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Ongoing replication stress tolerance and 
clonal T cell responses distinguish liver  
and lung recurrence and outcomes in 
pancreatic cancer

Patients with metastatic pancreatic ductal adenocarcinoma survive longer if 
disease spreads to the lung but not the liver. Here we generated overlapping, 
multi-omic datasets to identify molecular and cellular features that 
distinguish patients whose disease develops liver metastasis (liver cohort) 
from those whose disease develops lung metastasis without liver metastases 
(lung cohort). Lung cohort patients survived longer than liver cohort 
patients, despite sharing the same tumor subtype. We developed a primary 
organotropism (pORG) gene set enriched in liver cohort versus lung cohort 
primary tumors. We identified ongoing replication stress response pathways 
in high pORG/liver cohort tumors, whereas low pORG/lung cohort tumors 
had greater densities of lymphocytes and shared T cell clonal responses. 
Our study demonstrates that liver-avid pancreatic ductal adenocarcinoma 
is associated with tolerance to ongoing replication stress, limited tumor 
immunity and less-favorable outcomes, whereas low replication stress, 
lung-avid/liver-averse tumors are associated with active tumor immunity 
that may account for favorable outcomes.

Patients with pancreatic ductal adenocarcinoma (PDAC) who present 
with metastatic disease (~50%) have a median survival of months. A sub-
set of patients with PDAC (~10%) who develop primarily lung-restricted 
metastases survive significantly longer than patients with metastatic 
spread to other sites1–3; in some cases surviving >5 years with untreated, 
indolent lung metastases4 and may gain benefit from a metastatec-
tomy5. In contrast, presentation with liver metastases or recurrent 
disease in the liver portends poor outcomes, partly a consequence of 
the liver’s immune suppressive tumor microenvironment (TME)6–8.

Many studies have categorized PDAC tumors into two to six sub-
types based on gene expression in tumors9–12 and the surrounding 
TME13,14. Two consensus subtypes emerge from these studies15: the 
basal-like/quasi-mesenchymal/squamoid subtype and the classical/
ductal/glandular subtype. Outcomes are poorer for patients with 
basal-like-subtype tumors. Basal-like tumors have been linked to gene 

expression signatures indicative of ongoing replication stress (RS)16, 
defined by stalled replication forks caused by premature entry into S 
phase, transcription/replication collisions or aberrant DNA damage 
checkpoints17. Failure to resolve RS leads to replication fork collapse, 
DNA damage, interferon (IFN) signaling, cell cycle arrest and, ulti-
mately, senescence or cell death. Although aberrantly proliferating 
cancer cells are unavoidably plagued by RS, some malignant cells 
evolve response mechanisms to tolerate it, and their ability to survive 
the pro-mutagenic consequences of ongoing RS is likely key to their 
aggressive biology.

Ineffective PDAC tumor immunity and poor responses to immune 
checkpoint inhibitors (ICIs) contribute to aggressive, treatment- 
resistant PDAC18,19; however, exceptional cases exist, demonstrating 
that effective tumor immunity does occur naturally20,21. Future suc-
cess with ICIs and other modulators of tumor immunity will likely 
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(median 303 days versus 167 days, respectively; Fig. 1d) and survived 
longer overall after resection (median 784 versus 498 days, respec-
tively; Extended Data Fig. 1a). By multivariable analysis, days from 
resection to recurrence for both liver and lung cohorts was signifi-
cant independent of clinical covariates (Fig. 1e). Lung cohort patients 
generally survived longer after metastatic recurrence than the liver 
cohort (397 days versus 302 days, respectively, P = 0.053; Extended 
Data Fig. 1b) and survival after metastatic recurrence correlated with 
survival after resection (Extended Data Fig. 1c), but not with days from 
resection to recurrence (Extended Data Fig. 1d), suggesting biological 
differences in disease progression in the liver and lung cohorts between 
these two clinical time periods: before and after metastatic recurrence.

Lung cohort survival advantage independent of tumor 
subtype
We generated gene expression data by performing RNA-seq on his-
tologically confirmed tumor regions inclusive of integrated stroma 
from formalin-fixed paraffin-embedded (FFPE) primary (n = 218) and 
metastatic (n = 71) PDAC tumors (Extended Data Fig. 1e), and then used 
PurIST12 to assign consensus subtypes of PDAC (basal-like or classi-
cal) to each tumor. We found that tumors from lung cohort patients 
skewed significantly more classical than liver cohort tumors (Fig. 1f); 
and, as others have reported, patients with classical subtype tumors 
survived longer and had longer times to recurrence than patients with 
basal-like tumors (600 versus 394 days; Fig. 1g; and 250 versus 153 
days; Extended Data Fig. 1f)9,11. When restricted to only patients with 
classical subtype tumors, the lung cohort survived longer and had later 
recurrence than the liver cohort (1,681 versus 520 days; Fig. 1g; and 
303 versus 167 days; Extended Data Fig. 1f). These results highlight a 
subtype-independent survival benefit for patients in the lung cohort 
relative to the liver cohort, which is also independent of clinical covari-
ates (hazard ratio (HR) = 0.15, P = 0.0041; Fig. 1h).

Clinical comparisons reveal inflammation in lung cohort
We did not observe significant differences in sex, age, stage at diag-
nosis, tumor grade, lymph-vascular invasion or lymph node positivity 
between patients in the lung and liver cohorts (Table 1 and Extended 
Data Fig. 1g,h). Patients in the lung cohort were more likely to be treated 
by resection than patients in the liver cohort (89% versus 65%, respec-
tively; Extended Data Fig. 1i); however, the survival advantage in the lung 

require a better understanding of how rare cases of natural tumor 
immunity can control PDAC. In this study, we generated and interro-
gated large, overlapping datasets with genomic, transcriptomic and 
T cell receptor (TCR) blood and tumor sequencing of patient sam-
ples to evaluate tumor and immune differences between primary 
PDAC with liver versus lung metastatic organotropism. We report on 
both tumor-intrinsic and extrinsic features that distinguish liver-avid 
versus lung-avid, liver-averse PDAC independent from the known  
PDAC subtypes.

Results
Better outcomes in lung-avid/liver-averse metastatic PDAC
From a de-identified dataset of patients treated for PDAC at our insti-
tution with a complete set of disease-relevant computed tomography 
(CT) scans, we identified 35 patients who developed lung metastases 
but never developed evidence of liver metastases (hereafter referred 
to as the ‘lung cohort’); within this cohort, the shortest follow-up for 
patients alive at the time of data freeze was 760 days after resection 
and 984 days after diagnosis. We identified an additional 130 patients 
who developed liver metastases (referred to as the ‘liver cohort’), of 
which 28 also developed lung metastases. Consistent with previous 
reports1–4, we observed that lung cohort patients in our dataset fare 
significantly better by median overall survival (OS) than patients who 
developed liver metastases, regardless of whether they also developed 
lung metastases (819 (lung without liver) days versus 450 (liver without 
lung) or 537 (liver with lung) days; Fig. 1a). Median survival was also 
significantly longer for patients in the lung versus liver cohorts when 
limiting our analysis to patients treated by surgical resection (876 days 
versus 549 days, respectively; Fig. 1b). Patients with disease recurrence 
in sites other than liver or lung fared similarly to patients in the liver 
cohort (median survival, 693 days) and patients with no documented 
recurrence survived longer (median survival, 869 days; Fig. 1b).

We performed multivariable analysis to account for clinical covari-
ates that significantly correlated with survival in our dataset as single 
variables, including lymph/vascular invasion, grade, stage and lymph 
node positivity. Assignment to the lung cohort independently pre-
dicted longer survival for patients treated by resection in multivari-
able analysis, but assignment to other cohorts was not independently 
predictive of survival (Fig. 1c). Compared to patients in the liver cohort, 
lung cohort patients survived longer recurrence-free after resection 

Fig. 1 | Survival outcomes and the primary organotropism gene set 
distinguish liver or lung recurrence independent of subtype. a, Kaplan–Meier 
(K–M) estimates of OS of all patients with documented liver (n = 102 patients 
(pts.)) and/or lung recurrence (n = 28 and 34 pts.), P = 0.0005 and P = 0.0007.  
b, OS of patients treated by resection stratified by metastatic cohort; 
documented liver metastases (n = 84 pts.) or lung metastases without liver 
metastases (n = 30 pts.; P = 0.0002), recurrent disease at nonliver/lung (other) 
sites (n = 73 pts.) or no documented recurrence (n = 103 pts.; P = 0.003); K–M 
estimates (left), CPH single-variable modeling (right). c, CPH multivariable 
modeling of OS for patients treated by resection stratified by metastatic 
cohort; lung metastases (P = 0.005), liver metastases (P = 0.27), no documented 
recurrence (P = 0.81) and recurrent disease at nonliver/lung (other) sites 
(P = 0.19) combined with clinical covariates significant in single-variable 
modeling (n = 160 pts. with clinical covariate data). d, K–M estimates of days 
between resection and recurrence for metastatic cohorts; liver metastases 
(n = 83 pts.), recurrent disease at nonliver/lung (other) sites (n = 73; P ≤ 0.0001), 
or lung metastases (n = 29 pts.; P = 0.0005). e, CPH multivariable modeling of 
days between resection and recurrence, stratified by metastatic cohort; liver 
metastases (P = 0.0001), lung metastases (P = 0.005) and recurrent disease at 
nonliver/lung (other) sites (P = 0.14) combined with clinical covariates (n = 104 
pts. with clinical covariate data). f, PurIST subtyping scores for primary and 
metastatic tumor specimens from patients in the liver (n = 85 pts.) and lung 
(n = 28 pts.; P = 0.025) cohorts. Black bars represent means. P value from two-
tailed t-test. g, K–M estimates of OS for patients categorized by PurIST subtype; 
basal-like (n = 63 pts.) or classical (n = 206 pts.; P = 0.0003) and liver/lung 

cohorts; liver classical (n = 61 pts.) or lung classical (n = 19 pts.; P = 0.002). h, CPH 
multivariable modeling of OS for classical subtype lung cohort versus classical 
subtype liver cohort patients (n = 39 pts.; P = 0.0041) combined with clinical 
covariates. i, GSVA scores for the pORG (left; liver or lung (n = 76, P = 1.6 × 10−8), 
basal-like or classical (n = 218, P = 0.38)) and pSUB gene sets (center; liver or 
lung (n = 76, P = 0.22), basal-like or classical (n = 218, P = 7.1 × 10−27)) and PurIST 
scores (right; liver or lung (n = 76, P = 0.17), basal-like or classical (n = 218, 
P = 1.8 × 10−115)) calculated from primary tumors. j, GSVA scores for the pORG 
(left; liver or lung (n = 37, P = 0.91), basal-like or classical (n = 71, P = 0.39)) and 
pSUB gene sets (center; liver or lung (n = 37, P = 0.0013), basal-like or classical 
(n = 71, P = 1.1 × 10−8)) and PurIST scores (right; liver or lung (n = 37, P = 0.043), 
basal-like or classical (n = 71, P = 5.1 × 10−34)) calculated from metastatic tumors. 
k, GSVA scores for primaries versus metastases for pORG (top (n = 289, P = 0.91)), 
pSUB (middle (n = 289, P = 0.39)) and PurIST scores (bottom (n = 289, P = 0.39)). 
Patients who died <30 days after resection were omitted (a–e,g,h). P values 
between groups indicated with brackets determined by log-rank test, shaded 
regions represent 95% confidence intervals (CIs), and HR, P value and n are from 
CPH single-variable modeling (a,b,d,g). HR and associated P value for recurrence 
site variable was determined by CPH modeling; squares mark the HR estimates, 
and the horizontal bars represent the 95% CI (b,c,e–h). Patients with complete 
information on covariates were included in CPH multivariable analysis. Black 
bars represent means; P values were derived from one-way analysis of variance 
(ANOVA) tests and corrected with the Benjamini–Hochberg method and  
n indicates number of tumors (i–k). FU, follow-up; LN, lymph node;  
LV, lymph/vascular.
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cohort is still evident when only comparing patients treated by resection 
(Fig. 1b). A small fraction of patients in this dataset were treated with 
standard-of-care neoadjuvant chemotherapy in both cohorts (Extended 
Data Fig. 1i), but neoadjuvant treatment did not influence OS (Extended 

Data Fig. 1j). By histopathology, significantly more lung cohort tumors 
had chronic inflammation and plasmacytoid inflammation (Table 1). 
Inflammatory scores were not different between the two cohorts when 
comparing only resected primary tumors (Extended Data Fig. 2a).  
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Table 1 | Patient demographics, disease characteristics and tumor specimen histology parameters for all patients in study 
and subsets categorized into liver and lung cohorts or high and low pORG score in primary tumors

Total Liver cohort Lung cohort High pORG 
(primary tumors)

Low pORG 
(primary tumors)

Clinical characteristics n = 422 n = 130 n = 35 n = 103 n = 104

Sex
Female 193 (46%) 59 (45%) 14 (40%) 50 (49%) 43 (41%)

Male 229 (54%) 71 (55%) 21 (60%) 53 (51%) 61 (59%)

Race

White 386 (91%) 119 (92%) 31 (88.5%) 95 (92%) 100 (96%)

Asian 13 (3%) 5 (3%) 1 (3%) 2 (2%) 1 (1%)

Unknown 23 (5%) 6 (5%) 3 (8.5%) 6 (6%) 3 (3%)

Primary tumor site
Pancreas (adenocarcinoma only) 413 (98%) 127 (98%) 35 (100%) 99 (96%) 103 (99%)

Ampulla of Vater (pancreaticobiliary type 
only)

9 (2%) 3 (2%) 0 (0%) 4 (4%) 1 (1%)

Stage

Stage 0 2 (0.5%) 0 (0%) 0 (0%) 1 (1%) 0 (0%)

Stage 1a 8 (1.9%) 1 (1%) 1 (3%) 3 (3%) 3 (3%)

Stage 1b 33 (7.8%) 9 (7%) 4 (11%) 4 (4%) 8 (8%)

Stage 2a 63 (14.9%) 15 (12%) 6 (17%)
13 (13%) 25 (24%)

P = 0.047

Stage 2b 174 (41.2%) 51 (39%) 17 (49%) 66 (64%) 57 (55%)

Stage 3 54 (12.8%) 19 (15%) 3 (9%) 9 (9%) 10 (10%)

Stage 4 73 (17.3%) 33 (25%) 4 (11%)
7 (7%) 0 (0%)

P = 0.0068

No data 15 (3.6%) 2 (2%) 0 (0%) 0 (0%) 1 (1%)

Grade

1 – Well differentiated 11 (2.6%) 1 (1%) 2 (6%) 2 (2%) 6 (6%)

2 – Moderately differentiated 127 (30.1%) 49 (38%) 8 (23%) 45 (44%) 43 (41%)

3 – Poorly differentiated 85 (20.1%) 27 (21%) 12 (34%) 32 (31%) 30 (29%)

4 – Undifferentiated 2 (0.5%) 1 (1%) 0 (0%) 1 (1%) 1 (1%)

Not determined 197 (46.7%) 52 (40%) 13 (37%) 23 (22%) 24 (23%)

Treated by resection
n = 298 n = 84 (65%) n = 31 (89%)

n = 99 (96%) n = 100 (96%)
P = 0.007

Resection details

Neoadjuvant treatment 70 (24%) 18 (21%) 11 (35%)
14 (14%) 32 (32%)

P = 0.004

No residual tumor 240 (81%) 74 (88%) 28 (90%) 78 (79%) 76 (76%)

Residual disease present 55 (19%) 10 (12%) 3 (10%) 21 (21%) 22 (22%)

Angiolymphatic invasion 145 (49%) 43 (51%) 13 (42%) 52 (53%) 46 (46%)

Tumor involved in regional lymph nodes 205 (69%) 63 (75%) 20 (65%) 76 (77%) 64 (64%)

Histology analysis performed n = 239 n = 64 n = 23 n = 83 n = 85

Histology

Acute inflammation 126 (53%) 35 (55%) 9 (39%) 46 (55%) 35 (41%)

Chronic inflammation 196 (82%)
46 (72%) 22 (96%)

72 (87%) 71 (84%)
P = 0.019

Plasmacytoid inflammation 148 (62%)
32 (50%) 21 (91%)

61 (73%) 61 (72%)
P = 0.0004

LAs/TLSs 78 (33%) 20 (31%) 10 (43%) 33 (40%) 38 (45%)

Perineural invasion 75 (31%) 21 (33%) 8 (35%) 35 (42%) 34 (40%)

Desmoplasia 232 (97%) 63 (98%) 20 (87%) 83 (100%) 81 (95%)

Percentages for resection details are only from primary tumor resections and percentages for histology are only from tumors with histology analyzed. Comparisons significantly different 
between liver and lung cohort (all tumors) or high and low pORG primary tumors are shown in bold (P value below cells compared is from two-tailed Fisher’s exact test). Histology, review of 
H&E-stained sections by two board-certified pathologists blinded to study cohorts. Acute inflammation is defined as increased numbers of neutrophils compared to normal controls. Chronic 
inflammation is defined as increased numbers of lymphocytes. Plasmacytoid inflammation is defined as the presence of plasma cells in a background of chronic inflammation. LAs/TLSs are 
specifically defined as clusters of lymphocytes forming a reactive germinal center in the tissue. Perineural invasion requires the carcinoma invades into the perineurial space around nerves. 
Angiolymphatic invasion is defined as the presence of tumor cells within venous or lymphatic spaces. Desmoplasia is defined as dense fibrosis with elastin and collagen deposition around 
invading tumor cells.

http://www.nature.com/natcancer


Nature Cancer | Volume 6 | January 2025 | 123–144 127

Article https://doi.org/10.1038/s43018-024-00881-3

More lung cohort metastases had tertiary lymphoid structures/lym-
phoid aggregates (TLSs/LAs) (Extended Data Fig. 2b). Perineural inva-
sion, angiolymphatic invasion and desmoplasia were not significantly 
different in liver versus lung cohort primaries or metastases (Extended 
Data Fig. 2c,d).

Subtype-independent organotropism gene set predicts 
survival
We sought to identify gene expression in primary tumors associated 
with liver-avidity versus lung avidity/liver aversion without being influ-
enced by the higher percentage of basal-like tumors in the liver cohort 
(Fig. 1f). We ran a two-factor analysis with DESeq2 (ref. 22) to identify 
differentially expressed (DE) genes in primary tumors from the liver 
cohort versus lung cohort (organotropism) and from the basal-like 
versus the classical subtype. To focus on the biology of metastatic 
organotropism independent from subtype12, we excluded the top DE 
genes for subtype from the DE genes for organotropism to generate a 
primary organotropism gene set termed pORG (55 upregulated genes). 
We also applied this process to the DE genes from basal-like versus 
classical, subtracting the top DE organotropism genes to generate a 
gene set termed pSUB (primary tumor subtype; 51 upregulated genes).

We used Gene Set Variation Analysis (GSVA)23 to generate activity 
scores of our primary tumor samples for both the pORG and pSUB gene 
sets. As expected, pORG scores for liver cohort primary tumors were 
significantly higher than those from the lung cohort, but pORG score 
did not significantly separate primary basal-like tumors from classi-
cal tumors (Fig. 1i, left). Conversely, pSUB scores were significantly 
higher for basal-like than classical tumors but not different between 
liver and lung cohort primary tumors, similar to PurIST (Fig. 1i, center 
and right). The pORG scores for metastatic samples did not distinguish 
liver cohort from lung cohort metastases (Fig. 1j, left). The pSUB score 
distinguished basal-like from classical metastases (Fig. 1j, center) and 
also distinguished metastases from the liver and lung cohorts, similar 
to PurIST (Fig. 1j, right). GSVA scores for all specimens showed a similar 
spread in scores between all primary and all metastatic tumors for 
pORG, pSUB or PurIST (Fig. 1k).

We found significant differences in OS between patients with 
tumors scoring high versus low for pORG, pSUB and PurIST (Fig. 2a), as 
well as significantly different recurrence-free survival (RFS; Extended 
Data Fig. 2e). Using the same high/low risk cutoffs for pORG, pSUB 
and PurIST scores determined in our dataset (Fig. 2a), pORG, pSUB 
and PurIST similarly predicted survival in two external datasets: OS 
in the pancreatic adenocarcinoma patient dataset (PAAD)24, reported 
by The Cancer Genome Atlas (TCGA) (cBioPortal) (Fig. 2b), and RFS in 

the Australian Pancreatic Cancer Genome Initiative (APGI)9, part of the 
International Cancer Genome Consortium (ICGC) study (Extended 
Data Fig. 2f). Low pORG primary tumors were more likely to be early 
stage and treated with neoadjuvant chemotherapy (Table 1); how-
ever, neoadjuvant treatment did not affect OS (Extended Data Fig. 1j). 
Multivariable analysis indicated that both pORG and pSUB predicted 
survival independently from other clinical covariates, but PurIST was 
influenced by grade (Fig. 2c).

Analysis of pORG, pSUB and PurIST scores in ten matched primary 
tumors and metastases (Extended Data Fig. 2g) revealed that lung 
metastases (n = 2 pairs) and metastases in the clinically defined lung 
cohort (n = 4 pairs) went from low in primaries to high in metastases, 
whereas liver cohort primaries and metastases stayed high (Fig. 2d 
and Extended Data Fig. 2h); consistent with pORG not distinguishing 
between liver and lung cohort metastatic samples (Fig. 1j). In unpaired 
primaries and metastases, the liver cohort had a similar fraction of 
low pORG samples in primaries and metastases, whereas lung cohort 
metastases show a shift to 70% high pORG (Fig. 2e,f). Although the 
metastatic TME may contribute to this shift in gene expression, analysis 
of a publicly available single-cell RNA-seq dataset25 demonstrated that 
both the pORG and pSUB gene sets are enriched in the epithelial cell 
populations from PDAC primaries and liver metastases (Fig. 2g and 
Extended Data Fig. 2i–k).

TP53 and CDKN2A alterations are enriched in high pORG 
tumors
We used a tumor-relevant, 595 gene sequencing panel to analyze 
DNA alterations from the same specimens used for RNA sequenc-
ing (RNA-seq) (271 specimens with DNA data; Fig. 2h) and compared 
and ranked gene alterations between liver and lung cohorts, and 
high and low pORG, pSUB and PurIST quartiles (Fig. 2i and Extended 
Data Fig. 3a–j). TP53 and CDKN2A altered primaries had significantly 
higher pORG GSVA scores (Fig. 2j), whereas KRAS, CDKN2B and SMAD4 
altered primaries trended higher and GATA1 and ELF3 altered primaries 
trended lower in pORG score (Extended Data Fig. 4a). In metastases, 
TP53 altered tumors had higher pORG scores (Extended Data Fig. 4b); 
and MTAP, CDKN2A and CDKN2B altered tumors had higher PurIST 
scores (Extended Data Fig. 4c). We used Cox proportional hazards 
(CPH) multivariable modeling for OS against pORG score combined 
with gene alterations that were prognostic as single variables (TP53, 
CDKN2A, KMT2D, MTAP and ARID1B) and found that pORG score pre-
dicted shorter survival independent of genomic alterations in primaries 
and all samples (Fig. 2k), as did pSUB and PurIST scores (Extended Data 
Fig. 4d). We examined alteration differences between all primaries and 

Fig. 2 | pORG predicts survival independently of clinical and genomic 
features. a, K–M estimate of OS for patients with primary tumors having high 
or low pORG (left; high (n = 101 pts.), low (n = 107 pts.; P = 0.01)), pSUB (middle; 
high (n = 140 pts.), low (n = 68 pts.; P = 4.2× 10−5)) or PurIST scores (right; high 
(n = 126 pts.), low (n = 82 pts.; P = 0.00049)) from the OHSU dataset. High/low risk 
was determined by receiver operating characteristic curve (ROC) and maximum 
Youden’s index. b, K–M estimate of OS in TCGA pORG (left; high (n = 73 pts.),  
low (n = 67 pts.; P = 0.032), pSUB (middle; high (n = 99 pts.), low (n = 41 pts.;  
P = 0.087) or PurIST (right; high (n = 69 pts.), low (n = 71 pts.; P = 0.03)) patients 
with PDAC. High/low score is defined using cutoff from OHSU dataset.  
c, CPH multivariable modeling of OS versus primary GSVA score for pORG 
(top; P = 0.0062), pSUB (middle; P = 0.023) and PurIST (bottom; P = 0.37) with 
clinical covariates (n = 132 pts.). d, pORG, pSUB and PurIST scores of primaries 
and metastases (Met) from the same patient, grouped by clinically defined liver 
cohort (documented liver recurrence, n = 3 pairs) or lung cohort (documented 
lung recurrence without liver recurrence, n = 4 pairs) showing cohort mean GSVA 
(point) and 95% CI (error bars). e, pORG and PurIST scores for primaries (circles) 
and metastases (x) in liver and lung cohorts (n = 113 pts.). f, Fraction of primaries 
or metastases in each quadrant of the graph in e; liver (n = 85 pts., P = 0.93) or 
lung (n = 28 pts., P = 0.0012). P values from two-way chi-squared test between 
primary and metastatic specimens. g, UMAP of Werba et al.25 scRNA-seq, shaded 

by per-cell scores for pORG in PDAC primaries (top; n = 17 pts.) and PDAC liver 
metastases (bottom; n = 10 pts.). h,i, Oncoprints of the top ten altered genes 
and alteration types (n = 271 tumors) in the DNA dataset (h) and top (above, 
n = 50 pts.) and bottom quartile (below, n = 50 pts.) (i) by pORG primary GSVA 
score. j, pORG primary GSVA score versus TP53 (left; altered (n = 131 pts.), WT 
(n = 70 pts.), FDR = 9.3 × 10−13) or CDKN2A (right; altered (n = 55 pts.), WT (n = 146 
pts.), FDR = 0.00052) gene alteration. P value from two-tailed t-test calculated 
for genes with ≥10 alterations in the dataset, corrected with the Benjamini–
Hochberg method. k, CPH multivariable modeling of OS versus pORG GSVA score 
and genomic alterations prognostic in single-variable CPH modeling in primary 
tumors (left; n = 193 pts., P = 0.04) and all tumors (right; n = 251 pts., P = 0.014). 
l, Oncoprints of the top ten altered genes and their alteration types in primaries 
(left; n = 203 tumors) and metastases (right; n = 68 tumors). The log-rank test  
P values and n per group are indicated with brackets, shaded regions represent 
95% CI, and CPH single-variable modeling HRs and associated P values are 
displayed on plots (a,b). Frequency is indicated at left, top bars indicate variant 
types by tumor, and right bars indicate variant types by gene (h,i,l). Alteration 
key (i). HR and associated P value for GSVA or PurIST score was determined by 
CPH modeling, squares represent HR estimates, and error bars represent 95% CIs 
(c,k). Patients who died within 30 days after resection are not shown (a,c,k).
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all metastases in our dataset and in nonmatched samples we found 
MTAP and SMARCB1 trended toward more alterations in metastases 
compared to primaries, whereas KDM5C and GATA1 trended toward 
fewer alterations in metastases (Fig. 2l and Extended Data Fig. 4e). We 
found no consistent changes across nine paired primary tumors and 
metastases (Extended Data Fig. 4f). There was an average of 3.4 differ-
ences in genetic alterations between paired primaries and metastases 
from our gene panel, consistent with stochastic changes in matched 
samples (Extended Data Fig. 4g). DNA analysis indicated higher tumor 
cell content in basal-like versus classical primary tumors, consistent 
with another report14, and in high pORG and high pSUB primary tumors, 
but no significant difference between the liver and lung cohort primary 
tumors; or metastases in any of the groups (Extended Data Fig. 4h–i).

Distinct pathways enriched by pORG and pSUB gene sets
Gene set enrichment analysis (GSEA) analysis revealed that high pORG 
and liver cohort primary tumors were enriched (normalized enrich-
ment score (NES) > 1.7, false discovery rate (FDR) < 0.05) in Hallmark 
pathways26 related to oncogene-mediated RS: G2M checkpoint, E2F 
targets, mitotic spindle, MYC targets V1, DNA repair, IFN-α response, 
cell metabolism and mitogenesis (Fig. 3a). We found that high pSUB 
and PurIST primary tumors were enriched in pathways related to 
glycolysis, epithelial–mesenchymal transition, apical junctions and 
hypoxia, whereas high PurIST was de-enriched for bile acid metabo-
lism and pancreas β cells (Fig. 3b). Visualization of GSVA scores for 
these pathways supported results from GSEA and showed that the no 
documented recurrence clinical group skewed pORG low (Extended 
Data Fig. 5a–c). GSEA in metastatic-sample cohorts yielded significant 
differences only in high versus low pORG, with 7 upregulated pathways 
overlapping with the 12 found in primaries (Fig. 3c). Thus, separating 
primary tumor metastatic organotropism and molecular subtype using 
the pORG and pSUB gene sets identifies unique pathway enrichments.

Cell cycle, RS and DNA repair up in high pORG, liver-avid 
tumors
Virtual inference of protein-activity enrichment regulon (VIPER)27,28 
analysis followed by Gene Ontology network analyses identified nodes 
for cell cycle and DNA replication and repair enriched in both high pORG 
and liver cohort primary tumors (Extended Data Fig. 5d,e). Accordingly, 
cell cycle, DNA replication and DNA repair proteins demonstrated sig-
nificantly higher activity in high pORG and liver cohort tumors (Fig. 3d). 
To further analyze RS, we immunostained a tissue microarray (TMA) 
prepared from 34 primary tumors using the same FFPE blocks from our 
RNA and DNA-seq data for foci of phosphorylated replication protein 
A (pRPA) (Fig. 3e), an indicator of single-stranded DNA exposed dur-
ing RS. We found a significantly higher mean number of pRPA foci in 

cytokeratin-positive (KRT+) epithelial cells in high pORG versus low 
pORG primary tumors (Fig. 3f, left). Additionally, we found that Ki67+ 
proliferating tumor cells had significantly more pRPA foci in high pORG 
tumors (Fig. 3f, right). Similar, though not significant, trends were 
observed in nine liver cohort primary tumors compared to four lung 
cohort (Extended Data Fig. 6a). The percent of epithelial cells and of 
proliferating epithelial cells positive for pRPA foci were also higher in 
high pORG primary tumors and trended higher in liver cohort primaries 
(Extended Data Fig. 6b-c), and more pRPA+ cells were proliferating in 
high pORG tissues (Extended Data Fig. 6d). Together, these results 
support the hypothesis that in high pORG tumors, pRPA+ cells are a 
viable, expanding part of the tumor despite ongoing RS, likely due to 
the associated increase in DNA repair.

Low pORG tumors are less tolerant to defects in DNA repair
A report by Dreyer et al. suggested that treatment-agent efficacy may 
depend on both RS and DNA damage response (DDR) gene alteration 
status, dividing patients into four categories based on the presence or 
absence of those two factors16. As our data indicate that liver-avid, high 
pORG primary tumors are enriched for pathways associated with ongo-
ing RS and DNA repair, we divided patients into four categories by high/
low pORG score and the presence/absence of a known DDR gene altera-
tion29. Although patients with high pORG scoring tumors fared poorly 
regardless of DDR gene status, patients with low pORG tumor scores 
survived significantly longer if their primary tumors had DDR nonsilent 
gene alterations, whether or not variants of unknown significance 
(VUS) were excluded (Fig. 3g and Extended Data Fig. 6e). Additionally, 
liver cohort tumors with DDR gene alterations had higher pORG scores 
compared to those without (Fig. 3h), suggesting that the presence of 
DDR gene alterations may promote mechanisms supporting tumor cell 
responses to RS and DNA damage to avoid mitotic catastrophe, and a 
lack of this response, as seen in low pORG tumors, combined with a 
DDR gene alteration improves patient outcome (Fig. 3g).

Suppressed tumor immunity in high pORG, liver-avid tumors
Consistent with enrichment of the Hallmark IFN-α response in high 
pORG samples by GSEA (Fig. 3a), VIPER scores for IFN-α/β receptor 
subunits activity positively correlated with pORG score (Fig. 3i). Chronic 
IFN signaling in cancer is reported to induce an IFN-related DNA damage 
resistance gene expression signature (IRDS), associated with tumor 
cell resistance to DNA damage30–32 and escape from tumor immunity33. 
We found a significant positive correlation between the IRDS gene 
signature and pORG score in primary tumors (Fig. 3j). Two genes in the 
IRDS gene set matched VIPER regulons (STAT1 and MX1) and these were 
both significantly positively correlated with pORG and trended higher 
in liver cohort tumors (Fig. 3i and Extended Data Fig. 6f).

Fig. 3 | High pORG, liver-tropic PDAC is associated with replication stress 
tolerance and IFN response. a–c, NES colored by FDR P-adjusted (FDR.q) value 
(FDR.q.val) (from one-way ANOVA) is shown for Hallmark GSEA pathways if 
any of the comparisons reached a NES > 1.7 and FDR.q < 0.05 from the cohorts 
indicated on each plot. a, Solid bars, top versus bottom quartile by pORG (n = 108 
pts.); hatched bars, liver versus lung cohort (n = 76 pts.). b, Solid bars, top versus 
bottom quartile by pSUB (n = 108 pts.); hatched bars, top versus bottom quartile 
by PurIST (n = 108 pts.). c, Solid bars, top versus bottom quartile by pORG in 
metastases (mets) (n = 34 pts.). d, Mean differential (diff.) VIPER regulon activity 
scores colored by FDR.q.val (from one-way ANOVA) in top versus bottom quartile 
by pORG (solid bars, n = 108 pts.) and liver cohort versus lung cohort (hatched 
bars, n = 76 pts.) primary tumors for regulons related to cell cycle (left), DNA 
replication (center) and DNA damage repair (right). e, Example immunostaining 
of epithelial cells (KRT+), proliferation (Ki67+) and algorithmic detection of pRPA 
foci in PDAC tissue (n = 55 cores imaged in total). f, Mean RS pRPA foci in epithelial 
cells (left; high pORG (n = 16 pts.), low pORG (n = 18 pts.), P = 0.033) and Ki67+ 
proliferating epithelial cells (right; high pORG (n = 16 pts.), low pORG (n = 18 pts.),  
P = 0.036) in each patient determined by immunostaining a TMA with 34 

primary specimens, 1–2 cores each. g, K–M estimate of OS for patients with 
tumors with high or low pORG GSVA scores stratified by tumors with or without 
a known pathologic somatic alteration (VUS were excluded) in a DDR-related 
gene (DDR altered high (n = 23 pts.), DDR intact high (n = 73 pts.), DDR altered 
low (n = 20 pts.) or DDR intact low (n = 77 pts.), P = 0.018). log-rank P value, and 
shaded regions represent 95% CI. h, pORG GSVA scores for primary tumors 
(Pri) and metastases (Met) from patients in the liver cohort categorized by a 
known pathologic somatic alteration (VUS were excluded) in a DDR-related gene 
(DDR altered (n = 13 tumors) or DDR WT (n = 74 tumors), P = 0.044). i, Pearson 
correlation (two-sided) of the indicated VIPER regulon scores and pORG GSVA 
scores (n = 218 pts.). j, Pearson correlation (two-sided) of pORG and IFN- and 
immune-related signature GSVA scores for primary tumors (n = 210 pts.). Two-
tailed Students t-test P value; black bars represent the mean (f,h). P values from 
Pearson correlation and corrected with the Benjamini–Hochberg method (i,j). 
*FDR P adjusted < 0.05, **P adjusted < 0.01, ***P adjusted < 0.001. FDR-adjusted 
P values were 0.0037, 4.7 × 10−6, 3.5 × 10−8, 0.24, 1.8 × 10−9, 2.6 × 10−8, 5 × 10−11, 
8 × 10−12, 7.4 × 10−39, n = 218 patients (for i) and 8.8 × 10−5, 1.8 × 10−5, 0.0047, 2 × 10−7, 
4.1 × 10−11 (for j), n = 210 patients.

http://www.nature.com/natcancer


Nature Cancer | Volume 6 | January 2025 | 123–144 130

Article https://doi.org/10.1038/s43018-024-00881-3

Consistent with chronic IFN signaling inactivating adaptive 
immune cells34, we found that high pORG scores negatively correlated 
with B cell and T cell gene signatures, regulons and marker genes; and 
positively correlated with response to IFN, macrophage and neutrophil 

marker genes, signatures, and regulons (Fig. 3i,j and Extended Data 
Fig. 6g). Similarly, liver versus lung cohort tumors had a trend of lower 
CD20 B cell VIPER activity scores (FDR = 0.06; Extended Data Fig. 6f). 
We found similar results with deconvolution algorithms: notably, 
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negative correlations between pORG score and most lymphocyte 
subsets, as well as endothelial cells and cancer-associated fibroblasts, 
and positive correlations between pORG score and immune suppres-
sive TH2 CD4+ T cells, macrophages, plasmacytoid dendritic cells and 
γδ T cells (Fig. 4a and Extended Data Fig. 6h).

We used a multiplexed immunohistochemistry (mIHC) platform35,36 
to measure densities of leukocyte subsets in multiple 1.0-mm2 regions 
of interest (ROIs) in tissue sections from primary tumor specimens with 
pORG scores assigned from gene expression data and classified as the 
liver (121 ROIs, n = 9 patients) or lung cohort (53 ROIs, n = 3 patients; 
Fig. 4b). Seven of the nine liver cohort samples were scored high pORG 
(84 ROIs); and the five low pORG samples included the three lung 
cohort samples and two liver cohort samples (90 ROIs). Consistent 
with leukocyte-relevant gene expression, at the ROI cohort level, we 
found that the low pORG and lung cohort tumors harbored greater den-
sities of CD4+ T helper cells, B cells and T regulatory CD4+ cells, whereas 
the high pORG tumors had higher granulocytes, macrophages and 
immature dendritic cells, which were also enriched in the liver cohort 
(Fig. 4c,d). With the low sample numbers, these were not significant at 
the patient-level comparisons (Extended Data Fig. 6i), and additional 
samples will need to be evaluated by mIHC to validate these findings. 
Taken together, these data demonstrate that aggressive, high pORG 
liver-avid primary PDAC tumors are characterized by both ongoing RS 
response and likely evasion of antitumor immunity.

T cell repertoires are rich and diverse in low pORG tumors
We performed sequencing of genomic rearrangements encoding the 
complementarity determining region 3 (CDR3) of TCRβ chains from 
288 blood samples and 216 tumors (174 primary and 42 metastatic), 
215 of which had matched blood from the same patient. RNA-seq 
was available for 175 patients with TCR-seq analysis of tumor, and of 
these, 139 patients had their primary tumor analyzed and 33 patients 
had their metastatic tumor analyzed with both modalities (Extended 
Data Fig. 1e). Seventy-six blood samples were from patients in the liver 
cohort and 16 were from patients in the lung cohort, of which 59 and 16 
were matched with tumor samples from the same patient. The number 
of productive templates sequenced were highest in blood samples, 
and lower in metastases, compared to primary tumors, but there was 
little-to-no significant difference within a sample type in our cohort 
comparisons: liver versus lung and high versus low pORG (Extended 
Data Fig. 7a–c). Liver and lung cohort primary tumors in the TCR-seq 
dataset with RNA-seq were significantly separated by pORG score, but 
not the metastases (Fig. 4e). Patient outcomes for the TCR-seq dataset 
matched those of the whole cohort for pORG (Fig. 4f and Extended 
Data Fig. 7d,e); but lung cohort patient survival only trended longer, 
potentially due to the relatively low number of lung cohort patients in 
the TCR-seq dataset (Fig. 4f).

We evaluated T cell repertoires using common metrics of richness 
(the number of unique TCRβ CDR3 amino acid sequences), evenness 
(the distribution of clonal frequencies within a sample; a very clonal 
repertoire would have low evenness) and diversity (a function of both 
richness and evenness)37,38. We applied these metrics in the context of 
tumor type (primary versus metastatic), pORG score and liver versus 
lung cohort; moreover, we examined the influence of each repertoire 
metric on OS, across all patients and primary tumor sampled patients 
in the TCR-seq dataset. Consistent with greater T cell enrichment in 
low pORG tumors (Figs. 3i,j and 4a–d and Extended Data Fig. 6g,h), 
we found a higher density of productive TCRβ templates (templates 
per ng) and more unique productive TCRβ rearrangements (richness) 
in low pORG primary and metastatic tumors relative to high pORG 
(Fig. 5a,b). We did not detect the same difference between lung and 
liver cohort tumors, although lung and liver cohort metastases trended 
similarly (Fig. 5a,b). Patient survival time increased with greater TCRβ 
template density or richness (Fig. 5c,d and Extended Data Fig. 7f). These 
data suggest that the underlying biology associated with a high pORG 
signature may restrict the density of T cells in the tumor and reduce the 
richness of the TCR repertoire.

TCR clonal distribution was evaluated with two evenness 
metrics: Simpson’s evenness and Pielou evenness (also known as 
richness-normalized Shannon entropy), which expressed as 1 − Pielou 
evenness is termed clonality39,40. We found lower Simpson’s evenness 
in low pORG and lung cohort tumors relative to high pORG and liver 
cohort tumors, trending in primary tumors and significant in metas-
tases (Fig. 5e); and low Simpson’s evenness was associated with better 
patient outcomes (Fig. 5f and Extended Data Fig. 7g). Consistent with 
low Simpson’s evenness, clonality was higher in lung cohort metastases 
and trended higher in low pORG metastases (Extended Data Fig. 7h), but 
the overall outcome trend was not significant (Extended Data Fig. 7i).

We used Shannon entropy and Simpson’s diversity (1 − Simpson’s d)  
to evaluate TCR repertoire diversity38,40,41. Shannon entropy is maxi-
mized with increasing richness and increasing evenness of the TCR 
sequences, while Simpson’s diversity de-emphasizes low-frequency 
clones and is thus less affected by richness. We observed that low 
pORG primary and metastatic tumors have high Shannon entropy 
(Fig. 5g), which is associated with better patient outcome (Fig. 5h and 
Extended Data Fig. 7j). Similar to Shannon entropy, Simpson’s diversity 
was higher in low pORG primaries; however, it was not significantly 
associated with patient survival (Extended Data Fig. 7j–l), indicating 
high diversity in low-frequency TCR clones is more strongly associated 
with patient outcomes (Fig. 5h and Extended Data Fig. 7j). Lung cohort 
relative to liver cohort tumors did not have increased TCR Shannon 
entropy (Fig. 5g); instead, lung cohort metastases had low Simpson’s 
diversity (Extended Data Fig. 7k), which is consistent with their high 
clonality (Fig. 5k).

Fig. 4 | Transcriptomic and multiplex imaging evidence of immune 
suppression in high pORG, liver-tropic tumors. a, Pearson correlation 
(two-sided) of xCell deconvolution scores and pORG GSVA score for primary 
tumors (n = 204 pts.). P values from Pearson correlation and corrected with the 
Benjamini–Hochberg method. *FDR P adjusted < 0.05, **P adjusted < 0.01,  
***P adjusted < 0.001. FDR-corrected P values are 0.198, 9.06 × 10−6, 0.0752, 
0.802, 0.123, 2.31 × 10−9, 5.23 × 10−10, 1.26 × 10−16, 2.58 × 10−22, 0.000701, 0.0112, 
0.164, 0.0215, 0.0966, 0.0125, 0.000937, 0.0682, 0.281, 0.326, 1.93 × 10−6, 
3.54 × 10−5, 0.0215, 0.362, 0.228, 0.462, 0.326, 0.0147, 0.00857, 0.362, 0.018, 
0.422 and 0.227. b, Representative images of mIHC staining of a low pORG, lung 
cohort patient tumor (left) and a high pORG, liver cohort patient tumor (right). 
n = 12 tissues imaged, 174 ROIs total. c, Average leukocyte densities for primary 
tumors from patients in the liver cohort (mean pORG 0.23 s.e.m. = 0.11, n = 9 
pts.) and lung cohort (mean pORG −0.51 s.e.m. = 0.09, n = 3 pts.) (top). Average 
leukocyte densities for primary tumors from patients with high pORG (pORG 
0.38 s.e.m. = 0.04, n = 7 pts.) and low pORG GSVA scores (mean pORG –0.43 
s.e.m. = 0.08, n = 5 pts.) (bottom). DC, dendritic cell. d, Leukocyte densities in 

ROIs from liver (n = 121 ROIs) or lung cohort (n = 53 ROIs) primaries (top) and high 
(n = 84 ROIs) or low (n = 90 ROIs) pORG primaries (bottom). Each dot represents 
an ROI colored by patient specimen (n = 12 patients). Box represents the median 
and interquartile range (IQR), and whiskers extend 1.5 × IQR. P values from two-
tailed t-test corrected with the Benjamini–Hochberg method. FDR-corrected  
P values are 0.45, 1.1 × 10−8, 0.45, 0.23, 0.001, 0.07, 0.00034, 7.6 × 10−13, 0.98 (top) 
and 0.0097, 0.00061, 0.049, 0.33, 0.006, 0.31, 5.4 × 10−6, 2 × 10−5, 0.034 (bottom, 
n = 174 ROIs). e, pORG score from RNA-seq of liver versus lung cohort tumors in 
the TCRβ dataset, primaries (left; liver (n = 38 pts.), lung (n = 11 pts.), P = 1.7 × 10−5) 
and metastases (right: liver (n = 20 pts.), lung (n = 5 pts.), P = 0.47). P values from 
two-tailed t-test. Black bars represent the means. f, K–M estimation of OS of 
patients with high (n = 106 pts.) versus low (n = 82 pts.; P = 0.0054) pORG GSVA 
scores (left; cutoff determined by ROC and maximum Youden’s index in the full 
dataset in Fig. 2a) and liver (n = 76 pts.) versus lung cohort (n = 16 pts.; P = 0.097) 
patients (right) in the TCRβ dataset. log-rank test P values and n patients per 
group are indicated with brackets and shaded regions represent 95% CI. CPH 
single-variable modeling HR and associated P values are displayed on plots.
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Low pORG/lung cohort metastases maintain higher TCR 
clonality
We compared T cell repertoires between all primary and metastatic 
tumors and found no difference in templates per ng or Shannon 

entropy, but primary tumors had more productive rearrangements, 
lower Simpson’s evenness and lower Simpson’s diversity, consistent 
with higher clonality (Fig. 5i and Extended Data Fig. 7m). We also found 
that primary tumors had a higher fraction of the tumor TCR repertoire 
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occupied by clones with more than one template on average per patient 
than metastatic tumors (that is expanded clones; Fig. 5j). Although 
metastases in general had reduced clonal TCR repertoires (Fig. 5i), the 
low pORG and lung cohort metastases had TCR repertoires indicating 
increased clonal responses (low evenness/high clonality) relative to 
high pORG and liver cohort, respectively (Fig. 5e,k), consistent with 
their better prognosis. We also parsed out specific metastatic collec-
tion sites in the TCR-seq dataset which showed the composition of 
high and low pORG metastases and liver and lung cohort metastases 
(Extended Data Figs. 7n and 8a). Grouping by metastatic collection site 
demonstrated lung metastases have greater clonality than liver metas-
tases, consistent with our cohort-level data (Extended Data Fig. 8a,b).

Higher peripheral TCR clonality with low pORG metastases
Peripheral blood TCR clonality at baseline and expansion of clones 
post-treatment was reported to predict survival in patients with met-
astatic PDAC treated with ICIs39. In our dataset, we found trends for 
longer survival in patients with high blood TCR clonality and lower 
TCR diversity metrics (Extended Data Fig. 8c); and elevated TCR clonal-
ity/lower diversity in blood from patients with low pORG versus high 

pORG metastatic disease (Fig. 5l and Extended Data Fig. 8d), but this 
difference was not seen in blood collected at or before primary tumor 
resection (Extended Data Fig. 8d–f). In contrast, blood samples from 
lung cohort patients had greater Simpson’s evenness and a trend toward 
lower clonality (Extended Data Fig. 8e,g). Blood TCR richness showed 
no difference between high and low pORG or liver and lung cohorts 
(Extended Data Fig. 8h). Comparison of all blood samples associated 
with primary versus metastatic disease did not identify significant dif-
ferences in TCR repertoire richness, evenness or diversity (Extended 
Data Fig. 8i) or the number of expanded clones (Extended Data Fig. 9a). 
Compared to the liver cohort, lung cohort primary-associated blood 
samples had fewer expanded clones (Extended Data Fig. 9b), consistent 
with their significantly higher blood TCR evenness, while low pORG 
relative to high pORG blood TCR repertoires displayed higher frac-
tions of expanded clones in metastatic disease (Extended Data Fig. 9c).

Shared TCR clonal responses in low pORG, lung cohort tumors
To assess responses to potential common antigens, we evaluated over-
lap in the tumor and blood TCR repertoires in our cohorts using two 
metrics, public overlap and Jaccard index37. Public overlap counts the 

Fig. 5 | Tumoral TCRβ repertoire richness, diversity associated with low 
pORG tumors; clonality decreases in metastases, but not in low pORG, lung 
metastases. a, TCRβ templates per ng of DNA sequenced in primary tumors 
(top; liver or lung (n = 55 pts., P = 0.19), pORG quartiles high or low (n = 70 pts., 
P = 0.028)) and metastases (bottom; liver or lung (n = 20 pts., P = 0.14), pORG 
quartiles high or low (n = 17 pts., P = 8 × 10−5)) in liver versus lung and high (top 
quartile) versus low (bottom quartile) pORG tumors. b, The number of unique 
productive rearrangements of TCRβ templates in primary tumors (top; liver or 
lung (n = 55 pts., P = 0.75), high or low (n = 70 pts., P = 0.007)) and metastases 
(bottom; liver or lung (n = 20 pts., P = 0.077), high or low (n = 17 pts., P = 0.01)), 
grouped by the indicated cohorts. c,d, K–M estimates of OS of patients with 
high versus low templates per ng (c) (high (n = 107 pts.) or low (n = 104 pts.), 
P = 0.00012) and productive rearrangements (d) in all tumors (high (n = 25 
pts.) or low (n = 186 pts.), P = 0.0011). e, Simpson’s evenness estimation of TCRβ 
repertoire evenness in primary tumors (top; liver or lung (n = 55 pts., P = 0.19), 
high or low (n = 70 pts., P = 0.24)) and metastases (bottom; liver or lung (n = 20 
pts., P = 0.007), high or low (n = 17 pts., P = 0.034)), grouped by the indicated 
cohorts. P values from Kruskal–Wallis H-test; dashed lines represent the median 
and IQR. f, K–M estimates of OS of patients with high (n = 35 pts.) versus low 
(n = 176 pts.; P = 0.022) Simpson’s evenness. g, Shannon entropy estimation 
of TCRβ repertoire diversity in primary tumors (top; liver or lung (n = 55 pts., 
P = 0.63), high or low (n = 70 pts., P = 0.0013)) and metastases (bottom; liver 

or lung (n = 20 pts., P = 0.51), high or low (n = 17 pts., P = 0.031)), grouped by 
the indicated cohorts. h, K–M estimates of OS of patients with high (n = 31 
pts.) versus low (n = 180 pts.; P = 0.007) Shannon entropy. i, The indicated TCR 
metrics in metastases (Met) versus primary tumors grouped by related TCR 
metrics; productive rearrangement (n = 216 pts., P = 0.028), Simpson’s evenness 
estimation (n = 216 pts. P = 1.2 × 10−5), clonality (n = 216 pts., P = 2.9 × 10−5), 
Shannon entropy estimation (n = 216 pts., P = 0.99) and Simpson’s diversity 
estimation (n = 216 pts., P = 0.0079). j, Pie charts of fraction of each CDR3 
sequence in TCRβ repertoires of primary tumors (n = 174 pts.) or metastases 
(n = 42 pts.). The largest slice is all the small clones (those present in less than or 
equal to one template per patient on average in tumor samples) and each smaller 
slice of pie is an expanded clone present at greater than one template per patient 
on average across the tumors. k, Tumor TCRβ clonality in high/low (n = 17 pts., 
P = 0.051) pORG or liver/lung cohorts (n = 20 pts., P = 0.00038) in metastases. 
l, Clonality (left; liver or lung (n = 27 pts., P = 0.31), high or low (n = 18 pts., 
P = 0.016)) and Simpson’s diversity (right; liver or lung (n = 27 pts., P = 0.91), high 
or low (n = 18 pts., P = 0.026)) in bloods collected from patients with metastases, 
grouped by the indicated cohorts. High/low cutoff determined with the ROC 
and maximum Youden’s index for each metric, log-rank P value and n per group 
shown with bracket, and shaded regions represent 95% CI (c,d,f,h). Patients who 
died within 30 days after resection are not shown. P values were derived from a 
one-way ANOVA; black bars represent the mean (a,b,g,i,k,l).

Fig. 6 | Shared, clonal TCR responses in low pORG, lung cohort tumors. 
 a,b, Number and fraction of TCRβ clonotypes that are shared with other tumor 
clonotypes in the dataset, quantified as (log) mean public overlap and (log) mean 
Jaccard index (intersection of two sets over the union of two sets), respectively. 
Primary tumors’ mean public overlap (left; liver or lung (n = 55 pts., P = 0.69), 
pORG quartile high or low (n = 70 pts., p = 0.009)) and Jaccard index (right; liver 
or lung (n = 55 pts., P = 0.49), high or low (n = 70 pts., P = 0.033)) of each tumor 
with each other tumor sample, grouped by the indicated cohorts (a). Metastatic 
tumors’ (mets) mean public overlap (left; liver or lung (n = 20 pts., P = 0.088), 
pORG quartile high or low (n = 17 pts., P = 0.0084)) and Jaccard index (right; liver 
or lung (n = 20 pts., P = 0.18), pORG quartile high or low (n = 17 pts., P = 0.0057)), 
grouped by the indicated cohorts (b). c, Mean public overlap (left; liver or lung 
(n = 75 pts., P = 0.25), high or low (n = 90 pts., P = 0.0064)) and Jaccard indices 
(right; liver or lung (n = 75 pts., P = 0.21), high or low (n = 90 pts., P = 0.01)) of 
tumors’ overlap with each blood sample, grouped by the indicated cohorts. 
 d, K–M estimates of OS of patients with high versus low mean public clonotypes 
(top) of all tumor samples’ (left; high (n = 26 pts.) or low (n = 185 pts.), P = 0.0071) 
or primary tumor samples’ (right; high (n = 24 pts.) or low (n = 145 pts.), P = 0.027) 
and Jaccard index (bottom) of all tumor samples’ (left; high (n = 26 pts.) or low 
(n = 185 pts.), P = 0.0096) or primary tumor samples’ (right; high (n = 148 pts.) 
or low (n = 21 pts.), P = 0.00099) overlap with tumor TCRβ repertoires. e, K–M 
estimates of OS of patients with high versus low mean public overlap (left; 
high (n = 29 pts.) or low (n = 182 pts.), P = 0.013) and Jaccard index (right; high 

(n = 31 pts.) or low (n = 180 pts.), P = 0.022) of all tumor samples’ overlap with 
blood repertoires. f, Number of shared, dominantly clonal CDR3 clonotypes 
from lung (left; liver (n = 59), lung (n = 16), P = 0.036), liver (center; liver (n = 59), 
lung (n = 16), P = 0.79) and all tumors (right; liver (n = 59), lung (n = 16), P = 0.36) 
present in each patient’s repertoire in liver versus lung cohort (top row). Number 
of shared, dominantly clonal CDR3 clonotypes from lung (left; high (n = 45), 
low (n = 45), P = 0.0025), liver (center; high (n = 45), low (n = 45), P = 0.015) and 
all tumors (right; high (n = 45), low (n = 45), P = 0.013) present in each patient’s 
repertoire in high versus low pORG quartiles (bottom row). g, Productive 
frequency of all shared, dominantly clonal CDR3 clonotypes from lung (left; liver 
(n = 59), lung (n = 16), P = 8.8 × 10−10), liver (center; liver (n = 59), lung (n = 16), 
P = 0.13) and all tumors (right; liver (n = 59), lung (n = 16), P = 0.24) present in each 
patient’s repertoire in liver versus lung cohort (top row). Productive frequency 
of all shared, dominantly clonal CDR3 clonotypes from lung (left; high (n = 45), 
low (n = 45), P = 0.042), liver (center; high (n = 45), low (n = 45), P = 0.092) and 
all tumors (right; high (n = 45), low (n = 45), P = 0.38) present in each patient’s 
repertoire in high versus low pORG (bottom row). P values were obtained by one-
way ANOVA; black bars represent the mean (a–c). High/low cutoff determined 
with the ROC and maximum Youden’s index; P values were determined by a log-
rank test and shaded regions represent 95% CI (d,e). Patients who died within  
30 days after resection are not shown. P values are from a two-tailed t-test, black 
bars represent the mean, and n indicates the number of patients (f,g).
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number of clonotypes shared between two groups. Jaccard index is 
defined as the size of the intersection over the size of the union of two 
sample sets. We calculated the mean of each sample’s public overlap 
and Jaccard index with every other sample’s TCR repertoire, indicative 
of a sample’s T cell response to common antigens. We found greater 
overlap between low pORG tumors and other tumors (Fig. 6a,b) or 
blood samples (Fig. 6c) and a correlation between these overlaps and 
survival for all patients and primary-sampled patients (Fig. 6d,e). In 
contrast, blood repertoires overlap with either tumor or other blood 
repertoires did not show associations with survival, liver versus lung 
cohort or high versus low pORG tumors (Extended Data Fig. 9d–g). 
These data demonstrate that an increased proportion of shared clono-
types found in the tumor are associated with favorable disease biology 
(lower pORG scores) and better clinical outcomes in PDAC.

For cohort-specific investigation of clonal TCRs in each group 
(liver, lung or all tumors), we identified CDR3 sequences that were 
shared by at least 25% of samples in a group and were dominantly clonal 
in at least one sample, hereafter referred to as ‘shared clonal’. Low 
pORG tumors had greater numbers of shared clonal sequences from 
any of the groups, liver, lung or all, than high pORG tumors, whereas 
lung cohort tumors trended this way but had significantly more shared 
clonal sequences from the lung cohort (Fig. 6f), suggesting unique lung 
cohort T cell responses. The frequency of the shared clonal sequences 
in each patient’s tumor revealed that in lung cohort and low pORG 
tumors, lung cohort shared clonal sequences were expanded to a larger 
proportion of the repertoire (Fig. 6g), and this was true separately in 
lung cohort primaries and metastases, and low pORG primaries but 
not metastases (Extended Data Fig. 9h,i). These results suggest that 
lung cohort patients may be a subset of low pORG tumor patients who 
harbor unique shared TCRβ clonal sequences that undergo a selective 
expansion.

Clonal expansion within tumors associated with better 
outcome
We considered that expanded T cell clones occurring in tumors but not 
sampled in the blood TCR repertoire may reflect new clonal develop-
ment in tumors. We found that lung cohort tumors harbored signifi-
cantly more of these tumor-distinct clones than liver cohort tumors, 
especially in metastases (Fig. 7a). Higher tumor-distinct clones were 
associated with better OS in all patients, but not in patients with primary 
tumor resections alone (Fig. 7b and Extended Data Fig. 9j). Primary 
samples had more tumor-distinct clones than metastases (Fig. 7c). 
Additionally, clonality positively correlated with the percentage of 

tumor-distinct clones in primary tumors and metastases (Fig. 7d), 
underscoring that new clonal development may contribute to overall 
clonality of the tumor T cell repertoire.

Clonal T cell responses to tumor-associated antigens may arise in 
TLSs42. Consistent with this, we found a significantly higher percent-
age of tumor-distinct clones in tumors that were characterized by two 
blinded, board-certified pathologists (T.M. and B.B.) as containing at 
least one TLS (Fig. 7e). Furthermore, lung cohort metastases, which 
have significantly more tumor-distinct clones, had more TLSs than 
liver cohort metastases (Extended Data Fig. 2b). Moreover, we identi-
fied LAs of CD20+ cells clustered with CD3+ cells in mIHC images from 
the nine liver and three lung cohort primary tumor sections analyzed 
in Fig. 4 (Fig. 7f and Extended Data Fig. 9k). Although there were no 
significant differences in the average number of LAs between liver and 
lung cohorts, LAs from lung cohort primaries were on average twice the 
size of those from liver cohort, and this was also true when specimens 
were divided into low versus high pORG tumors (Fig. 7g).

To investigate T cell responses to PDAC-initiating antigens, we 
assessed 21 published CDR3 sequences experimentally confirmed to 
be part of TCRβ receptors specific for KRAS G12/13 alterations43–46 that 
commonly drive PDAC tumors (though we were unable to confirm the 
presence of the reported matching HLA allele). The presence of these 
putative mutant KRAS-specific CDR3 sequences in tumors from all 
patients was associated with better patient outcome, but this was not 
the case for their presence in blood repertoires (Fig. 7h). We identified 
higher numbers of KRAS-specific sequences present per patient in 
lung cohort and low pORG tumors (Fig. 7i) but not significantly higher 
productive frequency of these sequences in either liver versus lung 
or high versus low pORG cohort comparisons (Fig. 7j and Extended 
Data Fig. 9l). Comparison to additional metrics revealed that tumors 
with putative mutant KRAS-specific clones present had increased 
TCRβ tumor repertoire richness, diversity and tumor-distinct clones 
(Fig. 7k and Extended Data Fig. 9m). However, only two of over 21,000 
tumor-distinct clones identified and none of the shared, clonally domi-
nant sequences in our cohorts (Fig. 6f,g) matched those reported to 
be mutant KRAS specific. Together, these results suggest that the pres-
ence of T cells reactive to tumor-initiating, persistent neoepitopes, like 
mutant KRAS, in tumors may associate with better patient outcome and 
liver-adverse metastatic disease, but selective clonal expansion in lung 
cohort or low pORG tumors associated with their better outcome does 
not often involve expansion of these clones; however, further discovery 
of additional putative mutant KRAS CDR3s and HLA tumor-matching 
is required to validate these hypotheses.

Fig. 7 | T cell clonal expansion within tumors associated with better outcome. 
a, The percentage of unique tumor TCRβ CDR3 sequences with ≥10 templates 
detected in tumor samples, but not in patient matched blood samples; all tumors 
(left; liver or lung (n = 74 pts., P = 0.01), pORG quartile high or low (n = 89 pts., 
P = 0.51)), primary tumors (center; liver or lung (n = 55 pts., P = 0.29), high or 
low (n = 69 pts., P = 0.21)) and metastatic tumors (right; liver or lung (n = 19 pts., 
P = 0.0068), high or low (n = 17 pts., P = 0.4)) from the indicated cohorts.  
P values from Kruskal–Wallis H-test; dashed lines represent median and IQR.  
b, K–M estimates of OS of patients with high (n = 150 pts.) versus low (n = 58 pts.; 
P = 0.022) tumor-distinct clones. High/low cutoff determined with the ROC and 
maximum Youden’s index. c, Percent tumor-distinct clones in primary tumors 
versus metastases (n = 213 pts., P = 1.2 × 10−5). P values were derived from a from 
one-way ANOVA. d, Correlation between tumor-distinct clones and tumor TCRβ 
clonality quantified by 1 − normalized Shannon entropy for primaries (left; r and 
P value from Pearson correlation (n = 173 pts., P = 1.12 × 10−5)) and metastases 
(right; r and P value from Spearman correlation (n = 40 pts., P = 0.00083)). The 
line represents a linear regression and shaded regions show the 95% CI. e, The 
percentage of tumor-distinct clones in tumors with the presence (n = 57 pts.) or 
absence (n = 91 pts.; P = 0.037) of pathologist-identified TLSs. f, Representative 
mIHC images of LAs in lung/low pORG (top) and liver/high pORG (bottom) 
primary tumors; n = 12 images collected. g, LA area in primary tumors from 
patients in the liver cohort (nine patients (n = 166 LAs evaluated)) versus lung 

cohort (three patients (n = 68 LAs; P = 0.00159)) (top) or high pORG (seven 
patients (n = 106 LAs)) versus low pORG (five patients (n = 128 LAs; P = 8.4 × 10−8)) 
(bottom). Each point represents one immune aggregate colored by patient 
specimen. h, K–M estimates of OS of patients containing at least one putative 
mutant KRAS-specific TCRβ sequence within their TCR repertoire in tumors 
(top; present (n = 60 pts.), not detected (n = 151 pts.), P = 0.011) or blood (bottom; 
present (n = 199 pts.), not detected (n = 84 pts.), P = 0.57) for all patients.  
i, Number of putative mutant KRAS-specific TCRβ sequences within the TCR 
repertoire of each tumor (primary and metastasis) in liver versus lung cohort 
(left; liver (n = 59 pts.), lung (n = 16 pts.), P = 0.0005) and the top versus bottom 
quartile of pORG tumors by GSVA scores from all tumors (right; high (n = 45 pts.), 
low (n = 45 pts.), P = 0.024). j, CDR3 frequency of putative mutant KRAS-specific 
TCRβ sequences in samples containing them in liver versus lung cohort (left; 
liver (n = 16 pts.), lung (n = 11 pts.), P = 0.12) and the top versus bottom quartile 
of pORG tumors by GSVA scores from all patients (right; high (n = 8 pts.), low 
(n = 18 pts.), P = 0.44). k, Percent tumor-distinct clones in tumors with (n = 61 
pts.) or without (n = 155 pts.; P = 0.046) putative KRAS-specific TCRβ sequences 
in the tumor. Black bars represent the mean (c,e,g,i–k). P values from two-tailed 
t-test (e,g,i–k). P values were determined by a log-rank test and shaded regions 
represent 95% CI (b,h). Patients who died within 30 days after resection are not 
shown.
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Discussion
Previous efforts to divide PDAC tumors into subtypes used unbiased 
approaches to describe mutually exclusive subsets9,11,13,14,47,48. We took 
an alternative approach of classifying tumors based on the observed 
association between metastatic organotropism and better clinical out-
comes in patients with lung-avid/liver-averse disease1–3. As previously 
reported16, tumors from patients in the lung cohort were unlikely to be 
categorized as the basal-like subtype, whereas classical subtype tumors 
were common in both liver and lung cohorts. Uniquely, we found that 
patients with classical subtype primary tumors fared significantly 
worse if their disease was liver-avid rather than lung-avid/liver-averse.

We extracted a set of overexpressed genes from liver-avid primary 
tumors that were not DE in basal-like versus classical primary tumors 
(pORG). While gene expression differences between liver versus lung 
cohort primary tumors were relatively weak compared to basal-like 
versus classical, and the accuracy of the pORG gene set for predicting 
recurrence site will require validation in outside cohorts, we demon-
strated that this pORG gene set can independently predict patient 
outcomes. Furthermore, high pORG and liver-avid primary tumors 
were both enriched for cell cycle, replication and DNA repair pathways, 
indicative of ongoing RS tolerance. Accordingly, RS foci in tumor cells 
and specifically in Ki67+ proliferating tumor cells were more abundant 
in tumors with high pORG scores. Liver-avid tumors with somatic 
alterations in DDR genes had some of the highest pORG scores, sug-
gesting that PDAC tumor cells can avoid the detrimental effects of 
ongoing DNA damage by adopting strong RS response mechanisms. 
Conversely, OS was better in patients with tumors that have low pORG 
scores, particularly if they harbor a DDR gene mutation, likely due to 
failure to adapt to RS caused by a defective DNA repair network and 
suggesting that low pORG tumors are less fit and may be more sensitive 
to therapeutics that interrupt DDR pathways. A high pORG signature 
was also associated with an IRDS30–32, which unlike an acute type 1 IFN 
response, can reduce tumor immunity33. Multiplex imaging of immune 
phenotypes supported this hypothesis by demonstrating that low 
pORG primary and lung cohort primary tumors both had increased B 
and T cells with decreased myeloid subsets; and this was further sup-
ported by deconvolution of the bulk RNA-seq to estimate immune cell 
types. This increase in tumor immunity is consistent with an inability 
to tolerate genomic instability and RS associated DNA damage in low 
pORG tumors.

We extended these immune observations with TCRβ sequencing. 
In relation to tumor immunity, both diverse TCRβ repertoires as well 
as clonal expansion are reported to associate with positive outcomes 
in patients with PDAC20,39. Consistent with these reports, we identified 
high TCR richness and diversity in low pORG tumors and this was asso-
ciated with better patient outcomes. Increased TCR diversity was also 
associated with increased shared/public clonotypes, which were also 
associated with low pORG tumors and longer OS, suggesting common 
tumor-controlling immune responses in low pORG tumors. Addition-
ally, we found that high tumor clonality/low evenness was prognostic 
for longer OS, and clonality was significantly increased in lung and 
low pORG metastases relative to liver and high pORG metastases, in 
contrast to the trend observed in metastases in general, which showed 
reduced clonality compared to primary tumors. We found that the 
increased tumor clonality was associated with increased T cell clones 
found in tumors that were absent in paired blood samples; suggesting 
new clonal expansion of T cells that are not yet detected in blood. These 
tumor-distinct clones were higher in the lung cohort compared to the 
liver cohort tumors and associated with the presence of TLSs. Possible 
explanations for these observations are that lung cohort patients may 
have unique mechanisms for T cell clonal development and/or that 
only patients who stochastically develop new T cell responses directed 
toward the correct antigens end up with liver-averse disease.

As in all clinical studies of this nature, we acknowledge that limited 
follow-up time and confounding variables provide possible limitations 

to our study. In vivo experiments, combined with additional clinically 
annotated patient datasets, are needed to further validate hypotheses 
regarding metastatic seeding and/or survival of these PDAC subtypes. 
Preclinical follow-up could reveal additional mechanistic insights as 
well as biomarkers for avenues of therapeutic intervention in either 
the neoadjuvant and/or adjuvant settings.

Methods
Tissue acquisition and patient consent
Our research complies with all relevant ethical regulations and was 
approved under Oregon Health and Science University (OHSU) Insti-
tutional Review Board protocol no. 00003609. Patient data, blood and 
tissues were obtained with informed consent in accordance with the 
Declaration of Helsinki and were acquired through the Oregon Pancreas 
Tissue Registry. Patients were not compensated for participation.

Clinical data collection
From a de-identified dataset of 1,873 patients diagnosed with and/
or treated for PDAC at our institution between 2004 and 2020, we 
identified 422 patients for which we had specimens with sequencing 
data (n = 374) and/or specific evidence of disease metastasis site(s) 
from the OHSU cancer registry and disease-relevant CT scans to allow 
cohort classification. Patients whose primary tumor was located at 
the ampulla of Vater but classified as pancreatobiliary subtype were 
included (n = 9). Clinical course time points, stage, grade, nodal involve-
ment, resection margins and angiolymphatic invasion were provided 
as de-identified data by the OHSU cancer registry with quality control 
data verification by pathologists (B.B. and T.M.). Patient demographics 
were also collected and include age and self-reported sex. We reviewed 
all available CT scans for all patients with primary tumor resection 
dates recorded by the cancer registrar, with tumor samples analyzed 
by RNA-seq, DNA-seq or TCR-seq, and/or with additional information 
indicating metastatic spread (for example, metastatic samples received 
for related studies). We abstracted the site of all lesions proven to be 
metastatic by biopsy and/or that clearly increased in size during pro-
gression or decreased in size during treatment as long as a radiologist 
described the lesion as ‘likely’, ‘suspicious for’, ‘concerning for’ or ‘favor’ 
metastasis. Clinical imaging was reviewed by a radiologist (A.G.) to 
validate patient assignments to the liver, lung and neither liver nor lung 
(other recurrence site) cohorts. To adhere to our clinical definition, we 
did not exclude patients from any cohort due to short survival. Time to 
recurrence after surgical removal of tumor and disease-free status was 
calculated from the earliest of either the recurrence date provided by 
the OHSU cancer registry, or the date of earliest lesion abstracted from 
CT reports. All patient information was frozen in July 2021.

Specimen processing
Primary and metastatic PDAC tumor specimens from consented 
patients at OHSU were processed by the OHSU Department of Pathol-
ogy and preserved by standard FFPE. FFPE sections of 3–4 μm were 
stained with hematoxylin and eosin (H&E) and used for other protein 
staining procedures.

Histology data
H&E-stained FFPE tissue sections from regions corresponding to those 
extracted for RNA-seq and somatic alteration analyses were indepen-
dently appraised by two pathologists (B.B. and T.M.) blinded to study 
cohorts for the histologic features shown in Table 1.

Tempus RNA-seq and genomic alteration panel processing
OHSU provided FFPE PDAC specimen blocks along with matched normal 
blood or tissue to Tempus as part of a contract agreement. OHSU pathol-
ogist (T.M.) and Tempus pathologists marked regions of high tumor 
content (>20% ratio of tumor to normal nuclei) on H&E-stained slides for 
DNA and RNA extraction. Solid tumor total nucleic acid was extracted 
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from these tumor regions on adjacent FFPE tissue sections using Che-
magic 360 sample-specific extraction kits (PerkinElmer, cat. no. 41581) 
and digested by proteinase K (Thermo Fisher, cat. no. EO0492). RNA was 
purified from the total nucleic acid by DNase-I digestion (Thermo Fisher, 
cat. no. 89836). DNA sequencing of 596 genes and whole-transcriptome 
RNA sequencing were performed as described49,50. Briefly, 100 ng of DNA 
for each tumor sample was mechanically sheared to an average size of 
200 bp using a Covaris Ultrasonicator. DNA libraries were prepared 
using the KAPA Hyper Prep kit (Roche, cat. no. KRO961), hybridized to 
the xT probe set and amplified with the KAPA HiFi HotStart ReadyMix 
(Roche, cat. no. KK2602). One hundred ng of RNA for each tumor sample 
was heat fragmented in the presence of magnesium to an average size 
of 200 bp. Library preps were hybridized to the xGEN Exome Research 
Panel v.1.0 (Integrated DNA Technologies, cat. no. 10005153) and target 
recovery was performed using streptavidin-coated beads, followed by 
amplification with the KAPA HiFi Library Amplification kit (Roche, cat. 
no. KK2612). The amplified target-captured DNA tumor library was 
sequenced using 2 × 126-bp paired-end reads to an average unique 
on-target depth of 500× (tumor) and 150× (normal) on an Illumina HiSeq 
4000. The amplified target-captured RNA tumor library was sequenced 
using 2 × 75 bp paired-end reads to an average of 50 million reads on 
an Illumina HiSeq 4000. Samples were further assessed for uniformity 
with each sample required to have 95% of all targeted bp sequenced to a 
minimum depth of 300×. Raw fastq files were returned to OHSU as well 
as PDF reports of summarized DNA alterations.

DNA sequence analysis
DNA variant detection, reporting and copy number analysis were 
performed as described50. Alignment and mapping were to GRCh37 
using Novo align + BWA. Copy number variants were derived from 
proprietary tumor–normal match analysis using CNAtools. Matched 
normal DNA was available for most tumor specimens and if not avail-
able, a pool of normal samples was used to call variants. For cases 
relying on a pooled normal, there is an increased risk of true germline 
mutations being identified as somatic49. Genomic variants and annota-
tions are displayed on oncoprints using the Oncoprint function from 
the Complex Heatmap R package51. Cohort and survival analysis were 
performed as follows on alterations present in more than nine patients. 
Fisher’s exact tests were used to determine whether the alteration 
prevalence differed significantly between cohorts; FDR correction 
was performed with the Benjamini–Hochberg method. We determined 
whether each gene alteration (annotated as gain of function or loss of 
function or simply ‘altered’), may influence patient survival and found 
that only ARID1A variants had annotation type-dependent prognostic 
value (with ARID1A loss of function conferring better prognosis relative 
to wild-type (WT) and ARID1A altered); therefore, we pooled alteration 
types for single-variable Cox proportional hazards modeling of gene 
alterations versus OS, with the exception of ARID1A.

RNA sequencing analysis
Paired-end fastq sequences were trimmed using Trim Galore (v.0.6.3) 
and default parameters. Pseudoalignment was performed with kallisto 
(v.0.44.0) using genome assembly GRCh38.p5 and GENCODE (v.24) 
annotation; default parameters were used other than the number 
of threads. The Bioconda package bioconductor-tximport (v.1.12.1) 
was used to create gene-level counts and abundances (TPMs). Quality 
checks were assessed with FastQC (v.0.11.8) and MultiQC (v.1.7). Quality 
checks, read trimming, pseudoalignment and quantitation were per-
formed via a reproducible snakemake pipeline, and all dependencies 
for these steps were deployed within the anaconda package manage-
ment system52,53.

PurIST analysis
PurIST subtype calls and scores were generated using the PurIST 
method12 applied to our RNA-seq data. The PurIST authors provide 

instructions, R scripts and gene pairs on GitHub (https://github.com/
naimurashid/PurIST).

Development of pORG and pSUB gene sets
A two-factor analysis with DESeq2 (ref. 22) was performed on RNA-seq 
counts from the 76 primary samples in the liver and lung cohorts after 
filtering out low expressing genes using a TPM cutoff of <0.25 aver-
age expression across the dataset. The two factors modeled were: 
primary tumor liver cohort versus lung cohort and basal-like versus 
classical (from PurIST subtyping). The signal for the clinical liver 
versus lung factor was weaker than that for the RNA-based subtype 
factor. To select appropriately sized gene sets for GSVA, we chose a 
permissive FDR-adjusted P value cutoff for individual genes of 0.2 
for the liver versus lung factor and a restrictive cutoff of 0.0001 for 
the basal-like versus classical factor. For pORG, we selected DE genes 
from the liver versus lung factor (FDR < 0.2), then excluded genes that 
co-occurred in the top half of the ranked genes from the basal versus 
classical factor, resulting in a list of 55 upregulated genes (only genes 
up in liver cohort were selected). For pSUB, we selected DE genes up 
for the basal-like versus classical factor (FDR < 0.0001), then excluded 
genes that co-occurred in the top half of the ranked genes from the 
liver versus lung factor, resulting in a list of 51 upregulated genes. To 
test for over-fitting, we performed a leave-one-out cross validation 
by repeating the two-factor modeling steps above with each of the 76 
samples left out one at a time. For each iteration, the resulting gene 
set was used to calculate GSVA scores on all primary samples. Once all 
iterations were complete, the GSVA scores from the left-out sample 
from each iteration were combined to generate a cross-validated GSVA 
matrix. The cross-validated GSVA scores for pORG still correlated as 
expected with the liver versus lung labels (P = 0.033), but not as well as 
the over-fit scores did. Likewise, leave-one-out cross-validated GSVA 
scores were calculated and tested for pSUB. pSUB scores correlated as 
expected with the basal-like versus classical labels (P = 3.1 × 10−9) and 
did not show much over-fitting bias.

GSEA and GSVA analyses
The GSVA tool23 was used with log scaled, TMM-normalized CPM data54 
to calculate relative pORG and pSUB gene set scores across all prima-
ries, all metastases and all tumors and identify top/bottom quartile 
cohorts. GSEA55 was run on clinical liver and lung cohorts, pORG, pSUB 
and PurIST top/bottom quartile cohorts using the MSigDB database 
v.7.5.1 Hallmark gene set collection26. The eight genes used for the IRDS 
signature were: STAT1, IFI44, IFIT3, OAS1, IFIT1, ISG15, MX1 and USP18. To 
calculate GSVA scores for Hallmarks and other signatures, the DESeq2 R 
library was used to import raw RNA-seq data via txi import and perform 
variance stabilized transformation for downstream GSVA analysis. The 
GSVA R library was then used to calculate GSVA scores for gene sets, 
including the Hallmark gene set collection from the MSigDB database 
(v.7.5.1), response to IFN gene sets GO:0034341 and GO:0071357 from 
org.Hs.eg.db (v.3.17.0) and T and B cell signatures for profiling the 
TME56. To produce heatmaps of primary tumor GSVA results, we used 
the R package pheatmap (v.1.0.12)57. Tumor samples (columns) were 
ordered from highest to lowest pORG or pSUB, whereas MSigDB Hall-
marks (rows) were hierarchically clustered using default pheatmap 
function parameters. Samples from patients who were not resected 
nor in the liver/lung cohort were excluded (n = 6). Before running the 
pheatmap function, GSVA results were subset to include only MSigDB 
Hallmarks that were significantly different by GSEA (FDR P adjusted < 
0.05) for high/low pORG or pSUB groups, respectively.

Single-cell RNA-seq analysis of public data
For single-cell analysis of pORG and pSUB gene sets, we obtained 
single-cell RNA-seq profiles of primary PDAC tumors and liver metas-
tases from the National Institutes of Health (NIH) Gene Expression 
Omnibus (GEO) (GSE205013)25. Primary tumors and liver metastases 
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were analyzed separately using the R package Seurat (v.4.3.0)58 but 
run through the same computational workflow. Per-cell quality cutoffs 
were set to the same parameters originally used by Werba et al.25 at 
1,500 min; reads, 500 min; unique genes detected; read percentage 
from mitochondrial genes <15%; and read percentage <1% from eryth-
roid genes (ALAS2, HBA1, HBA2, HBB and HBM). For data integration, 
we applied Seurat’s SCTransform59 and RPCA integration workflow. 
Briefly, we applied the SCTransform function with ‘v2’ regularization to 
each sample, selected the top 3,000 features for integration through 
SelectIntegrationFeatures and ran principal-component analysis on 
each sample via RunPCA. Integration was performed using FindIntegra-
tionAnchors with normalization set to ‘SCT’ and reduction set to ‘rpca’, 
followed by IntegrateData with normalization method set to ‘SCT’. After 
integration, Uniform Manifold Approximation and Projection (UMAP) 
was performed on principal components 1:30, and clustering was run 
with FindClusters resolution set to 0.7. Finally, RNA count data were 
then normalized and scaled for all downstream analysis. To identify cell 
types, we ran the FindAllMarkers function to find highly expressed genes 
in each cluster. We labeled clusters by cell type in accordance with the 
cell-type markers used by Werba et al.25, with the exception of a hepato-
cyte cluster identified by high albumin (ALB) gene expression found in 
the liver metastasis data. Clusters representing epithelial–endothelial 
doublets from the primary tumors and epithelial–myeloid doublets 
from the liver metastases were identified from high coexpression of cell 
type markers and consequently removed. Following cell type identifica-
tion, we computed module scores for the pORG and pSUB gene sets on a 
per-cell basis using the function AddModuleScore with default settings.

VIPER analysis and immune cell type estimation
The transcriptional regulon enrichment analysis was performed using 
VIPER with the TCGA PAAD ARACNe-inferred network27,28. Gene expres-
sion data were normalized before running VIPER by median center-
ing and scaling. VIPER regulon scores for all primaries were used for 
cohort comparisons. Immune cell type estimation was run using the 
R package immunedeconv (v.2.1.0)60 and selecting the quantiseq61, 
mcp_counter62, xCell63 and epic64 algorithms. To perform Gene Ontol-
ogy (GO)65,66 enrichment analysis for regulons increased in high pORG 
samples and liver cohort samples, we used the R package ClusterPro-
filer (v.4.6.2)67. The ClusterProfiler function enrichGO was set to test GO 
biological process terms, threshold results at 0.05 P and q-value, and 
use all regulons as the background. Jaccard similarity was calculated 
through the function pairwise_termsim with default settings. Enrich-
ment maps were plotted with the R package enrichplot (v.1.18.4)68.

Immunofluorescence multiplex imaging
A PDAC TMA was constructed at OHSU using FFPE blocks from tumors 
analyzed by RNA-seq and included 1–2 cores each from 34 primary 
tumors (55 cores in total). Immunofluorescence staining, imaging and 
image processing were performed on the TMA as described69. Briefly, 
images were scanned with the Zeiss Axioscan Z1, acquired, stitched and 
exported to tiff format using Zeiss Zen Blue software (v.2.3), registered 
using MATLAB (v.9.11.0), followed by cellular segmentation using Cell-
pose70 or Mesmer71 algorithms. Unsupervised clustering of single-cell 
mean intensity was used to define cell types, using the Leiden algorithm 
implemented in scanpy (v.1.9.3)72. Ki67+ epithelial cells were defined as 
having mean intensity >256 for KRT and >768 for nuclear Ki67. The dif-
ference of Gaussian algorithm implemented in scikit-image (v.0.19.3)73 
was used to identify pRPA foci in segmented nuclei.

Multiplexed immunohistochemistry
Tumor specimen slides were processed and stained as described36. 
ROIs across the primary tumor resections were selected based on tis-
sue quality post-staining and annotated in Aperio ImageScope (Leica 
Biosystems). LA regions were selected based on visual identification of 
cell clusters containing >20 cells, positively stained with CD20 (B cell) 

and CD3 (T cell), within 500 µm. Data were processed as described36,74. 
In brief, images were registered using MATLAB (The MathWorks), AEC 
signal was extracted using Fiji75, single-cell segmentation and labeling 
was performed using StarDist 2D76, the mean signal intensity of each cell 
for every marker was measured using CellProfiler77 and gating thresh-
olds were set using FCS Express Image Cytometry (De Novo Software). 
Cell-type gating and cell type counts are in source data.

TCRβ sequencing and analysis
Frozen leukocytes and 25-mm thick curls of FFPE tumor were submit-
ted to Adaptive Biotechnologies for human TCRβ sequencing. The 
tumor specimens were categorized as primary or metastasis. The blood 
specimens were also categorized as associated with primary disease or 
metastatic disease based on the following criteria. The blood sample 
was considered primary-associated if it was collected before or on the 
day of primary tumor resection, metastasis-associated if it was col-
lected after a recurrence, or uncharacterized if it was collected after 
resection and before recurrence. For patients not treated by resec-
tion, the blood was considered primary-associated if it was collected 
180 days before the latest date the patient was confirmed metastasis 
free on imaging. The blood was considered metastasis-associated if it 
was collected after the patient had metastasis confirmed on imaging 
or was collected within 30 days before metastasis was detected on 
imaging. Analyses were performed using the Immunoseq tool78 pro-
vided by Adaptive Biotechnologies and custom code (https://github.
com/engjen/Liver_Lung_PDAC). Samples with fewer than 100 produc-
tive templates were excluded from analyses. The Diversity Metrics 
Tool was used for richness and evenness metrics, and the differential 
abundance tool was used to assess overlap between samples from 214 
matched pairs of tumor and blood (91% collected on the same day). The 
percentage of tumor-distinct clones was calculated from a list of all 
rearrangements with ≥10 templates in each patient’s blood plus tumor 
samples combined, where tumor-distinct clones were defined as those 
found in tumor samples, but not found in matched blood samples. For 
shared, dominant clonal sequences within cohorts, the top 50 CDR3 
rearrangement amino acid sequences (by frequency in each sample) 
were compiled for all samples, and the Immunoseq Sequence Search 
Tool was used to identify all samples in the cohort that contained any 
of those CDR3 TCRβ sequences at any frequency. Only the CDR3 amino 
acid sequences found in at least 25% of samples in the cohort were con-
sidered shared, dominant clonal sequences. Shannon entropy, clonality, 
Simpson’s d, tumor-distinct clone sequences, number of templates per 
sample, patient-level shared, dominant clonal sequences, expanded 
clones and putative KRAS-specific sequences were calculated from 
amino acid CDR3 frequency using scipy (v.1.11.4) and numpy (v.1.26.2). 
Python libraries and custom code are found at https://github.com/
engjen/Liver_Lung_PDAC. Repertoire overlap was calculated using the 
repOverlap function from immunarch (v.0.9.0) in R and selecting ‘public’ 
and ‘Jaccard’ methods. To summarize the amount of shared TCRs per 
sample, we calculated each sample’s public overlap and Jaccard index 
with every other sample’s TCR repertoire and took the mean, indicative 
of a sample’s average T cell responses to common antigens.

External datasets
The TCGA PAAD dataset was obtained from cbioportal24 and filtered 
for PDAC samples, resulting in n = 140. The ICGC PDAC RNA-seq speci-
men dataset was the APGI n = 96 specimen cohort (n = 87 with survival 
metadata)9, part of the ICGC study.

Software
R (v.3.6.0) was used for GSVA and VIPER. R (v.4.1.2) was used with R 
packages DESeq2, GSVA, msigdbr, gplots and ggplot. R (v.4.2.2) was 
used with R packages Seurat, enrichplot and ClusterProfiler. GSEA 
was run in JAVA using the command line interface. Statistical tests were 
performed with R and Python (v.3.9.15). Environment information, 
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data and code necessary to reproduce all paper figures are available 
at https://github.com/engjen/Liver_Lung_PDAC.

Statistics and reproducibility
No statistical method was used to predetermine sample sizes, but our 
sample sizes for clinical and transcriptomic analysis compare favorably 
to those reported in previous publications (ICGC9, TCGA24 and COM-
PASS79). Liver (n = 9) and lung (n = 4) cohort samples included in the 
TMA were selected before transcriptomic analysis and based on tissue 
availability; sample size was constrained by available array space. All 
liver/lung cohort samples on the TMA were also profiled by mIHC, but 
we excluded one lung cohort sample from analysis due to quality control 
failure. No randomization was performed in our study as it is retrospec-
tive. Blinding was not used in any aspect of our study except during 
histological data appraisal by pathologists, who were blinded to study 
cohorts. A log-rank test was used to compare K–M survival and recur-
rence curves as indicated in figures. To determine optimal cutoffs for 
binarizing pORG, pSUB and PurIST GSVA scores and TCR metrics scores 
into high and low for survival analysis, we used the R package ROCit 
or sklearn.metrics.roc_curve to generate a receiver-operator curve 
comparing specificity and sensitivity of different cutoffs to predict 
short-term survivors (<545 days) versus long-term survivors (>545 days). 
We selected our optimal cutoff at the maximum Youden’s index (the 
value giving maximum sensitivity + specificity for short-term versus 
long-term survivor prediction). For GSVA scores, this cutoff was exter-
nally validated for prognostic significance in the ICGC PDAC and TGGA 
PAAD datasets. CPH modeling was used to estimate HRs for survival 
and recurrence with associated P values. For all survival analysis, only 
patients alive 30 days or more after surgery were included to avoid ana-
lyzing death related to surgical complications. Two-tailed t-tests were 
used when comparing two conditions and analysis of variance (ANOVA) 
was used when comparing more than two conditions within a dataset. 
Data normality was assessed using Q-Q plots. For non-Gaussian data 
(for example, Simpson’s evenness of TCR sequences and tumor-distinct 
clones) we used Kruskal–Wallis tests, or log transformed and applied 
ANOVA or two-tailed t-tests if data were log-normal (for example, TCR 
productive rearrangements, Simpson’s diversity, public clonotypes 
and Jaccard index). Pearson, Spearman and Kendall tau correlation 
coefficients were generated for Gaussian, non-Gaussian and censored 
data, respectively. Two-sided Fisher’s exact tests were used for 2 × 2 
categorical comparisons and two-way chi-squared was used for cat-
egorical comparisons with more categories. McNemar’s tests were used 
for paired categorical data. FDR multiple comparisons correction was 
applied using the Benjamini–Hochberg method.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data generated for this study are available as follows: DNA sequenc-
ing and variant data from the xT gene panel, and the RNA-seq data are 
accessible through the NCI Genomic Data Commons deposited in 
the controlled access database dbGaP under accession phs003597.
v1.p1. In accordance with informed patient consent for use and col-
lection of these samples and generated data, use of this dataset is 
restricted to research pertaining to the study of pancreas disease. 
According to NIH policy, access through the data portal is limited to 
senior-level investigators (tenure-track professor, senior scientist or 
equivalent). Requests to access the genomic data must be submit-
ted to dbGaP at https://dbgap.ncbi.nlm.nih.gov. The summarized, 
gene-level RNA-seq data are available in the GEO database under 
accession code GSE281129. TCR sequence data are available on the 
Adaptive Biotechnologies platform or in the GEO database under 
accession code GSE281129. The multiplexed immunofluorescence 

images, segmentation masks and extracted features are available 
at https://www.synapse.org/#!Synapse:syn51068458/wiki/620854. 
The mIHC single-cell phenotype and location data are available at 
https://www.synapse.org/#!Synapse:syn51078766. Source data for 
Figs. 1–7 and Extended Data Figs. 1–9 have been provided as Source 
Data files. The external datasets analyzed are available at https://
static-content.springer.com/esm/art%3A10.1038%2Fnature16965/
MediaObjects/41586_2016_BFnature16965_MOESM271_ESM.xlsx 
(ICGC), https://cbioportal-datahub.s3.amazonaws.com/paad_tcga_
pan_can_atlas_2018.tar.gz and https://www.cbioportal.org/study/
summary?id=paad_tcga_pan_can_atlas_2018 (TCGA). Human genome 
Release 24 (GRCh38.p5) is at https://www.gencodegenes.org/human/
release_24.html. Source data are provided with this paper.

Code availability
Free and open-source code and data used for analysis and all figures in 
this work are available at https://github.com/engjen/Liver_Lung_PDAC. 
An explanation of the repository source data is included in the data 
dictionary: Source Datasets README.txt.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Survival and clinical characteristics of metastatic 
cohort and subtype. A) Kaplan–Meier (K–M) estimates of days from resection 
to follow-up for resected patients with known liver (N = 84 patients) and/or lung 
metastases (N = 30 patients, P = 0.003), other recurrence site (neither liver nor 
lung, N = 73 patients) or no documented recurrence (N = 103 patients, P = 0.005). 
B) K–M estimates of survival after liver (N = 83) or lung (N = 29, P = 0.053) 
recurrence. C) Kendall tau correlation (for censored data) between survival after 
liver (N = 83, P = 2.6e-14) or lung (N = 29, P = 0.031) recurrence and survival after 
resection. D) Kendall tau correlation between time to recurrence after resection 
and survival after liver (N = 83, P = 0.3) or lung (N = 29, P = 0.87) recurrence.  
E) Venn diagram of patient overlap (left, RNA-seq (N = 277), DNA-seq (N = 260], 
TCR-seq tumor (N = 216], TCR-seq blood (N = 288], and table of number of 
specimens (right, RNA-seq [N = 289], DNA-seq [N = 271], TCR-seq tumor [N = 216], 
TCR-seq blood [N = 288] with the indicated analyses. F) K–M estimates of days 
between resection and recurrence for all basal-like (N = 29) vs classical (N = 101, 
P = 0.01) patients, and all liver cohort (N = 43) vs lung cohort (N = 15, P = 0.004) 
classical patients. For the two patients with more than one specimen analyzed, 
the resected primary tumor was used for subtype assignment. G-H) Fraction 

of patients in liver or lung cohort with different clinical covariates, that is, male 
or female (N = 165, P = 0.71), age <= 70 or > 70 (N = 165, P = 0.48), stage (N = 163, 
P = 0.14), grade (N = 100, P = 0.054), LN positive (N = 113, P = 0.35), and LN 
invasion (N = 82, P = 0.91). I) Fraction of patients in liver or lung cohort receiving 
a resection (left, [N = 165, P = 0.011]) and the ratio of resected patients receiving 
neoadjuvant chemotherapy (right, [N = 115, P = 0.19]). J) K–M estimates of overall 
survival of resected patients stratified by neoadjuvant treatment (Neo) in the 
liver cohort (no neo [N = 66], neo [N = 18, P = 0.79 or lung cohort (no neo [N = 20], 
neo [N = 10, P = 0.92]), categorized by PurIST tumor subtype basal-like (no neo 
[N = 39], neo [N = 9, P = 0.64] or classical (no neo [N = 122], neo [N = 37, P = 0.56]), 
pORG primary high (no neo [N = 84], neo [N = 13, P = 0.23]) or pORG primary low 
(no neo [N = 71], neo [N = 32, P = 0.56] and pSUB primary high (no neo [N = 108], 
neo [N = 25, P = 0.013]) or pSUB primary low (no neo [N = 47], neo [N = 20, 
P = 0.00333]). A-B, F, J) Patients who died <30 days after resection were omitted. 
P values between groups indicated with brackets determined by log-rank test 
and shaded regions represent 95% confidence intervals. N=number of patients. 
C-D) Statistic and P value from two-sided Kendall tau correlation. N=number of 
patients. G-I) P value from Chi-squared test. N=number of patients.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Organotropism and subtype association with 
histology, recurrence, and cell type. A) Fraction of patients in liver or lung 
cohort with different inflammatory features scored by a pathologist from 
hematoxylin and eosin (H&E) stained slides from the primary tumor that 
is, inflammation (N = 59, P = 0.35), TLS (N = 59, P = 0.95), and plasmacytoid 
inflammation (N = 59, P = 0.15). B) Fraction of patients in liver or lung cohort with 
different inflammatory features scored from metastatic tumor H&E slides that 
is, Metastases inflammation (N = 28, P = 1.0), TLS met (N = 28, P = 0.045), and 
plasmacytoid inflammation met (N = 28, P = 6.6e-5). C) Fraction of patients in 
liver or lung cohort with perineural invasion (PNI) from primary (N = 59, P = 2.0) 
or metastatic tumors (N = 28, P = 0.18) and angiolymphatic invasion (ALI) scored 
from H&E slides from the primary tumor (N = 59, P = 0.73) or metastatic tumor 
(N = 28, P = 0.7). D) Fraction of patients in liver or lung cohort with desmoplasia 
scored from H&E slides from the primary tumor (left, [N = 59, P = 0.97]) or 
metastatic tumor (right, [N = 28, P = 0.18]). E) Kaplan–Meier (K–M) estimates 
of recurrence-free survival (RFS) in OHSU patients split into high and low pORG 
(high,[N = 101], low [N = 107, P = 0.00062]), pSUB (high [N = 140], low [N = 68, 
P = 0.00013]) and PurIST (high [N = 126], low [N = 40, P = 0.021]) by cutoffs from 
Fig. 2d. F) K–M estimates of RFS in ICGC patients split into high and low pORG 
(high [N = 47], low [N = 82, P = 0.03]), pSUB (high [N = 59], low [N = 28, P = 0.001]) 
and PurIST (high [N = 26], low [N = 51, P = 0.0038]) by same cutoffs as OHSU 

patients. G-H) GSVA scores of matched primaries and mets from the same patient 
for PurIST (left, [N = 10 pts., P = 0.31]), pSUB (center, [N = 10 pts., P = 0.77]) and 
pORG (right, [N = 10 pts., P = 0.32]). G) colored by patient, P value from two-side 
Wilcoxon signed-rank test and H) grouped by met collection site showing mean 
GSVA (point) and 95% confidence intervals (error bars) (N = 10 pts. for  
all cohorts). I-J) Single-cell RNA-seq data from Werba G et al. (2023). I) UMAP  
of 17 primary PDAC tumors colored by cell types (top) and corresponding 
expression of cell type markers in each population (bottom). J) UMAP of 10 
PDAC liver metastases colored by cell types (left) and corresponding cell type 
marker expression (right). K) pSUB module scores in primary tumors (left) and 
PDAC liver metastases (right). A-D) P value from chi-squared test. Plasmacytoid 
inflammation defined as the presence of plasma cells in a background of chronic 
inflammation (that is lymphocytes). Lymphoid aggregates/tertiary lymphoid 
structures (TLS) are specifically defined as clusters of lymphocytes forming 
a reactive germinal center in the tissue. PNI: Perineural invasion requires the 
carcinoma invades into the perineurial space around nerves. ALI: angiolymphatic 
invasion, defined as the presence of tumor cells within venous or lymphatic 
spaces. Desmoplasia is defined as dense fibrosis with elastin and collagen 
deposition around invading tumor cells. N=number of patients. E-F) P values 
between groups indicated with brackets determined by log-rank test and shaded 
regions represent 95% confidence intervals. N=number of patients.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Genomic alterations associated with metastatic 
cohort, organotropism, and subtype. A-C) Oncoprints indicating the top ten 
most frequently altered genes and their alteration types in primary tumors in the 
top quartile (left) versus bottom quartile (right) by A) pSUB primary GSVA score 
(top quartile [N = 50], or bottom quartile [N = 50]) B) PurIST primary score (top 
quartile [N = 50], bottom quartile [N = 50]) and C) liver (left, [N = 55]) and lung 
(right, [N = 16]) cohort primary tumors. D-F) Oncoprints indicating the top ten 
most frequently altered DDR-relevant genes and their alteration types in primary 
tumors in the top quartile (left) versus bottom quartile (right) by D) pSUB 
primary GSVA score (top quartile [N = 50], bottom quartile [N = 50] E) PurIST 
primary score and F) liver (left, [N = 55]) and lung (right, [N = 16]) cohort primary 

tumors. G-J) Oncoprints indicating the top ten most frequently altered genes 
and their alteration types in metastatic tumors in the top quartile (left) versus 
bottom quartile (right) by G) pORG metastatic GSVA score (top quartile [N = 16], 
bottom quartile [N = 16]) H) pSUB metastatic GSVA score (top quartile [N = 16], 
bottom quartile [N = 16]) I) PurIST metastatic score (top quartile [N = 16], bottom 
quartile [N = 16]) and J) liver (left, [N = 26]) and lung (right, [N = 16]) cohort 
metastatic tumors. A-J) To the left of each panel is the gene alteration frequency 
in the cohort, the top bars indicate variant types by tumor, and right bars indicate 
variant types by gene. Variant type legend in lower right of figure. N=number of 
patients.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Gene alteration and tumor cellularity association 
with organotropism, subtype, distant recurrence, and survival. A-C) Gene 
alteration status (Altered or WT) versus GSVA score of A) pORG in primary tumors 
that is KRAS (altered [N = 170], WT [N = 31, FRD = 0.091]), CDKN2B (altered [N = 7], 
WT [N = 194, FDR = 0.068]), SMAD4 (altered [N = 37], WT [N = 164, FDR = 0.091]), 
GATA1 (altered [N = 41], WT [N = 160, FDR = 0.068]), and ELF3 (altered [N = 7], WT 
[N = 194, FDR = 0.068]). B) pORG in metastases that is TP53 (altered [N = 47], WT 
[N = 20, FDR = 0.00048]). C) PurIST in metastases that is MTAP (altered [N = 10], 
WT [N = 57, FDR = 0.014]), CDKN2A (altered [N = 23], WT [N = 44, FDR = 0.019]), 
and CDKN2B (altered [N = 6], WT [61, FDR = 0.0022]). D) Cox proportional hazard 
multi-variable modeling of overall survival versus PurIST (primary [N = 193, 
P = 0.00049] or all [N = 251, P = 3.1e-05]) or pSUB (primary [N = 193, P = 3e-06], 
or all [N = 251, P = 4.8e-07]) GSVA score combined with genomic alterations 
that were prognostic in single-variable CPH. HR and associated P value for 
variable in bold was determined by CPH modeling. Squares indicate hazard 
ratio estimates, and error bars show 95% confidence interval. Patients who died 
within 30 days after resection are not shown. E) Fraction of tumors altered for 
genes with significantly different alteration frequency between primaries and 
mets that is MTAP (N = 260, Fisher’s P = 0.0024, FDR = 0.077), SMARCB1 (N = 260, 
Fisher’s P = 0.013, FDR = 0.12), KDM5C (N = 2600, Fisher’s P = 0.011, FDR = 0.12) 
and GATA1 (N = 260, Fisher’s P = 0.015, FDR = 0.12). P value from Fisher’s exact 
test corrected with the Benjamini/Hochberg method. F) Alteration status of 
genes with at least one alteration in nine patients with matched primaries and 
mets that is ATM (N = 9, McNemar’s P = 0.5), ATRX (N = 9, McNemar’s P = 1.0), 

CDKN2A (N = 9, McNemar’s P = 0.38), CDKN2B (N = 9, McNemar’s P = 1.0), GATA1 
(N = 9, McNemar’s P = 0.25), KDM5C (N = 9, McNemar’s P = 0.25), GNAS (N = 9, 
McNemar’s P = 2.0), KRAS (N = 9, McNemar’s P = 1.0), MTAP (N = 9, McNemar’s 
P = 0.25), NOTCH1 (N = 9, McNemar’s P = 1.0), PBRM1 (N = 9, McNemar’s P = 1.0), 
RBM10 (N = 9, McNemar’s P = 0.5), SMAD4 (N = 9, McNemar’s P = 1.0), SMARCB1 
(N = 9, McNemar’s P = 1.0), TGFBR2 (N = 9, McNemar’s P = 1.0), and TP53 (N = 9, 
McNemar’s P = 1.0). P value from McNemar’s test. G) Histogram of number 
of alteration differences between matched primary and met from the same 
patient (N = 9 patients with DNA sequencing). H) The percentage of tumor cells 
in primary tumor samples analyzed by RNA-seq determined by mutant allele 
frequencies from the amplicon-based, high-throughput sequencing of 595 genes 
on the Tempus xT genomic alteration panel for the indicated comparisons that 
is lung or liver (N = 70, P = 0.66) classical or basal-like PurIST subtype (N = 201, 
P = 0.015), low or high pORG primary quartiles (N = 102, P = 0.0023), and low or 
high pSUB primary quartiles (N = 99. P = 1e-05). I). The percentage of tumor cells 
in metastatic tumor samples analyzed by RNA-seq determined as in (C) for the 
indicated comparisons that is lung or liver (N = 35, P = 0.14) classical or basal-
like PurIST subtype (N = 66, P = 0.63), low or high pORG met quartiles (N = 32, 
P = 0.51), and low or high pSUB met quartiles (N = 33. P = 0.67). A-C) For genes 
with >10 alterations in the dataset, P values obtained from two-tailed t-test and 
corrected with the Benjamini/Hochberg method. Black bars represent means. 
N=number of patients. H-I) P values from two-tailed t-test. Black bars represent 
means. N=number of patients.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Organotropism and subtype association with 
recurrence site and biological processes. A) Heatmap of GSVA scores of 
MSigDB “Hallmark” gene sets with NES > 1.7 and FDR.Q < 0.05 by GSEA for top 
versus bottom quartile by pORG. Primary tumor samples (columns) are ordered 
from highest-to-lowest by pORG score. N = 212 pts. B) pORG score of primary 
tumors in liver, lung, other site or no documented recurrence metastatic cohorts 
that is liver or lung (N = 59 and N = 24, FDR = 3.7e-07), liver or no documented 
recurrence (N = 59 and N = 86, FDR = 2.1e-05), liver or other site recurrence (N = 59 
and N = 56, FDR = 0.016), lung or no documented recurrence (N = 24 and N = 86, 
FDR = 0.016), lung or other site recurrence (N = 24 and N = 56, FDR = 0.00082), 
and no documented recurrence or other site recurrence (N = 86 and N = 56, 
FDR = 0.079). P values obtained from two-tailed t-test and corrected with the  
Benjamini/Hochberg method. Black bars represent means. N=number of 
patients. C) Heatmap of Hallmark GSVA scores with NES > 1.7 and FDR.Q < 0.05 by 

GSEA for top versus bottom quartile by pSUB. Primary tumor samples (columns) 
are ordered from highest-to-lowest by pSUB score. N = 212 pts. D-E) Enrichment 
map depicting Gene Ontology (GO) biological process enrichment results for 
the top 300 VIPER regulons significantly increased (by one-way ANOVA; FDR.Q-
value ≤ 0.05) in D) top pORG primary tumors compared to bottom pORG (N = 108 
pts.), or E) liver cohort primary tumors compared to lung cohort (N = 76 pts.). 
Top regulons were selected by order of greatest increase in mean regulon score 
for (D) top pORG samples or (E) liver cohort samples. Up to 150 enriched GO 
terms (points) are shown, but only the top 3 most significant terms within each 
cluster (large colored circles) are labeled. GO terms were arranged into clusters 
based on their semantic similarity. Point size scales with the number of regulons 
annotated with the indicated GO term. Edges connecting GO terms indicate a 
Jaccard similarity of at least 0.2 (scaled by width).
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Relationship of organotropism to replication stress, 
tolerance of DDR-pathway alteration and immune infiltration. A) pRPA foci 
per epithelial cell (left, liver [N = 9], lung [N = 4, P = 0.26]) and per Ki67+ epithelial 
cell (right, liver [N = 9], lung [N = 4, P = 0.4]) in liver versus lung cohort primary 
tumors on the TMA. B) Percent of epithelial cells positive for pRPA foci for pORG 
high or low (N = 16 and N = 17, P = 0.055) and liver versus lung cohort (N = 9 and 
N = 3, P = 0.26) C) Percent of proliferating epithelial cells positive for pRPA foci for 
pORG high or low (N = 16 and N = 17, P = 0.048) and liver versus lung cohort (N = 9 
and N = 3, P = 0.44). D) Percent of pRPA+ epithelial cells that are proliferating for 
pORG high or low (N = 12 and N = 16, P = 0.018) and liver versus lung cohort  
(N = 7 and N = 3, P = 0.38). E) Kaplan–Meier estimates of overall survival for 
patients with tumors with high or low pORG GSVA scores stratified by tumors 
with or without a non-silent somatic alteration in a DDR-related gene that is 
DDR altered high (N = 34), DDR altered low (N = 29), DDR intact high (N = 62), 
and DDR intact low (N = 68, P = 0.0073). P value determined by log-rank test and 
shaded regions represent 95% confidence intervals. F) VIPER regulon scores 
in liver versus lung cohort for genes CD3G (N = 72, FDR = 0.25), MS4A1 (N = 72, 
FDR = 0.062), MX1 (N = 72, FDR = 0.062), STAT1 (N = 72, FDR = 0.062), IFNAR1 
(N = 72, FDR = 0.25) and IFNAR2 (N = 72, FDR = 0.82). G) Pearson correlation 
of marker gene expression from RNA-seq and pORG GSVA score for primary 
tumors (Exact FDR values are 0.24, 0.43, 0.026, 5.9e-06, 0.0018, 0.44, 0.11, na, 

1.9e-09, 6.6e-11, 0.0008, 0.24, 0.0018, 6.4e-05, N = 204). H) Pearson correlation 
of deconvolution algorithm scores and pORG GSVA score for primary tumors. 
Deconvolution algorithms include QTS: quanTIseq; MCP: MCP-counter; EPC: 
EPIC (see Methods, exact FDR values are 0.062, 7e-20, 1.2e-08, 2.2e-17, 0.012, 
0.7, 0.1, 0.1, 0.012, 0.0017, 0.0053, 0.01, 0.025, 0.005,0.034, 0.1, 0.012, 2.5e-07, 
0.0008, 0.81, 0.0029, 0.0001, na, 0.84, 0.095, 0.68, 0.45, 0.065, 0.45, N = 204). 
I) mIHC mean cell density per patient for each indicated cell type that is CD4 T 
helper cells (N = 12, FDR = 0.19), immature DC (N = 12, FDR = 0.22), B cells (N = 12, 
FDR = 0.22), and T regulatory CD4 cells (N = 12, FDR = 0.22) significant at the 
ROI cohort level in lung versus liver cohort primaries (top) and low versus high 
pORG score primaries (bottom) that is CD4 T helper cells N = 12, FDR = 0.43), 
granulocytes (N = 12, FDR = 0.43), Macrophage (N = 12, FDR = 0.43), immature DC 
(N = 12, FDR = 0.43), B cells (N = 12, FDR = 0.43), T-regulatory. Each dot represents 
a patient. A-D) Each data point is the average across two primary tumor TMA 
cores imaged per patient in high and low pORG or liver and lung cohort groups. 
P values from two-tailed t-test. Black bars represent the means. N=number of 
patients. F, I) P values from two-tailed t-test corrected with Benjamini/Hochberg 
method. Black bars represent the means. N=number of patients. G, H) FDR 
corrected P values from two-sided Pearson correlation with pORG GSVA score,  
*** FDR < 0.001 ** FDR < 0.005 * FDR < 0.05. N=number of patients.
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Extended Data Fig. 7 | Association of tumoral TCR sequences and 
organotropism, patient outcome or recurrence site. A-C) Total productive 
TCRβ templates sequenced per patient in A) blood samples or samples from 
primary or metastatic tumors (blood versus primary [N = 288 and N = 174, 
P = 1e-38], blood versus met [N = 289 and N = 42, P = 4.7e-21] and primary versus 
met [N = 174 and N = 42, P = 2.3e-05]) or blood or tumor samples from B) primary 
liver or lung cohort (left, liver versus lung blood [N = 46 and N = 13, P = 0.35], 
liver versus lung tumor [N = 42 and N = 13, P = 0.71]) or metastatic liver or lung 
cohort (right, liver versus lung blood [N = 24 and N = 3, P = 0.084], liver versus 
lung tumor [N = 17 and N = 3, P = 0.093]) or C) high or low pORG primary (left, 
low versus high pORG blood [N = 35 and N = 34, P = 0.42], low versus high pORG 
primary [N = 35 and N = 35, P = 0.056]) or metastatic (right, low versus high pORG 
blood [N = 9 and N = 8, P = 0.81], or low versus high pORG met [N = 9 and N = 8, 
P = 0.015]) cohort samples. Primary tumors and blood collected during primary 
resectable disease and metastatic tumors and blood collected during metastatic 
disease. D) Kaplan–Meier (K–M) estimation of overall survival (OS) in primary 
tumor sampled patients in the TCRβ dataset with high (N = 82) versus low (N = 65, 
P = 0.0078) pORG GSVA scores. E) Cox proportional hazards multi-variable 
modeling of OS versus TCRβ dataset patient’s primary tumor pORG GSVA score 
with clinical covariates (N = 104, P = 0.0024). HR and associated P value for 
variable in bold was determined by CPH modeling. Hazard ratios indicated by 
boxes and 95% confidence intervals by error bars. F-G) K–M estimate of OS of 
patients with high versus low F) templates per nanogram (ng) (left, high [N = 70] 
or low [N = 99, P = 0.0065]) or productive rearrangements (right, high [N = 23] 
or low [N = 146, P = 0.0045]) or G) Simpson’s evenness in primary tumors (high 

[N = 101] or low [N = 68, P = 0.15]). H) Tumor TCRβ Clonality in high/low pORG 
(N = 70, P = 0.25) or liver/lung (N = 55, P = 0.82) cohorts in primaries. I) K–M 
estimate of OS of patients with high versus low Clonality in all tumors (left, high 
[N = 157] or low [N = 54, P = 0.19]) and primary tumors (right, [N = 143] or low 
[N = 26, P = 0.77]). J) K–M estimate of OS of patients with high versus low TCRβ 
Shannon entropy (left, high [N = 29] or low [N = 140, P = 0.033]) and Simpson’s 
diversity (right, high [N = 115] or low [N = 54, P = 0.27]) in primary tumors.  
K) TCRβ Simpson’s diversity in high/low pORG or liver/lung cohorts in primary 
tumors (top, high or low pORG [N = 70, P = 0.02], liver or lung [N = 55, P = 0.32]) 
or metastases (bottom, high or low pORG [N = 17, P = 0.97], liver or lung [N = 20, 
P = 0.016]). L) K–M estimate of OS of patients with high (N = 140) versus low 
(N = 71, P = 0.47) TCRβ Simpson’s diversity. M) Templates per nanogram (ng) in all 
primary tumors and metastases (N = 216, P = 0.96). N) The indicated TCR metrics 
in metastatic tumors colored by collection site of metastasis that is lung (N = 2), 
peritoneum (N = 9), liver (N = 19), near hepatic artery (N = 1), mesocolon (N = 1), 
gallbladder (N = 1), or lymph node (N = 2), grouped by liver versus lung cohort 
(left), high versus low pORG quartiles (center), and metastatic collection site 
based on surgical and radiologic notes (right). Black bars represent the means 
A-C) P values from two-tailed Mann-Whitney U test, black bars represent the 
means. N=number of patients. D, F-G, I-J, L) High/low cutoff determined with the 
max Youden index. P values between groups indicated with brackets determined 
by log-rank test and shaded regions represent 95% confidence intervals. Patients 
who died within 30 days after resection are not shown. N=number of patients.  
H, K, M) P values from one-way ANOVA, black bars represent the means. 
N=number of patients.
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Extended Data Fig. 8 | Association of blood TCR sequences and 
organotropism, patient outcome or disease progression. A-B). Metastatic 
tumors’ TCRβ repertoire A) Clonality and B) tumor-distinct clones that is, 
found in tumor but not matched blood, colored by collection site of metastasis, 
i.e lung (N = 2), peritoneum (N = 9), liver (N = 19), near hepatic artery (N = 1), 
mesocolon (N = 1), gallbladder (N = 1), or lymph node (N = 2), grouped by liver 
versus lung cohort (left), high versus low pORG quartiles (center), and metastatic 
collection site based on surgical and radiologic notes (right). C) Kaplan–Meier 
estimate of overall survival of patients with high versus low TCR metrics in 
blood samples that is productive rearrangement (high [N = 130] or low [N = 62, 
P = 0.02]), Simpson’s evenness (high [N = 83], or low [N = 199, P = 0.1]), clonality 
(high [N = 144], or low [N = 138, P = 0.058]), Shannon entropy (high [N = 113], or 
low [N = 169, P = 0.085]) and Simpson’s diversity (high [N = 113], or low [N = 169, 
P = 0.077]). High/low cutoff determined with the ROC max Youden index. P values 
between groups indicated with brackets determined by log-rank test and shaded 
regions represent 95% confidence intervals. Patients who died within 30 days 
after resection are not shown. N=number of patients. D) TCR Simpson’s diversity 
(1- Simpson’s D) in all (left, liver or lung [N = 92, P = 0.12], high or low pORG 
quartiles [N = 97, P = 0.69)), primary- associated (center liver or lung [N = 59, 
P = 0.11], high or low pORG quartiles [N = 7, P = 0.93]), and metastatic blood (right, 
liver or lung [N = 27, P = 0.45], high or low pORG quartiles [N = 18, P = 0.051]). 
E) TCR Clonality (that is 1 – Normalized Shannon Entropy) in all (left, liver or lung 
[N = 92, P = 0.091], high or low pORG quartiles [N = 97, P = 0.63]) and primary-
associated blood (right, liver or lung [N = 59, P = 0.13], high or low pORG quartiles 

[N = 73, P = 0.5]) F-H) TCR metrics in all blood samples (top), blood collected 
from patients at the time of primary resectable disease (center) and collected 
during metastatic disease (bottom) from the indicated cohorts. Metrics are 
F) Shannon entropy in all blood samples (top, liver or lung [N = 92, P = 0.57], 
high or low pORG quartiles [N = 97, P = 0.37]), and at time of primary resectable 
disease (center, liver or lung [N = 59, P = 0.34], high or low pORG quartiles [N = 73, 
P = 0.92]).G) Simpson’s evenness in all blood samples (top, liver or lung [N = 92, 
P = 0.037], high or low pORG quartiles [N = 97, P = 0.94]), at time of primary 
resectable disease (center, liver or lung [N = 59, P = 0.092], high or low pORG 
quartiles [N = 73, P = 0.76]), and during metastatic disease (bottom, liver or lung 
[N = 27, P = 0.14], high or low pORG quartiles [N = 18, P = 0.058]). H) (log) number 
of unique productive rearrangements of TCRβ templates in all blood samples 
(top, liver or lung [N = 92, P = 0.23], high or low pORG quartiles [N = 97, P = 0.45]), 
at time of primary resectable disease (center, liver or lung [N = 59, P = 0.83], high 
or low pORG quartiles [N = 73, P = 0.41]), and during metastatic disease (bottom, 
liver or lung [N = 27, P = 0.093], high or low pORG quartiles [N = 18, P = 0.41) I) TCR 
metrics for richness (N = 256, P = 0.055), evenness that is Simpson’s evenness 
(left, [N = 256, P = 0.75) and clonality (right, [N = 256, P = 0.69]) and diversity 
that is Shannon entropy (left, [N = 256, P = 0.22]), and Simpson’s diversity (right, 
[N = 256, P = 0.25]) in blood collected from patients at the time of primary 
resectable disease or collected during metastatic disease. D-I) P values one-way 
ANOVA or from Kruskal–Wallis H-test for plots with dashed lines. A-B, D-I) black 
bars represent the means, or dashed line represent median and interquartile 
range. N=number of patients.
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Extended Data Fig. 9 | Association of organotropism or KRAS-specific TCRs 
with clonal expansion. A-C) Pie charts of fraction of each cohorts’ repertoire 
made up of expanded clones, where the largest slice is all the small clones, that 
is those present in less than or equal to one template per patient on average in 
the blood and each additional slice of pie is an expanded clone present at greater 
than 1 template per patient on average across the blood samples. Comparisons 
are as follows: A) Blood from patients with primary-associated (N = 198 pts.) or 
metastatic-associated (N = 58 pts.) disease, B) Blood from patients in the liver 
(primary [N = 46 pts.], metastatic [N = 24 pts.]) or lung cohort with primary 
(N = 13 pts.) or metastatic (N = 3 pts.) disease, C) Blood from patients in the high 
(primary [N = 35 pts.], metastatic [N = 8 pts.]) or low pORG cohort with primary 
(N = 35 pts.) or metastatic (N = 9 pts.) disease. D) Cox proportional hazards 
(CPH) modeling of overall survival (OS) for mean public overlap (top, [N = 282, 
P = 0.76]) and Jaccard index (bottom, [N = 282, P = 0.82]) of blood samples with 
each tumor’s clonotypes. E) Mean public overlap (left, liver or lung [N = 92, 
P = 0.29], high or low pORG quartile [N = 97, P = 0.58]) and Jaccard index (right, 
liver or lung [N = 92, P = 0.99], high or low pORG quartile [N = 97, P = 0.88]) of 
blood samples with each tumor’s clonotypes in liver versus lung and high versus 
low pORG cohorts. F) CPH modeling of OS versus mean public clones (top, 
[N = 282, P = 0.62]) and Jaccard overlap (bottom, [N = 282, P = 0.42]) of blood 
samples with each blood sample’s clonotypes. G) Mean public overlap (left, liver 
or lung [N = 92, P = 0.21], high or low pORG quartile [N = 97, P = 0.45]) and Jaccard 
index (right, liver or lung [N = 92, P = 0.18], high or low pORG quartile [N = 97, 

P = 0.34]) of blood samples with each blood sample’s clonotypes of cohorts 
as in (E). H) CDR3 frequency of all shared clonal sequences from lung present 
in each patient’s primary tumor repertoire in liver (N = 42) versus lung (N = 13, 
P = 6.1e-09) cohort (left) and high (N = 3) versus low (N = 35, P = 0.034) pORG 
primaries (right). I) CDR3 frequency of all shared clonal clonotypes from lung 
present in each patient’s metastatic tumor repertoire in liver (N = 17) versus lung 
(N = 3, P = 0.017) cohort (left) and high (N = 8) versus low (N = 9, P = 0.072) pORG 
metastases (right). J) Kaplan–Meier estimate of OS for patients with high (N = 110) 
versus low (N = 58, P = 0.52) tumor-distinct clones in primaries. P values between 
groups indicated with brackets determined by log-rank test and shaded regions 
represent 95% confidence intervals. K) Example of identification of lymphoid 
aggregates in mIHC data; Defined as CD20+ cells clustered with CD3+ cells 
present. N = 12 tissues analyzed. L) CDR3 frequency of putative mutant KRAS-
specific TCRβ sequences in tumor samples in liver (N = 59) versus lung (N = 16, 
P = 0.97) cohort (left) and the top (N = 45) versus bottom (N = 45, P = 0.31) quartile 
of pORG tumors by GSVA scores from all patients (right). M) TCRβ repertoire 
richness (left, true [N = 61], false [N = 155, P = 2.2e-05]) and diversity (right, true 
[N = 61]. False [N = 155, P = 5.6e-06]) in tumors with and without putative mutant 
KRAS-specific sequences in tumor. D, F, J) Patients who died within 30 days after 
resection are not shown. N=number of patients. E-G) P values from one-way 
ANOVA, black bars represent the means. N=number of patients. H-M) P values 
from two-tailed t-test, black bars represent the means. N=number of patients.
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Reporting Summary
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in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Image data for multiplexed immunofluorescence was collected on a Zeiss Axioscan Z1 using the Zeiss Zen Blue software v2.3. Image data for 

multiplexed immunohistochemistry was collected on a Leica Aperio AT2 scanner.

Data analysis Code used for data analysis and all figures in this work is available at: https://github.com/engjen/Liver_Lung_PDAC. 

 

Statistical, machine learning, image analysis, and graphing software used: 

R versions v3.6.0, v4.1.2, and v4.2.2 

python v3.9.15 

 

RNA-Seq alignment and gene expression summaries: 

kallisto v0.44.0 

Bioconda package bioconductor-tximport v1.12.1 

FastQC v0.11.8 and MultiQC v1.7 

trim-galore v0.6.3 

anaconda package management system (conda v4.8.2) 

genome assembly GRCh38.p5 with gencode v24 annotation 

 

Analysis of RNA-Seq Data: 

PurIST subtype scores were calculated using software from: https://github.com/naimurashid/PurIST. 

R packages - DESeq2 v1.42.1, edgeR v4.0.16, fdrtool v1.2.17 
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scRNA-Seq (single cell RNA-Seq) analysis: 

R package Seurat v4.3.0 

 

Pathway analysis: 

GSEA v4.1.0 was run using the command line interface 

R packages - GSEABase v1.64.0, GSVA v1.32.0, msigdbr v7.5.1, msigdbr v, org.Hs.eg.db v3.17.0 

 

Graphing: 

R packages - Cairo v1.6.2, ggplot2 v3.5.1, ggfortify v0.4.17, pheatmap v1.0.12, ComplexHeatmap v2.18.0, enrichplot v1.18.4, ClusterProfiler 

v4.6.2 

 

Image analysis: 

Matlab v9.11.0 (https://www.mathworks.com/products/matlab.html) 

sklearn v1.0.2 

scanpy v1.9.3 (https://github.com/theislab/Scanpy) 

scikit-image v0.19.3 (http://scikit-image.org) 

Cellpose [PMID: 33318659] 

Mesmer [PMID: 34795433] 

FIJI (https://doi.org/10.1038/nmeth.2019) 

StarDist 2D (Schmidt U, W. M., Broaddus C, et al. . in Medical Image Computing and Computer Assisted Intervention – MICCAI (ed Schnabel JA 

Frangi AF, Davatzikos C, et al.)  265–273 (Springer International Publishing, 2018).) 

FCS Express Image Cytometry (De Novo Software, Glendale, CA) 

 

Survival analysis: 

R packages - survival v3.6.4, ROCit v2.1.2 

 

VIPER regulon enrichment analysis and Immune cell type estimation: 

VIPER scores were calculated using the TCGA PAAD ARACNe-inferred network. 

R packages - ClusterProfiler v4.6.2, immunedeconv v2.1.039 using algorithms: quantiseq4, mcp_counter, xcell, and epic. 

   

Other: 

R packages - XLConnect v1.0.10, enrichplot v1.22.0 

 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

All data generated for this study are available as follows: DNA sequencing and variant data from the xT gene panel and the RNA-seq sequencing data are accessible 

through the NCI Genomic Data Commons deposited in the controlled access database dbGaP under accession phs003597.v1.p1: http://www.ncbi.nlm.nih.gov/

projects/gap/cgi-bin/study.cgi?study_id=phs003597.v1.p1. In accordance with informed patient consent for use and collection of these samples and generated 

data, use of this dataset is restricted to research pertaining to the study of pancreas disease.  According to NIH policy, access through the data portal is limited to 

senior level investigators (tenure-track professor, senior scientist, or equivalent).  Requests to access the genomic data must be submitted to dbGaP at https://

dbgap.ncbi.nlm.nih.gov. The summarized, gene level RNA-seq data is available in the Gene Expression Omnibus (GEO) database under accession GSE281129: 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE281129. TCR sequence data is available on the Adaptive Biotechnologies platform, or in the Gene 

Expression Omnibus (GEO) database under accession GSE281129. The multiplexed immunofluorescence images, segmentation masks and extracted features are 

available at: https://www.synapse.org/#!Synapse:syn51068458/wiki/620854. The multiplexed immunohistochemistry single cell phenotype and location data are 

available: https://www.synapse.org/#!Synapse:syn51078766. Source data for Fig. 1-7 and Extended Data Fig. 1-9 have been provided as Source Data files. External 

datasets analyzed are available at https://static-content.springer.com/esm/art%3A10.1038%2Fnature16965/

MediaObjects/41586_2016_BFnature16965_MOESM271_ESM.xlsx (ICGC) and https://cbioportal-datahub.s3.amazonaws.com/

paad_tcga_pan_can_atlas_2018.tar.gz and https://www.cbioportal.org/study/summary?id=paad_tcga_pan_can_atlas_2018 (TCGA). Human genome Release 24 

(GRCh38.p5): https://www.gencodegenes.org/human/release_24.html. 

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 

and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Neither sex nor gender was used to select patients or specimens used in this study. Sex was self-reported and obtained from 

the medical records. The numbers of patients by sex are given in Table 1 and as disaggregated data is in Source Dataset 1. 

Patients in the study consent to individual demographic data sharing. There are 193 females and 229 males in the study. Sex 

was considered as a variable in the Cox proportional hazards survival analysis (Source dataset 2) and tested for sex 

differences across the study cohorts in Table 1.

Reporting on race, ethnicity, or 

other socially relevant 

groupings

We included self reported race in Table 1. We did not report on ethnicity. The participants in our study only included White, 
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Reporting on race, ethnicity, or 

other socially relevant 

Asian and Unknown based on self-reporting in the electronic medical records. Race was tested and found to not be a 

confounding variable in our study, see Table 1. 

Population characteristics Demographic and clinical covariates known are given in Table 1 and Source Dataset 1, including age, treatment, stage, grade 

and primary tumor site.

Recruitment All patients treated for pancreatic adenocarcinoma at Oregon Health & Science University are given the option to consent to 

the Oregon Pancreatic Tissue Registry. Only specimens from consented patients were used for this study. Our center is a 

referral site for the whole state of Oregon and the majority of our patients agree to consent which provides us with a 

representative sample of patients. Many patients with advanced disease do not qualify for surgery which biases our 

collection of primary tumors for RNA-Seq and DNA gene panel analysis. 

Ethics oversight Our research complies with all relevant ethical regulations and was approved under Oregon Health & Science University 

(OHSU) IRB protocol #00003609. Patient data, blood, and tissues were obtained with informed consent in accordance with 

the Declaration of Helsinki and were acquired through the Oregon Pancreas Tissue Registry. Patients were not compensated 

for participation.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sample sizes are given for each result on figures or in figure legends. Sample size was constrained by available samples in our registry over a 5 

year period prior to our study that allowed for at least 2 years of follow up. We did not perform a power analysis, but our sample size 

compares favorably with similar, public data sets (e.g., TCGA PAAD and ICGC APGI). In most cases, our sample numbers were in the hundreds 

and more than sufficient. In some cases, when comparing cohorts, some cohorts had limited numbers (e.g., basal-like cohorts) which did limit 

the statistical significance of results as noted in the manuscript). 

Data exclusions Data exclusions are given in figure legends. Patients without pancreatic adenocarcinoma were excluded. Patients who died within 30 days of 

primary tumor surgical resection were excluded from survival outcomes analyses.

Replication Where possible, analyses of data from OHSU were also applied to publicly available datasets (e.g., TCGA PAAD and ICGC APGI). We were able 

to replicate our main findings regarding pORG and pSUB scores and survival in both TCGA PAAD and ICGC APGI datasets. We did not have 

access to independent datasets with primary PDAC with metastatic site information. To address this, we performed leave-one-out (LOO) cross 

validation within our dataset and reported in methods under pORG gene set generation that LOO cross validation significantly called liver or 

lung cohort primary tumors in the left-out samples. We also changed the language regarding pORG and metastatic tropism to an "association" 

and we stated that independent datasets with known metastatic site information are needed to replicate our study.

Randomization For some comparisons, tumor specimens were assigned scores and patients were assigned to cohorts. The scores and cohort assignments 

were made while investigators were blinded.

Blinding Investigators were blinded to tumor and blood specimen type and origin when performing analyses and scoring. Clinical data were collected 

before the study and static throughout the study.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Novel plant genotypes n/a

Seed stocks n/a

Authentication n/a

Plants
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