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CHAPTER 1

The Task and the Paradigm

Goals of the research

The principal goal of this research is to construct and test a model of the role of memory
and retrieval in problem solving. We intend this model to account (at least qualitatively)
for psychological results concerning human problem-solving behavior. We also wish to
understand more about the factors that affect problem-solving ability in humans. We
wish to examine the conditions under which humans can or cannot solve problems, and
to study those cases in which they use creativity or past experiences to increase their
ability. We have tested our model by implementing it as a running computer program and
showing that it behaves similarly to humans under various conditions. We use the model
and its implementation to explain how humans are able to perform certain tasks, what
causes some of the troubles they encounter, and how they overcome those problems.

An additional aim of the research is to provide suggestions for the design of com-
puterized problem-solving systems. We feel that a good method for creating intelligent
systems is to examine the processes that account for intelligent behavior in humans and use
explanations of that behavior to guide our efforts in designing artificial-intelligence (AI)
systems. In this framework, a first step toward creating intelligent systems is to develop
models that explain human behaviors. If we can develop a reasonable model, we will be
able to incorporate the processes involved into future problem-solving systems. Hopefully,
these new systems will be more creative, flexible, and powerful than the systems that have
been constructed and studied to date.

Artificial intelligence and problem solving

The subject of problem solving has been studied from a computational standpoint since
the earliest days of artificial-intelligence research. One of the first problem-solving systems
that was able to solve a large class of problems was called GPS, for General Problem Solver
(Ernst & Newell, 1969). This was the first system to introduce the notion of means-ends
analysis in problem solving. A later system, STRIPS (Fikes & Nilsson, 1971), expanded on
the means-ends approach. Since that time there has been a wealth of research covering the
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PAGE 2 RETRIEVAL IN PROBLEM SOLVING

issue of problem solving. In general, this work has advanced along two dimensions. There
are some who have attempted to model the behavior of humans at various levels and for
various tasks (e.g., Anderson, 1976, 1983; Laird, Rosenbloom, & Newell, 1986a; Ohlsson,
1987). Others have been content to downplay psychological issues and concern themselves
more with building computer systems that are “better” problem solvers in computational

terms (e.g., Fikes & Nilsson, 1971; Hendler, 1986; Minton, 1988/1989; Sacerdoti, 1974).

A major paradigm for researchers in computational problem solving (and artificial
intelligence in general) involves the problem-space hypothesis proposed by Newell (1980).
The hypothesis states that all cognitive behavior can be expressed in the form of search.
A problem space consists of a set of problem states and a set of operators that can apply
to these states. Given any initial situation (or initial state) for a cognitive system that has
certain goals (goal states), the system carries out a search for a path from the initial state
to a goal state by applying operators appropriate to the task. These operators carry the
system through various intermediate states in the process. The search problem is to find
a path (or the best path) from the initial state to the goal state. This task is complicated
by the fact that multiple operators may be applicable to any given state, which makes
it is easy to follow spurious paths. The problem-space hypothesis has proved to be an
extremely useful model in Al, and problem solving in particular is very nicely explained
in these terms. As such, we have relied heavily on the hypothesis in our representation of
problems.

Modeling retrieval in problem solving

Many systems have been developed that search problem spaces by applying operators
and expanding new states until they find a path between the initial state and a goal state.
These systems might be said to be psychological models to the extent that they rely on
the problem-space hypothesis, which appears to provide a valid model of human cognition.
However, along numerous dimensions, these systems exhibit behaviors and limitations that
are very different from those exhibited by humans. In this research we account for a set
of problem-solving behaviors by integrating a psychologically plausible model of memory
and retrieval with a problem-solving system.

An important aspect of the role of retrieval in problem solving concerns the availability
of information. Humans have a large capacity for information in long-term memory, and
difficulties occur in bringing only the relevant information to bear on a given problem
situation. In our view, the retrieval of information from memory plays a central role in
one’s ability to solve a problem.! In addition, any mechanisms that influence retrieval
should have a strong effect on the types of learning that can occur. In our model, one

! This is by no means a unique view in Al research. Schank (1982), Carbonell (1986), and others have also
argued for the strong role of memory in problem solving.
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of the most important forms of learning involves the adjustment of memory structures to
alter retrieval patterns. These adjustments are designed to facilitate the retrieval of useful
information, although we will see that there is sometimes a trade-off between flexibility
and performance improvement.

Retrieval is also an important issue from a computational standpoint. Most problem-
solving systems have assumed that all the knowledge stored in memory can be brought to
bear on a problem. However, like humans, machines can store extremely large amounts
of information and it is often unreasonable to exhaustively analyze the entire memory
until the most relevant information can be selected.> In this respect, a good retrieval
mechanism must be able to recall relevant information without letting the amount of
retrieved information become too large. Once again, this type of mechanism involves
certain trade-offs due to the imposed restrictions and constraints.

Contents of the dissertation

This dissertation describes a model of the role of memory and retrieval in problem
solving, together with an implementation and evaluation of the model. This section
provides a guide for readers who are interested in various specific aspects of this research.

Chapter 2 describes a number of characteristics of human problem solving that have
been explored by psychologists, including performance aspects, learning, and creativity.
These characteristics provide a general framework in which we develop our model and a
set of phenomena that the model must explain.

The third chapter provides a discussion of spreading-activation models of memory
retrieval. Spreading activation is the retrieval mechanism used in the current work and it
is central to our model of problem solving. In this chapter we discuss spreading-activation
models in general and give arguments for the utility of spreading activation from both
psychological and computational standpoints.

In chapter 4 we introduce and describe in detail the EUREKA model of problem solving.
The chapter begins with an overall view of the model and then discusses specific details
concerning the representation of knowledge, performance and retrieval, and learning.
Sections of this chapter also discuss many of the details involved in implementing EUREKA
as a computer system.

Chapter 5, which contains an experimental evaluation of the EUREKA model, is divided
into two main sections. The first reports tests of EUREKA’s adequacy as a psychological
model. The experiments in this section are designed to account for the characteristics
discussed in chapter 2. The second section contains an empirical study of the model as a

2 This becomes an important problem when considering high-performance problem solvers that work in
large and complicated domains. Our current model does not address problems of this complexity, but

provides suggestions for improving those that do.
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computational system. Experiments in this section test EUREKA's behavior under various
settings of its system parameters.

In chapter 6 we discuss our model in relation to some of the past research in problem
solving in artificial intelligence. To this end. we identify and analyze a number of important
features concerning problem-solving systems. We classify some past research along these
dimensions and describe EUREKA’s relationship to that research.

Finally, in chapter 7 we review the contributions of the dissertation and discuss the
EUREKA model in terms of our experimental results. We also describe a number of
directions in which we would like to extend our model, along with some other directions
for future related research.



CHAPTER 2

Human Problem Solving

Much of the work in AI on problem solving has been based on the methods humans use
to solve problems. Some early work was motivated by a desire to model human behavior
with problem-solving systems (Ernst & Newell, 1969; Newell & Simon, 1972). Other
researchers have been concerned with computational utility rather than psychological
principles. Their work focuses on getting computers to solve problems in interesting and
general ways, without necessarily addressing issues of psychological plausibility (Fikes &
Nilsson, 1971; Hendler, 1986; Minton, 1988/1989; Sacerdoti, 1974). Recently, there has
been a resurgence of interest in developing computational implementations of psychological
models in an attempt to explain human problem-solving behavior (Anderson, 1983; Newell
& Rosenbloom, 1981; Ohlsson, 1987). o

The main focus of this dissertation is the integration of a memory retrieval mechanism
with a general problem solver in an attempt to account for a number of behavioral phe-
nomena. We have developed a model of human problem solving, along with a computer
implementation, that accounts for these phenomena. Later chapters of this dissertation
Jescribe the details of our model, its implemer_ltation, and its behavior under various con-
ditions. However, before we discuss these détails, we introduce a number of characteristics
of human problem solving that have been observed and studied by psychologists. These
characteristics serve as the basis for the construction and evaluation of our model.

Influences and limitations on problem-solving behavior

One topic of interest in cognitive psychology involves the qualitative aspects of sim-
ple problem solving. This concerns the general characteristics that humans exhibit in
mundane problem-solving episodes. The characteristics described here include the general
approaches that humans take in solving problems and some limitations in their ability.

USE OF HEURISTICS ) .

We have already described Newell’s problem-space hypothesis, which claims that solving
a problem consists of carrying out a search through the states in a problem space. There
are many possible methods for searching such a problem space. However, problem spaces

PAGE 5
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are usually quite large, and humans must use some guiding principles to direct their search
for a solution.

Newell and Simon (1972) found that humans use certain types of constraints on search,
called heuristics. Heuristics usually involve special information about problems that keep
one from exploring obviously fruitless paths. Heuristics also help direct the problem solver
in making decisions when presented with a number of choices. Naturally, using heuristics
can sometimes be misleading; a problem that might be solved using exhaustive search
might not be solved with the use of heuristics. However, good heuristics will prove useful
in solving most problems in a reasonable amount of time.

Newell and Simon also identified a particular type of heuristic problem solving called
means-ends analysis, which involves a goal-directed search through a problem space.
Rather than starting from the initial state and carrying out a forward search until the
goal is found, means-ends analysis involves examining the differences between the initial
state and the goal state. Then, an operator is selected that will reduce some of those
differences. After this operator is selected, a new subproblem is set up with the goal of
making that operator applicable. Once that operator has been applied, it is quite likely
that other differences remain to be reduced.

As an example, consider the following section of a well-known protocol taken from
Anzai and Simon (1979). In this experiment, the subject was asked to solve the “Towers
of Hanoi” problem, in which one must transfer a stack of disks from one peg to another
without placing a larger disk on top of a smaller one. Part of the subject’s protocol
contained the following statements:

If it were five, of course, 5 will have to go to C, right?
So, 4 will be at B.

3 will be at C.

2 will be at B.

So 1 will go from A to C. (p. 139)

In this example, the subject used differences between the initial and goal states (e.g., Disk
5 must end up on Peg C) to drive her problem solving. The subject repeatedly set up
subgoals for each disk until she was able to satisfy one by moving Disk 1 to Peg C. In
this way, means-ends analysis works backwards from a number of goals in the goal state.
Subgoals are set up until connections are made to the initial state. This approach limits
the search through a problem space, making it more tractable.

LIMITATIONS ON MEMORY AND RETRIEVAL

In the previous section, we saw that humans use heuristic methods to limit their
search when solving problems. However, even with the use of heuristics, one has no
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guarantees about finding the correct path through a problem space. In order to be sure
of solving a “solvable” problem, a person would require the capability to exhaustively
search the problem space. Computational problem solvers can easily perform this type of
search by backtracking whenever they make a mistake. Backtracking involves remembering
the choices made at each decision point and trying each possibility until a successful
combination is found. The lack of this ability in humans arises partly from memory
limitations. We can also see an example of this behavior in Anzai and Simon’s protocol.
When the subject ran into trouble, she eventually elected to begin the problem anew,
rather than merely backing up to an intermediate point.

Although humans do not have much difficulty storing information about their past,
they do have troubles selectively retrieving large amounts of data on demand (Miller,
1956). If a human finds that he has failed to solve a problem, it is often difficult for him
to remember his last decision and the choices he had already made at that point. Getting
bogged down in the details of remembering where he was, he will often try to “clear the
slate” and begin a new attempt at solving the problem, rather than taking up the attempt
somewhere in the middle where he cannot recall the details.

The human problem solver may also duplicate certain paths he has taken previously
even though they failed, because he cannot remember which paths he has taken previously.
An added complicationis that a human can never be sure he has exhausted all the possible
decisions at a given decision point.

We argue that such memory limitations exert an important influence on problem
solving. We have just considered the intractability involved in the amount of information
that would need to be readily accessible to perform a systematic search of a problem space.
However, there is also a retrieval problem in deciding which information to use to solve a
given problem. Human memory contains an enormous number of facts and rules that are
relevant to many distinct situations. When one comes to a decision point during problem
solving, one cannot simply search one’s entire memory looking for information appropriate
to the task at hand.

This is also a practical problem for computer systems. Searching the entire memory
each time a decision must be made is simply impractical. Rather than carrying out this
type of search, humans retrieve much smaller groups of information and use only what
they remember to help solve a problem. This allows them to perform memory-related
tasks, like problem solving, efficiently. However, this approach has the drawback that one
may not retrieve information necessary to complete a task.

REACTION TO THE ENVIRONMENT

A final important issue in human problem solving involves the interactions between the
problem solver and the environment in which he works. Humans constantly receive input
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cues from their surroundings, which in turn provoke reactions. These reactions can appear
in the form of distractions that cause the problem solver to turn to a different task or to
follow an incorrect path. In other cases, an environmental stimulus may help a person
solve a problem by directing him down useful paths and steering him away from paths that
lead to failure. We will return to this issue in our discussion of learning characteristics.

Learning in human problem solving

In this section, we examine aspects of human problem solving that involve learning.
These characteristics provide the primary source of data that we use to evaluate our
model in chapter 5. Each of the learning phenomena reported here is also discussed later
in terms of our model. Before discussing these characteristics, however, we must first
define precisely what we mean by the term “learning.”

LEARNING AS IMPROVED PERFORMANCE

An important feature of human problem solving is that humans learn from their ex-
periences. We view learning as a change in the ability to perform a task. In the current
research, the task at hand involves solving problems. We say that a person or problem-
solving system has learned something when its ability to solve problems has changed.
Ideally, this change involves an improvement in the ability to perform the task, but this
need not always be the case. Under this view, learning can be evaluated by measuring how
well a person performs a task before and after learning has taken place. Defining learning
as a change in performance still allows for a wide range of specific types of behavior.
Performance can improve or degrade, and the conditions under which change occurs can
be quite different. In the remainder of this section we describe some specific types of
change in performance that humans exhibit when solving problems.

POSITIVE TRANSFER

When we speak of improving performance for a task, it is still unclear under which
conditions improvement occurs. One type of improvement involves practicing a specific
task and becoming increasingly better at it. In problem solving, this corresponds to
becoming familiar with an individual problem. On the first attempt to solve a specific
problem a person might be expected to do rather poorly. But after he has seen the problem
repeatedly, he becomes more familiar with the details and remembers the difficult parts
more clearly. We would expect the person’s ability to solve this single problem to improve
with each repetition.

Newell and Rosenbloom (1981) have investigated practice effects in problem solving in
terms of the “power law of practice.” This hypothesis states that the amount of effort
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Figure 2. Some power-law curves in log-log coordinates.

required to complete a task reduces as a power law with respect to the number of times the
task has been repeated. That is, graphing the logarithm of the measure for effort against
the logarithm of the number of trials will yield a straight line. Newell and Rosenbloom
discuss a number of motor-skill and retrieval tasks that have been shown to follow the
power-law hypothesis, and they propose that problem-solving activities should follow the
same law. This is not an outrageous expectation, because there is a relatively large family
of curves that obey the power law. A small set of examples is provided in Figures 1 and
2 in both log-log and linear coordinates.
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Figure 4. Improvement with practice in amount of search performed.

In testing their hypothesis, Newell and Rosenbloom measured a subject’s speed in
consecutive trials on a solitaire card problem. They found that this particular measure
did follow a power law. We should note that the subject was not exactly practicing a single
task, because each initial configuration of cards was different. However, their results do
lend support to the hypothesis that the power law of practice applies to problem solving
as well as low-level performance characteristics.

We have also examined the effects of practice on an individual problem by further
studying Anzai and Simon’s (1979) “Tower of Hanoi” protocol. In this protocol, the
subject solved the same problem three separate times. We translated the protocol into a
problem-history representation that could have been generated by our system (described
in chapter 4). We then used the representation for each individual trial to measure the
subject’s effort in some of the same terms we use to evaluate our system in chapter 5.
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Table 1. Improvement from transfer within the “Towers of Hanoi”

domain.
CONDITION # MovVEs # NODES
CONTROL 43 96
TEST 33 83

Figures 3 and 4 record the amount of effort expended by Anzai and Simon’s subject
during each successive trial. The dashed lines represent the minimum amount of effort
required to solve the problem.

It is clear that these curves have the same general shape as some of the power-law
curves. In particular, much less improvement occurs after each successive trial. Although
only three trials were recorded, it is easy to see that the subject was rapidly approaching
optimal behavior, after which no improvement would be possible.

It is interesting to note that, although these curves have the right general shape, they do
not precisely obey a power law. Therefore, it appears that at least some practice episodes
in problem solving do not obey this law, Rather, they seem to follow some more general
law that specifies that the rate of improvement decreases with each trial.

A more interesting type of learning occurs when a person is able to practice one
individual problem and have that practice lead to improved performance on other similar
problems or on more difficult, related problems. This is called positive transfer. Humans
exhibit the ability to solve problems they have never seen before after they have been
exposed to similar problems. Positive transfer involves a bit more than simply getting
better at solving an individual problem with practice. It requires that one generalize
knowledge of specific problem-solving episodes to an extent that it becomes useful for a
wide range of problems. Naturally, we would expect that the less similar two different
problems are to each other, the less transfer there would be from one to the other.
Nonetheless, we should expect at least a small amount of transfer in any case.

Again referring to Anzai and Simon’s protocol, we observed that, after solving the
problem once, the subject solved a series of smaller problems involving one disk, two
disks, etc., before attempting the main problem again.? Thus, we were able to compare
the subject’s effort from the first trial with the effort in the second trial, after these smaller
problems had been solved. As shown in Table 1, there is a noticeable improvement. It is
not clear whether most of this improvement arises from transfer from the simpler problems
or from the initial solution attempt. However, we assume that there was at least some

3 The subject performed this activity spontaneously, without any, prompting from the experimenter.
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Table 2. Water-jug problems in Luchins’ Finstellung experiment.

OBTAIN

PROBLEM GIVEN THE FOLLOWING EMPTY JARS THIS
AMOUNT

1 21 127 3 100

2 14 163 25 99

3 18 43 10 5

4 9 42 6 25

5 20 59 4 31

6 23 49 3 20

7 15 39 3 18

transfer from solving the simpler problems or the subject would have abandoned that
approach.

NEGATIVE TRANSFER

The ability to generalize and transfer knowledge across problems can have drawbacks as
well. When presented with a new problem to solve, it may not be possible to immediately
distinguish a good strategy from a bad one. This is also something that must be learned.
Just as solving one problem might help solve a new problem, it might just as easily hinder
solving some other problem. This phenomenon has been exhibited in expenments by
Luchins (1942) on Einstellung or the set effect.

In one of Luchins’ experiments, subjects were presented with a series of “water jug”
problems. These problems involve a number of jugs of various sizes. The goal in each
problem is to fill and empty jugs in various combinations so as to end up with a specific
amount of water. For example, given a 29-gallon jug and a three-gallon jug, 20 gallons
of water can be obtained by filling the large jug and pouring it into the smaller jug three
times.

Luchins gave subjects the problems listed in Table 2. All the problems can be solved by
filling the center jug, pouring it into the rightmost jug twice, and then into the leftmost
Jug once. However, problems six and seven can also be solved with simpler procedures.
For instance, the sixth problem can be solved by filling the leftmost jug and pouring it
into the rightmost jug. Problem seven involves filling the leftmost and rightmost jugs and
pouring them into *he center jug. In this particular experiment, every subject failed to
employ the simpler solutions on these test problems. This is a classic example of negative
transfer. The knowledge of the complicated water-jug solution was useful in solving the
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other complicated problems, but it actually proved a hindrance in solving what could have

been an easier problem.

Creativity

One aspect of human behavior that might be considered the holy grail of Al researchers
involves creativity. We will not delve into the philosophical aspects of what it means to
be creative. Rather than attempting to define the term creativity, we will be content with
considering behaviors that seem creative. In this section, we discuss two issues involved in
problem solving that are generally thought to require some sort of creativity, in addition
to being involved with learning or improved performance.

INTER-DOMAIN TRANSFER OR ANALOGY

The first type of creativity concerns the ability to use analogy. One powerful aspect
of human problem solving is the ability to use knowledge that does not, at first glance,
seem directly relevant to the problem at hand. Humans can conjecture relationships and
facts about the current problem by drawing similarities to old problems and expanding on
those similarities. This can sometimes allow one to solve otherwise unsolvable problems.
We should note, that although humans certainly have the ability to use this mechanism,
they often have difficulties recognizing and using analogies without help (Gick & Holyoak,
1980, 1983; Hayes & Simon, 1977; Reed, Ernst, & Banerji, 1974).

Holyoak and Koh (1987) ran an experiment that test sub jects’ ability to spontaneously
retrieve and use an analogy to solve a new problem. Their experiment included two
groups of subjects. The test group was taken from psychology classes that had discussed
Duncker’s (1945) “radiation” problem. In this problem, a patient has a tumor that could
be destroyed by high-powered x-rays. However, the x-rays would also destroy any healthy
tissue it went through. Lower intensity x-rays would not damage the healthy tissue, but
would also be ineffective against the tumor. One solution to this problem involves aiming
multiple low-intensity x-rays at the tumor from different directions. This allows the tumor
to be destroyed without destroying any healthy tissue. The control group of subjects was
selected from psychology classes that had not discussed this problem.

Every subject was asked to solve a “broken lightbulb” problem. In one version of this

problem,
the filament of an expensive lightbulb in a physics lab was broken. The lightbulb was
completely sealed, but an intense laser could be used to fuse the filament. However,
at that high intensity, the glass surrounding the filament would be broken. At
lower intensities the laser would not break the glass, but neither would it affect the
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filament. The solution was to direct multiple low-intensity lasers toward the filament
from different directions. (p. 335)

Holyoak and Koh found that only ten percent of the subjects in the control group could
come up with the convergence solution to the problem. In contrast, this solution was
found by 81 percent of the test group. This indicates the ability of humans to solve a new
problem by retrieving an analogous problem that has already been solved from memory.

We view the use of analogy as an extension of the idea of positive transfer. Earlier
we described how humans have the ability to generalize from specific problems in solving
other similar problems. Analogy can be viewed as the same mechanism at a higher level of
abstraction, in which one generalizes old problems to help solve new ones. The difference
is that analogies generally take place across domains rather than within them. This means
that the similarities between two problems will probably not be on the level of specific
details, but on the level of more abstract relations and shared features (Gentner, 1983).
We would expect that a general transfer mechanism capable of generalization within a
domain would also be somewhat successful (though perhaps weaker) with higher-level
generalizations or analogies. Naturally, any type of negative transfer that can occur on
the lower intra-domain levels would have corresponding detrimental effects on the higher
level of inter-domain analogies.

EFFECTS OF EXTERNAL CUES

A final interesting characteristic involves the effect the environment has on problem-
solving behavior. Humans do not solve problems in a vacuum, and they are constantly
reminded of things by the presence of various external cues. These cues can take many
forms. For example, there might be an object in the area that is suddenly noticed by
accident. At another extreme, something in the environment might be deliberately brought
to the attention of the solver, as when a teacher gives a student a hint. The main feature
of external cues is that, regardless of their nature or intent, they have some effect on the
retrieval of information from memory. We are most interested in cases where external
cues improve problem-solving performance. However, cues might be as detrimental in
some cases as they are helpful in others.

The most benign form of external cue—the hint—usually comes from a teacher or a
friend who is trying to help someone solve a problem. In this case, the teacher provides
a cue to the solver in hopes of causing the solver to retrieve information that is useful for
a given problem. Hopefully, this information helps the solver make a good choice for the
current decision. A more malign case might involve someone who is purposefully trying to
distract a solver’s attention from whatever they are working on. Both types of intentional
external cues can have dramatic effects on a person’s ability to solve problems, whether
that effect is helpful or detrimental.
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To test the effects of hints on problem solving, Holyoak and Koh (1987) ran another
experiment that focussed on how hints affect the retrieval and use of analogies. In this
experiment, subjects were asked to read an summarize one of four stories. Each story was
based on the “broken lightbulb” problem discussed above, but include small variations

and the solution to the problem.

Next, the subjects were asked to solve Duncker’s “radiation” problem. After an initial
attempt to solve this problem, the subjects were given a hint to use the “broken lightbulb”
story to suggest a solution. The subjects then attempted to solve the “radiation” problem
again. After each attempt, Holyoak and Koh measured the percentage of subjects that
successfully solved the “radiation” problem. They found the 39 percent of the subjects
solved the problem before receiving a hint, while 66 percent solved the problem after the
hint. This demonstrates the significant effect a benevolent environmental cue (in this case,
a hint) can have on the ability to solve a problem, particularly when success hinges on the
retrieval and use of an appropriate analogy.

For further psychological evidence concerning the effects of cues, we cite an experiment
performed by Dreistadt (1969). He gave a set of “tricky” problems to four groups of
people. The first group was given twenty minutes to solve the problems. The second
group was given the same amount of time and the same problems, but was also presented
with pictures that contained analogical hints to help find the solution. This group was not
told the purpose of the pictures. The third group was given five minutes to concentrate on
the problem, and then was given an eight-minute incubation period involving a distracting
activity. This group was then given seven more minutes to solve the problem. The final
group was presented with pictorial analogies and given an incubation period.

Dreistadt evaluated his subjects’ behavior in terms of the number of correct answers in
each group and the closeness of the incorrect answers to the correct solutions. The results
indicated that pictorial analogies significantly aided the solution process, even though the
subjects were not always aware they had been given help. Incubation alone did not seem
to help in problem solving, but it did slightly enhance the effect of the pictorial analogies.
These results suggest that analogies are an important part of insight, and that they can
be cued by external stimuli that may be processed subconsciously.

Dreistadt’s experiment also points out a more insidious type of external event, consisting
of “incidental” cues. In this case, some part of the environment not directly related to the
problem influences retrieval during problem solving. This effect may end up being helpful
or detrimental, or it may have no noticeable influence on the solver’s behavior at all. We
usually notice an external cue having an effect on problem solving only when it aids in
solving a problem. This phenomenon provides an explanation for some episodes of insight,

which we discuss further in chapter 7.
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Summary

In this chapter we explored a number of the issues involved in human problem solving.
The characteristics we examined fall under the broad categories of problem-solving influ-
ences and limitations, learning, and creativity. On the surface, many of these phenomena
appear to be unrelated and there could be a wide variety of cognitive mechanisms that
account for them. However, we claim that each of these behavioral characteristics can be
explained in terms of mechanisms involving memory and retrieval. The role of memory in
problem solving plays a central part in the model we describe later in this dissertation. In
chapter 5, we discuss a number of experiments we have run in an attempt to account for
the phenomena covered in this chapter. Since memory issues play such a vital role in our
research, we next introduce and discuss the specific memory model that we use.
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usually involves setting a threshold that determines the amount of activation required to

be a working-memory element.

Psychological support for spreading activation

In addition to being used in various computational applications, spreading activation
has received attention from psychologists as a plausible model of human memory. Most
of the psychological literature on this topic concentrates on accounting for the amount
of time people take to perform memory-related tasks involving fact retrieval and word

recognition.

RETRIEVAL OF FACTS FROM MEMORY

One of the first experiments testing the role of spreading activation in fact retrieval
was run by Collins and Quillian (1969). Their model proposed that human memory is
represented as a semantic network organized into a hierarchy of concepts. Each concept
is connected to a set of properties and a set of specializations of the concept. These
specializations in turn have properties and perhaps further specializations attached.

For example, the concept for animal includes the fact that animals have skin. One
specialization of animal is bird, which includes among its properties the facts that birds
have wings and fly. Finally, a specialization of birds is the canary, with the properties that
canaries sing and are yellow. According to the theory of retrieval as spreading activation,
relationships between objects that are farther away from each other in memory take longer
to be retrieved and confirmed. For example, it should take a person longer to verify
that “canaries have wings,” than it would to verify that “canaries are yelléw,” because
activation that spreads from canary and wings must pass through the intermediate bird
node before retrieval of the proposition is complete. In contrast, activation markers spread
from canary and yellow run into each other immediately. By the same argument, it should
take even longer to verify the fact that “canaries have skin.”

Collins and Quillian ran a set of experiments in which they presented subjects with a
large set of sentences. Each sentence was in the form of a simple fact, such as “tennis
is a game,” or “an elm is a plant.” The subjects were instructed to press one button if
the sentence they saw was true in general, and to press another button if the sentence
was false. Reaction times were recorded for each instance. In analyzing their data,
Collins and Quillian divided the sentences according to the semantic distance between
the concepts involved in them. For each group of sentences, they graphed the average
reaction rime. Their results showed that reaction times increase linearly with the distance
between concepts, matching the predictions of the memory model. This was the first
support found for the idea of spreading activation in retrieval.




CHAPTER 3

The Spreading-Activation Model of Memory

The primary purpose of this research is to provide a computational explanation of a
number of characteristics exhibited by human problem solvers. To accomplish this, we
have integrated a inodel of memory and retrieval with a general problem solver. The
memory model we have chosen is based on the use of spreading activation for retrieval.

The first spreading-activation model was introduced by Quillian (1968) in his work
on natural-language processing. Along with his model, Quillian proposed the semantic-
network representation of memory. In this framework, concepts are represented as nodes in
a graph. Relations between concepts are represented as the links between nodes. Spreading
activation involves passing information from a set of source concepts throughout a portion
of the network along the various links.

Since Quillian’s original proposal, spreading activation has enjoyed attention from
psychologists and computer scientists. In this chapter we review the history of spreading-
activation models in these fields. We also discuss the issues involved in integrating
spreading activation into a psychological model of problem solving.

History and description of spreading activation

There are two related but distinct mechanisms that have come to be known as spreading
activation. Quillian originally used this term interchangeably with marker passing to
describe a process of passing tokens or markers throughout a network. He used these
markers to find paths from source nodes to other nodes within a semantic network. When
the paths from two different source nodes crossed, the retrieval process returned the path
that connected the source nodes through that common node. This path was used as a
semantic description of a relationship between the two nodes. In essence, marker passing
provides a mechanism for carrying out a breadth-first search through the network. This
type of marker passing is intended mostly to find relationships between concepts, which
one can then analyze to make decisions about ambiguous situations.

For example, marker passing might be used to help understand the sentence “I saw a
star in Hollywood.” Marker passing would retrieve a path connecting the concepts “star”
and “Hollywood.” This path would suggest that the type of star being discussed is a
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movie star rather than a star in the sky.* Although the users of such algorithms tend to
use the terms “marker passing” and “spreading activation” interchangeably, we will use
the former term for this specific mechanism to distinguish it from the type of spreading
activation used in our research.

The type of spreading activation used in EUREKA is more similar to that introduced by
Anderson (1976, 1983) in his ACT framework. In ACT, there are two types of memory.
Procedural memory is represented as a number of productions that can fire when they
match other active memory elements, and declarative memory represents facts using a
semantic network similar to the type introduced by Quillian. One important difference is
that the links between nodes in ACT’s declarative memory have trace strengths associated
with them. These values indicate the relative strengths of the specific relations that
connect concepts. For example, a link representing the statement “fish are swimmers”
might be stronger than a link for “fish have scales.” This represents the notion that the
concept of fish is more likely to remind us of swimming than of scales.

Anderson also makes another augmentation to the semantic network representation.
He gives each node in the network a numerical level of activation. The nodes with the
highest levels of activation are considered to be in short-term or working memory. As
concepts receive higher levels of activation, production rules can match against them and
fire more quickly. Thus, the ACT framework uses a spreading-activation mechanism to
ret:_‘ieve information from its declarative memory. However, this mechanism differs from
marker passing in two important ways. First, no high-level knowledge structures are
passed between nodes; only numerical activation strength is passed. Second, the type
of information retrieved is different. Whereas marker passing retrieves a set of paths
connecting source concepts, Anderson’s type of spreading activation retrieves the set of
concepts in the network with the highest activation levels.

In more detail, when a concept becomes activated (perhaps from being added by a
production rule), activation spreads from it throughout a portion of the network. Acti-
vation from a number of activated concepts is thus distributed along different paths and
collects in various nodes that are related to the multiple source nodes. In the most recent
implementation of the ACT model (ACT*), the activation levels of concepts influence the
amount of resources devoted to matching production rules against them. Under this par-
ticular view, there is no strict definition of a retrieved concept. However, in variations on
this approach, levels of activation are used to determine new working-memory elements
(e.g., Anderson, 1976; Holland, Holyoak, Nisbett, & Thagard, 1986). These variations
require some algorithm for determining which elements are in working memory. This

4 This marker-passing approach has also been used by Charniak (1983, 1986), Granger, Eiselt, and Holbrook
(1986), and Norvig (1985) in their work on natural-language understanding and inference and by Hendler
(1986) in his work on problem solving.
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usually involves setting a threshold that determines the amount of activation required to
be a working-memory element.

Psychological support for spreading activation

In addition to being used in various computational applications, spreading activation
has received attention from psychologists as a plausible model of human memory. Most
of the psychological literature on this topic concentrates on accounting for the amount
of time people take to perform memory-related tasks involving fact retrieval and word
recognition.

RETRIEVAL OF FACTS FROM MEMORY

One of the first experiments testing the role of spreading activation in fact retrieval
was run by Collins and Quillian (1969). Their model proposed that human memory is
represented as a semantic network organized into a hierarchy of concepts. Each concept
is connected to a set of properties and a set of specializations of the concept. These
specializations in turn have properties and perhaps further specializations attached.

For example, the concept for animal includes the fact that animals have skin. One
specialization of animal is bird, which includes among its properties the facts that birds
have wings and fly. Finally, a specialization of birds is the canary, with the properties that
canaries sing and are yellow. According to the theory of retrieval as spreading activation,
relationships between objects that are farther away from each other in memory take longer
to be retrieved and confirmed. For example, it should take a person longer to verify
that “canaries have wings,” than it would to verify that “canaries are yelléw,” because
activation that spreads from canary and wings must pass through the intermediate bird
node before retrieval of the proposition is complete. In contrast, activation markers spread
from canary and yellow run into each other immediately. By the same argument, it should
take even longer to verify the fact that “canaries have skin.”

Collins and Quillian ran a set of experiments in which they presented subjects with a
large set of sentences. Each sentence was in the form of a simple fact, such as “tennis
is a game,” or “an elm is a plant.” The subjects were instructed to press one button if
the sentence they saw was true in general, and to press another button if the sentence
was false. Reaction times were recorded for each instance. In analyzing their data,
Collins and Quillian divided the sentences according to the semantic distance between
the concepts involved in them. For each group of sentences, they graphed the average
reaction rime. Their results showed that reaction times increase linearly with the distance
between concepts, matching the predictions of the memory model. This was the first
support found for the idea of spreading activation in retrieval.
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THE FAN EFFECT

Later experiments on fact retrieval were run by Anderson (1974). He had subjects
memorize sets of propositions of the form "a person is in a place,” such as “a hippie
is in the park.” After the subjects had committed a large number of these facts to
memory, Anderson tested the amount of time it took the subjects to recall if new sentences
presented to them were members of the memorized set. The experiments indicated that it
took longer to retrieve information about a concept (e.g., hippie) when that concept was
present in more of the memorized sentences. This phenomenon is known as the fan effect.
In addition, Anderson demonstrated that, in humans, activation seems to spread from all
concepts involved in a presented sentence, contradicting the competing hypothesis that
activation is spread from a single concept followed by a search for the other concepts.

PSYCHOLOGICAL RESEARCH ON PRIMING

Other psychological research designed to test the spreading-activation theory has fo-
cused on the priming effect on word recognition. As an example, Meyer and Schvaneveldt
(1971) ran experiments in which they presented subjects with a large number of pairs of
letter strings. The strings were divided into groups that included pairs of associated words,
pairs of unassociated words, pairs of nonwords, and pairs including a word and a nonword.
For.each pair, both strings were presented on a screen with one above the other. In one
experiment, the subjects were asked to push a yes button if both strings were words, and
a no button otherwise. In the second experiment, they were asked to push a same button
if the strings were both words or both nonwords, and a different button otherwise.

The spreading-activation theory predicts that if both of the strings are words that are
related to each other, the activation of the first one should prime the second one and
facilitate its retrieval. This implies that subjects should have the fastest response times
for this task when the strings are two related words. Meyer and Schvaneveldt found that
having related words did indeed speed up reaction time in the task. In addition, presenting
a word before a nonword significantly increased the response time for completion of the
task. The results in priming and fact retrieval are consistent with the type of spreading-
activation mechanism used in the ACT framework. In fact, Anderson (1983) was able to
account for these data with his spreading-activation mechanism in ACT*. The retrieval
mechanism in our model is based on Anderson’s algorithm.

RETRIEVAL OF ANALOGIES IN PROBLEM SOLVING

Spreading activation has also been proposed as a mechanism for the retrieval of analo-
gies. Holyoak and Koh (1987) ran an experiment to determine the types of problem
features that had the greatest effect on the retrieval of an analogy. In this experiment,
they presented subjects with one of four versions of the “broken lightbulb” story that we
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discussed in chapter 2. The four stories were created by altering the surface and structural
features of the original story. In one story, surface features were changed by replacing the
lasers with ultrasound waves. In another, structural features were changed by omitting
the restriction of breaking the glass and adding the constraint that no single laser had
enough intensity to repair the filament. In the final story, both alterations were made.
After reading the lightbulb story and solving a set of unrelated problems, the subjects
were asked to solve the “radiation” problem. The percentages of subjects who were able
to solve the radiation problem were recorded before and after a hint was given to use the

lightbulb story as an analogy.

The results of this experiment suggest that surface and structural similarities influence
the spontaneous retrieval of analogies, whereas structural similarities influence the ability
to apply an analogy once it has been retrieved. The results concerning retrieval are
consistent with a spreading-activation mechanism. However, spreading activation would
most likely imply that surface similarities have a greater impact on retrieval. However,
Holyoak and Koh did not explicitly test this hypothesis. To do this, one would need to
run variations on this experiment in which there is a more obvious distinction between
the retrieval and the application of analogies.® Clearly, more experiments are required
to specifically test the role of spreading activation in analogical problem solving. One of
the hypotheses of this dissertation is that analogical retrieval can be explained by a single
spreading-activation process that also accounts for many other psychological aspects of

human problem solving.

Computational advantages of spreading activation

Aside from the use of spreading activation as a psychological model, we argue that
this retrieval mechanism also has advantages from a computational point of view. In
particular, search by spreading activation is only influenced by the structure of memory
and not by its specific contents. Other types of retrieval algorithms (e.g., Laird et al.,
1986a; Minton, 1988/1989; Ohlsson, 1987) can require an extensive analysis of portions
of memory. In contrast, spreading activation uses a local algorithm that does not require
attending to multiple complex concepts at one time. Spreading activation also imposes
certain limits and constraints on the type and depth of search that will occur. More
knowledge-intensive types of retrieval usually do not limit the size of memory that may
be examined during retrieval. Finally, spreading activation specifies a paradigm under
which the retrieval of objects occurs, placing a bias on which types of information will
be retrieved under different conditions. Our argument is that this bias is consistent with

human behavior under similar conditions.

5 We should note, however, that Gentner (1988) has found that surface similarities have a greater impact
on the retrieval of story analogies.
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Figure 5. Spreading activation viewed as a tree traversal.

Time and memory complexity are important considerations when dealing with the
computational characteristics of spreading activation. Consider a typical algorithm that
implements this mechanism.® At first glance, it appears that there is an exponential growth
in the number of semantic-network nodes visited during spreading activation. This growth
is based on the branching factor of the network and the depth to which activation is spread.
However, with most spreading-activation systems (including the one we describe in chapter
4), the amount of activation spread from a node is inversely proportional to the number
of nodes connected to the source.

Consider an idealized network in which the fan from each node is f and the trace
strengths of all links are the same. Even if there are cycles in the semantic network,
the activation process treats each branch of its traversal separately. Thus, we can view a
spreading-activation process as the exhaustive traversal of a tree, where multiple tree nodes
may correspond to a single node in the semantic network (see Figure 5). To determine
how long spreading takes, we derive a formula for the number of nodes visited during this
traversal. The total number of nodes visited, T, is the summation of the number of nodes
in each level of the tree up to a certain distance d. This distance is determined by the
specific mechanism’s parameters. For a network with fan factor f, we get

T=1+f+f+...+f . (1)

§ Although spreading activation is well-suited for parallelism, we consider a serial algorithm for this analysis
because the model presented in chapter 4 is implemented in this manner.
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We can simplify this equation to
fd+l -1
f-1
which is exponential with respect to d, the depth of the spreading process. However, d is
determined by the amount of activation received by the furthest nodes and the threshold
for stopping the spreading process. If we let a, represent the amount of activation that is
received by a node n levels away from the source, then we have
ao

anp = },—E y (3)

where ag is the initial activation given to the source node.

If we define the threshold for stopping the spread of activation as h, then activation
will spread until a, < h. In Equation 2, we used d as the number of levels that activation

spread to. Therefore, we must have

T= , (2)

a
ag = f—j <h (4)
and g
0
aqg—1 = F >h . (5)
These equations can be rewritten as
d < 0
> 2
I (©)
and
- a
firte2 (7)

Substituting Equations 6 and 7 into Equation 2 gives us upper and lower bounds for the
number of nodes visited: a1 a1 /

Notice that Equation 8 does not involve any exponential relationships, because d has
been factored out. The equation also implies that the time and space required for spreading
activation is independent of the size of memory, close to linear with respect to the inverse
of the threshold (71;), and nearly constant with respect to f. Naturally, we have made
some simplifying assumptions. However, any pattern of activation can be viewed in terms
of a tree traversal, as we have done. This leaves only one variable that can complicate
things: the fan factor f. It is important to note that, for a single step of activation, if
f is high then a large number of nodes receive relatively small amounts of activation. If
f is low, a small number of nodes receive a relatively large amount of activation. This
balancing effect causes the time required to spread activation to remain approximately
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constant when the threshold 4 is fixed. Chapter 5 contains some empirical results that
support this claim.

In fact, in our implementation of spreading activation, there is an additional decay
factor that attenuates the amount of activation that is passed from one node to another.
This can further decrease the number of nodes visited during spreading. The advantage
of these results is that we can make reasonable assumptions about the time and space
required for the implementation to run. In addition, we can expect to integrate large
amounts of knowledge into memory without degrading the efficiency of the system’s
retrieval mechanism.

A final argument with respect to the computational advantages of spreading activation
concerns the lack of knowledge used by the mechanism itself. All the knowledge of
the system exists within the semantic network. This knowledge is not consulted while
carrying out the spreading activation process. In these terms, spreading activation can
be considered a knowledge-free process. This means that the processing for spreading
activation can be highly localized, because decisions made on where to spread activation
and how much to spread to any given node need not consider the state or knowledge
content of other parts of the network. This localization ability lends itself nicely to a
simple algorithm for spreading activation that could easily be implemented in a parallel
fashion. This would further increase the efficiency of the retrieval mechanism in terms
of time. This advantage would be limited in a system where the search for retrievable
information depends on other knowledge in memory.

Transfer in terms of spreading activation

As we have already suggested, spreading activation plays a central role in our research.
Our intent is to show that the spreading-activation model is not limited to explaining the
type of low-level memory issues concerned with the fact retrieval and priming paradigms.
Rather, we believe that many aspects of human problem-solving behavior arise from
memory and retrieval characteristics. Our model is based on the assumption that a
spreading-activation retrieval process is consistent with the types of phenomena that have
been demonstrated in the psychological literature on problem solving.

One of the main points to this assertion involves learning, or the effect of past experience
on performance in solving new problems. A problem solver’s behavior arises from its
reactions to the environment and interpretations of its past problem-solving experiences.
To account for this behavior, we must address the specific types of transfer that take
place across problem-solving attempts. Because of this focus of study and the choice of a
spreading-activation mechanism as the model for retrieval, we must show that these types
of transfer can be modeled by spreading activation. The majority of the psychological
literature, including Anderson’s model of spreading activation, has been concerned with
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explaining low-level characteristics of human memory. In contrast, we wish to extend
support for the spreading-activation model by showing that it actually encourages the
retrieval of useful information. This involves demonstrating that the types of transfer
exhibited in human behavior can, in fact, be modeled by a spreading-activation process.

The simplest type of transfer arising from spreading activation comes from the implicit
assumptions about the fundamental functions of spreading activation. One assumption is
that activation of certain concepts in memory will cause concepts that are somehow similar
to be retrieved. The expectation is that these similar concepts involve knowledge that has
some bearing on new situations. However, it seems clear that strict similarity is not all
that is required for the retrieval of helpful information. In terms of problem solving we
need to broaden this view. We want the activation of certain concepts to cause retrieval
of the most useful information (by some definition of utility) concerning a situation. This
notion of utility relies heavily on similarity, but it must also be based on other factors of
associative strength between concepts.

Perhaps the major claim of our research is that spreading activation allows the retrieval
of useful information for problem solving. In fact, we make the stronger claim that the
simple types of memory maintenance associated with spreading activation can be exploited
to increase the utility of retrieved information in general. Transfer arises from setting up
connections and relations between concepts and adjusting the strengths of the relations. To
provide the maximum benefit, the adjustments are made in such a manner as to encourage
the retrieval of the most appropriate information when the system is presented with specific
problem situations. Naturally, we also expect to encounter negative transfer, but as we
have noted, this is an unavoidable situation given the flexibility of the mechanism. In
fact, we argue that negative transfer is a desirable characteristic for a psychological model,
provided it occurs under conditions similar to those in which humans exhibit the same
behavior. In the next chapter we provide a detailed description of our model of problem
solving, including the role of a retrieval mechanism based on spreading activation.




CHAPTER 4

The EUREKA Model of Problem Solving

In chapter 2, we discussed a number of psychological phenomena related to problem
solving. In this chapter we describe EUREKA, a model of problem solving that incorporates
a set of mechanisms that explain these behaviors. In addition, we discuss many of the
specific details involved in the implementation of this model. The intent of this chapter is
to describe the EUREKA model from a technical standpoint. We begin the chapter with an
overview of the model, followed by an in-depth discussion of its knowledge representation,
performance, and learning.

Theoretical basis for the EUREKA model

At EUREKA'’s heart lies a problem-solving system that relies heavily on the means-
ends-analysis (MEA) framework. To this system, we have added a long-term memory
represented as a semantic network and the ability to retrieve information from the memory
using a spreading-activation process.

As we discussed in chapter 1, the MEA approach relies on the problem-space hypothesis.
Recall that in this framework, a problem is viewed as an initial state and some goal
conditions, together with a set of operators that can be used to transform the initial state
into a state that satisfies the conditions. The standard MEA approach selects operators
for application by examining the entire set of operators and choosing one that reduces
some of the differences between the current state and the goal conditions (Ernst & Newell,
1969; Fikes & Nilsson, 1971; Minton, 1988/1989). This procedure is repeated until the
problem is solved or it becomes clear that the problem cannot be solved. In EUREKA,
the search for an operator is replaced with a retrieval method that considers only a small
subset of the (potentially very large) operator memory. In addition, the strict method
for selecting operators is relaxed to allow the system more flexibility and the ability to
generalize its knowledge.

As we have already suggested, the retrieval mechanism is key to the EUREKA model.
The system demonstrates that a retrieval process based on spreading activation can be
combined with relatively simple mechanisms for updating long-term memory to produce
interesting behavior. In the context of problem solving, these mechanisms change the
retrieval patterns associated with specific situations. Combining this memory model with

PAGE 26
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a problem solver provides more flexibility and efficiency. In addition, spreading activation
accounts for human memory limitations by allowing the retrieval of useful information
without an exhaustive search of memory. Finally, the memory model lets EUREKA explain
various aspects of human problem-solving behavior.

In the following sections we describe three important aspects of the EUREKA model
in detail. First, we discuss the representation and organization of knowledge in the
system. Next we describe EUREKA’s performance engine, including the problem-solving
component, which employs a variant of means-ends analysis, and the retrieval mechanism,
which helps the problem solver make decisions at critical points. Finally, we discuss
EUREKA'’s learning mechanisms, which let the system improve its performance in a number

of different ways.

EUREKA’s knowledge representation

A primary concern for Al systems is the representation of knowledge. There are various
levels at which it is useful to view the knowledge structures in EUREKA. This section
describes EUREKA’s knowledge from two perspectives, including the structures used by
the retrieval mechanism and those used by the problem-solving engine.

SEMANTIC NETWORK

At a low level, EUREKA’s long-term memory is a semantic network consisting of nodes
(representing concepts) connected by small sets of labeled links (representing relations).
The semantic network is functionally equivalent to predicate-calculus, attribute-value, or
schema-based representations. That is, the same information can be stored using any of
these representations. We have chosen the network representation to facilitate the use of
spreading activation as a retrieval mechanism.

There are additional features of the memory that play roles in the retrieval process.
Each node has an associated level of activation, which represents its current relevance to
the system. In addition, each link has a trace strength, which represents the semantic
strength of a specific relation between two concepts. These features are similar to those
used by Anderson (1976, 1983), and we discuss them in more detail in the section on

performance and retrieval.

PROBLEM-SOLVING TRACES

The semantic memory may sometimes appear to be a tangled network of concepts and
relations with little obvious organization. However, the problem-solving component of
EUREKA attributes special meanings to certain types of concepts and relations. Thus, the
network encodes a large amount of knowledge that only becomes apparent when viewed
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Table 3. Some nodes in the EUREKA’s semantic network.
Transi Statel00 Goall?7 And1i
isa: Transform isa: State isa: State isa: And
state: Statel00 argl: Applyl

arg2: Trans2

Oni
isa: On

partof: Statel00

On2
isa: On
partof: Statel00

On3
isa: On

partof: StatelQ0

On4
isa: On

partof: Goali?7

argl: A partof: Goall?7 argl: C argl: A
arg2: Table argi: B arg2: Table arg2: B
arg2: Table
Statusi Status2 Status3

isa: Status
partof: Statel00

isa: Status
partof: Statel0Q0

isa: Status
partof: Statel00

partof: Goall?7 argl: B argl: C
argl: A arg2: Clear arg2: Clear
arg2: Clear

at a higher level. As an example, Table 3 describes a number of nodes that could appear
in the network. Because pictorial descriptions of semantic networks can become very
messy, the table uses a slot-value representation. Each slot-value pair represents a link to
a neighboring node. This table provides a partial representation of the top-level goal in
Figure 7, so it may become more clear when compared to that figure.

Nodes are grouped together to represent a record of EUREKA’s past problem-solving
experiences. Since the memory records the problem solver’s actions, we will briefly describe
the system’s performance component here, reserving the details until the following section.
To represent problem-solving episodes, we have borrowed the idea of derivational traces
from Carbonell (1986). EUREKA represents each attempt to solve a problem as a binary
tree, in which each node represents an MEA goal.” The two children of a given node
represent two subgoals that may be satisfied in an attempt to satisfy the parent goal. A
series of attempts to solve a single problem results in a superimposition of the binary trees
for each attempt. Some of the states in the individual trees may be shared with other

7 For any particular model, there can be many different types of MEA goals, depending on how tasks are
divided. For example, some systems include REDUCE-DIFFERENCE goals, which are implicit in EUREKA’s
TRANSFORM goals. In our work, we divide problem solving into two tasks, giving rise to a binary tree.
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Trans-
form

Trans- Trans- Trans-
Apply form form Apply form
Trans- Trans- Trans-
form Apply form Apply Apply Apply form

Figure 6. Abstract representation of multiple attempts at a single
problem.

trees and some may not. The final product is a directed, acyclic, AND/OR graph, as
shown in Figure 6. In the final graph, each state may have multiple pairs of children, each
representing an attempt to satisfy the parent goal with two subgoals.

To clarify this situation, let us first consider a single attempt at solving a problem,
which is presented to EUREKA as a TRANSFORM goal. That is, the problem is stated in
terms like “Starting in the current state, somehow TRANSFORM (through the application
of the appropriate operators) that state into a state that satisfies a certain set of goal
conditions.”® More precisely, an example goal might look like “Transform Statel00 into
Statel23, which satisfies Goall7,” where State1l00 represents a description of some “blocks-
world” situation, Goall7 contains the condition that Block A is stacked on Block’B, and
Statel23 represents a state in which that condition is true. Figure 7 gives a pictorial
description of this problem, which includes the various states and goal conditions that

8 Throughout this dissertation we have attempted to be consistent in our use of terms for the various
objects involved in a problem representation. We use the terms goal and situation to describe the goals for
means-ends-analysis. The current state of a TRANSFORM goal is the state that must be transformed, and
the goal conditions are the constraints that the transformation must satisfy.
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TRANSFORM Statel(0
into Statel23, which

satisfies Goall?

Aprpry STACK(A,B)
to Statel00 to
produce State200

AND

TRANSFORM State200
into Statel123, which
satisfies Goall?7

TRANSFORM Statel00
into State201, which
satisfies
Precond[STACK(A,B)]

TRANSFORM Statel05
into State201, which

AprpLy STACK(A,B)
to State201 to
produce State200

AprpLYy PICKUP(A)
to Statel00 to

satisfies
produce Statel05 Precond[STACK(A B)]
Statel05 Statel23
_ State100 State201 State200
Precond[STACK(A,B)] Goall7
[B] B

Figure 7. EUREKA’s representation for a single attempt at a “blocks-
world” problem.

may be encountered. The figure also provides an example solution, which we will examine
in detail.

There are two ways that a TRANSFORM goal can succeed. First, the current state may
satisfy the goal conditions. This would be the case in our example if Block A were on
Block B in State100. If the conditions are met, the TRANSFORM goal always succeeds
and has no children. The more interesting situation occurs when the current state does
not already satisfy the goal conditions. In this case at least one operator must be applied
in order to complete the transformation. In the MEA framework, one attempts to solve
this TRANSFORM goal by setting up two subgoals. The basic sequence is to apply an
operator that achieves part of the transformation and then set up a secondary TRANSFORM
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goal to complete the transformation. We explain this process in more detail in the next
section. For now, suppose EUREKA chooses the operator “Stack Block A on Block B,”
or STACK(A,B). In this case, it creates the subgoals “APPLY operator STACK(A,B) to
State100 to produce State200,” and “TRANSFORM State200 into Statel23, which satisfies

Goall?.”

When presented with an APPLY goal, there are also two situations that may occur.
First, the chosen operator may be directly applicable to the current state. If this is true,
the operator is executed and the resulting state becomes the current state of the following
TRANSFORM goal. If the operator cannot be directly applied, one must set up a subgoal
to make the operator applicable. In the means-ends paradigm, one must first transform
the current state into a state that satisfies the preconditions of the chosen operator. Once
this has been done, one can then APPLY the operator to the resulting state. Following the
example, one sets up two subgoals: “TRANSFORM Statel00 into State201, which satisfies
the preconditions of STACK(A,B)” and “APPLY STACK(A,B) to State201 to produce
State200.” If the preconditions are really satisfied as expected, then the APPLY goal will
always be immediately satisfied and will not have any children.’

Whenever an MEA subgoal is created, it becomes the current goal in a recursive
fashion. We explain this in more detail in the following section. The important point
for understanding the memory structure is that goals in a single problem-solving episode
can have either zero or two children. The children for a TRANSFORM goal consist of an
APPLY goal followed by another TRANSFORM goal. The children for an APPLY goal consist
of a TRANSFORM goal followed by another APPLY goal. A third possibility occurs when
a goal cannot be satisfied for some reason. In this case the goal has no children, but it is
marked as a failed goal. Figure 8 shows an example of a failed problem-solving episode.

As mentioned earlier, EUREKA compiles multiple attempts at solving a single problem
into an AND/OR graph representing the system’s entire experiences with that problem.
There is often more than one way to attempt to solve a given TRANSFORM or APPLY goal
and the system records each attempt, whether it is successful or unsuccessful. Therefore,
after multiple attempts at solving a problem, each goal in memory will have a number of
pairs of children, rather than just two children. Some of these pairs represent previous
successful attempts at satisfying the current goal and some represent failed attempts. The
pairs representing successful attempts denote solutions that can be used in the future to
solve similar problems. However, all the pairs represent attempts that have been tried by
the system, and an OR link connects each pair to the parent node. This represents the
fact that, for any particular individual solution attempt, exactly one of these pairs has
been set up in trying to solve the problem.

® However, one can imagine versions of this system where expectations are not always met. In that case
the APPLY goal may have more subgoals associated with it. This type of situation arises in systems that do
reactive planning (e.g., Ambros-Ingerson & Steel, 1988; Georgeff & Lansky, 1987; Schoppers, 1987).
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TRANSFORM Statel00
into Statel23, which
satisfies Goall?7

AND

AppLy STACK(A,B)
to Statel00 to
produce State200

TRANSFORM Statel00
into State201, which
satisfies
Precond[STACK(A,B)]

TRANSFORM failed
state into Statel23

ArpLy STACK(A,B)
to failed state to
produce State200

AND

Aprpry STACK(A,B)
to Statel00
Goal cycle failure!

TRANSFORM failed
state into State201

Figure 8. A failed problem-solving attempt.

A given problem may have more than one solution, which is one reason why EUREKA
allows multiple pairs of child nodes to be connected to any given goal node. However, dif-
ferent solution paths could very easily share some subgoals. In this case, the representation
of experiences for the problem will not be a tree, but a directed graph. Problem-solving
actions may also bring the solver back to a situation it has seen before in a single solution
attempt. thus creating a cycle. However, EUREKA views cycles as failures and does not
allow them. Therefore, the total representation of the history of experiences for a single
problem can be viewed as a directed, ~cyclic, AND/OR graph.

Performance and retrieval

Because EUREKA's high-level memory organization records the system’s past problem-
solving experiences, it is naturally very closely tied to the problem-solving component
itself. As we have mentioned, the performance component is based on a means-ends
problem solver that is reminiscent of early planning systems, such as GPS (Ernst &
Newell, 1969) and STRIPs (Fikes & Nilsson, 1971). In this section, we examine the details
of EUREKA’s problem-solving component. Since the retrieval of information from long-
term memory is an integral part of the problem solver, we discuss those issues in this
section as well.
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Table 4. EUREKA’s two main problem-solving functions.

TRANSFORM(StateX,Conditions): Returns StateZ

If StateX satisfies Conditions
Then Return StateZ as StateX
Else Let Operator be SELECT_OPERATOR(StateX,Conditions);

If Operator is empty
Then Return StateZ as '""Failed State"
Else Let StateY be APPLY(StateX,Operator);
If StateY is "Failed State"
Then Return StateZ as '"Failed State"

Else Return StateZ as
TRANSFORM(StateY,Conditions)

APPLY(StateX,Operator): Returns StateY

Let P be PRECONDITIONS(Operator);

If StateX satisfies P
Then Return StateY as EXECUTE(StateX,Operator)
Else Let StateW be TRANSFORM(StateX,P);
If StateW is '"Failed State"
Then Return StateY as "Failed State"
Else Return StateY as APPLY(StateW,Operator)

THE BASIC PROBLEM SOLVER

EUREKA’s performance component deals with two main tasks. The basic problem solver
makes individual attempts at solving a given problem, but there is also an outer control
loop to guide repeated attempts at solving a single problem. In this section, we first
describe the more detailed basic problem solver and then cover how this problem solver is
used repeatedly to find a solution to a problem.

When presented with a TRANSFORM or APPLY goal, EUREKA’s problem solver attempts
to satisfy that goal using a set of actions based on the means-ends framework. However,
the system differs from the standard means-ends approach used in STRIPS in the way it
selects operators to satisfy TRANSFORM goals. In a strict means-ends framework, operators
are chosen strictly according to their abilities to reduce differences between the current
state and goal conditions. EUREKA allows a more liberal selection of operators, which we

discuss in detail later.

We can best describe the actions of the problem solver in terms of two recursive
functions: TRANSFORM and APPLY. As might be expected, each of these functions has
the task of satisfying a goal of the same name. Each of these functions may call itself
and the other function in a recursive manner, and each recursive call involves setting up
a subgoal as explained in the section on knowledge representation.
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Table 4 gives a description of the two basic functions. First, let us consider the TRANS-
FORM function, which is presented with a goal in the form of “TRANSFORM StateX into
StateZ, which satisfies Conditions.” The value returned by the function is either a state
that satisfies the Conditions or a special “failure” state. TRANSFORM first checks to see
if StateX already satisfies the Conditions. If this is the case, then TRANSFORM succeeds
and returns with StateZ bound to StateX. If this is not the case, then TRANSFORM must
set up an APPLY goal followed by another TRANSFORM goal in an attempt to complete
the transformation.

To set up an APPLY goal, TRANSFORM selects an operator to try to apply. Ideally, the
chosen operator will reduce some differences between the current state StateX and the
Conditions. Although this would necessarily be true in a standard means-ends system, it
is not always the case in EUREKA. As we describe in the next section, the model selects an
operator and sets up an APPLY goal using that operator. This subgoal may fail, in which
case the current TRANSFORM goal also fails. However, if the APPLY subgoal succeeds, it
returns a new state, StateY, resulting from the application of the Operator to StateX.
With this new state, TRANSFORM sets up a recursive subgoal of the form “TRANSFORM
StateY into StateZ, which satisfies Conditions.” When the current TRANSFORM goal
finishes, StateZ receives the value returned by the subgoal, whether it is a failure or a
successful state.

The APPLY function has a similar form to the TRANSFORM function, but is somewhat
simpler because APPLY does not have to worry about selecting an operator to set up its
subgoals. The form of such goals is “APPLY Operator to StateX to produce StateY.”
The function first checks the preconditions of the Operator to see if they are satisfied in
StateX. If so, APPLY simply executes the Operator in StateX and returns the resulting
state in StateY. If the preconditions are not met, the current state, StateX, must be further
transformed until the Operator can be applied. More precisely, EUREKA must set up a
subgoal of the form “TRANSFORM StateX into StateW, which satisfies the preconditions of
Operator.” If this subgoal fails, then APPLY also fails. If the subgoal succeeds, it returns
a state, StateY, to which the Operator should now be applicable. At this point, APPLY
calls itself in an effort to execute the operator in the new state. The final subgoal is of the
form “APPLY Operator to StateW to get StateY,” and the value returned by the recursive
call becomes the return value of the parent APPLY goal.

So far we have seen how EUREKA approaches a single attempt at solving a problem.
However, there is an additional mechanism that determines the system’s behavior when it
fails to solve a problem during one of these attempts. As we suggested previously, EUREKA
does not have the ability to backtrack when it fails to solve a problem. Rather, the system
must restart its work from the top-level TRANSFORM goal. In this manner, the system
continues attempting to solve the problem until it is successful or a predetcrmined limit on
the number of attempts is reached. Each individual attempt at solving the roblem does
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not necessarily duplicate past work because the system includes mechanisms for making
decisions randomly and encouraging (but not guaranteeing) search down new paths. In
the current implementation, EUREKA attempts to solve a problem 50 times before it gives
up.

To summarize, we can discuss EUREKA’s basic problem solver in terms of three func-
tions. TRANSFORM and APPLY work together to manage individual attempts to solve
problems. The system’s outer control loop provides the top-level mechanism for making
new attempts at a problem after failure and for giving up when the system does not seem
able to solve a problem. In the remainder of this section, we describe the details involved

in selecting an operator.

THE ROLE OF RETRIEVAL IN PROBLEM SOLVING

The retrieval of information is a central issue in the EUREKA model. In terms of
performance, learning, and memory, the critical point of problem solving concerns choosing
an appropriate operator to help satisfy a TRANSFORM goal. In order to accomplish this,
the system must retrieve a set of operators from memory and evaluate them in some
manner to choose the “best” one. In many standard problem solvers, retrieval consists of
an exhaustive search through the operator memory, with the final selection being made
according to some predetermined evaluation function. A number of other systems use
control rules or preference rules to retrieve and evaliate operators (Hendler, 1986; Laird,
Rosenbloom, & Newell, 1986b; Minton, 1988/1989; Ohlsson, 1987).

In EUREKA, retrieval is modeled by a process of spreading activation. Every time the
TRANSFORM function is executed, activation is spread from the nodes in the semantic
network that represent the current state and goal conditions. This activation is used to
retrieve a set of related TRANSFORM goals from long-term memory. After these states
have been retrieved, one is selected as a model for solving the current TRANSFORM
goal. This selection is based on two factors: the degree of match to the current state
and goal conditions, and the history of success or failure in using each of the retrieved
TRANSFORM goals as a model in the past, which we detail later. After EUREKA has
selected a candidate TRANSFORM goal, it carries out an analogical mapping to enable the
use of the retrieved goal as a model for the current goal. Finally, it selects an operator
that was used successfully in the retrieved situation for application to the current goal.

There are two distinct steps in the process of operator selection: the retrieval of a
set of past goals, and the evaluation and selection of a model and an operator from the
retrieved set. Most problem-solving systems downplay the aspect of retrieval by making
all operators candidates for evaluation and selection. However, this becomes cumbersome
and inefficient when a large number of operators are stored in memory.
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It also seems clear that humans do not retrieve every operator they have ever used
when presented with a problem. Rather. they consider a small set of operators that are
likely to be relevant to the problem, and they make the final selection from this small set.
We have selected a retrieval mechanism with these properties for use in EUREKA.

Naturally, there are drawbacks to this type of retrieval framework. It is possible that
the appropriate operators for a given situation may not even be retrieved, much less
selected. In this case, the system may not be able to solve a “potentially solvable” problem.
However, there is evidence that humans also suffer from this type of difficulty (Dominowski
& Jenrick, 1972; Gick & Holyoak, 1980). The possibility of failing to retrieve necessary
information comes with the ability to solve many different types of problems efficiently.
An accurate model of human behavior should explain the conditions under which humans
cannot solve a problem. As we have noted above, failure can occur even if the appropriate
knowledge is stored somewhere in memory; the knowledge may just be inaccessible to the
retrieval mechanism.

SPREADING ACTIVATION IN EUREKA

Although we have already provided a description of spreading activation in chapter 3,
we should also give the details of spreading activation as implemented in EUREKA. As
we have seen, this mechanism is used to retrieve TRANSFORM goals from memory when
the system must choose an operator to help solve the current TRANSFORM goal. At this
point, EUREKA spreads activation from the concepts involved in the current goal, including
concepts in the current working state, the current goal conditions, and information about
the TRANSFORM goal. process is begun.

The spreading-activation algorithm is provided in Table 5. In EUREKA’s current im-
plementation, activation spreads in a depth-first manner, although there is no compelling
reason why another type of algorithm could not be used. When a node in the semantic
network receives an amount of activation, it is first-added to any other activation asso-
ciated with the node and stored. Next, that activation is divided and passed on to the
neighboring nodes. Finally, the spreading process is recursively applied to the new set of
nodes.

If the spreading process were allowed to proceed in an unrestricted manner, activation
would simply spread throughout the network forever, so there are certain restrictions
and assumptions associated with the process. First, the amount of activation passed to
any neighboring node is always less than the amount of activation in the source node.
This is achieved by multiplying the activation value by a “damping” factor. Another
restriction requires that if a concept receives an amount of activation that is close to zero
(specified by a threshold), activation stops spreading at that point. These two conditions
guarantee that the amount of activation being spread decreases and that each activation
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Table 5. EUREKA’s spreading-activation algorithm.

Let ACTIVATION_THRESHOLD be 0.01%;
Let DAMPINGFACTOR be 0.4;
Let INITIAL_ACTIVATION be 1.0;

SPREAD_INIT(Source)
SPREAD(Source, INITIAL_ACTIVATION,NIL)

SPREAD(Source,Value,Path)

If Value is less than ACTIVATION_TERESHOLD or Source is in Path

Then EXIT
Else Increase Source.Activation by Value;
For each link X from Source
Let Target be the node connected to Source by X;

Let Newvalue be

SPREAD _VALUE(Source,X,Value) xDAMPING_FACTOR;
PUSH Source onto Path;
SPREAD(Target,Newvalue,Path)

SPREAD VALUE(Source,Link,Value)

Let Total be O;
For each link X from Source
If X is the same type of link as Link
Then increase Total by X.trace strength;
Return Valuex (Link.trace strenth/Total)

path eventually terminates. The current implementation uses a damping value of 0.4 and
a threshold of 0.01. Initially activated concepts start with an activation value of 1.0. The
implementation includes one additional simplifying assumption: each path of activation is
temporarily recorded to ensure that it never cycles. In this way, activation that is spread
from a given node can never be spread back to that node after traveling through a cyclical
path in the network.

A final detail of the spreading-activation process concerns the manner in which acti-
~vation is divided when passed from a source node to a number of neighboring nodes. A
simple algorithm would divide the activation evenly among all neighboring nodes. If this
were the case, however, all neighboring concepts would be equally likely retrieved in spite
of their degree of relatedness to the source concept. Anderson (1976, 1983) overcomes
this problem by associating trace strengths with the links between nodes and dividing
the activation among neighboring concepts in proportion to these trace strengths. In
the EUREKA model, we rely heavily on the use of trace strengths to influence retrieval
patterns. The system’s major learning mechanism involves adjusting these trace strengths
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is-a
furniture
0.4

Figure 9. Competition for activation is limited to links of the same
type.

to encourage the retrieval of familiar and useful information. Therefore, EUREKA’s spread-
ing mechanism also divides activation in proportion to trace strengths, but there is one
important additional consideration.

A useful metaphor to describe spreading-activation processes involves the competition
of nodes in the network for activation from neighboring source concepts. The competition
is based on the various strengths of the links to those concepts. However, in EUREKA many
different types of links connect concepts. For instance, the node representing a chair has
part-of links to its various parts, an is-a link to the node for furniture, and various links
to situations in which a chair is involved. For example, it would be undesirable for the
node for furniture to compete for activation with the node for chair-legs, since these two
concepts bear very different relationships to the concept of a chair. Therefore, EUREKA’s
spreading mechanism only allows competition for activation between nodes connected to
a source by links of the same type.10

For example, consider Figure 9, in which chair is given an activation level of 1.0, and
there are three concepts that are part-of a chair. The activation available for spreading
from chair is the initial amount of activation times the damping factor, or 1.0 x 0.4 = 0.4.
Since furniture is the only node connected to chair by an #s-a link, it receives the full
activation value of 0.4. However, each of the three part-of nodes receive a share of the 0.4
value based upon the strength of its link to chair relative to the other part-of links. For
example, seat gets an activation value of 0.4 x 1—85- = 0.213, whereas its competitors receive
less activation.

10 Neches (1981/1982) provides another alternative for separating the competition for activation. His
approach spreads activation through different types of links depending on the system’s current situation.
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SELECTING AN OPERATOR TO APPLY

In the standard MEA framework, there are two main points at which decisions need
to be made. The first involves selecting an operator to APPLY in order to satisfy a
TRANSFORM goal. The second involves selecting from a number of possible variable
bindings to satisfy a TRANSFORM goal.!! No decisions are necessary to satisfy APPLY goals
because they are handled in a deterministic fashion. Such a goal is either immediately
satisfied, or it must have a TRANSFORM goal set up to satisfy the preconditions of the
operator. This choice is determined by the current state and the particular operator.
Naturally, the points where decisions occur are also the points where mistakes might be
made when solving problems. They are also the only points at which a system’s behavior
can change as a result of learning. In our research, we are primarily concerned with the
decision of which operator to select in satisfying a TRANSFORM goal. Choosing a set of
bindings with which to satisfy a TRANSFORM goal can also introduce interesting problems,
but this is not the focus of the EUREKA model.

The choice of an operator to aid in satisfying the current TRANSFORM goal actually
consists of a set of decisions. First, activation is spread throughout the long-term memory,
as described in the previous section. This leads to the retrieval of a small number of stored
TRANSFORM goals with the most activation. The cutoff point for retrieving goals is set by
the activation of the most strongly activated goal. In the current implementation, any goal
that has less than one percent of the activation of the most active goal is not retrieved.
From empirical studies with the system, we have found that this algorithm usually causes
anywhere from one to ten goals to be retrieved. This set of goals is then pruned to include
only those TRANSFORM goals that have been previously satisfied, since previous problems
that have not been solved are not useful for solving new problems.

After the system has pruned the retrieved set of TRANSFORM goals, it has a small set
of situations that are related to the current goal in some way. EUREKA chooses one of
these situations and then attempts to APPLY one of the actions taken in that case to solve
the current goal. This choice is made by creating a-partial match between the current
TRANSFORM goal and each of the retrieved goals. Each retrieved goal is assigned a value
between zero and one that signifies its degree of match with the current goal. This score
is calculated by taking the ratio of the amount of shared structure between the current
goal and the retrieved goal to the size of the total structure of the retrieved goal. After
assigning a partial-match value, p, to each goal, EUREKA weights the value by multiplying
a selection factor that represents how useful the particular goal has proven in the past.
This factor is calculated from a measure of how often the goal has been chosen as a model
(t), and a measure of how often it has actually succeeded in helping to solve a problem (s).

11 This type of decision is necessary when variables are allowed in the goal and operator conditions.
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This leaves each retrieved goal with a numerical attribute, defined as 7 X p, that predicts
the relevance of the goal to the current problem.

After all the calculations are done, one of the retrieved goals is randomly selected based
on the goals’ associated values. The selection is based on a weighted distribution that
gives extra precedence to the goals with the highest scores. However, since the selection is
random, no candidates are completely ruled out unless they share absolutely no structure
with the current goal. It is always possible that a goal that matches poorly will be selected.
This allows the system a degree of flexibility, but for the most part it encourages selection of
highly matched goals. Once EUREKA has chosen a similar goal, it examines the operators
applied in the past to satisfy that goal. The system then chooses one of these operators!?
and analogically transforms it according to the partial match between the goals in an
attempt to make the operator applicable to the current goal. Finally, EUREKA sets up the
transformed operator in a new APPLY goal to satisfy the current TRANSFORM goal.

The analogical-mapping mechanism computes a number of partial transformations from
concepts in the stored goal to concepts in the current goal. The number of transformations
is limited by the requirement that at least some structure can be matched between the two
goals after transformation. This greatly limits the number of analogical matches that are
derived, and prevents the worst-case scenario involving all concepts in one goal mapping
to all concepts in the other. After the transformations have been computed, each one is
scored according to the new degree of match between goals and the number of analogical
assumptions involved. Finally, the best analogical match is chosen in a random manner
similar to the selection of a goal from the retrieved set. This mechanism lets EUREKA use
stored goals as models even when they do not completely match the current problem.

As an example, suppose the system has already solved the problem shown in Figure 7
and it is given a new problem with an initial state consisting of Blocks E, F, G, and H
sitting on a table, and a goal condition of having Block E stacked on Block F. Assuming
EUREKA has already retrieved and selected the stored goal, a number of transformations
would be proposed by the analogical mapping mechanism, including A—E and B—F, along
with others. These two specific transformations would provide the best match between
the goal conditions in the current and retrieved TRANSFORM goals. Therefore, EUREKA
would select the operator it applied in the old case and analogically map it to STACK(E,F)
for the current problem. We should stress that the evaluation of degree of match gives
more weight to matches on the goal conditions, giving rise to an MEA type of operator
selection. However, the system can select other matches when there are no retrieved goals
that match on the conditions well. This can lead to a forward-chaining type of behavior
or, in the worst case, a semi-random walk through the problem space.

12 Usually there is only one operator that led to satisfaction of the retrieved TRANSFORM goal. If there is
more than one, a random selection is made.
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Note that if EUREKA's current TRANSFORM goal is one that it has previously solved,
it has a higher chance of being retrieved by the spreading-activation mechanism. It will
also have the highest possible degree of partial match because it is matching against stself.
This means that the system will tend to repeat whatever it has done successfully in the
past to solve the goal. However, we should stress that EUREKA’s decisions are based on
probabilistic choices, so even in this case it may select a different state, though it would
be highly unlikely.

In addition, retrieved goals that are likely to be more relevant to the current situation
should have a higher degree of match to the current goal. Because of the high degree of
match, the retrieved goal is more likely to be selected. This argument is based on the
assumption that structural similarity implies greater relevance. Along with the retrieval
mechanism, this discourages EUREKA from selecting operators that work in the domain
of chemistry, for example, when it is busy working on a problem in the blocks world.
Although this type of selection is discouraged, it is not ruled out completely. In this way,
the mechanism allows the selection of a useful situation from another domain that can be
used as an analogy to solve a problem in the current domain. Therefore, EUREKA has a
single algorithm involving the retrieval, selection, and analogical mapping of stored goals
that accounts for a number of types of problem solving. These include cases of straight-
forward operator application, simple generalization within a domain, and broad analogies
across domains.

One remaining question concerns the kinds of knowledge the system has available
initially. If EUREKA started without any knowledge in its long-term memory, it would
never be able to solve any problems, because there would be no previously solved problems
on which to base future decisions. Therefore, EUREKA must start with a set of operators
that it can apply to new problems. To be consistent with the problem-solving mechanism,
these operators are stored in the form of simple problems that require only one operator
application to be solved. Each problem is represented as a simple satisfied goal that is not
connected to any other goal in any type of sequence. In this way, each operator initially
stands on its own, rather than being involved in a more complicated problem-solving
episode. This gives EUREKA the ability to solve new problems before it has seen any other

problems.

Learning mechanisms in EUREKA

There are two dimensions along which EUREKA can be said to learn. The first involves
a simple type of rote memory that increases the syntactic knowledge of the system. The
second is the more interesting process of tuning the strength of relationships between
concepts in memory. Both mechanisms respond to past performance in an attempt to
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improve future performance. In this section. we discuss these two types of learning and
their implementation details.

STORING PROBLEM-SOLVING TRACES

The first type of learning in EUREKA involves the storage of all past behavior in long-
term memory. As each problem is solved, a problem-solving trace is integrated into
memory. We mentioned earlier that the traces stored in memory record the actions
performed by the problem solver, and we also described how these memories are organized.
Here, we detail the processes involved in adding a problem-solving trace to memory.

When EUREKA is presented with a problem in the form of a TRANSFORM goal, it first
checks to see if it has seen this goal before. If so, the system finds the memory structure
representing the goal. This goal is passed to the problem solver and no new structures are
added to memory.!3 If the goal cannot be found in memory, a new structure is built to
record its presence.

Presumably this goal will require a number of operator applications to be solved. If
so, EUREKA invokes its decision procedure to choose an operator with which to set up an
APPLY goal. Once this goal has been determined, the APPLY function is recursively called
to solve it. Again, EUREKA checks to see if the goal has been seen before, adding it to
memory if it has not. In addition, this goal is linked to its parent (the initial TRANSFORM
goal). If the current operator can be applied to the current state of the APPLY goal, the
operator is executed and the resulting state is passed back to the calling function. If it
cannot be applied, further subgoals are set up with recursive calls. For each goal, a new
goal structure is added to memory if necessary, and the children are linked to their parents.

Eventﬁally the system returns to the top level TRANSFORM goal. At this point, it
has satisfied the APPLY goal that it set up, and has returned that resulting state. The
system creates a new TRANSFORM goal in case more transformations need to be carried
out to achieve the top-level TRANSFORM goal. This leads again to a recursive call on
the TRANSFORM function, with more links and goal structures being added to memory
if necessary. After the TRANSFORM goal’s children have been processed, they are linked
by an AND node to the parent goal. After a number of attempts at solving a problem,
the memory structure develops into a directed, acyclic, AND/OR graph similar to the one
shown in Figure 6.

The ultimate use of these memory structures is to provide information about EUREKA’s
past behavior. This lets the system use its past experience with problems and operators
to help guide its future behavior. If EUREKA encounters a problem that is similar to an
old problem, it can retrieve and examine the goals for the old problem, using these old
goals to suggest actions to take in solving the new problem.

13 Some memory maintenance actually does take place here, but we describe it in the next section.
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MAINTENANCE OF THE SEMANTIC NETWORK

As we have discussed, the storage of past problem-solving behavior provides a refer-
ence to help guide future problem solving. In contrast, the maintenance of the actual
connections between concepts in the semantic network representation provides the ability
to influence the use of this information in (hopefully) productive ways. This maintenance
consists exclusively of building and strengthening links between concepts in long-term
memory. The strengthening activity is designed to facilitate problem solving by encour-
aging the retrieval of concepts that are familiar and have proven useful in the past.

The simplest task of semantic memory maintenance involves recording familiar con-
cepts. If EUREKA encounters a situation that it has not seen before, it simply adds this
problem to memory, as discussed earlier. However, if parts of the situation are already
stored in memory, the trace strengths on the existing relations are increased by a small
factor. The justification for this is that increased familiarity with a concept should increase
that concept’s likelihood of retrieval. For example, if the system always ends up with a
certain goal while solving a given problem, it will be more likely to retrieve that goal in
the future.

The second type of situation in which relations are built and strengthened occurs when
a problem (or subproblem) is successfully solved. In this case, strengthening can be viewed
as a reward for successful behavior. In particular, goals that were retrieved and aided in
solving the current problem are strengthened so that they will more likely be retrieved in
similar situations in the future. If certain goals prove to be useful in a large number of
situations, they receive large increases in trace strength and become much more likely to
be retrieved in appropriate situations. This is a desirable characteristic, since the goal has
proven useful so often in the past. Naturally, this can lead to instances where undesirable
behavior is produced (as in cases of Einstellung), when a goal becomes so easily retrieved
that it causes the system to overlook a potentially more useful goal.

RECORDING PAST SUCCESSES AND FAILURES

The final influence on learning in EUREKA concerns the selection of an old TRANSFORM
goal from a retrieved set. This involves the selection factor that is multiplied by the
degree of match during selection, as described earlier. Recall that we defined the selection
factor as £, where ¢ measures the number of times a goal has been selected as a model in
problem solving, and s measures how often this selection has resulted in success. Whenever
EUREKA selects a stored goal it increases by one the value ¢ associated with using that
goal in the current situation. If the current problem is successfully solved, both s and ¢ are
incremented by a selection learning factor. In the current implementation, this factor is
set to one, but in chapter 5 we will examine changes in EUREKA’s behavior due to changes

in this value.
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This learning factor serves two primary purposes. First, it encourages the selection of
situations that have proven useful in the past. More importantly, it discourages EUREKA
from duplicating past failed behavior, counteracting effects that can arise from becoming
very familiar with an operator that is not useful in the current situation. This lets the
model avoid “getting caught in a rut,” and it encourages the system to explore more of
the problem space.

Discussion

This ends our description of the EUREKA model of problem solving. As we have
seen, there are three distinct components in EUREKA, involving the system’s memory,
performance and retrieval, and learning mechanisms. Although the model is based on a
means-ends framework, it has a number of features that distinguish it from standard MEA
systems.

First, EUREKA records all of its past behavior in memory to use as a model to guide
future problem solving. The model also relaxes MEA's strict requirements for operator
selection. EUREKA chooses operators by performing an analogical match on past problems
that it has solved. This allows the system to exhibit MEA-style characteristics in general,
but also allows the flexibility to break out of that pattern. As we have mentioned, this
mechanism lets EUREKA make generalizations within or across domains, and it lets the
system semi-randomly search its problem space when it cannot find operators that are
clearly relevant to the current problem.

Finally, EUREKA incorporates a model of retrieval based on spreading activation, which
provides the ability to focus on local areas of long-term memory and to learn by influencing
retrieval patterns. We claim that these mechanisms combine to create a model of problem
solving that can account for many aspects of human behavior. In the next chapter, we
provide empirical studies of the EUREKA system to support that claim.



CHAPTER 5

Experimental Evaluation of EUREKA

As we have mentioned, the primary purpose of this research is to account for the role
of memory and retrieval in human problem solving. However, a theory is useless unless it
is testable. Our approach to testing the EUREKA model is to implement it as an artificial-
intelligence system. By running experiments on this implementation and analyzing its
behavior, we can empirically test the validity of the model. Since we intend EUREKA to
explain human behavior, here we present experimental results on the system with respect
to the psychological characteristics discussed in chapter 2. For each aspect of problem
solving, we discuss some of the relevant psychological research, followed by our predictions
about the system’s behavior under similar circumstances. Each section also describes the
experiments we have run on EUREKA and a discussion of their results.

Psychological validity is not the only interesting aspect of an AI model that can
be tested. The EUREKA implementation contains algorithms that depend on certain
parameters, and one can examine the limits of its behavior as the values of the parameters
change. For a robust system, we expect that small changes in parameter values would
not drastically change its behavior. Rather, performance would gradually degrade (or
at least change in character) as the parameter values drift farther from their “optimal”
values. By varying the parameter values, one can compare the behavior of the system
along these lines. In addition, one can explore the behavior of the system with respect to
features of the problems it is given. The final section of this chapter describes experiments
of this type. They are designed to explore the nature of the system as a computational
mechanism rather than its validity as a psychological model.

Evaluation of EUREKA as a psychological model

PERFORMANCE MEASURES

The experiments we have run on psychological aspects of problem solving are primarily
concerned with learning. As stated earlier, we define learning in problem solving as the
improvement of problem-solving performance. This suggests that the dependent measures
in our experiments should involve various aspects of the system’s performance. Most of the
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experiments in this section are described in terms of the same three dependent measures,
so will discuss these measures here.

The first performance measure we examine involves the number of attempts that Eu-
REKA makes in trying to solve a problem. Since the system does not have the ability to
backtrack, it usually must make a series of attempts during a single trial before it solves a
given problem. EUREKA'’s current implementation allows only fifty attempts at a problem
within a single trial. After fifty attempts, the system gives up and awaits the next problem.
It is clear that a reduction in the number of attempts required to solve a problem indicates
an improvement in performance, so this is one of our primary dependent variables when
we consider learning.

The second measure records the number of means-ends goals that EUREKA visits during
a problem-solving trial. This measure represents the amount of time that the system
actually spends searching for a solution. In general, we expect that learning would lead to
a reduced amount of search, and thus to a quicker solution. This type of measure is often
used to compare the performance of problem-solving systems (e.g., Minton, 1988/1989;
Shavlik, 1988).

Our final dependent measure concerns the number of unique goals that EUREKA visits
during a single trial. This measure represents how much territory within the search space
the system actually examines when attempting to solve a problem. As we have mentioned,
it is'possible for EUREKA to duplicate past failed paths during problem solving, so this
measure is usually less (and never greater) than the total number of goals visited.

We might assume that improved performance would involve a decrease in the last
measure, as with our other two dependent measures. However, we will see that there
are times when learning actually causes an increase in the amount of the problem space
that is searched. This allows the system to break out of unproductive behavior. Perhaps
the best type of learning would involve a decrease in the total number of goals visited,
but an increase in the number unique goals visited. This would indicate that EUREKA is
spending most of its time exploring new territory. In the following sections we discuss our
experiments in terms of these three measures.

PERFORMANCE IMPROVEMENT ON INDIVIDUAL PROBLEMS

Perhaps the simplest type of learning that a problem solver can be expected to exhibit
concerns the improvement of performance on an individual problem during repeated
attempts at its solution. This is analogous to improving a skill with practice. A degenerate
case of this behavior occurs when a system solves a problem once, then always succeeds in
solving the problem in the same way during later attempts. In fact, many problem-solving
systems behave in this manner (e.g., Fikes, Hart, & Nilsson, 1972; Miuton, 1988/1989;
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Figure 10. Improvement in number of attempts: practice on indi-
vidual “Towers of Hanoi” problems.

Mitchell, Utgoff, & Banerji, 1983). However, this would not be a desirable characteristic
for a psychological model because humans do not typically behave this way.

In accounting for this characteristic of problem solving, we expect EUREKA to improve
as it attempts to solve a problem repeatedly. We measure improvement in terms of the
work required before the system solves the problem. Again, we characterize this work
by the number of attempts the system makes, the amount of time it spends, and the
amount of the problem space that it searches before finally reaching a solution. We expect
all three of these factors to be influenced as the system becomes more familiar with the
problem. - A limiting factor on improvement will naturally arise when the system always
finds a solution to the problem without any wasted effort. '

To evaluate EUREKA’s ability to improve with practice, we created a number of problems
based on the “Towers of Hanoi” puzzle used by Anzai and Simon (1979), and the “blocks
world” domain, in which a robot hand moves blocks of various sizes and colors to create
specified configurations. Each time we gave the system a problem, we presented the same
problem ten times in a row. In each of these trials, EUREKA repeatedly attempted to solve
the problem until it found the solution or it had made fifty attempts, at which point the
system gave up and received the next trial. Learning carried over between trials, and we
collected performance measures for each trial of each problem. We then averaged these
results across ten sets of ten trials.

The data for the experiment in the “Towers of Hanoi” domain are displayed in Figures
10, 11, and 12, and the data for the “blocks world” problems are provided in Figures
13, 14, and 15. These data match the qualitative behavior we expected. Learning

does not take place all at once, but performance steadily improves until a certain level of
proficiency is reached. These graphs have the same general shape as a power-law curve.
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Figure 11. Improvement in number of goals visited: practice on
individual “Towers of Hanoi” problems.
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Figure 12. Improvement in amount of problem space searched:
practice on individual “Towers of Hanoi” problems.

In particular, notice that most of the improvement occurs in the first one or two trials.
However, these curves do not fit a power law. Rather, they are more similar in shape to
those calculated from Anzai and Simon’s protocol, as shown in Figures 3 and 4.

INTRA-DOMAIN TRANSFER

Another type of learning concerns the improvement of problem-solving ability on diffi-
cult problems in a particular domain after solving simpler problems from the same domain.
This is a classic type of learning that has been exploited by problem-solving systems that
use macro-operators (Fikes et al., 1972; Iba, 1985, 1989; Korf, 1985), operator composition
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Figure 13. Improvement in number of attempts: practice on indi-
vidual “blocks world” problems.
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Figure 14. Improvement in number of goals visited: practice on
individual “blocks world” problems. '

(Anderson, 1983), chunking (Laird et al., 1986a, 1986b), or any type of mechanism that
compiles operator sequences into individual units. This approach relies on the fact that
difficult problems can be regarded as sequences of smaller, simpler problems. The basic
idea, from a computational standpoint, is that if one solves a simple problem that involves
a short sequence of operators, one can use that sequence of operators in the future to
solve the same problem without having to search for the solution again. This can greatly
reduce the amount of search involved in solving a new problem. This occurs when the
previously solved problem appears as a small piece of the new problem. The recorded
solution reduces the amount of work necessary to solve the new problem and therefore
increases the speed with which it is solved. In a system that does not search exhaustively,
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Figure 15. Improvement in amount of problem space searched:
practice on individual “blocks world” problems.

having a solution to the small problem increases the probability that the difficult problem
will be solved at all. One can argue that this is the primary type of learning that Al
problem-solving systems have exhibited so far. For this reason, we should expect EUREKA
to display this type of improvement, as well as because it is a type of learning exhibited
by humans.

Each goal in EUREKA’s memory is treated as a problem that may or may not have been
solved. If a given goal has been solved, then the memory structure has been strengthened
to reflect the solution. This adjustment should affect future retrieval patterns in such a
way that EUREKA is likely to repeat the successful behavior it used to solve the problem.
This means that the system should not waste time searching for solutions to goals it has
already satisfied, although there is a potential for some search due to the system’s random
nature. Given this influence, when EUREKA works on a difficult problem for which various
pieces have been solved, the likelihood of solving the problem should increase. In addition,
the amount of search required to solve the problem should decrease, since the system will
not spend time searching portions of the problem space that involve pieces of the problem
that are already familiar.

We tested this prediction by measuring EUREKA'’s performance on small sets of problems
from the “Towers of Hanoi” and “blocks world” domains, each problem having a different
optimal solution length. In the control condition, we ran each problem separately, throwing
out any learned memory structures between each trial. For the test condition, we then
ordered the problems by optimal solution length and ran them successively, allowing
learning to take place. Figures 16, 17, and 18 compare EUREKA’s ability to solve the
“Towers of Hanoi” problems under the control and test conditions, whereas Figures 19,
20, and 21 show similar results from the “blocks world” problems. Again, the dependent
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Figure 16. Improved performance in number of attempts: solving
“Towers of Hanoi” problems in order of optimal solution length.
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Figure 17. Improved performance in number of goals visited: solving
“Towers of Hanoi” problems in order of optimal solution length.

PAGE 51

measures of performance include the number of attempts required to solve the problems,

the number of goals examined, and the number of unique goals examined.

For the control condition, the system’s performance degrades as optimal solution length
increases. In fact, the longest problems were so difficult that EUREKA was never able to
solve them. These problems are marked by larger bullets. For the test condition, one can
see that the ability to transfer knowledge from simpler problems to more difficult problems
significantly improves the system’s performance along all three dimensions. Under these
conditions, EUREKA was able to solve even the most difficult problems easily, although it

could not solve them at all under the control condition.
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Figure 18. Improved performance in amount of problem space
searched: solving “Towers of Hanoi” problems in order of optimal
solution length.
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Figure 19. Improved performance in number of attempts: solving
“blocks world” problems in order of optimal solution length.

By examining the number of goals visited (Figures 17 and 20) and the number of unique
goals visited (Figures 18 and 21), one can see that improvement occurs in the form of a
reduction in the total amount of search required to solve each problem. This arises from
the fact that EUREKA has stored familiar, successfully solved pieces of the more difficult
problems, making it less likely to wander down unproductive paths.. Each pair of points
corresponds to a comparison between performance with and without learning, as exhibited
in Table 1 from Anzai and Simon’s protocol. EUREKA shows the same ability to improve
from intra-domain transfer that the subject in the protocol showed.
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Figure 20. Improved performance in number of goals visited: solving
“blocks world” problems in order of optimal solution length.
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Figure 21. Improved performance in amount of problem space
searched: solving “blocks world” problems in order of optimal solution

length.

INTER-DOMAIN TRANSFER OR ANALOGY

Transfer is also possible between problems from different domains. This type of transfer
usually involves the use of an analogy from one domain to aid problem solving in another
domain.

The subject of analogy has received a large amount of attention within both AI and
cognitive psychology. In fact, the term has been applied to so many different things that
1t is difficult to formulate a succinct definition. Hall (1989) provides a good review of
research on many different uses and types of analogy. In the current research we are
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Table 6. Results of the experiment on analogy in EUREKA.

CONDITION % SUCCESSES ATTEMPTS NoODEs UNIQUE NODES
CONTROL 50 37.7 117.2 38.2
TEsT 80 13.2 48.2 18.7

strictly interested in the use of analogy in problem solving. To be even more precise, we
are concerned with the ability to retrieve and generalize operators in an attempt to apply
them to problems in new domains.

Gick and Holyoak (1980) have performed a series of experiments dealing with the
ability to solve new problems by finding analogies with old stories and problems. They
demonstrated that humans can solve otherwise difficult problems using analogies. They
also showed that the specific nature of a given problem greatly influences the ease with
which it can be applied in an analogical situation. However, they have also consistently
found that humans are rather poor at analogical problem solving. Often, subjects must
be dlmost “spoon fed” the analogy before they can generate an appropriate solution to a
given problem.

EUREKA’s ability to solve problems by analogy stems from the same mechanism that
allows transfer within domains. The only difference is that some generalization must
be done when matching the retrieved TRANSFORM goals. In this section, we report
experiments designed to test EUREKA'’s ability to account for the psychological data on
analogical problem solving.

For the experiment on analogy in EUREKA, we gave the system problems from the
two separate domains provided by Holyoak and Koh (1987). Our test problem was the
“radiation” problem, and the source analogy was the “broken lightbulb” problem. We
supplied the system with operators capable of solving the lightbulb problem and ran it
under two conditions. In the control condition, EUREKA attempted to solve the radiation
problem without any previous experience. In the test condition, the system first solved
the lightbulb problem, and then attempted to solve the radiation problem.

The results of this experiment are provided in Table 6. EUREKA exhibited improvements
in the average number of attempts taken to solve the radiation problem, the number goals
visited, and the number of unique goals visited. The system also shows improvement in
its ability to solve the test problem at all. Given a maximum of fifty attempts to solve the
problem, EUREKA was only able to complete the task fifty percent of the time under the
control condition. However, after having solved an apalogical problem, the system was
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able to solve the test problem eighty percent of the time, showing an improvement from
the use of analogy similar to that observed by Holyoak and Koh.

NEGATIVE TRANSFER OR Einstellung

As we have mentioned at various points throughout this dissertation, the flexibility that
comes with being able to transfer past experience to new situations also has disadvantages.
Perhaps the most important of these disadvantages arises when an attempt is made to
transfer knowledge to a new problem inappropriately. This may happen when a problem
solver sees a new situation that somehow looks similar to a familiar situation.

We found that EUREKA suffers the same problems as humans on the water jug prob-
lems from Luchins’ experiments on Einstellung. Recall that the mechanisms in EUREKA
are designed to encourage retrieval of useful information by increasing the strengths on
relations in the semantic network. These adjustments are designed to increase the likeli-
hood that old goals will be retrieved in the types of situations to which they have been
successfully applied. This encourages the system to retrieve goals that are familiar and
that have been used successfully in the past. The same goals are retrieved even though
there might be more useful information contained somewhere else in memory. In these
cases, the more familiar information blocks the retrieval and selection of information that
is more appropriate to the current problem.!* We ran EUREKA on the problems provided
in Table 2. As in Luchins’ experiment, EUREKA failed to find optimal solutions to the test
problems after solving the series of control problems.

- EXTERNAL CUES IN THE FORM OF HINTS

Earlier we mentioned the use of hints to improve problem-solving behavior. In the
EUREKA model, we view hints as one instance of a more general category of external
cues from the problem solver’s environment. In the future, we plan to test EUREKA with
“incidental” cues in an attempt to account for episodes of insight. In the current work,
we have tested the system’s behavior with respect to intentional, beneficial cues, or hints.

To test EUREKA along these lines, we again ran experiments with the problems used
by Holyoak and Koh (1987). In this experiment, we provided EUREKA with operators
for solving a “broken lightbulb” problem. However, we did not have the system actually
attempt to solve that problem. Rather, in the control condition, we gave the system the
task of solving the radiation problem in a normal manner. In the test condition, EVREKA
was again required to solve the “radiation” problem. However, this time semantic-network

14 Neves and Anderson (1981) have suggested an alternative explanation, in which Einstellung arises from
the use of operator composition for learning.
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Table 7. Improved performance through the use of hints.

CONDITION % SUCCESSES ATTEMPTS NODES UNIQUE NODES
CONTROL 50 37.7 117.2 38.2
TEST 100 11.7 39.5 19.7

nodes involved in the “broken lightbulb” problem were activated during every problem-
solving cycle. This served as a hint in the form of an external cue to retrieve the appropriate
operators to solve the problem.

Table 7 provides the results of this experiment. The data for the control condition are
identical to the data for the experiment on analogy because the control conditions for each
experiment were the same. We can also see from the table that the hints provided to the
system dramatically reduced the number of attempts and the amount of search it required
to solve the problem. In addition, when EUREKA received hints, it was always able to
solve the problem. Thus, the effect of hints appears to be even more dramatic than that
found by Holyoak and Koh with humans. This could be because the hints we gave the
system were somehow stronger than the hints that they gave to their subjects.

Evaluation of computational characteristics

The experiments in the previous section concentrated on providing support for Eu-
REKA’s status as a psychological model of the role of memory and retrieval in problem
solving. However, in addition to being a psychological model, EUREKA is implemented as a
computer system, and it has a number of characteristics that can be tested systematically.
Here we focus on some of those computational characteristics.

Recently, there has been an increasing interest in extensively testing Al systems (Kibler
& Langley, 1988). At some level, every Al program is a formal system that contains two
distinct parts. One component is the system architecture, which includes the definable
assumptions and biases that are built into the system and not expected to change. Some
examples of parts of EUREKA’s architecture include the knowledge-representation schemes,
the spreading-activation retrieval mechanism, and the decision algorithms.

The second part of an Al system involves the set of parameters that are associated with
the architectural components. Most systems have these, although they are sometimes
not obvious. We feel it is important to make these parameters explicit in order to test a
system’s computational characteristics. Ideally, the system’s performance will not overly
depend on particular values for its parameters. If behavior is very sensitive to particular
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values, this suggests that the architectural principles of the system are not responsible for
that behavior. Rather, it indicates that there is extra knowledge hidden in the parameter
values, which can lead to brittleness or other questionable behavior.

Another way to test the computational characteristics of a system is to control the
input given to the system and measure its behavior with respect to features of the input.
This is the same type of experiment that we used in the psychological section of this
chapter. However, there are also behaviors that EUREKA exhibits that are not specifically
addressed in the psychological literature. Therefore, the remaining experiments in this
chapter are of this type. The results of these experiments not only display interesting
aspects of EUREKA’s behavior, but may serve as the basis for specific predictions about
human behavior that can be tested in the future.

SYSTEM PARAMETERS

The first two experiments in this section were designed with the intent of showing that
EUREKA behaves well across a wide range of settings for the parameters involved in its
decision algorithms. There are two primary parameters involved in the decision points:
one concerns the amount that the trace strengths on links are increased during problem
solving, and the other involves the amount of punishment or reward the system associates
with selecting a retrieved goal as a model for future problems. These factors influence
behavior in the retrieval of a set of TRANSFORM goals from memory, and in the selection
of a single goal from that set. In principle, changing the values of these parameters could
drastically change the amount of information retrieved from memory and the likelihood
that it will be used as a model once it has been retrieved. It is not necessarily desirable (or
possible) to come up with a “best” set of values for the parameters. Rather, the particular
parameter values represent a specific bias in a continuum of possible behaviors. For these
experiments, we wish to explore this behavior space and exhibit the tendencies of the
system with respect to certain ranges of the parameter values.

Retrieval of information

Our first experiment measured EUREKA’s behavior with respect to the parameter for
increasing the weights of the links in memory after a problem has been successfully solved.
There are two occasions in which trace strengths are incremented. Whenever a relation
is encountered that is already stored in memory, the link representing that relation has
its trace strength incremented by one. However, when the system succeeds in solving a
problem, the trace strengths of all links associated in situations that helped to solve the
problem are increased by a factor v. In the first part of this experiment, we tested the
effects of this factor on intra-domain generalization in the blocks world.}> That is, we
gave the system overly-specific operators and measured its ability to solve a new problem

!5 More detailed experiments on intra-domain generalization are described later in this chapter.




PAGE 58 RETRIEVAL IN PROBLEM SOLVING

Number of attempts
8—

0 1 10 100

Value of factor increment

Figure 22. Number of attempts compared to the retrieval increment
factor, v.

Number of goals visited
40—
35—

30—

25—
20—

15—

10
-
5

0 1 10 100

Value of factor increment

Figure 23. Number of goals compared to the retrieval increment
factor, v.

after it had solved a similar problem to which the operators were directly applicable. We
tested this system with a number of different values for the link strengthening factor, v,
producing the results presented in Figures 22, 23, and 24.

Each of these graphs shows an initial decline in the effort spent on solving the new
problem as the learning factor, v, increases. This occurs because the successful use of
the overly specific operators on the test problem causes the likelihood that the operators
will be retrieved in future similar situations to increase with v. However, it is interesting
to note that after the point where v = 20, performance actually starts to degrade. An
explanation for this is that operators receive too much reward for being successful in the
training problem and they become easily retrieved even when they are inappropriate to
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Figure 25. EUREKA’s behavior with respect to the retrieval incre-
ment factor, v.
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a new problem. This also indicates that Einstellung effects increase as v gets very large.
In the psychological experiments in this chapter, we used a value of v = 5 in order to get

effective learning without having too strong an Einstellung effect.

In the second part of this experiment, we repeated some of the experiments on practice
effects with various values of v. Specifically, we had the system attempt to solve a problem
multiple times. Then we compared the effort spent on the problem in the first trial with
the effort spent on the last trial. This comparison was calculated as a percentage decrease

in effort and the results are shown in Figure 25.
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Figure 26. EUREKA's behavior with respect to the selection incre-
ment factor, w.

A lower value in this figure indicates a greater improvement in performance across trials.
Along all the measures of system effort, performance improvement appears to increase
with v, although this increase becomes less pronounced as v becomes large. There do not
appear to be any negative transfer effects in this experiment, but that is to be expected
since a single problem was being solved for each trial. Therefore, no transfer was occurring
between distinct problems.

Selection of retrieved information

Our second experiment examined the factor used to select an old goal as a model once
it has been retrieved. Recall that this factor is multiplied by the degree of match between
two goals to derive a final factor for selection. The selection factor is computed by storing
two values: ¢ is a measure of how often a goal has been selected for use as a model in a
particular situation, and s is a measure of how often a problem has been solved when the
goal was chosen in that situation. When a problem is solved, each goal that was used as
a model has its s and ¢ attributes incremented by a fixed value w. When EUREKA fails to
solve a problem, only t is incremented. The increment factor, w, is the variable of interest
in this experiment.

As in the second part of the experiment on the retrieval parameter, we ran EUREKA
on a subset of the trials from the experiment on improvement with practice in individual
problems. This time, however, we varied the value of w between zero and 100, measuring
the percentage change in each dependent variable between the first and last trial. Again,
a decrease in this value represents an average increase in performance improvement. The
results are graphed in Figure 26. The number of attempts made to solve each problem
and the number of goals visited exhibit a gradual improvement as w becomes large, both
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appearing to reach asymptotic values at about w = 1. The percentage decrease in number
of unique goals visited achieves asymptote at an even smaller value of w.

These results are consistent with what we know of w’s role in EUREKA. This factor’s
major purpose is to encourage the system to explore new paths after failures and to prefer
old paths that have been successful. As such, we would expect improvement on individual
problems to be more dramatic as the factor is increased. However, it is interesting that
increases in w appear to have little impact as it becomes large. For the psychological
experiments in this chapter we chose the relatively small value of w = 1, since this
represents the point at which w’s effect reaches an asymptote.

COMPARING RETRIEVAL TIME TO MEMORY SIZE

In chapter 3, we provided a simplified analysis that suggested that the time taken to
execute a retrieval process based on spreading activation would be independent of the
total size of memory. This is a desirable characteristic because it means that the problem
solver will not slow down as knowledge is added to the system. However, our analysis
contained a number of simplifying assumptions, and it is not clear that the results hold
for the specific implementation of spreading activation in EUREKA.

In order to supplement this analysis, we ran an experiment in which we continuously
added knowledge to EUREKA’s semantic network. At various points throughout this
process, we started the retrieval process by spreading activation from a small set of
specified nodes. Finally, we graphed the time taken to spread activation from each source
against the total number of nodes in the network. These results are provided in Figure
27. Each curve in the figure represents the spreading time from a single source node. The
most obvious characteristic of this graph is that each curve eventually levels off, indicating
the type of behavior that we predicted. For large networks, retrieval time does seem to be
independent of the size of memory.

There are some other aspects of this graph that should be discussed. First, notice that
sometimes spreading activation appears to visit more nodes than are in the network. This
happens because there is a large number of cycles in a typical network, so individual nodes
are visited many times during the spreading process. Thus, even if the total number of
nodes visited is larger than the number of nodes in the network, it does not mean that
every node in the network is visited.

Also, notice that the curves are very jagged for small network sizes. This suggests that
retrieval time is influenced quite a bit by the specific structure of the network, rather
than by its size. Apparently, adding a few links or altering the strengths on links can
significantly influence retrieval time, at least for small networks. The curves eventually
appear to smooth out, but this could be partly because our interval for measuring retrieval

time increased as the network grew.
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Figure 27. Comparing retrieval time to total network size.

INTRA-DOMAIN GENERALIZATION

An interesting phenomenon that may not seem directly related to analogy involves
simple generalization within a domain. In our view, analogy is a form of transfer across
domains, whereas generalization involves transfer within a domain. Since problems solved
by analogy often look quite different from each other (by virtue of the fact that they are
from different domains), this approach to problem solving is often thought to be a more
creative act than generalizing knowledge from one problem to another within the same
domain. In EUREKA, these two types of transfer are simply two manifestations of a single
process. The same underlying mechanisms that allow using analogies across domains allow
generalization within a single domain.

Generalization in problem solving has also received attention from other Al researchers
(Anderson, 1983; Holland et al., 1986). However, generalization in systems such as ACT*
and PI appears as one of a number of explicit learning mechanisms. In EUREKA, gener-
alization arises from the same partial-matching algorithm that is used for straightforward
problem solving and analogy. Thus, the model provides a mechanism for retrieving oper-
ators that can be generalized, and also specifies the conditions under which generalization
occurs.

To test EUREKA’s behavior with respect to generalization, we supplied the system with
a set of very specific operators from the “blocks world” domain that contained no variables.
For example, rather than giving the system a general operator for picking up any block,
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Figure 28. Improvement in number of attempts: generalization of
past performance.

we gave it an operator for picking up Block A. EUREKA could not apply this operator
directly to pick up any other blocks. More important, if the system had the goal to pick
up Block B, it would be less likely to retrieve this operator because it would not receive
much activation.

As a control, we ran EUREKA on problems that could only be solved by generalizing
the constants in the operators to cover the new situations. In the test condition, we ran
EUREKA on the same set of problems after first giving the system similar problems that
could be solved without generalization. This experiment is similar to the experiment on
analogy. However, we expect a much greater improvement between the control and test
conditions, because the overly specific operators appear in very similar contexts once they
have been successfully used to solve similar problems.

The data from this experiment are displayed in Figures 28, 29, and 30. As expected, the
results of this study are similar in many ways to the results concerning the use of analogy.
EUREKA had a very difficult time solving any of the problems in the control condition,
and it was not able to solve the most difficult problems at all (again, problems that were
not solved after fifty attempts are marked with larger bullets). However, after having
solved similar problems for which directly applicable operators were available, performance
improved dramatically. Both the number of attempts necessary to solve each problem and
the amount of search required were reduced. In addition, for the more difficult problems,
learning actually increased the amount of the problem space that was searched. In this
case, it appears that learning has reduced the total amount of time required to solve new
problems, but has increased the amount of productive time spent investigating new areas

of the problem space.
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These results again match our predictions of EUREKA’s behavior. It is important to note
that the system always had the potential to solve every problem under both the control
and test conditions. However, in the control condition, performance was hampered by the
inability to retrieve appropriate information from memory, because all the operators were
overly specific.

EFFECTS OF GOAL INTERACTIONS

Our final computational study involving EUREKA concerns problems that contain var-
ious degrees of goal interactions. In some of our experiments, we used the independent
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Figure 31. A “blocks world” problem with goal interactions.

measure of optimal solution length to estimate the difficulty of a problem. However, a
common feature of humans and systems that use means-ends analysis is that they have a
hard time solving problems in which various goals interact with each other.

A classic example of a goal interaction in the “blocks world” domain involves building
a tower three blocks high (see Table 31). A means-ends system must decide which of the
two goals to satisfy first. If the system chooses to stack A on B, it will not be able to stack
B onto C without first taking A off of B again. This would lead to a suboptimal solution
involving eight operator applications. The optimal solution to this problem involves first
stacking B on C and then stacking A on B, requiring only four operator applications.

It is clear from this example that optimal solution length is not the only factor that
determines the difficulty of a problem. We have developed a new measure of problem
difficulty that takes both optimal solution length and degree of goal interaction into
account. Certainly there may be other factors involved in problem difficulty, but this
at least gives us a more accurate measure.

Our measure for problem difficulty involves the ezpected solution length of a problem.
This measure assumes that, given a number of goals to solve, a means-ends system has an
equal chance of choosing any particular goal to work on next. We can use this random-
selection strategy to find the average solution length over all possible goal orderings. In
addition, we can calculate the degree of goal interaction of a problem by dividing the
expected solution length by the optimal solution length. In the example provided above,
the expected solution length is %’i = 6, and the degree of goal interaction is g = 1.5.

We have used these measures to study how EUREKA behaves when given problems that
contain goal interactions. We expect that the amount of effort the system spends solving a
problem will depend both on the optimal solution length and the degree of goal interaction
of the problem. However, after EUREKA has learned a solution to the problem, it should
be able to avoid any extra work that arises from goal interactions.
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Figure 32. Number of goals visited: First trial on “blocks world”
problems of varied complexity.

Number of unique

goals visited Optimal solution length=2

0 AR A B N B B R A
1.0 1.5 2.0 2.5
Degree of goal interaction

Figure 33. Number of unique goals visited: First trial on “blocks
world” problems of varied complexity.

To test these predictions, we designed a number of “blocks world” problems with various
optimal solution lengths and degrees of goal interaction. We then had EUREKA solve each
problem twice, and we measured the number of goals and unique goals visited during each
trial. The results are provided in Figures 32, 33, 34, and 35.

First, examining Figures 32 and 33, we see that the effort expended by EUREKA on a
problem does indeed depend on both optimal solution length and degree of goal interaction.
We do not make any predictions about the precise quantitative relationships between these
measures because of the small number of data points. In addition, Figures 34 and 35 show
that, once EUREKA has solved a problem before, the amount of effort expended no longer
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Figure 34. Number of goals visited: Second trial on “blocks world”
problems of varied complexity.
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Figure 35. Number of unique goals visited: Second trial on “blocks
world” problems of varied complexity.

depends on the degree of goal interaction. This indicates that EUREKA has at least some
ability to overcome difficulties caused by goal interactions. ‘
Although this is a small study, it provides us with some interesting information about
the character of problems involving goal interactions. First, the experiment shows that,
like humans, EUREKA has more difficulty with problems that have more goal interactions,
but also has the ability to overcome those difficulties. Also, the experiment indicates that
expected solution length may indeed provide a reasonable measure of problem difficulty.
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Summary

The experiments in this chapter have given us insights into how EUREKA behaves under
various conditions. In the section on psychological evaluation, we were able to show that
the model exhibits a number of behavioral characteristics that humans also exhibit. In
the computational section, we examined how EUREKA responds to various parameter
settings and explored some of the system’s behavior that does not specifically account for
psychological phenomena. In chapter 7, we will further discuss the conclusions we draw
from the results of these experiments.



CHAPTER 6

EUREKA in Perspective

Many of the ideas in our research have been influenced by other work in the area of prob-
lem solving. In addition, there is a large amount of work that has not directly influenced
ours, but bears enough relation to justify discussing its differences and similarities. In
this chapter, we introduce a number of dimensions that are useful for describing problem-
solving systems. In addition, we analyze EUREKA and a number of other problem-solving
systems along these lines to compare alternative approaches to addressing these issues. The
dimensions we have chosen to describe problem-solving systems include the representation
of knowledge, the basic problem-solving approach, mechanisms for retrieval and selection
of long-term knowledge, learning issues, problem solving by analogy, and reaction to the

environment.

Knowledge repreéentation

A major decision in designing a problem-solving system concerns the representation of
knowledge. Usually, a problem solver has at least two types of memory. One is a long-
term memory that holds permanent, general knowledge about the world and particular
problem domains. Another is a temporary, short-term, or working memory that is used to
keep track of information being used to solve a current problem. In addition, a distinction
is often made between procedural and declarative knowledge. Procedural knowledge is
usually represented in the form of rules or productions, and represents knowledge of how
to perform actions or to make specific inferences. ' In contrast, declarative knowledge
involves information and beliefs about the state of the world, and is usually represented
in the form of non-executable facts.

In many respects, this is a philosophical distinction rather than a technical one. Proce-
dural knowledge is generally assumed to be a sort of compiled knowledge that is directly
applicable. In contrast, declarative knowledge must be interpreted before manifesting
itself in the system’s performance. At the implementation level of a computer system, all
types of knowledge end up being interpreted to some extent, and therefore are arguably
declarative. In another sense, all knowledge is inherently procedural because it must be
“executed” to bear on system performance. Therefore, the distinction appears to have less
relation to implementation-level decisions than to assumptions about the human cognitive

architecture or the computational approach.
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There has been a wealth of research that uses production rules to model procedural
knowledge in long-term memory. Systems that have taken this approach include SoaR
(Laird et al., 1986a, 1986b), PRODIGY (Minton, 1988/1989), UPL (Ohlsson, 1983, 1987),
PI (Holland et al., 1986), and ACT* (Anderson, 1983). Most of these systems limit the
contents of long-term memory to procedural knowledge. That is, all long-term knowledge
is encoded in the form of productions. Anderson’s ACT* is a notable exception in that
it contains both a procedural long-term memory and a declarative one. In this way,
Anderson distinguishes between facts and procedures. For example, ACT* might store
the information that all birds have wings as a declarative fact. In contrast, a procedural
approach, such as that used by SOAR, might store the same information as the production
rule: Vz, if z is a bird then ¢ has wings. Both approaches represent the same information;
the difference is a matter of interpretation as to how the knowledge is used by the system.

Although these systems use productions to represent long-term knowledge, they all
use declarative knowledge to represent short-term memory. This reflects the notion that
knowledge does not become proceduralized unless it is integrated into long-term memory.
This approach also treats short-term memory as a temporary blackboard that only contains
knowledge in the form of facts and relations involved in the current problem. However,
this declarative knowledge can be implemented in quite different ways. For example, SOAR
stores a stack of contexts that represent the subgoals being worked on in solving a top-
level problem, whereas PRODIGY stores a tree that records all the actions that the system
has taken so far. The latter approach is similar in some ways to EUREKA's traces, but in
PRODIGY this is only a temporary structure in short-term memory. None of this tree is
ever stored directly in long-term memory.

An alternative approach to representing long-term memory views knowledge as pri-
marily declarative in nature. This type of representation can be found in frame-based
or case-based planners, such as SCRAPS (Hendler, 1986), DAYDREAMER (Mueller, 1987),
CHEF (Hammond, 1986/1988), and Carbonell’s derivational and transformational anal-
ogy methods (Carbonell, 1983, 1986; Carbonell & Veloso, 1988). In these approaches,
knowledge about the world is stored mostly or entirely in the form of facts and (specific
or abstract) cases that have been seen or used to solve problems in the past.

One major difference between this declarative approach and the procedural approach
is that, in production systems, each piece of knowledge is independent of the others. This
allows greater flexibility in adding and deleting knowledge, and allows possibilities for
interesting interactions between pieces of knowledge. The declarative approach relies on
the notion that pieces of knowledge that are relevant to each other should be somehow
connected together. For example, a declarative frame or plan for cooking a specific dish
might contain an ordered list of tasks that must to be carried out to satisfy the problem.
Taken to an extreme, as in case-based reasoning, each plan is simply an exact memory of
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a case that has been seen before, rather than a set of abstract rules and goals that must

be satisfied.

Although these systems rely heavily on the declarative representation of long-term
knowledge, they rarely omit the use of procedural knowledge entirely. For example,
SCRAPS contains rules that propose plans to use given certain goals, and DAYDREAMER
includes planning and inference rules to fall back on when it cannot find any appropriate
declarative cases in memory. Even a pure case-based reasoner such as CHEF contains rules
for modifying past cases and enabling the use of new objects in new cases, although these
rules can be viewed as part of CHEF’s architecture rather than as part of memory. Once
again, all of these systems use a declarative approach to represent working memory.

Long-term knowledge in EUREKA is also represented declaratively. In fact, the current
model does not include any explicitly procedural knowledge. That is, even knowledge that
might eventually be used in a procedural manner is stored declaratively, in the context
of where and how it is used, then interpreted when necessary. In addition, EUREKA does
not have a separate working memory. Rather, the working memory at any given time
is always a subset of the long-term declarative memory traces. ACT* approaches this
idea, having its short-term memory partly consisting of information from the declarative
long-term memory. But ACT*’s short-term memory also holds temporary structures
that disappear as soon as the problem has been solved. In summary, EUREKA views all
knowledge as declarative in nature. However, portions of this memory can be retrieved into
working memory and interpreted to produce actions. Finally, retrieval of useful declarative
knowledge is facilitated when it appears in a problem-solving context and has proven useful

in the past.

Basic approach to problem solving

The different approaches to modeling basic problem-solving processes are closely tied
to the representation of knowledge in long-term memory, although there is a bit more
variation in problem-solving approach. For example, many of the systems that use a
production-based long-term memory also rely on a strict production-system or problem-
space model of reasoning processes. These include SOAR, UPL, and ACT*. In these
models, reasoning always takes place in a match and execute cycle. All productions in
memory with satisfied conditions become available for firing, and some subset of these are
executed. This cycle continues until no productions can fire or the goals of the system are
satisfied.

Production systems have proven to be reasonably flexible and they are not generally
restricted to specific approaches to problem solving. For example, standard production
matching results in a forward-chaining style of problem solving, but adding conditions to
productions can lead to heuristic search. In addition, adding conditions concerning the
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system’s current goals can be used to implement a backward-chaining style of search or
means-ends analysis. In these cases, the production-system models are used as interpreters
to implement higher-level problem-solving approaches.

SOAR augments the standard production-system model with the capability of universal
subgoaling. Under this view, any decision that the system must make is a new problem
that needs to be solved. For example, when SOAR must decide which operator to apply
to a situation, it sets up a new problem for itself to determine the best solution, rather
than relying on a built-in decision procedure. Of course, the decision procedure must be
implicit in the productions for solving the problem, but they are not directly implemented
in the system architecture.

Holland et al.’s PI also augments the straightforward production-system approach with
the ability to apply rules in two directions. Productions with matched conditions are fired
normally. However, productions with actions that match current goals are set up with
APPLY subgoals in means-ends fashion.

Other production-system models attempt to improve efficiency by limiting the con-
ditions under which rules can fire. For example, PRODIGY is limited to working in a
means-ends paradigm. That is, candidate rules must potentially reduce some of the dif-
ferences between the current working-memory state and the current goal conditions. In
addition, if a selected rule cannot fire in the current state, a subgoal is automatically
generated to transform the current state into a state that satisfies the preconditions of the
operator.

There are also a number of possible approaches to problem solving given a declarative
long-term memory. A frame-based planner, such as SCRAPS, stores plans that group
together relevant rules to achieve a goal, rather than relying on sets of completely inde-
pendent rules. As we will discuss later, this can be viewed as a declarative approach to
chunking, which can also be implemented in a production-system framework.

Case-based reasoners, on the other hand, rely on a very different approach to problem
solving. In the production-system model, problem solving arises from selecting appropriate
rules to apply in given situations. Case-based reasoning relies on finding cases in long-
term memory that are similar to the current problem, and then transforming them (as in
CHEF, DAYDREAMER, or transformational analogy) or using them to guide future problem-
solving efforts (as in derivational analogy). For example, in CHEF this means that very
little search takes place in trying to solve the problem directly. There is search involved in
finding an appropriate case to use to solve the new problem, and there is search involved
in transforming the old plan into a solution to the new problem. However, there is no clear
analog to the search at the problem level that occurs in production systems. One criticism
of case-based reasoning is that it provides no explanation for the origin of the initial set
of cases, but DAYDREAMER is a notable exception in this regard. When it cannot find a
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suitable case to use for a new problem, it falls back on a problem-space approach, using
its production rules in long-term memory.

EUREKA uses an approach that is in some sense a hybrid between case-based reasoning
and means-ends analysis. It attempts to limit search by using past cases to help solve
new problems. However, the system does not rely on finding a full-blown problem-solving
episode in memory and using it exclusively to guide behavior on a new problem. Rather,
the system retrieves pieces of problems individually when they are appropriate. The system
therefore gains the advantage of using past cases while allowing some of the flexibility that
production systems get from applying independent pieces of knowledge to a problem. In
this way, EUREKA can borrow knowledge from a number of different cases in solving a

problem.

Also, EUREKA starts with individual operators stored as miniature trivial problems in
memory, so it can fall back on a problem-space approach when it cannot find any cases
appropriate to solving the current task. In this case, the system prefers matches in the goal
structures of the current TRANSFORM goal and the retrieved goals. This encourages the
selection of operators that reduce differences, as in a standard MEA framework. However,
as we have noted, the system is not limited to considering those operators and can fall
back on a more liberal operator-selection strategy like forward chaining if necessary. Thus,
EUREKA provides a compromise between the strict problem-space approach and the case-
based approach. The system retrieves pieces of cases in a problem-solving context, if
possible, and individual operators when necessary.

Retrieval and selection

In our work, we have attempted to divide the decision-making process into two distinct
phases. First, a small amount of information must be recalled from memory. Next, this
information goes under more extensive analysis to decide which is most useful for the
current problem. We refer to these two stages as retrieval and selection, respectively.
These are stages that all problem-solving models must address, at least implicitly. The
selection stage is sometimes referred to as conflict resolution (Forgy & McDermott, 1977),
and has received quite a bit of attention in research on problem solving. However, many
models have ignored the issue of retrieval by examining all long-term when they must
make a decision. This has especially been the case in production-system models. Recently,
however, some research with production systems has addressed the retrieval issue.

The idea here is that, since long-term knowledge is represented in the form of rules,
there can be a special set of rules that propose which of the other rules are available for
firing in any given situation. Ohlsson’s (1987) UPL was the first system to make these
retrieval rules explicit, so we will borrow his terminology in explaining this approach. In
UPL, SOAR, and PRODIGY, rules are retrieved by the use of proposers, which suggest rules
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that might be applicable to the current situation. This corresponds to retrieving a subset
of the rules in long-term memory for consideration. Often the default proposers (those
existing before any learning has taken place) retrieve all rules in memory as candidates, so
that the system will not miss any potentially applicable rules. Frame-based systems such
as SCRAPS also use this retrieval approach, although the proposer rules usually suggest
entire plans to use in solving a problem, rather than individual rules to apply.

After an initial set of rules has been retrieved, a subset of these (often just one rule) must
be selected for firing. In UPL, this rule set is pruned through the use of censors, which
indicate which of the retrieved rules would be bad to apply in the current situation. SOAR,
PRODIGY, and SCRAPS also have rules of this type, but SOAR and PRODIGY also include
preferences, which order the remaining candidates in terms of their potential usefulness.
After this process, there may be a single, unique rule to fire and the selection process is
over. On the other hand, there may still not be a clear winner.

At this point, the various models go their separate ways in making a selection. PRODIGY
and SCRAPS make a random selection from the remaining rules, although PRODIGY
remembers the rules it did not choose and has the ability to backtrack in case the random
choice fails. UPL uses more standard production-system conflict-resolution techniques for
ordering the rules. These include preferring rules that have not fired before, preferring
rules that are more specific, and choosing at random as a last resort. As mentioned
previously, SOAR creates a subgoal in an alternative problem space to resolve the decision,
and searches in this problem space until a clear choice is determined.

Case-based reasoners, such as DAYDREAMER, CHEF, and Carbonell’s approaches, do
not use productions to retrieve and select cases. Rather, they use an approach that has
some ideas in common with spreading activation. The concepts mentioned in the current
goal conditions and working state are used as indices to find previous cases from which
to reason. In this way, only those cases that have abstract concepts in common with the
current problem will be retrieved. Selection is then made based on the number of indices
that the retrieved cases have in common with the current problem. DAYDREAMER goes
a bit further, in that it also uses indices from concepts reflecting the system’s current
“emotions” to help retrieve cases and determine relevant goals. Also, unlike other case-
based reasoners, DAYDREAMER falls back on production rules when it cannot find any cases
to reason from. In this situation, a more traditional production-system style of selection is
made with all the rules in memory as candidates, so there is no special retrieval mechanism
for these productions.

ACT* is a production-system model that uses a quite different approach to the retrieval
of operators. When this system is presented with a problem, some of the features are set up
as sources of activation in the declarative long-term memory, thereby calling these concepts
into working memory. Then a spreading-activation process similar to that used in EUREKA
is run to retrieve more concepts from the declarative long-term memory into working
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memory. Finally, the entire rule set in the procedural long-term memory is matched in
parallel against the working memory elements. In this way, ACT* only retrieves those
rules that involve active concepts. Then conflict resolution is carried out using standard
production-system methods, such as preferring more specific rules and rules that have not
fired before. Other factors that ACT* incorporates into selection include the degree of
match in the rule conditions (rules that do not match completely are sometimes allowed to
fire), the strength of the productions (productions that have proven useful in the past are
preferred), and preferring productions that explicitly test the current goals of the system.
This also encourages the system to favor a goal-directed behavior like means-ends analysis,
while allowing it to fall back on forward chaining if necessary.

PI uses a more restricted form of spreading activation for retrieval. Whenever this
system fires a rule, the concepts mentioned in its actions are called into working memory.
Likewise, when a subgoal is created for a rule that cannot yet fire, the concepts mentioned
in the subgoal are called into working memory. However, these concepts are not set up
as sources of activation to initiate a spreading-activation process to neighboring concepts,
as in ACT* or EUREKA. Rather, only these concepts are activated, and their activation
decays with time. As in ACT™, rules are only allowed to match against working memory
elements. In this manner, activation does not spread automatically throughout memory,
but proceeds in one step each time a rule is fired. Finally, selection is made using types
of evaluation similar to those used in ACT*,

EUREKA uses a spreading-activation mechanism similar to that used in ACT*, but it
does not have a separate procedural memory to match against working-memory elements.
Rather, all knowledge, including operator representations, is stored declaratively. Instead
of retrieving a set of productions or operators, EUREKA retrieves a set of declarative
TRANSFORM goals, which are connected to structures representing the operators that
were used in those situations. The system then selects one TRANSFORM goal to use as a
model according to the degree of match between the retrieved goals and the current goal.
Selection is also influenced by a factor that indicates how useful each goal has proven
in solving the current problem in the past. Finally, an operator that was used to solve
the previous problem is analogically transformed in an attempt to apply it to the current
problem. In this way, EUREKA makes an explicit distinction between the retrieval and
selection stages. In addition, the model differs from both the problem-space and case-
based approaches by retrieving a small set of partial cases, rather than a complete set of
productions or a single, full problem-solving episode.

Learning

All the problem solvers we have discussed in this chapter attempt to learn from experi-
ence in some way. The approaches taken vary greatly in terms of the number of learning
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mechanisms involved and :he types of learning behaviors that they exhibit. In all of
these approaches, past knowledge is used to influence the retrieval and/or the selection of
information used in making decisions. For example, the systems that rely on productions
to retrieve and select knowledge learn by forming new proposers, censors, and preferences.
SOAR, PRODIGY, and UPL learn new proposers when they solve a problem. UPL simply
follows the chain of states that were visited and creates a new proposer for each state. The
idea is that if a particular rule was successful in a state before, it should be proposed the
next time the system is in that state. These proposers are generalized to allow the rule to
apply in situations that have not been seen before but are very similar to the successful
problem. UPL forms censors when it is able to identify an action from a particular state
that led to failure.

SOAR uses a “chunking” approach to create new proposers and preferences. When the
system cannot make a clear decision given its current proposers, censors, and preferences, it
sets up a subgoal to treat the decision as a new problem. After working on this problem,
a clear result should be available. SOAR then creates a chunk describing its working-
memory state before the subgoal was created and after it was solved. This chunk is used
to create new rules of the form, “if the current situation is similar to the situation that
created this chunk, prefer the solution that was found this time.” This allows the system
to make a clear decision in similar situations in the future without resorting to search in
an alternative problem space.

PRODIGY uses an explanation-based approach to create retrieval and selection rules.
This system includes separate domain theories that are used to explain various types of
problem-solving episodes. For example, PRODIGY can use one set of rules to explain why
a given problem was solvable. This explanation results in a general proof, which is stored
in the form of proposers that suggest the use of the same operators in similar situations in
the future. PRODIGY also has the ability to form censors by explaining goal failures and
to form preference rules by explaining goal interactions when it detects them.

Case-based reasoners do not store special rules to retrieve and select long-term knowl-
edge in appropriate situations. Rather, since they reason from specific cases stored in
memory, they must retrieve the most appropriate case from memory to use as a model
when presented with a problem. The important issue here involves how cases are stored
and indexed in memory. Case-based reasoners usually index their cases by the concepts
mentioned in their goals and initial conditions. Usually, the goals are given precedence.
In DAYDREAMER, cases are also indexed by various emotional states that the system can
be in. Again, these systems do not have to concern themselves with making specific pieces
of procedural knowledge available at the appropriate times. Rather, they attempt to
store each specific problem that they encounter so that it will be retrieved at the most
appropriate time for future problems. The systems described here do not address the
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issues of adapting these indices when a retrieved case does not turn out to be useful in

solving a new problem.

PI and ACT™ rely on the tuning of productions rather than learning specific rules to
guide search. One type of production tuning involves adding, deleting, and generalizing
the conditions under which productions can apply. This is similar to the approach of
creating proposers and censors to retrieve and select productions. The difference is that
the conditions are built into copies of existing productions rather than being stored as a
separate rule set. A second type of tuning involves strengthening productions when they
prove useful in solving problems. This leads to a “natural selection” view of learning, in
which productions undergo mutations by discrimination and generalization, and then the
best ones (those that prove useful often) become the strongest and are selected more often
when appropriate in the future.!$

SCRAPS also modifies its behavior by creating new proposers and censors, but it does
not create them in response to past problem-solving behavior. In fact, Hendler (1986) does
not provide any examples of transfer from one problem-solving trial to another, although
it seems possible within his framework. Rather, new censors and proposers are created at
the beginning of a problem-solving episode when certain aspects of the environment are
brought to the attention of the system. For example, if SCRAPS is told to plan a suicide
and to notice that it has a gun available, it finds a connection within its semantic network
between suicide and gun and creates a proposer to prefer the use of a suicide plan that
involves a gun. In addition, if the system is told to satisfy two interacting goals that
involve buying a gun and taking a plane home, it will notice a connection involving the
danger of having a gun on an airplane. Thus, SCRAPS will create a censor to keep the
system from buying the gun before taking the plane ride. This type of learning is most
similar to the type that EUREKA exhibits involving external cues. SCRAPS forms rules
that influence the retrieval and selection of plans, based on aspects of the problem or cues

in the environment that are potentially useful or detrimental to problem solving.

As we discussed in chapter 4, EUREKA learns primarily by altering its patterns of
retrieval of information from long-term memory. The selection of information is also
influenced, but it plays a less important part, particularly in transfer across different
problems and domains. EUREKA learns by rewarding the retrieval of knowledge that
proves useful in solving a problem. This is similar to the creation of proposers to retrieve
information that has proven useful in the past, but it is implemented in the context of a
retrieval mechanism based on spreading activation, rather than a production system. The
use of spreading activation better suits the declarative representation of knowledge, and
complements the use of a partial-matching mechanism for selection.

16 This view is also adopted in Langley’s (1985) SAGE system.
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In chapter 5, we discussed one type of improvement that EUREKA exhibits under
the heading of intra-domain transfer. This type of transfer can also be viewed as the
learning of search-control knowledge. This type of learning has been the major focus of
learning problem solvers in Al, and usually results from directly applying knowledge of
past successes and failures to new problems without the type of inductive generalization
that is found in analogy. For example, this type of learning is exhibited by systems that
form search-control rules for retrieval and selection of information from long-term memory
(e.g., Laird et al., 1986b; Minton, 1988/1989; Ohlsson, 1987). These systems all learn
by using pieces of previously solved problems to eliminate search when those pieces are
encountered in new problems. This type of learning was originally exploited by systems
that use macro-operators (Fikes et al., 1972; Korf, 1985; Iba, 1985, 1989) and it seems to
provide a reasonable mechanism for transfer within a domain. SOAR and UPL also use
search-control learning to account for the gradual improvement of problem solvers with
practice on individual problems.!”

The other primary type of learning we have discussed has to do with the generalization
of knowledge. This type of learning can also manifest itself in the form of restricted
search, but the mechanisms and knowledge involved are quite different. When a system
has the ability to generalize its knowledge, it also has the ability to overgeneralize and
make mistakes. Systems with built-in generalization mechanisms (e.g., PI and ACT*)
have this ability. Other systems (e.g., SOAR and UPL) perform some generalization when
creating new search-control rules, but have not been extensively analyzed in terms of the
effects of generalization. Finally, systems like PRODIGY forego the ability to generalize
knowledge for the sake of deductive correctness. Because PRODIGY cannot generalize
its knowledge (its control rules can only be as general as its original operators were, it
cannot over-generalize and will not make errors of commission on new problems. This is
an advantage in that it allows the system to ignore certain types of failures that can occur
in systems that generalize. On the other hand, this approach also restricts the problems
that the system can potentially solve.

The use of analogy

One of the important contributions of the EUREKA model is that it provides an expla-
nation for the retrieval and use of analogies in problem solving.!® In the previous section,

17 SoAR exhibits this phenomenon with a restricted form of its general chunking mechanism, in which only
some of the possible chunks are created after a single trial (Newell & Rosenbloom, 1981). Otherwise, SOAR
(like PrRODIGY) will always solve a problem the same way after its first success, without exhibiting any
further improvement. :

13 In this section, we focus on the retrieval and use of analogies in the context of problem solving. However,
there is a wealth of literature in psychology and Al that addresses various other issues in analogical reasoning
(see Hall, 1989). In particular, Gentner (1983), Holyoak and Thagard (1988), and Falkenhainer (1989) have
described theories for elaborating analogies once they have been retrieved.
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we discussed a number of mechanisms that accounted for various types of learning. Much
of this learning appears in the form of search control. That is, the learning is exhibited
completely in terms of reducing search on new problems that share pieces with problems
that have been seen before. However, an important aspect of human problem solving, and
a useful mechanism for machine problem solving, involves the ability to generalize ones
knowledge broadly across domains when appropriate. This ability can also limit search
and suggest strategies for solving new problems.

The branch of research in problem solving that has best exploited the use of analogy
in problem solving is case-based reasoning. In one view, case-based reasoning is almost
synonymous with analogical reasoning. Individual cases describing entire problem-solving
episodes must be adapted to appropriate levels of generality to solve new problems.

The problems that arise in reasoning by analogy include deciding when to attempt
to use analogical reasoning rather than straightforward problem-solving, how to retrieve
potential analogies, and how to best apply those analogies. In Hammond’s CHEF and in
Carbonell’s framework for transformational analogy, the first problem is ignored. They
view all problem solving as the use of analogy to previous cases. This is similar to the
assumption made in EUREKA, but in this work it depends on the existence of full cases that
can be used individually and completely to solve new problems through transformation or
derivational replay. DAYDREAMER and derivational analogy use case-based or analogical
reasoning as their primary problem-solving strategy, but they have the ability to fall back
on production rules when they cannot find an appropriate case.

As discussed previously, retrieval of analogies in case-based reasoning involves following
indices from the current goal conditions and working-memory descriptions into long-term
memory. This leads to search through a portion of memory and partial matching between
the problem statements in order to choose an appropriate analogy. An important issue
here is that these systems usually rely on the use of a single case to solve a new problem.
This means that retrieval and analogical matching only takes place with respect to the
initial problem statement. If a problem initially appears to provide a good analogy, but
fails to be useful as problem solving continues, the problem solver runs into trouble. Again,
DAYDREAMER and derivational analogy fall back on problem-space search to complete the
new problem if this happens, while CHEF and transformational analogy rely on massive
transformations of the old case until it finally provides a solution to the new problem.

EUREKA also relies on indices into long-term memory to find old cases to use by
analogy. One difference is that these indices start a spreading-activation process to search
for appropriate analogies rather than providing direct links into a set of cases. A major
difference between EUREKA and the case-based approach is that EUREKA does not attempt
to force a single past case into a solution of a new problem. Rather, for each subproblem,
EUREKA looks for a case that is likely to help solve that individual piece. This means
that the system must repeat the retrieval-selection cycle for each subproblem, but it also




PAGE 80 RETRIEVAL IN PROBLEM SOLVING

allows the system to change analogies in mid-problem if necessary and to fall back on the
use of individual operators (stored as miniature cases) if no appropriate operators can be
found in the context of a larger problem-solving episode. EUREKA can therefore ignore
the decision of when to do straightforward problem solving and when to do analogical
reasoning, because they both arise from the same mechanism.

Other problem-solving systems have been less successful at modeling the use of analogy
in problem solving. In EUREKA, the use of analogy is a basic architectural assumption as
the primary reasoning process. In other systems, the use of analogy must be provided as a
distinct mechanism that includes decisions about when to switch into analogical-reasoning
mode and how to pick a case from memory to use as a model or source. Consider PI and
ACT?*, which have the ability to generalize individual operators. This could allow the
type of extreme generalization that occurs in analogy, but these systems usually make
generalizations conservatively, discouraging the formation of broadly general rules even
when they might be appropriate. Therefore, in order to reason analogically, productions
that carry out the analogical-reasoning process step by step in a problem-solving manner
must be added to long-term memory.

A similar situation occurs with SOAR. It could be provided with the ability to reason
by analogy, but it would not arise directly from chunking, its sole learning mechanism.
Rather, the system would need productions for detecting and deciding when it would
be appropriate to go into an “analogical-reasoning problem space”, picking appropriate
analogs, and creating the mapping. In this view, analogy is interpreted as a high-level
reasoning task rather than as an implicit architectural mechanism, as it is in EUREKA and
the case-based work.

Focus of attention

A final aspect of human problem solving, which almost all of the past research (including
EUREKA) has ignored, involves the ability to focus attention. Most systems are given a
single problem to work on at a time and have precise algorithms for determining which
pieces of the problem they should attend to and in what order. This excludes the possibility
of switching attention to different aspects of a problem, or switching from one problem
to a completely different problem when appropriate. Some systems have hinted at such a
capability. For example, SOAR and PRODIGY both have the potential for search-control
rules that determine which problem to work on next, but they have been mentioned merely
in passing, with no suggestions about how they might be used to make decisions.

The DAYDREAMER model is a notable exception to the lack of research in this area.
Mueller’s system attempts to model the processes of human daydreaming when it is not
busy trying to solve a problem it has been given. During daydreaming, the system decides
which problems and pieces of problems it is going to “dream” about, and is even able to
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set problems up for itself. In DAYDREAMER, focus of attention is primarily influenced by
the system’s current emotional state. For example, if the system fails to achieve a given
goal, it might change its emotional state to one of anger. This causes it to generate a
“revenge” goal and to attend to problems that cause this fanciful revenge situation to
come about. These plans are only “dreamed,” so they are not actually executed unless
the opportunity presents itself. The system also has the capability of noticing connections
to seemingly irrelevant environmental cues through a marker-passing algorithm similar to
that used by SCRAPS. Given some input cues, the algorithm returns a set of paths, which
are then analyzed to see if they can help to achieve certain goals. This provides the system
with the ability to account for some types of insight.

The ability to focus attention is particularly important in dealing with the ability
to react to one’s enironment. We have shown that external cues can alter EUREKA’s
behavior within a problem-solving episode, but cues could also serve to transfer the
system’s attention to different portions of a problem or to completely different problems
altogether, as in cases of cue-driven insight. We will discuss the possibility of such behavior

in EUREKA in the final chapter.




CHAPTER 7

Discussion and Future Research

The EUREKA model provides contributions to research on problem solving along a
number of distinct dimensions. In this final chapter we examine the model along each of
these dimensions, discussing the contributions this work has made and outlining directions
for future research.

Psychological evaluation

Our primary means of testing the EUREKA model was to see if it exhibits characteristics
similar to those found in human problem solving. We did this in an effort to show that
the system can account for a portion of human behavior and can exhibit some of the same
types of flexibility and creativity as humans.

The types of phenomena we have used in testing our model include the ability to improve
performance on individual problems with practice, the ability to transfer knowledge be-
tween problems within a domain, and the ability to generalize knowledge across domains,
as in the use of analogy. We have also demonstrated that the system may suffer from
Einstellung, a type of negative transfer that is exhibited by humans, and that its problem-
solving abilities are influenced by the existence of external cues in the environment.

The dependent measures we used to measure performance in many of these experiments
involved the time and effort the system required to solve the given problems. These were
measured in terms of the number of attempts the system needed to solve each problem,
the time it spent searching the problem space, and the amount of productive work the
system did by exploring new areas of the problem space. EUREKA combines a retrieval
mechanism based on spreading activation with a problem solver, with the latter including
an analogical-matching mechanism and a simple learning method that involves updating
link trace strengths in memory. Our experimental results show that this combination
can account for many of the types of learning that humans exhibit. Although there
has been other work in AI that accounts for some of these phenomena, they have each
typically addressed a smaller set of behaviors. In particular, none have smoothly integrated
analogical and inductive problem solving with more straightforward reasoning techniques.

In testing the system, we have relied on accounting for past data from psychological
experiments. However, we could further evaluate the theory by running psychological
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experiments to test the predictions it makes about human behavior. Success along these
lines would weaken the argument that EUREKA had been built to match a small specific set
of phenomena. Some of these experiments would attempt to account for the predictions
EUREKA makes about intra-domain generalization and the effects of goal interactions.
Other experiments would examine the ability to retrieve and use analogies, and the effects
of environmental cues on performance. We will discuss our ideas for the latter experiments
in more detail later in this chapter.

Problem solving

In addition to providing a theory of human problem solving, EUREKA can be viewed
and described strictly as a computational problem-solving system. Currently, the system’s
major purpose is to provide a psychological model and it is far from being a complete and
powerful problem solver. However, it does suggest a number of techniques and mechanisms
that should prove useful in computational problem solving.

First, EUREKA views problem solving as a task involving the retrieval of useful infor-
mation from memory. This is similar to the view provided in case-based reasoning. Under
this view, problem solving is less involved in examining productions or operators and
evaluating their utility for the current problem, and more concerned with retrieving past
experiences that will suggest useful approaches to apply to the current problem. However,
EUREKA borrows techniques from both paradigms without relying completely on either
one. In this way, the system exploits the benefits of case-based reasoning, while allowing
problem-space search to take place when necessary.

Another contribution of EUREKA is that it suggests a method for the efficient retrieval
of information from a large database. Many of the most powerful contemporary problem
solvers (e.g., SOAR and PRODIGY) rely on the ability to perform an exhaustive search of
memory, if necessary. This approach provides these systems with the ability to solve wide
ranges of problems of non-trivial complexity. However, these systems should suffer when
presented with problems involving large amounts of domain knowledge, or when provided
with general knowledge from large numbers of problem domains in which most of the
knowledge in memory is irrelevant to each particular problem. Minton (1988/1989) has
called one facet of this issue the “utility problem” for explanation-based learning.

EUREKA’s spreading-activation mechanism provides the ability to focus on small por-
tions of memory and provides a decision-making mechanism that does not slow down as the
size of memory increases. Thus, the system has no utility problem, but there is naturally
a tradeoff involved. Since EUREKA has an implicit limit on the amount of memory it
will examine, there will be cases when the system cannot solve a problem even though it
has the appropriate knowledge stored in memory. However, we predict that this type of
mechanism will have strong heuristic value, providing a solution most of the time.
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In addition, EUREKA has a single mechanism for making decisions about which course
of action to take next. Depending on the knowledge in memory and the current problem,
this mechanism manifests itself in seemingly different types of problem-solving behavior.
These include straight-forward operator application (or deductive reasoning), the ability
to generalize operators within a domain, and the ability to draw broad analogies across
domains (inductive reasoning). As suggested previously, this is a desirable characteristic
because the system does not have to make any high-level decisions about which type of
performance mode it should use on each problem. Rather, the most appropriate method
arises from the general mechanism, based on the system’s current knowledge base and the
demands of the current problem.

As we have suggested, EUREKA is somewhat weak as a computational problem solver,
but it contains a number of mechanisms that should be useful in the context of more
powerful problem solvers. In the future, we plan to extend EUREKA to take advantage
of this potential. For example, one important factor in EUREKA’s weakness is its lack of
higher-level control knowledge of the type found in UPL, SOAR, or PRODIGY. In addition,
we built in the assumption that the system could not backtrack for the sake of psychological
validity. However, we expect that supplying EUREKA with a limited backtracking ability,
along with the ability to learn higher-level control knowledge that operates on the retrieved
knowledge, will greatly increase the complexity of the problems that it can solve.

Analogy

EUREKA also provides a context for the retrieval and use of analogies in problem solving.
Although the use of analogy has received a large amount of attention (see Hall, 1989), it
has yet to be incorporated in a problem solver in an elegant and general way. In addition,
most research has focussed on how to elaborate analogies once they have been suggested,
(e.g., Carbonell, 1983, 1986; Falkenhainer, Forbus, & Genter, 1986; Holyoak & Thagard,
1988) and not on how to retrieve them in the first place. EUREKA retrieves analogies using
the same memory mechanism that it uses to retrieve other knowledge from memory. The
system also provides a mechanism for decision making in problem solving that includes
analogy as one activity in a continuum of possible problem-solving behaviors, allowing
analogies to arise naturally when they are useful. The system does not need to switch
from straightforward problem-solving mode into analogy mode, as has been the case in
other work on analogical problem solving (e.g., Anderson, 1983; Holland et al., 1986;
Mueller, 1987).

One extension of this ability would involve the use of alternative analogical-mapping
mechanisms. EUREKA’s matcher is a relatively simple one that generates a number of
partial matches and evaluates them. The evaluation function involves the degree of match
between two structures and the number of assumptions required to achieve the match.
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As we have mentioned, the elaboration of analogies is a well-studied problem, and we
might expect EUREKA’s performance to improve if equipped with a smarter analogical
transformation mechanism, such as the structure-mapping engine (Falkenhainer, 1989;
Falkenhainer et al., 1986). Since this component of the system is independent of the other
components, it should be easy to replace it with alternative mechanisms.

We have also mentioned our desire to test some of EUREKA’s predictions concerning
the use of analogy by humans. Specifically, our model predicts that the use of analogy
in solving problems will be facilitated by analogies involving uncommon concepts,' and
by analogies that have proved useful in the past. We hope to test these predictions by
studying human subjects and comparing their behavior with that produced by EUREKA.

Another area for future work concerns the development of the single matching mecha-
nism that manifests itself in terms of different types of problem solving. We believe that
using a general analogical method as the sole reasoning method can provide further benefits
in problem solving and other parts of Al For example, using this approach should be useful
in concept induction tasks, in which similar objects form natural classes. In addition, in
the areas of reasoning and explanation-based learning, a single analogical method should
be able to account for the three primary methods of reasoning: deduction, induction, and
abduction.?? We want to explore the benefits that can be realized by viewing various

forms of reasoning as special cases of analogy.

External cues and insight

A final area of interest involves EUREKA’s account of the impact of external cues. We
have demonstrated the effect cues can have on the retrieval and use of analogies. We also
believe that the effects of cues on the retrieval mechanism can provide an explanation for
episodes of scientific insight. In this account, cues cause the retrieval of information that
leads to the solution of a difficult problem. In fact, we have successfully modeled one type
of this behavior, which we call problem-driven insight, but other forms of insight remain
to be considered.

Elsewhere (Langley & Jones, 1988; Jones & Langley, 1988), we have proposed a theory
of scientific insight in terms of environmental cues,?! but we will provide a short description
of the theory here. First, we should note that there are two distinct types of phenomena
in which sudden flashes of insight appear to aid problem solving. The two phenomena

19 By “uncommon,” we do not mean concepts that are unfamiliar to the system. Rather, we mean concepts
that appear in relatively few problems, and therefore are directly connected to fewer other concepts in the
semantic network.

20 Tn fact, this type of approach has been suggested independently by Falkenhainer (1989).

21 Yaniv and Meyer (1987) have proposed a similar psychological model for the role of memory and cues in

episodes of insight.
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arise from very different types of processing, although the heart of each type of insight
can be explained in terms of a single retrieval mechanism.

A simple form of insight, which we call problem-driven insight, occurs when a problem
solver has difficulty solving a problem and cannot find a solution, but continues work
on the problem. Under these conditions, an insight may occur with the appearance of
an appropriate external cue that causes the retrieval of useful information. The external
cue behaves much as a hint does, causing the solver to retrieve some knowledge that was
previously inaccessible. In fact, this type of insight may be involved in Holyoak and Koh's
(1987) experiment, in which an external hint facilitates the retrieval of an appropriate
analogy. This suggests that EUREKA’s account of the role of hints in problem solving can
provide the basis for a model of problem-driven insight.

A more involved type of insight, cue-driven insight, is insight in the classic sense as
described by Wallas (1931). In these cases, insight is a four-stage process. The first stage
involves preparation, or the careful study of a problem and repeated attempts to solve
it. The second stage, incubation, begins when the problem solver becoi’rfés frustrated at
being unable to solve the problem and ceases work on it altogether. After a period of
time (anywhere from a few seconds to a few years), an illumination occurs, in which the
problem solver realizes in a flash that he can solve the problem a certain way. The final
stage, verification, involves working out the details of the insight and finishing the solution
of the problem.

In this type of insight, illumination occurs only after the problem solver has given up
work on the difficult problem. Again, our theory states that this insight occurs when some
environmental cue causes the solver to retrieve information that can be used to solve the
problem. The retrieved information may be directly relevant knowledge that was just not
remembered during the problem-solving activity, or it may be information that can be
used by analogy to help solve the problem.

However, in cue-driven insight, the problem solver is not currently paying attention
to the problem when illumination occurs. This cannot be explained simply in terms of
the retrieval of useful information, because the information is only useful in the context
of a problem that is no longer at the focus of attention. Therefore, any cue that causes
insight in this case must also cause the problem solver to refocus attention on the unsolved
problem. We hypothesize that either the original cue or the retrieved information reminds
the solver of the unsolved problem. This causes the solver to begin work on the problem
again with the new information at hand. We would like the EUREKA model to eventually
account for this type of insight as well, but to do this we must explain how focus of
attention switches back to the original problem

We feel that a problem solver’s focus of attention can be explained in terms of memory
and retrieval. At this point, attention is focussed on those concepts that are most active in
memory, but choosing an explicit focus merely involves adding another decision point to
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the model. Naturally, we believe that the memory and retrieval mechanisms for attention
will be similar to those involved in standard problem solving. The problem that remains
is to implement a principled decision procedure that determines the focus according to the
activation of memory elements. This is a major step in our effort to construct a general
model of problem solving that includes distraction, attention, and both types of insight.

A full model of insight will provide a number of predictions about this phenomenon in
humans. For example, the EUREKA model predicts that the incubation period does not
actually influence an episode of insight unless some external event during that time alters
retrieval patterns in memory. This can be manifested by external cues or by learning that
is not obviously relevant to the current problem. Both of these hypotheses can be tested
on humans to see if they manifest themselves in the manner that EUREKA predicts.

Concluding remarks

Our experiences in constructing and evaluating the EUREKA model have been encour-
aging. We have found that we can explain a number of human learning behaviors by
incorporating a theory of memory with a problem solver based on means-ends analysis. In
addition, EUREKA provides a number of predictions about human behavior that have yet
to be tested. Finally, the model addresses a number of issues in computational problem
solving and suggests methods for improving systems in that area. These issues include
providing a mechanism for the retrieval of information from long-term memory and using
analogy as a general reasoning framework. Our research has also opened a number of
interesting new questions. By examining these questions, we feel that EUREKA can even-
tually provide the basis for a complete theory of human problem solving, as well as an
architecture for computational problem solving. '
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