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Urban ecosystems are defined by unique relationships between biological 

diversity and distribution, socio-demographics, and climate. These relationships occur in 

the context of a changing world: increasing temperatures, a shifting composition of urban 

residents, and rapid urbanization. It is likely that the relationships which structure the 

urban environment, such as that between temperature and income, or race-based exposure 

to heat and greenness, are not temporally stable. As urban temperatures and greenness 

have well known associations with morbidity, mortality, and mental health, non-

stationarity of urban ecological relationships may pose significant challenges to the well-

being of urban residents. I tested assumptions about non-stationarity by assessing the 

change through time of urban ecological relationships at three distinct spatial scales: the 

urban (single city) scale (chapter 1), at a continental scale (chapter 2), and at a global 

scale (chapter 3). At each spatial scale I used a multidecadal time series of satellite 

imagery, coupled with landcover and socio-demographic information, to assess how the 
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University of California, Riverside, March 2024
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dynamics of urban greenness, temperature, and vegetative cooling evolved through time 

and what factors mediated any change. In chapter 1, where I used Los Angeles, CA as a 

case study, I found large intra-urban variability in how greenness, temperature, and 

vegetative cooling changed over time. The consequence of these changes was a 

weakening of the effectiveness of income as a mediator of urban greenness and 

temperature (the luxury effect). I corroborated the multidecadal decline in the luxury 

effect in chapter 2, a continental-scale assessment where I looked at 52 cities from the 

conterminous United States. In this chapter I additionally compared the biophysical 

dynamics in every city with a nearby non-urban reference site. Urbanization weakened 

the relationship between the weather and landcover and the biophysical environment, 

where the most arid cities were entirely decoupled from precipitation. In chapter 3, I 

looked at a subset of 266 global cities from 82 countries, finding that the evolving 

relationship between greenness and temperature led to declines in the cooling 

effectiveness of urban vegetation. Overall, this dissertation highlights the non-stationarity 

of urban dynamics, as well as the importance of climatic context in understanding these 

urban relationships. 
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Introduction 

 

Urban ecosystems are characterized by novel relationships, particularly those 

between the urban socio-demographic and biophysical environments. Urban ecosystems 

are socio-ecological systems (SES) in which the social and biophysical urban systems are 

deeply integrated and interdependent (Frank 2017). The consequence of these novel 

relationships is that, compared to their non-urban counterparts, cities are typically hotter 

(Bartesaghi-Koc et al. 2020), have greater soil and air pollution (Baldauf and Nowak 

2014), and may have conditions difficult for plants, leading to quicker tree mortality 

(Smith et al. 2019). However, factors such as irrigation may aid plant growth, minimizing 

losses in greenness from urbanization (Jia et al. 2018). As well, the built environment, 

whether designed by monetary constraints (Schwarz et al. 2015) or cultural preference 

(Clarke et al. 2014), also dictates what plants may grow and where. Despite the role of 

income or race on urban plants, the most species rich cities are those with higher 

minimum temperatures (Jenerette et al. 2016). As such, the distribution of plant cover and 

heat within cities is heavily informed by sociodemographics and the climate, leading to 

inequitable exposure for residents to urban heat and low plant cover. Understanding the 

nature of social-biophysical interactions within cities is crucial to informing the well-

being of urban residents. 

 Research has shown that how green and how hot cities are directly affects 

morbidity, mortality, and mental well-being. In hot cities, all-cause mortality increases 

exponentially for females above 41.7 °C and for males above 38.9 °C (Harlan et al. 

2014). Likewise, women living in neighborhoods with the highest greenness had 12% 
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lower all-cause mortality than those living in neighborhoods with the lowest greenness 

(James et al. 2016). Therefore, the urban biophysical environment can effectively 

mitigate some of the negative health consequences of urban living. For example, urban 

parks can be up to 3.8 °C cooler than their surrounding environment (Ren et al. 2013), 

where the cooling effect from parks can extend on average up to 179 meters into the city 

(Gao et al. 2023). Urban plants themselves can provide substantial urban cooling via both 

shade and from evaporative cooling via evapotranspiration (Konarska et al. 2016) in a 

phenomenon known as vegetative cooling. Trees can cool their local environment more 

than 10 °C (Pace et al. 2021, Wang et al. 2023), with plant cooling predominately driven 

by shading (Koyama et al. 2015, Tan et al. 2018). Yet, despite the many benefits received 

by people from urban plants, the distribution of these plants, and the delivery of their 

benefits, is inequitable. 

The benefits that come from more greenness and cooler temperatures are 

inequitably distributed within and among cities. One of the most important determinants 

of urban tree canopy cover is income, where higher income neighborhoods consistently 

have greater tree canopy cover (Schwarz et al. 2015). Income is one the most important 

determinants of urban temperature and greenness. The luxury effect, first proposed by 

Hope et al. (2003), finds that the wealthiest regions of cities are also those with the lowest 

temperatures and greatest plant cover. The proximate reason for this is that wealthy 

neighborhoods have the financial resources to maintain and irrigate a higher quantity of 

plants. A luxury effect has been identified for many other urban biophysical metrics 

(Grove et al. 2014, Leong et al. 2018), and in cities around the world (Threlfall et al. 
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2022). Yet, despite the paramount importance of income in structuring the urban 

biophysical environment, it is not the only sociodemographic variable to do so. 

Temperature and greenness, at least in the United States, are race dependent, exhibiting 

spatial variability independent of income (Casey et al. 2017, Benz and Burney 2021, Hsu 

et al. 2021). Minority neighborhoods are less green and are hotter than their white 

counterparts, posing challenges for environmental equity as the benefits accruing from 

urban plant cover and lower temperatures are racially segregated. In urban SES, income 

and race lead to inequitable distributions of temperature and greenness within and among 

cities, however, non-sociodemographic drivers also influence the distribution of urban 

greenness and temperature. 

 Urban ecosystems, particularly those in arid environments and with adequate 

financial resources, may be characterized by extensive irrigation. The Los Angeles urban 

forest, perhaps the most diverse in the United States, contains over 100 and possibly more 

than 200 tree species (Gillespie et al. 2016, Jenerette et al. 2016), almost all of which are 

non-native and supported by irrigation. Irrigation may decouple urban greenness and 

temperature from precipitation, as has been observed in very arid cities (Buyantuyev and 

Wu 2012). Yet, precipitation, as an additional source of water, may supplement the water 

demands of urban trees even in irrigated landscapes (Bijoor et al. 2012), leading to 

uncertainties about the relationship between precipitation and urban greenness and 

temperature. At a global scale, low and lower-middle-income countries (LMIC) may not 

have the irrigation infrastructure to support a diverse urban forest in arid environments, 

leading to fundamentally different relationships between precipitation and urban 
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greenness and temperature than has been observed in North America or Europe. 

Relationships with precipitation may lead to substantial spatial variability in greenness 

and temperature in response to water availability. 

 Dynamics between greenness, temperature, and vegetative cooling are spatially 

dependent; race and income modify temperature and greenness at intra-urban scales, 

while gradients of aridity modify the urban biophysical environment at inter-urban scales. 

At a global scale, the spatial variability of urban biophysical characteristics may be 

dependent on a confluence of factors, particularly, the relationship between income and a 

city’s climatic context. While it is likely that the urban biophysical dynamics in LMIC 

nations will be different from those found in the Global North, a paucity of urban 

ecological research from the Global South (du Toit et al. 2021) highlights important 

knowledge gaps in how urban ecological dynamics are structured more broadly. Yet, 

spatial heterogeneity in urban greenness and temperature in response to race, income, or 

the climate, suggests that greenness and temperature will change through time in 

response to changes in their spatial predictors. Despite the utility of understanding where 

the dynamics of urban ecosystems has changed through time, assessment of urban 

dynamics are often done at a single time point (Jenerette et al. 2006), or over a few years 

(Allen et al. 2021), leading to large uncertainties over how urban dynamics change across 

many cities at multidecadal scales. 

 Understanding how the dynamics of urban ecosystems are spatially determined 

and change through time can help further the field of urban ecology towards a science 

“of” cities (McPhearson et al. 2016, Pickett et al. 2017), particularly when multiple urban 
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ecosystems are compared. Comparative analysis of cities versus non-urban reference 

ecosystems can provide valuable insight in providing a baseline for the effect of 

urbanization (Kühn and Klotz 2006, Malkinson et al. 2018, Ruas et al. 2022), however, 

large unknowns in this comparison remain. Is the effect of urbanization context-specific, 

or is it driven by macro-scale processes? How do social systems interact with the effect 

of urbanization? Further, while there have been important multi-city ecological analyses, 

much urban ecological research has focused on single cities or small subsets of cities. 

Assessing the dynamics of urban ecosystems through the lens of macroecology by 

looking at urban dynamics over large spatial and temporal scales (Gaston 2004) can 

allow greater insight into the causes of urbanization and the determinants of the dynamics 

between social and biophysical systems in an urban SES (Kendal et al. 2018). Many 

ecological processes are known to be scale dependent (Schneider 2001, Chave 2013, 

Allen et al. 2014, Stein et al. 2014), and it is likely that processes guiding urban dynamics 

are similarly scale dependent, requiring a multi-scalar approach to better understand 

variability in urban ecosystem dynamics. Despite the potential value of urban 

macroecology, particularly in its ability to extend urban ecological theory on urban 

ecosystems as such, few studies have adopted this approach, and large uncertainties 

remain as to the relationship between urban ecosystems and the climate. 

 The goal of this dissertation is to better understand the dynamics of urban 

greenness, temperature, and vegetative cooling and their change through time, to better 

understand the factors influencing the effect of urbanization, and to assess how changing 

urban dynamics may lead to differences in environmental equity. To answer this goal, I 
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used satellite remote sensing, coupled with census, landcover, and climate data, at three 

distinct spatial scales: the single city (chapter 1), at a continental scale (chapter 2), and at 

a global scale assessing a subset of over 250 cities (chapter 3). This dissertation answers 

my primary goal by asking three similar questions related to urban dynamics. For chapter 

1, where I used the Los Angeles urban region as a case study, I ask: How have urban 

surface temperatures and the distribution of vegetation changed over 1985-2021 in the 

greater Los Angeles region? In chapter 2, where I looked at urban dynamics at a 

multidecadal scale for 52 cities in the conterminous United States, I ask: How has 

urbanization affected urban greenness, land surface temperature, and vegetative cooling 

dynamics among cities throughout the United States and how do these differences affect 

urban equity in greenness and climate? Finally, in chapter 3, where I assessed changing 

urban dynamics in 266 cities from 82 countries across a 28-year timeseries, I ask: How 

does urban greenness, temperature, and vegetative cooling differ among cities at the 

global scale, and how have these variables changed over time?
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Chapter 1 

 

Urban greenness and its cooling effects are influenced by changes in drought, 

physiography, and socio-demographics in Los Angeles, CA 

Abstract 

 

The multidecadal change in urban microclimate and greenness, particularly in 

response to drought and a warming climate, has implications for urban residents’ well-

being. Urban greenness, temperature, and vegetative cooling vary spatially. However, the 

dynamics of the relationships among these variables and their influencing factors are 

poorly characterized. Using the Los Angeles Urban Region, USA as a case study we 

evaluate the dynamics among urban vegetation and climate through an evaluation of 

satellite-based observations between 1985 and 2021. We hypothesize that microclimate 

changes are driven by water demand and aridity, with increasing aridity enhancing 

transpiration and vegetation-cooling, but that irrigation variation, assessed through proxy 

demographic variables of income modify water availability. Our results show that the 

L.A. region warmed by 0.13 °C/year, NDVI increased annually by 4.81 x 10-4, and 

vegetative cooling increased by 0.08 °C/NDVI/year. A consequence of these dynamics 

was that the luxury effect of income as a mediator of NDVI and LST declined 41% and 

28%, respectively, between 1990 and 2020. The changes in urban microclimates over 

time and from drought are affected by social and physiographic variables associated with 

water availability and water demand and are increasingly leading to less racially equitable 

neighborhood distributions of heat. 
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Introduction 

 

In arid and semi-arid cities, neighborhood temperature and vegetation 

distributions are generally coupled spatially, but these variables' dynamics are not well 

understood (Qi et al. 2022, Cheng et al. 2023). Urban environmental dynamics may 

reflect both responses to global climate changes (Varquez and Kanda 2018) as well as 

more local land management actions, notably tree planting and irrigation (Jin et al. 2019). 

Both climate changes and management decisions may interact in their effects on 

neighborhood greenness and temperature (Yuan and Bauer 2007, Jenerette et al. 2011, 

Ziter et al. 2019). The dynamics of urban environments lead to altered availability of both 

greenspace and heat risks. Further, variability in the effects of global and regional 

changes to urban microclimate conditions may be moderated by the built environment, 

physiography, and demographic distributions which may cause additional spatially 

varying trajectories of urban environments (Oke and Stewart 2012, Coseo and Larsen 

2014) and likely will have consequences for societal equity. Thus, while urban 

neighborhood greenness and temperatures are likely changing, the magnitude, drivers, 

and impacts of urban variation in these changes are not well resolved. 

 Hydrologic changes in urban environments are directly tied to urban greenness 

and temperature dynamics (Qiu et al. 2013, Konarska et al. 2016, Litvak et al. 2017). 

Transpiration, dependent on both water availability and atmospheric demand, is a major 

component of neighborhood cooling by vegetation (Chen et al. 2019, Winbourne et al. 

2020, Zhao et al. 2020). During drought, urban vegetative cooling may exhibit distinct 

shifts due to changes in the spatial availability of water and atmospheric evaporative 
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demand. This is particularly true in many arid and semi-arid cities where irrigation plays 

a pivotal role in the availability of water for the urban ecosystem (McCarthy and Pataki 

2010, Pataki et al. 2011b, Liang et al. 2017). Irrigation modifies local temperatures, 

evaporative demand, and plant transpiration via an increase in water availability 

(Vahmani and Hogue 2015, Gao et al. 2020) and humidity (Broadbent et al. 2018, Mishra 

et al. 2020), potentially decoupling greenness and temperature dynamics from 

precipitation (Jenerette et al. 2013, Winbourne et al. 2020, Ibsen et al. 2023). Further, 

drought often co-occurs with hotter temperatures and higher vapor pressure deficit (VPD; 

(Grossiord et al. 2020), suggesting the variables that increase temperature or aridity may 

increase vegetative cooling during drought via increased evaporative demand. Although 

observations for individual droughts have noted the failure of urban irrigation to prevent 

greenness declines and temperature increases (Quesnel et al. 2019, Miller et al. 2020, 

Allen et al. 2021), these studies offer only a snapshot of an evolving temporal 

relationship between aridity, irrigation, and urban greenness-temperature dynamics. The 

urban water deficit hypothesis poses uncertainty about how urban ecosystems react to 

sustained aridity over time. While understanding the long-term impacts of urban aridity is 

outside the scope of individual drought analyses, the dynamics of greenness and 

temperature in response to aridity have not been assessed at a multidecadal scale. 

Physiographic factors may also moderate the drivers in neighborhood greenness 

and temperature dynamics. Coastal regions are cooler and have a lower VPD than inland 

regions (representing a coast-to-inland maritime gradient), elevation is associated with 

decreased temperatures and VPD (Li et al. 2021), and impervious cover increases 
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sensible heat flux, increasing VPD (Zipper et al. 2017). However, VPD may not be the 

proximate driver of transpiration: VPD drives transpiration in water-limited sites, but 

solar radiation drives transpiration in energy-limited sites (Whitley et al. 2013). 

Therefore, the coastal marine layer, in decreasing photosynthetically active radiation 

(PAR), and impervious cover, in increasing temperature, may also have a role in 

mediating the relationship between vegetative cooling, plant greenness, and temperature. 

Beyond these physiographic factors, socioeconomic distributions may further modify the 

dynamics between urban greenness and temperature. 

Social variables influence urban temperatures (Huang et al. 2011), water 

availability (Corral-Verdugo et al. 2003), and greenness (Schwarz et al. 2015). The 

luxury effect describes how wealthy regions of a city have greater greenness and are 

cooler than less affluent regions (Harlan et al. 2006, Leong et al. 2018, Wetherley et al. 

2018, Barrera et al. 2019, Shih 2022). These demographic drivers may similarly influence 

the dynamics of neighborhood vegetation and temperature although how these effects 

occur is uncertain. While affluent neighborhoods might consume more water post-

drought (Balling et al. 2008, House-Peters et al. 2010), strengthening the luxury effect, 

water restrictions could cause these areas to reduce irrigation, potentially weakening the 

effect. Through time greenness may have increased in response to municipal tree planting 

campaigns (Eisenman et al. 2021) such as MillionTreesNYC (McPhearson et al. 2010) 

and the Greening the Gateway Cities Program in Massachusetts (Breger et al. 2019). 

However, tree planting campaigns have been observed to increase tree cover in high tree-

cover regions, perpetuating racial tree cover disparities (Krafft and Fryd 2016, Garrison 
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2017, 2018) and increasing the luxury effect. These patterns associated with wealth and 

demographics intersect with the luxury effect, emphasizing the importance of 

understanding how it may change through time. 

The luxury effect itself may vary over time, potentially hindering individuals' 

ability to manage the urban heat and greenscape (Zhou et al. 2011). This instability may 

be compounded by race-specific characteristics that introduce additional complexity to 

the luxury effect's dynamics (Watkins and Gerrish 2018, Venter et al. 2020). For 

instance, even after controlling for income, racial minorities have been found to 

experience higher temperatures compared to their non-Hispanic White counterparts 

(Hoffman et al. 2020, Benz and Burney 2021). Furthermore, while affluence tends to 

promote increased greenness in predominantly White neighborhoods, Black and Asian 

neighborhoods demonstrate a different pattern, with low-income communities showing a 

greater likelihood of increased greenness (Huang et al. 2011). Increased affluence among 

minority communities can sometimes lead to a decrease in greenness, contradicting the 

trend observed in White neighborhoods and suggesting race-specific differences in how 

urban residents manage greenness (Casey et al. 2017). To better reflect the influence of 

race on mediating urban greenness and temperature (Jesdale et al. 2013, Locke and Grove 

2014), the non-stationarity of race-dependent relationships should be assessed.  The 

impact of race on greenness and temperature can vary over time and by race, potentially 

magnifying disparities in well-being (Clarke et al. 2014). This dynamic, race-mediated 

influence of income on greenness and temperature, may exacerbate disparities in well-
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being across neighborhoods with predominantly different racial demographics (Morello-

Frosch et al. 2011).  

To address the uncertainties in the spatial and temporal distributions of urban 

greenness and temperature we evaluated their dynamics over 37 years throughout the 

semi-arid, irrigated Greater Los Angeles, USA urban region (LAUR). Using LAUR as a 

case study we ask: How have urban surface temperatures and the distribution of 

vegetation changed over 1985-2021 in the greater Los Angeles region? We answered our 

research question by evaluating the magnitude and possible drivers of changes in 

neighborhood greenness, temperature, and the effect of vegetation on temperatures 

throughout the LAUR between 1985 and 2021. We tested the prediction that urban 

greenness and temperature increased over time due to tree planting campaigns and 

climate change, respectively, and that vegetative cooling has increased due to global 

increases in temperature and aridity. We evaluated an urban water deficit hypothesis to 

identify whether long-term changes in greenness and temperature are associated with the 

relative distribution of water availability. We tested the prediction that greenness 

declines, temperature increases, and vegetative cooling increases with increasing drought. 

We also tested the prediction of large neighborhood variation in the dynamics of 

greenness and temperature and that this neighborhood variation would be related to both 

physiographic and income differences among neighborhoods. As an outcome of the 

dynamics in neighborhood greenness and temperature, we evaluated the dynamics of 

their social equity throughout the region to assess the changing availability of greenness 

and heat throughout the region. By quantifying the change in urban greenness, 



17 

 

temperatures, and vegetative cooling over a multidecadal timescale we describe how 

physiographic and social variables modify urban vegetation dynamics in a model city. 

 

Methods 

2.1 Study Area 

All data were averaged to the census tract before analysis, other than the 

Standardized Precipitation Evapotranspiration Index, which has one data point per month 

for the study area.  The census tract was chosen as the scale of analysis consistent with 

census-provided data and is sufficiently large to provide robust demographic data (Wong 

and Sun 2013). Over the temporal span of this study, the study area had a mean NDVI of 

0.25, a mean LST of 35 °C, and an average of 34.8 cm rain year-1. LAUR has unique 

characteristics making it a useful model city for this study. The LAUR is one of two 

megacities in the United States, located on the southwestern coast with a Mediterranean 

climate (Köppen Csa and Csb). Within the LAUR neighborhood per capita median 

income varies from $9,000 to over $250,000 per year, while racial diversity is one of the 

greatest in the nation. LAUR’s socio-economic diversity contributes to inequities in the 

distribution of heat and urban greenness (Schwarz et al. 2015, Tayyebi and Jenerette 

2016, Yin et al. 2023). To partially rectify this, Los Angeles planted 69,776 trees between 

2007 and 2014 as part of the Million Trees L.A. initiative, focusing new plantings in 

regions with non-white residents (Garrison 2018). As almost all of LAUR’s urban trees 

are non-native (Gillespie et al. 2016, Jenerette et al. 2016), they require extensive 

management. Further, the region’s physiography is unique for large cities in the United 
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States, where temperature and aridity increase along a maritime climate gradient from the 

coast to the San Gabriel Mountains ~48 km inland.  LAUR also experiences frequent 

drought both annually (due to the Mediterranean semi-arid weather) and inter-annually. 

Regionally, patterns of urban greenness are closely associated with rates of evaporation, 

highlighting the importance of irrigation in a region where summertime rainfall accounts 

for only 13% of evapotranspiration (Pataki et al. 2011a, Bijoor et al. 2012, Liang et al. 

2017). Urban trees in the LAUR can use a large amount of water for transpiration (Pataki 

et al. 2011a), which may make LAUR’s urban forest susceptible to drought as trees in the 

LAUR, particularly those that are shallowly rooted, may supplement their water needs 

with rainfall (Bijoor et al. 2012). During the 2012-2016 California megadrought, urban 

green cover mediated drought-induced heat waves via vegetative cooling, albeit reduced 

from pre-drought levels (Allen et al. 2021). 

Our study area covers 3,474 km2 of urbanized land cover in the Greater Los 

Angeles, California urban region (LAUR [Fig. 1]). Most of the area is within Los 

Angeles County, however, about a quarter of the urban extent is within Orange and San 

Bernardino Counties. We defined the extent of the study region by 2010 census tract 

boundaries that overlay non-mountain populated areas of the greater Los Angeles region. 

Census tracts in the mountains (e.g., Santa Monica, San Gabriel) or that otherwise 

contained less than ~50% urbanized land cover were removed, as were tracts with no or 

very little population (such as around the airport or industrial centers). We used all 

populated, non-mountain census tracts within the boundaries of the Landsat tile centered 

over Los Angeles, yielding 2,794 tracts. In 1990, the first year of census data utilized, the 
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LAUR had a population of 10,880,125 and an average density of 4,150 people km-2. By 

the end of the time series at the 2020 census the LAUR’s population had increased 15% 

percent to 12,498,697 whereas density increased 23% percent to 5,098 people km-2. 

2.2 Changes in Urban Greenness and Land Surface Temperature 

We assessed the distribution of vegetated cover and land surface temperature 

using the Landsat 4, 5, 7, and 8 satellites collected from all months from 1985 through 

the end of 2021. The Landsat satellites pass over the LAUR in the morning between 

approximately 16:00 and 18:00 GMT (8:00-10:00 PST). The individual Landsat satellites 

have a 16-day return interval, however, subsequent satellites (e.g., Landsat 7 vs. Landsat 

8) are in an eight-day offset orbit, providing greater temporal fidelity. Landsat is provided 

at 30 m2 resolution as captured natively (visible bands) or via resampling (thermal 

bands). Landsat has the longest publicly-available satellite record of Earth observation 

(Loveland and Dwyer 2012) and has been used for urban research for decades, including 

to estimate urban vegetative cover, microclimate, and their relationships (Buyantuyev et 

al. 2007). We relied on the Collection-2 Analysis Ready Data (ARD) product, provided 

by the United States Geological Survey (USGS) and accessed from Earth Explorer 

(Dwyer et al. 2018). The ARD product is atmospherically corrected and radiometrically 

calibrated by the USGS using a standardized approach to make the data from the different 

Landsat satellites directly comparable to one another, facilitating comparative analyses 

(Banskota et al. 2014, Zhu 2019) and making it suitable for time series analysis (Zhu 

2019).  
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All data were pre-processed in MATLAB r2021b and ArcGIS Pro 2.9. To ensure 

the highest quality data we only downloaded Landsat tiles that contained less than 10% 

cloud cover. Further, we did not use Landsat 7 after May 31st, 2003, following the failure 

of the satellite’s scan line corrector. The subsequent striping of Landsat 7 imagery, 

coupled with cloud masking, yielded a limited number of usable pixels and produced 

unreliable results. Therefore, we have no data from December 2011 - March 2013, 

representing the gap between Landsat 5 and Landsat 8. All non-clear pixels (clouds, 

water, aerosols, etc.) were masked in MATLAB to take advantage of parallel processing. 

Images that were not usable following cloud masking (e.g., contained too few pixels) 

were manually discarded following visual inspection yielding a final stack of 215 images. 

The masked TIFF files were then imported to ArcGIS Pro where they were clipped to the 

study extent (Fig. 1). The data were then averaged at the census tract scale using 1990, 

2000, 2010, and 2020 census tract boundaries. The TIFF imagery was finally re-uploaded 

to MATLAB where the data were averaged to the monthly scale, generating a data 

product consistent with the monthly scale of the weather and drought datasets. 

From the Collection-2 ARD dataset, we derived the Normalized Difference 

Vegetation Index (NDVI), a commonly used proxy for vegetation cover (Carlson and 

Ripley 1997) or biomass (Borowik et al. 2013). NDVI, which ranges from -1 to +1, takes 

advantage of chlorophyll’s reflectivity in the near-infrared but absorption in the red 

portion of the electromagnetic spectrum, where values closer to +1 indicate greater 

vegetated cover and values less than zero are unvegetated (Pettorelli et al. 2011, Esau et 

al. 2016, Huang et al. 2020). For the LAUR we found that pixels with a Landsat NDVI of 
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0.1 have 1% green cover. We derived this value by randomly selecting images from 

across the time series, randomly identifying individual pixels within those images, and 

then demarcating the vegetated area of those pixels using the sub-meter World Imagery 

from ArcGIS. To remove unvegetated pixels we excluded all pixels with an NDVI<0.1 

before analysis, consistent with previous studies using locally assessed thresholds (Esau 

et al. 2016, Liu et al. 2018). Few pixels transitioned between the 0.1 threshold over the 

time series: between the start and end of the time series the number of “vegetated” pixels 

with an NDVI>0.1 increased by 1.52%. The LST dataset was not similarly modified. 

To assess the change in land surface temperature we used the Surface 

Temperature product from the Collection-2 ARD dataset. ARD LST is derived using the 

single-channel algorithm based on the thermal band while accounting for both 

atmospheric effects and surface emissivity, although Landsat 8-9 utilizes the LaSRC 

algorithm (USGS 2021b) whereas Landsat 4-7 utilize the LEDAPS algorithm (USGS 

2021a). These algorithms use the radiative transfer equation, incorporating emissivity 

corrections based on NDVI values to account for the distinct emissivity of vegetation 

compared to other surfaces. USGS processes the ARD LST by applying atmospheric 

compensation to the thermal bands, which adjusts for the effects of water vapor and other 

atmospheric gases, ensuring accurate ground temperature readings. The resolution of 

surface temperature varies by satellite: Landsat 4-5 are at 120 m2, Landsat 7 is at 60 m2, 

and Landsat 8 is at 100 m2, however, all data were resampled by USGS to 30 m2. The 

thermal images are collected at the same time as the visible bands that go into the 

derivation of NDVI, making the stack of LST and NDVI images the same size. The ARD 
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Surface Temperature product, provided in Kelvin, is similarly comparable between 

satellites in the Landsat series (Cook et al. 2014); the standardization of the LST ARD 

processing makes it appropriate for time series analysis. 

2.3 Changes in LST-NDVI 

Using our 215-image dataset allowed us to quantify variability in LST-NDVI. 

Vegetative cooling, defined as the slope of the LST-NDVI relationship, is used as a proxy 

for drought in non-urban landscapes in indices such as the Vegetation Temperature 

Condition Index (VTCI; (Wan et al. 2004), the Vegetation Supply Water Index (VSWI; 

(Cunha et al. 2015), and the modified Temperature Vegetation Drought Index (mTVDI; 

(Zhao et al. 2017). To determine the temporal change in the cooling provided by urban 

plants we linearly regressed average monthly NDVI against average monthly LST, where 

the slope represents the cooling provided by plants in °C/NDVI and the intercept 

represents the bare-soil surface temperature. We evaluated this regression for each date in 

the time series to create a new array showing the change in LST-NDVI through time. 

2.4 Weather Datasets and the Standardized Precipitation Evapotranspiration 

Index (SPEI) 

 We used weather data from TerraClimate, a ~4 km2 global multidecadal weather 

dataset (Abatzoglou et al. 2018). From TerraClimate we acquired actual 

evapotranspiration, climate water deficit, potential evapotranspiration, precipitation 

accumulation, solar radiation, minimum temperature, maximum temperature, vapor 

pressure, and vapor pressure deficit. We accessed TerraClimate 
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(IDAHO_EPSCOR/TERRACLIMATE) using Google Earth Engine (GEE), a cloud-

based petabyte-scale GIS (Gorelick et al. 2017). We downloaded weather data from GEE 

for the LAUR from 1984 through the end of the time series, allowing us to derive new 

variables of 1-12 months of cumulative precipitation for each month. As with the Landsat 

imagery, we averaged the TerraClimate data in ArcGIS Pro to our 2010 census tract 

boundaries before uploading the averaged data to MATLAB for analysis. In addition to 

TerraClimate, the climatic water balance was an important variable in our study. 

We quantified drought using the Standardized Precipitation Evapotranspiration 

Index (SPEI), as provided by SPEIbase v2.7 (Vicente-Serrano et al. 2010). The SPEI, 

initially proposed by Vicente-Serrano et al. (2010), considers both precipitation and 

temperature-derived potential evapotranspiration, making it notably sensitive to climatic 

changes. This approach provides a series where negative values signify drought 

conditions and positive ones indicate wetter-than-average periods. The SPEI is 

commonly used in ecological research as a measure of drought, overcoming limitations 

of the similarly derived standardized precipitation index in its inclusion of both 

temperature and potential evapotranspiration (Vicente-Serrano et al. 2010). SPEI values 

further from zero indicate increasingly wet (positive) or dry (negative) periods relative to 

the long-term average. A unique feature of the SPEI relative to other drought indices is 

that data are aggregated at monthly scales. For instance, a 3-month SPEI of 0.64 for June 

indicates that the June of interest is 0.64 standard deviations wetter than the average of all 

April-June periods in the time series used to generate the SPEI. At intra-annual scales, 

monthly aggregations help to overcome the effect of seasonality in rainfall. Inter-annual 
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aggregations are useful to quantify the effects of long-term drought. We used all monthly 

aggregations provided by SPEIbase from SPEI-1 through SPEI-48. 

Drought is defined by SPEI values ≤-0.5 (mild drought), while wet periods have 

an SPEI ≥0.5 (Feng et al. 2020). The more negative the value, the greater the deficit in 

precipitation/potential evapotranspiration. For this study, we defined drought as having 

an SPEI ≤-1 (moderate drought), with wet periods having an SPEI ≥+1. The 

standardization of SPEI ensures that its values are directly comparable both across 

different locations and over various time periods. This makes SPEI an ideal tool for time 

series analysis, especially when incorporating seasonal variations (Vicente-Serrano et al. 

2010). Using the monthly indices of when “dry” and “wet” periods occur, we created 

mean “dry” and “wet” variables for NDVI, LST, and LST-NDVI for each SPEI monthly 

aggregation. 

2.5 Socio-demographic and physiographic variables 

Census-tract level socio-economic data were obtained for each decennial census 

from 1990 to 2020. To minimize information loss when comparing relationships across 

time we used the census tract boundaries consistent with that year’s data. When assessing 

mean change in our variables in response to SPEI we used the 2010 census tract 

boundaries, as this is the only census tract year with associated tree canopy cover data. 

We derived population density by dividing the population of each census tract by that 

census tract’s area. We also determined the racial composition of each census tract by 

dividing the population of White, Hispanic, Black, and Asian persons per census tract by 
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the census tract’s total population. The distribution of races within the LAUR is spatially 

heterogeneous, but there are race-specific agglomerations (Fig. 2). Other census variables 

we used were percent graduate degree holders per census tract, median household 

income, per-capita income, and income by race. We categorized census tracts by racial 

population using census datasets which denote the census-tract population of a given race 

as well as providing race-based income metrics; race-based census tract data utilized in 

this study were provided directly from the United States Census Bureau. These census 

datasets allowed us to use the percent of a given racial population per census tract as a 

dependent variable in regression analysis. Census data for 2000, 2010, and 2020 were 

obtained from data.census.gov. Data for 2000 is derived from the decennial census, while 

data for 2010 and 2020 are derived from the decennial census and the American 

Community Survey 5-year Estimates. Relevant tract-level census data for 1990 was 

found hosted by the Centers for Disease Control at 

https://www2.cdc.gov/nceh/lead/census90/house11/download.htm. Boundaries of census 

tracts for all years were obtained from https://www.census.gov/geographies/mapping-

files.html. Census tract boundaries were used to manipulate the predictor variables. 

The physiographic variables we evaluated included distance from the coast, 

elevation, percent impervious cover per tract, and percent tree canopy cover per tract. We 

created the distance from the coast variable in ArcGIS Pro by finding the distance from 

the Pacific Ocean to the centroid of the respective 1990-2020 census tract boundary. 

Visual inspection ensured irregularly shaped tracts did not lead to more than one centroid 

per tract. Elevation, acquired using GEE, came from the Shuttle Radar Topography 

https://www2.cdc.gov/nceh/lead/census90/house11/download.htm
https://www.census.gov/geographies/mapping-files.html
https://www.census.gov/geographies/mapping-files.html
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Mission (SRTM) provided at a spatial resolution of 1-arc-second and a vertical accuracy 

of ±6.87 m (Elkhrachy 2018). It is important to note that in the LAUR “high elevation” 

connotes a few hundred meters; the median elevation is 80 meters. Low elevation regions 

≤ 25th percentile range from sea level up to 34 meters, whereas high elevation regions ≥ 

75th percentile are ≥ 204 meters. Both percent impervious cover and percent tree canopy 

cover came from the National Land Cover Database (NLCD). We used NLCD 

impervious cover for 2001 (to match the 2000 census), 2011 (2010 census), and 2021 

(2020 census). We used only one data point for tree canopy cover, tying the 2011 NLCD 

tree canopy cover with the 2010 census. Finally, we also used the change in NDVI (either 

through time or during drought) as an independent variable to explain the change in LST. 

All datasets used in this study are described in Table 1. 

To assess the effect these variables had on the change in NDVI and LST during 

drought we used bivariate linear regression in MATLAB, where ∆NDVI and ∆LST (wet-

dry) were the dependent variables. Further, to assess the change in these variables 

through time we ran a pixel-by-pixel temporal linear regression of NDVI and LST in 

MATLAB. Our approach to determining the NDVI-Precipitation slope followed the same 

structure. For this temporal regression, we isolated the slope coefficient and used this 

term as a dependent variable in a new regression designed to explain the spatial 

variability of the NDVI and LST trends. 

We explained the spatial variability of the per-pixel NDVI and LST trends 

through time by using structural equation modeling (SEM). SEM is a statistical approach 
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used to test hypotheses about the relationships among observed and unobserved variables. 

SEM allows for the exploration of complex relationships, including those that are direct, 

indirect, and reciprocal (Wu et al. 2021, Manavvi and Rajasekar 2023). In multiple 

regression, nearly all explanatory variables significantly explain variation in the 

dependent variables due to a large sample size of census tracts leading to p-values lower 

than 0.05 (Lantz 2013). We only kept variables that had a partial r2 of at least 0.05 in 

multiple regression. 

Results 

 

3.1 Spatiotemporal Dynamics of NDVI, LST, and LST-NDVI  

Initial analyses confirmed the expectation that the average NDVI and LST across 

the time series are well correlated spatially (pearson’s r=-0.80, p<0.001), such that the 

hottest urban regions are also those which are least vegetated (Fig. 1). Spatial variation in 

the long-term average for NDVI and LST is itself associated with income and the built 

environment. In multiple regression, impervious cover and tree canopy cover explained 

87% of the spatial variability of NDVI, where the effect of impervious cover on NDVI 

was 63% greater than that of tree cover (supplemental Fig. 1). Every 10% increase in 

impervious cover was associated with a decrease in NDVI by 0.041 (p-value<0.001), 

while every 10% increase in tree cover was associated with an increase in NDVI of 

0.0047 (p-value<0.001). Similarly, impervious cover and income explained 69% of the 

spatial variability of LST (supplemental Fig. 2), with these variables increasing and 

decreasing LST, respectively. Impervious cover had an effect 59% greater on the spatial 

variation of LST than income. Every 10% increase in impervious cover led to an 
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additional 0.80 °C of warming (p-value<0.001), while median household income led to 

an average cooling benefit of 0.349 °C/$10,000 (p-value<0.001). 

In the context of these long-term spatial distributions, greenness and temperatures 

also exhibited temporal variability and trends during the time series (Fig. 3). Between 

1985 and 2021 land surface temperature increased 0.13 °C/year (p=0.041) and NDVI 

increased 5.05 x 10-4 per year between 1985 and 2021 (p<0.001). However, the change in 

NDVI through time was uneven, so that the rate of increase in greenness is different 

when assessed from different years. Starting in 1992 NDVI increased 6.21 x 10-4 per year 

(p<0.001), while from 2007 to the end of the time series NDVI increased 0.002 per year 

(p<0.001). The increase in LST through time was evenly distributed throughout the year, 

increasing slightly more during the summer months (June-August) at 0.18 °C/year 

(p=0.02) than the winter months (December-February) at 0.15 °C/year (p=0.002), 

although the difference in slopes between seasons was not significant (p=0.17). Partially 

mitigating this increased heat, vegetative cooling increased 0.08 °C/year (p=0.0497). 

Between 1985 and 2021 urban plants provided an additional 2.96 °C/NDVI of cooling. 

The changes in vegetation and temperature also occurred in the context of a decrease in 

precipitation of 1.9 mm/year (p=0.009). 

Weather plays a significant role in the temporal variability of NDVI and LST at 

the whole LAUR spatial scale (Fig. 4). The dynamics of urban greenness at the whole 

city scale was coupled with precipitation and increased 0.007 NDVI per 100 mm of 

three-months cumulative precipitation (p-value<0.001). Precipitation explained 20% of 

the temporal variability in NDVI. Urban NDVI was most responsive to precipitation with 
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three months of cumulative rainfall; the fit declined with additional months of rain until 

nine months of cumulative precipitation when there was no relationship between 

greenness and precipitation (p-value=0.47). The weather variables most responsible for 

the temporal variability in LST were solar radiation and air temperature, which together 

explained 87% of the variance in LST. Every 1 w/m2 increase in solar radiation increased 

LST 0.13 °C, while every 1 °C increase in minimum air temperature increased LST 2.3 

°C (p-value<0.001). Solar radiation was the only variable with a partial r2 of at least 0.05 

to significantly modify the temporal variability of vegetative cooling. Vegetative cooling 

increased with solar radiation at a rate of 0.077 °C/NDVI per 1 w/m2, with solar radiation 

explaining 62% of the temporal variability (p-value <0.001). The temporal variability of 

NDVI, LST, and vegetative cooling was substantially influenced by the weather, 

highlighting the key role of weather in shaping urban greenness and temperature 

dynamics over time. 

The temporal trends of greenness and temperature exhibited wide spatial 

variability in their rates of change within the LAUR (Fig. 5). At both the pixel and census 

tract scales the median increase in LST was 0.16 °C/year with a standard deviation of 

0.03 °C/year at the pixel scale and of 0.02 °C/year at the census tract scale. No pixels 

exhibited cooling. Pixels at the 5th percentile warmed 0.13 °C/year, while pixels at the 

95th percentile warmed 0.20 °C/year. Aggregated to the census tract scale, only six census 

tracts warmed greater than 0.20 °C/year while only one census tract warmed less than 0.1 

°C/year. The median increase in NDVI was 3.01 x 10-4 /year at the pixel scale with a 

standard deviation of 0.003, while at the census tract scale, the median increase in NDVI 
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was 2.62 x 10-4 /year with a standard deviation of 5.91 x 10-4. The 5th percentile of pixels 

lost 3.6 x 10-3 NDVI/year, while the 95th percentile of pixels gained 4.7 x 10-3 NDVI/year. 

Pixels with non-significant LST trends overlap downtown Los Angeles and regions with 

high commercial activity and impervious cover. When averaging the significant per-pixel 

trends through time to the census tract scale, 2,372 (86%) tracts warmed and 386 (14%) 

tracts had no change through time. No tracts exhibited cooling. In contrast, 1,801 (65%) 

census tracts significantly increased greenness while 592 (21%) browned. Overall, the 

pixels that warmed the most warmed over 1.5x as fast as the coolest pixels, while the 

greenest pixels greened at a rate similar to the pixels that lost the most greenness. We 

sought to explain this spatial variability in the rate of change for NDVI and LST. 

3.2 Variability in the NDVI and LST trends 

The per-pixel changes through time in NDVI and LST, when aggregated to the 

census-tract scale, were most strongly influenced by 2010 per-capita income, while the 

change in LST was also strongly responsive to the change through time in NDVI (Fig. 6). 

Every $10,000 increase in per-capita income increased the NDVI trend 1.32 x 10-4 per 

year (p-value<0.001) while the same increase in income reduced the LST trend by 0.015 

°C/year (p-value<0.001). The change in greenness had a large effect on the change in 

temperature; every 0.01 NDVI/year increase in greenness was associated with less 

warming of 0.12 °C/year (p<0.001). We also tested physiographic variables to explain the 

NDVI and LST trends. Impervious cover had a weak effect on increasing LST, while the 

distance from the coast had the same effect size on decreasing NDVI. Per-capita income 

and distance from the coast explain 19% of the spatial variability in the NDVI trend, 
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while per-capita income, impervious cover, and the NDVI trend explain 39% of the 

spatial variability in the LST trend. 

3.3 The NDVI and LST drought response  

The effect of drought on NDVI and LST temperature trends was spatially variable 

(Fig. 7). We assessed the drought response at SPEI-6, as this was the SPEI aggregation 

that led to the largest change in both NDVI and LST. During drought NDVI decreased on 

average 0.023, while LST increased 4.41 °C. Vegetative cooling increased 0.08 °C/NDVI 

during drought. Regions that saw the largest decrease in NDVI (a loss of NDVI of ≥0.09) 

visually overlap large urban parks and hilly terrain, however, we did not include fine-

scale variability in land cover in our dataset to test this explicitly. Surprisingly, our results 

indicate that NDVI increased during drought in a minority (13%) of pixels. Aggregated to 

the census tract scale, no tracts greened during drought. In contrast, the LST drought 

response exhibited a clear coast-to-inland gradient. During drought inland regions 

warmed ~8 °C, whereas regions right on the coast warmed ~2-3 °C. The benefit of the 

coast in moderating drought temperatures dissipated approximately 5-10 km from the 

coast. The consistent decrease in greenness and increase in temperature during drought 

indicates that NDVI and LST may be directly associated with SPEI. Testing this directly, 

across all dates NDVI increased 0.007 per unit increase in SPEI-6 (p-value<0.001), 

representing an increase in greenness with a more positive water balance. There was no 

relationship between SPEI-6 and LST across all dates, however, the relationship between 

SPEI and LST was seasonally dependent. In the spring (March-June), LST decreased 

0.88 °C with every 0.5 unit increase in SPEI. There was no change through time in the 
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severity or frequency of drought at SPEI-6, although drought at inter-annual SPEI 

aggregations was becoming more severe and more frequent. Similarly, greenness was 

responsive to changes in SPEI with greenness increasing during periods of more positive 

water balance, showcasing the sensitivity of urban vegetation to climatological water 

availability. 

We sought to explain the spatial variability in NDVI and LST during drought at 

SPEI-6 (Fig. 8). Using multiple regression, we identified all variables explaining the 

change in NDVI and LST which had a partial r2 of at least 0.05. The change in NDVI 

during drought was only influenced by impervious cover (r2=0.35, p-value<0.001), where 

every 10% decrease in impervious cover led to a greater loss in NDVI of 0.004. As 

drought predominately led to a decline in NDVI, greater impervious cover led to smaller 

losses in greenness. The change in LST during drought was more readily explained than 

that of NDVI. The increase in LST during drought was greatest in regions that lost NDVI 

(r2=0.24, p-value<0.001) and which were further inland (r2=0.44, p-value<0.001). These 

two variables explained 61% of the variance in the change in LST during drought. The 

change in NDVI during drought had an effect 74% larger on the change in LST than that 

of distance from the coast despite the distance from the coast having a larger effect in 

univariate regression. LST increased 0.05 °C/km distance from the coast (p-value<0.001) 

and 0.29 °C per 0.01 loss in NDVI (p-value<0.001). The large spatial and temporal 

variability in the change in NDVI and LST through time and during drought may have 

socio-economic and racial consequences. 

3.4 The Luxury Effect becomes weaker through time and stronger during drought 
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We found that income had a significantly lower effect on greenness (p-

value<0.001) and temperature (p-value<0.001) in 2020 than it did in 1990 (Fig. 9). In 

1990, every $10,000 increase in median household income provided 0.4 °C of cooling 

and an increase of 0.0202 NDVI. In 2020, the same increase in income provided 0.29 °C 

of cooling and a 0.0119 increase in NDVI. Income became weaker as a mediator of LST 

by 0.1 °C/$10,000 (p-value<0.001), an effect 58% as strong in 2020 as it was in 1990, 

while the effect of income on NDVI declined by 0.008 NDVI/$10,000 (p-value<0.001), 

an effect 74% as strong in 2020 as it was in 1990. The decline in the effect of income is 

concomitant with an increase in the effect of impervious cover on increasing temperature 

and decreasing greenness. In 2020 every 10% increase in impervious cover led to an 

additional 0.15 °C of warming compared to 1990 (a 24% increase from 0.61 °C to 0.76 

°C; p-value<0.001) and an additional loss of 0.007 NDVI (a 20% decrease from -0.0034 

to -0.0042 NDVI; p-value<0.001). In contrast to the weakening of the effect of income 

through time, the income effect became stronger for LST but not for NDVI during 

drought (Fig. 10). At an intra-annual scale with SPEI aggregations up to SPEI-10, the 

effect of income increased, on average, 0.071 °C/$10,000 (p-value<0.001) during dry 

periods. Notably, droughts of longer duration were associated with increasingly stronger 

relationships between income and temperature, up until SPEI-11 when the luxury effect 

became weaker during drought. However, this increase in the effect of income on cooling 

was not necessarily associated with cooler temperatures at the whole-city scale. 

Vegetative cooling increased during drought at short timescales (SPEI-2 through SPEI-5) 

on average 0.99 °C/NDVI (p-value<0.001), while for longer term drought (at SPEI-7 
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through SPEI-12) vegetative cooling decreased during drought by 1.15 °C/NDVI (p-

value<0.001) despite an average increase in the effect of income on cooling of 0.064 

°C/$10,000 between SPEI-7 and SPEI-10 (p-value<0.001). Income-NDVI did not change 

between wet (SPEI>+1) and dry periods (SPEI<-1), but income-LST became stronger 

during dry periods. The decline in the effect of income as a mediator of NDVI and LST 

may have important equity-based consequences. 

The non-stationarity of the socio-economic relationships mediating urban 

greenness and temperatures was also associated with increasingly marginalized minority 

populations. Throughout the time series, areas with higher Hispanic populations were 

consistently found to have increased LST and reduced greenness. Over time, the 

association between Hispanic-dominated neighborhoods and increased LST significantly 

strengthened. Compared to 1990, by 2020 LST warming associated with Hispanic-

dominated neighborhoods increased 63%; in 1990 every 10% increase in a census tract’s 

Hispanic population increased LST 0.22 °C while the same increase in Hispanic 

populations increased LST 0.35 °C in 2020. Likewise, the association between Hispanic-

dominated neighborhoods and reduced greenness strengthened through time, although 

this change was not significant. Compared to 1990, by 2020 every 10% increase in a 

census tract’s Hispanic population led to an additional 8% loss in greenness, but this 

additional decline in greenness was not significant. White-dominated neighborhoods did 

not experience similar trajectories. In 1990 every 10% increase in the census tract White 

population led to an increase in NDVI of 0.01 and a decrease in LST of 0.19 °C. In 2020 

the same increase in the White population led to the same 0.01 increase in NDVI and a 
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significant 58% increase in cooling to 0.30 °C. Whereas the experience of Hispanic 

populations with regards to greenness and temperature is unchanged and significantly 

worse, respectively, the experience of White populations with regards to greenness and 

temperature is unchanged and significantly better, respectively. This dichotomy is not 

reflective of the race-specific changes in the effect of income (Fig. 11); the effect of 

income on both NDVI and LST declined proportionally similar amounts between White 

and Hispanic populations. Between 2000 (the first year we had race-specific income data) 

and 2020, the effect of income declined across White, Hispanic, Black, and Asian 

communities, with the decline most strongly driven by a decline in the effectiveness of 

income in White and Hispanic communities. The effect of income was always greatest in 

White populations and always lowest in Black and Asian populations. In 2000, income in 

White communities provided 2.42x as much greening and 2.68x as much cooling as the 

same income in Black communities, declining to an effect 2.12x and 2.31x greater by the 

2020 census. 

Discussion 

 

In the Los Angeles urban region over the past 36 years, urban greenness, land 

surface temperatures, and the cooling effectiveness of vegetation have all increased. 

These trajectories were related to changes in weather patterns, exhibited extensive spatial 

heterogeneity associated with physiographic and demographic distributions, and were 

associated with changing patterns of equity in access to greenspace and heat risks. 

Droughts were consistently associated with increased temperature and decreased 

greenness. However, land cover distributions moderated the drought response, consistent 
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with our hypothesis on the importance of physiography. The temporal increases in LST 

and NDVI are consistent with climate changes and tree-planting campaigns. The increase 

in LST through time was at least partially mitigated by an increase in vegetative cooling. 

The modification of the NDVI and LST trends in response to income, distance from the 

coast, and impervious cover supports our hypothesis about the importance of water 

availability. At the monthly scale, weather explains temporal variability in NDVI, LST, 

and vegetative cooling, and the spatial variability across the urban extent is explained by 

land cover and income alone.  These results suggest the capacity to manage the dynamics 

of NDVI and LST has declined through time with the decline of the luxury effect. 

Despite the decline in the effectiveness of income, the changing urban dynamics led to 

the increasing marginalization of predominantly Hispanic communities but an 

improvement in conditions for predominantly White communities. Overall, our results 

show the multidecadal dynamics of NDVI, LST, and vegetative cooling are multifactorial 

and have important race-based equity implications. 

From 1985-2021, NDVI, LST, and vegetative cooling increased in the context of 

decreasing annual precipitation (Fig. 3). Vegetative cooling (°C LST/NDVI), 

standardized on a per-unit NDVI basis, suggests that the urban vegetation within LAUR 

is becoming more effective over time. Increased cooling may be due to increased 

transpiration from warming-induced evaporative demand (Kirschbaum 2004, Drake et al. 

2018). The multidecadal increase in greenness and temperature are consistent with tree 

planting campaigns and climate change, respectively. The average city-wide increase in 

LST of 0.13 °C/year is consistent with other cities such as Atlanta, USA (Fu and Weng 
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2016), Ahmedabad, India (Siddiqui et al. 2021), and Marseille, France (Polydoros et al. 

2018). Temporal variability in NDVI, LST, and vegetative cooling was unaffected by 

anthropogenic variables, as variables such as income and land cover may minimally 

change on a month-to-month basis. NDVI, LST, and vegetative cooling increased 

through time; we sought to explain the spatial variability in these trends. 

The dynamics of NDVI, LST, and vegetative cooling were well correlated with 

the weather (Fig. 4). Precipitation, temperature, and solar radiation were key drivers of 

monthly temporal variability. Despite the LAUR being a heavily irrigated semi-arid city, 

NDVI was sensitive to cumulative rainfall, increasing the most in response to three 

months of cumulative precipitation. The overall sensitivity of LAUR urban greenness to 

precipitation contrasts with the finding from Phoenix, AZ where urbanization completely 

decoupled urban greenness from precipitation (Buyantuyev and Wu 2012). However, 

Phoenix is in a desert climate that receives 57% of the annual rainfall of the LAUR, a 

semi-arid city. The finding that urbanization does not decouple greenness from 

precipitation in a Mediterranean city like the LAUR is consistent with Jenerette et al. 

(2013) and suggests that the decoupling of urban greenness from precipitation occurs 

along a gradient of precipitation where decoupling occurs only in the most arid cities. 

Further, during the 2011-2016 California megadrought, the most severe in over a 

millennium (Griffin and Anchukaitis 2014), we observed a decrease in NDVI in the 

LAUR, consistent with findings from another California city where urban greenness 

decreased despite little change in irrigation (Quesnel et al. 2019). This hint of an 

underlying water deficit despite anthropogenic input (Bijoor et al. 2012) suggests an 
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urban water deficit hypothesis, where neighborhood greenness and temperature are 

modified by the difference between irrigation and evaporative demand yet where 

anthropogenic inputs do not fully satisfy plant water demands. In contrast to the 

importance of weather for temporal variability, tree canopy cover and income were the 

only determinants of the spatial variability of NDVI and LST (Supplemental Figs. 1 & 2); 

in the LAUR anthropogenic drivers overrode any effect natural drivers have on the 

spatial variability of NDVI and LST. The pre-eminence of anthropogenic drivers may be 

related to the composition of the LAUR’s urban forest. This sensitivity of the spatial 

variability of NDVI and LST to anthropogenic factors is suggestive that NDVI and LST 

are sensitive to water availability and water demand, supporting our urban water deficit 

hypothesis. We suspect the dominance of anthropogenic variables in explaining spatial 

variability may be particularly important for the LAUR as it exists in a semi-arid 

environment, making the dynamics of urban greenness and temperature more sensitive to 

urban tree cover and irrigation. The spatial and temporal variability of NDVI, LST, and 

vegetative cooling were dependent on water availability and water demand. 

Compared to hotter and drier inland semi-arid cities, the LAUR experiences a 

milder thermal environment due to its coastal location which moderates temperatures via 

sea breezes. For example, the daytime land surface temperature in the LAUR averaged 35 

°C annually, while inland semi-arid cities like Jaipur, India experienced much higher 

average summer land surface temperatures exceeding 50 °C (Shahfahad et al. 2023). The 

relatively mild summer temperatures in coastal Mediterranean climates like Los Angeles 

allow urban vegetation to thrive and provide substantial local cooling through 
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evapotranspiration and shading, though in a climatically similar coastal Mediterranean 

city vegetative cooling was greatest in the spring and summer (Dronova et al. 2018). For 

instance, Los Angeles parks generate 4.73°C of local cooling with a cooling distance of 

165 meters (Gao et al. 2022), compared to summertime cooling from parks in more 

inland semi-arid cities such as Tehran of 0.8 °C for up to 68 meters (Jamali et al. 2021). 

In contrast, (Li et al. 2015) found that in the inland semi-arid city of Beijing, differences 

in latent heat fluxes between urban and rural areas lead to heat wave intensification of 

urban heat islands, constraining the cooling capacity of vegetation. Overall, the relatively 

mild climate of the LAUR enables urban greenery to more effectively mitigate urban heat 

compared to drier and hotter inland semi-arid cities. This greater mitigation capacity is 

reflected in the long-term increasing trend in vegetative cooling in the LAUR. 

At the pixel scale there was wide spatial variability in the NDVI and LST trends 

(Fig. 5). While trends of NDVI and LST have been conducted at a city-wide scale (Voogt 

and Oke 2003, Imhoff et al. 2010, Ren et al. 2021, Yang et al. 2021), several studies have 

shown substantial heterogeneity of the intraurban environment (Liu et al. 2021, Jombo et 

al. 2022, Lemoine-Rodriguez et al. 2022, Purio et al. 2022). In the LAUR, temperature 

increased the most in low-income communities that lost greenness, suggesting that the 

dynamics of NDVI and LST have been inequitably distributed and that inequity is 

increasing through time. Spatial inequities in urban heat (Reid et al. 2009, Harlan et al. 

2013) and greenness (Boone et al. 2009, Jennings et al. 2012) are therefore being 

propagated through time in the LAUR. The multidecadal change in greenness and 

temperature was spatially variable, and via income was partially associated with 
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anthropogenic inputs of water (Fig. 6). To explain this variability we looked at drought, 

being a natural extreme of both water availability and, via aridity, water demand, as a 

possible determinant of the dynamics of urban NDVI, LST, and vegetative cooling. 

The urban water deficit hypothesis suggests that, during drought, changes in 

NDVI, LST, or vegetative cooling would be closely associated with variables that modify 

water availability or demand (Fig. 7). We found partial support for this hypothesis. 

Greenness decreased the most in regions with low impervious cover, which was the only 

variable we identified to modify this relationship (Fig. 8). The increase in greenness in a 

minority of pixels at SPEI-06 may also be due to impervious cover, as many, but not all, 

of the pixels which greened overlap with impervious surfaces like roads and business 

centers.  We interpret the importance of impervious cover in determining the change in 

NDVI during drought to suggest two things: first, that census tracts with greater open 

space (e.g., large urban parks), may have vegetation that is less actively managed than 

vegetation in highly impervious landscapes (e.g., street trees or vegetation at a residential 

property). Second, the decline in greenness during drought with increasing pervious 

cover suggests that drought negatively affects all vegetation and that in regions with a 

greater potential amount of vegetated cover, via less impervious cover, more greenness 

can potentially be lost during drought. Increasing distance from the coast is associated 

with increased evaporative demand (Vasey et al. 2014, Tayyebi and Jenerette 2016), 

supporting our urban water deficit hypothesis that the change in LST would be greater in 

regions with a larger difference between water availability and water demand (Fig. 8). In 

this context, water availability is the total amount of water available for plants, whether 
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from irrigation or rain. Water demand refers to the water requirements of plants, and here 

would be driven by atmospheric aridity and temperature. Within a few kilometers of the 

coast the maritime environment, which includes cooler, cloudier conditions, appears to 

have mitigated the increase in temperature associated with drought. The regions furthest 

inland, in contrast, warmed the most during drought; this was driven by a decrease in 

vegetative greenness which subsequently decreased vegetative cooling. The loss of 

greenness was the most important variable to increase temperature during drought, 

consistent with our finding of the strong relationship between temperature and greenness 

over multidecadal periods. Although the coast-to-inland gradient for the change in 

temperature during drought was more pronounced from west to east than from south to 

north, this likely occurred because the minimal Landsat imagery on the coast for the 

southern region of the study area was unable to capture the coastal phenomena, which is 

only present within a few kilometers of the coast. Finally, drought increased vegetative 

cooling, suggesting that increased aridity increased transpiration (Fig. 10). Contrary to 

Allen et al. (2021) who observed a decrease in urban cooling capacity during drought, our 

study found drought to increase vegetative cooling; this discrepancy likely stems from the 

differing conceptualizations of 'drought' across studies, underlining the necessity to 

interpret drought effects on urban greenness and temperature in the context of their 

specific definitions and parameters (Slette et al. 2019). Drought led to consistent 

decreases in greenness and temperature increases that were able to be explained via 

potential plantable space and the urban water deficit hypothesis. The resulting spatial 
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heterogeneity of the dynamics of NDVI and LST appears to have important equity 

implications. 

As a consequence of changes in greenness and heat, our results suggest the luxury 

effect, an important driver of the spatial heterogeneity of urban greenness and 

temperature, is becoming weaker through time (Fig. 9) but stronger during drought (Fig. 

10). Between 1990-2020 the effect of income on temperature declined 41% while the 

effect on greenness declined 28%. The decline of the luxury effect through time despite 

the LAUR’s increasing aridity is counter to our hypothesis that the effect of income on 

mediating temperature and greenness would increase with greater aridity. The non-

stationarity of income in its relationship with NDVI and LST underscores the dynamic 

and complex influence of socioeconomic factors on urban ecological patterns (Romolini 

et al. 2013, Fan et al. 2019), warranting further investigation into the mechanisms behind 

this temporal variability. The luxury effect may have declined due to wealthy residents 

actively reducing greenness as they transitioned to drought-tolerant landscaping. Los 

Angeles and surrounding communities have been aggressively replacing water-intense 

landscaping with xeriscaping, a practice known to raise urban temperatures 1.8 °C in arid 

cities (Dialesandro et al. 2019). In 2014 Los Angeles replaced 9.8 million m2 of turfgrass 

(Pincetl et al. 2019), however, affluent residents may have a greater capacity to install 

drought-tolerant landscaping (Larson and Brumand 2014). During drought between 

SPEI-01 and SPEI-10 the luxury effect increased for income-LST but not for income-

NDVI, partially supporting our hypothesis that higher-income neighborhoods use more 

water during drought. Income, via the luxury effect, may become more important with 
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aridity due to the increased demand for water at a higher VPD (Chamberlain et al. 2020). 

Higher-income neighborhoods have been associated with more water consumption 

following droughts (Balling et al. 2008, House-Peters et al. 2010), potentially enhancing 

the luxury effect during drought. This may explain the strengthening of the luxury effect 

with droughts of increasing duration up to SPEI-11. However, the increase in the 

importance of income on mediating urban temperature during drought did not always 

lead to greater cooling overall. The increase in vegetative cooling during droughts from 

SPEI-2 to SPEI-5 suggests that existing water reserves and irrigation unrestricted by 

water limitations served to increase cooling under conditions of greater atmospheric 

aridity. The trend reversed at SPEI-7 and above, suggesting that for droughts longer than 

half a year, irrigation restrictions as well as depleted soil water reserves were insufficient 

to meet vegetative transpiration water demands. This likely also explains the inverted 

relationship of income with LST at SPEI-11, where the luxury effect becomes weaker 

during drought. However, the increased importance of income in mediating temperature 

during drought between SPEI-01 and SPEI-10 suggests that wealthy regions are 

somewhat insulated from increased temperatures during drought. The changing 

magnitude of the luxury effect highlights how variables that modify urban greenness and 

temperature are not stable across time. We found these changing relationships were also 

dissimilar by race.  

The decline in the luxury effect across time is primarily driven by a reduction in 

the correlation between income in White and Hispanic communities. The decline in the 

luxury effect was at least partially responsible for the increasing marginalization of 
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Hispanic populations but did not explain the improvement of conditions for White 

populations. The multidecadal increase in temperature associated with Hispanic census 

tracts, despite White census tracts being associated with greater cooling through time, 

points to an increasingly inequitable pattern of urban warming where Hispanic residents 

are bearing the brunt of rising urban heat compared to historically White areas (Fig. 9). 

This increasing inequity may be associated with green investment preferentially targeted 

to wealthy neighborhoods (Locke and Grove 2014, Shokry et al. 2020), whereas green 

investment in low-income neighborhoods may lead to gentrification and displacement 

(Anguelovski et al. 2017, Keenan et al. 2018). The disparity in the experience of White 

and Hispanic populations in their ability to mediate temperature is not reflective of race-

based changes in the luxury effect, which proportionally declined a similar amount 

between White and Hispanic populations (Fig. 11). The different trajectories of how 

White and Hispanic communities experience greenness and temperature suggests a 

mediating variable other than income is rising in importance as the effect of income 

declines. For instance, communities of color are characterized by greater impervious 

cover (Fossa et al. 2023), which is known to increase urban heat (Tian et al. 2021, Yang 

et al. 2021). Further, these decoupled trajectories may be explained by increasing urban 

wealth; although the effect of income is declining, there is more income over time, and 

there is more income overall in White communities versus Hispanic ones (Flippen 2016). 

Inequitable urban warming linked to racial and socioeconomic disparities in vegetation 

has been widely documented and poses dangers to public health (Jesdale et al. 2013, 

Oudin Åström et al. 2013). Communities of color, independent of income, are 



45 

 

disproportionately exposed to high urban heat (Benz and Burney 2021, Hsu et al. 2021) 

and their negative health effects on morbidity and mortality (Harlan et al. 2014, James et 

al. 2016, Son et al. 2016, Murage et al. 2020). The observed decline in the luxury effect 

reflects a narrowing equity gap as the effect of income converges towards a minimum 

income effectiveness among all races, leading to risk for people already living in 

hot/unvegetated neighborhoods. The complex relationship between urban temperatures, 

race, and income poses challenges for urban land managers striving to improve 

environmental justice for increasingly marginalized minority populations. Addressing 

greenspace inequity is a key step towards mitigating the intensifying heat impacts 

experienced by these communities (Jennings et al. 2019, Kephart 2022). 

Conclusion 

 

The world is warming, urban drought is increasing, and the atmosphere is drying, 

increasing the importance of understanding how urban ecosystems will respond. Our 36-

year longitudinal study of the Los Angeles urban region reveals notable racial inequities: 

Hispanic communities faced disproportionate warming when compared to their White 

counterparts. Over the whole LA region, average land surface temperature (LST) 

increased by 0.13°C per annum, while the mean NDVI (Normalized Difference 

Vegetation Index) increased by 0.0009 each year. Interestingly, we observed an increase 

in vegetative cooling through time of 0.08 °C/year, suggesting urban vegetation became 

more effective at cooling. Vegetative cooling is strongly related to income; however, we 

observed a decline of 28% and 41% in the luxury effect for income-NDVI and income-

LST relationships, respectively. As cities like Los Angeles grapple with intensifying heat 
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and dryness, urban planners and land managers need better resources to forecast how 

urban ecosystems will respond. However, the non-stationarity observed in NDVI, LST, 

and vegetative cooling dynamics suggest that past patterns may not reliably predict future 

dynamics. However, this study wasn’t without its limitations. While the spatial 

granularity of our Landsat satellite data provided valuable insights into broad urban 

trends, the resolution might not capture finer neighborhood-level nuances. Employing 

higher-resolution data and integrated modeling could help elucidate these micro-scale 

patterns and strengthen the links between environmental factors and social dimensions. 

Future research could bridge these gaps by employing higher-resolution imagery, 

collecting in-situ demographic data, and using integrated models that utilize climate, 

hydrology, social aspects, and land use. The observed increasing marginalization of 

Hispanic communities compared to White communities emphasizes the importance of 

environmental justice initiatives; the entrenchment of these spatial inequities through 

time is likely exhibited in other cities. Recognizing the non-stationarity of urban 

relationships underscores the necessity for continuous re-evaluation in urban ecological 

research, as the dynamics we currently observe may evolve, challenging our existing 

understanding and management of urban ecosystems. 
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Tables and Figures 

Table 1.1 Descriptive characteristics of all datasets used in the study. Census datasets are 

from 2010 for reference, but census data from 1990, 2000, 2010, and 2020 were utilized. 
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Figure 1.2 The census tract distribution by race is heterogeneous, with per-race 

agglomerations. White communities are most common along the foothills, Hispanic 

communities are predominantly found around downtown Los Angeles, Black 

communities are west of downtown L.A., and Asian communities are found north of 

downtown near the city of Industry. Data are based on the 2010 census. 
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Figure 1.3 Between 1985 and 2021 the LST-NDVI slope became significantly more 

negative, reflecting vegetation that is becoming more efficient at cooling, while urban 

greenness and temperature both significantly increased through time. A gap in data 

between December 2011 and March 2013 reflects the period between the end of Landsat 

5 and the launch of Landsat 8; Landsat 7 was not used during this period due to the 

failure of the scan line corrector. These changing NDVI and LST dynamics occurred in 

the context of increasing aridity, with annual rainfall declining 1.9 mm/year. 
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Figure 1.4 Urban NDVI, LST, and vegetative cooling responded to changes in the 

weather; each dot represents a mean monthly value. Despite the LAUR being heavily 

irrigated, NDVI was still coupled with precipitation with this relationship strongest at a 3-

month lag. Solar radiation and air temperature jointly explained 87% of the temporal 

variability in LST, while vegetative cooling increased with solar radiation. 

 

 

 

 

 

 

 

 

 

 

 

 



6
5
 

 

 

F
ig

u
re

 1
.5

 B
et

w
ee

n
 1

9
8

5
 a

n
d
 2

0
2
1
 t

h
e 

L
A

U
R

 w
ar

m
ed

 e
v

er
y
w

h
er

e 
b
u
t 

u
n

ev
en

ly
; 

n
o
 p

ix
el

 g
o
t 

si
g
n
if

ic
an

tl
y
 c

o
o
le

r.
 S

o
m

e 

re
g
io

n
s 

(i
n
 o

ra
n
g

e 
an

d
 y

el
lo

w
) 

w
ar

m
ed

 m
u
ch

 f
as

te
r 

th
an

 t
h
e 

0
.1

6
 °

C
/y

ea
r 

p
er

-p
ix

el
 a

v
er

ag
e.

 T
h
e 

o
n
ly

 r
eg

io
n
 i

n
 t

h
e 

lo
w

es
t 

ti
er

 

o
f 

co
o
li

n
g
 (

≤
0
.1

 °
C

/y
ea

r)
 w

as
 a

lo
n
g
 t

h
e 

co
as

t.
 T

h
e 

re
g
io

n
s 

th
at

 g
o
t 

th
e 

h
o
tt

es
t 

th
ro

u
g
h
 t

im
e 

w
er

e 
al

so
 s

p
at

ia
ll

y
 r

el
at

ed
 t

o
 

re
g
io

n
s 

th
at

 l
o
st

 t
h
e 

m
o
st

 g
re

en
n
es

s.
 M

is
si

n
g
 p

ix
el

s 
re

p
re

se
n
t 

re
g
io

n
s 

w
h
er

e 
th

e 
te

m
p
o
ra

l 
re

g
re

ss
io

n
 w

as
 n

o
t 

si
g
n
if

ic
an

t 

(p
≥

0
.0

5
).

Trina Elerts
    

Trina Elerts
65



 

66 

 

 

Figure 1.6 The change through time of temperature and greenness was best explained by 

variability in income, as well as in impervious cover and distance from the coast. The 

wealthiest urban regions saw the slowest rate of warming as well as the greatest increase 

in greenness. The increase in temperature also increased the slowest in census tracts that 

saw the most greening. 
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Figure 1.7 During drought NDVI and LST exhibited overall trends but also wide spatial 

variation in their response. When comparing wet versus dry periods at SPEI-6, NDVI 

decreased on average 0.023, and LST increased on average 4.41 °C. The NDVI response 

was more spatially heterogeneous, while the LST response exhibited a clear coastal to 

inland gradient. When regressing all days in the time series against SPEI-6, only NDVI 

had a significant relationship, increasing by 0.004 with every 0.5 unit increase in SPEI-6. 

In contrast, the relationship between LST and SPEI-6 was seasonally dependent, with the 

greatest declines in LST in response to a positive water balance occurring in the spring. 
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Figure 1.8 During drought, LST increased the most in census tracts which lost the most 

NDVI and which were furthest inland from the coast. From multiple regression, these 

two variables explained 61% of the variability in the LST drought response. Impervious 

cover was the only variable identified from multiple regression to modify the NDVI 

drought response. Greater impervious cover was associated with less change in NDVI 

during drought, where each point represents one census tract. 
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Figure 1.9 Between 1990 and 2020 the effect of income on increasing greenness and 

decreasing temperatures significantly declined. As the LAUR has gotten hotter the luxury 

effect has gotten weaker. In 1990 $10,000 of income led to a 0.4 °C decrease in LST, 

whereas in 2020 the same increase in income led to a 0.29 °C decrease. In conjunction 

with the weakening of the luxury effect, the effect of impervious cover on decreasing 

greenness and increasing temperatures increased through time. These differences were 

race specific. Despite the weakening effect of income, Hispanic communities experienced 

greater heat through time while White communities did not. Blue boxplots refer to the 

left y-axis, representing the relationship between NDVI and either income, impervious 

cover, percent White population, or percent Hispanic population. Orange boxplots refer 

to the right y-axis and represent the relationship between LST and the same variables. 
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Figure 1.10 At most intra-annual SPEI aggregations the effect of income on LST 

becomes stronger. Only at SPEI-11 and at SPEI-12 does the luxury effect on temperature 

become weaker during drought. This increase in the luxury effect is not necessarily 

reflected in increased vegetative cooling; drought may slightly increase vegetative 

cooling for sub-6-month SPEI aggregations, but from SPEI-7 and up vegetative cooling 

declines during drought. 
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Figure 1.11 The decrease in the luxury effect was primarily due to a reduction in the 

relationships between income and both LST and NDVI in white communities, with 

similar declines in Hispanic and Asian communities. The influence of income was not 

uniform across races. As per the 2000 census data, the same amount of income in white 

communities led to 2.68 times as much cooling and 2.42 times as much greening 

compared to Asian and black communities. Over time, the impact of income on cooling 

and greening has become more equitable across races due to city-wide declines in the 

effectiveness of income. 
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Supplementary Figures 

 

 

Figure 1.S1 Between 1985 and 2021, mean urban NDVI increased in census tracts with 

the highest tree canopy cover and decreased in census tracts with high impervious cover. 

From multiple regression, these two variables explained 87% of the spatial variability of 

NDVI in the LAUR. 



 

73 

 

 

Figure 1.S2 Between 1985 and 2021, mean urban LST increased in response to 

impervious cover and decreased in response to income. These two variables explained 

69% of the spatial variability of LST in the LAUR. 
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Chapter 2 

 

The Changing Effect of Urbanization on Greenness and Temperature at a 

Continental, Multidecadal Scale Has Implications for Environmental Equity 

 

Abstract 

 

Urbanization profoundly reshapes the interconnected dynamics of vegetation greenness, 

land surface temperature, and their relationship, termed vegetative cooling; using satellite 

imagery we can quantify urbanization's continental-scale impacts on these biophysical 

dynamics. However, there are large uncertainties in how the effect of urbanization alters 

these dynamics from a non-urban reference. Using a subset of 52 cities from across the 

conterminous United States we assessed the spatial and temporal dynamics of urban 

greenness, temperature, and vegetative cooling and in how urbanization alters these 

relationships. Using satellite imagery coupled with landcover, climate, and census 

records between 2000 and 2022, we hypothesize that precipitation, by greening and 

cooling the local environment, drives inter-urban variability in urban biophysical 

dynamics, as well as differences between urban and nearby non-urban ecosystems. Our 

results show that, at the continental scale, urban temperatures increased 0.16 °C/year, 

while NDVI and vegetative cooling had variable trends. These changing dynamics led to 

an average reduction in the effect of income as a mediator of temperature and greenness 

by 53% and 62% across all cities between 2000 and 2020. Water availability from 

precipitation drives inter-urban variability in biophysical dynamics, whose change 

through time has led to a significant continental-scale decline in the luxury effect.
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Introduction 

 

Urbanization significantly influences the landscape distributions and dynamics of 

vegetation and climate. It typically increases temperature through the urban heat island 

(UHI) effect (Yang et al. 2016) and reduces greenness (Yang et al. 2020, Cheng et al. 

2023b), while also altering the greenness-temperature relationship in a context-dependent 

manner (Zhao et al. 2014, Yu et al. 2018). However, there are notable exceptions, such as 

the oasis effect where some urban areas may be cooler than their surroundings (Potchter 

et al. 2008, Fan et al. 2017, Zhao et al. 2017). On a continental scale, urbanization has 

been shown to homogenize environmental conditions (Kühn and Klotz 2006, McKinney 

2006, Gong et al. 2013, Groffman et al. 2014, Polsky et al. 2014, Pearse et al. 2018) but 

this variation has primarily been studied through limited city comparisons over short 

timeframes. Over multidecadal periods, changing urban landcover, socio-demographics, 

and climate suggest evolving dynamics in greenness and temperature due to urbanization. 

These changes are linked to demographic distributions, as human activity can modify 

vegetation distribution and consequently, neighborhood climate conditions. Within cities, 

studies have consistently found hotter neighborhoods with lower vegetation, typically 

inhabited by lower-income and non-white residents (Harlan et al. 2006, Jesdale et al. 

2013, Casey et al. 2017). However, these patterns vary geographically and temporally. 

Therefore, understanding the variation in the interplay of urban vegetation, climate, and 

demographics is crucial for advancing urban ecosystem theories and developing climate 

adaptation tools amidst global warming. Thus, the intra-city distribution of greenness and 

temperature is likely dissimilar among cities, the inter-urban relationship between 
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greenness and temperature are likely changing through time, yet large uncertainties 

remain as to the effect of urbanization on these dynamics (Estoque et al. 2017, Zhang et 

al. 2017, Guo et al. 2022, Liu et al. 2022). 

In characterizing how urbanization affects vegetation and climate distributions, the 

role of water balance may be a useful starting point. In non-urban ecosystems, sensitivity 

of greenness to precipitation declines with increasing mean annual precipitation (MAP) 

in non-limited environments due in part to soil saturation (Huxman et al. 2004, 

Chamaillé‐Jammes and Fritz 2009). Urbanization, via land cover modifications and 

irrigation, may decouple greenness and temperature from precipitation, particularly in 

response to increasing aridity due to a greater reliance on irrigation for plant water 

demands (Buyantuyev and Wu 2012, Jenerette et al. 2013, Lazzarini et al. 2015). 

Importantly, vegetation is known to decrease surface temperatures due to an increase in 

evaporative cooling (Trenberth and Shea 2005, Zhu et al. 2023).  

Within cities, the relationships among vegetation, temperature, and demographics 

also vary at continental scales and are likely changing. Increased temperatures and aridity 

may also strengthen the interaction between greenness and temperature (Ibsen et al. 

2021), commonly characterized as the slope between greenness and temperature, or 

vegetative cooling. Further, as aridity is increasing globally (Chai et al. 2021) in the 

context of a warming planet. These trends suggest that the effect of urbanization will 

increase in arid cities, which are becoming more arid, but will decrease in cold cities, 

which are becoming warmer, and that precipitation, which modifies aridity, will mediate 

the effect of urbanization. Variables associated with irrigation, such as income (Reyes-
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Paecke et al. 2019), or which may alter the distribution of plants such as race (Das and 

Ramaswami 2022) may further alter distributions of greenness and temperature. We 

propose an inter-urban water deficit hypothesis, where urban biophysical dynamics, and 

the difference in those dynamics between a city and its non-urban reference, are 

predicated on the availability of and demand of water for plants. 

Income and race are well-known to moderate intra-urban greenness and temperature, 

with the luxury effect—the ability for median household income to increase urban 

greenness and decrease temperature—playing a significant role in urban dynamics (Hope 

et al. 2003, Grove et al. 2014, Threlfall et al. 2022). For instance, the distribution of the 

urban forest exhibits income-dependence (Schwarz et al. 2015). However, the effect of 

income on moderating greenness is highly variable; in China, the decoupling of urban 

greenness from urban wealth was partially related to precipitation (Cheng et al. 2023a), 

while extreme aridity decouples urban greenness from precipitation (Buyantuyev and Wu 

2012). Home ownership may similarly affect urban temperature and greenness, as it is 

strongly associated with income and race (Gyourko et al. 1999, Bostic and Surette 2001, 

McCabe 2018) as well as plant greenness (Ossola et al. 2018). Further, race modifies 

urban greenness even after controlling for the climate and income (Casey et al. 2017); 

non-white neighborhoods are warmer and less green than white neighborhoods (Benz and 

Burney 2021) due in part to historic legacies of redlining and disinvestment (Wilson 

2020, Nardone et al. 2021). Therefore, the effects of race and income on greenness and 

temperature are inextricably linked, while the greenest and coolest neighborhoods are 

both those which are the wealthiest and which have smaller minority populations. Long-
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term changes in urban vegetation and socio-demographics, such as the loss of 36 million 

urban trees per year in the United States between 2009-2014 (Nowak and Greenfield 

2012, 2018), suggests that the intra-urban relationships between greenness and 

temperature and socio-demographics likely changes over multidecadal scales. If long-

term relationships are changing, then neighborhood-scale losses in environmental equity 

may also occur, particularly if these changing relationships diminish the effectiveness of 

income to moderate greenness and temperature. At intra-urban scales socio-demographics 

interact with greenness and temperature; understanding if, and how, these neighborhood-

scale relationships change among cities could highlight broader patterns of urban 

ecological change and environmental justice. 

In seeking to understand urban vegetation dynamics, we ask: How has urbanization 

affected urban greenness, land surface temperature, and vegetative cooling dynamics 

among cities throughout the United States and how do these differences affect urban 

equity in greenness and climate? We answered our research question by assessing the 

change in urban greenness, temperature, and vegetative cooling at the inter-city scale 

from intra-urban dynamics among 52 cities and their non-urban reference sites 

representing gradients of aridity and sociodemographics for the summer months between 

2000-2022. Assessing the effect of urbanization may be done via a comparison with non-

urban reference dynamics (Kondratyeva et al. 2020), however, few studies have assessed 

how the effect of urbanization has changed at a continental, multi-decadal scale. 

Therefore, large uncertainties remain as to the effect of urbanization on the sensitivity of 

greenness and temperature to precipitation at inter-urban scales. We tested the prediction 
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that the effect of urbanization on greenness and temperature decreases and increases, 

respectively in response to precipitation. We tested an inter-urban water deficit 

hypothesis positing precipitation as a major driver of inter-urban greenness and 

temperature dynamics; with increasing mean annual precipitation greenness increases, 

temperature decreases, and the relationship between greenness and temperature becomes 

weaker. Over multidecadal scales we predict greenness decreases, while temperature, and 

the interaction between greenness and temperature increase, due, respectively, to losses in 

urban tree cover, increasing global temperatures, and increasing global aridity. At inter-

urban scales, we predict variation in landcover and sociodemographics modify greenness 

and temperature dynamics, while we predict that the effect of urbanization on these 

dynamics is due to gradients of precipitation and temperature. The predictions that the 

income-greenness and income-temperature relationships are not temporally stable suggest 

possible declines in environmental equity. Through a multidecadal, multi-scale, inter-

urban, continental-scale analysis which assesses the effect of urbanization via comparison 

with non-urban reference sites, we evaluate how the vegetation ecology of cities is 

sensitive to landcover, climatic and social variables. 

 

Methods 

 

2.1 Study Sites 

We collected data for 52 cities from across the conterminous United States 

representing 28 states. Cities were chosen to reflect a diversity of sociodemographics and 

climate; median household income ranged from a low of $28,675 (Kansas City, MO) to 
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$86,141 (Thousand Oaks, CA) while mean annual precipitation ranged from 85 mm/year 

in Yuma, AZ to 1,616 mm/year in New Orleans, LA (Fig. 1). Selected cities exhibited 

wide variability in NDVI, land surface temperature, and in vegetative cooling (Fig. 1). 

City extents were manually delimited in ArcGIS Pro 2.9 based on 1995 boundaries using 

the average of the 1995 RGB Landsat imagery as acquired on Google Earth Engine. 

Urban extents included impervious landcover and urban parks but did not include 

airports, natural reserves, or agricultural land. Using the 1995 boundaries for a study 

beginning in 2000 allowed us to focus solely on the urban core rather than on effects of 

urban growth and land use change. Each city was paired with a non-urban reference site 

such that there were 104 total study sites. Reference sites were chosen to represent the 

non-urban ecosystem the city replaced as closely as possible. Reference sites may include 

regional or state parks, a national forest, a wildlife refuge, or another parcel of 

undeveloped non-agricultural land near the city. Data on urban/reference greenness and 

urban/reference temperatures were acquired via satellite remote sensing. 

2.2  Landsat Analysis Ready Data, Greenness, and Temperature 

To determine the change through time of vegetative greenness and land surface 

temperature (LST) we utilized data from the Collection-2 Landsat U.S. Analysis Ready 

Data (ARD) product as acquired from EarthExplorer (https://earthexplorer.usgs.gov). 

Analysis Ready Data is atmospherically corrected and radiometrically calibrated by the 

United States Geological Survey (USGS) (Dwyer 2018), making the different Landsat 

satellite data products directly comparable to one another (Zhu 2019) and preventing the 

need for time-consuming inter-satellite calibration (Banskota et al. 2014). The 
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consistency between satellites makes Analysis Ready Data ideal for timeseries analysis 

(Qiu et al. 2018, Zhu 2019). We utilized Landsat 5, 7, 8, and 9 ARD imagery spanning 

from May to September and from 2000 through 2022. The selection of warm-season 

months was to ensure deciduous vegetation had leaf cover. 

Landsat 5 was launched on March 1st, 1984 and collected imagery through 

January 6th, 2013 before the USGS began the process of decommissioning the satellite on 

January 15th, 2013. Landsat 5 became the longest-serving Earth observing satellite (Roy 

et al. 2020). Landsat 7 was launched on April 15th, 1999, with decommissioning 

beginning on April 6th, 2022. However, on May 31st, 2003, the satellite’s Scan Line 

Corrector failed, resulting in wedges of missing pixels ranging from no missing pixels in 

the center of an image to 14 missing pixels on the periphery of an image (Markham et al. 

2004). As such, we elected to not use Landsat 7 imagery following the failure of the Scan 

Line Corrector. Landsat 8 was launched on February 11th, 2013, and is still collecting 

data as of 2023. Landsat 9, the most recent Landsat satellite, launched on September 27th, 

2021 and began collecting imagery on October 31, 2021. The next Landsat satellite, 

Landsat Next, is not expected to launch until 2030. Each of these satellites collect visible 

imagery at 30 m2 spatial resolution. The native resolution of the thermal imagery varies 

by satellite: for Landsat 5 it is at 120 m2, for Landsat 7 it is at 60 m2, and Landsat 8 and 9 

are both collected at 100 m2, however, all imagery are resampled by USGS to 30 m2. 

Upon downloading the imagery for our cities and reference sites from Earth Explorer we 

masked out clouds, water, and aerosols in MATLAB 2022b using the associated Quality 

Assessment band. In MATLAB we then eliminated any image missing more than 10% of 
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pixels within the boundary of the city or reference site based on the maximum number of 

pixels identified within that boundary over the timeseries. Excessive cloudiness may be 

associated with cooler temperatures due to increased albedo and reduced solar insolation, 

or warmer temperatures due to longwave re-radiation (Sun et al. 2000). We assessed 

greenness using the Normalized Difference Vegetation Index (NDVI), a commonly used 

metric for plant productivity (Pettorelli et al. 2011) which is sensitive to the chlorophyll 

of all plants which are photosynthesizing (Ibsen et al. 2021). We derived NDVI in 

MATLAB using the following:  

𝑁𝐷𝑉𝐼 = (𝑁𝐼𝑅 − 𝑅𝑒𝑑) (𝑁𝐼𝑅 + 𝑅𝑒𝑑)⁄     (1) 

where NIR is the near infrared band and red is the red band. Land surface temperature 

(LST) was acquired directly from the Analysis Ready Data Surface Temperature product. 

We made no modifications to the Surface Temperature product, following cloud 

masking, other than to rescale the data from Kelvin (°K) to Celsius (°C). 

2.3 Climate, Landcover, and Social data 

We acquired climate data from TerraClimate. Terraclimate is a monthly ~4 km2 

global climate dataset valid from January 1958 through December 2021 (Abatzoglou et 

al. 2018). We acquired TerraClimate beginning in May 1999 for every month through 

September 2021. We accessed TerraClimate (IDAHO_EPSCOR/TERRACLIMATE) and 

clipped TerraClimate imagery to all our study sites using Google Earth Engine (GEE). 

Google Earth Engine is a cloud-based petabyte-scale GIS (Gorelick et al. 2017) which 

allows for the seamless manipulation of large quantities of spatial or temporal GIS 

imagery using JavaScript. From TerraClimate we acquired data on actual 
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evapotranspiration, climate water deficit, potential evapotranspiration, precipitation 

accumulation, solar radiation, minimum temperature, maximum temperature, vapor 

pressure, and vapor pressure deficit. We modified the precipitation dataset in Matlab to 

produce new datasets of 1-12 months cumulative precipitation for each month in the 

timeseries. 

 We additionally used GEE to acquire variables representing landscape 

heterogeneity. To assess the change in greenness in response to changing urban water 

availability we used data from the Soil Moisture Active Passive (SMAP) instrument, 

which provides soil moisture at a high global accuracy of <0.04 m3 m-3 (Abdelkader et 

al. 2022). SMAP (NASA_USDA/HSL/SMAP10KM_soil_moisture) was attached to the 

International Space Station in 2015; we accessed all SMAP data from May 2015-May 

2022. From SMAP we acquired both surface soil moisture and subsurface soil moisture. 

The surface soil moisture product measures the water content in the top 5 cm of soil; 

subsurface soil moisture is not directly measured by SMAP but is modeled at up to 1-

meter depth based on surface soil moisture measurements (Entekhabi et al. 2010). We 

obtained tree canopy cover for both urban and reference sites and percent impervious 

cover for urban sites only from the 2016 release of the 2011 National Landcover Dataset 

(USGS/NLCD_RELEASES/2016_REL). We sought to assess a city’s geographic and 

climatic context on its biophysical dynamics and on the effect of urbanization. We did so 

by utilizing a global map of biomes (OpenLandMap/PNV/PNV_BIOME-

TYPE_BIOME00K_C/v01) to assess ecological organization at 1 km2 spatial resolution 

(Hengl 2018) as well as the Köppen-Geiger classification map for 1991-2020 to assess 
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climatic context (Beck et al. 2023). Finally, we acquired elevation from the Shuttle Radar 

Topography Mission digital elevation map (USGS/SRTMGL1_00). 

 To assess the sensitivity of urban NDVI, LST, or vegetative cooling to inter-city 

social variability we acquired a selection of social variables from the 2010 American 

Community Survey 5-year Estimates at the census tract scale. We derived the racial 

composition of each city by determining the mean percentage of White, Asian, Black 

(table B02001), and Hispanic (table B03003) residents. We derived the population 

density of all urban residents and the population density of the non-Hispanic population 

using the racial composition tables. Finally, we characterized income by acquiring data 

for median household income (table S1903) and per-capita income (table B19301). 

2.4 Assessment of the precipitation-NDVI relationship 

For each city and reference site we assessed the relationship between precipitation 

and NDVI using TerraClimate precipitation. For each site we used the following 

regression: 

𝑁𝐷𝑉𝐼 = 𝛽0 + 𝛽1𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛1−12 + 𝜀     (2) 

We then isolated the 𝛽1 coefficient for each site. We were unsure at what temporal lag 

best described precipitation-NDVI at the continental scale and so acquired 𝛽1 at 1-12 

months cumulative precipitationfall. Further, our preliminary data suggested that urban 

precipitation-NDVI may be well approximated by a power function. Therefore, we also 

conducted a non-linear regression of the form: 

𝑁𝐷𝑉𝐼 =  𝛼 + 𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑏
1−12

+ 𝜀     (3) 

To compare the nonlinear relationship among sites we used the 𝑏 exponent. 
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For each site we assessed the long-term trend (2000-2022) in NDVI, LST, and vegetative 

cooling (°C/NDVI), precipitation and its sensitivity to NDVI, assessed the mean of these 

variables, and compared the difference in these values between paired urban and 

reference sites. We assessed significant differences between paired urban and reference 

sites using a 2-sample t-test. In all cases the delta (▲) term between urban and reference 

sites was derived as urban-reference. Values close to zero denote no difference between a 

paired urban and reference site, whereas positive values indicate the urban site has a 

greater value relative to the reference site. 

2.5 Assessing Change in the Luxury Effect through Time 

To assess the change in the luxury effect through time at the national scale we 

compared the regression slope for income~NDVI and income~LST between 2000 and 

2020 for all 52 cities using 2000, 2010, and 2020 census data. Median household income 

for 2000 came from census table HCT036 variable HCT036001. Median household 

income for 2010 and 2020 came from census table S1901 variable S1901_C01_012E. All 

regressions were conducted at the tract level, which is a large enough unit of analysis to 

provide reliable socio-demographic information (Wong and Sun 2013). NDVI and LST 

for the three time points were characterized by the median image from May-September 

between 1999-2001, 2009-2011, and 2019-2021, respectively. Assessment of median 

NDVI and LST were done exclusively in GEE and did not utilize the ARD dataset. 

The NDVI and LST datasets for the luxury effect analysis were derived using 

GEE. This was done to allow us to take advantage of GEE and the ease it provides in 

quickly manipulating large quantities of geospatial imagery. NDVI was harmonized from 
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Landsat Collection-2 Level-2 imagery for Landsat 5 (LANDSAT/LT05/C02/T1_L2), 

Landsat 7 (LANDSAT/LE07/C02/T1_L2), and Landsat 8 

(LANDSAT/LC08/C02/T1_L2) using the scaling coefficients published in Roy et al. 

(2016). To derive the scaling coefficients Landsat 8/OLI was linearly transformed via 

ordinary least squares regression to be consistent with Landsat 5/TM and Landsat 

7/ETM+. Land surface temperature was derived from Landsat Collection-2 Level-2 

imagery using the open-source GEE code published by Ermida et al. (2020). The LST 

derived from this code maintains high agreement with in-situ measurements with a 

difference of no more than 0.5 °C. Following data acquisition NDVI and LST were cloud 

masked and clipped to the city boundaries using GEE. These data were then transferred 

to ArcGIS Pro 3.0.3 where we projected all data to USA Contiguous Albers Equal Area 

Conic USGS, and then aggregated NDVI and LST to their median value per census tract. 

All data were finally exported to Matlab r2022b to assess the Luxury Effect. 

To assess factors influencing the variability of the luxury effect at a continental 

scale, we determined the mean luxury effect per city. We did so by averaging the income-

NDVI and income-LST slopes for each city for 2000, 2010, and 2020. This regression 

takes the form of: 

𝑁𝐷𝑉𝐼 =  𝛽0 + 𝛽1 ∗ 𝑖𝑛𝑐𝑜𝑚𝑒 + 𝜀      (4) 

where 𝛽1 represents the effect of income on modifying NDVI or LST. We used the 

average of the 𝛽1 slope coefficients as a new dependent variable in multiple regression to 

assess how the luxury effect varied among cities. 
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We determined the change through time of the luxury effect and whether this 

change was significant for a given city using multiple regression. To set up each city’s 

regression we created single variables of NDVI, LST, and median household income 

using 2000, 2010, and 2020 data. We added a categorical variable “year”, demarcating 

the data by which year the data came from. The interaction term represents the product of 

the independent variable (income) and the categorical variable (year). The form of the 

regression for the effect of income on NDVI (Eq. 5) is the same as it is for LST except 

for the different dependent variable.  

𝑁𝐷𝑉𝐼 =  𝛽0 + 𝛽1 ∗ 𝑖𝑛𝑐𝑜𝑚𝑒 + 𝛽2 ∗ 𝑦𝑒𝑎𝑟 + 𝛽3 ∗ 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 + 𝜀  (5) 

Ultimately, we ran three regressions, comparing the change in the luxury effect between 

2000 and 2010, between 2010 and 2020, and between 2000 and 2020. For a given city a 

significant interaction term indicates that the regression coefficient of income on NDVI is 

significantly different between any two years, such as 2000 and 2020, while the 

interaction coefficient represents the magnitude of that change. We used the coefficient 

of the interaction term (𝛽3) as a dependent variable in a new multiple regression where 

we sought to explain the variability of the multidecadal change in the effect of income on 

NDVI and LST. The 𝛽1 coefficient represents the income-NDVI relationship in the 

baseline year (e.g., if comparing 2000 to 2020, then income-NDVI in 2000), and 𝛽2 

represents the difference in NDVI through time. However, we did not use either 

coefficient from this equation for our analysis. We did not use 𝛽1 from equation 5 to 

assess the mean luxury effect, as this regression coefficient is estimated with the effects 

of the year and interaction terms partialled out. Further, the additional terms may change 
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𝜀 by altering how much variance is captured in NDVI. We felt assessing the mean luxury 

effect via Eq. 4 was the most straightforward, easily interpretable approach. 

 

Results 

 

3.1 Urbanization weakens urban biophysical relationships 

At the continental scale urban NDVI and LST exhibited strong relationships with the 

climate, although urbanization weakened these relationships compared to a non-urban 

reference (Fig. 2). Testing with ANCOVA confirmed that the urban and reference site 

relationships between NDVI and LST against precipitation, climate water deficit, and tree 

canopy cover were significantly different (p<0.001). In increasingly mesic environments 

cities became less green than and hotter than their reference site. However, in the 

environments with the lowest rainfall cities were greener than their reference site, 

although temperatures were not different. Urban NDVI and LST exhibited a weaker 

response to climate water deficit than non-urban reference sites, however, in 

environments with a very high climate water deficit cities were both greener and cooler 

than their reference. Urbanization also affected how NDVI and LST respond to 

landcover. Tree canopy cover decreased LST and increased NDVI non-linearly more 

slowly in cities than in non-urban reference sites. Mean annual precipitation, climate 

water deficit, and tree canopy cover explained, respectively, 81% and 74% of the 

continental-scale variability in mean urban NDVI and LST. 

Across all 52 cities, representing more than a magnitude difference in 12-months 

cumulative precipitation, urban NDVI increased with precipitation according to the 

power function: 
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𝑁𝐷𝑉𝐼 = 0.04064 ∗ 𝑥0.3433        (5) 

where x is the 12-months cumulative precipitation. Likewise, precipitation reduced urban 

LST according to the power function: 

𝐿𝑆𝑇 = 425.1 ∗ 𝑥−0.7245 + 34.27       (6) 

The effect of climate on NDVI and LST was mediated by urbanization, with the most 

arid cities being greener than and cooler than their reference. A primary driver of change 

in NDVI and LST between reference sites and cities was a gradient of precipitation, 

necessitating a clearer understanding of under what conditions precipitation acts as a 

mediating variable.  

3.2 Aridity decouples urban greenness from precipitation 

The sensitivity of NDVI and LST to precipitation was mediated by precipitation (Fig. 

3). In cities and reference sites, NDVI-Precipitation was assessed using breakpoint 

regression. The sensitivity of urban and reference site NDVI peaked at intermediate 

levels of rainfall, occurring in cities with 358 mm of 6-months cumulative precipitation, 

and in reference sites with 340 mm of 6-months cumulative precipitation. The sensitivity 

of urban NDVI was distinct from that in reference sites in extremely arid and extremely 

mesic environments. Under extreme aridity the urban NDVI-precipitation relationship 

dropped to zero, indicating a complete decoupling of urban greenness from precipitation 

not observed in the most arid reference sites. Conversely, in the wettest environments, 

reference site NDVI became non-responsive to precipitation, while urban NDVI still 

maintained a positive relationship. 
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 6-months cumulative rain was chosen as the monthly aggregation due to the 

reference site having the highest correlation between NDVI and precipitation at 6 months 

cumulative precipitation (pearson’s r= -0.63, p-value<0.001). The highest correlation 

between urban NDVI and precipitation occurred at 10-months cumulative precipitation 

(pearson’s r= -0.86, p-value<0.001), however, the urban relationship at 6 months was not 

much different (pearson’s r= -0.78, p-value<0.001). Assessing both the urban and 

reference site NDVI-Precipitation relationship at 6-months cumulative precipitation 

therefore allowed for direct comparison between urban and reference sites. 

Notably, although we assessed the variability in NDVI-precipitation for all 52 cities 

and reference sites, 16 of 52 cities (31%) and 19 of 52 reference sites (37%) had no 

significant relationship between NDVI and precipitation at 6-months cumulative 

precipitation. A generalized linear model was able to explain 43% of the variance in 

whether a city had a significant NDVI-precipitation relationship (p-value=0.001). 

Increasing climate water deficit made it more likely that a city would not have a 

significant relationship (p-value=0.012). A city’s climatic context, via the Köppen-Geiger 

classification, also mediated this relationship. Relative to cities in a temperate 

classification, cities in a cold classification (p=0.048) and tropical classification 

(p=0.002) had a greater probability of not having a significant NDVI-precipitation 

relationship. 

LST-Precipitation varied between cities and reference sites, exhibiting the effect of 

urbanization on how precipitation cools the local environment. The highest correlation 

between LST and precipitation for both urban (pearson’s r= -0.53, p-value<0.001) and 
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reference sites (pearson’s r= -0.79, p-value<0.001) occurred at 8-months cumulative 

precipitation. The sensitivity of LST to precipitation was greater in reference sites than in 

cities, however, in both locations the greatest cooling from precipitation occurred in the 

most arid sites. In the most mesic environments LST cooling from precipitation was 

effectively zero in both cities and reference sites. Despite the greatest correlation between 

LST and precipitation occurring at 8-months cumulative precipitation, we assessed the 

urban and reference relationships at 2-months cumulative precipitation. The best 

relationship between LST-precipitation and precipitation occurred at 2 months of 

precipitation for both urban (pearson’s r=0.40, p-value=0.003) and reference sites 

(pearson’s r=0.61, p-value<0.001), which is what we used for analysis. Urban NDVI and 

LST precipitation sensitivity were therefore modified by gradients of aridity and 

weakened by urbanization, however, the variability of these relationships in arid 

compared to mesic cities suggests that climate may modify this urban to rural difference. 

3.3 The effect of urbanization is mediated by climate, landcover, and race 

The effect of urbanization on NDVI or LST can be indirectly assessed by treating the 

delta (▲) between urban and reference sites as a dependent variable (Fig. 4). The 

difference in NDVI between a city and its reference site was explained by landcover and 

the climate. NDVI was as high or higher than a reference site when urban NDVI was as 

high or higher than a reference site (p-value<0.001). In regions with high vapor pressure 

deficit, cities were more likely to have higher NDVI than a reference site (p-

value<0.001); these two variables explained 76% of the continental-scale variability in 

the difference between urban and non-urban greenness. The difference in LST between a 
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city and its reference site was driven solely by the difference in NDVI. Cities which had 

higher NDVI than their reference site were cooler (p-value<0.001); the difference in 

NDVI explained 89% of the variability in the difference in LST. Vegetative cooling was 

greater in a city than its reference site in environments with a high climate water deficit 

(p-value=0.002) and in cities with a larger white population (p=0.018). Climate water 

deficit and race explained 22% of the variability in the difference in urban to reference 

vegetative cooling. 

3.4 Multidecadal trends in NDVI, LST, and Vegetative Cooling between 2000-2022 

The long-term trends in NDVI, LST, and vegetative cooling were highly variable at a 

continental scale (Fig. 5). Between 2000-2022 NDVI significantly decreased in six cities 

and significantly increased in 36 cities. A generalized linear model explained 59% of the 

variability in whether a city’s NDVI trend was positive or negative. A higher mean VPD 

increased the likelihood of a decline in NDVI (p<0.001), while cities with a larger white 

population were more likely to have an increase in NDVI through time (p=0.015). On 

average, all cities increased NDVI at a rate of 0.001/year, half as fast as the increase in 

NDVI in reference sites of 0.002/year. However, variability was high for both cities and 

reference sites, as the standard deviation for either cities or reference sites was the mean 

of its rate of change. The rate of change in NDVI was different by biome (p<0.001) and 

by Köppen-Geiger classification (p<0.001), where cities in arid/desert environments had 

the lowest NDVI trends. Urban NDVI trends in the arid southwestern United States 

exhibited unusually similar trends (Fig. S1), where NDVI trends appeared to be more like 

other arid western cities than to the reference sites associated with those cities. NDVI is 
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an important component of urban ecosystems, and one which typically has a strong 

influence on LST. 

Over the 22-year time series, 35 out of 52 cities (67%) got significantly hotter; no city 

had a significant cooling trend. Warming across all cities was 0.16 °C/year; cities 

warmed 45% faster than their reference sites, which warmed 0.11 °C/year. There was 

wide inter-urban variability in the LST trends (Fig. S2). Cities with a larger Hispanic 

population also experienced faster rates of warming at a rate of 0.025 °C/year per 10% 

increase in a city’s Hispanic population (p<0.001). Multiple regression also identified 

latitude as a significant mediator of the warming trend despite latitude not being 

significant in univariate regression. For every 1 ° latitude movement north, urban 

warming increased by 0.006 °C/year (p-value=0.003). Testing with ANOVA identified 

differences in the warming trend by Köppen-Geiger classification (p<0.001), where a 

post-hoc Tukey HSD identified the warming trend in arid environments as being faster 

than cities anywhere else. Mean warming by Köppen-Geiger classification was 0.08 

°C/year for tropical cities, 0.12 °C/year for temperate cities, 0.13 °C/year for cold cities, 

and 0.23 °C/year for arid cities. 

Across all cities, vegetative cooling increased at a rate of 0.01 °C/year. The trend in 

vegetative cooling was nearly evenly split between cities which increased vegetative 

cooling and cities which decreased vegetative cooling. A generalized linear model 

explained 30% of the variance in whether vegetative cooling increased or decreased 

(p=0.04). Cities with a larger Hispanic population were more likely to have had 

vegetative cooling decrease through time (p-value=0.003). The trend was also regionally 
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specific, with cities in the West more likely to increase vegetative cooling (p-

value=0.016). In multiple regression, the vegetative cooling trend was mediated by race 

and a city’s mean vegetative cooling. For every 10% increase in the size of a city’s 

Hispanic population, vegetative cooling declined an additional 0.041 °C/NDVI/year 

(p<0.001). Vegetative cooling was also more likely to decrease in cities which had the 

lowest average amount of vegetative cooling (p-value=0.001). Every 1 °C/NDVI 

decrease in a city’s mean vegetative cooling was associated with a decline of vegetative 

cooling through time of 0.022 °C/NDVI/year. The widespread variability in the NDVI, 

LST, and vegetative cooling trajectories at the continental scale may have important 

equity implications for the ability of urban residents to mediate these trends. 

3.5 The Luxury Effect substantially declined at a continental, multidecadal scale 

At the continental scale, sociodemographic and climatic factors influenced the mean 

luxury effect (Fig. 6), which was assessed at 2000, 2010, and 2020. Across all cities, 

income had an average effect on NDVI of 0.03/$10,000 and an average effect on LST of 

-0.37 °C/$10,000. The effect of income on NDVI was moderated by sociodemographic 

variables alone. In cities with a stronger relationship between NDVI and home ownership 

(p<0.001) and with a larger population of white residents (p<0.001), income was more 

effective at increasing NDVI. We tested racial distributions of Hispanic, Asian, Black, 

and White communities, however, we found that only the size of the white population 

modified the NDVI-income relationship. When evaluating variability of the mean LST-

income relationship, only NDVI-income emerged as a significant moderator. The effect 

of income on LST increased in conjunction with an increase in the effect of income on 
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NDVI, at a rate of -0.11 °C per 0.01 increase in the effect on NDVI (p<0.001). The 

variable dynamics between income, NDVI, and LST against sociodemographic gradients 

suggests that these relationships may not have been stable through time as income, 

NDVI, LST, and the urban sociodemographic distributions are known to have changed. 

The luxury effect substantially declined at a multidecadal, continental scale (Fig. 7). 

Between 2000 and 2020 the effect of median household income on reducing LST 

declined in all but eight cities, and significantly so in 22 out of 52 cities. Across all cities, 

LST-income declined on average 0.015 °C/$10,000/year; income was weaker by 53% in 

2020 compared to 2000 as a mediator of urban temperatures. Income as a mediator of 

urban greenness exhibited similar trends. Between 2000 and 2020 NDVI-income 

declined in all but six cities, and significantly so in 34 out of 52 cities. Across all cities, 

NDVI-income declined on average 0.0014 NDVI/$10,000/year, such that the ability for 

income to mediate urban greenness was 62% weaker in 2020 as it was in 2000. NDVI-

income and LST-income did not become significantly stronger in any city. We sought to 

explain the variability in which cities did and did not have a significant decline in the 

luxury effect using a generalized linear model. We were able to explain 67% of the 

variability in whether NDVI-income significantly declined (p<0.001). Cities with a 

higher mean household income (p=0.008) and higher 6-month cumulative precipitation 

(p-value=0.02) were more likely to have a significantly weaker NDVI-income 

relationship through time. Biome was also a significant mediator, where cities in dry 

woodland biomes were more likely to not have a significant decline in NDVI-income 

compared to cities in temperate forest biomes (p=0.003). The relationships mediating a 
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significant decline in LST-income were similar. Biome and mean household income 

explained 52% of the variability in whether LST-income significantly declined 

(p<0.001). Cities with a higher mean household income were more likely to have a 

significant loss in LST-income (p=0.002). Compared to a temperate forest biome, cities 

in dry woodland (p=0.002) and savanna/grassland biomes (p=0.01) were more likely to 

not have a significant decline in LST-income. 

The continental-scale decline in the luxury effect was highly variable. The change in 

the ability for income to mediate LST was mediated only by the trend in NDVI-income 

(p-value<0.001). Every decline in NDVI-income of 0.01/$10,000/year decreased LST-

income 0.11 °C/$10,000/year. The change in the ability for income to mediate NDVI was 

itself only mediated by a city’s average NDVI-income relationship. Every increase in the 

mean NDVI-income relationship of 0.05/$10,000 was associated with a decline in NDVI-

income through time of 0.035/$10,000/year. The declining relationships between income-

LST and income-NDVI was a consequence of evolving dynamics between 

sociodemographics and the urban biophysical environment and hints at increasing 

inequities in the provision of urban greenness and distribution of urban temperatures. 

Between 2000 and 2020, in conjunction with the continental-scale decline in the 

luxury effect, the effect of sociodemographics as a mediator of urban greenness and 

temperature were also not stable through time. The relationship between income and 

home ownership declined 0.24% home ownership/$10,000/year. However, the 

relationship between home ownership and NDVI and LST increased, such that in 2020 

compared to 2000 every 10% increase in home ownership was associated with 0.03 °C 
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additional cooling, and 0.008 additional increase in NDVI. The race-based relationships 

with NDVI and LST also exhibited non-stationarity. In 2020 and for every 10% increase 

in the race-based population, White census tracts experienced a weakened relationship 

with NDVI of 0.007 and 0.03 °C greater warming compared to 2000. Hispanic census 

tracts experienced a stronger relationship with NDVI of 0.01 and 0.21 °C less warming 

compared to 2000. Black census tracts experienced a stronger relationship with NDVI of 

0.007 and less warming of 0.10 °C. Finally, Asian census tracts experienced a stronger 

relationship with NDVI of 0.02 and less warming of 0.02 °C compared to 2000. 

However, only a minority of cities experienced significant race-based changes through 

time; for each race regressed against either NDVI or LST, fewer than 20 cities had a 

significantly different relationship in 2020 compared to 2000.  

 

Discussion 

 

This study investigated the relationship between precipitation, urban greenness, and 

temperature in 52 cities and their non-urban reference sites over a multidecadal period 

from 2000 through 2022. We show that the effect of urbanization weakened urban 

biophysical relationships, with urban greenness being fully decoupled from precipitation 

in the most arid cities. This decoupling corroborates intra-urban decoupling of urban 

greenness from precipitation in Phoenix, an arid city (Buyantuyev and Wu 2012), at a 

continental inter-urban scale. The non-sensitivity of urban greenness to precipitation in 

the most arid environments is highly suggestive of irrigation leading to this decoupling, 

particularly since similar trends were not observed in the most arid reference sites. 

However, the effect of urbanization wasn’t consistent across all cities; cities weren’t all 
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hotter than or less green than their reference site, and the magnitude of that difference 

exhibited wide variability. Landcover, the climate, and race mediated this change, 

emphasizing how urban heat and greenness are modified. Over time, NDVI, LST, and 

vegetative cooling all changed. The change in these dynamics contributed to a substantial 

decline in the luxury effect at a continental level, suggesting possible declines in the 

equitable distribution of urban heat or greenness. The dynamic relationships among 

climatic conditions, land cover, and socioeconomics uncovered in this study offers a 

more comprehensive understanding of urban ecosystems, emphasizing the importance of 

considering how these changing dynamics impact environmental equity in urban planning 

and development. 

A primary goal of this research was to assess the effect of urbanization on urban 

greenness, temperature, and vegetative cooling. Urbanization weakened the relationships 

between the climate and landcover and either NDVI or LST. Cities, as complex socio-

ecological systems, may respond differently to landcover and the climate from reference 

sites due to the luxury effect and aggregations of wealth (Hope et al. 2003, Leong et al. 

2018), legacies of ecological disinvestment in minority communities (Wilson 2020, 

Nardone et al. 2021), or differences in cultural preference for what to plant (Clarke et al. 

2014). The role of irrigation as a mediator of urban biophysical relationships is suggested 

multiple times in our data. Cities in environments with the greatest climate water deficit 

were greener than and cooler than their reference site and had greater vegetative cooling, 

cities in environments with a high mean VPD were greener than their reference site, and 

cities with the lowest cumulative rainfall had no significant relationships between NDVI 
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and precipitation, despite no such observation for reference sites. Urban biophysical 

parameters were well explained by gradients of water availability and water demand, 

supporting our inter-urban water deficit hypothesis. Precipitation's role in shaping urban 

ecosystems underscores the importance of incorporating climate-related factors into 

urban ecological research.  

The sensitivity of urban and reference site NDVI to precipitation peaked at 

intermediate levels of cumulative rainfall. This optimal range of precipitation was due to 

not enough water to influence NDVI in very arid climates, and too much water to 

influence NDVI, due to, for example, waterlogged soils, in very wet climates. The 

relationship between precipitation and LST was similar in that the urban relationship was 

much weaker than the non-urban relationship. However, in both cities and reference sites, 

the greatest cooling from precipitation occurred under conditions of greatest aridity. That 

the most arid cities experienced the greatest cooling from precipitation was likely due to 

low vegetation cover and high pervious cover in very arid cities. Due to less total 

vegetative cooling from less vegetation, temperature in these cities may be more directly 

influenced by evaporative cooling brought about by precipitation. Urbanization decreased 

the sensitivity of NDVI and LST to precipitation, however, understanding what causes 

the effect of urbanization itself would have important implications for urban land 

management. 

The effect of urbanization, or the difference in NDVI, LST, and vegetative cooling 

between a city and its reference site, were driven by landcover, the climate, and race. 

Cities were not uniformly less green than or hotter than their reference ecosystem; cities 
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were greener when they had more tree canopy cover, and they were cooler when they had 

greater NDVI. These parameters are policy decisions (Hill et al. 2010, Mincey et al. 

2013), but are also heavily informed by income (Schwarz et al. 2015) and race (Watkins 

and Gerrish 2018). The cities which achieved these benefits were not rural, thus, these 

results were not due to low impervious cover and spontaneous vegetation. Sacramento, 

CA, a city of over half a million residents and which is known as the City of Trees 

(McPherson and Luttinger 1998), has an urban forest 5.2% greater than Sacramento’s 

hinterlands, and consequently experiences urban temperatures on average 3.5 °C cooler 

than the land outside of Sacramento. Increasing urban greenness via an increase in tree 

canopy cover is therefore an effective strategy to minimize the urban heat island 

(Rahman et al. 2020). Race also mediated the effect of urbanization, with greater 

vegetative cooling in cities with a larger white population. Minority populations are 

associated with increased temperature and decreased greenness independent of income 

(Harlan et al. 2006, Casey et al. 2017, Benz and Burney 2021), suggesting that cities with 

larger white populations may have more favorable conditions for vegetative cooling. 

Urbanization led to variability in mean NDVI, LST, and vegetative cooling, however, 

these dynamics exhibited long-term change. 

Dynamics of urban NDVI, LST, and vegetative cooling exhibited wide variability 

between 2000-2022 at a continental scale. Most cities became greener, which may have 

been due to changing economics (e.g., an increase in vacant lots leading to unimpeded 

plant growth), implementation of green infrastructure such as green roofs and bioswales, 

and higher urban temperatures making growing conditions more favorable for plants 
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(Smith et al. 2019). An increase in urban greenness is consistent with global observations 

(Piao et al. 2019) and may be due to afforestation. The NDVI trend was highly context 

dependent, with the lowest trends in arid and desert environments. This may have been 

associated with the LST trend; arid cities warmed significantly faster than cities 

anywhere else. Urban plants in these regions may have become stressed with increasing 

temperature, decreasing growth (Winbourne et al. 2020). Conversely, cities in arid 

environments may have been more likely to engage in xeriscaping as a practice to 

conserve water (Ismaeil and Sobaih 2022), a practice known to raise urban temperatures 

(Meerow et al. 2021). As well, drought in this region may have weakened NDVI trends, 

as drought is known to decrease urban greenness (Allen et al. 2021, Kucera and Jenerette 

2023) even when irrigation is unchanged (Quesnel et al. 2019). NDVI trends in this 

region were unique compared to the rest of the country; urban NDVI trends in the arid 

southwest exhibited unusual synchronicity, fluctuating in ways more like other 

southwestern cities than to the reference site those cities replaced. These cities were 

located in a region spanning tens of thousands of square kilometers, suggesting a climatic 

role mediating these trends. However, climate would have been expected to alter the 

reference site trends in similar ways, which was not observed. These findings merit 

further analysis, but may be due to urban homogenization (Groffman et al. 2014) leading 

to changes in NDVI among arid cities more similar to other arid cites than to their 

reference ecosystem. These results suggest two predictions that require quantitative 

analysis: first, that in southwestern cities urban NDVI trends are dissimilar from the 

trends for that city’s reference site. Second, these findings suggest the prediction that the 
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trends for southwestern cities exhibit synchronicity and are like one another. Although 

the urban NDVI trend exhibited unique spatial clustering, the LST trend did not. 

Urban warming increased the most in cities arid, Hispanic-dominated cities. Across 

all 52 cities LST increased on average 0.16 °C/year, 45% faster than the warming of 

reference sites of 0.11 °C/year. Our observed rate of urban warming compared to 

reference site warming was greater than the 29% faster urban warming observed at a 

global scale (Liu et al. 2022). However, prior studies have utilized MODIS to assess 

temperature trends. MODIS, with a 1-km2 spatial resolution for the thermal bands, is 

significantly coarser than the ~100-m2 spatial resolution for the Landsat thermal bands. 

We suspect the faster rate of urban warming identified in this study is due to the use of a 

higher spatial resolution dataset. Nevertheless, the fastest increases in temperature in 

Hispanic-dominated cities poses challenges for environmental equity, as the inter-urban 

distribution of urban heat is becoming increasingly racially inequitable. 

We further assessed the long-term trend in vegetative cooling, which was modified by 

race and mean vegetative cooling. Vegetative cooling declined the fastest in cities with 

the largest Hispanic populations. This may have been a consequence of Hispanic-

dominated cities warming the fastest, leading to stomatal closure if urban plants in these 

regions exhibited isohydric strategies. The trend in vegetative cooling was also associated 

with mean vegetative cooling, becoming stronger in cities which experienced the most 

vegetative cooling, and becoming weaker in cities which experienced the least vegetative 

cooling. This observation may be reflective of a feedback loop (Abram and Dyke 2018), 

where cities with conditions suitable for vegetative cooling are able to maintain those 
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conditions, while cities with less favorable conditions are losing the capacity for 

vegetative cooling. The spatially variable long-term dynamics of NDVI and LST suggests 

possible changes to the benefits, and equity implications of, maintaining greener and 

cooler cities.  

The luxury effect, being the ability for income to mediate both an increase in 

greenness and decrease in temperature, was spatially variable at an inter-urban 

continental scale. The effectiveness of income on increasing NDVI was modified by 

sociodemographics, where cities with the strongest relationship between home ownership 

and NDVI as well as with the largest population of white residents also had the largest 

effect of income on increasing NDVI. In our dataset home ownership had a strong 

influence on increasing NDVI. We find that when the relationship between home 

ownership and NDVI became stronger, so did the relationship between income and 

NDVI. Home ownership is associated with other sociodemographic variables such as 

income and education (Fossa et al. 2023), providing the means to manage plant cover. 

Renters may have a reduced capacity to influence urban plants for numerous reasons, 

including high turnover, as planting typically is greatest in the first five years of home 

ownership (Summit and McPherson 1998), lack of financial resources, or lack of 

permission from the landowner (Riedman et al. 2022). Home ownership may influence 

plant cover via a desire to signal social status (Grove et al. 2014) or to match community 

norms (Ossola et al. 2019). Therefore, part of the inter-urban variability in NDVI-income 

is related to home ownership, and specifically to how engaged homeowners are in 

modifying their greenspace. NDVI-income was also modified by the proportion of a 
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city’s population that was white. Racist legacies of redlining from the 1930s, where 

minority neighborhoods were more likely to be redlined, has led to inequities in 

greenness distributions where neighborhoods red lined in the 1930s have the lowest plant 

greenness in the 21st century (Nardone et al. 2021). The positive association between the 

size of a city’s white population and the effectiveness of income on NDVI reinforces how 

past legacies of greenspace disinvestment in minority communities has led to the 

inequitable distribution of the luxury effect on NDVI at a continental scale. The increase 

in income-LST with an increase in income-NDVI suggests that where income has a 

greater effect on urban greenness vegetative cooling from transpiration and shading 

increases, subsequently enhancing LST-income. Wealthy cities and regions of cities have 

high tree canopy cover (Schwarz et al. 2015), producing a strong income-NDVI 

relationship and producing cooler temperatures. However, the variables modifying the 

inter-urban variability of the luxury effect are changing over time, not least due to climate 

change, suggesting that the luxury effect itself may exhibit non-stationarity. 

The luxury effect declined at the continental scale in its ability to mediate both urban 

greenness and temperature, highlighting important shifts in environmental equity due to 

changes in demographics, the climate, and the amount of urban vegetation. The luxury 

effect has profound consequences for environmental equity, disproportionately affecting 

low-income and non-White populations due to higher temperatures and lower plant 

cover. A decline in the luxury effect has led to an increase in environmental equity as 

high-income cities became more like low-income cities in their reduced ability to manage 

urban greenness and temperature. The only variable which described the change in the 
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LST-income relationship through time was income-NDVI; income-LST declined linearly 

with a decline in NDVI-income, suggesting that the effect of income on LST is 

fundamentally driven by vegetative cooling. In contrast, the change in NDVI-income 

through time was driven by the average strength of the NDVI-income relationship, 

becoming weaker through time more quickly in cities in which income was a stronger 

mediator of NDVI. A weakening of the luxury effect in these cities indicates a more 

equitable greenspace distribution, which could be due to either a decrease in NDVI in 

wealthy regions, or an increase in NDVI in low-income communities. Policy, such as an 

increase in urban densification, could also have mediated this change. The observed 

decline in the luxury effect at the continental scale corroborates Kucera and Jenerette 

(2023), who found a multidecadal decline in the luxury effect for the Los Angeles urban 

region. This multidecadal decoupling of income from greenness and temperature 

underscores the need for continued research to understand the evolving relationship 

between socioeconomic factors and the temperature and greenness dynamics of urban 

ecosystems. Important urban ecological relationships should not be assumed to exhibit 

stationarity; assumptions about stationarity need to be explicitly tested. 

This research contributes to the growing field of urban macroecology, providing 

valuable insights into the complex interplay of climate, landcover, and social factors 

among many urban ecosystems. In comparing urban to non-urban ecosystems across 

many cities this research supports an ecology of cities paradigm, which emphasizes the 

importance of comparative urban ecosystem studies for advancing the theory of urban 

ecosystems (McPhearson et al. 2016). Urban macroecology is uniquely suited to 
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understanding how urbanization affects urban ecosystems, providing a more holistic view 

of where and why urban ecosystems differ from their non-urban reference sites. Adopting 

an urban macroecological approach is essential for addressing the challenges posed by 

rapid urbanization, climate change, and changing sociodemographics. This research 

suggests two avenues for future research. First, there is a need to identify the cause(s) 

behind the synchronicity in urban NDVI in southwestern cities. The distance between the 

cities and their location in the arid southwest suggests that climate plays a role. However, 

understanding if and how urban greenness in arid western cities differs from how urban 

greenness varies in more mesic cities has important implications for the planning and 

equitable distribution of this urban ecosystem service. Second, the decline in the luxury 

effect at the continental scale poses significant challenges for building environmentally 

just cities if more equitable distributions of NDVI and LST are not associated with an 

improvement of conditions for low-income, minority neighborhoods. Future research 

should focus on if and what kind of green infrastructure interventions can mitigate this 

decline and whether the decline of the luxury effect may have been associated with socio-

economic transformations such as an increase in income disparity. 

Conclusion 

 

To address uncertainties in urban vegetation and climate distributions among 

cities and their dynamics, we asked whether urban macroecological patterns are 

consistent with those in non-urban urban reference sites, and how the continental-scale 

dynamics of land surface temperature, greenness, and vegetative cooling have changed 

among 52 cities at a continental scale. This study contributes valuable insights to the field 
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of urban ecology, emphasizing the complex interactions between climate, 

socioeconomics, and landcover in shaping urban greenness, temperature, and vegetative 

cooling. As the luxury effect becomes increasingly less important through time as a factor 

increasing urban greenness and decreasing urban temperatures, policymakers and urban 

planners should be able to leverage the dynamics of urban ecosystems to plan urban 

ecological interventions more appropriately. Understanding how to manage urban 

ecosystems where income is less important is critical as cities at the continental scale 

have been rapidly warming at a rate of up to 0.3 °C/year and on average 45% faster than 

non-urban reference sites. This decline in the role of income on urban greening and 

cooling has likely led to intra-urban decreases in environmental justice along with 

unaddressed implications about reduced public health and delivery of ecosystem services. 

Urban land managers should consider the non-stationarity of urban dynamics when 

designing strategies for mitigating the urban heat island, enhancing urban green spaces, 

and promoting environmental equity across diverse urban populations. 
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Figures 

 

 
 

Figure 2.1 We assessed how vegetative cooling change at the continental scale for 52 

cities in the conterminous United States, and the difference between cities and reference 

sites using the Landsat Analysis Ready Data dataset. Circles represent the cooling 

effectiveness of urban vegetation, with larger circles indicating greater vegetative 

cooling. 
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Figure 2.2 Urbanization decreased the sensitivity of NDVI and LST to annual 

precipitation at the continental scale, while the relationship of urban NDVI and LST with 

VPD was significantly different from that in reference sites. Similarly, tree canopy cover 

had a weaker relationship on the NDVI and LST of cities than in reference sites. 
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Figure 2.3 The sensitivity of NDVI to rain was driven by changes in the climate, with 

this response stronger in reference sites compared to urban sites. In both reference and 

urban sites, the sensitivity of NDVI to rain increased with low levels of rainfall up to a 

maximum at about 200 mm of 6-months cumulative rainfall, after which the sensitivity of 

NDVI to rain declined with increasing precipitation. At the lowest levels of precipitation 

there was no relationship (slope of 0 or negative) between urban NDVI and precipitation, 

suggesting the effect of irrigation in decoupling urban greenness from precipitation in the 

driest cities. The LST~Precipitation relationship was similar; LST decreased the most 

with rainfall in arid cities, whereas LST was not affected by rainfall in high-precipitation 

cities. In contrast to the NDVI relationship, where the reference site NDVI responded 

more strongly to rain than urban NDVI, urban LST was more sensitive to rain than 

reference site LST. 
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Figure 2.4 The difference in urban NDVI, LST, and vegetative cooling between a city 

and its non-urban reference site is predominantly driven by climate and landcover. NDVI 

was greater in cities when cities had more tree cover, while regions with high VPD 

favored higher NDVI in cities. The difference in LST between cities and reference sites 

was driven solely by the difference in NDVI; cities with higher NDVI than their 

reference site were cooler. Vegetative cooling was greater in cities in regions with a 

higher climate water deficit, while cities with a higher percentage of white residents were 

weakly associated with greater vegetative cooling compared to a non-urban reference 

site.    
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Figure 2.5 NDVI, LST, and vegetative cooling all changed through time at a continental, 

multidecadal scale. The change in NDVI was geographically dependent on biome or 

Köppen-Geiger classification. The LST trend was more rapid in cities with a larger 

Hispanic population, and in cities which were further north. The vegetative cooling trend 

was split among cities between an increase and a decrease; vegetative cooling was more 

likely to decrease through time in cities with a large Hispanic population and which had 

the lowest mean levels of vegetative cooling. 
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Figure 2.6 At the continental scale, the mean effect of income on NDVI was stronger in 

cooler cities and in those with a higher proportion of white residents. Mean income-LST 

was only explained by income-NDVI, where cities which had a stronger relationship 

between income and NDVI also had a stronger relationship between income and LST. 
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Figure 2.7 The luxury effect with regards to NDVI-income and LST-income declined 

62% and 53% respectively between 2000 and 2020. The decline in the effect of income 

as a mediator of LST was greatest in cities which had the greatest declines in the effect of 

income as a mediator of NDVI. The decline in the effect of income as a mediator of 

NDVI declined the most in cities with a stronger mean relationship between income and 

NDVI. 
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Supplementary Figures 

 

 
 

Figure 2.S1 Trends in urban NDVI were generally increasing at the continental scale 

between 2000 and 2022, however, cities in the arid southwest exhibited NDVI trends 

unusually similar to other cities within the same biome. Within this region urban NDVI 

trends were more similar to other arid cities than to the non-urban ecosystems those cities 

replaced. 
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Figure 2.S2 At the continental scale cities warmed on average 0.16 °C/year between 

2000 and 2022, however, cities in arid environments warmed most rapidly at a rate of 

0.23 °C/year. 
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Chapter 3 

 

Global-Scale Multidecadal Changes in Urban Greenness and Temperature Has Led 

to Declines in Vegetative Cooling 

 

Abstract 

 

The temporal evolution of urban microclimates, particularly under the influence of 

drought and ongoing climate change, profoundly affects the quality of life in cities. The 

dynamics of urban greenness and temperature change through time, yet our 

understanding of the temporal changes in these variables and their associated factors 

among cities at a global scale is poor. Here, we focus on a diverse set of 266 cities from 

across 82 countries, examining the changing dynamics and interactions among urban 

vegetation, and temperature, and associated changes in vegetative cooling, through the 

lens of Landsat-derived greenness and surface temperature data from 1995 through 2023. 

We hypothesize that intercity urban dynamics are primarily driven by inter-urban water 

availability and water demand, as well as being mediated by a city’s developmental 

categorization either by continent or by being in the Global North, a BRICS nation, or a 

low-and-middle-income nation. Our findings indicate that urban surface temperatures 

increased by 0.14 °C/year, greenness increased by 7.01 x 10-4 per year, and vegetative 

cooling declined by 0.04 °C/NDVI/year. Global changes in urban dynamics were 

associated with a city’s climatic context and geographic location, leading to global-scale 

changes that were highly variable. We find that cities in Europe greened the most while 

cities in Africa greened the least, cities in Europe and North America exhibited the fastest 

rates of warming, while low-and-middle-income countries experienced the fastest 

declines in vegetative cooling. These findings have implications for future urban planning 
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and climate change adaptation strategies, particularly in the importance of emphasizing a 

city’s unique environmental and geographic context in fully appreciating urban 

environmental dynamics. 
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Introduction 

 

Urban greenness and temperature are known to be spatially dependent, however, 

the global evolution of these dynamics at multidecadal scales, in the context of climate 

change and rapid urbanization, are not well understood. At multidecadal scales, 

urbanization is intensifying (Zhang 2016, Ren et al. 2022) altering the availability of 

greenspace (Richards et al. 2017), while precipitation has increased in select geographies 

(Adler et al. 2017), leading to altered relationships between landcover or precipitation 

and greenness and temperatures through time. Further, cities are warming more rapidly 

than their non-urban hinterlands (Liu et al. 2022), while ecosystems globally have been 

experiencing greening (Piao et al. 2019). The relationships between urban greenness and 

temperature may therefore not be temporally stable, leading to uncertain changes to urban 

vegetative cooling, particularly on a global scale. Thus, the relationships between urban 

greenness, temperature, and vegetative cooling are likely changing across cities over 

multidecadal periods, although many uncertainties remain as to how these relationships 

change through time or how this change is mediated. 

The inter-urban relationship between urban greenness and temperature is known 

to be mediated by many variables, particularly the climate (Jenerette et al. 2016) and 

socio-economics (Schwarz et al. 2015). Socioeconomics are an important driver of the 

greenness-temperature relationship; the increase in greenness and decrease in temperature 

with income has been well-studied at intra-urban scales via assessment of the luxury 

effect (Jenerette et al. 2006, Buyantuyev and Wu 2009, Shih 2022). The luxury effect 

may lower urban temperatures via increased vegetative cooling. Vegetative cooling is 
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known to be climate dependent, with greater vegetative cooling with greater aridity 

(Ibsen et al. 2021) and during the summer months (Su et al. 2022). Precipitation can have 

a direct influence on vegetation greenness, and by extension vegetative cooling, by 

moderating the availability of water, which affects the growth and distribution of 

vegetation (Pettorelli et al. 2005). Conversely, at intra-urban scales the sensitivity of 

urban vegetation to precipitation has been shown to decline with aridity due to increasing 

irrigation (Buyantuyev and Wu 2012), although this may not be applicable at the global 

scale due to cities in the Low- and lower-middle-income countries (LMIC) lacking the 

necessary irrigation infrastructure (Dos Santos et al. 2017). A city’s climatic and socio-

economic context is therefore crucial to fully understanding that city’s greenness and 

temperature relationship.  

Changes in the climate, particularly changes in aridity, soil moisture, and drought 

conditions, modify the water available to urban plants. Other geographic and 

physiographic gradients also mediate urban water availability. Elevation may be 

associated with a decline in soil moisture (Pellet and Hauck 2017), while precipitation 

patterns favor tropical regions. Continental-scale differences in greenness and 

temperature may likewise be attributable to differences in water availability and water 

demand. At multidecadal scales a city’s climatic context as well as its landcover and 

socioeconomics undergo change, suggesting the need for a multidecadal analysis to fully 

appreciate changing urban dynamics. 

This multidecadal, global analysis takes a macrosystems approach (Heffernan et 

al. 2014) to understanding urban ecological dynamics, utilizing the Landsat suite of 



 

130 

 

satellites to both quantify changes over large spatial scales and long temporal spans. We 

seek to provide a holistic understanding of the interactions between urban greenness, 

temperature, and vegetative cooling to identify general patterns and processes that govern 

urban ecosystems, in an ecology “of” cities paradigm (Pickett et al. 2017). In doing so we 

assess the dynamics of urban greenness and temperature among 266 global cities at a 

multidecadal scale. In assessing the spatiotemporal distributions of urban biophysical 

dynamics, we ask: How does urban greenness, temperature, and vegetative cooling differ 

among cities at the global scale, and how have these variables changed over time? 

In answering our research question, we employ advanced statistical techniques 

and leverage a large urban dataset, revealing the dynamic relationships between urban 

greenness, temperature, and vegetative cooling at a global, inter-urban scale. We test two 

hypotheses: first, an inter-urban water deficit hypothesis, which says that at a global scale 

urban greenness, temperature, and vegetative cooling dynamics will be related to climatic 

and topographic variables associated with water availability and demand. We also test an 

economic hypothesis, which says that dynamics in urban greenness, temperature, and 

vegetative cooling will be different by a city’s developmental categorization, with cities 

in more affluent nations experiencing greater greening, less warming, and greater 

vegetative cooling. We predict that global greenness and temperature are dependent on a 

city’s climatic and geographic context, with greenness and temperature increasing in 

more mesic and more arid environments, respectively. Greenness and land surface 

temperature are tightly associated at local scales, and we predict that this is also the case 

at the global scale, where greener cities are also cooler. However, dynamics of urban 



 

131 

 

greenness and temperature are likely not stable through time. We predict that through 

time greenness and temperature increased in response to afforestation and climate 

change. We test variability in urban surface temperature trends, predicting that a city’s 

geographic and climatic context mediates these relationships. We predict that the long-

term trend in vegetative cooling is related to landcover and the climate, decreasing with 

low tree canopy cover and increasing with high tree canopy cover, while decreasing with 

greater vapor pressure deficit. Our research highlights the role of a city’s climatic and 

socio-economic context in shaping global inter-urban dynamics in greenness, 

temperature, and vegetative cooling, providing valuable insights for effective 

policymaking, resource allocation, and evidence-based strategies for sustainable urban 

development and climate change adaptation. 

Methods 

 

2.1 Study Sites 

We selected 266 cities from 82 countries for a multidecadal analysis spanning the 

summer months from 1995 through 2023. City boundaries were manually delineated 

using average RGB Landsat imagery from 1990-1995, ensuring that changes in greenness 

or temperature over time were not due to land use transitions from non-urban or 

agricultural to urban areas. Most of the cities (86%) were in the Northern Hemisphere, 

reflecting a larger land area and population. To capture vegetative dynamics during 

periods when trees were not defoliated due to winter leaf fall, data for all cities were 

centered around each city's summer season. For cities in the Northern Hemisphere, data 
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were acquired for May through September, while for cities in the Southern Hemisphere, 

data were acquired from November through March. 

City selection was guided by identifying cities within developmental categories of 

the Global North, BRICS nations (Brazil, Russia, India, China, South Africa), and the 

low-and-middle-income countries (LMIC). Within each development category, we 

selected a minimum of seven cities along gradients of temperature, aridity, and 

population. Cities with populations larger than 500,000 were considered large, while all 

others were considered small. The coldest cities (bottom 10%) had a summertime mean 

air temperature of 13.0 °C while the hottest cities (top 10%) had a summertime mean air 

temperature of 31.3 °C. The wettest cities received an average of 1,082.2 mm of rain per 

year, while the driest cities received 76.5 mm of rain per year. Cities from the United 

States constituted more than 20% of the cities in the dataset, reflecting this study's 

extension of prior work examining multi-decadal urban greenness, temperature, and 

vegetative cooling dynamics at a continental scale. 

2.2     Landsat NDVI, Temperature, and Google Earth Engine Data Acquisition 

To efficiently assess vegetative greenness and land surface temperature (LST) 

across large spatial and temporal scales, we utilized the Google Earth Engine (GEE) 

platform, a JavaScript-based petabyte-scale GIS housed in the cloud (Gorelick et al. 

2017). GEE allows for rapid manipulation of vast quantities of geospatial imagery, both 

temporally and spatially. All dependent and independent variables for this analysis were 

collected and pre-processed in GEE. All greenness and temperature data came from the 

Landsat suite of satellites. Landsat, first launched in 1972, and maintained with the 



 

133 

 

launch of the most recent Landsat 9 in 2021, represents the longest continuous record of 

space-based Earth-observation imagery (Showstack 2022). 

Using GEE, we analyzed the Normalized Difference Vegetation Index (NDVI) as 

an indicator of vegetative greenness. NDVI is a widely employed vegetation index that 

leverages the ratio between the visible and near-infrared parts of the electromagnetic 

spectrum to identify photosynthetically active vegetation (Carlson et al. 1994). Working 

with time series Landsat imagery within GEE presented challenges in terms of necessary 

inter-satellite calibrations. Analysis Ready Data (ARD), provided by the United States 

Geological Survey (USGS), largely addresses this issue through standardized 

atmospheric and radiometric calibration (Dwyer 2018). ARD ensures the Landsat 

satellites are comparable and suitable for time series analysis (Zhu 2019) yet is only 

available for the conterminous United States, Alaska, and Hawaii. To extend the length of 

our time series and maintain the flexibility of manipulating a dataset entirely available on 

GEE, we opted to manually harmonize the spectral bands of the Landsat satellites. 

We harmonized NDVI using Landsat Collection-2 Level-2 Tier 1 imagery for 

Landsat 5 (LANDSAT/LT05/C02/T1_L2), Landsat 7 (LANDSAT/LE07/C02/T1_L2), 

Landsat 8 (LANDSAT/LC08/C02/T1_L2), and Landsat 9 

(LANDSAT/LC09/C02/T1_L2) with scaling coefficients published in Roy et al. (2016). 

The scaling coefficients were derived by using ordinary least squares regression to 

linearly transform Landsat 8/OLI reflectance values, ensuring consistency with the 

reflectance values of Landsat 5/TM and Landsat 7/ETM+. We applied the same scaling 

coefficients for Landsat 8 to Landsat 9. The instrumentation on Landsat 9 is nearly 
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identical to that on Landsat 8 (Masek et al. 2020), leading to low disagreement of less 

than 0.2% for most spectral bands with uncertainty of up to 0.5-1% for the green band for 

certain vegetation (Gross et al. 2022). Harmonization of spectral bands and derivation of 

NDVI was completed in GEE. 

In addition to NDVI we evaluated land surface temperature (LST), the thermal 

radiance from land due to solar radiation (Khan et al. 2021), which plays a crucial role in 

many ecologically significant phenomena (Li et al. 2013). To assess LST we used the 

Surface Temperature product bundled with the Landsat Collection-2 Level-2 imagery. 

We initially sought to harmonize the thermal bands among the Landsat satellites, 

however, doing so is more challenging as no straightforward methodology has been 

proposed due to high spatial and temporal variability in thermal emission (Cao et al. 

2022) and stray light contamination. However, the Surface Temperature product is 

radiometrically calibrated, making it suitable for inter-satellite time series analysis (Wang 

et al. 2023). Many urban studies utilize MODIS to assess urban temperatures (Shen and 

Leptoukh 2011, Peng et al. 2012, Zhou et al. 2015, Zhao and Wentz 2016, Liu et al. 

2022), however, MODIS thermal imagery is provided at 1 km2 resolution. Between 

Landsat 5 and 9, thermal imagery is captured at between 60 and 120 m2 resolution, much 

finer than MODIS and which we felt would provide novel insights into global-scale 

urban thermal dynamics.  

After acquiring our NDVI and LST datasets we then cloud masked and clipped 

them to the city extents within GEE. We used all available 1995-2023 Landsat imagery 

from Landsat 5, 8, and 9 and Landsat 7 through May 31st, 2003, due to the failure of that 
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satellite's scan line corrector (SLC). The SLC failure resulted wedges of missing pixels, 

increasing from zero missing pixels in the image center up to 14 missing pixels on the 

image periphery (Petrovskaia et al. 2022). In GEE we employed a strict filtering process 

to ensure the return of only the highest-quality imagery. This included setting filtering 

IMAGE_QUALITY_OLI and IMAGE_QUALITY_TIRS to 9, representing the best 

image quality. Following cloud and water masking we removed any individual image in 

which at least 5% of the pixels within a city’s boundary were masked out. We removed 

any cities which had less than 15 valid, remaining images from across the time series. 

Many of the removed cities were from the tropics, including the Amazon, equatorial 

Africa, and the Malay Archipelago. Persistent cloud cover in these regions poses clear 

challenges to using visible spectrum satellite remote sensing to improve our 

understanding of the urban ecology of tropical cities (Ling et al. 2021). 

After acquiring NDVI and LST from GEE, we uploaded the data to Matlab 

r2023b for analysis. We primarily employed gradient boosted machines (GBMs) to assess 

variability in our dependent variables. GBMs, while more sophisticated than other 

statistical tools such as multiple regression, are a powerful machine learning technique 

known for their effectiveness. GBMs are particularly adept at handling non-linear 

relationships and multicollinearity in a way similar to random forests. However, they 

often outperform random forests in predictive accuracy, especially in scenarios where the 

underlying data structure is complex (Friedman 2001). This advantage is largely due to 

the method's iterative approach, where each new tree is built to correct the errors of the 

previous ones. Additionally, GBMs provide a framework for estimating variable 
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importance, which offers valuable insight into the most influential predictors on the 

dependent variable. To increase our confidence of the GBM’s selection of top predictors, 

we additionally implemented 5-fold cross validation, hyperparameter optimization via 

Bayesian optimization, the use of training and holdout datasets, and calculated 

permutation importance scores on multiple runs of the optimized model. The output from 

the GBM are partial dependence plots, which visualize adjusted values of the 

independent variable on the dependent variable considering the effects of all other 

variables in the model. In modelling the spatial dependencies of NDVI, LST, and 

vegetative cooling, we did not include variables of landcover as the relationship between, 

for instance, temperature and impervious surfaces is well understood. We defined our top 

predictors as those with a permuted importance score at least 1.5 standard deviations 

above the mean. 

2.3     Climate, Social, and Landcover Predictor Variables 

We assessed changes of NDVI and LST in response to select social, climatic, and 

landcover variables. We accessed climate variables using GEE from the TerraClimate 

(IDAHO_EPSCOR/TERRACLIMATE) dataset. TerraClimate is a global climate dataset 

valid from January 1958 through December 2021 (Abatzoglou et al. 2018), collected at a 

monthly scale and a ~4 km2 resolution. From TerraClimate, we accessed climate water 

deficit, precipitation, potential evapotranspiration, solar radiation, minimum and 

maximum temperature, and vapor pressure deficit. We further modified the precipitation 

variable to create new variables representing 1-12 months of cumulative precipitation. 

We supplemented climate data with 2-meter air temperature from ERA5, a monthly 
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dataset at 0.25° resolution (Hersbach et al. 2023). From the Global Land Data 

Assimilation System (GLDAS) 2.2, a monthly dataset at 0.25° resolution, we acquired 

plant canopy surface water, evapotranspiration, and terrestrial water storage (Li et al. 

2019, Li et al. 2020a). We were also interested in characterizing climatological drought in 

the region of each city. We did so with the Standardized Precipitation Evapotranspiration 

Index (SPEI; CSIC/SPEI/2_8). The standardization of this index allows for direct 

comparison through time and across space (Beguería et al. 2023). 

 Other variables we utilized included an elevation dataset from the Shuttle Radar 

Topography Mission digital elevation map (USGS/SRTMGL1_00) provided at 1-arc 

second resolution (Farr et al. 2007). We utilized a global map of biomes from 

(OpenLandMap/PNV/PNV_BIOME-TYPE_BIOME00K_C/v01) providing a global 

distribution of potential biomes at 1 km2 resolution (Hengl 2018) and complemented this 

dataset with the Köppen-Geiger classification map for 1991-2020 (Beck et al. 2023). We 

did not utilize the “tundra” biome as none of our cities were present in this region. To 

facilitate analysis, we aggregated the remaining 16 biome classifications into five classes: 

tropical forest, temperate and cold forest, dry woodlands and scrub, savanna and 

grassland, and desert. We aggregated the 21 Köppen-Geiger classifications into classes of 

tropical, arid, Mediterranean, temperate, and cold. We assigned each city to a specific 

biome or Köppen-Geiger classification based on the mode of biome or climate 

classification pixels within the city’s boundary. We used each city’s latitude in absolute 

value as an independent variable and created new categorical variables denoting a city’s 

geographic location on a given continent or whether it was in the Global North, a BRICS 
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nation, or in an LMIC. Finally, we utilized SMAP 

(NASA_USDA/HSL/SMAP10KM_soil_moisture) to assess global-scale variability in 

surface and sub-surface soil moisture (Sazib et al. 2018). 

For a global study, sub-national socioeconomic data was unavailable for many 

countries, particularly LMIC. We used data from the World Bank (data.worldbank.org) to 

characterize a city's socio-economic status using national-scale data, acquiring variables 

representing national income and education. We took the mean of the annual-scale World 

Bank data that coincided with the length of our time series. From GEE we further 

acquired data on population size (CIESIN/GPWv411/GPW_Population_Count) and 

population density (CIESIN/GPWv411/GPW_UNWPP-Adjusted_Population_Density) at 

30-arc second resolution between 2000 and 2020 (Center for International Earth Science 

Information Network - CIESIN - Columbia University 2018a, b). We complemented this 

dataset with the Global Human Settlement Layers, Built-Up Volume Grid 

(JRC/GHSL/P2023A/GHS_BUILT_V), from which we acquired the above-ground 

volume of the built urban infrastructure at 100 m2 resolution (Pesaresi and Politis 2023). 

Lastly, we obtained landcover data from the Dynamic World V1 dataset 

(GOOGLE/DYNAMICWORLD/V1). Dynamic World is a global landcover dataset 

provided at approximately 3 days temporal frequency and 10 m2 spatial resolution 

(Brown et al. 2022). Achieved using deep learning, Dynamic World is unique in its high 

global spatial and temporal resolution. A value for a Dynamic World pixel represents the 

probability that the given pixel is entirely covered by the land cover of interest. From 

Dynamic World we acquired data on tree cover, grass cover, bare cover, and built 
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(impervious) cover. We characterized each city’s landcover as the mean value of all 

landcover imagery from 2015 through 2023. 

Results 

3.1    Long-term Trends in NDVI, LST, and Vegetative Cooling 

At a global scale, greenness and temperature were correlated, corroborating 

known intra-urban dynamics on an inter-urban scale (pearson’s r=-0.65, p-value<0.001). 

The slope of the regression between NDVI and LST, termed vegetative cooling, provides 

a standardized indicator for how much cooling is derived per unit of NDVI (Fig. 1). 

NDVI and LST significantly changed in most cities between 1995 and 2023, leading to 

an overall reduction in vegetative cooling through time (Fig. 2). On average, NDVI 

increased among all cities at 7.0652 x 10-4/year, where 126, or 47% of cities had a 

significant greening trend and 47, or 18%, of cities became significantly less green. The 

remaining 94 cities experienced no change in greenness. In a generalized linear model 

which explained 45% of the variability in whether the greenness trend for a city was 

positive or negative, cities with high mean NDVI (p-value<0.001), high surface soil 

moisture (p-value<0.001), and high maximum air temperature (p=0.024) were all 

significantly associated with a decline in greenness through time. The high spatial 

variability in the NDVI trend was also observed with the LST trend. Across all cities LST 

increased 0.14 °C/year with a standard deviation of 0.09 °C/year, while the 172 cities 

with a significant warming trend warmed at 0.17 °C/year. No city became significantly 

cooler. The long-term trends in NDVI and LST led to an evolving relationship between 
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NDVI and LST which had the consequence of a global decline in urban vegetative 

cooling. 

 Summertime vegetative cooling declined across all cities at a rate of 0.043 

°C/NDVI/year. The trend in vegetative cooling was significantly different in 149 cities, 

decreasing in 129 and increasing in 20. We sought to explain these differences in trends 

by using a generalized linear model which allowed us to explain 53% of the variability in 

whether urban vegetative cooling increased or decreased. Only in cities where the bare 

soil surface temperature increased was vegetative cooling also more likely to increase 

(p<0.001). Vegetative cooling was likely to decrease in cities with high potential 

evapotranspiration (p<0.001), high impervious cover (p<0.001), and which had larger 

increases in land surface temperature (p<0.001). We sought to explain the long-term 

variability in urban NDVI, LST, and vegetative cooling by using gradient-boosted 

machines. 

NDVI increased the most through time in cities which had the lowest mean NDVI 

(Fig. 3). Cities with high NDVI above approximately 0.4 had a higher probability of 

experiencing a decrease in NDVI through time. Although not identified as a top predictor 

via machine learning, raw greening trends were different by biome following (p<0.001) 

and Köppen-Geiger classification (p<0.001) from ANOVA. Tropical and temperate 

forests had NDVI trends significantly lower than dry woodlands, savanna, or desert 

biomes. The results were similar by Köppen-Geiger classification, where cities in tropical 

classifications had a significantly lower NDVI trend than any other classification while 
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cities which became the greenest were in arid or Mediterranean classifications. Trends in 

urban surface temperatures were also dependent on geographic context. 

The trend in urban surface warming was associated with a city’s geographic 

context and water availability (Fig. 4). Gradient boosted machines (GBM) identified the 

trend in mean annual precipitation as a top predictor, where cities which became the 

hottest were also the ones which had the largest decreases in precipitation. Cities near the 

equator warmed the least, while cities closer to the poles warmed faster. Geographic 

context also influenced the LST trend by continent, where the highest adjusted LST 

trends were in North America and Europe. These differences in warming trends by 

continent were corroborated by ANOVA (p-value<0.001). Results from a post-hoc Tukey 

HSD showed that the raw warming trends were more rapid in Europe compared to 

Oceania at a rate of 0.008 °C/year (p-value=0.022), were more rapid in North America 

compared to Oceania at a rate of 0.1030 °C/year (p-value=0.002) and were more rapid in 

North America compared to Asia at a rate of 0.0501 °C/year (p-value=0.004). The mean 

rate of warming was greatest in North America (0.16 °C/year), followed by Europe (0.15 

°C/year), Africa (0.13 °C/year), South America (0.12 °C/year), and Asia (0.11 °C/year), 

with the lowest mean warming occurring in cities in Oceania (0.06 °C/year). The rate of 

warming was also different by biome (p=0.003); cities in tropical forest biomes warmed 

more slowly than cities in any other biome. The evolving relationship between urban 

greenness and temperature led to a global-scale reduction in urban vegetative cooling. 

 A GBM identified a city’s developmental categorization as being the most 

important predictor influencing the vegetative cooling trend (Fig. 5). This result was 
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corroborated with ANOVA, which found a significant difference in the vegetative 

cooling trend for cities between the Global North, BRICS nations, and LMIC (p-

value<0.001). Follow up testing with a post-hoc Tukey HSD found that cities in LMIC 

had a greater rate of loss in vegetative cooling than for cities in either the Global North 

(p-value<0.001) or in BRICS nations (p-value=0.015), but the trend in BRICS nations 

and the Global North was not different from one another. As well, the slowest declines in 

vegetative cooling occurred in cities that had higher tree canopy cover and which had 

lower average surface temperatures.  

3.2     Spatial Dependencies of NDVI, LST, and Vegetative Cooling 

Greenness exhibited high inter-urban variability (Fig. S1). Machine learning 

identified a city’s developmental categorization being either in the Global North, a 

BRICS nation, or LMIC as the top predictor of urban greenness. This result was 

corroborated with ANOVA, which found significant differences in mean urban NDVI by 

developmental categorization (p-value<0.001). Follow-up testing with a post-hoc Tukey 

HSD found urban NDVI in the Global North 0.12 higher than in LMIC/Global South 

(p<0.001) and 0.032 higher than in BRICS nations (p-value<0.001). Urban NDVI in 

BRICS nations was 0.021 higher than in LMIC (p-value=0.004). NDVI was also higher 

in cities which had a lower climate water deficit. Although not identified as a top 

predictor in our gradient boosted model, ANOVA identified mean urban NDVI as being 

different by biome (p<0.001) and Köppen-Geiger classification (p<0.001). The highest 

mean NDVI was in cities in the temperate forest biome, while desert cities had lower 

NDVI than any other biome. By Köppen-Geiger classification, mean NDVI was greatest 
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in temperate and cold cities, with arid cities having lower NDVI than any other 

classification. In a similar way, global mean LST was associated with the climate and 

geographic context. 

Mean LST also exhibited context-dependence, where latitude and vapor pressure 

deficit strongly determined a city’s temperature (Fig. S2). Latitude was the primary 

determinant of urban temperatures even after accounting for urban NDVI, landcover, and 

socioeconomics. Urban temperatures began to decrease with latitude beyond 

approximately 30 °N or 30 °S. Cities with the highest mean vapor pressure deficit were 

also the hottest. The relationship between LST and NDVI led to variability in mean 

vegetative cooling. 

Mean vegetative cooling exhibited high spatial heterogeneity (Fig. S3). Across all 

cities, vegetation provided an average cooling benefit of 7.73 °C/NDVI with a standard 

deviation of 3.05 °C/NDVI. Out of the 266-city dataset, five cities had an LST~NDVI 

relationship that was greater than zero, indicating an increase in land surface temperature 

with an increase in vegetation. We were unable to explain why these cities had a positive 

relationship, but these cities were Aden, Yemen, Agadez, Niger, Bhuj, India, Bikaner, 

India, and Timbuktu, Mali. However, all these cities are in arid environments with a 

mean VPD 1.81 standard deviations greater than the global mean in our data set. A GBM 

identified tree canopy cover as the top predictor of the inter-urban variability in mean 

vegetative cooling. Vegetative cooling was greatest in the cities with the largest urban 

forests. 
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Discussion 

 

This study highlights the interactions between vegetation greenness (NDVI), land 

surface temperature (LST), and their interrelationship (LST~NDVI) among 266 global 

cities in 82 countries, spanning various climatic conditions and socioeconomic contexts 

across 28 years. Across all cities, urban greenness and land surface temperatures 

increased, but vegetative cooling declined. Changes in these dynamics were associated 

with a city’s climatic context and geographic location. Drivers of change in urban 

greenness and temperature were multifactorial and often non-linear, making machine 

learning a valuable tool to assess global variability. The importance of climate as a 

mediator of these dynamics supports our inter-urban water deficit hypothesis. Cities in 

Europe greened the most, cities in North America and Europe warmed the most, but cities 

in low-and-lower-middle-income countries experienced the largest declines in vegetative 

cooling. Yet, intra-urban dependencies of surface temperature on vegetation 

(Maimaitiyiming et al. 2014) were observed among cities at a global inter-urban scale, 

aiding our understanding of plant physiology, particularly on the cooling effects of plants 

in urban contexts. Urban biophysical relationships are not stable through time at a global 

scale. The consequence of these changing relationships was the decline in vegetative 

cooling, suggesting greater challenges in actualizing urban resistance and resilience to 

global change. 

Between 1995 and 2023 increases in LST and variable changes in NDVI led to an 

overall reduction in vegetative cooling. Global urban greening is consistent with other 

studies (Yang et al. 2014) and may be due to afforestation (Piao et al. 2019). Notably, we 
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observed urban temperature trends that were substantially more rapid than what has been 

observed previously (Liu et al. 2022). We suspect that this was due to our use of Landsat, 

which provides thermal imagery at approximately 100 m2 spatial resolution, rather than 

MODIS, which provides thermal imagery at 1 km2 native resolution. Other studies 

utilizing Landsat for assessing urban thermal trends found similar results: low-intensity 

development in Atlanta warmed 0.15 °C/year between 1985 and 2018 (Xian et al. 2022), 

nearly identical to our observed warming in Atlanta of 0.14 °C/year between 1995 and 

2023. These results emphasize the importance of considering scale in urban 

environments. In heterogenous landscapes such as cities, coarse-resolution imagery such 

as MODIS may be inappropriate if temperature variability is greater than the pixel size. 

The NDVI and LST trends exhibited high inter-urban variability; we used machine 

learning to explain this variation. 

An intriguing pattern that emerged from our data was the largest increase in urban 

greenness in low-NDVI cities, which occurred most frequently in arid and Mediterranean 

environments. This phenomenon contradicts general expectations of reduced vegetation 

cover and enhanced warming in arid cities, thereby hinting at possible interventions such 

as improved irrigation practices or increased urban tree planting (Gill et al. 2007, Locke 

et al. 2010), which would be consistent with our observed increase in global urban 

greenness. This increase in greenness in cities with low greenness may be suggestive of 

land use change, such as low-income or abandoned properties increasing greenness 

through time (Ryznar and Wagner 2001), or easy-to-build low-vegetation areas being 

developed (Gallardo and Martínez-Vega 2016). Cities with moderate greenness exhibited 
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more stable long-term greenness trends, while the greenest cities tended to lose 

greenness. Green cities may have become less green through time due to changing 

precipitation patterns leading to less available water (Güneralp et al. 2015, Franceschi et 

al. 2023). Globally the greenest cities were in temperate and cold climate categories, with 

the highest overall greenness in cities in the Global North. The lowest mean NDVI was 

consistently in cities in arid, desert environments; these results emphasize the importance 

of a city’s climatic and developmental context on the dynamics of urban ecosystems. 

Enhanced greenness in cities of the Global North may be due to unique urban 

morphology. For instance, peri-urban (suburban) communities in Africa and Asia are 

characterized by gated communities (Hutchings et al. 2022). Public-facing vegetation is 

maintained differently than private vegetation (Locke et al. 2018) for reasons that may 

include an ecology of prestige (Grove et al. 2014), leading to possible fundamental 

differences in how urban vegetation is maintained in the Global North compared to 

elsewhere. Variability in LST trends was also climatically and geographically dependent. 

The LST trend was mediated by geographic context and water availability. 

Globally, mean urban LST was primarily associated with a city’s latitude and aridity, 

highlighting how a city’s geographic and climatic context fundamentally shapes the 

urban thermal environment. The rate of warming was also geographically and 

climatically dependent, emphasizing how urban relationships are, on a global scale, 

sensitive to local conditions. The more rapid increase in temperature in North American 

and European cities was unlikely due to population growth (Manoli et al. 2019) or socio-

economic development (Li et al. 2020b), both variables known to mediate urban 
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temperatures but which were controlled for in our model. Further, the most rapidly 

growing cities in population and economic development over our time series were outside 

the Global North (Sun et al. 2020). These results emphasize the importance of geographic 

and climatic context in shaping urban microclimates (Jacobs et al. 2020, Tan et al. 2021). 

The changing dynamics of NDVI and LST through time had the consequence of a global-

scale decline in urban vegetative cooling. 

Urban vegetative cooling exhibited summertime declines in most cities, with 

declines in this important ecosystem service being significantly greater in LMIC. On 

average, mean vegetative cooling was greater in cities with more tree cover, suggesting 

that urban trees become more effective at cooling when located in a denser urban forest. 

In Madison, Wisconsin, urban tree cover above 40% was more effective at cooling (Ziter 

et al. 2019), while urban forests in Munich, Germany were most effective at cooling 

when they were between 70-80% cover (Alavipanah et al. 2017). However, at a global 

scale vegetative cooling declined through time. Vulnerability of cities in LMIC is 

therefore greater in response to warming from climate change, as the ability to mitigate 

warming with vegetative cooling is becoming substantially weaker over time. The greater 

decline in vegetative cooling in LMIC cities may be due to unique urban morphology, 

economics, or socio-demographic distributions which alter the availability of and 

function of urban vegetation. The decline in vegetative cooling was also greatest in cities 

with a higher mean surface temperature. Increased urban heat and inadequate available 

water for transpiration may have surpassed the physiological limits of some trees leading 

to stomatal closure (Litvak et al. 2017). Isohydric strategies are commonly found in urban 
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trees such as Acer, Platanus, and Malus (Caplan et al. 2019); further, urban trees across 

species have been shown to exhibit convergence of transpiration with transpiration 

declining similar amounts with VPD (Chen et al. 2012), further suggesting that urban 

trees exhibit isohydric strategies. Planning for future urban forests therefore requires 

thoughtful selection of vegetation types in urban greening strategies, favoring species that 

can withstand temperature-induced evaporative demand yet provide sustained cooling 

benefits. The increasing inequity in global vegetative cooling underscores the challenges 

of incorporating urban vegetation into urban greening and heat reduction strategies. 

This study’s findings offer important implications for sustainable urban planning 

and development but highlight increasing inequity in the global distribution of urban 

vegetative cooling. First, the dynamic and changing relationships between NDVI, LST, 

and vegetative cooling can be leveraged in urban planning and design to improve urban 

resilience to a changing climate (Zhang et al. 2019), with a focus on cities in LMIC 

which are becoming less able to use vegetation to mitigate urban heat. Second, our 

findings demonstrate that urban greenness and temperature dynamics are mediated by the 

climate and geographic context often in complex, non-linear interactions. Support for our 

inter-urban water deficit hypothesis suggests that an integrated and multi-dimensional 

approach is needed to address urban water management (Marlow et al. 2013), particularly 

during drought conditions. Policymakers need to go beyond supply-demand management 

of water resources to consider aspects such as evapotranspiration, climate water deficit, 

and the resistance of urban greenness and temperature to changes in the water balance. 

The non-stationarity of urban biophysical relationships will likely alter urban resistance 
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and resilience to global change, underscoring how past conditions may be a poor guide to 

understand future conditions (Lenton et al. 2008, Bueno de Mesquita et al. 2021). 

Through time cities are becoming warmer and greener but vegetative cooling is 

declining. Understanding why these dynamics are changing can inform necessary 

interventions to mitigate adverse impacts from climate change and ensure the resilience 

and sustainability of urban environments (Pickett et al. 2011, McPhearson et al. 2016). 

 

Conclusion 

 

In an era where urban ecosystems worldwide are navigating a new normal 

characterized by hotter temperatures and changing precipitation patterns, this global 

analysis highlighted urban dynamics that can guide future urban planning. This global-

scale inter-urban study unveiled the complex, sometimes non-linear relationships among 

urban greenness, temperature, and vegetative cooling. This study showed examples of 

urban adaptation and resilience; cities around the world are warming, vegetative cooling 

is changing dynamically, yet urban greenness is on average increasing. Climate and 

geographic context are critical to consider to fully understand a city’s biophysical 

environment. While we observed global-scale trends, we also identified examples of 

regional-scale variability in these trends. These results emphasize that stationarity in 

urban ecosystems should not be assumed; socio-biophysical relationships change through 

time and need to be explicitly tested. Our conclusions show the changing dynamics of 

urban ecosystems in response through time; maintaining benefits of urban ecosystems 

such as vegetative cooling and lower temperatures will require a concerted effort to focus 

resources on low-and-lower-middle income nations.
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Figure 3.2 Between 1995 and 2023 the global subset of cities experienced significant 

changes in the relationship between urban greenness and temperature, leading to 

observed significant declines in vegetative cooling in 149 of the 266 cities. LST increased 

on average 0.14 °C/year, NDVI increased 7.006 x10-4/year, and vegetative cooling 

decreased 0.043 °C/year. No city became significantly cooler. 
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Figure 3.3 Between 1995 and 2023, cities which increased the most in greenness were 

those which were least green. Afforestation may be associated with an increase in 

greenness in cities with low green cover, while changing precipitation patterns may be 

associated with a decline in greenness in cities with high green cover.
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Figure. 3.4 All cities warmed on average 0.14 °C/year, where no city became 

significantly cooler. Cities which warmed the fastest were those which had a trend of 

decreasing mean annual precipitation. As well, cities closer to the poles warmed faster 

than cities near the equator. Geographic context further played a role in the warming 

trend on a continental scale, where cities in North America and Europe warmed the 

fastest. 
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Figure. 3.5 Global summertime vegetative cooling declined, on average, 0.043 

°C/NDVI/year. Vegetative cooling decreased more in cities that were less likely to have 

tree cover and which had, on average, the highest surface temperatures. The vegetative 

cooling trend was also different by a city’s developmental categorization, where cities in 

low-and-middle-income countries lost vegetative cooling at a rate faster than cities in 

either the Global North or a BRICS nation.     
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Supplementary Figures 

 

 
 

Figure 3.S1 The global variability in mean urban NDVI was heavily influenced by a 

city’s socioeconomic context, where adjusted mean NDVI was greatest in the Global 

North and lowest in low-and-middle-income countries. A city’s climatic context also 

mediated mean NDVI, where the most arid cities were the ones with the lowest NDVI. 
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Figure. 3.S2 Mean urban surface temperatures were predominately driven by a city’s 

latitude and mean vapor pressure deficit (VPD). Urban temperatures began to decline 

beyond approximately 30 °N or 30 °S, emphasizing how a city’s geographic context 

informed its thermal environment. Cities with a higher VPD were also the hottest. 
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Figure 3.S3 Mean vegetative cooling was primarily influenced by the inter-urban 

variability in tree canopy cover, increasing in more canopy-dense cities. As vegetative 

cooling is standardized, the increase in cooling with tree cover suggests an increase in 

cooling efficiency with more trees. 
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Conclusion 

 

Synthesis and Contributions to Theory 

 

This dissertation focused on the dynamics of urban greenness, temperature, and 

vegetative cooling, and sought to understand how these dynamics vary across space and 

time at three distinct spatial scales. At the city scale, using the Los Angeles urban region 

as a case study (chapter 1), I found spatially variable relationships between urban 

greenness and temperature that are modified by drought, socio-demographics, and the 

climate. The shifting relationships between these variables through time had various 

consequences, one being that vegetative cooling increased, partially offsetting urban 

warming of 0.13 °C/year. While past research has suggested that vegetative cooling has 

increased in biomes globally partially in response to rising temperatures (Piao et al. 

2019), this was the first time vegetative cooling had been shown to increase in an urban 

setting at a multidecadal scale. Non-stationarity of the relationship between greenness 

and temperature also led to changes in the distribution of environmental equity. I showed, 

for the first time, that the luxury effect, being the relationship between income and either 

urban greenness or temperature, has substantially declined through time. 

 At the national scale (chapter 2), I corroborated the findings from Los Angeles 

and found that the luxury effect on greenness and temperature substantially declined at 

the continental scale over a multidecadal period. The finding that the effectiveness of 

income as a mediator of urban greenness and temperature is declining highlights how an 

important relationship in urban ecosystems- the luxury effect- is not stable through time. I 

also described the effect of urbanization as being dependent on landcover, race, and the 
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climate. Tree cover is a major determinant of the difference in greenness and temperature 

between cities and non-urban reference sites; even in large cities with a high amount of 

impervious cover, if a city has a similar amount or more tree cover as its reference site, it 

tends to be as cool if not cooler than its reference. It is not inevitable that cities have 

significantly hotter temperatures than their surroundings; the magnitude of this 

temperature difference is in large part a policy decision.  

At the global scale (chapter 3), I explained global trends in urban greenness, 

temperature, and vegetative cooling, where cities warmed 0.14 °C/year but vegetative 

cooling declined 0.04 °C/NDVI/year. I showed that changes in the trajectories of 

greenness and temperature altered the relationship between these variables, with the 

consequence of a global decline in the cooling effectiveness of urban vegetation. 

Variability in the NDVI, LST, and vegetative cooling trends were associated with a city’s 

climatic and geographic context. This global-scale, multi-decadal analysis of how 

dynamics in urban ecosystems have changed through time contributes to our 

understanding of the ecology of cities as such in its assessment of general patterns and 

processes governing urban ecosystems. 

 Together, my findings underscore how urban dynamics may not exhibit 

stationarity, and that assumptions about stationarity need to be tested. Overall, the work 

in this dissertation supports my hypotheses about the spatial and temporal variability of 

urban greenness and temperature being associated with water availability, either directly 

through precipitation, or indirectly via sociodemographic variables of race or income. My 

studies highlight the importance of climate on urban greenness and temperature 
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dynamics, where drought led to large changes in greenness and temperature in the Los 

Angeles urban region and where precipitation influenced greenness even in irrigated 

cities. However, sociodemographics are strong drivers of urban greenness and 

temperature; in the Los Angeles urban region the spatial distribution of urban temperature 

and greenness were solely explained by landcover and income. These studies answer 

uncertainties about how urban greenness and temperature dynamics have changed at 

multidecadal scales, of drivers influencing the effect of urbanization, and in possible 

consequences for equity as a result of changing dynamics. 

This research also helps to build a theory of cities, supporting the ecology “of” 

cities framework (Pickett et al. 2017). Broadly, ecology “in” cities applies ecological 

concepts and techniques from non-urban ecosystems to urban environments, such as for 

the study of urban parks (Nielsen et al. 2013), water bodies (Hassall 2014), or ethology 

(Magle et al. 2012). Ecology “for” cities is an applied urban ecology (Breuste et al. 2013, 

Felson et al. 2013, Wu 2014) where the science of how urban ecosystems operate is 

applied towards sustainable development. Ecology “of” cities, then, is the science of 

urban ecosystems as such. The ecology of cities treats the entire city as a cohesive and 

complex urban ecosystem (Zhang et al. 2006), considering the interactions between 

social, ecological, and technological systems (SETS) that define a city (Sharifi 2023). 

The ecology of cities is interested in how cities, as their own urban ecosystems, function 

and in how they are distinct from non-urban ecosystems. In assessing this, comparisons 

among multiple cities, as well as comparisons between urban and non-urban reference 

sites, are crucial towards building this “integrated ecology of cities” (McPhearson et al. 



 

169 

 

2016). This dissertation research, which assessed over 250 distinct cities over 

multidecadal time periods spanning up to 36 years, and which compared urban to non-

urban reference sites, made important contributions towards our understanding of urban 

ecosystems and how they have changed through time. 

 

Future Directions 

 

While this dissertation assesses changes in urban dynamics over multidecadal 

periods and from the scale of a single city up through a planet-wide distribution of cities, 

this research suggests important avenues for future research. In the Los Angeles urban 

region, vegetative cooling increased, however, on a global scale, vegetative cooling 

declined, suggesting that the urban ecology of the Los Angeles urban region is unique 

compared to the global average. The decline in global vegetative cooling demands a more 

thorough assessment of cites, such as the Los Angeles urban region, in which vegetative 

cooling increased, and whether properties of these urban ecosystems can be transferred 

more broadly. However, the benefit of increased vegetative cooling in the minority of 

global cities where this was observed will not increase indefinitely with increasing 

temperature-induced evaporative demand, likely the driver of the observed increase in 

urban vegetative cooling (Manzoni et al. 2013, Will et al. 2013, Sadok et al. 2021, Yang 

et al. 2022). Plants are physiologically limited to a maximum transpiration rate, Emax 

(Manzoni et al. 2013), beyond which transpiration will not increase with temperature. 

Future temperature increases brought about by climate change may non-linearly 

accelerate the arrival to Emax; under hot, dry conditions trees may be forced into a positive 

feedback loop where reduced soil moisture increases sensible heat flux, increasing VPD 



 

170 

 

and transpiration, which further reduces soil moisture to the point of tree mortality 

(Breshears et al. 2013). If urban vegetative cooling is constrained by Emax then urban 

temperatures can be expected to rise more rapidly once Emax is surpassed. To maintain 

appropriate thermal conditions for urban residents, future research is needed to identify 

where Emax is for different common urban plants as well as to weigh the costs and 

benefits of using limited water resources for vegetative cooling. 

Further, the resolution of the spectral bands used for this dissertation, from the 

Landsat suite of satellites, was 30 m2, while the thermal bands ranged in resolution from 

60-120 m2. While this resolution is suitable for inter- and intra-urban analyses, the spatial 

distribution and configuration of greenness and temperature in global cities may be 

sufficiently different from that observed in the United States that the full variability of 

greenness/temperature dynamics are not being captured at 30 m2. In the United States, 

sub-meter National Agriculture Imagery Program (NAIP) would be a valuable resource 

to corroborate whether the findings from Landsat are consistent at a substantially finer 

spatial resolution; in chapter 3 we identified important differences in results between 

MODIS and Landsat imagery on urban surface warming trends. In chapter 2 the data 

suggest that aridity decouples greenness from precipitation at the parcel scale; the use of 

NAIP imagery, which has the spatial resolution to identify individual trees, could assess 

whether this is true. At a global scale, the use of Sentinel-2 imagery, which provides 

spectral imagery at 10 m2, may be better suited to non-Western configurations of urban 

greenness and temperature. ASTER, an instrument aboard the Terra satellite, may also be 

appropriate. ASTER collects spectral imagery at 15 m2 resolution and has been collecting 
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data since 2000 while Sentinel-2 is available from 2015. While utilization of these 

satellites would trade temporal reach for spatial fidelity, doing so would provide valuable 

insight into the dynamics of non-Western cities which may be very context dependent 

and atypical from what has been described in high-income countries (Guerrieri 2020, 

Myers 2021, Shackleton et al. 2021). 

Finally, a significant finding from this dissertation is the multidecadal decline in 

the luxury effect on both temperature and greenness at both the city and continental 

scales. Since it was first described by Hope et al. (2003), the luxury effect has been 

considered a fundamental characteristic of cities: wealthy regions of cities and wealthier 

cities are cooler and greener. The decoupling of the relationship between income and 

both greenness and temperature merits significant further research. Foremost, more 

research is needed to understand how the multidecadal decline in the luxury effect was 

mediated by changes in macroeconomics, such as by the Great Recession or the COVID 

lockdowns. Large observed declines in the effectiveness of income in mediating 

temperature and greenness suggests that the delivery of urban ecosystem services may be 

similarly shifting in response to the possible changing cost for these service benefits.  

It would be prudent to understand whether the observed decline in the relationship 

between income and greenness and temperature at the continental scale is consistent with 

the other luxury effects, and if so, what factors are driving the decline. A luxury effect 

has been identified for many properties of urban ecosystems, where higher income has 

been associated with greater arthropod diversity, woody plant diversity, bird diversity, 

lizard diversity, presence of native bird species (Leong et al. 2018), ornamental species 
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richness, floral height, and functional trait diversity (Philpott et al. 2023), among other 

properties. The multidecadal decline in the effectiveness of income on mediating 

greenness and temperature poses challenges in improving environmental conditions for 

poor and minority neighborhoods and of cities that rank lower socio-economically. There 

is the possibility that this decline in the mediating effect of income on temperature and 

greenness may lead to a poverty trap for disadvantaged communities, as framed in the 

theory on panarchy, leading to increasing difficulty for these regions to improve their 

environmental conditions (Tidball et al. 2016). Increasing inequity and difficulty in 

building resistance and resilience to global change in disadvantaged communities is also 

suggested at the global scale with the decline in vegetative cooling greatest in cities 

located in low-and-middle-income countries. As income has been shown to be an 

important mediator of urban greenness and temperature for two decades, the decoupling 

of these relationships requires future research detailing the causes, consequences, and 

challenges to equity posed by this decoupling. 
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