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To predict the earthquake response of saturated porous media it is essential to correctly simulate the

generation, redistribution, and dissipation of excess pore water pressure during and after earthquake

shaking. To this end, a reliable numerical tool requires a dynamic, fully coupled formulation for solid–

fluid interaction and a versatile constitutive model. Presented in this paper is a 3D finite element

framework that has been developed and utilized for this purpose. The framework employs fully coupled

dynamic field equations with a u–p–U formulation for simulation of pore fluid and solid skeleton

interaction and a SANISAND constitutive model for response of solid skeleton. After a detailed

verification and validation of the formulation and implementation of the developed numerical tool, it is

employed in the seismic response of saturated porous media. The study includes examination of the

mechanism of propagation of the earthquake-induced shear waves and liquefaction phenomenon in

uniform and layered profiles of saturated sand deposits.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Performance-based design (PBD) of geotechnical structures is
gaining popularity in professional practice and is fostering
research in the academic community. PBD relies heavily on
modeling and simulation tools. One of the challenges in PBD of
geotechnical and geophysical problems is analysis of dynamic
transient phenomena in fluid-saturated porous media and, in
particular, modeling and simulations of seismic wave propaga-
tion. This subject, which can be related to liquefaction, continues
to challenge engineering research and practice. In addition, lateral
movement of sloping ground as a result of pore pressure
generation poses other challenges in PBD.

Pore pressure generation phenomenon commonly occurs in
loose to medium dense sands that are fully saturated and may
induce two related phenomena: the flow liquefaction which leads
to flow slides and the cyclic mobility which leads to lateral
spreads. Pore pressure generation phenomenon commonly
occurs in loose to medium dense sands that are fully saturated
and may induce two related phenomena: the flow lique-
faction that leads to flow slides and the cyclic mobility that
leads to lateral spreads. Flow liquefaction occurs when shear
stresses required for static equilibrium exceed residual shear
ll rights reserved.

: +1 604 822 6901.

).
strength, as opposed to liquefaction, which implies a zero
effective stress. In this phenomenon an earthquake brings soil
to the point of instability, and deformations are driven by static
stresses. The associated failure occurs rapidly with little warning
and produces large deformations. On the other hand, cyclic
mobility occurs when shear stresses required for static equili-
brium are less than residual shear strength. These deformations
are driven by dynamic stresses, occur incrementally, and can be
large or small [1]. Accumulation of permanent deformations,
degradation of soil moduli, increase of hysteretic damping, and
change of soil fabric as a function of imposed cyclic shear strains
require advanced models and implementations that are tricky but
doable.

In order to systematically investigate this subject it is
necessary to predict the generation, redistribution, and dissipa-
tion of excess pore pressures during and after earthquake shaking
and their impact on the transmitted waves. A fundamental
approach requires a dynamic coupled stress-field analysis. Fully
coupled transient response of solid–pore fluid interaction and
constitutive behavior of the soil skeletonsolid skeleton play
equally important roles in successful numerical simulation of
response in saturated granular soil medium. The mechanical
model of this interaction, when combined with a suitable
constitutive description of the solid phase and with efficient,
discrete, computation procedures, allows most transient and
static problems involving deformations to be properly modeled
and accurately simulated.

www.elsevier.com/locate/soildyn
dx.doi.org/10.1016/j.soildyn.2009.11.003
mailto:mtaiebat@civil.ubc.ca
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An advanced numerical simulation tool has been developed
and utilized for this purpose. The issues of interests here are the
capabilities of the advanced constitutive model and the rigorous
framework that is used for modeling the fully coupled solid
skeleton–pore fluid interaction. Many constitutive models
with different levels of complexity have been formulated to
describe the response of soils in cyclic loading, e.g., [2–7]. The
bounding surface models have generally proved efficient
and successful in simulations of cyclic loading of sands [8].
Recently, greater consideration has been given to the role of the
progressive decay in soil stiffness with increasing pore pressure,
accumulation of deformation, stress dilatancy, and hysteretic
loops in formulating constitutive models for liquefiable soils
[9,10], among others.

The bounding surface constitutive model in this study predicts
with accuracy the soil response of noncohesive soils during
loading under different paths of monotonic and cyclic loading,
drained and undrained conditions, and for various soil
densities, stress levels, and loading conditions. From a practical
point of view, it is probably most important that for all
aforementioned conditions a single soil-specific set of constants
is needed. Besides the superiority of this constitutive model in
modeling of displacement proportional damping, the other
attractive feature of the present framework is proper modeling
of velocity proportional damping. This is done by taking into
account the interaction of pore fluid and solid skeleton. In this
way the present formulation models in a realistic way the
physical damping, which dissipates energy during any wave
propagation.

This paper summarizes the key modeling features of our
modeling and simulation tool, including the soil stress–strain
behavior and the finite element formulation. A detailed calibra-
tion of the employed constitutive model for three different sands
has been presented; this can be used as a guideline for future
applications of the model. Using these model parameters,
performance of the constitutive model in reproducing the
material response for different types and conditions of loading,
as well as different densities and stress states, is illustrated. This is
followed by verification of the implemented fully coupled
element in modeling of a complex step loading on a saturated
elastic medium.

The rest of the paper deals with modeling and simulation of
earthquake-induced soil liquefaction and its effects on perfor-
mance of layered soil systems. Specifically, the seismic response
of a uniform soil column with relatively dense sand is compared
with that of a layered soil column with a deep liquefiable loose
layer. This liquefiable layer could operate as an isolating layer,
causing reduction of accelerations in shallow layers. In addition,
an example for illustration of the possible effects of a loose
interlayer and the magnitude of the base acceleration on the
resulting lateral displacements as well as details of the wave
propagation in a relatively dense sloping soil column on the
resulting lateral displacements as well as details of the wave
propagation have been numerically studied and discussed. The
simulations presented rely on verified formulation and imple-
mentation of behavior of fully coupled porous media and on
validated constitutive material modeling. The numerical simula-
tions presented in this paper illustrate the ability of advanced
computational geomechanics tools to provide valuable detailed
information about the underlying mechanisms.
2. Mathematical formulation

The material behavior of soil skeletonsolid skeleton is inter-
related to the pore fluid pressures. The behavior of pore fluid is
assumed to be elastic, and thus all the material nonlinearity is
concentrated in the soil skeletonsolid skeleton. The soil behavior
(mix of soil skeletonsolid skeleton and pore fluid) can thus be
described using a single-phase constitutive analysis approach for
the skeleton combined with the full coupling with pore fluid.
These are the two major parts of the formulation in the present
study.

2.1. Constitutive model

The SANISAND constitutive model is used here for modeling of
soil response. SANISAND is the name used for a family of Simple
ANIsotropic SAND constitutive models within the frameworks of
critical state soil mechanics and bounding surface plasticity.
Manzari and Dafalias [7] constructed a simple stress-ratio-
controlled constitutive model for sand in a logical sequence of
simple steps. The model is fully compatible with critical state soil
mechanics principles; it renders the slope of the dilatancy stress
ratio (also known as the phase transformation line), a function of
the state parameter c, such that at the critical state where c¼ 0
the dilatancy stress ratio coincides with the critical state failure
stress ratio. In addition, softening of dense samples is modeled
within a collapsing peak stress ratio bounding surface formula-
tion. The peak stress ratio is again made a function of c such that
at the critical state where c¼ 0 it becomes the critical state stress
ratio, following an original suggestion by Wood et al. [11].

The bounding surface feature enables reverse and cyclic
loading response simulation. Dafalias and Manzari [10] extended
the model to account for the fabric changes during the dilatant
phase of deformation on the subsequent contractant response
upon load increment reversals. An additional mechanism was also
proposed by Dafalias et al. [12] for the inherent anisotropy effects.
Using the concept of limiting compression curve [13] and a proper
closed yield surface, Taiebat and Dafalias [14] eliminated the
inability of the previous versions of the model to induce plastic
deformation under constant stress-ratio loading, which is espe-
cially important at high confining pressures causing grain
crushing.

In the present paper the focus is on wave propagation in
granular media. To involve fewer model parameters and for
simplicity, the version of the SANISAND model with fabric change
effects [10] has been considered as the constitutive model for the
soil. The inherent anisotropy [12] and the plastic strains under
constant-stress ratios [14] have not been accounted for in the
present work. For quick reference an outline of the constitutive
model in its generalized form for multiaxial stress space is given
in Appendix A.

2.2. Fully coupled solid skeleton–pore fluid interaction

The mechanical model of the interaction between solid
skeleton and pore fluid, when combined with a suitable
constitutive description of the solid phase and with efficient,
discrete, computation procedures, allows one to solve most
transient and static problems involving deformations. The
modeling framework described here, based on the concepts
originally outlined by Biot [15], is appropriate for saturated
porous media.

For modeling of the fully coupled solid–pore fluid interaction,
Zienkiewicz and Shiomi [16] proposed three general continuum
approaches, namely (a) u–p, (b) u–U, and (c) u–p–U formulations
(u, solid displacement; p, pore pressure; and U, fluid displace-
ment).

In this study the coupled dynamic field equations with u–p–U

formulation have been used to determine pore fluid and soil
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Fig. 1. Schematic description of Verification and Validation procedures and the

computational solution (after [28,37]).
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skeletonsolid skeleton responses. This formulation uses pore fluid
pressure as an additional (dependent) unknown field to stabilize
the solution of the coupled system. The pore fluid pressures have
been connected to (dependent on) the displacements of pore fluid
so that with known volumetric compressibility of the pore fluid
pressure can be calculated. Despite its power, this formulation has
rarely been implemented into finite element codes. The formula-
tion takes into account velocity proportional damping (usually
called viscous damping) by proper modeling of coupling of pore
fluid and solid skeleton, while the displacement proportional
damping is appropriately modeled using elastoplasticity with the
powerful material model chosen. No additional (and artificial)
Rayleigh damping has been used in the finite element model. The
main components of the u–p–U formulation for porous media are
outlined in Appendix B for quick reference. Detailed descriptions
of the u–p–U formulation, finite element discretization, and time
integration are presented in [17].
3. Numerical tool

3.1. Program implementation

In order to study the dynamic response of saturated soil
systems as a boundary value problem, an open-source 3D
numerical simulation tool has been developed. Parts of OpenSees
framework [18] have been used to connect the finite element
domain. In particular, FEM classes from OpenSees (namely, class
abstractions for Node, Element, Constraint, Load, and Domain)
have been used to describe the finite element model and to store
the results of the analysis performed on the model. In addition,
Analysis classes were used to drive the global level finite element
analysis, i.e., to form and solve the global system of equations. As
for the Geomechanics modules, a number of elements, algorithms,
and material models from UC Davis Computational Geomechanics
toolset have been used. In particular, sets of NewTemplate3Dep
[19] numerical libraries have been used for constitutive level
integrations, nDarray numerical libraries [20] were used to handle
vector, matrix, and tensor manipulations, while FEMtools libraries
(u–p–U element) were used in implementation of the coupled
solid–fluid interaction at the finite element level. Finally, solvers
from the uMfPACK set of libraries [21] were used to solve the
nonsymmetric global (finite element level) system of equations.

The SANISAND constitutive model and the fully coupled u–p–U

element are implemented in the above-mentioned numerical
simulation tool [17,19,22]. The constitutive model is integrated
using a refined explicit integration method with automatic error
control for yield surface drift based on the work by Sloan et al.
[23]. In order to develop integration of the dynamic finite element
equation in the time domain, the weak form of the finite element
formulation is rewritten in a residual form [24], and the resulting
set of residual (nonlinear) dynamic equations is solved using the
Hilber–Hughes–Taylor (HHT) a�method [25–27]. The developed
finite element model for this formulation uses eight-node brick
elements. Because the pore fluid is compressible, there are no
problems with locking, particularly if good equation solvers are
used, therefore there is no need for lower order of interpolation
for pore fluid pressures. We use u–p–U formulation where an
additional unknown for fluid is used (pore pressure in addition to
fluid displacements); this helps in stabilizing the system. Pore
fluid is compressible but it is many orders of magnitude more stiff
than solid skeleton.

All of the above libraries and implementations are available
either through their original developers or through the second
author’s website (http://geomechanics.ucdavis.edu).
3.2. Verification and validation

Prediction of mechanical behavior comprises use of computa-
tional model to foretell the state of a physical system under
conditions for which the computational model has not been
validated [28]. Confidence in predictions relies heavily on proper
verification and validation processes.

Verification is the process of determining that a model
implementation accurately represents the developer’s con-
ceptual description and specification. It is a Mathematics
issue. Verification provides evidence that the model is solved
correctly. Verification is also meant to identify and remove
errors in computer coding and verify numerical algorithms.
It is desirable in quantifying numerical errors in computed
solution.

Validation is the process of determining the degree to which a
model is an accurate representation of the real world from
the perspective of the intended uses of the model. It is a Physics
issue. Validation provides evidence that an appropriate model is
used. Validation serves two goals: (a) a tactical goal in identifica-
tion and minimization of uncertainties and errors in the
computational model and (b) a strategic goal in increasing
confidence in the quantitative predictive capability of the
computational model.

Verification and validation procedures are hence the primary
means of assessing accuracy in modeling and computational
simulations. Fig. 1 depicts relationships between verification,
validation, and the computational solution.

In order to verify the u–p–U formulation, a number of
closed form or very accurate solutions should be used. To this
end and also to illustrate the performance of the formulation
and versatility of the numerical implementation, several elastic
1D problems have been studied; these include drilling of
a well, the case of a spherical cavity, consolidation of a soil
layer, line injection of fluid in a reservoir, and shock wave
propagation in saturated porous medium. The verification
process for shock wave propagation in porous medium, which is
the most important and difficult example among these five, has
been presented here. Validation has been carried out on an
extensive set of physical tests on Toyoura, Nevada, and
Sacramento river sands and has been presented along with
detailed explanation on calibration of the constitutive model
parameters.
3.2.1. Verification: u–p–U element

The analytic solution developed by Gajo [29] and Gajo
and Mongiovi [30] for 1D shock wave propagation in

http://geomechanics.ucdavis.edu
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Table 1
Simulation parameters used for the shock wave propagation verification problem.

Parameter Symbol Value

Poisson ratio n 0.3

Young’s modulus E 1:2� 106 kN=m2

Solid particle bulk modulus Ks 3:6� 107 kN=m2

Fluid bulk modulus Kf 2:17� 106 kN=m2

Solid density rs 2700 kg=m3

Fluid density rf 1000 kg=m3

Porosity n 0.4

HHT parameter a �0.2

Fig. 2. Viscous coupling finite-element analysis of infinite half-space subjected at

the surface to a step displacement boundary condition.

Table 2
Material parameters of the SANISAND constitutive model for three types of sands.

Parameter Symbol Toyoura Nevada Sacramento

Elasticity G0 125 150 200

n 0.05 0.05 0.2

CSL M 1.25 1.14 1.35

c 0.712 0.78 0.65

e0 0.934 0.83 0.96

l 0.019 0.027 0.028

x 0.7 0.45 0.7

Dilatancy nd 2.1 1.05 2.0

A0 0.704 0.81 0.8

Kinematic nb 1.25 2.56 1.2

Hardening h0 7.05 9.7 5.0

ch 0.968 1.02 1.03

Fabric dilatancy zmax 2.0 5.0 –

cz 600 800 –
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elastic porous medium was used in the verification study. A
model was developed consisting of 1000 eight-node brick
elements, with boundary conditions that mimic 1D behavior
(Fig. 2). In particular, no displacement of solid (ux ¼ 0, uy ¼ 0) and
fluid (Ux ¼ 0, Uy ¼ 0) in x and y directions, i.e., in horizontal
directions, was allowed along the height of the model. Bottom
nodes have full fixity for solid ðui ¼ 0Þ and fluid ðUi ¼ 0Þ
displacements, while all the nodes above base are free to move
in the z direction for both solid and fluid. Pore fluid pressures are
free to develop along the model. Loads to the model consist of a
unit step function (Heaviside) applied as (compressive)
displacements to both solid and fluid phases of the model, with
an amplitude of 0.001 cm. The u–p–U model dynamic system of
equations was integrated using the HHT algorithm.

Table 1 presents relevant parameters for this verification. Two
set of permeability of material were used. The first model had
4 6 8 10 12 14
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Fig. 3. Compressional wave in both solid and fl
permeability k¼ 10�6 cm=s, which creates very high coupling
between porous solid and pore fluid. The second model had
permeability k¼ 10�2 cm=s, which creates a low coupling
between porous solid and pore fluid. Good agreement was
obtained between the numerical simulations and the analytical
solution as presented in Fig. 3.

3.2.2. Validation: SANISAND model

Material model validation can be performed by comparing
experimental (physical) results and numerical (constitutive)
simulations for different type of sands in different densities,
confining pressures, loading paths, and drainage conditions.
The SANISAND constitutive model has been specifically tested
for its ability to reproduce a series of monotonic and cyclic
tests on Toyoura sand [31,32], Nevada sand [33], and Sacramento
river sand [34] in a wide range of relative densities and con-
fining pressures and in different drainage conditions. The 14
material parameters required by the model for these sands
are listed in Table 2; they are divided into different groups
according to the particular role they play. The material
parameters can be selected mainly from standard types of
laboratory tests. Here the calibration has been carried out using
drained and undrained triaxial compression and extension tests at
different values of initial void ratio and confining pressure in
order to calibrate different features of hardening/softening and
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dilatancy/contractancy of the model. A step-by-step calibration
process for the model constants for Toyoura sand is shown in
Figs. 4–7.

The G0 parameter that defines the elastic shear modulus of
sand in Eq. (2)1 can be calibrated using the stress–strain curves or
from the elastic wave propagation tests in the field or laboratory.
In this paper, a good estimation of G0 for monotonic shearing
in Toyoura sand is obtained by fitting the triaxial versions of
Eqs. (1)1 and (2)1 to the initial stages of the deviatoric stress–
strain ðeq�qÞ data of triaxial drained tests in Fig. 4.

The critical state parameters consist of Mc;e, the critical
stress ratio in triaxial compression and extension, and the
parameters ðe0Þ, l, and x of the equation ec ¼ e0�lðpc=patÞ

x, which
defines the position of the critical state line (CSL) in the space of
void ratio vs. mean effective stress [35]. Calibration of these
parameters requires monotonic tests that approach critical
state. Results of the drained and undrained triaxial compression
tests on Toyoura sand are presented in Fig. 5 for fitting these
parameters.

These bounding and dilatancy surfaces in the SANISAND model
are generalizations of the bounding (or peak), dilatancy (or phase
transformation) lines in triaxial space, expressed analytically by
Z¼Mexpð�nbcÞ and Z¼MexpðndcÞ, respectively. The parameters
nb and nd can be determined by evaluating these equations at the
peak and phase transformation states. The calibration process is
shown in Fig. 6(a and b), where cb and Zb are the values of c and
Z at the peak stress-ratio state, and cd and Zd are the values of c
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Fig. 4. Calibration of the G0 constant using monotonic triaxial tests on Toyoura

sand [31].
and Z at the phase transformation state. Note that the phase
transformation state corresponds to the peak of the volumetric
strain ev in drained tests and the peak of the excess pore pressure
u2u0 in undrained tests. Direct estimation of the dilatancy
parameter A0 requires good quality stress-dilatancy data, where
A0 can then be calibrated based on ev2eq curves. Here the
parameters A0 (related to dilatancy) and h0 and ch (related to the
effect of distance from bounding surface) are estimated by trial
and error, as shown in Fig. 6(c–f).

Finally, fabric-dilatancy constants zmax and cz require trial and
error fitting of loading–unloading reverse loading, or cyclic data,
preferably undrained, where Z must exceed Md in the process so
that evolution of z is activated. Fig. 7 shows calibration of the zmax

parameter using the loading–unloading undrained triaxial tests
on Toyoura sand.

Figs. 8 and 9 compare the experimental data [31] and model
simulations for drained and undrained triaxial compression
tests followed by unloading on isotropically consolidated
samples of Toyoura sand. These experiments/simulations cover
a wide range of confining pressures and densities and show
variations of response from highly dilatant to highly contractant.
This variety of response depends on the combination of density
and confining pressure that is reflected in the value of state
parameter c.

Figs. 10 and 11 compare the experimental data [32] and model
simulations for drained constant-p cyclic triaxial tests on
isotropically consolidated loose and dense samples of Toyoura
sand. In these tests the amplitude of shear strain (g¼ ea�er , as
defined in [32]) has been increased with cyclic loading.
Accumulation of compressive volumetric strain with cyclic
loading can be observed in Fig. 10, and clearly when the stress
ratio exceeds a certain value, which varies by the state, the
specimen begins to dilate. As expected, the dilatancy feature is
more pronounced for the dense sample in Fig. 11.

Experimental results [33] and numerical simulation for
constant-p triaxial compression tests on Nevada sand in different
densities and confining pressures are presented in Fig. 12. In
addition, the stress path and shear response of an undrained
cyclic triaxial test on anisotropically consolidated Nevada sand, at
relative density of about 40%, are presented in Fig. 13.

The last set of simulations for the purpose of model validation
are presented in Fig. 14, where experimental results of drained
triaxial compression tests on Sacramento river sand [34] have
been compared with the model simulations. The experiments/
simulations are on both loose and dense samples of Sacramento
river sand in different initial confining pressures. It should be
noted that the fabric-dilatancy parameters, needed in correct
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simulation loading–unloading cycles, have not been calibrated for
Sacramento river sand, as the authors could not find enough
related experimental data in the literature.
Close match of physical testing data with constitutive predic-
tions represents a satisfactory validation of the material models.
This validation with previous verification gives confidence in
simulations of real, prototype behavior.
4. Numerical simulation examples

Liquefaction of level and sloping ground represents a common
situation during earthquakes. It is therefore of interest to use the
developed numerical tool for simulating the earthquake wave
propagation in such cases.

This section presents results of numerical simulation for
different cases of a 1D site response, using the available 3D
elements in the developed numerical simulation tool. Two general
examples have been studied. The first example presents results of
a study on the isolating effect of a liquefied sand layer in
propagation of seismic waves. In the second example the seismic-
induced shear deformation of a gentle slope in the presence or
absence of a liquefiable layer has been studied.

It should be noted that the simulations are based on the
small deformation assumption, which might introduce a large
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Fig. 8. Simulations vs. experiments in drained triaxial compression tests on isotropically consolidated samples of Toyoura sand [31].
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Fig. 9. Simulations vs. experiments in undrained triaxial compression tests on isotropically consolidated samples of Toyoura sand [31].
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Fig. 10. Simulations vs. experiments in constant-p cyclic triaxial tests on a relatively loose sample of Toyoura sand [32].
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error in the strain tensor (by neglecting the quadratic portion
of displacement derivatives) when soil undergoes large deforma-
tions.
4.1. Example 1: isolation of ground motions in level ground

A 10 m vertical column of saturated sand consisting of 20 u–p–
U eight-node brick elements was considered, subjected to an
earthquake shaking at the base. Two particular cases have been
studied in this example. In the first case, all 20 elements of the soil
column are assumed to be at a medium dense state at the
beginning of analysis ðein ¼ 0:80Þ. In the second case, the deepest
2 m of the soil column are assumed to be at looser initial states
compared with the first case. In particular, two of the deepest
elements are assumed to be at ein ¼ 0:95 (loose) and the next two
elements at ein ¼ 0:875 (medium loose), to make a smoother
transition between the loose and dense elements. The rest of the
soil column, i.e., the upper 16 elements (8 m) are at the same
density as the first case ðe¼ 0:80Þ. A schematic illustration of
these two cases is presented in Fig. 15.

The elements are labeled from E01 (bottom) to E20 (surface) in
Fig. 15. The boundary conditions are such that the vertical
displacement degrees of freedom (DOF) of the soil and water at
the base ðz¼ 0Þ are fixed, while the pore pressure DOFs are free.
The soil and water vertical displacement DOFs at the surface
ðz¼ 10 mÞ are free to simulate the upward drainage. The pore
pressure DOFs are fixed at the surface. On the sides, solid skeleton
and water are prevented from moving in the y direction, whereas
movements in the x and z directions are free. It is emphasized that
the displacements of solid skeleton and pore fluid are different. In
order to simulate the 1D behavior, all of the related DOFs of the
nodes at each depth are connected in a master–slave fashion, i.e.,
the nodes at the same level have the same ui ði¼ x; y; zÞ. The same
thing is true for p and Ui. The values of ui and Ui, however, may be
different at a node, allowing for relative movement of soil and
fluid. The soil is assumed to be Toyoura sand and is characterized
by the validated SANISAND model explained in previous sections
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Fig. 11. Simulations vs. experiments in constant-p cyclic triaxial tests on a relatively dense sample of Toyoura sand [32].
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with the model parameters given in Table 2. The other parameters
related to the boundary value problem are given in Table 3. The
permeability is assumed to be isotropic and equal to k¼ 5:0�
10�4 m=s.

A self-weight analysis was performed before the base excita-
tion. The resulting fluid hydrostatic pressures and soil stress
states along the soil column serve as initial conditions for the
subsequent dynamic analysis. An input acceleration time history
(Fig. 15), taken from the recorded horizontal acceleration of
Model No. 1 of VELACS project at RPI [36], was considered in
which amax ¼ 0:2g and main shaking lasts for about 12 s.

In addition to the (physical) velocity and displacement
proportional damping from the element and the material model,
respectively, a small amount of numerical damping has been
introduced through constants of the HHT algorithm in order to
stabilize the dynamic time stepping. No Rayleigh damping has
been used.

Results of the analysis during and after the shaking phase for
both cases (i.e., the uniform and the layered soil profiles) are
presented in Figs. 16–19. In these figures the plots on the left and
right correspond to the cases of uniform and layered soil profiles,
respectively. In particular, Figs. 16 and 17 show variations of the
shear stress sxz vs. vertical effective stress sz and shear strain g,
respectively. Figs. 18 and 19 show time histories of void ratio e

and horizontal ðxÞ component of acceleration in the solid part of
the mixture au;x, respectively. Note that different rows of plots in
Figs. 16–18 correspond to different elements. Similarly, different
rows in Fig. 19 correspond to different elevations of the nodes.

Fig. 16 a shows the typical mechanism of cyclic decrease in
vertical effective stress for the case of the uniform soil column.
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Fig. 15. Illustration of the problem in Example 1 in terms of the soil layering, the

finite element mesh, and the input base acceleration.

Table 3
Parameters used in the boundary value problem simulations (in addition to the

material model parameters).

Parameter Symbol Value

Solid particle bulk modulus Ks 3:6� 107 kN=m2

Fluid bulk modulus Kf 2:17� 106 kN=m2

Solid density rs 2700 kg=m3

Fluid density rf 1000 kg=m3

HHT parameter a �0.2
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From early stages of shaking, signs of the so-called butterfly loops
in the effective stress path can be partially observed at the upper
levels, as these layers are in lower confining pressures compared
with the deeper layers and thus are more dense than critical in the
critical state soil mechanics terminology, i.e., with less contractive
tendency. In later stages of shaking, when the confining pressures
are reduced to smaller values, the butterfly shapes of the stress
paths are more pronounced, and almost all depths of the soil
column experience the cyclic mobility mechanism of liquefaction.
In this stage the soil layers momentarily experience small values
of effective stress followed by a dilative response in which the
elements recover their strength in cycles of loading owing to their
denser than critical state. As a result, the seismic-induced shear
waves propagate all the way to the surface of the soil column. The
response can be observed as an average degradation of stiffness
and accumulation of shear strains in all levels of the soil column,
as shown in Fig. 17 a.

In the case of the layered soil profile, however, Fig. 16 b
shows that the first cycle of shaking degrades the vertical effective
stress in the loose layer of element 1, E01, to very small values
in a flow liquefaction mechanism. The shear wave in this first
cycle of shaking propagates to the surface and causes some
reduction in vertical effective stress in upper soil layers. Because
element 1, E01, is in loose states and has a strong contractive
tendency, it does not recover its strength in cyclic loading, and
therefore it remains in this liquefied state after the first cycle with
negligible shear resistance. Therefore this layer acts as an
isolating layer, and no shear stress can be transmitted to the
upper layers after the first cycle. This mechanism can also be
observed in the shear stress–shear strain plot of Fig. 17 b, as the
first cycle completely liquefies the E01; after this cycle no shear
stress is propagated to the upper layers. Of course the very loose
element E01 shows considerable shear strain due to liquefaction.
As shown in Fig. 16 b, in the upper layers after the first cycle of
shaking no reduction in vertical effective stress occurs due to

shearing (induced by shaking); however, one can observe that the
vertical effective stress keeps decreasing in upper layers during
(and even for a while after) shaking. This is because the dissipated
pore pressure in deeper layers travels upward and reduces the
effective stress in upper layers. The effective stress will then start
to recover as the excess pore pressure dissipates from these
layers.

Fig. 18 shows the redistribution of void ratio during and
long after the shaking. The horizontal dashed line in each plot
shows ein;shaking , that is, the value of the void ratio for the
corresponding layer at the beginning of shaking (at the end
of self-weight analysis). For the uniform soil column, Fig. 18 a
shows a general trend of consolidation in all of the soil layers.
This consolidation starts later in upper layers because of the
water pumped from the lower layers, which is to be dissipated by
time. In the layered soil column (Fig. 18 b) the loose layer in
element 1, E01, shows considerable consolidation due to shaking.
The dissipated volume of water from this layer is pumped
to the upper layers, and the result is some dilation (increase in
void ratio) in these layers for some time after the end of shaking.
By the time this pumped volume of water in the upper layers
dissipates, all the layers show a consolidation response. In other
words, in the layered soil column pumping of water causes initial
loosening of soil in the upper layers, which is then followed by
densification.

Fig. 19 shows propagation of the horizontal acceleration
through the soil column during shaking. In the uniform soil
column Fig. 19 a shows that the base acceleration is transmitted
to the surface of the soil column. It shows some spikes of
acceleration with large amplitude at the surface of the soil
resulting from the dilative phases of soil response during the
shaking phase. In the layered soil column, however, Fig. 19 b
shows that only the first cycle of shaking is transmitted to the
surface (although with reduced amplitude) and subsequently the
upper layers are isolated because of the fully liquefied state of
the loose layer in element 1, E01. The transmitted accelerations to
the surface of the soil column after the first cycle of shaking have
very small amplitudes. Finally, Figs. 20 and 21 show contours of
excess pore pressure (ue) and excess pore pressure ratio (Re) in the
uniform and layered soil columns at different times. Note that
ue=p�pin=(sv)in�sv and Ru=ue/(sv)in, where pin and p are the
initial and current levels of the pore pressure DOF in the u–p–U

element, and the (sv)in and sv are the initial and current levels of
the vertical effective stress. The initial state here refers to the
beginning of the shaking stage when the excess pore pressure due
to self-weight loading is completely dissipated and ue=Ru=0. The
excess pore pressure develops during the shaking stage (the first
15 s), propagates from deeper layers upward and dissipates long
after the end of shaking. While excess pore pressure develops in
the soil column as result of shaking, the value of sz reduces from
its initial value (sv)in. The extreme case of sz=0 results in Ru=1,
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Fig. 16. Variation of shear stress sxz vs. vertical effective stress sz for Elements E01–E19 during and after shaking. (a) Uniform. (b) Layered.
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which corresponds to the full loss of effective stress in the soil
element and is known as flow liquefaction. For the case of uniform
soil column Fig. 16a shows that sv drops to zero almost in all
depths of the soil column. As a result the corresponding Ru during
shaking approaches to 1 as shown in Fig. 21a. The dissipated pore
pressure keeps the upper layers in a liquefied state even for long
after the end of shaking before it completely dissipates from the
surface. The situation in slightly different in the layered soil
column. Fig. 21b shows that the value of excess pore pressure
ratio Ru remains in the safe region (low values) during the
shaking. Liquefaction is observed only in the deepest layers
during shaking. The dissipated pore pressure from these layers
propagates toward the surface of the soil column and causes some
decrease in the magnitude of Ru in upper layers but does not
liquefy those layers in this example.
4.2. Example 2: earthquake-induced shear deformations in

gentle slopes

A 10 m gently inclined ð1:53
Þ column of saturated sand

consisting of 20 u–p–U eight-node brick elements subjected to a
base shaking was considered. In terms of initial densities two
particular cases have been studied in this example. In the first, the
soil column is assumed to be uniform with e¼ 0:7 (relatively
dense, DrC75%), while in the other case a similar soil column is
considered that includes a relatively loose layer with e¼ 0:9
ðDrC25%Þ at depth 2.5–3.5 m (Fig. 22).

The boundary conditions are exactly the same as those
presented in Example 1. The soil parameters and the other
parameters related to the boundary value problem are also the
same as those in Example 1; these are given in Tables 2 (Toyoura
sand) and 3. The permeability is assumed to be isotropic and
equal to k¼ 10�3 m=s.

A static application of gravity analysis was performed before
the base excitation. The resulting fluid hydrostatic pressures and
soil stress states along the soil column serve as initial conditions
for the subsequent dynamic analysis. The input acceleration time
history (Fig. 22) is considered with amax ¼ 0:2g, and shaking lasts
for about 8 s. The following three cases have been studied in this
paper:
(I)
 Uniform soil profile with amax ¼ 0:2g.

(II)
 Layered soil profile with amax ¼ 0:2g.
(III)
 Layered soil profile with amax ¼ 0:4g.
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effective stress, shear stress, shear strain, excess pore pressure

The predicted behavior for cases I–III in terms of the vertical

ratio ðRuÞ, and lateral displacement are presented and discussed in
the rest of this section.

The response is shown for selected elements along the
soil profile (for positions of the elements refer to Fig. 22). In
particular, Figs. 23a, 24a, and 25a show changes in the shear
stress and vertical effective stress. Figs. 23b, 24b, and 25b
show changes in the shear stress and shear strain. Finally,
Figs. 23c, 24c, and 25c show time histories of the excess pore
pressure ratio, Ru. Contours of excess pore pressure ðRuÞ, shear
strain, and lateral displacements in all depths vs. time
are presented in parts d, e and f of Figs. 23–25 for the above
three cases. Note that Ru ¼ ue=ðsvÞin, where ue is the excess
pore pressure and ðsvÞin is the initial effective vertical stress.
Clearly Ru cannot be larger than 1 since uer ðsvÞin (in cohesionless
soils the stress state cannot go to the tensile side, in which
ue4 ðsvÞin).
The typical mechanism of response observed in different
elements during the shaking is explained in the following.
Generally, at the early stages of loading in a cycle the element
shows a contractive response in shearing that is associated with
an increase in excess pore pressure and a decrease in vertical
effective stress and stiffness (in particular the shear stiffness). As
loading continues to larger stress ratios the mechanism of
response in the element might change to a dilative regime. This
means that as shearing continues the excess pore pressure
decreases and the vertical effective stress and the soil stiffness
increase. In other words soil regains its stiffness during the
dilative phase. Upon and after reversal of shear stress increment,
again the sample shows a contractive regime with an increase in
excess pore pressure and a decrease in vertical effective stress and
soil stiffness. As the absolute value of the stress ratio exceeds
a certain level (phase transformation) in the reverse loading
(in negative stress ratios), the element again shows the dilative
response. The final stress-ratio increment reversal in the loading



ARTICLE IN PRESS

0 50 100 150 200

E01

time (sec)

E03

E05

E07

E09

E11

vo
id

 ra
tio

E13

E15

E17

0.7793

0.7854

0.7914
0.7835

0.7878

0.792
0.7859

0.7894

0.793
0.7874

0.7906

0.7939
0.7886

0.7914

0.7942
0.789

0.7916

0.7942
0.7906

0.7929

0.7952
0.7924

0.7942

0.7961
0.7941

0.7955

0.797
0.7957

0.7969

0.7981
E19

0 50 100 150 200

E01

time (sec)

E03

E05

E07

E09

E11

vo
id

 ra
tio

E13

E15

E17

0.8983

0.9166

0.9349
0.861

0.8649

0.8688
0.791

0.7932

0.7955
0.7916

0.7934

0.7953
0.7923

0.7939

0.7954
0.7929

0.7942

0.7955
0.7936

0.7947

0.7958
0.7943

0.7952

0.7961
0.7952

0.7959

0.7967
0.7957

0.7969

0.7981
E19

Fig. 18. Variation with time of void ratio e for Elements E01–E19 during and after shaking. (a) Uniform. (b) Layered.
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cycle is again associated with a contractive response. The above
mechanism typically happens in all cycles. The overall contractive
response could be stronger or weaker than the dilative response
depending on the state of soil, i.e., its void ratio and effective
stress. For looser samples or at higher confining pressures the
contractive response is more pronounced, and therefore shearing
at such states shows increase in excess pore pressure and
decrease in vertical effective stress and stiffness. In denser
samples or at lower confining pressures the response is the
opposite.

Fig. 23 shows detailed response of the soil profile in case I.
Based on the previous general explanation the response starts
with a contractive regime which decreases the vertical effective
stress and the stiffness and increases the excess pore pressure
ratio. Since a relatively dense state is assumed for this analysis
ðe¼ 0:7;Dr C75%Þ, the soil has a general tendency of dilation as
the stress ratio exceeds the dilation line (phase transformation).
On the other hand, the inclination of the soil column poses
asymmetric horizontal shear stresses (toward the direction of
inclination) during cycles of shaking. This essentially makes the
sample more prone to dilation at parts of the shaking cycles that
are toward the direction of inclination (positive directions of
shear stress and strain in this case), and the soil regains its
stiffness and strength ðsvÞ in the dilative parts of the loading cycle.
The dilative tendency of response and the offset shear stress in
cyclic loading lead to asymmetric butterfly loops in stress space
during the dilative and the subsequent intense contractive phases
of response. The asymmetric horizontal shear stresses also result
in asymmetric shear strains that accumulate toward the inclina-
tion of the soil profile and create permanent horizontal displace-
ments in this direction. The dilative phases lead to instantaneous
drops in the excess pore pressure ratio Ru. These drops are more
pronounced in upper elements that have lower confining
pressures and therefore have a stronger dilative tendency.

Fig. 24 shows the response of the soil profile in case II. In this
case the presence of the relatively loose layer at depth 2.5–3.5 m
ðe¼ 0:9;Dr C25%Þ affects the response of the system. This layer
has a stronger contractive response in cycles of loading. Such a
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Fig. 19. Time history of horizontal component of acceleration in solid part of the mixture au;x for nodes at different elevations during shaking. (a) Uniform. (b) Layered.

Fig. 20. Contours of excess pore pressure Ru, kPa in the soil column at different times. (a) Uniform. (b) Layered.
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tendency causes faster increase in excess pore pressure and
decrease in vertical effective stress and stiffness. Degradation of
stiffness leads to faster accumulation of the permanent shear
strain in the symmetric loops of stress–strain. The time histories
of surface lateral displacement for these two cases are shown in
Fig. 26 (results of case III presented in this figure will be discussed
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Fig. 21. Contours of excess pore pressure ratio (Ru) in the soil column at different times. (a) Uniform. (b) Layered.

Fig. 22. Illustration of the problem in Example 2 in terms of the soil layering, the

finite element mesh, and the input base acceleration.
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later). It can be observed that the permanent surface lateral
displacement in case II ðC0:40 mÞ is almost twice as much as case
I ðC0:19 mÞ because of the presence of the relatively loose layer.
The excess pore pressure ratio in the loose layers shows
instantaneous spikes to Ru ¼ 1 and drops mainly to two values
of C0:35 or C0:65, which are related to the end of dilative
phases in positive and negative shear stresses, respectively. The
pore water expelled from this layer during shaking is pumped to
the upper layers and shows a considerable increase in the excess
pore pressure ratio of element 19 (E19) after the end of shaking.

Fig. 25 shows response of the soil profile in case III. The
geometry and parameters in case III are similar to those in case II.
The only difference is the intensity of the input base acceleration,
which is 0:4g in case III. The interesting observation in the
simulation results is that although the magnitude of the base
acceleration in case III is twice that of case II, the calculated
residual shear strains are not considerably different in the two
cases. This could be attributed to the fact that in case III the larger
amplitude of acceleration (and shear stress) soon brings the soil
state to the dilative phase during which the vertical effective
stress increases and soil regains its strength. Comparing the stress
path of element 03 (E03) in cases II and III makes this
phenomenon more clear. Owing to increase of the vertical
effective stress during the intense dilation in case III the effective
stress state remains larger in this case compared with case II, and
therefore less degradation is observed in the subsequent cycles of
loading. The strongly pronounced dilative response in all layers of
soil profile in case III clearly affects the resulting excess pore
pressure ratios (Fig. 25 c) comparing with what was observed in
case II (Fig. 24 c). More specifically, case III experiences more
intense drops in plots of Ru even to negative values, especially at
upper elements, which are even more dilative because of lower
surcharge (confining pressure).

The time histories of the surface lateral displacement and
variations with depth of the permanent lateral displacement for
different cases are presented and compared in Fig. 26. Although
case III shows larger amplitudes of cyclic motions, its permanent
surface lateral displacement is about 20% smaller than that of case
II. That is quite interesting and emphasizes the importance of
interaction of dynamic characteristics of the earthquake and the
response of the soil (and its components) as described by the
SANISAND constitutive model. Fig. 26 b provides more detailed
information about the lateral displacements of soil layers in
different cases. Owing to the aforementioned stronger dilative
response in case III, the dense layers adjacent to the loose layer
appear to get stronger in case III and show lesser lateral
displacements. This could also be partially explained by smaller
surface lateral displacement in case III compared with case II.
Note that the permanent displacement is equivalent to integra-
tion of shear strains in the whole soil column.
5. Summary and conclusions

An efficient finite element formulation and a numerical tool for
analysis of wave propagation phenomena in fluid-saturated
porous media has been developed. The saturated porous medium
is modeled as a two-phase, fully coupled system consisting of a
porous solid and a fluid phase. The numerical tool includes the u–
p–U formulation for fully coupled behavior of soils and the
SANISAND model as an advanced elastic–plastic constitutive
model for modeling of stress–strain response of the solid
phase. The formulation takes into account velocity proportional
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damping (usually called viscous damping) by proper modeling of
coupling of pore fluid and solid skeleton, while the displacement
proportional damping is appropriately modeled by the dissipation
mechanism of the constitutive model of elasto-plasticity used.

Numerical results that demonstrate the accuracy and versati-
lity of the formulations and capabilities of the model are
presented. The verified and validated models and computational
simulations tool are used to predict behavior of a layered soil
system during seismic loading. Two general problems are studied.
Firstly, a numerical study is conducted on isolating effects of a
liquefied sand layer in propagation of seismic waves. Secondly,
seismically induced shear deformation of a gentle slope in the
presence or absence of liquefiable layer is studied. Attention is
given to propagation of shear waves through soil layers and to
variation of stresses and strains during such propagation. Spatial
evolution of liquefaction in loose and medium dense soil layers is
also investigated. In the first example liquefaction of loose layers
in depth is shown to prevent transmission of earthquake-induced
motions and shear stresses to the upper layers. While prevention
of transmission of motions may be considered as a positive
feature, the water flux coming from the liquefied bottom layers
might force the upper layers towards lower effective stress and
possibly instability, even in the absence of earthquake-induced
shear stresses. More importantly, attention needs to be paid to the
fact that liquefaction of the deep loose layers could result in large
strains in these layers, which might result in (rigid block)
translation of the upper layers. The second example is used to
present complexities arising from variation of soil density in a
layered system as well as the input base acceleration. For
example, it is shown that larger shaking produces smaller lateral
spread, because of close interaction of earthquake loading and soil
constitutive response (with its solid and fluid components).

The capabilities of the u–p–U element, the SANISAND constitutive
model, and the nonlinear dynamic finite element numerical tool are
demonstrated in handling complex phenomena. These studies
provide new insight into the mechanisms of wave propagation and
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seismic behavior of saturated soil systems. Fully coupled nonlinear
dynamic numerical simulations provide accurate means for detailed
investigation of complex loading conditions and geometries and
different material states. Such high fidelity simulations provide
detailed input to PBD methods that most existing empirical
approaches used in liquefaction modeling fail to provide. In particular
one must emphasize the importance of using a robust and realistic
constitutive model such as SANISAND that can account for the various
important features of the soil response in relation to its density and
loading conditions. For example, it is important that depending on the
level of density and confining pressure the constitutive model with a
single set of parameters can show the dilative or contractive response.
This is accomplished by using the state parameter c. This parameter
in the model controls the peak stress ratio and by consequence the
plastic modulus, as well as the dilatancy stress ratio (phase
transformation stress ratio) and by consequence the dilatancy.
Similarly, by using a fabric-dilatancy tensor the model has the
capability to account for intense contractive response upon reverse
loading increments after a dilative phase of loading. This feature has
an important effect on the predicted displacement and pore water
pressure built up during cyclic loading. Had these constitutive
properties not been realistically described, the overall description of
the phenomenon would have been much poorer.
Appendix A. Constitutive platform

The main components of the SANISAND model are summar-
ized here. Both stress and strain quantities are assumed positive
in compression (as is common in mechanics of materials), and the
effect of this sign convention has been considered on the model
equations. All stress components in this paper should be
considered as effective stress. Finally, in terms of notation, tensor
quantities are denoted by bold-faced symbols and operations
explained accordingly.
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Elasticity: Isotropic hypoelasticity is defined by

_ee
¼

_s

2G
; _ee

v ¼�
_p

K
ð1Þ

with s is the stress deviator; p the mean effective pressure; e the
strain deviator; ev the volumetric strain; superscript e denoting
elastic; superposed dot denoting the rate; and G, K the hypoelastic
shear and bulk moduli, respectively, given by

G¼ G0pat
ð2:97�eÞ2

ð1þeÞ

p

pat

� �1=2

; K ¼
2ð1þnÞ
3ð1�2nÞ

G ð2Þ

where G0 is a dimensionless material constant, n is a constant
Poisson’s ratio, e is the void ratio, and pat is the atmospheric
pressure used for normalization.

Yield surface: The yield surface is defined by

f ¼ ½ðs�paÞ : ðs�paÞ�1=2�
ffiffiffiffiffiffiffiffiffi
2=3

p
mp¼ 0 ð3Þ

in terms of a deviatoric back-stress ratio a, and can be visualized
as a cone. The gradient of f ¼ 0 in stress space is obtained based
on Eq. (3) as

@f

@r
¼ n�

1

2
ðn : rÞI; n¼

r�affiffiffiffiffiffiffiffiffi
2=3

p
m

ð4Þ

in terms of deviator unit tensor n ðn : n¼ 1Þ shown along the
radius r�a of the yield surface circular trace, where I is the
identity second-order tensor. The n of Eq. (4) is used to define an
effective Lode angle y as

cos3y¼�
ffiffiffi
6
p

tr n3 ð5Þ

The critical stress ratio for a given Lode angle y is denoted by M

and has been obtained by interpolation between values of Mc at
y¼ 0 (compression) and Me at y¼ p=3 (extension) according to

M¼Mcgðy; cÞ; gðy; cÞ ¼
2c

ð1þcÞ�ð1�cÞcos3y
; c¼

Me

Mc
ð6Þ

Bounding, dilatancy and critical surfaces: Three concentric and
homologous surfaces, the bounding, dilatancy, and critical are
considered for the model in the p�plane. Their tensor points ab

y,
ad
y, and ac

y along the direction n emanating from the origin at a
Lode angle y are defined analytically by

ab
y ¼

ffiffiffiffiffiffiffiffiffi
2=3

p
½Mexpð�nbcÞ�m�n¼

ffiffiffiffiffiffiffiffiffi
2=3

p
ab
yn ð7aÞ

ad
y ¼

ffiffiffiffiffiffiffiffiffi
2=3

p
½MexpðndcÞ�m�n¼

ffiffiffiffiffiffiffiffiffi
2=3

p
ad
yn ð7bÞ

ac
y ¼

ffiffiffiffiffiffiffiffiffi
2=3

p
½M�m�n¼

ffiffiffiffiffiffiffiffiffi
2=3

p
ac
yn ð7cÞ

where c¼ e�ec is the state parameter; ec ¼ e0�lðpc=patÞ
x as the

analytical expression of the critical state line with constants e0, l
and x [35]; and nb and nd are material constants.

Plastic flow: In general the model employs a non-associative
flow rule. The plastic strain rate direction R has deviatoric and
volumetric part according to R¼R0�ð1=3ÞDI, where D is the
dilatancy coefficient to be specified in the sequel. The deviatoric
part R is defined as the normal to the critical surface at point ac

y,
Eq. (7c). The plastic strain is given by

_ep
¼/LSR ð8aÞ

R¼ BnþCðn2�1
3 IÞ�1

3DI ð8bÞ

B¼ 1þ
3

2

1�c

c
gcos3y; C ¼ 3

ffiffiffi
3

2

r
1�c

c
g ð8cÞ

where L is the loading index; and /S the Macauley brackets
(/LS¼ L if L40 and /LS¼ 0 if Lr0). The dilatancy coefficient D

in Eq. (8a) is defined by

D¼ Adða
d
y�aÞ : n ð9aÞ
Ad ¼ A0ð1þ/z : nSÞ ð9bÞ

where A0 is a material constant. The so-called fabric-dilatancy
internal variable z is introduced in order to account for the effect
of fabric changes during the dilatant phase of deformation on the
subsequent contractant response upon load increment reversals.
The evolution law for the fabric-dilatancy tensor z will be
presented later.

Evolution laws: This model has two tensorial internal variables,
namely, the back-stress ratio tensor a and the fabric-dilatancy
tensor z. The evolution law for the back-stress ratio a is a function
of the distance between bounding and current back-stress ratio in
the form of

_a ¼/LS2
3hðab

y�aÞ ð10Þ

While constant values of h yield reasonable simulations, better
results are obtained if h is made function of the current state
variables as

h¼
b0

ða� ~aÞ : n
ð11aÞ

b0 ¼ G0h0ð1�cheÞðp=patÞ
�1=2

ð11bÞ

where ~a is the initial value of a at initiation of a new loading
process and is updated to the new value when the denominator of
Eq. (11a) becomes negative. The h0 and ch are material constants.

Finally the evolution law for the fabric-dilatancy z is
introduced as

_z ¼�cz/�LDSðzmaxnþzÞ ð12Þ

with cz and zmax as the material constants that control the
maximum value of z and its pace of evolution. Eqs. (9b) and (12)
are introduced to enhance the subsequent contraction in unload-
ing after the dilation in loading in order to generate the well-
known butterfly shape in the undrained cyclic stress path.
Appendix B. Finite element formulation

The overall equilibrium or momentum balance equation for
the soil–fluid mixture can be written as

sij;j�r €ui�rf
€wiþrbi ¼ 0 ð13Þ

where €ui is the acceleration of the solid part, bi is the body force
per unit mass, €wi is the fluid acceleration relative to the solid part.
For fully saturated porous media (no air trapped inside), density is
equal to r¼ nrf þð1�nÞrs, where n is the porosity, rs and rf are
the soil particle and water density, respectively.

For the pore fluid, the equation of momentum balance can be
written as

�p;i�Ri�rf
€wi�

rf
€wi

n
þrf bi ¼ 0 ð14Þ

where R is the viscous drag force. According to Darcy’s seepage
law, the viscous drag forces R between soil matrix and pore fluid
(water) can be written as Ri ¼ k�1

ij
_wj, where kij is the tensor of

anisotropic Darcy permeability coefficients. For simple case of
isotropic permeability, scalar value of permeability k is used. The
permeability k used here with dimension of ½L3TM�1

� is different
from the permeability used in the usual soil mechanics (K) which
has the same dimension of velocity, i.e., ½LT�1

�. Their values are
related by k¼ K=grf , where g is the gravitational acceleration and
the permeability K is measured in an experiment.

The final equation is the mass conservation of the fluid flow
expressed by

_wi;iþa_eiiþ
_p

Q
¼ 0 ð15Þ
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where bulk stiffness of the mixture Q is expressed as
1=Q ¼ n=Kf þða�nÞ=Ks and Ks and Kf are the bulk moduli of the
solid and fluid phases, respectively.

In the above governing equations, convective and terms of
lower order are omitted [38]. A change of variable is performed
by introducing an alternative variable Ui, defined as Ui ¼ uiþUR

i ¼

uiþwi=n, that represents absolute displacement of the pore fluid.
The basic set of unknowns is then comprised of the soil skeleton
displacements ui, the water pore pressure p, and the water
displacements Ui. These unknown vector (ui and Ui) and scalar (p)
fields can be approximated using shape functions and the
corresponding (unknown) nodal values (solid displacements uKi,
pore fluid pressures pK , and pore fluid displacements UKi),
following standard finite element discretization [39,40]

ui ¼Nu
K uKi; p¼Np

K pK ; Ui ¼NU
K UKi ð16Þ

where Nu
K , Np

K and NU
K are (same) shape functions for solid

displacement, pore pressure and fluid displacement, respectively.
Each node of the ðu2p2UÞ element has thus seven degrees of
freedoms in three dimensions (three for solid displacements, one
for pore fluid pressures and three or pore fluid displacements).

After some tensor algebra and manipulations, the final u2p2U

form can be written as
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The left hand side components of the above matrix equation are
given as

ðMsÞKijL ¼

Z
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u
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while the right hand side components are given as
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