. Nonetheless our model provides

such a mechanism under the assumption of linear input summation. Much evidence ex-

ists that summation in cortical or hippocampal pyramidal neurons can be linear (Cash

and Yuste 1998, 1999, Jagadeesh et al. 1993, 1997). However, pyramidal neurons contain

voltage-dependent conductances that can affect the summation of inputs (reviewed in Reyes

2001) and can cause inputs to summate in a non-linear manner (Nettleton and Spain 2000,

Schwindt and Crill 1998, Wei et al. 2001). In addition, dendritic integration can be non-

linear, although nonlinear conductances can correct this and linearize dendritic integration

(Bernander et al. 1994, Cash and Yuste 1998, 1999). A recent modeling study suggests that

integration of multiple inputs on a single thin apical dendrite may be nonlinear, but that

integration between dendrites is remarkably linear (Poirazi et al. 2003a,b).

The second key assumption, of a power law relationship between voltage and firing

rate, seems likely to hold in many cortical neurons. This is a general outcome of the presence

of neural noise in a variety of neural models (Hansel and van Vreeswijk 2002, Miller and

Troyer 2002), and many studies indicate the presence of substantial voltage noise in cortex

(Anderson et al. 2000b, Arieli et al. 1996, Azouz and Gray 1999, Hô and Destexhe 2000,

Paré et al. 1998, Tsodyks et al. 1999). More specific evidence is provided by the finding of

Anderson et al. (2000b) that voltage noise can transform contrast-invariant voltage tuning

into contrast-invariant spiking tuning in visual cortical neurons. As shown by Miller and

Troyer (2002), a power law transformation from voltage to spiking rate is the only such

transformation that can achieve this, thus indicating that such a transformation is found

in visual cortical cells.

The above arguments suggest that the two assumptions of our model may hold

in many cortical cells. To provide further evidence that our proposed mechanism of gain

modulation can apply to real cortical neurons, we now present numerical simulations of a

model that includes some of the more detailed biophysical properties of cortical pyramidal

neurons.
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2.3.3 Hodgkin-Huxley Simulations

The Hodgkin-Huxley neuron model includes three potentially important conduc-

tances not present in our integrate-and-fire simulations: voltage activated spiking conduc-

tances, a spike frequency adaptation conductance, and a hyperpolarization-activated mixed

cation conductance Ih. To demonstrate that the mechanism of gain change we are propos-

ing is valid in this neuron model we will first show that the mean voltage of the neuron

is approximately a linear function of the input it receives, and that the firing rate of the

neuron is related to the mean voltage by a power law. We will then generate CR and

Gaussian tuning curves for the model neuron with and without modulatory inputs. These

curves are generated in the same way as the curves in the integrate-and-fire simulations pre-

sented above, but for simplicity the synaptic inputs (both modulatory and driving inputs)

have been replaced with constant excitatory (Erev = 0mV ) or inhibitory (Erev = −80mV )

conductances. Replacing these inputs with injected currents yields very similar results (not

shown).

Input-Output Relationship

A power law relationship between mean voltage and firing rate has been reported

previously for a Hodgkin-Huxley type model neuron (Hansel and van Vreeswijk 2002) with

a noisy membrane potential. We confirm that this relationship is also present in the model

neuron studied here (Fig. 2.8B). The mean voltage of the model neuron is related to the

output firing rate by a power law with α = 2.91 and k = 0.033. In addition we find that

the relationship between excitatory input conductance and mean voltage is roughly linear

over this range of output firing rate (Fig. 2.8A), although some deviation from linearity is

seen as voltage approaches threshold.

Contrast Response Curve

We construct a CR curve by introducing a stimulus driven excitatory conductance

whose magnitude is a hyperbolic ratio function of contrast with parameters Rmax = 20nS,

C50 = 0.133, n = 1.2, and S = 0 (see Eq. 2.5). The modulatory inputs do not vary with

contrast and are either a 3.5 nS excitatory conductance, or a 8.5 nS inhibitory conductance.

Modulatory inputs have an effect on the CR curve very similar to that in the

integrate-and-fire model (Fig. 2.9, compare to Fig. 2.2). A 3.5 nS excitatory conductance
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Figure 2.8: Relationships between input conductance, mean voltage, and firing
rate in the Hodgkin-Huxley model. (A) Plot of the input conductance versus average
voltage (circles) for the Hodgkin-Huxley model neuron. The solid line is a linear fit to the
data, with a slope of 0.528 mV/nS and an intercept of -67.7 mV. (B) Plot of the average
voltage versus firing rate (circles) for the Hodgkin-Huxley model neuron. The voltage axis is
shifted such that Vrest is 0mV. The solid line is a fit of f = kV α to the data, with k = 0.024
Hz/[mV]α and α = 2.98. In both A and B the input is the same as the Base curve in
Fig. 2.9. Each data point represents an average of ten trials, five seconds each.
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increased the maximum firing rate from 36 Hz to 49 Hz, and the firing rate at C = 0.0 from

0.7 Hz to 2.3 Hz. The average slope of the CR curve increased by 32%. A 8.5 nS inhibitory

conductance decreased the maximum firing rate to 25 Hz, and the firing rate at C = 0.0 to

0.18 Hz. The average slope of the CR curve decreased by 30%.
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Figure 2.9: Contrast response curve gain changes in the Hodgkin-Huxley model.
(A) Plot of contrast versus firing rate for the Hodgkin-Huxley model neuron without mod-
ulatory input (circles) and with 3.5 nS excitatory (squares) or 8.5 nS inhibitory (triangles)
modulatory conductances. Each data point represents an average of ten trials, five seconds
each. Solid lines are fits of the data to a hyperbolic ratio function (Eq. 2.5). Parameters
for the fits are given in table 2.4. (B) Curves from A scaled to optimally (least squares) fit
the Base curve.

The changes in firing rate caused by the modulatory inputs are close to purely

multiplicative gain changes (Fig. 2.9B). Deviations from purely multiplicative changes are

indicated by the fit parameters in Table 2.4. Excitatory modulatory conductance shifted

the baseline CR curve left, decreasing C50 by 19%. Inhibitory modulatory conductance

shifted the curve right, increasing the baseline C50 by 23%.

Tuning Curve

We construct a tuning curve by introducing a stimulus driven excitatory conduc-

tance whose magnitude is a Gaussian function of a stimulus parameter θ with parameters
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Rmax C50 n S Scale
Base 39.48 0.2463 1.546 0.4358 1
Exc 50.71 0.2005 1.459 2.179 1.401
Inh 28.04 0.3022 1.677 0.02561 0.6615

Table 2.4: Values of the fit parameters for the solid lines in Fig. 2.9A, and the scale factors
used in Fig. 2.9B. Parameters are defined in Eq. 2.5.

Rmax = 17.5nS, σ = 1.0, and S = 0Hz (see Eq. 2.6). The modulatory inputs were the same

as for the CR curve, a 3.5 nS excitatory conductance or an 8.5 nS inhibitory conductance.

Modulatory inputs have an effect on the tuning curve very similar to that in the

integrate-and-fire model (Fig. 2.10, compare to Fig. 2.4). The driving input alone produced

a maximum firing rate at θ = 0.0 of 33Hz, and a minimum firing rate at θ = ±2.5 of

0.7Hz. We then added modulatory inputs to the neuron. The excitatory modulatory input

increased the firing rate of the neuron for all values of θ. The maximum response increased

to 46Hz, and the firing rate at θ = ±2.5 increased to 2.3Hz. The inhibitory modulatory

input decreased the firing rate of the model neuron for all values of θ. The maximum firing

rate decreased to 22Hz, and the firing rate at θ = ±2.5 decreased to 0.18Hz.

The changes in firing rate caused by modulatory inputs are close to purely mul-

tiplicative gain changes (Fig. 2.10B). Deviations from purely multiplicative changes are

indicated by the fit parameters in Table 2.5. An excitatory modulatory conductance caused

a 12% increase in tuning curve width, while an inhibitory modulatory conductance caused

a 11% decrease in width.

Rmax σ S Scale Factor
Base 32.19 0.5044 0.7883 1
Exc 43.21 0.5644 2.44 1.478
Inh 21.91 0.4474 0.2701 0.6271

Table 2.5: Values of the fit parameters for the solid lines in Fig. 2.10A, and the scale factors
used in Fig. 2.10B. Parameters are defined in Eq. 2.6.

For both the CR curve and the tuning curve, deviations from purely multiplica-

tive changes are in the same direction as the integrate-and-fire model and are similar in

magnitude (though somewhat larger), which suggests that our proposed mechanism of gain

change also operates in this more detailed biophysical model.
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Figure 2.10: Tuning curve gain changes in the Hodgkin-Huxley model. (A) Plot
of the tuning parameter in Eq. 2.6 versus firing rate for the Hodgkin-Huxley model neuron
without modulatory input (circles) and with 3.5 nS excitatory (squares) or 8.5 nS (triangles)
inhibitory nodulatory conductances. Each data point represents an average of ten trials,
five seconds each. Parameter values for the fits are given in table 2.5. (B) Curves from A
scaled to optimally (least squares) fit the Base curve.
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2.4 Discussion

The results demonstrate that changes in excitatory or inhibitory inputs alone

can approximately multiplicatively change the gain of a neuron’s response to a stimulus-

dependent input. These gain changes observed in our model are primarily dependent on

two things: an expansive non-linearity (a power law with exponent substantially larger

than one) relating the average membrane potential and the firing rate of the neuron, and an

appropriately non-linear dependence (e.g., sigmoidal or Gaussian) of the stimulus-dependent

input rate on the corresponding stimulus parameter. Power law input-output functions are

likely to be ubiquitous in cortex due to voltage noise (Anderson et al. 2000b, Arieli et al.

1996, Azouz and Gray 1999, Hansel and van Vreeswijk 2002, Hô and Destexhe 2000, Miller

and Troyer 2002, Paré et al. 1998, Tsodyks et al. 1999), and cortical firing rates commonly

have a sigmoidal or approximately Gaussian dependence on stimulus parameters. Hence,

multiplicative gain changes should be common in cortex, and convergent inputs onto a

neuron should multiplicatively modulate one another’s gain, so long as one input (the

“modulatory” input) is small relative to the peak input evoked by the other. This appears to

be a natural result of the properties of cortical neurons and the input that they receive, and

could help explain the ubiquity of such gain changes observed experimentally (Andersen

et al. 1985, Boussaoud et al. 1993, Bremmer et al. 1997b, Galletti and Battaglini 1989,

McAdams and Maunsell 1999a,b, Salinas and Thier 2000, Treue and Martinez-Trujillo 1999,

Trotter and Celebrini 1999).

Predictions

The most obvious prediction of our model is that at least some of the multiplicative

gain changes observed in cortex will be found to arise from purely excitatory or purely

inhibitory modulation (or more generally, from unbalanced modulatory inputs yielding a

net excitation or inhibition). In addition, our work suggests a number of clues that would

be consistent with a mechanism involving net excitation or inhibition.

Net excitatory or inhibitory modulatory inputs should cause small systematic de-

viations from a purely multiplicative gain change: gain increases should lead to decreases in

C50 and increases in tuning width, while gain decreases should yield opposite changes. How-

ever, the predicted deviations are small (approximately 10-20%) and may not be observable

in practice. Even so, this is a fundamental prediction of our model and may become more
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experimentally accessible in the future. Furthermore, the size of the deviations should be

proportional to the size of the gain change, so larger changes in gain should give larger devi-

ations from multiplication. This has two important implications. First, the deviations may

become observable with sufficiently large gain changes. Second, modulation by unbalanced

inputs should yield a correlation between the change in the amplitude of a tuning curve

and the change in its width (for Gaussian tuning curves) or its C50 (for sigmoidal tuning

curves).

We also predict that multiplicative gain changes in vivo induced by unbalanced

inputs should be accompanied by an upward or downward shift in mean voltage, but little

change in total conductance or response variability. Such gain changes should occur in

neurons that have substantial voltage noise and thus have power-law input-output functions.

If the gain change is due to a tonic excitation or inhibition (rather than a modulatory

excitation or inhibition that only accompanies stimulus-induced input), then spontaneous

activity levels should be modulated to the same degree as stimulus-induced responses.

Previous Theory and Experiment

We predict that tuning curves in cortex measured during intracellular current

injection will exhibit multiplicative gain changes similar to those in our simulations. A gain

decrease in the contrast response functions of neurons in primary visual cortex has been

observed following injection of hyperpolarizing current (Fig. 2.3; Sanchez-Vives et al. 2000).

Accompanying this gain decrease was a statistically significant increase in the parameter

C50 describing the curve (Eq. 5), as predicted by our model.

Fox et al. (1990) examined the effects of externally applied glutamate-receptor-

binding drugs on the responses of cortical neurons to visual stimulation. They found that

NMDA increased the gain of the neuron’s contrast response curve, while quisqualate shifted

the curve upwards. Our model suggests that simple depolarization induced by NMDA ap-

plication, rather than nonlinearities in NMDA-induced responses, caused the gain increase.

The seemingly straightforward effects of quisqualate are more difficult to explain. They

may have been confounded by the fact that quisqualate has a number of effects besides

activating non-NMDA ionotropic glutamate receptors, including binding to metabotropic

glutamate receptors (Chu and Hablitz 2000, Pin and Duvoisin 1995) and glutamate trans-

porters (Chase et al. 2001). We predict that a selective agonist of AMPA receptors, such
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as AMPA, would also cause a gain change.

A model proposed by Fox and Daw (1992) to account for their experimental re-

sults assumes that quisqualate acts exclusively at ionotropic non-NMDA receptors and that

the firing rate of the neuron is linearly related to its membrane potential. In this case

the quisqualate-induced shifts are easily explained. However, given a more realistic power

law relationship between membrane potential and firing rate, it is difficult to account for

the shifts induced by quisqualate based on its ionotropic action alone. To explain the ef-

fects of NMDA, they assumed cooperativity in binding between externally applied NMDA

and synaptic glutamate released during visual stimulation, which requires that NMDA and

glutamate bind to a common set of receptors. This was not always the case in their ex-

periments; some cells exhibited gain increases during NMDA application, but no significant

gain change during application of APV (an antagonist of NMDA receptors), implying that

both bound to non-visual NMDA receptors. In light of this, depolarization seems a more

plausible explanation for NMDA-induced gain changes.

Our model complements the recent model of Chance et al. (2002). They showed

that a balanced change in inhibitory and excitatory inputs could cause a multiplicative gain

change as assessed by a change in a neuron’s curve of firing rate vs. current. We show that,

when one instead considers the curve of firing rate vs. stimulus parameter, simple excitation

alone or inhibition alone is sufficient to produce a gain change. This gain change is primarily

dependent on the hyperpolarization or depolarization induced by the modulatory input,

which causes only small changes in the cell’s conductance. In contrast, the gain changes

in Chance et al. (2002) require a relatively large change in both current noise and total

conductance. A balanced change in excitation and inhibition together, as in Chance et al.

(2002), also produces a gain change in our model (not shown). We conclude that a wide

range of modulatory inputs, balanced or unbalanced, should induce a multiplicative gain

change.

In cortical areas where eye position modulates neural responses to visual stimuli,

some visually-driven neurons can also be driven directly by eye position alone (Boussaoud

et al. 1993, Bremmer et al. 1997a,b, Squatrito and Maioli 1996, 1997). Our model explains

both the modulatory and driving effects of eye position on these neurons as resulting from a

single excitatory input. This requires that direct responses to eye position be small relative

to visual responses in such neurons, which seems consistent with experiment (Bremmer

et al. 1997a,b, Squatrito and Maioli 1997). This suggests some advantage of our proposal
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over that of Chance et al. (2002), which seems to require two different types of eye-position-

evoked inputs for such neurons: a set of balanced inhibitory and excitatory inputs that

modulates the gain of visual responses, and another excitatory input that drives direct

responses to eye position.

Changes in attention have been shown to multiplicatively scale the orientation

and direction tuning curves of cortical neurons (McAdams and Maunsell 1999a,b, Treue

and Martinez-Trujillo 1999). One interpretation of these experimental results is that the

neurons are responding with increased gain to the same visually induced input, as in our

model. However, more recent results (Martinez-Trujillo and Treue 2002, Reynolds et al.

2000) show that attention can cause a shift, rather than a gain change, in the contrast

response function of these neurons. This suggests that the effects of attention may represent

an increase in the effective contrast of the stimulus and not a change in the response gain

of the neuron.

Treue and Martinez-Trujillo (1999) observed a slight (8%), but not statistically

significant, widening of MT direction tuning curves during feature-based attention. This

widening, if substantiated by more data, would be in accordance with our model, which

predicts a widening of tuning curves with increasing gain (Fig. 2.4). Changes in attention do

not appear to cause changes in the width of orientation tuning curves in area V4 (McAdams

and Maunsell 1999a). Furthermore, although attention multiplicatively scaled tuning curves

in V4 (including responses at non-preferred orientations), it did not systematically affect

spontaneous activity in the absence of visual stimulation. A net excitatory modulatory

input, if tonically active, would have scaled spontaneous activity in the same manner as

stimulus evoked activity. Thus, if one models the effects of attention as a gain modulation

rather than an increase in effective stimulus contrast, the model of Chance et al. (2002)

may better explain the results from area V4. However, the widening of tuning curves in

MT with attention is more in accord with unbalanced or purely excitatory modulation; it

would be interesting to determine if spontaneous activity is affected by attention in MT,

and to determine conclusively if attention affects the width of direction tuning curves in

this area.

Our proposal is similar in spirit to that of Gabbiani et al. (2002), who suggested

that an insect neuron does multiplication by subtracting one input from another at the level

of voltages and having an exponential input/output relation (although they found that a

power law fit their input-output relation better than an exponential). However, it differs in
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being based on the properties of cortical neurons.

Since this work was completed, two papers have appeared that address the role

of shunting inhibition in gain modulation. Both highlight the importance of voltage noise.

Prescott and De Koninck (2003) showed in a modeling study that dendritic saturation of

the excitatory input, along with voltage noise, could cause shunting inhibition to divisively

alter firing rate. The effect of saturation seems similar to that of a non-linear, sigmoidal

relationship between stimulus parameter and input rate in our model. Mitchell and Silver

(2003) studied a cerebellar granular neuron that received relatively few excitatory synaptic

inputs, all of which had large unitary conductances. As a result, an increase in input rate

caused a significant increase in voltage noise. This in turn caused shunting inhibition to

have a partially divisive effect on the curve of input rate versus output rate. If voltage noise

does not increase significantly with input rate, as in the present and most previous studies

of gain modulation, then shunting inhibition causes a subtractive shift in this curve (e.g.,

Chance et al. 2002).

Implications for Neuronal Computation

The question of whether a single neuron can biophysically multiply its inputs

has long been of interest to those concerned with the computational capabilities of single

neurons (e.g., Gabbiani et al. 2002, Koch 1998, Mel 1993, Torre and Poggio 1978). We

are proposing that a cortical neuron that adds its inputs at the level of voltages, but

raises this net input to a power significantly greater than one to produce an output, can

effectively compute a multiplication of the inputs (or more strictly, of functions of the

inputs: the output R is given by R ≈ f(i1)g(i2) where i1 and i2 are the inputs and f

and g are some functions). Furthermore if the input voltages are nonlinear functions of

a stimulus parameter, then this multiplication will not produce a mere left- or right-shift

of the curve of output vs. parameter. Multiplication computed in this manner is only

approximate. The approximation is accurate, though small systematic differences remain,

when the “modulatory” input is substantially smaller than the “driving” input over the

range of the tuning curve in which the driving input produces substantial responses.
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Conclusion

Given a few basic assumptions about the common properties of cortical neurons,

specifically the non-linear ways that their input firing rates depend on the properties of a

stimulus and their output firing rates depend on their input, we have shown that it should

be expected that a smaller input will multiplicatively modulate the gain of the response

to a larger input. No special mechanisms are required to account for these multiplicative

interactions. While other mechanisms may also play a role in experimentally observed gain

changes, we are proposing that multiplicative gain changes are a normal property of the

cortex, the natural outcome of these simple attributes of cortical neurons.
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Abstract

In cerebral cortex, ongoing activity in the absence of a stimulus can resemble

stimulus-driven activity both in size and structure (Anderson et al. 2000b, Arieli et al.

1996, Fiser et al. 2004, Kenet et al. 2003, Vincent et al. 2007). In particular, sponta-

neous activity in cat primary visual cortex (V1) has structure significantly correlated with

evoked responses to oriented stimuli (Kenet et al. 2003). This suggests that, from unstruc-

tured input, cortical circuits selectively amplify activity patterns related to normal function.

Current understanding of such amplification involves elongation of the lifetime of a neural

pattern or “assembly” by mutual synaptic excitation among the neurons involved (Hebb
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1949, Hopfield 1982). Here we introduce a new dynamical mechanism for selective amplifi-

cation of neural activity patterns without elongation of lifetime: “transient amplification”.

We show in simple models how transient amplification arises, and in a detailed biophysical

model that it can explain the observations from cat V1. Neurobiologically, strong transient

amplification arises when strong feedback inhibition stabilizes strong recurrent excitation,

a connectivity pattern likely to be typical of cortex (Chagnac-Amitai and Connors 1989,

Haider et al. 2006, Ozeki et al. 2007, van Vreeswijk and Sompolinsky 1996). Thus, transient

amplification should be ubiquitous in cortical circuits. Mathematically, transient amplifica-

tion depends on the non-normal nature of synaptic connection matrices, in which individual

neurons project only excitatory or only inhibitory synapses. This leads to a hidden feedfor-

ward connectivity between activity patterns, which underlies the amplification. Biological

interaction matrices generally are non-normal, so these dynamics should have counterparts

at all levels of biological organization.

3.1 Introduction

We focus on a well-studied example of selective amplification in V1. V1 neurons

respond selectively to oriented visual stimuli. In cats, nearby neurons prefer similar orienta-

tions and there is a smooth map of preferred orientations across the cortical surface. Kenet

et al. (2003) showed that, in the absence of a visual stimulus, spatial patterns of sponta-

neous activity across V1 upper layers showed greater similarity to the pattern evoked by an

oriented stimulus than to similarly structured control patterns. This seems likely to result

from the preferential cortical amplification of activity patterns in which neurons of similar

preferred orientation are co-active. The substrate for such amplification is orientation-

specific connectivity. Neurons in middle and upper layers of V1 receive both excitatory

and inhibitory input predominantly from other neurons with similar preferred orientations

(Anderson et al. 2000a, Martinez et al. 2002), and orientation-specific excitatory axonal

projections can extend over long distances (Gilbert and Wiesel 1989). The amplified activ-

ity fluctuates with a time scale of about 80 ms (Kenet et al. 2003), comparable to the time

scales over which inputs are correlated (DeAngelis et al. 1993, Wolfe and Palmer 1998),

so the degree to which the cortical network can slow activity is limited (see Supplemental

Materials).

In “Hebbian-assembly” models (e.g. Goldberg et al. 2004, Hebb 1949, Seung 2003),
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selective amplification of an activity pattern is achieved by slowing its rate of decay. Given

ongoing input that equally drives many patterns, patterns that decay most slowly will

accumulate to the highest amplitude and so will dominate network activity. In the absence

of intracortical connections, each pattern would decay with a time constant determined by

cellular and synaptic time constants. A pattern that reproduces itself by passage through

the recurrent circuitry will slow its decay rate or, if it reproduces itself faster than the

intrinsic decay rate, will grow rather than decay. The latter condition, along with circuit

nonlinearities, provides the basis for attractors, patterns that can persist indefinitely in the

absence of specific driving input (Hopfield 1982).

In V1, recurrent excitation is strong but balanced by similarly strong feedback

inhibition (Chagnac-Amitai and Connors 1989, Haider et al. 2006, Ozeki et al. 2007, van

Vreeswijk and Sompolinsky 1996). Here we show that transient amplification is likely to be

prominent in this type of network. During transient amplification, the recurrent circuitry

transforms a small fluctuation in an “input pattern” into a large and transient fluctuation in

a different “output pattern”. The output pattern does not act back on the input pattern and

neither pattern can significantly reproduce itself through the circuitry, so neither pattern

shows slowed decay. Given ongoing input that equally drives many patterns, the output

patterns of the largest transients will be most amplified in the network activity.

3.2 Linear Model

Essential features of this mechanism can be understood by considering a linear

model of the firing rates of V1 neurons, in which a neuron’s firing rate approaches its input

with a time constant τ :

τ
dr
dt

= −r + Wr = −(1−W)r (3.1)

Here, r is an N -dimensional vector representing the firing rates of a population of N neurons

(the ith element ri is the firing rate of the ith neuron). W is an N×N synaptic connectivity

matrix (Wij is the strength of connection from neuron j to neuron i). Wr represents input

from other neurons within the network.

Dynamics of this model can be formally solved in terms of the eigenvectors ei and

eigenvalues λi of W , i = 1, . . . , N . Each ei represents a different pattern of activity across

the neuronal population. They satisfy Wei = λiei; that is, each ei reproduces itself, scaled
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by the number λi, upon passage through the circuitry. Thus, eigenvalues with positive real

part are the basis of Hebbian amplification.

However, for biological connection matrices, this formal solution hides key aspects

of the dynamics. Because individual neurons project only excitatory or only inhibitory

synapses, synaptic connection matrices have a characteristic structure, as follows. Let

r =

 rE

rI

, where rE is the sub-vector of firing rates of excitatory neurons and rI of

inhibitory neurons. Let Wxy be a matrix with elements ≥ 0 describing the strength of

connections from the cells of type y (E or I) to those of type x. Then the full connectivity

matrix is W =

 WEE −WEI

WIE −WII

. The left columns are non-negative and the right

columns are non-positive. Such matrices are asymmetric and non-normal, meaning that

their eigenvectors are not mutually orthogonal. Non-normal matrices can generate large

transient amplification of small perturbations in ways not predicted by the eigenvalues

(Trefethen and Embree 2005) (see Supplemental Materials). This has not previously been

studied in a neural context, although other dynamical effects of the division of excitation and

inhibition into distinct neuronal classes have been examined (Li and Dayan 1999, Wilson and

Cowan 1972). We argue that such transient amplification results robustly from connectivity

with strong recurrent excitation balanced by strong feedback inhibition.

The simplest example is a network with two populations of neurons, one excitatory

and one inhibitory, each making projections that are independent of postsynaptic target.

In terms of Eq. 3.1, r =

 re

ri

 and W =

 wE −wI

wE −wI

. Here, re and ri are the average

firing rates of the excitatory and inhibitory populations and wE and wI are the strengths of

projections of the excitatory and inhibitory populations respectively. We assume inhibition

balances or dominates excitation, that is, wI ≥ wE . Define wd = wE − wI , wd ≤ 0, and

ws = wE + wI . Note that, if recurrent excitation and inhibition are both strong, then ws

is large. The eigenvalues of W are 0 and wd, so W has no positive eigenvalues. When

re and ri are equal, the synaptic connections contribute net inhibition: that is, letting

r+ =

 1

1

, then Wr+ = wdr+. However, when the excitatory and inhibitory rates differ,

then the rates are amplified by the synaptic connections. That is, letting r− =

 1

−1

,
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then Wr− = wsr+. We refer to r+ as a sum mode and r− as a difference mode.

Writing r(t) = r+(t)r+ + r−(t)r−, the dynamics are

τ
dr+

dt
= −(1− wd)r+ + wsr− (3.2)

τ
dr−
dt

= −r− (3.3)

The network, despite recurrent connectivity in which all neurons are connected to all others,

is acting as a two-layer feedforward network. The difference mode activates the sum mode

with connection strength ws, but there is no feedback from the sum mode onto the difference

mode. Small perturbations of r− can be amplified into large responses in r+, but, as

expected for a feedforward network, the amplification scales linearly with the summed

synaptic strength, ws, and can be arbitrarily large without affecting the stability of the

network.

To understand the response to ongoing random input, it suffices to know the re-

sponse to the input at a single time, because responses to inputs at different times superpose.

Solving Eqs. 3.2-3.3 gives the time course of response to a perturbation at time 0, r(0):

r+(t) = r+(0)e−(1−wd)t/τ + r−(0)(ws/τ)e−t/τ ewdt/τ − 1
wd/τ

(3.4)

r−(t) = r−(0)e−t/τ (3.5)

The summed synaptic strength ws scales the size of the amplification but the time course,

e−t/τ ewdt/τ−1
wd/τ , is independent of ws. Note that, for wd → 0, the time course becomes te−t/τ ,

while for wd large and negative, the time dependence approaches e−t/τ . Thus, the time

dependence, which in all cases is independent of ws, can be thought of as interpolating

between te−t/τ and e−t/τ for increasingly negative wd.

Figure 3.1 plots the time course of the response of a network with wE = wI =

5 (wd = 0) to an initial perturbation in which excitatory rates are initially larger than

inhibitory (r+(0) = 0, r−(0) = 1). The difference in rates drives both rates up equally,

that is, it drives the sum mode, while the difference itself decays. As the difference decays,

so does the source of the amplification, so the overall activity of the network grows only

transiently. This is the basic mechanism of transient amplification in circuits with strong,

balancing excitation and inhibition: differences in excitatory and inhibitory activity drive

modes with equal excitatory and inhibitory parts, while the difference itself decays.
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Figure 3.1: Transient amplification in the two population case. Plots of r+(t) and
r−(t) in Eqs. 3.4 and 3.5 for the intial condition r+(0) = 0, r−(0) = 1, in which excitation is
larger than inhibition. The dashed line is the total magnitude of the rate vector over time,
|r(t)| =

√
r+(t)2 + r−(t)2.

In spatially extended networks with many neurons, this process can selectively

amplify specific spatial patterns of activity. For simplicity, take the number of excitatory

and inhibitory neurons to be equal, and suppose that excitatory and inhibitory neurons,

though making different patterns of projections, make projections that are independent of

postsynaptic cell type. Then, if A describes the spatial pattern of excitatory projections and

B of inhibitory projections, the full weight matrix is W =

 A −B

A −B

. If A and B are

N ×N , then W has N eigenvalues equal to the eigenvalues λD
i of A−B, and N eigenvalues

equal to zero. We take inhibition to balance or dominate excitation, by which we mean the

λD
i have real part ≤ 0. We let eS

i be the eigenvectors of A+B with eigenvalues λS
i , and note

that these eigenvalues can be large. We define the difference modes r−i =

 eS
i

−eS
i

 and

the sum modes r+
i =

 eS
i

eS
i

 and find that Wr−i = λS
i r+

i . In turn, Wr+
i gives a mixture

of the r+
i with weights linear in the eigenvalues λD

i , without feedback to the r−i . Thus,

each pair r+
i , r−i behaves much like the sum and difference modes r+, r− in the simpler,
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two-neuron model we studied previously, but with amplification weight λS
i instead of ws.

Spatial patterns with the largest eigenvalues of the average connectivity matrix A + B will

be most amplified, yet these eigenvalues do not affect the time course (further analyzed in

Supplemental Materials). If connectivity is orientation-specific, then patterns resembling

orientation maps are expected to be among those with largest λS
i .

We illustrate this by studying a simple model of synaptic connectivity based on

known properties of V1. In this model, the strength of a synaptic connection between two

neurons is determined by the product of Gaussian functions of distance and of difference

in preferred orientation (see Methods in Supplemental Materials). The orientation map

is a simple 4x4 grid of pinwheels shown in Figure 3.2a. The only difference between the

patterns of excitatory and inhibitory synapses is that excitatory synapses extend over a

much larger range of distances, as is true in layer II/III of V1 (Gilbert and Wiesel 1989).

The orientation tunings of excitatory and inhibitory synapses are identical (Anderson et al.

2000a, Martinez et al. 2002). Inhibition is set strong enough that all the eigenvalues of

the matrix have real part ≤ 0. We compute the eigenvectors of A + B, and illustrate

the resulting difference modes r−i and sum modes r+
i for the five largest amplification

weights λS
i (Fig. 3.2b). We compare the output vectors – the sum modes – to stimulus-

evoked orientation maps, each computed as the response of a rectified version of Eq. 3.1 to

orientation-tuned feedforward input. In the mode corresponding to the largest transient,

all the neurons increase or decrease their activity together. Kenet et al. (2003) filtered

out such modes in their experiments because they can result from artifactual causes. The

next two modes correspond to patterns that closely resemble evoked orientation maps. To

characterize the time course of this amplification, we examine the time course of the overall

size of the activity vector, |r(t)|, in response to an initial perturbation consisting of one

of the input vectors, i.e. one of the difference modes (Fig. 3.2c). The first mode follows

the time course te−t/τ , while subsequent modes peak progressively sooner representing the

movement from time course te−t/τ toward time course e−t/τ .

In the more general case, when WEE , WEI , WIE , and WII all have distinct

structure, one cannot write a general solution, but one can infer that similar results should

apply if excitation balances inhibition (see Supplementary Materials). More generally, any

biological connection matrix has hidden feedforward connectivity. This is shown by the

Schur decomposition, which for any matrix finds a (non-unique) orthonormal basis in which

the matrix is upper triangular, with its eigenvalues on the diagonal. For a normal matrix,
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Figure 3.2: Sum and difference modes are amplified in a spatially extended net-
work. A) Orientation map for both linear and spiking models. Color indicates preferred
orientation in degrees. B) The sum (right) and difference (left) modes corresponding to the
eigenvectors of A + B with the largest eigenvalues. In each rectangle, the left half repre-
sents the 20 × 20 set of excitatory firing rates, while the right half represents the 20 × 20
set of inhibitory firing rates. In the difference modes (left), inhibitory rates are opposite
to excitatory, while in the sum modes (right), inhibitory and excitatory rates are identical.
Each difference mode is mapped into λS

i times the corresponding sum mode, where i = 1
to 5 labels the modes from top to bottom. Listed on the right are the amplification factors,
λS

i , and the correlation coefficient (cc) of each sum mode with the evoked orientation map
with which it is most correlated. The second and third patterns are strongly correlated
with orientation maps. C) Plots of the time course of the magnitude of the activity vector,
|r(t)|, in response to an initial perturbation of unit length consisting of one of the difference
modes shown in panel B. The perturbation labelled r−i corresponds to the ith mode in B.
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the Schur decomposition is a diagonal matrix, but for a non-normal matrix, there are non-

zero entries above the diagonal. These entries represent embedded feedforward connectivity

between patterns: there can only be a connection from pattern i to pattern j if i > j. If the

eigenvalues are small due to inhibition balancing excitation, but the original matrix entries

are large, then there will be large entries off the diagonal in the Schur decomposition, because

the sum of the absolute squares of the matrix entries is the same in any orthonormal basis.

Thus, there will be large transient amplification.

3.3 Spiking Model

The linear rate model demonstrates the basic principles of transient amplification.

To demonstrate that these principles apply to biological networks, in which neurons are

nonlinear, spiking, and sparsely connected, we study a more detailed biophysical model

capturing basic features of V1 connectivity. The model is highly simplified and is not

meant to serve as a complete and accurate model of V1. It consists of 40,000 excitatory and

10,000 inhibitory integrate-and-fire neurons connected by fast conductance-based synapses.

The excitatory and inhibitory neurons are each arranged on square grids spanning the

orientation map used previously (Fig. 3.2a). The neurons are connected randomly and

sparsely, with probabilities proportional to the weight matrix studied in the linear model,

that is, dependent on distance and difference in preferred orientation. Each neuron receives

feedforward Poisson input to generate sustained spontaneous activity. These input rates

vary randomly with spatial and temporal correlations reflecting the likely structure of inputs

to upper layers. During visually evoked activity each neuron receives a second Poisson input

whose rate depends on the difference between the neuron’s preferred orientation and the

stimulus orientation. The network exhibits irregular activity as in other models of sparse

balanced networks (Brunel 2000, van Vreeswijk and Sompolinsky 1996) (see Supplementary

Figure 3.5).

By averaging the response of the network to a stimulus of a given orientation, we

produce an evoked orientation map. Frames of spontaneous activity frequently resemble

these evoked maps (Figs. 3.3a,b). We quantify the similarity between two patterns by the

correlation coefficient between them. In agreement with the data of Kenet et al. (2003),

frames of spontaneous activity show a distribution of correlation coefficients with a given

evoked map that is about 2.5 times as wide as that for a control map (Fig. 3.3c)). That
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is, the spontaneous activity shows greater similarity to the stimulus-evoked activity than

expected by chance.

The timescale of the network activity is determined by two factors: the correlation

time of the firing rates of the inputs to cortex, which is approximately 70ms, and the

membrane time constant of the neurons, which is approximately 10ms during spontaneous

activity. The former, being greater, largely determines the timescale of the fluctuations

in the correlation coefficient (Figs. 3.3d,e). As long as inhibition balances or dominates

excitation, the recurrent connectivity of the network has little effect on the timescale of

network activity, just as in the linear model (see Supplemental Material).

3.4 Discussion

In cortical networks strong recurrent excitation coexists with strong feedback in-

hibition (Chagnac-Amitai and Connors 1989, Haider et al. 2006, Ozeki et al. 2007). This

robustly produces an effective feedforward connectivity, in which small, patterned fluc-

tuations in the differences between excitatory and inhibitory rates drive large, patterned

fluctuations in their sum. Thus, transient amplification should be a ubiquitous feature of

cortical networks, contributing both to spontaneous activity and to functional responses

and their fluctuations. If inhibition balances or dominates excitation, then transient ampli-

fication occurs without elongation of lifetime. If some patterns show Hebbian slowing, then

Hebbian amplification and transient amplification will coexist (see Supplemental Materials).

Given stochastic input, transient amplification produces orientation-map-like pat-

terns in spontaneous activity (Kenet et al. 2003) in a network in which excitation and

inhibition have similar orientation tuning. Previous work (Goldberg et al. 2004) found that

these patterns could be explained by Hebbian slowing in a weakly recurrent, non-attractor

network with “Mexican hat” connectivity in which inhibition is more broadly tuned for

orientation than excitation. This creates positive eigenvalues for orientation-map-like pat-

terns. However, intracellular recordings suggest that cells in V1 upper layers receive excita-

tory and inhibitory input with similar tuning (Anderson et al. 2000a, Martinez et al. 2002).

Furthermore, the ≈ 80ms timescale of experimentally observed patterns (Kenet et al. 2003)

places significant constraints on the degree of Hebbian slowing (see Supplemental Materi-

als). Transient amplification represents a mechanism by which arbitrarily strong recurrent

connectivity can shape activity while maintaining the fast dynamics normally associated
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Figure 3.3: Spontaneous patterns in a spiking model. A) The 0◦ evoked map. B) Ex-
ample of a spontaneous frame that is highly correlated with the 0◦ evoked map (correlation
coefficient = 0.61). C) Distribution of correlation coefficients for the 0◦ evoked orientation
map (solid line) and the shifted control (dashed line). The standard deviations of the two
distribution are 0.25 and 0.1 respectively. The figure represents 40000 spontaneous frames
corresponding to 40 seconds of activity. D) The solid line is the autocorrelation function
of the time series of the correlation coefficient for the 0◦ evoked map and the spontaneous
activity. It decays to 1/e of its maximum value in 70ms. The dotted line is the autocorrela-
tion function of the input temporal kernel. It decays to 1/e of its maximum value in 73ms.
E) A four-second-long example section of the full timeseries of correlation coefficients used
to compute the autocorrelation function in panel D. All results are similar using an evoked
map of any orientation.
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with feed-forward networks.

The role of excitatory and inhibitory neurons in generating transient amplification

is specific to neural systems. However, the principles involved are general and have implica-

tions for any biological systems that can be described as networks of interacting elements.

Non-normal transients can contribute both to deterministic response, as has been studied

in ecological networks (Neubert and Caswell 1997, Townley et al. 2007), and to structured

noise, as studied here. Studies of intracellular networks have largely focused on simple

“motifs” with only a few elements (Alon 2007), but non-normal interaction structure can

already be recognized in some (Barkai and Leibler 2000, Süel et al. 2006). These have been

studied in strongly nonlinear regimes yielding oscillations, thresholds, and multistability

(Barkai and Leibler 2000, Süel et al. 2006), but transient amplification in the linear regimes

of these and larger-scale cellular networks may have unexpected roles to play in cellular

dynamics.

3.5 Supplemental Material

3.5.1 Methods

Linear Model

The linear model consists of overlapping 32x32 grids of excitatory and inhibitory

neurons. Each neuron is assigned an orientation according to an orientation map consisting

of a 4x4 grid of pinwheels. If we assume that a single pinwheel is 1mm2 the network as a

whole covers an area of 4mm2. Distances are expressed in these coordinates, with the size

of one side of the grid of neurons being 4 mm.

The strength of a synaptic connection between two neurons in the network is

determined by the product of Gaussian functions of distance (r) and difference in preferred

orientation (θ):

Wij(rij , θij) ∝ e−r2
ij/w2

re−θij2/w2
θ (3.6)

For excitatory synapses wr = 4mm and wθ = 20◦. For inhibitory synapses wr = 0.4mm and

wθ = 20◦. The synaptic strengths are normalized on a neuron by neuron basis such that

the sum of the excitatory and inhibitory inputs are both equal to 20.
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In order to generate evoked orientation maps for this model we run simulations of

the response of a rectified version of the linear equation to an orientation-tuned feed-forward

input. The rectified equation is:

τ
dr
dt

= −r + Wφ(r) (3.7)

φ(r)i =

 0 ri <= 0

ri ri > 0
(3.8)

The size of the feed-forward input to each neuron is a Gaussian function of the difference

in the preferred orientation of the neuron and the orientation of the stimulus:

Revoked = 4e−θ2/w2
θ (3.9)

Excitatory and inhibitory neurons receive identical inputs. The evoked orientation map is

the pattern of activity obtained once the simulation reaches a steady state.

Spiking Model

The network consists of forty thousand excitatory and ten thousand inhibitory

integrate-and-fire neurons. The voltage of each neuron is described by the equation:

C
dV

dt
= gleak(Eleak − V ) + ge(Ee − V ) + gi(Ei − V ) (3.10)

Here C is the capacitance, gleak is the leak conductance, Eleak is the resting membrane

potential, and ge and gi are the excitatory and inhibitory conductances with corresponding

reversal potentials Ee and Ei. When the voltage reaches the spike threshold, Vthresh, it

is reset to Vreset and held there for a refractory period trefract. Parameters, except for

C, are from previous work (Murphy and Miller 2003) and are the same for excitatory

and inhibitory neurons: gleak = 10nS, C = 400pF, Eleak = −70mV, Vthresh = −54mV,

Vreset = −60mV and trefract = 1.75ms. Excitatory and inhibitory reversal potentials are:

Ee = 0mV and Ei = −70mV. The capacitance is set such that, taking into account mean

synaptic conductances associated with ongoing spontaneous activity, the membrane time

constant is about 10 ms. At rest, with no network activity, the membrane time constant is

40 ms.
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Conductances

The time course of synaptic conductances is modeled as a difference of exponen-

tials:

g(t) =
∑
∆tj

ḡ
(
e−∆tj/τfall − e−∆tj/τrise

)
(3.11)

Here ∆tj is defined as (t−tj), where tj is the time of the jth pre-synaptic action potential and

tj < t. We include only fast synaptic conductances, AMPA and GABAA, with τrise = 1ms

and τfall = 3ms. We have chosen to model excitatory and inhibitory conductances as having

fast, identical time constants for simplicity. This equality and speed are not necessary for

our results. We have focused on the asynchronous regime in which neurons fire irregularly

and without global oscillations in overall rate, for which time constants must be chosen

appropriately (Brunel 2000, Shriki et al. 2003, Sompolinsky and White 2005, Wang 1999),

but this is not a tight constraint. Although we have not explored the issue extensively, we

imagine that, so long as firing remains in the asynchronous regime, differences in excitatory

and inhibitory timescales can be compensated by changes in the synaptic connectivity, as

in a linear rate model.1

The size of the synaptic conductances evoked by a pre-synaptic action poten-

tial, ḡ, are set in terms of the total conductance integrated over time evoked by one

presynaptic action potential in units of nS · ms. This total conductance is ḡτint where

τint =
∫ ∞
0 dt

(
e−t/τfall − e−t/τrise

)
. The values used are ḡi = 0.0575nS · ms/τint and ḡe =

0.00325nS ·ms/τint. We have chosen the overall and relative sizes of ḡe and ḡi to produce

a certain degree of orientation-map like patterns in the spontaneous activity, while main-

taining an average conductance during ongoing spontaneous activity of roughly 3-4 times
1In the linear model, consider a 2× 2 network with one excitatory and one inhibitory neuron, with time

constants τ and kτ respectively:

τ

„
1 0
0 k

«
d

dt

„
re

ri

«
= −

„
1− wee wei

−wie 1 + wii

« „
re

ri

«
(3.12)

This network is equivalent to a network with equal time constants and a modified connectivity matrix:

τ
d

dt

„
re

ri

«
= −

„
1− wee wei
−wie

k
1+wii

k

« „
re

ri

«
(3.13)

In other words, suppose we begin with a network with equal excitatory and inhibitory time constants. If we
then lengthen the inhibitory time constant, but also appropriately increase the E → I and I → I weights
to compensate, the network behavior will be unchanged.
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the resting leak conductance (Destexhe and Paré 1999). Increasing the overall size of the

conductances or the ratio of excitation to inhibition increases the strength of the patterns.

Synaptic connectivity

The neurons are laid out in an evenly spaced grid, 200x200 for excitatory neurons

and 100x100 for inhibitory neurons. As a result the space between inhibitory neurons is

twice as large as between excitatory neurons. As in the linear model each neuron is assigned

an orientation from an orientation map consisting of a 4x4 grid of pinwheels.

The synaptic connectivity is sparse but otherwise similar to that of the linear

model, with the probability of a synaptic connection between two neurons (Pc) determined

by the product of Gaussian functions of distance (r) and difference in preferred orientation

(θ):

Pc(r, θ) ∝ e−r2/w2
re−θ2/w2

θ (3.14)

For excitatory synapses wr = 4mm and wθ = 20◦. For inhibitory synapses wr = 0.4mm and

wθ = 20◦. Pc is normalized separately for excitatory and inhibitory connections for each

neuron such that the expected number of connections received by each neuron (averaged

over many random draws with the given neuron’s Pc) would be Ne = 100 excitatory and

Ni = 25 inhibitory connections.

Because the connections are random, some neurons will receive more or fewer

connections, resulting in a range of average firing rates and mean voltages. In order to

obtain similar firing rates for all neurons in the network we scale up or down the excitatory

and inhibitory synaptic conductances received by each neuron. Specifically, let R = Neḡe

Niḡi
be

the desired ratio of excitatory to inhibitory conductances onto a cell. Then we set the actual

ratio to R for each cell, by scaling all the excitatory conductances onto a given neuron by

fe and all the inhibitory conductances onto the neuron by fi according to the equations:

fe =
2.0

1 + 1/x
(3.15)

fi =
2.0

1 + x
(3.16)

with x = Neni/(Nine). Here ne and ni are the actual number of excitatory and inhibitory

synapses received by the given neuron. This sets nefeḡe

nifiḡi
= R for the cell, while also. setting
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(1.0 − fe) = (fi − 1.0). The latter condition is designed to imitate a homeostatic synaptic

plasticity rule in which excitation and inhibition are increased or decreased proportionally

in order to maintain a certain average firing rate.

Spontaneous Activity

During spontaneous activity each neuron receives a background feed-forward input

consisting of an excitatory Poisson spike train. The rates of the background inputs are

randomly determined by convolving white noise with a spatial and temporal filter. The

spatial filter is a Gaussian function with a width of 200µm. The temporal filter is given by

the function:

K(t) = t2e−γt (3.17)

Here γ determines the speed of the filter and is set to γ = 40Hz. This is slower than the

average temporal kernel of LGN cells (Wolfe and Palmer 1998), and is closer in speed to

the temporal kernels of simple cells in layer 4 (DeAngelis et al. 1993, 1999) that provide

the main input to layers 2/3. For simplicity, we do not replicate the biphasic nature of real

LGN or simple-cell temporal kernels, but simply try to capture the overall time scale.

We set the standard deviation of the the unfiltered input noise to 1250 Hz and

normalize the integrals of the squares of the spatial and temporal filters to one to produce

filtered noise with the same standard deviation. This rate noise is then added to a mean

background rate of 10250 Hz. The size of the background synaptic conductance is set to

0.00025 nS · ms. Steady input at the mean background rate is sufficient to just barely

make the neurons fire (less than 1Hz), while steady input at the mean plus three standard

deviations would result in a firing rate of about 24Hz.

Evoked Maps

Visually evoked orientation maps are generated by averaging frames of network

activity (see Comparison to Experiment below) for three seconds in response to a visually

evoked input added to the background input. The evoked input is a Poisson spike train with

a rate determined by a Gaussian function of the difference between the preferred orientation

of each neuron and the orientation of the stimulus:



58

Revoked = 10000e−θ2/w2
evoked (3.18)

with w2
evoked = 20o. The size of the individual synaptic conductances is the same for the

evoked and spontaneous inputs, 0.00025 nS ·ms.

Comparison to Experiment

To compare spontaneous and visually evoked activity we compute the correlation

coefficient between frames of spontaneous activity and the visually evoked orientation map

every millisecond. A frame consists of the shadow voltages of all the neurons filtered with a

Gaussian filter with a width of 80 µm after subtracting the mean of each frame. The shadow

voltage is simply the membrane potential of the neuron integrated continuously in time in

the absence of a spike threshold, e.g. it is not reset when it reaches spike threshold. This is

meant to approximate the voltage in the dendrites. The filter is used because the voltages of

the individual neurons are very noisy and we are comparing to experimental data that does

not resolve individual neurons. The filter width is chosen to conservatively underestimate

the point spread function of the experimental images (Polimeni et al. 2005). Nonetheless,

because both the filtering and the noise in the experimental system are unknown, it is

difficult to directly compare the correlation coefficients from the model to those from the

actual data. As a control we also compute the correlation coefficient between frames of

spontaneous activity and a “shifted” visually evoked orientation map. The shifted map has

been offset horizontally and vertically by 0.5mm, one half the width of a single pinwheel,

with periodic boundary conditions. Although the width of the distribution of correlation

coefficients depends on the width of the Gaussian filter used, the ratio of the widths of the

real and control distributions does not (Fig. 3.4), so it is this ratio rather than the absolute

width of the distribution that is best compared to experiment.

3.5.2 Asynchronous, irregular activity in the spiking model, and the cor-

respondence between spiking and rate models

The spiking model studied here operates in the “asynchronous irregular” regime

(Brunel 2000) characterized by irregular spiking response and absence of global rate os-

cillations (Fig. 3.5), as in models of sparse balanced networks with unstructured random
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connectivity (Brunel 2000, van Vreeswijk and Sompolinsky 1996). The coefficient of vari-

ation for inter-spike intervals (ISIs) is around 1 (Fig. 3.5a), and the ISI distribution is

essentially exponential (Fig. 3.5c), indicating Poisson-like firing. The average firing rate in

spontaneous activity fluctuates around 15 Hz without oscillations (Fig. 3.5b).
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Figure 3.5: Asynchronous, irregular activity in the spiking model. During sponta-
neous activity excitatory neurons fired irregularly with a mean firing rate of 15 Hz and an
average coefficient of variation (CV) for inter-spike intervals (ISI) of 1.0. Inhibitory neurons
were similar with mean firing rates of 14.5 Hz and a CV of .95. ISIs for both types of neu-
ron have a roughly exponential distribution. A) Spike raster plots over a one second long
interval for 10 randomly selected excitatory (blue) and inhibitory (red) neurons. B) The
average firing rate computed in 5ms bins of the entire population of excitatory (blue) and
inhibitory (red) neurons for the same period. C Histogram showing the relative frequencies
of different ISIs for excitatory (blue) and inhibitory (red) neurons.

In the asynchronous irregular regime, mean field theory can be applied to derive

expressions for firing rates from a spiking model (e.g. Brunel 2000, Lerchner et al. 2006,

Shriki et al. 2003, Sompolinsky and White 2005). Furthermore, for a statistically stationary

input for which the system is fluctuating relatively weakly around the mean rates it would

have in response to the mean input, as is the case for the spontaneous activity studied here,

one can derive linear dynamical equations for the rate (although the best linear description
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has a band-pass temporal filter, rather than the low-pass filter used here for the rate model)

(Shriki et al. 2003, Sompolinsky and White 2005).2 One imagines that the mean connectivity

matrix from which the sparse random connectivity is drawn should provide a reasonable

description of the connectivity in this linear model, again by mean field arguments (given

enough inputs, the input a neuron receives from the sparse random sampling should show

small deviations from the input it would receive under the mean connectivity matrix).

Together these provide an intuitive but speculative reasoning as to why the linear rate

model we studied should capture key aspects of the behavior of the spiking model we

studied. Obviously, these ideas need more careful study.

3.5.3 Time constant of activity in the spiking model

As shown in Fig. 3.3d, the activity in the spiking network model studied in the

main text is not slowed relative to the feedforward inputs to the network. This does not

depend on the input time scale, as it is also true for a simulation in which the input rates

fluctuate on a substantially faster timescale (Fig. 3.6). This matches the prediction of the

linear model for a balanced network in which all eigenvalues are less than or equal to zero,

as in Figure 3.2.

Strictly, the linear model predicts that the autocorrelation of the correlation coeffi-

cients in the spontaneous maps should be given by the autocorrelation of the convolution of

the input temporal kernel with some function ranging in time course from te−t/τ (when the

orientation-map-like patterns have eigenvalues equal to 0) to e−t/τ (when the orientation-

map-like patterns have eigenvalues significantly less than 0). In Figs. 3.3d and 3.6, we

simply compared to the autocorrelation of the input temporal kernal. In Fig. 3.7, we show

the effects of including the convolutions. For the longer-time-course input temporal kernel

used in the text, the differences are indiscernible (Fig. 3.7a). For the shorter-time-course

input temporal kernel of Fig. 3.6, small differences can be seen, and indeed the time course

seems best predicted by convolution with e−t/τ (Fig. 3.7b).
2This correspondence was derived by (Shriki et al. 2003, Sompolinsky and White 2005) on the assumption

that a neuron receives a large enough number of uncorrelated pre-synaptic spikes in one integration time
that fluctuations in this number for a fixed network firing rate can be neglected. We speculate that, even for
the sparsely connected network studied here, this approximation is sufficient to explain why a simple linear
model captures key aspects of spiking model behavior, although this requires further study. Our neurons
have about a 10 ms time constant, so at a 15 Hz average firing rate, with 100 excitatory and 25 inhibitory
connections, they will receive a mean of about 15 excitatory and 3.8 inhibitory inputs in one integration
time. Fluctuations in number, relative to the mean N , are expected to be of size 1/

√
N , that is, about 25%
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Figure 3.6: Time constant of activity in the spiking model with faster input.
A) Autocorrelation function of the correlation coefficient time series for a simulation with
faster fluctuations in the rate of background inputs (γ = 100Hz vs 40Hz, see Methods)
but otherwise identical to that presented in Figure 3. The solid line is the autocorrelation
function of the time series of the correlation coefficient for the 0◦ evoked map and the
spontaneous activity. It decays to 1/e of its maximum value in 33ms. The dotted line is
the autocorrelation function of the input temporal kernel. It decays to 1/e of it’s maximum
value in 29ms. B) A four-second long example section of the full timeseries of correlation
coefficients used to compute the autocorrelation function in panel A.
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Figure 3.7: Comparision of the ACF of the spiking model with the predictions of
the linear model. Comparison between the ACF for the correlation coefficient between
the spontaneous activity and the 0◦ evoked map (solid black line), the input temporal kernel
(dashed black line), and the input temporal kernel convolved with te−t/τm (red dashed line)
or e−t/τm (blue dashed line). In all cases τm = 10ms. Panel A corresponds to the simulation
in Figure 3 with γ = 40Hz. The half width at 1/e heights for the curves are 73 ms, 70 ms,
76 ms, and 79 ms for the dashed black, solid black, dashed blue and dashed red lines
respectively. Panel B corresponds to the simulation in Figure 3.6 with γ = 100Hz. The half
width at 1/e heights of the curves are 29 ms, 33 ms, 35 ms, and 40 ms for the dashed black,
solid black, dashed blue and dashed red lines respectively.
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We can put the idea that the mechanisms of the linear model underly the results of

the spiking model to a stronger test, by showing that the time course of the amplified pat-

terns is not slowed even as the strength of the recurrent connectivity and thus the strength

of the amplification is increased. The linear model predicts that, for a pattern of recurrent

circuitry that has no positive eigenvalues, all amplification is due to the transient ampli-

fication mechanism. The strength of the amplification will increase as the strength of the

recurrent circuitry is scaled up, but the time scale of the activity will be unaffected (more

precisely, the activity might be slightly sped up, due to the possible effects of an increas-

ingly negative eigenvalue, which as just noted can cause small changes in the function that

convolves the input temporal kernel and also due to decreases in the cellular time constant

τ induced by increased activity; but at any rate, the time scale will not be slowed down).

On the other hand, if the amplified pattern has a positive eigenvalue, then the Hebbian am-

plification mechanism and the transient amplification mechanism will both contribute. If

the strength of the recurrent circuitry is scaled up, the positive eigenvalue will be increased,

and so the time scale of the amplified pattern will be slowed, which is the signature of the

involvement of the Hebbian amplification mechanism.

To test this, we consider two models. One is the model of Figs. 3.2-3.3, in which

excitation and inhibition have identical orientation tuning. In this case, all eigenvalues in

the linear model are ≤ 0. In the second model, a “Mexican hat” connectivity is used, in

which inhibitory connections have wider orientation tuning than excitatory inputs. In the

linear version of this model, orientation-map-like patterns have positive eigenvalues. Each

neuron in the second model receives exactly the same summed excitatory and summed

inhibitory input as in the first model (both in the linear versions of the models and in

the spiking versions of the models). However, in the second model, the excitatory input

a cell receives comes from cells with a narrower range of preferred orientations than the

inhibition it receives, so that more excitation than inhibition is received from cells with

nearby preferred orientations and more inhibition than excitation is received from cells with

more distant preferred orientations. Thus, orientation-map-like patterns, in which neurons

with similar preferred orientation have positive activity and neurons with more distant

preferred orientations have negative activity, acquire positive eigenvalues. In this case, as

we increase the strength of recurrent connections, the dynamics of the orientation-map-like

for excitatory inputs and about 50% for inhibitory inputs.
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patterns should become noticeably slowed.

In Figure 3.8 we compare the effect of increasing recurrent strength on these two

types of network. The blue lines in Figure 3.8 correspond to the first model, in which

excitatory (we
θ) and inhibitory (wi

θ) orientation tuning widths are equal, with we
θ = wi

θ =

20◦. For this network, 100% recurrent strength on the x-axis corresponds to the network

presented in Figure 3.3. The green lines correspond to a network in which inhibitory tuning

is wider, with wi
θ = 50◦. Other than the width of the inhibitory tuning the networks have

identical parameters.
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Figure 3.8: Effects of increasing recurrent strength in networks with and without
positive eigenvalues. A comparison of the effects of increasing the strength of recur-
rent synapses in a network with equal excitatory and inhibitory tuning widths (blue line,
we

θ = wi
θ = 20◦) or wider inhibitory tuning (green line, we

θ = 20◦, wi
θ = 50◦). A) Plot of

the effect of increasing recurrent strength on the width of the distribution of correlation
coefficients with the 0◦ evoked map. B) Plot of the effect of increasing recurrent strength
on the time constant of network activity as measured by the time required for the auto-
correlation function of the correlation coefficient timeseries to decay to 1/e of its maximum
value (τACF). The membrane time constant of the neurons (τm), taking into account the
average synaptic conductance associated with ongoing spontaneous activity, decreases with
increasing recurrent strength. The blue and green dashed lines plot τACF− τm for wi

θ = 20◦

and wi
θ = 50◦ respectively. In both panels a strength of 100% corresponds to the synaptic

strengths in the network presented in the paper (Figure 3).
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For both networks, increasing the strength of recurrent connections increases the

width of the distribution of correlation coefficients with the 0◦ evoked map (Fig. 3.8a).

The width increases more strongly for the wi
θ = 50◦ network, as expected for two reasons.

First the patterns in the wi
θ = 50◦ network are amplified both by slowing associated with a

positive eigenvalue and by transient amplification, while the wi
θ = 20◦ network has only the

transient amplification. Second, one expects the correlation coefficient to grow to a plateau

with increasing recurrent strength for the network that only has transient amplification, but

not for the network that also has Hebbian amplification, for the following reason. As can be

seen in Eq. 4 and more generally below in section 3.5.6, two terms contribute to the size of a

given pattern in the output: one just represents the input and its decay, one represents the

transient amplification. With no recurrent circuitry, only the first term contributes. If there

are no positive eigenvalues, then as the recurrent circuitry is scaled up, the second term

becomes more and more dominant, until for sufficiently strong recurrent circuitry the first

term is negligible. Then the amplitude of each pattern should be proportional to the time

integral of the second term, which itself should asymptote for sufficiently strong recurrent

circuitry.3 The correlation coefficient of the spontaneous activity with one particular pattern

just represents the square of that pattern’s amplitude divided by the sum of the squares of

the amplitudes of all of the patterns, so it should asymptote when the amplitudes of the

patterns asymptote. This is not the case in the wi
θ = 50◦ network where there is a positive

eigenvalue. The size of the eigenvalue (λ) grows linearly with the recurrent strength, but the

degree of selective amplification is proportional to 1/(1−λ). For λ close to one the pattern

associated with the largest eigenvalue will be amplified much more than other patterns and

will dominate the activity of the network.

To compare the degree of slowing in the two networks we plot the time required

for the autocorrelation function of the timeseries of correlation coefficients between the

spontaneous activity and the 0◦ evoked map to decay to 1/e of it’s maximium value (τACF)
3Using the language of Eq. 4: For wd = 0, the term grows with ws and thus grows linearly with recurrent

strength. For wd < 0, both |wd| and ws grow linearly with recurrent strength, and for sufficiently strong
recurrent strength the term becomes proportional to ws/wd, which is constant with recurrent strength.
Thus, the amplitude of any patterns with wd = 0 will grow with increasing recurrent strength relative to
patterns with wd < 0, but if all patterns have wd < 0 then their relative strengths will asymptote. For
our full model circuit, wd is replaced with λD

j and ws with λS
i , where j and i specify the output and input

patterns of the amplification (section 3.5.6), but the analysis is much the same. In our model circuit, all
the λD

j have real part < 0 except one, that corresponding to the first pattern shown in Fig. 3.2b, which is a
spatially uniform or “DC” pattern and has λD = 0. However, following the methods used in experiments, we
subtract the DC component from the frames before computing their correlation coefficient with the evoked
map, so this pattern does not contribute to the correlation coefficient.
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versus recurrent strength in Figure 3.8b. Increasing the strength of recurrent connections

causes a decrease in τACF for the wi
θ = 20◦ network. Intially τACF decreases for the wi

θ = 50◦

network as well, but for larger values of recurrent strength τACF shows a significant increase.

The decrease in τACF is the result of decreasing membrane time constants (τm) for the

neurons in the two networks as mean conductances increase. With no positive eigenvalue

this is the dominant effect of increasing recurrent strength for the wi
θ = 20◦ network.

For the wi
θ = 50◦ network the activity patterns that are correlated with the evoked map

have positive eigenvalues and their time constants therefore grow as 1/(1 − λ), while λ

increases linearly with recurrent strength. Initially the decrease in the membrane time

constant is dominant, but this effect is soon overwhelmed by the slowing effect of the

positive eigenvalues. To isolate the effects of the recurrent connectivity beyond simply

decreasing the membrane time constant we can subtract the numerically measured average

membrane time constant associated with ongoing background activity at each recurrent

strength. The resulting curves are shown as blue and green dashed lines for wi
θ = 20◦

and wi
θ = 50◦ respectively. The curve for wi

θ = 20◦ is essentially flat, while the curve for

wi
θ = 50◦ increases quickly once recurrent strength gets above about 30%.

3.5.4 Constraints on models from the time scales observed in Kenet et al.

(2003)

In the text, we stated “the ≈ 80ms timescale of experimentally observed patterns

(Kenet et al. 2003) places significant constraints on the degree of Hebbian slowing”. Here

we amplify this thought.

The 80ms number reported by Kenet et al. (2003) is rough. It was not a direct mea-

sure of the autocorrelation time of the correlation coefficient, but instead was the “average

transition time” in preferred orientation as measured by the template from a Kohonen-map

algorithm that best matched the instantaneous snapshot of activity.

One expects the autocorrelation time of the correlation coefficient for a pattern to

be given roughly by the sum of the correlation time of the inputs and the time constant of

the network activity for that pattern. We expect the correlation time of inputs to upper

layers to be many tens of ms, based on the temporal kernels of inputs from lateral geniculate

nucleus to layer 4 of V1 (Wolfe and Palmer 1998) or of simple cells in V1 (DeAngelis et al.

1993, 1999), which should provide the dominant input to V1 upper layers (e.g. Martinez
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et al. 2005). The 70 ms time we used in the main paper seems reasonable based on the

studies of simple cells, but shorter times are also reasonable. Overall, we can say that the

network time constant for the pattern should not account for much more than half of the

roughly 80 ms time constant, and probably less.

The network time constant in a Hebbian-assembly model is given by τ/(1 − λ)

where τ is the intrinsic decay time of cortical activity without recurrent connections, as

in Eq. 1, and λ is the eigenvalue of W of the pattern. Goldberg et al. (2004) showed

that λ = 0.6 in a Hebbian-assembly model would give a widening of the distribution of

correlation coefficients comparable to that of Kenet et al. (2003). This gives a network

time constant of 2.5τ . Thus, the intrinsic decay time, τ , needs to be on the order of 10

ms in order for a Hebbian-assembly explanation of the amplification to be workable. This

intrinsic decay time is certainly plausible, but it is also plausible that the intrinsic time

scale might be considerably larger. In reducing spiking models to rate models, the intrinsic

time scale typically receives a key contribution from the time scale of the synaptic conduc-

tances (Ermentrout 1994, Shriki et al. 2003, Sompolinsky and White 2005). Intracortical

excitatory synapses clearly receive significant contribution from NMDA receptor-mediated

conductances (Feldmeyer et al. 1999, 2002, Fleidervish et al. 1998), although the exact con-

tribution depends on the voltage of recording and Mg++ and glycine concentrations in the

bath. These conductances have slow dynamics, with time constants > 100ms at physiolog-

ical temperature (Monyer et al. 1994). If the effective τ were several 10’s of ms or larger,

the Hebbian-assembly scenario would produce too long a time scale.

3.5.5 Non-normal matrices

In the main text we make some brief statements about the behavior of non-normal

matrices that may be puzzling and surprising to those whose previous experience with linear

systems has been largely restricted to normal matrices (a group that would have included

ourselves until recently). For this audience, we here present in more detail some basic

facts about the behavior of non-normal matrices. A much fuller treatment can be found

in Trefethen and Embree (2005). Our treatment differs from theirs in that we emphasize

the role of the Schur decomposition, which provides a natural interpretation in terms of

networks.

Normal matrices are matrices M that satisfy M†M = MM†, or equivalently
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matrices that have a complete orthonormal basis of eigenvectors, where M† is the complex

conjugate of the transpose of M.4 For real matrices, M† = MT , the transpose of M.

Why do transients arise that are not predicted by the eigenvalues?

Assuming W has a complete basis of eigenvectors, Eq. 1 can be formally solved

by transforming to the eigenvector basis. Let W have eigenvectors ei with eigenvalues λi.

Then the solution is:

r(t) =
∑

i

eiri(0)e−(1−λi)t/τ (3.19)

Here, ri(0) is the magnitude of r(0) in the direction of the ith eigenvector, such that r(0) =∑
i ri(0)ei; it is given by ri(0) =

[
C−1r(0)

]
i
where C is the matrix whose columns are the

eigenvectors. If W is non-normal, this solution can include large transient responses to

small perturbations as we have shown in Eqs. 4-5. How can this be consistent with Eq.

3.19 when all <(λi) < 1 (where <(x) is the real part of x)?

Consider a two-dimensional case. We let M = −(1 −W), with eigenvectors e1

and e2 and corresponding eigenvalues β1 = λ1 − 1 and β2 = λ2 − 1. We assume M is

non-normal, which is true if and only if W is non-normal. Equation 3.19 becomes

r(t) = e1r1(0)eβ1t/τ + e2r2(0)eβ2t/τ (3.20)

Naively, for <(β1) < 0 and <(β2) < 0, this appears to describe the monotonic decay of

two independent components. The fallacy is that, because M is non-normal, e1 and e2 are

not orthogonal, so the decaying components are not independent. We take |e1| = |e2| = 1.

Then,

|r(t)|2 = r1(0)2e2β1t/τ + r2(0)2e−2β2t/τ + 2< (e1 · e2) r1(0)r2(0)e(β1+β2)t/τ (3.21)

= r1(0)eβ1t/τ
(
r1(0)eβ1t/τ + r2(0)< (e1 · e2) eβ2t/τ

)
(3.22)

+ r2(0)eβ2t/τ
(
r2(0)eβ2t/τ + r1(0)< (e1 · e2) eβ1t/τ

)
(3.23)

If r1(0) and r2(0) have opposite signs, this gives two weighted differences of exponentials,

which can grow enormously in time if r1(0) and r2(0) are large and <(e1 · e2) is of order 1,

4The overall idea underlying this equivalence is: the right eigenvectors of M† are the conjugate transpose
of the left eigenvectors of M. Two matrices share a common basis of eigenvectors if and only if they commute.
Thus, iff M† and M commute, the right and left eigenvectors of M are identical (meaning that one set is the
conjugate transpose of the other). These are mutually orthonormal, so iff they are identical, they constitute
an orthonormal basis.
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before eventually decaying to zero. Of course, for a normal matrix, e1 · e2 = 0 and so there

is monotonic decay.

Furthermore, as the eigenvectors approach being in the same direction (i.e., be-

come very nonorthogonal; <(e1 ·e2) ≈ 1), it is generic for r1(0) and r2(0) to be large and of

opposite signs. The initial condition will generically contain some component orthogonal to

the average of e1 and e2, but if e1 and e2 are almost in the same direction, this component

can only be expressed as a linear combination of e1 and e2 by combining a large multiple

of e1 with a large and opposite multiple of e2, so that the two largely cancel leaving only

the component of the correct size orthogonal to their average. These large and cancel-

ing components of the initial condition then decay at different rates, giving a difference of

exponentials that grows into a large transient before ultimately decaying back to zero.

More insight can be obtained as follows. If we made a transformation to the

eigenvector basis, a basis in which the eigenvectors are orthogonal, then in this basis Eq. 3.20

would describe monotonic decay. However, because the eigenvectors are not orthogonal

in the original basis, the transformation to the eigenvector basis is not unitary, that is,

it does not preserve the lengths of or angles between vectors. Thus, what appears to

be monotonic decay of vector length in the eigenvector basis can correspond to transient

increase in vector length in the original basis. If we wish to understand the changes in vector

length that occur in the original basis, we must restrict ourselves to transformations that

preserve vector length and angles, that is, to unitary transformations, which transform to a

basis that is orthonormal as judged in the original basis. If M is non-normal, it cannot be

diagonalized by such a transformation – it is diagonalized by the basis of eigenvectors, which

are not orthogonal in the original basis. How close to diagonal can we make the matrix by

transformation to an orthogonal basis? The answer, given by the Schur decomposition, is

that we can make the matrix upper triangular, with the eigenvalues on the diagonal and all

other nonzero entries above the diagonal; this matrix will be diagonal (no nonzero entries

above the diagonal) if and only if the matrix is normal (Horn and Johnson 1985).5

We interpret the Schur decomposition as follows. The strictly upper triangular

part of the matrix (excluding the diagonal) corresponds to a strictly feedforward hierarchy
5The Schur Decomposition should not be confused with the Jordan normal form of a matrix. The Jordan

normal form involves non-unitary transformations, and is diagonal for any matrix, non-normal or normal,
with a complete basis of eigenvectors. It has nonzero entries above the diagonal only for matrices that are
missing one or more eigenvectors. The Schur Decomposition involves only unitary transformations, and is
diagonal only for normal matrices; it has nonzero entries above the diagonal for all non-normal matrices.
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of connections: connectivity flows from node j to node i only for j > i. The diagonal entries

correspond to recurrent connectivity: node i connects to itself with a strength corresponding

to an eigenvalue. In the transformed orthonormal basis in which M is upper triangular,

each node corresponds to an activity pattern. Thus, non-normal matrices, in addition

to the recurrent connectivity represented by the eigenvalues, have a hidden feedforward

connectivity pattern between activity patterns, which results in transient amplification not

predicted by the eigenvalues. We will say more below about how to characterize this hidden

feedforward connectivity.

For the generic case in which a matrix has a complete basis of eigenvectors, the

Schur decompositions are found by transforming to an orthogonal basis obtained by Gram-

Schmidt orthonormalization of the eigenvector basis. We illustrate the Schur Decomposition

for the 2-dimensional case, starting with the solution in the eigenvector basis as in Eqs. 3.19

or 3.20:

r(t) = eβ1te1f
†
1r(0) + eβ2te2f

†
2r(0) (3.24)

Here the fi are the left eigenvectors, and the right and left eigenvectors satisfy fi · ej = δij .

The orthogonal basis obtained by applying the Gram-Schmidt process to {e1, e2} is {e1,q},
where q = e2−e1(e1·e2)√

1−|e1·e2|2
; one can easily verify, given |e1| = |e2| = 1, that |q| = 1 and

e1 · q = 0 We write Eq. 3.24 in terms of the orthonormal basis {e1,q}. To do this, we note

e2 = q
√

1− |e1 · e2|2 + e1 (e1 · e2); f2 = q√
1−|e1·e2|2

; and f1 = e1−q(e1·e2)√
1−|e1·e2|2

. Substituting all

of this into Eq. 3.24 and rearranging we get:

r(t) = eβ1te1(e1 · r(0)) + eβ2tq(q · r(0)) +
(e1 · e2)√

1− |e1 · e2|2
(eβ2t − eβ1t)e1(q · r(0)) (3.25)

The first two terms describe the monotonic decay of two orthogonal modes, e1 and q,

at rates given by the two eigenvalues. The third term describes a transient, involving a

mapping of fluctuations in the q direction in the input into the e1 direction in the output.

The transient term is large when |e1 · e2| is close to one, i.e. when the angle between the

eigenvectors is small; on the other hand, it becomes zero when the matrix is normal, so that

|e1 · e2| = 0.

These results can alternatively be stated as follows: in the {e1,q} basis, M = β1 γ

0 β2

 where γ = (β2 − β1)
(e1·e2)√
1−|e1·e2|2

, and r(t) = eMtr(0) where the matrix eMt =
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 eβ1t γ eβ2t−eβ1t

β2−β1

0 eβ2t

. γ = 0 if and only if M is normal.6 In particular, for M = W−1 with

W =

 wEE −wIE

wEI −wII

, the effective feedforward connection strength is γ = wIE + wEI ,

and β1 = β−, β2 = β+ where β± = wEE−wII−2
2 ± σ

2 with σ =
√

(wEE + wII)2 − 4wEIwIE .

Thus, the effective feedforward connection strength in the 2 × 2 case is just given by the

summed strength of the terms representing feedback inhibition.

In sum, the eigenvalue spectrum tells us about the asymptotic behavior of Eq. 1:

when the real parts of all the eigenvalues of M = −(1 −W) are less than zero, the initial

condition, r(0), decays to 0 as t → ∞. It does not tell us what happens at finite times,

when there may be large transients that are not predicted by the eigenvalues. Unfortunately

there is no simple, straightforward property of the connectivity matrix that tells us about

the size of the transient amplification. Below we will discuss several methods that provide

some clues about interesting transient behavior and allow us to place upper and lower

bounds on the size of the transient amplification.

Bounds on transient size

The solution to Eq. 1 can be written r(t) = eMtr(0), where M = −(1−W). The

largest possible amplification at time t is given by:

ρ(t) ≡ maxr(0)
|r(t)|
|r(0)|

= maxr(0)
|eMtr(0)|
|r(0)|

(3.26)

The norm ‖A‖ of a matrix A is defined as maxv|Av|/|v|, and is equal to the maximum

singular value of A (the square root of the largest eigenvalue of AA† or of A†A), which we

can write7 as σA
max. Thus the largest possible amplification at time t is ρ(t) = ‖eMt‖ = σeMt

max,

and the largest overall amplification is ρmax ≡ maxtρ(t). The eigenvalues of eMt are eβM
i t

where the βM
i are the eigenvalues of M, and eMt is normal if and only if M is normal.

For a normal matrix, the singular values are the absolute values of the eigenvalues, and

so ρ(t) = σeMt

max = |eβM
maxt| where βM

max is the eigenvalue of M with maximum real part.
6If the eigenvalues are equal, then γ can equal 0 even if e1 · e2 6= 0, but in this case the matrix is

normal: when the eigenvalues are equal, any vectors in the space spanned by the two eigenvectors is also an
eigenvector, so in particular q is also an eigenvector, so the matrix has a set of orthogonal eigenvectors and
is normal.

7Mathematically one can assume many different norms for a vector, but we will always assume the
Euclidean or L2 norm |v| =

pP
i v2

i ; the equivalence ‖A‖ = σA
max depends on this.
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For a nonnormal matrix, the largest singular value is greater than or equal to the largest

eigenvalue absolute value (Horn and Johnson 1985), so the largest amplification can be

larger than expected from the eigenvalues: ρ(t) ≥ |eβM
maxt|.

Further bounds on ρ(t) can be placed as follows (note, it is also easy to compute

ρ(t) numerically for a given matrix M). If M has a complete basis of eigenvectors, then,

letting C be the matrix whose columns are the eigenvectors, we have M = CDC−1 where

D is a diagonal matrix with the eigenvalues on the diagonal. Now ‖eMt‖ can be written as

‖eCDC−1t‖ = ‖CeDtC−1‖ ≤ ‖C‖‖C−1‖‖eDt‖. κC ≡ ‖C‖‖C−1‖ is known as the condition

number of C; it is 1 if M is normal, but can be very large if M is non-normal. Futhermore,

‖eDt‖ = |eβM
maxt|. Thus an upper bound on ρ(t) is given by κC|eβM

maxt|. Combining this with

the lower bound we have |eβM
maxt| ≤ ρ(t) ≤ κC|eβM

maxt|. Unfortunately, these are typically

not tight bounds (Trefethen and Embree 2005).

We can calculate another upper bound by noting that:

1
r

d|r|
dt

=
rTMSr
|r2|

(3.27)

where MS is the symmetrized matrix (M + M†)/2. The maximum value of 1
r

d|r|
dt is βMS

max,

the largest eigenvalue of MS (it takes this value when r is the corresponding eigenvector

of MS). Thus, for a vector of unit length, βMS

max is the largest possible instantaneous rate

of change. If this is larger than βM
max, this rate of change cannot be sustained - the vector

direction as well as its magnitude will change in time, and any other direction has a smaller

rate of change. This gives another upper bound, ρ(t) ≤ eβMS
maxt, which again is typically not

a tight bound (Trefethen and Embree 2005). For a normal matrix, the eigenvalues of MS

are just the real parts of the eigenvalues of M, so eβMS
maxt = |eβM

maxt|; but for a nonnormal

matrix, the largest eigenvalue of MS is greater than or equal to the largest real part of an

eigenvalue of M.

Tighter bounds, but ones that are less intuitive, can be obtained by the study of

pseudospectra, a generalization of the theory of eigenvalue spectra (Trefethen and Embree

2005). The spectrum of M, σ(M), is the set of complex numbers z for which there is some

unit vector v such that Mv − zv = 0. The ε-pseudospectrum, σε(M), is the set of z for

which there is some unit vector v such that |Mv−zv| < ε. This can be more formally stated

as ‖(z1 −M)−1‖ > 1/ε. For normal matrices, σε(M) is just the set of points within ε of

σ(M), but for non-normal matrices, σε(M) can wander far from σ(M), and this is revealing

of the behavior of M. We mention just one result from the study of pseudospectra. Define
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the Kreiss constant K(M) ≡ supε>0Re(z ∈ σε(M))/ε where Re(x) is the real part of x.

Then the maximum amplification ρmax satisfies K(M) ≤ ρmax ≤ eNK(M), where N is

the dimension of M. This means that, if all eigenvalues have negative real part, but the

pseudospectra for a given ε wanders into the right half complex plane by amounts much

greater than ε, then there will be large transients.

Schur decomposition and hidden feedforward connectivity

We described above that the Schur decomposition reveals that non-normal matri-

ces have both a recurrent component, represented by the eigenvalues, and a feedforward

connectivity between activity patterns, represented by the nonzero entries above the diag-

onal in the Schur decomposition. A problem with the Schur decomposition is that it is not

unique. For a non-normal matrix, each ordering of the non-orthogonal eigenvectors typically

leads, under the Gram-Schmidt orthonormalization process, to a distinct orthogonal basis.

Since there are N ! possible orderings of the eigenvectors, a non-normal matrix typically has

N ! distinct Schur decompositions (not counting decompositions that differ only by a re-

ordering of the orthonormal basis vectors). Thus, we cannot describe a unique feedforward

structure between activity patterns that characterizes a given matrix.

However, we can uniquely characterize the overall strength of the feedforward

connectivity of a matrix. All the different Schur decompositions of a matrix are related

to one another by unitary transformations. The sum of the absolute squares of all of the

elements of M is a unitary invariant (unchanged by unitary transformations of M, and

thus identical for all Schur decompositions of M), and is equal to TrMM†, where Tr is

the trace, which in turn is equal to the sum of the squares of the singular values σM
a

of M. The eigenvalues of M are also unitary invariants, and so in particular the sum

of the absolute squares of the eigenvalues of M,
∑

a |βM
a |2, is a unitary invariant. But

since all Schur decompositions have the eigenvalues on the diagonal, this is the sum of

the absolute squares of the diagonal elements of any Schur decomposition of M. Thus,

the sum of the absolute squares of the off-diagonal or feedforward elements of any Schur

decomposition of M, as a proportion of the sum of the absolute squares of all of the elements,

is fM =
(
Tr

(
MM†)−∑

a |βM
a |2

)
/Tr

(
MM†) = 1−

P
a |βM

a |2P
a(σM

a )2
. The size of fM is a measure

of the strength of hidden feedforward connectivity and thus of the strength of transient

response and of the non-normality of the matrix.
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3.5.6 Exact solution for the network in Figure 3.2

If the matrices A + B and A−B are normal, we can find an exact solution in an

orthonormal basis for the network with connectivity matrix W =

 A −B

A −B

.8 As in the

main text with slight additions, we let eD
i be the eigenvectors of A−B with eigenvalues λD

i ,

and eS
i be the eigenvectors of A + B with eigenvalues λS

i . Then eW
i = 1√

2

 eD
i

eD
i

 is an

eigenvector of W with eigenvalue λD
i . If A and B are N×N , there are N such eigenvectors,

and the other N eigenvectors of W all have eigenvalue 0 (because the top N and bottom

N rows of W are identical). We define the difference modes r−i = 1√
2

 eS
i

−eS
i

 and the

sum modes r+
i = 1√

2

 eS
i

eS
i

 and find that Wr−i = λS
i r+

i , that is, patterns of the difference

between excitation and inhibition are converted into patterns of the sum and amplified by

λS
i , which can be large.

These sum patterns r+
i can in turn be written as linear combination of the eigen-

vectors eW
i . Both the eD

i and the eS
i are complete bases for the N ×N vector space, so we

can write eS
i =

∑
j dijeD

j where dij is the component of eS
i in the eD

j direction. (Given our

assumptions of normality, the eD
i and the eS

i are both orthonormal bases and so dij has a

simple form, dij = (eD
j )†eS

i .) From this, we find r+
i =

∑
j dijeW

j . We let D be the matrix

with elements Dij = djiλ
S
j , and let LD be the diagonal matrix of the the λD

i . Then in the

orthonormal basis {eW
1 , ..., eW

N , r−1 , ..., r−N}, the matrix W becomes

 LD D

0 0

. It is then

not hard to compute e−(1−W)t/τ . Let LD be the diagonal matrix of eλD
i t/τ , and define K as

the matrix with entries Kij = djiλ
S
j (eλD

i t/τ−1)/λD
i . Then e−(1−W)t/τ = e−t/τ

 LD K

0 1

.

Thus, differences between excitation and inhibition, r−i , that involve spatial pat-

terns eS
i with large λS

i get amplified into large transients that are identical in excitation and

8If A + B or A−B are not normal this solution is still valid, but it is no longer in an orthogonal basis
and will be misleading in the same way that the solution in the eigenvector basis is misleading when the
eigenvectors are not orthogonal. The A and B matrices we used in Fig. 3.2 are slightly nonnormal, because
the normalization of total excitatory and inhibitory weights onto each neuron (see Methods) results in small
asymmetries. However, this non-normality is very small, as assessed by measures such as fM, so the vast
majority of the non-normality of the overall matrix W is the result of the arrangment of the submatrices,
not the non-normality of the submatrices themselves.
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inhibition, with a strength along the spatial pattern eD
j proportional to λS

i times the coeffi-

cient dij of eS
i in the eD

j direction, and with a transient time course
(
e−(1−λD

j )t/τ − e−t/τ
)

/λD
j .

For λD
j → 0, this time course is just (t/τ)e−t/τ , while for <(λD

j ) large and negative and

t � τ/(1 + |<(λD
j )|), it goes to −e−t/τ/λD

j . More generally, given ongoing noisy input, the

contribution of this transient term to the amplitude of eD
j in the output will be given by

the time integral of the term, which is λS
i dijτ/(1−λD

j ). If |λD
j | � 1, then the size does not

depend significantly depend on λD
j . In summary, only the λD

i influence the time course of

the transient, while the λS
i and to some extent λD

i determine the size.

3.5.7 The general case of distinct WEE, WEI, WIE, and WII

In the general case in which W =

 WEE −WEI

WIE −WII

, where each of the subma-

trices WXY has non-negative entries, we cannot form a general solution or make a general

argument as to the size of the transient amplification that will arise. However, we can make

a number of more limited arguments to suggest that, when recurrent excitation is large but

is balanced by large feedback inhibition, we should expect large transient amplification. As

always, let M = −(1−W). We think of W as the mean connectivity matrix in the linear

model, which defines the probabilities from which the sparse random connectivity of the

spiking model was drawn. However, some of our arguments would also apply to a sparse

random connectivity matrix.

The first argument is that presented in the main text, which we slightly amplify

here. As discussed above, the sum of the absolute squares of the matrix entries of M is

a unitary invariant. Since both excitation and inhibition are strong, this sum is large. In

the basis of a Schur decomposition, this is equal to the sum of the absolute squares of the

eigenvalues plus the sum of the absolute squares of the effective feedforward connections. If

we define balanced inhibition to mean that all of the eigenvalues are small, then it follows

that there will be large effective feedforward connections and therefore large transient am-

plification. However, some connectivities that might otherwise be interpreted as “balanced

inhibition” might produce eigenvalues with large negative real parts and/or large imaginary

parts, and conceivably these eigenvalues could be large and/or numerous enough to account

for most of the sum, leaving only relatively small feedforward connections; we cannot rule

this out or state conditions under which it will or will not happen.

Second, consider the case in which WEE , WEI , WIE , and WII can all be si-
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multaneously diagonalized in an orthonormal basis. This is not unreasonable for the mean

connectivity; for example, if each mean connectivity submatrix has entries that depend

only on differences of spatial positions and/or preferred features of the neurons, then, ex-

cept possibly for boundary effects, all can be simultaneously diagonalized by the Fourier

transform, which represents a transformation to an orthonormal basis. In this case, we

can show quite generally that, when recurrent excitation is large but is balanced by large

feedback inhibition, there will be large amplification.

Let ei be the orthonormal basis of the N × N subspace in which all of the sub-

matrices are diagonal. Let DEE be the diagonalized version of WEE and DEE(k) its kth

diagonal entry, and similarly for the other submatrices. Define orthonormal basis vectors of

the full space eU
i =

 ei

0

 and eD
i =

 0

ei

, where 0 is the N-dimensional vector of all

0’s, and work in the basis {eU
1 , . . . , eU

N , eD
1 , . . . , eD

N}. In this basis, the matrix W becomes DEE −DEI

DIE −DII

.

This means that the dynamics of Eq. 1 break up into independent two-dimensional

subspaces of the form {eU
k , eD

k } for a given k; subspaces with different k do not interact. The

dynamics of the kth subspace is governed by the 2×2 matrix

 DEE(k)− 1 −DEI(k)

DIE(k) −(DII(k) + 1)

.

In section 3.5.5, we computed the Schur decomposition for this 2 × 2 matrix, and showed

that the feedforward connection strength is γ = DEI(k) + DIE(k). That is, the size of the

transient amplification in each subspace is just given by the sum of the two terms in that

subspace that constitute the feedback inhibition. Since the feedback inhibition overall is

large, it must be large in particular in some of the subspaces (e.g., the sum of the absolute

squares of the DEI(k)’s is equal to the sum of the absolute squares of the elements of WEI ,

etc.), so there will be large transient amplification.

As a third argument, we compute the invariant fM defined above, which measures

the relative strength of the effective feedforward connectivity and thus of the transient

amplification, in a special case: we assume that all of the eigenvalues of M are real. In

this case, the sum of the absolute squares of the eigenvalues is given by Tr
(
M2

)
, so fM =

Tr
(
MM† −M2

)
/Tr

(
MM†). Let WA

EE = (W†
EE −WEE)/2 and WA

II = (W†
II −WII)/2
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be the antisymmetric parts of WEE and WII respectively. Then we can compute

fM =
Tr

(
WEIW

†
EI + WIEW†

IE + WEIWIE + WIEWEI + 2(WEE − 1)WA
EE + 2(WII + 1)WA

II

)
Tr

(
WEIW

†
EI + WIEW†

IE + WEEW†
EE + WIIW

†
II + 2(WII + WA

II −WEE −WA
EE + 1)

)
(3.28)

In particular, if all of the submatrices WXY are symmetric, this becomes

fM =
Tr

(
(WEI + WIE)2

)
Tr

(
W2

EI + W2
IE + W2

EE + W2
II + 2(WII −WEE + 1)

) (3.29)

Thus, if (1) feedback inhibitory terms WIE and WEI are at least comparable in size to the

recurrent terms WEE and WII , as they must be for inhibition to balance excitation, and (2)

the submatrices are large, as they must be if recurrent excitation and feedback inhibition

are both strong, so that the linear and constant terms can be neglected relative to the

quadratic terms, then the numerator of fM should be comparable to the denominator and

fM should be significantly nonzero. This becomes particularly clear in the symmetric case,

in which fM becomes essentially a measure of the size of the feedback inhibition relative to

the overall connectivity, similar to our finding in the case in which the different submatrices

can be simultaneously diagonalized.

Finally, we make an argument based on the overall structure of W, namely its

two nonnegative submatrices and two nonpositive submatrices. We focus on W, assuming

that the 1 in M = W − 1 does not substantially change things. Let {ei} be any set of

N orthonormal N-dimensional basis vectors. Form the 2N -dimensional orthonormal basis

consisting of the vectors e+
i = 1√

2

 ei

ei

 and e−i = 1√
2

 ei

−ei

. In any 2N -dimensional

orthonormal basis fi, W can be written W =
∑

ij Wijfif
†
j where Wij = fi†Wfj . So in

particular, we can write

W =
∑
ij

W++
ij e+

i e+†
j +

∑
ij

W−−
ij e−i e−†j +

∑
ij

W+−
ij e+

i e−†j +
∑
ij

W−+
ij e−i e+†

j (3.30)

We define W++ =
∑

ij W++
ij e+

i e+†
j and similarly for the other three terms. Then it is easy

to show that these matrices have the form W++ =

 A A

A A

, W−− =

 B −B

−B B

,

W+− =

 C −C

C −C

, W−+ =

 D D

−D −D

 for some submatrices A,B,C,D. From
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the fact that W = W++ + W−− + W+− + W−+, we can find

A =
1
4

(WEE −WEI + WIE −WII) (3.31)

B =
1
4

(WEE + WEI −WIE −WII) (3.32)

C =
1
4

(WEE + WEI + WIE + WII) (3.33)

D =
1
4

(WEE −WEI −WIE + WII) (3.34)

C is the average of the four nonnegative submatrices of W, so it is nonnegative and

it will have large entries if W does. A, B, and D all are averages of two of these submatrices

and the negatives of two others, meaning that A, B, and D should be relatively small by

some measure (for example, in the case of sparse random submatrices, then C would have

leading eigenvalue of order N while A, B, and D would have leading eigenvalue of order
√

N

(Rajan and Abbott 2006)). Thus, the dominant contribution to W should be from W+−,

which has the same structure of signs as W. The contributions from W++, W−−, and W−+

should be relatively small: these account for the differences between WEE ,WEI ,WIE and

WII , that is, for their deviations from their average, while W+− accounts for their average.

But W+− is a sum of terms of the form W+−
ij e+

i e−†j , that is, it represents patterns of the

difference between excitation and inhibition e−j being converted into patterns of the sum

of excitation and inhibition, e+
i . Since these terms make the dominant contribution to

W and W overall is large (involving large recurrent excitation balanced by large feedback

inhibition), we expect W to involve large transient amplification in which small patterns of

differences between excitation and inhibition are amplified into large patterns of the sum

of excitation and inhibition.

None of these arguments are general or definitive, but all are consistent with

the hypothesis that large transient amplification should be expected when large recurrent

excitation is balanced by large feedback inhibition. It obviously remains an important open

question to define more precisely when this will or will not be true.

3.5.8 Coexistence of Hebbian and transient amplification

We have focused on the case in which there are no positive eigenvalues, so that there

is no Hebbian slowing and the only mechanism of amplification is transient amplification.

However, it is important to point out that transient amplification and amplification by
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slowing down will coexist if there are eigenvalues of W, λi, with positive real part but in

the stable regime, 0 < <(λi) < 1.

This is illustrated by the solution given in section 3.5.5 for the Schur decomposition

in the 2 × 2 case, with M = W − 1. We saw that, in the orthonormal {e1,q} basis,

r(t) = eMtr(0) where the matrix eMt =

 eβ1t γ eβ2t−eβ1t

β2−β1

0 eβ2t

 and βi = λi − 1. If either

eigenvalue satisfies 0 < <(λi) < 1, then the corresponding diagonal term(s) and the transient

term will both have a correspondingly slowed time course. That is, Hebbian slowing will

amplify both the recurrent terms traditionally considered in Hebbian assembly models and

the transient, feedforward term that arises from non-normality. Given ongoing noisy input,

the contribution of each term to the output amplitude is given by its time integral. The

diagonal terms thus contribute 1
1−λi

, while the off-diagonal term contributes γ
(1−λ1)(1−λ2) .

In the general N × N case, eMt in the Schur basis will always have eβit on the

diagonals, and the time-dependence of the off-diagonal terms will involve various linear

combinations of the eβit, such as the differences of exponentials in the 2×2 case. In general,

the ij term can involve linear combinations of the eβxt for i ≤ x ≤ j (in particular, it will

involve precisely those x′s for which there is a feedforward path from j to i that includes x).

So, the same basic analysis will apply – if the kth eigenvalue satisfies 0 < <(λk) < 1, Hebbian

slowing will amplify both the kth recurrent term and any transient terms that contain eβkt.

This can also be seen in the general solution for the matrix W =

 A −B

A −B

 given in

section 3.5.6. There, for the ij transient term, the time course involves only λi = λD
i and

λj = 0, so the feedforward terms have the same time dependence as just discussed for the

2× 2 case with λ2 = 0.
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Chapter 4

Conclusion

Understanding the functional purpose of the highly recurrent circuitry found through-

out cerebral cortex is a formidable scientific problem, one that will occupy many people for

a long time to come. In some sense, this circuitry is responsible for everything the cor-

tex does, from processing sensory input to motor control to cognition and memory. This

dissertation has primarily been about the mechanisms that cortical circuits might use to

accomplish these diverse computational goals.

In chapter 2, we showed that multiplicative gain changes are a natural consequence

of the way single cortical neurons with noisy membrane potentials combine their inputs.

Gain changes are thought to be an important part of the mechanism by which the cortex

computes coordinate transformations and also play in role in the neural mechanisms of

attention.

More generally, in Chapter 3, we discuss transient amplification, which is an en-

tirely new mechanism by which recurrent networks can shape neural activity. Transient

amplification is fundamentally distinct from the Hebbian assembly mechanism currently

understood to underlie amplification in these networks. It is difficult to distinguish between

these two mechanisms by looking at the existing data on spontaneous activity in cat V1

and, in fact, they may both be present in cortex. The most conceptually simple experiment

to test for transient amplification would be to transiently stimulate distinct patterns of

excitatory and inhibitory neurons over an area of cortex and record the resulting activity.

Our model predicts that large transient responses will occur when excitatory and inhibitory

neurons receive opposite input patterns, and that the response of the network will cause

excitatory and inhibitory activity to rise together. This type of experiment may be possible
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in the near future using calcium sensitive dyes to record activity and genetically targeted

optical stimulation to induce it. Hebbian assemblies were proposed with a specific func-

tional purpose in mind - maintaining a pattern of neural activity after a stimulus has gone,

as in working memory. Although we have shown that transient amplification is likely to be

ubiquitous in cortex, perhaps the most interesting future work will be in determining its

possible functional roles.
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