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Patients with metastatic pancreatic ductal adenocarcinomasurvive longer if
disease spreads to the lung but not the liver. Here we generated overlapping,
multi-omic datasets to identify molecular and cellular features that
distinguish patients whose disease develops liver metastasis (liver cohort)
from those whose disease develops lung metastasis without liver metastases
(lung cohort). Lung cohort patients survived longer than liver cohort
patients, despite sharing the same tumor subtype. We developed a primary
organotropism (pORG) gene set enriched in liver cohort versus lung cohort
primary tumors. We identified ongoing replication stress response pathways
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in high pORG/liver cohort tumors, whereas low pORG/lung cohort tumors
had greater densities of ymphocytes and shared T cell clonal responses.
Our study demonstrates that liver-avid pancreatic ductal adenocarcinoma
isassociated with tolerance to ongoing replication stress, limited tumor
immunity and less-favorable outcomes, whereas low replication stress,
lung-avid/liver-averse tumors are associated with active tumor immunity
that may account for favorable outcomes.

Patients with pancreatic ductaladenocarcinoma (PDAC) who present
with metastatic disease (-50%) have amedian survival of months. A sub-
set of patients with PDAC (-10%) who develop primarily lung-restricted
metastases survive significantly longer than patients with metastatic
spread to other sites';in some cases surviving >5 years with untreated,
indolent lung metastases* and may gain benefit from a metastatec-
tomy”. In contrast, presentation with liver metastases or recurrent
disease in the liver portends poor outcomes, partly a consequence of
the liver’'simmune suppressive tumor microenvironment (TME)®,
Many studies have categorized PDAC tumors into two to six sub-
types based on gene expression in tumors’”? and the surrounding
TME™". Two consensus subtypes emerge from these studies®: the
basal-like/quasi-mesenchymal/squamoid subtype and the classical/
ductal/glandular subtype. Outcomes are poorer for patients with
basal-like-subtype tumors. Basal-like tumors have been linked to gene

expression signatures indicative of ongoing replication stress (RS),
defined by stalled replication forks caused by premature entry into S
phase, transcription/replication collisions or aberrant DNA damage
checkpoints". Failure to resolve RS leads to replication fork collapse,
DNA damage, interferon (IFN) signaling, cell cycle arrest and, ulti-
mately, senescence or cell death. Although aberrantly proliferating
cancer cells are unavoidably plagued by RS, some malignant cells
evolve response mechanismsto tolerateit, and their ability to survive
the pro-mutagenic consequences of ongoing RS is likely key to their
aggressive biology.

Ineffective PDAC tumor immunity and poor responses toimmune
checkpoint inhibitors (ICIs) contribute to aggressive, treatment-
resistant PDAC'®"; however, exceptional cases exist, demonstrating
that effective tumor immunity does occur naturally**?., Future suc-
cess with ICIs and other modulators of tumor immunity will likely

e-mail: jmlink@mednet.ucla.edu; searsr@ohsu.edu

Nature Cancer | Volume 6 | January 2025 | 123-144

123


http://www.nature.com/natcancer
https://doi.org/10.1038/s43018-024-00881-3
http://crossmark.crossref.org/dialog/?doi=10.1038/s43018-024-00881-3&domain=pdf
mailto:jmlink@mednet.ucla.edu
mailto:searsr@ohsu.edu

Article

https://doi.org/10.1038/s43018-024-00881-3

require a better understanding of how rare cases of natural tumor
immunity can control PDAC. In this study, we generated and interro-
gated large, overlapping datasets with genomic, transcriptomic and
T cell receptor (TCR) blood and tumor sequencing of patient sam-
ples to evaluate tumor and immune differences between primary
PDAC with liver versus lung metastatic organotropism. We report on
both tumor-intrinsic and extrinsic features that distinguish liver-avid
versus lung-avid, liver-averse PDAC independent from the known
PDAC subtypes.

Results

Better outcomes in lung-avid/liver-averse metastatic PDAC
From a de-identified dataset of patients treated for PDAC at our insti-
tution withacomplete set of disease-relevant computed tomography
(CT) scans, we identified 35 patients who developed lung metastases
but never developed evidence of liver metastases (hereafter referred
to as the ‘lung cohort’); within this cohort, the shortest follow-up for
patients alive at the time of data freeze was 760 days after resection
and 984 days after diagnosis. We identified an additional 130 patients
who developed liver metastases (referred to as the ‘liver cohort’), of
which 28 also developed lung metastases. Consistent with previous
reports'™, we observed that lung cohort patients in our dataset fare
significantly better by median overall survival (OS) than patients who
developed liver metastases, regardless of whether they also developed
lung metastases (819 (lung without liver) days versus 450 (liver without
lung) or 537 (liver with lung) days; Fig. 1a). Median survival was also
significantly longer for patients in the lung versus liver cohorts when
limiting our analysis to patients treated by surgical resection (876 days
versus 549 days, respectively; Fig. 1b). Patients with disease recurrence
insites other than liver or lung fared similarly to patients in the liver
cohort (median survival, 693 days) and patients with no documented
recurrence survived longer (median survival, 869 days; Fig. 1b).

We performed multivariable analysis to account for clinical covari-
ates that significantly correlated with survival in our dataset as single
variables, including lymph/vascular invasion, grade, stage and lymph
node positivity. Assignment to the lung cohort independently pre-
dicted longer survival for patients treated by resection in multivari-
able analysis, but assignment to other cohorts was notindependently
predictive of survival (Fig. 1c). Compared to patientsin theliver cohort,
lung cohort patients survived longer recurrence-free after resection

(median 303 days versus 167 days, respectively; Fig. 1d) and survived
longer overall after resection (median 784 versus 498 days, respec-
tively; Extended Data Fig. 1a). By multivariable analysis, days from
resection to recurrence for both liver and lung cohorts was signifi-
cantindependent of clinical covariates (Fig. 1e). Lung cohort patients
generally survived longer after metastatic recurrence than the liver
cohort (397 days versus 302 days, respectively, P=0.053; Extended
DataFig. 1b) and survival after metastatic recurrence correlated with
survival after resection (Extended Data Fig. 1c), but not with days from
resectiontorecurrence (Extended DataFig. 1d), suggesting biological
differencesindisease progressionintheliver and lung cohorts between
these two clinical time periods: before and after metastaticrecurrence.

Lung cohort survival advantage independent of tumor
subtype

We generated gene expression data by performing RNA-seq on his-
tologically confirmed tumor regions inclusive of integrated stroma
from formalin-fixed paraffin-embedded (FFPE) primary (n =218) and
metastatic (n = 71) PDAC tumors (Extended Data Fig.1e), and then used
PurlST™ to assign consensus subtypes of PDAC (basal-like or classi-
cal) to each tumor. We found that tumors from lung cohort patients
skewed significantly more classical than liver cohort tumors (Fig. 1f);
and, as others have reported, patients with classical subtype tumors
survived longer and had longer times to recurrence than patients with
basal-like tumors (600 versus 394 days; Fig. 1g; and 250 versus 153
days; Extended Data Fig. 1f)*"". When restricted to only patients with
classical subtype tumors, the lung cohort survived longer and had later
recurrence than the liver cohort (1,681 versus 520 days; Fig. 1g; and
303 versus 167 days; Extended Data Fig. 1f). These results highlight a
subtype-independent survival benefit for patients in the lung cohort
relativeto theliver cohort, whichis alsoindependent of clinical covari-
ates (hazardratio (HR) = 0.15, P= 0.0041; Fig. 1h).

Clinical comparisons reveal inflammation in lung cohort

We did not observe significant differences in sex, age, stage at diag-
nosis, tumor grade, lymph-vascular invasion or lymph node positivity
between patients in the lung and liver cohorts (Table 1 and Extended
DataFig.1g,h). Patientsin the lung cohort were morelikely to be treated
by resection than patientsin the liver cohort (89% versus 65%, respec-
tively; Extended DataFig.1i); however, the survival advantagein the lung

Fig.1|Survival outcomes and the primary organotropism gene set
distinguish liver or lung recurrence independent of subtype. a, Kaplan-Meier
(K-M) estimates of OS of all patients with documented liver (n =102 patients
(pts.)) and/or lung recurrence (n =28 and 34 pts.), P= 0.0005and P= 0.0007.

b, OS of patients treated by resection stratified by metastatic cohort;
documented liver metastases (n = 84 pts.) or lung metastases without liver
metastases (n =30 pts.; P=0.0002), recurrent disease at nonliver/lung (other)
sites (n =73 pts.) or no documented recurrence (n =103 pts.; P=0.003); K-M
estimates (left), CPH single-variable modeling (right). ¢, CPH multivariable
modeling of OS for patients treated by resection stratified by metastatic
cohort; lung metastases (P= 0.005), liver metastases (P = 0.27), no documented
recurrence (P =0.81) and recurrent disease at nonliver/lung (other) sites
(P=0.19) combined with clinical covariates significant in single-variable
modeling (n =160 pts. with clinical covariate data). d, K-M estimates of days
between resection and recurrence for metastatic cohorts; liver metastases
(n=83pts.), recurrent disease at nonliver/lung (other) sites (n = 73; P< 0.0001),
or lung metastases (n =29 pts.; P=0.0005). e, CPH multivariable modeling of
days between resection and recurrence, stratified by metastatic cohort; liver
metastases (P=0.0001), lung metastases (P= 0.005) and recurrent disease at
nonliver/lung (other) sites (P = 0.14) combined with clinical covariates (n =104
pts. with clinical covariate data). f, PurIST subtyping scores for primary and
metastatic tumor specimens from patients in the liver (n =85 pts.) and lung
(n=28pts.; P=0.025) cohorts. Black bars represent means. Pvalue from two-
tailed t-test. g, K-M estimates of OS for patients categorized by PurIST subtype;
basal-like (n = 63 pts.) or classical (n =206 pts.; P=0.0003) and liver/lung

cohorts; liver classical (n = 61 pts.) or lung classical (n =19 pts.; P=0.002). h, CPH
multivariable modeling of OS for classical subtype lung cohort versus classical
subtype liver cohort patients (n =39 pts.; P= 0.0041) combined with clinical
covariates. i, GSVA scores for the pORG (left; liver or lung (n=76,P=1.6 x107%),
basal-like or classical (n =218, P= 0.38)) and pSUB gene sets (center; liver or

lung (n=76, P=0.22), basal-like or classical (n = 218, P=7.1 x10%)) and PurIST
scores (right; liver or lung (n =76, P= 0.17), basal-like or classical (n = 218,

P=1.8 x10™)) calculated from primary tumors. j, GSVA scores for the pORG
(left; liver or lung (n = 37, P= 0.91), basal-like or classical (n = 71, P= 0.39)) and
pSUB gene sets (center; liver or lung (n =37, P= 0.0013), basal-like or classical
(n=71,P=11x10"%)) and PurlST scores (right; liver or lung (n = 37, P= 0.043),
basal-like or classical (n = 71, P= 5.1 x 10~3*)) calculated from metastatic tumors.
k, GSVA scores for primaries versus metastases for pORG (top (n =289, P=0.91)),
pSUB (middle (n =289, P=0.39)) and PurlST scores (bottom (n =289, P=0.39)).
Patients who died <30 days after resection were omitted (a-e,g,h). Pvalues
between groups indicated with brackets determined by log-rank test, shaded
regions represent 95% confidence intervals (Cls), and HR, Pvalue and n are from
CPH single-variable modeling (a,b,d,g). HR and associated Pvalue for recurrence
site variable was determined by CPH modeling; squares mark the HR estimates,
and the horizontal bars represent the 95% Cl (b,c,e-h). Patients with complete
information on covariates were included in CPH multivariable analysis. Black
bars represent means; Pvalues were derived from one-way analysis of variance
(ANOVA) tests and corrected with the Benjamini-Hochberg method and
nindicates number of tumors (i-k). FU, follow-up; LN, lymph node;

LV, lymph/vascular.
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cohortisstill evident when only comparing patients treated by resection
(Fig. 1b). A small fraction of patients in this dataset were treated with
standard-of-care neoadjuvant chemotherapyinboth cohorts (Extended
DataFig.1i), but neoadjuvant treatment did not influence OS (Extended

DataFig.1j). By histopathology, significantly more lung cohort tumors
had chronic inflammation and plasmacytoid inflammation (Table 1).
Inflammatory scores were not different between the two cohorts when
comparing only resected primary tumors (Extended Data Fig. 2a).
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Table 1| Patient demographics, disease characteristics and tumor specimen histology parameters for all patients in study
and subsets categorized into liver and lung cohorts or high and low pORG score in primary tumors

Total Liver cohort Lung cohort High pORG Low pORG
(primary tumors) (primary tumors)
Clinical characteristics n=422 n=130 n=35 n=103 n=104
S Female 193 (46%) 59 (45%) 14 (40%) 50 (49%) 43 (M%)
ex
Male 229 (54%) 71(55%) 21(60%) 53 (51%) 61(59%)
White 386 (91%) 19 (92%) 31(88.5%) 95 (92%) 100 (96%)
Race Asian 13 (3%) 5(3%) 1(3%) 2(2%) 1(1%)
Unknown 23 (5%) 6 (5%) 3(8.5%) 6 (6%) 3(3%)
Pancreas (adenocarcinoma only) 413 (98%) 127 (98%) 35 (100%) 99 (96%) 103 (99%)
Primary tumorssite  Ampulla of Vater (pancreaticobiliary type 9 (2%) 3(2%) 0 (0%) 4 (4%) 101%)
only)
Stage O 2(0.5%) 0(0%) 0(0%) 1(1%) 0 (0%)
Stage 1a 8(1.9%) 1(1%) 1(3%) 3(3%) 3(3%)
Stage 1b 33(7.8%) 9 (7%) 4(1%) 4 (4%) 8(8%)
13 (13%) 25 (24%)
Stage 2a 63 (14.9%) 15 (12%) 6 (17%)
P=0.047
Stage
Stage 2b 174 (41.2%) 51(39%) 17 (49%) 66 (64%) 57 (55%)
Stage 3 54 (12.8%) 19 (15%) 3(9%) 9(9%) 10 (10%)
7(7%) 0(0%)
Stage 4 73 (17.3%) 33 (25%) 4 (M%)
P=0.0068
No data 15 (3.6%) 2(2%) 0(0%) 0 (0%) 1(1%)
1- Well differentiated 1(2.6%) 1(1%) 2 (6%) 2(2%) 6 (6%)
2 - Moderately differentiated 127 (301%) 49 (38%) 8 (23%) 45 (44%) 43 (41%)
Grade 3 - Poorly differentiated 85 (20.1%) 27 (21%) 12 (34%) 32 (31%) 30 (29%)
4 - Undifferentiated 2 (0.5%) 1(1%) 0 (0%) 1(1%) 1(1%)
Not determined 197 (46.7%) 52 (40%) 13 (37%) 23 (22%) 24 (23%)
n=298 n=84(65%) n=31(89%)
Treated by resection n=99 (96%) n=100 (96%)
P=0.007
14 (14%) 32(32%)
Neoadjuvant treatment 70 (24%) 18 (21%) 11(35%)
P=0.004
No residual tumor 240 (81%) 74 (88%) 28 (90%) 78 (79%) 76 (76%)
Resection details
Residual disease present 55 (19%) 10 (12%) 3(10%) 21(21%) 22 (22%)
Angiolymphatic invasion 145 (49%) 43 (51%) 13 (42%) 52 (53%) 46 (46%)
Tumor involved in regional lymph nodes 205 (69%) 63 (75%) 20 (65%) 76 (77%) 64 (64%)
Histology analysis performed n=239 n=64 n=23 n=83 n=85
Acute inflammation 126 (53%) 35 (55%) 9 (39%) 46 (55%) 35 (41%)
46 (72%) 22(96%)
Chronic inflammation 196 (82%) 72 (87%) 71(84%)
P=0.019
32(50%) 21(91%)
Histology Plasmacytoid inflammation 148 (62%) 61(73%) 61(72%)
P=0.0004
LAs/TLSs 78 (33%) 20 (31%) 10 (43%) 33 (40%) 38 (45%)
Perineural invasion 75 (31%) 21(33%) 8 (35%) 35 (42%) 34 (40%)
Desmoplasia 232 (97%) 63 (98%) 20 (87%) 83 (100%) 81(95%)

Percentages for resection details are only from primary tumor resections and percentages for histology are only from tumors with histology analyzed. Comparisons significantly different
between liver and lung cohort (all tumors) or high and low pORG primary tumors are shown in bold (P value below cells compared is from two-tailed Fisher’s exact test). Histology, review of
H&E-stained sections by two board-certified pathologists blinded to study cohorts. Acute inflammation is defined as increased numbers of neutrophils compared to normal controls. Chronic
inflammation is defined as increased numbers of lymphocytes. Plasmacytoid inflammation is defined as the presence of plasma cells in a background of chronic inflammation. LAs/TLSs are
specifically defined as clusters of lymphocytes forming a reactive germinal center in the tissue. Perineural invasion requires the carcinoma invades into the perineurial space around nerves.
Angiolymphatic invasion is defined as the presence of tumor cells within venous or lymphatic spaces. Desmoplasia is defined as dense fibrosis with elastin and collagen deposition around

invading tumor cells.
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More lung cohort metastases had tertiary lymphoid structures/lym-
phoid aggregates (TLSs/LAs) (Extended DataFig. 2b). Perineural inva-
sion, angiolymphaticinvasion and desmoplasia were not significantly
differentin liver versus lung cohort primaries or metastases (Extended
DataFig.2c,d).

Subtype-independent organotropism gene set predicts
survival

We sought to identify gene expression in primary tumors associated
with liver-avidity versus lung avidity/liver aversion without being influ-
enced by the higher percentage of basal-like tumorsin theliver cohort
(Fig. 1f). We ran a two-factor analysis with DESeq2 (ref. 22) to identify
differentially expressed (DE) genes in primary tumors from the liver
cohort versus lung cohort (organotropism) and from the basal-like
versus the classical subtype. To focus on the biology of metastatic
organotropism independent from subtype’, we excluded the top DE
genes for subtype from the DE genes for organotropism to generate a
primary organotropismgene set termed pORG (55 upregulated genes).
We also applied this process to the DE genes from basal-like versus
classical, subtracting the top DE organotropism genes to generate a
geneset termed pSUB (primary tumor subtype; 51upregulated genes).

We used Gene Set Variation Analysis (GSVA)* to generate activity
scores of our primary tumor samples for both the pORG and pSUB gene
sets. As expected, pORG scores for liver cohort primary tumors were
significantly higher than those from the lung cohort, but pORG score
did not significantly separate primary basal-like tumors from classi-
cal tumors (Fig. 1i, left). Conversely, pSUB scores were significantly
higher for basal-like than classical tumors but not different between
liver and lung cohort primary tumors, similar to PurIST (Fig. 1i, center
andright). The pORG scores for metastatic samples did not distinguish
liver cohort from lung cohort metastases (Fig. 1j, left). The pSUB score
distinguished basal-like from classical metastases (Fig. 1j, center) and
also distinguished metastases fromthe liver and lung cohorts, similar
to PurlST (Fig. 1j, right). GSVA scores for all specimens showed a similar
spread in scores between all primary and all metastatic tumors for
PORG, pSUB or PurlIST (Fig. 1k).

We found significant differences in OS between patients with
tumorsscoring high versus low for pORG, pSUB and PurIST (Fig. 2a), as
well as significantly different recurrence-free survival (RFS; Extended
Data Fig. 2e). Using the same high/low risk cutoffs for pORG, pSUB
and PurlST scores determined in our dataset (Fig. 2a), pORG, pSUB
and PurlST similarly predicted survival in two external datasets: OS
inthe pancreatic adenocarcinoma patient dataset (PAAD)*, reported
by The Cancer Genome Atlas (TCGA) (cBioPortal) (Fig.2b),and RFSin

the Australian Pancreatic Cancer Genome Initiative (APGI)’, part of the
International Cancer Genome Consortium (ICGC) study (Extended
Data Fig. 2f). Low pORG primary tumors were more likely to be early
stage and treated with neoadjuvant chemotherapy (Table 1); how-
ever, neoadjuvant treatment did not affect OS (Extended Data Fig. 1j).
Multivariable analysis indicated that both pORG and pSUB predicted
survivalindependently from other clinical covariates, but PurIST was
influenced by grade (Fig. 2¢).

Analysis of pORG, pSUB and PurIST scoresin ten matched primary
tumors and metastases (Extended Data Fig. 2g) revealed that lung
metastases (n =2 pairs) and metastases in the clinically defined lung
cohort (n =4 pairs) went from low in primaries to high in metastases,
whereas liver cohort primaries and metastases stayed high (Fig. 2d
and Extended Data Fig. 2h); consistent with pORG not distinguishing
between liver and lung cohort metastatic samples (Fig. 1j). Inunpaired
primaries and metastases, the liver cohort had a similar fraction of
low pORG samples in primaries and metastases, whereas lung cohort
metastases show a shift to 70% high pORG (Fig. 2e,f). Although the
metastatic TME may contribute to this shiftin gene expression, analysis
ofapublicly available single-cell RNA-seq dataset” demonstrated that
both the pORG and pSUB gene sets are enriched in the epithelial cell
populations from PDAC primaries and liver metastases (Fig. 2g and
Extended Data Fig. 2i-k).

TP53 and CDKN2A alterations are enriched in high pORG
tumors

We used a tumor-relevant, 595 gene sequencing panel to analyze
DNA alterations from the same specimens used for RNA sequenc-
ing (RNA-seq) (271 specimens with DNA data; Fig. 2h) and compared
and ranked gene alterations between liver and lung cohorts, and
high and low pORG, pSUB and PurIST quartiles (Fig. 2i and Extended
Data Fig. 3a-j). TP53 and CDKN2A altered primaries had significantly
higher pORG GSVA scores (Fig. 2j), whereas KRAS, CDKN2B and SMAD4
altered primaries trended higher and GATAI and ELF3 altered primaries
trended lower in pORG score (Extended Data Fig. 4a). In metastases,
TP53altered tumors had higher pORG scores (Extended DataFig. 4b);
and MTAP, CDKN2A and CDKN2B altered tumors had higher PurIST
scores (Extended Data Fig. 4c). We used Cox proportional hazards
(CPH) multivariable modeling for OS against pORG score combined
with gene alterations that were prognostic as single variables (TP53,
CDKN2A, KMT2D, MTAP and ARID1B) and found that pORG score pre-
dicted shorter survivalindependent of genomic alterationsin primaries
and allsamples (Fig. 2k), as did pSUB and PurIST scores (Extended Data
Fig.4d). We examined alteration differences between all primaries and

Fig.2| pORG predicts survival independently of clinical and genomic
features. a, K-M estimate of OS for patients with primary tumors having high
orlow pORG (left; high (n =101 pts.), low (n =107 pts.; P= 0.01)), pSUB (middle;
high (n =140 pts.), low (n = 68 pts.; P=4.2x107%)) or PurlST scores (right; high
(n=126 pts.), low (n =82 pts.; P=0.00049)) from the OHSU dataset. High/low risk
was determined by receiver operating characteristic curve (ROC) and maximum
Youden’sindex. b, K-M estimate of OS in TCGA pORG (left; high (n =73 pts.),

low (n= 67 pts.; P=0.032), pSUB (middle; high (n = 99 pts.), low (n = 41 pts.;
P=0.087) or PurlST (right; high (n = 69 pts.), low (n = 71 pts.; P= 0.03)) patients
with PDAC. High/low score is defined using cutoff from OHSU dataset.

¢, CPH multivariable modeling of OS versus primary GSVA score for pPORG
(top; P=0.0062), pSUB (middle; P=0.023) and PurIST (bottom; P = 0.37) with
clinical covariates (n =132 pts.). d, pORG, pSUB and PurlIST scores of primaries
and metastases (Met) from the same patient, grouped by clinically defined liver
cohort (documented liver recurrence, n =3 pairs) or lung cohort (documented
lung recurrence without liver recurrence, n = 4 pairs) showing cohort mean GSVA
(point) and 95% Cl (error bars). e, pORG and PurIST scores for primaries (circles)
and metastases (x) in liver and lung cohorts (n =113 pts.). f, Fraction of primaries
or metastases in each quadrant of the graphin e; liver (n = 85 pts., P=0.93) or
lung (n =28 pts., P=0.0012). Pvalues from two-way chi-squared test between
primary and metastatic specimens. g, UMAP of Werba et al.” scRNA-seq, shaded

by per-cell scores for pORG in PDAC primaries (top; n =17 pts.) and PDAC liver
metastases (bottom; n =10 pts.). h,i, Oncoprints of the top ten altered genes

and alteration types (n =271 tumors) in the DNA dataset (h) and top (above,
n=>50 pts.) and bottom quartile (below, n = 50 pts.) (i) by pORG primary GSVA
score.j, pORG primary GSVA score versus TP53 (left; altered (n =131 pts.), WT
(n=70pts.), FDR =9.3 x107™) or CDKN2A (right; altered (n=55pts.), WT (n=146
pts.), FDR =0.00052) gene alteration. Pvalue from two-tailed ¢-test calculated
for genes with 210 alterations in the dataset, corrected with the Benjamini-
Hochberg method. k, CPH multivariable modeling of OS versus pORG GSVA score
and genomic alterations prognostic in single-variable CPH modeling in primary
tumors (left; n =193 pts., P= 0.04) and all tumors (right; n = 251 pts., P= 0.014).

1, Oncoprints of the top ten altered genes and their alteration types in primaries
(left; n=203 tumors) and metastases (right; n = 68 tumors). The log-rank test
Pvalues and n per group are indicated with brackets, shaded regions represent
95% Cl, and CPH single-variable modeling HRs and associated P values are
displayed on plots (a,b). Frequency is indicated at left, top bars indicate variant
types by tumor, and right bars indicate variant types by gene (h,i,I). Alteration
key (i). HR and associated P value for GSVA or PurIST score was determined by
CPH modeling, squares represent HR estimates, and error bars represent 95% Cls
(c k). Patients who died within 30 days after resection are not shown (a,c k).
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all metastases in our dataset and in nonmatched samples we found
MTAP and SMARCBI trended toward more alterations in metastases
compared to primaries, whereas KDM5C and GATAI trended toward
fewer alterationsin metastases (Fig. 2l and Extended Data Fig. 4e). We
found no consistent changes across nine paired primary tumors and
metastases (Extended DataFig. 4f). There was an average of 3.4 differ-
encesingeneticalterations between paired primaries and metastases
from our gene panel, consistent with stochastic changes in matched
samples (Extended DataFig.4g). DNA analysis indicated higher tumor
cell content in basal-like versus classical primary tumors, consistent
withanother report™, and in high pORG and high pSUB primary tumors,
butnosignificant difference between the liver and lung cohort primary
tumors; or metastases in any of the groups (Extended Data Fig. 4h-i).

Distinct pathways enriched by pORG and pSUB gene sets

Gene set enrichmentanalysis (GSEA) analysis revealed that high pORG
and liver cohort primary tumors were enriched (normalized enrich-
ment score (NES) >1.7, false discovery rate (FDR) < 0.05) in Hallmark
pathways® related to oncogene-mediated RS: G2M checkpoint, E2F
targets, mitotic spindle, MYC targets V1, DNA repair, IFN-a response,
cell metabolism and mitogenesis (Fig. 3a). We found that high pSUB
and PurIST primary tumors were enriched in pathways related to
glycolysis, epithelial-mesenchymal transition, apical junctions and
hypoxia, whereas high PurIST was de-enriched for bile acid metabo-
lism and pancreas f cells (Fig. 3b). Visualization of GSVA scores for
these pathways supported results from GSEA and showed that the no
documented recurrence clinical group skewed pORG low (Extended
DataFig.5a-c). GSEA in metastatic-sample cohorts yielded significant
differences only in high versuslow pORG, with 7 upregulated pathways
overlapping with the 12 found in primaries (Fig. 3c). Thus, separating
primary tumor metastatic organotropism and molecular subtype using
the pORG and pSUB gene sets identifies unique pathway enrichments.

Cell cycle, RS and DNA repair up in high pORG, liver-avid
tumors

Virtual inference of protein-activity enrichment regulon (VIPER)*"*
analysis followed by Gene Ontology network analyses identified nodes
for cellcycle and DNA replication and repair enriched in both high pORG
andliver cohort primary tumors (Extended Data Fig. 5d,e). Accordingly,
cellcycle, DNAreplication and DNA repair proteins demonstrated sig-
nificantly higher activity in high pORG and liver cohort tumors (Fig. 3d).
To further analyze RS, we immunostained a tissue microarray (TMA)
prepared from 34 primary tumors using the same FFPE blocks from our
RNA and DNA-seq data for foci of phosphorylated replication protein
A (pRPA) (Fig. 3e), an indicator of single-stranded DNA exposed dur-
ing RS. We found a significantly higher mean number of pRPA foci in

cytokeratin-positive (KRT") epithelial cells in high pORG versus low
pORG primary tumors (Fig. 3f, left). Additionally, we found that Ki67*
proliferating tumor cells had significantly more pRPA fociin high pORG
tumors (Fig. 3f, right). Similar, though not significant, trends were
observed in nine liver cohort primary tumors compared to four lung
cohort (Extended Data Fig. 6a). The percent of epithelial cells and of
proliferating epithelial cells positive for pRPA foci were also higher in
high pORG primary tumors and trended higher inliver cohort primaries
(Extended Data Fig. 6b-c), and more pRPA" cells were proliferating in
high pORG tissues (Extended Data Fig. 6d). Together, these results
support the hypothesis that in high pORG tumors, pRPA" cells are a
viable, expanding part of the tumor despite ongoing RS, likely due to
the associated increase in DNA repair.

Low pORG tumors are less tolerant to defects in DNA repair
Areportby Dreyer et al. suggested that treatment-agent efficacy may
depend on both RS and DNA damage response (DDR) gene alteration
status, dividing patientsinto four categories based onthe presence or
absence of those two factors'®. As our dataindicate that liver-avid, high
pORG primary tumors are enriched for pathways associated with ongo-
ing RS and DNA repair, we divided patients into four categories by high/
low pORG score and the presence/absence of aknown DDR gene altera-
tion”. Although patients with high pORG scoring tumors fared poorly
regardless of DDR gene status, patients with low pORG tumor scores
survived significantly longer if their primary tumors had DDR nonsilent
gene alterations, whether or not variants of unknown significance
(VUS) were excluded (Fig. 3g and Extended Data Fig. 6e). Additionally,
liver cohort tumors with DDR gene alterations had higher pORG scores
compared to those without (Fig. 3h), suggesting that the presence of
DDRgene alterations may promote mechanisms supporting tumor cell
responses to RS and DNA damage to avoid mitotic catastrophe, and a
lack of this response, as seen in low pORG tumors, combined with a
DDR gene alteration improves patient outcome (Fig. 3g).

Suppressed tumor immunity in high pORG, liver-avid tumors
Consistent with enrichment of the Hallmark IFN-a response in high
pORG samples by GSEA (Fig. 3a), VIPER scores for IFN-a/3 receptor
subunits activity positively correlated with pORG score (Fig. 3i). Chronic
IFNsignalingin cancerisreported toinduce anIFN-related DNA damage
resistance gene expression signature (IRDS), associated with tumor
cellresistance to DNA damage®*? and escape from tumor immunity*.
We found a significant positive correlation between the IRDS gene
signature and pORG score in primary tumors (Fig. 3j). Two genesin the
IRDS gene set matched VIPER regulons (STAT1and MX1) and these were
bothssignificantly positively correlated with pORG and trended higher
inliver cohort tumors (Fig. 3i and Extended Data Fig. 6f).

Fig. 3 |High pORG, liver-tropic PDACis associated with replication stress
tolerance and IFN response. a-c, NES colored by FDR P-adjusted (FDR.q) value
(FDR.q.val) (from one-way ANOVA) is shown for Hallmark GSEA pathways if

any of the comparisons reached a NES >1.7 and FDR.q < 0.05 from the cohorts
indicated on eachplot. a, Solid bars, top versus bottom quartile by pORG (n =108
pts.); hatched bars, liver versus lung cohort (n = 76 pts.). b, Solid bars, top versus
bottom quartile by pSUB (n =108 pts.); hatched bars, top versus bottom quartile
by PurlST (n =108 pts.). ¢, Solid bars, top versus bottom quartile by pORG in
metastases (mets) (n =34 pts.). d, Mean differential (diff.) VIPER regulon activity
scores colored by FDR.q.val (from one-way ANOVA) in top versus bottom quartile
by pORG (solid bars, n =108 pts.) and liver cohort versus lung cohort (hatched
bars, n =76 pts.) primary tumors for regulons related to cell cycle (left), DNA
replication (center) and DNA damage repair (right). e, Example immunostaining
of epithelial cells (KRT"), proliferation (Ki67*) and algorithmic detection of pRPA
fociin PDAC tissue (n =55 cores imaged in total). f, Mean RS pRPA fociin epithelial
cells (left; high pORG (n =16 pts.), low pORG (n =18 pts.), P= 0.033) and Ki67"
proliferating epithelial cells (right; high pORG (n =16 pts.), low pORG (n =18 pts.),
P=0.036) ineach patient determined by immunostaining a TMA with 34

primary specimens, 1-2 cores each. g, K-M estimate of OS for patients with
tumors with high or low pORG GSVA scores stratified by tumors with or without
aknown pathologic somatic alteration (VUS were excluded) in a DDR-related
gene (DDR altered high (n =23 pts.), DDRintact high (n = 73 pts.), DDR altered
low (n=20 pts.) or DDRintactlow (n =77 pts.), P= 0.018).log-rank Pvalue, and
shaded regions represent 95% CI. h, pORG GSVA scores for primary tumors

(Pri) and metastases (Met) from patients in the liver cohort categorized by a
known pathologic somatic alteration (VUS were excluded) ina DDR-related gene
(DDR altered (n =13 tumors) or DDRWT (n = 74 tumors), P= 0.044). i, Pearson
correlation (two-sided) of the indicated VIPER regulon scores and pORG GSVA
scores (n =218 pts.).j, Pearson correlation (two-sided) of pORG and IFN- and
immune-related signature GSVA scores for primary tumors (n = 210 pts.). Two-
tailed Students t-test Pvalue; black bars represent the mean (f,h). Pvalues from
Pearson correlation and corrected with the Benjamini-Hochberg method (i j).
*FDR Padjusted < 0.05, *Padjusted < 0.01, ***Padjusted < 0.001. FDR-adjusted
Pvalues were 0.0037,4.7 x107%,3.5x107%,0.24,1.8 x10%,2.6 x1078,5x 107",
8x1072,7.4 x107%, n =218 patients (fori) and 8.8 x10,1.8 x1075,0.0047,2 x 107,
4.1x10™" (forj), n =210 patients.
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Consistent with chronic IFN signaling inactivating adaptive
immune cells*, we found that high pORG scores negatively correlated
with B celland T cell gene signatures, regulons and marker genes; and
positively correlated with response to IFN, macrophage and neutrophil

marker genes, signatures, and regulons (Fig. 3i,j and Extended Data
Fig. 6g).Similarly, liver versus lung cohort tumors had a trend of lower

CD20 B cell VIPER activity scores

(FDR =0.06; Extended Data Fig. 6f).

We found similar results with deconvolution algorithms: notably,
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negative correlations between pORG score and most lymphocyte
subsets, as well as endothelial cells and cancer-associated fibroblasts,
and positive correlations between pORG score and immune suppres-
sive T2 CD4" T cells, macrophages, plasmacytoid dendritic cells and
yS T cells (Fig. 4a and Extended Data Fig. 6h).

We used amultiplexedimmunohistochemistry (mIHC) platform®-¢
to measure densities of leukocyte subsets in multiple 1.0-mm?regions
ofinterest (ROIs) intissue sections from primary tumor specimens with
PORG scores assigned from gene expression data and classified as the
liver (121 ROls, n =9 patients) or lung cohort (53 ROIs, n =3 patients;
Fig.4b).Seven of the nine liver cohort samples were scored high pORG
(84 ROIs); and the five low pORG samples included the three lung
cohort samples and two liver cohort samples (90 ROIs). Consistent
with leukocyte-relevant gene expression, at the ROI cohort level, we
found that thelow pORG and lung cohort tumors harbored greater den-
sitiesof CD4" T helper cells, B cellsand T regulatory CD4" cells, whereas
the high pORG tumors had higher granulocytes, macrophages and
immature dendritic cells, which were also enriched in the liver cohort
(Fig.4c,d). Withthelow sample numbers, these were not significant at
the patient-level comparisons (Extended Data Fig. 6i), and additional
samples will need to be evaluated by mIHC to validate these findings.
Taken together, these data demonstrate that aggressive, high pORG
liver-avid primary PDAC tumors are characterized by both ongoing RS
response and likely evasion of antitumor immunity.

T cell repertoires are rich and diverse in low pORG tumors

We performed sequencing of genomic rearrangements encoding the
complementarity determining region 3 (CDR3) of TCRf chains from
288 blood samples and 216 tumors (174 primary and 42 metastatic),
215 of which had matched blood from the same patient. RNA-seq
was available for 175 patients with TCR-seq analysis of tumor, and of
these, 139 patients had their primary tumor analyzed and 33 patients
had their metastatic tumor analyzed with both modalities (Extended
DataFig.le).Seventy-six blood samples were from patientsinthe liver
cohortand16 were from patients in the lung cohort, of which 59 and 16
were matched with tumor samples from the same patient. The number
of productive templates sequenced were highest in blood samples,
and lower in metastases, compared to primary tumors, but there was
little-to-no significant difference within a sample type in our cohort
comparisons: liver versus lung and high versus low pORG (Extended
DataFig. 7a-c). Liver and lung cohort primary tumors in the TCR-seq
dataset with RNA-seq were significantly separated by pORG score, but
not the metastases (Fig. 4e). Patient outcomes for the TCR-seq dataset
matched those of the whole cohort for pORG (Fig. 4f and Extended
Data Fig. 7d,e); but lung cohort patient survival only trended longer,
potentially due to the relatively low number of lung cohort patientsin
the TCR-seq dataset (Fig. 4f).

We evaluated T cell repertoires using common metrics of richness
(the number of unique TCRB CDR3 amino acid sequences), evenness
(the distribution of clonal frequencies within a sample; a very clonal
repertoire would have low evenness) and diversity (a function of both
richness and evenness)* %, We applied these metrics in the context of
tumor type (primary versus metastatic), pORG score and liver versus
lung cohort; moreover, we examined the influence of each repertoire
metric on OS, across all patients and primary tumor sampled patients
in the TCR-seq dataset. Consistent with greater T cell enrichment in
low pORG tumors (Figs. 3i,j and 4a-d and Extended Data Fig. 6g,h),
we found a higher density of productive TCR3 templates (templates
per ng) and more unique productive TCR rearrangements (richness)
in low pORG primary and metastatic tumors relative to high pORG
(Fig. 5a,b). We did not detect the same difference between lung and
liver cohort tumors, although lung and liver cohort metastases trended
similarly (Fig.5a,b). Patient survival timeincreased with greater TCR3
template density or richness (Fig. 5¢c,d and Extended Data Fig. 7f). These
datasuggest that the underlying biology associated with ahigh pORG
signature may restrict the density of T cells in the tumor and reduce the
richness of the TCRrepertoire.

TCR clonal distribution was evaluated with two evenness
metrics: Simpson’s evenness and Pielou evenness (also known as
richness-normalized Shannon entropy), which expressed as1 - Pielou
evenness is termed clonality®**°. We found lower Simpson’s evenness
in low pORG and lung cohort tumors relative to high pORG and liver
cohort tumors, trending in primary tumors and significant in metas-
tases (Fig. 5e); and low Simpson’s evenness was associated with better
patient outcomes (Fig. 5f and Extended Data Fig. 7g). Consistent with
low Simpson’s evenness, clonality was higher in lung cohort metastases
andtrended higherinlow pORG metastases (Extended DataFig. 7h), but
the overall outcome trend was not significant (Extended Data Fig. 7i).

We used Shannon entropy and Simpson’s diversity (1 - Simpson’s d)
to evaluate TCR repertoire diversity***°*. Shannon entropy is maxi-
mized with increasing richness and increasing evenness of the TCR
sequences, while Simpson’s diversity de-emphasizes low-frequency
clones and is thus less affected by richness. We observed that low
pORG primary and metastatic tumors have high Shannon entropy
(Fig. 5g), whichis associated with better patient outcome (Fig. Sh and
Extended DataFig. 7j). Similar to Shannon entropy, Simpson’s diversity
was higher in low pORG primaries; however, it was not significantly
associated with patient survival (Extended Data Fig. 7j-1), indicating
high diversity inlow-frequency TCR clonesis more strongly associated
with patient outcomes (Fig. 5Sh and Extended Data Fig. 7j). Lung cohort
relative to liver cohort tumors did not have increased TCR Shannon
entropy (Fig. 5g); instead, lung cohort metastases had low Simpson’s
diversity (Extended Data Fig. 7k), which is consistent with their high
clonality (Fig. 5k).

Fig. 4| Transcriptomic and multiplex imaging evidence ofimmune
suppression in high pORG, liver-tropic tumors. a, Pearson correlation
(two-sided) of xCell deconvolution scores and pORG GSVA score for primary
tumors (n =204 pts.). Pvalues from Pearson correlation and corrected with the
Benjamini-Hochberg method. *FDR Padjusted < 0.05, **Padjusted < 0.01,
**padjusted < 0.001. FDR-corrected Pvalues are 0.198,9.06 x 107%,0.0752,
0.802,0.123,2.31x107%,5.23 x107°,1.26 x 107, 2.58 x102,0.000701, 0.0112,
0.164, 0.0215,0.0966, 0.0125,0.000937, 0.0682, 0.281,0.326,1.93 x 107,
3.54x107°,0.0215,0.362,0.228,0.462, 0.326,0.0147,0.00857, 0.362, 0.018,
0.422 and 0.227. b, Representative images of mIHC staining of alow pORG, lung
cohort patient tumor (left) and a high pORG, liver cohort patient tumor (right).
n=12tissuesimaged, 174 ROIs total. ¢, Average leukocyte densities for primary
tumors from patients in the liver cohort (mean pORG 0.23s.e.m.=0.11,n=9
pts.) and lung cohort (mean pORG —0.51s.e.m. = 0.09, n =3 pts.) (top). Average
leukocyte densities for primary tumors from patients with high pORG (pORG
0.38s.e.m.=0.04,n=7pts.) and low pORG GSVA scores (mean pORG -0.43
s.e.m.=0.08,n=>5pts.) (bottom). DC, dendritic cell. d, Leukocyte densities in

ROIs from liver (n =121ROIs) or lung cohort (n = 53 ROIs) primaries (top) and high
(n=84ROIs) orlow (n =90 ROIs) pORG primaries (bottom). Each dot represents
an ROl colored by patient specimen (n =12 patients). Box represents the median
and interquartile range (IQR), and whiskers extend 1.5 x IQR. P values from two-
tailed t-test corrected with the Benjamini-Hochberg method. FDR-corrected
Pvaluesare 0.45,1.1x107%,0.45,0.23,0.001, 0.07,0.00034, 7.6 x 1073, 0.98 (top)
and 0.0097,0.00061, 0.049,0.33,0.006, 0.31,5.4 10,2 x1075,0.034 (bottom,
n=174ROlIs). e, pORG score from RNA-seq of liver versus lung cohort tumors in
the TCRP dataset, primaries (left; liver (n =38 pts.), lung (n=11pts.),P=1.7 x107)
and metastases (right: liver (n =20 pts.), lung (n=5pts.), P= 0.47). Pvalues from
two-tailed ¢-test. Black bars represent the means. f, K-M estimation of OS of
patients with high (n =106 pts.) versus low (n = 82 pts.; P= 0.0054) pORG GSVA
scores (left; cutoff determined by ROC and maximum Youden’s index in the full
datasetin Fig.2a) and liver (n = 76 pts.) versus lung cohort (n =16 pts.; P=0.097)
patients (right) in the TCRP dataset. log-rank test P values and n patients per
group are indicated with brackets and shaded regions represent 95% CI. CPH
single-variable modeling HR and associated Pvalues are displayed on plots.
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Low pORG/lung cohort metastases maintain higher TCR
clonality

We compared T cell repertoires between all primary and metastatic
tumors and found no difference in templates per ng or Shannon

quartiles n =18 quartiles n =18

entropy, but primary tumors had more productive rearrangements,
lower Simpson’s evenness and lower Simpson’s diversity, consistent
with higher clonality (Fig. 5iand Extended Data Fig. 7m). We also found
that primary tumors had a higher fraction of the tumor TCR repertoire
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Fig. 5| Tumoral TCRB repertoire richness, diversity associated with low
PORG tumors; clonality decreases in metastases, but not in low pORG, lung
metastases. a, TCR[3 templates per ng of DNA sequenced in primary tumors
(top; liver or lung (n =55 pts., P=0.19), pORG quartiles high or low (n =70 pts.,
P=0.028)) and metastases (bottom; liver or lung (n = 20 pts., P= 0.14), pORG
quartiles high or low (n =17 pts., P= 8 x 107%)) in liver versus lung and high (top
quartile) versus low (bottom quartile) pORG tumors. b, The number of unique
productive rearrangements of TCRB templates in primary tumors (top; liver or
lung (n =55 pts., P=0.75), high or low (n =70 pts., P= 0.007)) and metastases
(bottom; liver or lung (n =20 pts., P=0.077), highor low (n =17 pts., P=0.01)),
grouped by the indicated cohorts. ¢,d, K-M estimates of OS of patients with
high versus low templates per ng (c) (high (n =107 pts.) or low (n =104 pts.),
P=0.00012) and productive rearrangements (d) in all tumors (high (n =25
pts.) orlow (n =186 pts.), P= 0.0011). e, Simpson’s evenness estimation of TCR3
repertoire evenness in primary tumors (top; liver or lung (n =55 pts., P= 0.19),
high or low (n =70 pts., P= 0.24)) and metastases (bottom; liver or lung (n = 20
pts., P=0.007), high orlow (n=17 pts., P=0.034)), grouped by the indicated
cohorts. Pvalues from Kruskal-Wallis H-test; dashed lines represent the median
andIQR. f, K-M estimates of OS of patients with high (n = 35 pts.) versus low
(n=176 pts.; P=0.022) Simpson’s evenness. g, Shannon entropy estimation

of TCRP repertoire diversity in primary tumors (top; liver or lung (n = 55 pts.,
P=0.63), highor low (n =70 pts., P= 0.0013)) and metastases (bottom; liver

orlung (n=20pts., P=0.51), high or low (n =17 pts., P= 0.031)), grouped by

the indicated cohorts. h, K-M estimates of OS of patients with high (n =31

pts.) versus low (n =180 pts.; P=0.007) Shannon entropy. i, Theindicated TCR
metrics in metastases (Met) versus primary tumors grouped by related TCR
metrics; productive rearrangement (n = 216 pts., P= 0.028), Simpson’s evenness
estimation (n =216 pts. P=1.2 x107°), clonality (n =216 pts., P=2.9 x107),
Shannon entropy estimation (n =216 pts., P= 0.99) and Simpson’s diversity
estimation (n =216 pts., P=0.0079).j, Pie charts of fraction of each CDR3
sequence in TCR repertoires of primary tumors (n = 174 pts.) or metastases
(n=42pts.). Thelargestslice is all the small clones (those present in less than or
equal to one template per patient on average in tumor samples) and each smaller
slice of pieis an expanded clone present at greater than one template per patient
on average across the tumors. k, Tumor TCR@ clonality in high/low (n =17 pts.,
P=0.051) pORG or liver/lung cohorts (n =20 pts., P=0.00038) in metastases.

1, Clonality (left; liver or lung (n = 27 pts., P= 0.31), high or low (n =18 pts.,
P=0.016)) and Simpson’s diversity (right; liver or lung (n =27 pts., P= 0.91), high
orlow (n=18 pts., P=0.026)) in bloods collected from patients with metastases,
grouped by the indicated cohorts. High/low cutoff determined with the ROC
and maximum Youden’s index for each metric, log-rank Pvalue and n per group
shown with bracket, and shaded regions represent 95% ClI (c,d,f h). Patients who
died within 30 days after resection are not shown. Pvalues were derived from a
one-way ANOVA; black bars represent the mean (a,b,g,i,k,I).

occupied by clones with more than one template onaverage per patient
than metastatic tumors (that is expanded clones; Fig. 5j). Although
metastases in general had reduced clonal TCR repertoires (Fig. 5i), the
low pORG and lung cohort metastases had TCR repertoiresindicating
increased clonal responses (low evenness/high clonality) relative to
high pORG and liver cohort, respectively (Fig. 5e k), consistent with
their better prognosis. We also parsed out specific metastatic collec-
tion sites in the TCR-seq dataset which showed the composition of
high and low pORG metastases and liver and lung cohort metastases
(Extended DataFigs. 7n and 8a). Grouping by metastatic collection site
demonstrated lung metastases have greater clonality than liver metas-
tases, consistent with our cohort-level data (Extended Data Fig. 8a,b).

Higher peripheral TCR clonality with low pORG metastases

Peripheral blood TCR clonality at baseline and expansion of clones
post-treatment was reported to predict survival in patients with met-
astatic PDAC treated with ICIs*. In our dataset, we found trends for
longer survival in patients with high blood TCR clonality and lower
TCRdiversity metrics (Extended DataFig. 8c); and elevated TCR clonal-
ity/lower diversity in blood from patients with low pORG versus high

pORG metastatic disease (Fig. 51 and Extended Data Fig. 8d), but this
difference was not seeninblood collected at or before primary tumor
resection (Extended Data Fig. 8d-f). In contrast, blood samples from
lung cohort patients had greater Simpson’s evenness and a trend toward
lower clonality (Extended DataFig. 8e,g). Blood TCRrichness showed
no difference between high and low pORG or liver and lung cohorts
(Extended Data Fig. 8h). Comparison of all blood samples associated
with primary versus metastatic disease did not identify significant dif-
ferences in TCR repertoire richness, evenness or diversity (Extended
DataFig. 8i) or the number of expanded clones (Extended Data Fig. 9a).
Compared to the liver cohort, lung cohort primary-associated blood
samples had fewer expanded clones (Extended Data Fig. 9b), consistent
with their significantly higher blood TCR evenness, while low pORG
relative to high pORG blood TCR repertoires displayed higher frac-
tions of expanded clonesin metastatic disease (Extended DataFig. 9c).

Shared TCR clonal responses in low pORG, lung cohort tumors
Toassess responses to potential common antigens, we evaluated over-
lap in the tumor and blood TCR repertoires in our cohorts using two
metrics, public overlap andJaccard index™. Public overlap counts the

Fig. 6 | Shared, clonal TCR responses in low pORG, lung cohort tumors.

a,b, Number and fraction of TCRp clonotypes that are shared with other tumor
clonotypesin the dataset, quantified as (log) mean public overlap and (log) mean
Jaccard index (intersection of two sets over the union of two sets), respectively.
Primary tumors’ mean public overlap (left; liver or lung (n =55 pts., P=0.69),
PORG quartile high or low (n =70 pts., p=0.009)) and Jaccard index (right; liver
orlung (n=>55pts., P=0.49), high or low (n = 70 pts., P= 0.033)) of each tumor
with each other tumor sample, grouped by the indicated cohorts (a). Metastatic
tumors’ (mets) mean public overlap (left; liver or lung (n =20 pts., P=0.088),
PORG quartile high or low (n =17 pts., P= 0.0084)) and Jaccard index (right; liver
orlung (n=20pts., P=0.18), pORG quartile high or low (n =17 pts., P= 0.0057)),
grouped by the indicated cohorts (b). ¢, Mean public overlap (left; liver or lung
(n=75pts., P=0.25), high orlow (n =90 pts., P=0.0064)) and Jaccard indices
(right; liver or lung (n =75 pts., P= 0.21), high or low (n =90 pts., P= 0.01)) of
tumors’ overlap with each blood sample, grouped by the indicated cohorts.

d, K-M estimates of OS of patients with high versus low mean public clonotypes
(top) of all tumor samples’ (left; high (n =26 pts.) or low (n =185 pts.), P=0.0071)
or primary tumor samples’ (right; high (n =24 pts.) orlow (n =145 pts.), P= 0.027)
andJaccard index (bottom) of all tumor samples’ (left; high (n =26 pts.) or low
(n=185pts.), P=0.0096) or primary tumor samples’ (right; high (n =148 pts.)
orlow (n=21pts.), P=0.00099) overlap with tumor TCRp repertoires. e, K-M
estimates of OS of patients with high versus low mean public overlap (left;

high (n=29 pts.) or low (n =182 pts.), P= 0.013) and Jaccard index (right; high

(n=31pts.) orlow (n=180 pts.), P= 0.022) of all tumor samples’ overlap with
blood repertoires. f, Number of shared, dominantly clonal CDR3 clonotypes
from lung (left; liver (n = 59), lung (n=16), P= 0.036), liver (center; liver (n=59),
lung (n=16), P=0.79) and all tumors (right; liver (n = 59), lung (n=16), P=0.36)
presentineach patient’s repertoire in liver versus lung cohort (top row). Number
of shared, dominantly clonal CDR3 clonotypes from lung (left; high (n = 45),

low (n=45),P=0.0025), liver (center; high (n =45), low (n =45), P=0.015) and
alltumors (right; high (n = 45), low (n = 45), P=0.013) present in each patient’s
repertoire in high versus low pORG quartiles (bottom row). g, Productive
frequency of all shared, dominantly clonal CDR3 clonotypes from lung (left; liver
(n=59),lung (n=16), P=8.8 x10™™°), liver (center; liver (n = 59), lung (n=16),
P=0.13) and all tumors (right; liver (n=59), lung (n =16), P=0.24) present in each
patient’s repertoire in liver versus lung cohort (top row). Productive frequency
of all shared, dominantly clonal CDR3 clonotypes from lung (left; high (n = 45),
low (n=45),P=0.042), liver (center; high (n = 45), low (n=45), P=0.092) and

all tumors (right; high (n = 45), low (n = 45), P=0.38) present in each patient’s
repertoire in high versus low pORG (bottom row). Pvalues were obtained by one-
way ANOVA; black bars represent the mean (a-c). High/low cutoff determined
with the ROC and maximum Youden'’s index; Pvalues were determined by alog-
rank test and shaded regions represent 95% Cl (d,e). Patients who died within

30 days after resection are not shown. Pvalues are from a two-tailed ¢-test, black
bars represent the mean, and n indicates the number of patients (f,g).
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number of clonotypes shared between two groups. Jaccard index is
defined as the size of the intersection over the size of the union of two
sample sets. We calculated the mean of each sample’s public overlap
andJaccardindex with every other sample’s TCRrepertoire, indicative
of asample’s T cell response to common antigens. We found greater
overlap between low pORG tumors and other tumors (Fig. 6a,b) or
blood samples (Fig. 6¢) and a correlation between these overlaps and
survival for all patients and primary-sampled patients (Fig. 6d,e). In
contrast, blood repertoires overlap with either tumor or other blood
repertoires did not show associations with survival, liver versus lung
cohort or high versus low pORG tumors (Extended Data Fig. 9d-g).
These datademonstrate thatanincreased proportion of shared clono-
typesfoundinthetumorare associated with favorable disease biology
(lower pORG scores) and better clinical outcomes in PDAC.

For cohort-specific investigation of clonal TCRs in each group
(liver, lung or all tumors), we identified CDR3 sequences that were
shared by at least 25% of samples inagroup and were dominantly clonal
in at least one sample, hereafter referred to as ‘shared clonal’. Low
pORG tumors had greater numbers of shared clonal sequences from
any of the groups, liver, lung or all, than high pORG tumors, whereas
lung cohort tumors trended this way but had significantly more shared
clonalsequences fromthe lung cohort (Fig. 6f), suggesting unique lung
cohortT cell responses. The frequency of the shared clonal sequences
in each patient’s tumor revealed that in lung cohort and low pORG
tumors, lung cohort shared clonal sequences were expanded toalarger
proportion of the repertoire (Fig. 6g), and this was true separately in
lung cohort primaries and metastases, and low pORG primaries but
not metastases (Extended Data Fig. 9h,i). These results suggest that
lung cohort patients may be a subset of low pORG tumor patients who
harbor unique shared TCRp clonal sequences that undergo aselective
expansion.

Clonal expansion within tumors associated with better
outcome

We considered that expanded T cell clones occurring in tumors but not
sampled in the blood TCR repertoire may reflect new clonal develop-
ment in tumors. We found that lung cohort tumors harbored signifi-
cantly more of these tumor-distinct clones than liver cohort tumors,
especially in metastases (Fig. 7a). Higher tumor-distinct clones were
associated with better OSin all patients, but notin patients with primary
tumor resections alone (Fig. 7b and Extended Data Fig. 9j). Primary
samples had more tumor-distinct clones than metastases (Fig. 7c).
Additionally, clonality positively correlated with the percentage of

tumor-distinct clones in primary tumors and metastases (Fig. 7d),
underscoring that new clonal development may contribute to overall
clonality of the tumor T cell repertoire.

Clonal T cell responses to tumor-associated antigens may arisein
TLSs*. Consistent with this, we found a significantly higher percent-
age of tumor-distinct clonesin tumors that were characterized by two
blinded, board-certified pathologists (T.M. and B.B.) as containing at
least one TLS (Fig. 7e). Furthermore, lung cohort metastases, which
have significantly more tumor-distinct clones, had more TLSs than
liver cohort metastases (Extended Data Fig. 2b). Moreover, we identi-
fied LAs of CD20" cells clustered with CD3" cells in mIHC images from
the nine liver and three lung cohort primary tumor sections analyzed
in Fig. 4 (Fig. 7f and Extended Data Fig. 9k). Although there were no
significant differencesinthe average number of LAs between liver and
lung cohorts, LAs from lung cohort primaries were on average twice the
size of those from liver cohort, and this was also true when specimens
were divided into low versus high pORG tumors (Fig. 7g).

To investigate T cell responses to PDAC-initiating antigens, we
assessed 21 published CDR3 sequences experimentally confirmed to
be part of TCRB receptors specific for KRAS G12/13 alterations**° that
commonly drive PDAC tumors (though we were unable to confirm the
presence of the reported matching HLA allele). The presence of these
putative mutant KRAS-specific CDR3 sequences in tumors from all
patients was associated with better patient outcome, but this was not
the case for their presenceinblood repertoires (Fig. 7h). We identified
higher numbers of KRAS-specific sequences present per patient in
lung cohort and low pORG tumors (Fig. 7i) but not significantly higher
productive frequency of these sequences in either liver versus lung
or high versus low pORG cohort comparisons (Fig. 7j and Extended
Data Fig. 91). Comparison to additional metrics revealed that tumors
with putative mutant KRAS-specific clones present had increased
TCR[ tumor repertoire richness, diversity and tumor-distinct clones
(Fig. 7k and Extended Data Fig. 9m). However, only two of over 21,000
tumor-distinct clonesidentified and none of the shared, clonally domi-
nant sequences in our cohorts (Fig. 6f,g) matched those reported to
be mutant KRAS specific. Together, these results suggest that the pres-
ence of T cells reactive to tumor-initiating, persistent neoepitopes, like
mutant KRAS, in tumors may associate with better patient outcome and
liver-adverse metastatic disease, but selective clonal expansioninlung
cohortorlowpORG tumors associated with their better outcome does
not ofteninvolve expansion of these clones; however, further discovery
of additional putative mutant KRAS CDR3s and HLA tumor-matching
isrequired to validate these hypotheses.

Fig.7|T cell clonal expansion within tumors associated with better outcome.
a, The percentage of unique tumor TCRB CDR3 sequences with >10 templates
detected in tumor samples, but not in patient matched blood samples; all tumors
(left; liver or lung (n = 74 pts., P= 0.01), pORG quartile high or low (n = 89 pts.,
P=0.51)), primary tumors (center; liver or lung (n =55 pts., P= 0.29), high or

low (n =69 pts., P=0.21)) and metastatic tumors (right; liver or lung (n =19 pts.,
P=0.0068), highor low (n =17 pts., P= 0.4)) from the indicated cohorts.
Pvalues from Kruskal-Wallis H-test; dashed lines represent median and IQR.

b, K-M estimates of OS of patients with high (n =150 pts.) versus low (n =58 pts.;
P=0.022) tumor-distinct clones. High/low cutoff determined with the ROC and
maximum Youden'’s index. ¢, Percent tumor-distinct clones in primary tumors
versus metastases (n =213 pts., P=1.2 x 107°). Pvalues were derived from afrom
one-way ANOVA. d, Correlation between tumor-distinct clones and tumor TCR
clonality quantified by 1 - normalized Shannon entropy for primaries (left; rand
Pvalue from Pearson correlation (n =173 pts., P=1.12 x 10~)) and metastases
(right; rand Pvalue from Spearman correlation (n =40 pts., P= 0.00083)). The
linerepresents alinear regression and shaded regions show the 95% Cl. e, The
percentage of tumor-distinct clones in tumors with the presence (n = 57 pts.) or
absence (n=91pts.; P=0.037) of pathologist-identified TLSs. f, Representative
mIHC images of LAs in lung/low pORG (top) and liver/high pORG (bottom)
primary tumors; n =12 images collected. g, LA area in primary tumors from
patientsin the liver cohort (nine patients (n =166 LAs evaluated)) versus lung

cohort (three patients (n = 68 LAs; P=0.00159)) (top) or high pORG (seven
patients (n =106 LAs)) versus low pORG (five patients (n =128 LAs; P=8.4 x107%))
(bottom). Each point represents one immune aggregate colored by patient
specimen. h, K-M estimates of OS of patients containing at least one putative
mutant KRAS-specific TCR sequence within their TCR repertoire in tumors
(top; present (n =60 pts.), not detected (n =151 pts.), P= 0.011) or blood (bottom;
present (n =199 pts.), not detected (n = 84 pts.), P= 0.57) for all patients.

i, Number of putative mutant KRAS-specific TCRB sequences within the TCR
repertoire of each tumor (primary and metastasis) in liver versus lung cohort
(left; liver (n =59 pts.), lung (n =16 pts.), P=0.0005) and the top versus bottom
quartile of pORG tumors by GSVA scores from all tumors (right; high (n =45 pts.),
low (n=45pts.), P=0.024).j, CDR3 frequency of putative mutant KRAS-specific
TCRp sequences in samples containing themin liver versus lung cohort (left;
liver (n=16 pts.), lung (n=11pts.), P=0.12) and the top versus bottom quartile
of pORG tumors by GSVA scores from all patients (right; high (n =8 pts.), low
(n=18pts.), P=0.44).k, Percent tumor-distinct clones in tumors with (n = 61
pts.) or without (n =155 pts.; P= 0.046) putative KRAS-specific TCRB sequences
inthe tumor. Black bars represent the mean (c,e,g,i-k). P values from two-tailed
t-test (e,g,i-k). Pvalues were determined by alog-rank test and shaded regions
represent 95% Cl (b,h). Patients who died within 30 days after resection are not
shown.
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Discussion

Previous efforts to divide PDAC tumors into subtypes used unbiased
approaches to describe mutually exclusive subsets®'>1+#748 We took
an alternative approach of classifying tumors based on the observed
association between metastatic organotropismand better clinical out-
comes in patients with lung-avid/liver-averse disease' . As previously
reported'®, tumors from patients in the lung cohort were unlikely to be
categorized asthe basal-like subtype, whereas classical subtype tumors
were common inbothliver and lung cohorts. Uniquely, we found that
patients with classical subtype primary tumors fared significantly
worseiftheir disease was liver-avid rather than lung-avid/liver-averse.

We extracted a set of overexpressed genes from liver-avid primary
tumors that were not DE in basal-like versus classical primary tumors
(pORG). While gene expression differences between liver versus lung
cohort primary tumors were relatively weak compared to basal-like
versus classical, and the accuracy of the pORG gene set for predicting
recurrence site will require validation in outside cohorts, we demon-
strated that this pORG gene set can independently predict patient
outcomes. Furthermore, high pORG and liver-avid primary tumors
wereboth enriched for cell cycle, replication and DNA repair pathways,
indicative of ongoing RS tolerance. Accordingly, RS fociin tumor cells
and specifically inKi67* proliferating tumor cells were more abundant
in tumors with high pORG scores. Liver-avid tumors with somatic
alterations in DDR genes had some of the highest pORG scores, sug-
gesting that PDAC tumor cells can avoid the detrimental effects of
ongoing DNA damage by adopting strong RS response mechanisms.
Conversely, OS was better in patients with tumors that have low pORG
scores, particularly if they harbor a DDR gene mutation, likely due to
failure to adapt to RS caused by a defective DNA repair network and
suggesting thatlow pORG tumors are less fit and may be more sensitive
to therapeutics that interrupt DDR pathways. A high pORG signature
was also associated with an IRDS***2, which unlike an acute type 1IFN
response, can reduce tumor immunity*. Multipleximaging of immune
phenotypes supported this hypothesis by demonstrating that low
PORG primary and lung cohort primary tumors both had increased B
and T cells with decreased myeloid subsets; and this was further sup-
ported by deconvolution of the bulk RNA-seq to estimate immune cell
types. This increase in tumor immunity is consistent with an inability
to tolerate genomic instability and RS associated DNA damage in low
pORG tumors.

We extended these immune observations with TCRB sequencing.
Inrelation to tumor immunity, both diverse TCRf repertoires as well
as clonal expansion are reported to associate with positive outcomes
in patients with PDAC*°*. Consistent with these reports, we identified
high TCRrichness and diversity inlow pORG tumors and this was asso-
ciated with better patient outcomes. Increased TCR diversity was also
associated with increased shared/public clonotypes, which were also
associated withlow pORG tumors and longer OS, suggesting common
tumor-controllingimmune responsesinlow pORG tumors. Addition-
ally, we found that high tumor clonality/low evenness was prognostic
for longer OS, and clonality was significantly increased in lung and
low pORG metastases relative to liver and high pORG metastases, in
contrasttothe trend observed in metastases ingeneral, which showed
reduced clonality compared to primary tumors. We found that the
increased tumor clonality was associated with increased T cell clones
foundintumorsthat were absentin paired blood samples; suggesting
new clonal expansion of T cells that are not yet detected inblood. These
tumor-distinct clones were higherin the lung cohort compared to the
liver cohort tumors and associated with the presence of TLSs. Possible
explanations for these observations are that lung cohort patients may
have unique mechanisms for T cell clonal development and/or that
only patients who stochastically develop new T cell responses directed
toward the correct antigens end up with liver-averse disease.

Asinallclinical studies of this nature, we acknowledge that limited
follow-up time and confounding variables provide possible limitations

toourstudy. Invivo experiments, combined with additional clinically
annotated patient datasets, are needed to further validate hypotheses
regarding metastatic seeding and/or survival of these PDAC subtypes.
Preclinical follow-up could reveal additional mechanistic insights as
well as biomarkers for avenues of therapeutic intervention in either
the neoadjuvant and/or adjuvant settings.

Methods

Tissue acquisition and patient consent

Our research complies with all relevant ethical regulations and was
approved under Oregon Health and Science University (OHSU) Insti-
tutional Review Board protocol no. 00003609. Patient data, blood and
tissues were obtained with informed consent in accordance with the
Declaration of Helsinkiand were acquired through the Oregon Pancreas
Tissue Registry. Patients were not compensated for participation.

Clinical data collection

From a de-identified dataset of 1,873 patients diagnosed with and/
or treated for PDAC at our institution between 2004 and 2020, we
identified 422 patients for which we had specimens with sequencing
data (n =374) and/or specific evidence of disease metastasis site(s)
fromthe OHSU cancer registry and disease-relevant CT scans to allow
cohort classification. Patients whose primary tumor was located at
the ampulla of Vater but classified as pancreatobiliary subtype were
included (n=9).Clinical course time points, stage, grade, nodal involve-
ment, resection margins and angiolymphatic invasion were provided
as de-identified databy the OHSU cancer registry with quality control
dataverification by pathologists (B.B.and T.M.). Patient demographics
werealso collected and include age and self-reported sex. We reviewed
all available CT scans for all patients with primary tumor resection
dates recorded by the cancer registrar, with tumor samples analyzed
by RNA-seq, DNA-seq or TCR-seq, and/or with additional information
indicating metastatic spread (for example, metastatic samplesreceived
for related studies). We abstracted the site of all lesions proven to be
metastatic by biopsy and/or that clearly increased in size during pro-
gressionor decreased insize during treatment as long as aradiologist
described thelesion as‘likely’, ‘suspicious for’, ‘concerning for’ or ‘favor’
metastasis. Clinical imaging was reviewed by a radiologist (A.G.) to
validate patient assignments to the liver, lung and neither liver nor lung
(other recurrencesite) cohorts. Toadhere to our clinical definition, we
did notexclude patients from any cohort due to shortsurvival. Time to
recurrence after surgical removal of tumor and disease-free status was
calculated fromthe earliest of either the recurrence date provided by
the OHSU cancer registry, or the date of earliest lesion abstracted from
CTreports. All patient information was frozen inJuly 2021.

Specimen processing

Primary and metastatic PDAC tumor specimens from consented
patients at OHSU were processed by the OHSU Department of Pathol-
ogy and preserved by standard FFPE. FFPE sections of 3-4 pm were
stained with hematoxylin and eosin (H&E) and used for other protein
staining procedures.

Histology data

H&E-stained FFPE tissue sections from regions corresponding to those
extracted for RNA-seq and somatic alteration analyses were indepen-
dently appraised by two pathologists (B.B. and T.M.) blinded to study
cohorts for the histologic features shown in Table 1.

Tempus RNA-seq and genomic alteration panel processing

OHSU provided FFPEPDAC specimenblocks along with matched normal
blood or tissue to Tempus as part of a contract agreement. OHSU pathol-
ogist (T.M.) and Tempus pathologists marked regions of high tumor
content (>20% ratio of tumor to normal nuclei) on H&E-stained slides for
DNA and RNA extraction. Solid tumor total nucleic acid was extracted
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from these tumor regions on adjacent FFPE tissue sections using Che-
magic 360 sample-specific extractionkits (PerkinElmer, cat. no. 41581)
and digested by proteinase K (Thermo Fisher, cat.no. EO0492). RNAwas
purified fromthetotal nucleic acid by DNase-l digestion (Thermo Fisher,
cat.no.89836). DNA sequencing of 596 genes and whole-transcriptome
RNA sequencing were performed as described***°. Briefly, 100 ng of DNA
for each tumor sample was mechanically sheared to an average size of
200 bp using a Covaris Ultrasonicator. DNA libraries were prepared
using the KAPA Hyper Prep kit (Roche, cat. no. KRO961), hybridized to
the xT probe set and amplified with the KAPA HiFi HotStart ReadyMix
(Roche, cat.no.KK2602). One hundred ng of RNA for each tumor sample
was heat fragmented in the presence of magnesium to an average size
of200 bp. Library preps were hybridized to the xGEN Exome Research
Panelv.1.0 (Integrated DNA Technologies, cat.no.10005153) and target
recovery was performed using streptavidin-coated beads, followed by
amplification with the KAPA HiFi Library Amplification kit (Roche, cat.
no. KK2612). The amplified target-captured DNA tumor library was
sequenced using 2 x 126-bp paired-end reads to an average unique
on-targetdepth of 500% (tumor) and 150 (normal) onan Illumina HiSeq
4000. The amplified target-captured RNA tumor library was sequenced
using 2 x 75 bp paired-end reads to an average of 50 million reads on
anlllumina HiSeq4000.Samples were further assessed for uniformity
with eachsample required to have 95% of all targeted bp sequencedtoa
minimumdepth of 300x. Raw fastq files were returned to OHSU as well
as PDF reports of summarized DNA alterations.

DNA sequence analysis

DNA variant detection, reporting and copy number analysis were
performed as described*®. Alignment and mapping were to GRCh37
using Novo align + BWA. Copy number variants were derived from
proprietary tumor-normal match analysis using CNAtools. Matched
normal DNA was available for most tumor specimens and if not avail-
able, a pool of normal samples was used to call variants. For cases
relying onapooled normal, thereis anincreased risk of true germline
mutations being identified as somatic*. Genomic variants and annota-
tions are displayed on oncoprints using the Oncoprint function from
the Complex Heatmap R package®. Cohort and survival analysis were
performed as follows onalterations presentin more than nine patients.
Fisher’s exact tests were used to determine whether the alteration
prevalence differed significantly between cohorts; FDR correction
was performed with the Benjamini-Hochberg method. We determined
whether each gene alteration (annotated as gain of function or loss of
functionor simply ‘altered’), may influence patient survival and found
thatonly ARIDIA variants had annotation type-dependent prognostic
value (with ARID1A loss of function conferring better prognosis relative
towild-type (WT) and ARID1A altered); therefore, we pooled alteration
types for single-variable Cox proportional hazards modeling of gene
alterations versus OS, with the exception of ARIDIA.

RNA sequencing analysis

Paired-end fastq sequences were trimmed using Trim Galore (v.0.6.3)
and default parameters. Pseudoalignment was performed with kallisto
(v.0.44.0) using genome assembly GRCh38.p5 and GENCODE (v.24)
annotation; default parameters were used other than the number
of threads. The Bioconda package bioconductor-tximport (v.1.12.1)
was used to create gene-level counts and abundances (TPMs). Quality
checks were assessed with FastQC (v.0.11.8) and MultiQC (v.1.7). Quality
checks, read trimming, pseudoalignment and quantitation were per-
formed via a reproducible snakemake pipeline, and all dependencies
for these steps were deployed within the anaconda package manage-
ment system®>>,

PurIST analysis
PurIST subtype calls and scores were generated using the PurIST
method™ applied to our RNA-seq data. The PurlST authors provide

instructions, R scripts and gene pairs on GitHub (https://github.com/
naimurashid/PurIST).

Development of pORG and pSUB gene sets

Atwo-factor analysis with DESeq2 (ref.22) was performed on RNA-seq
counts from the 76 primary samplesin the liver and lung cohorts after
filtering out low expressing genes using a TPM cutoff of <0.25 aver-
age expression across the dataset. The two factors modeled were:
primary tumor liver cohort versus lung cohort and basal-like versus
classical (from PurIST subtyping). The signal for the clinical liver
versus lung factor was weaker than that for the RNA-based subtype
factor. To select appropriately sized gene sets for GSVA, we chose a
permissive FDR-adjusted P value cutoff for individual genes of 0.2
for the liver versus lung factor and a restrictive cutoff of 0.0001 for
the basal-like versus classical factor. For pORG, we selected DE genes
fromtheliver versus lung factor (FDR < 0.2), then excluded genes that
co-occurred in the top half of the ranked genes from the basal versus
classical factor, resulting in a list of 55 upregulated genes (only genes
up in liver cohort were selected). For pSUB, we selected DE genes up
for the basal-like versus classical factor (FDR < 0.0001), then excluded
genes that co-occurred in the top half of the ranked genes from the
liver versus lung factor, resulting in a list of 51 upregulated genes. To
test for over-fitting, we performed a leave-one-out cross validation
by repeating the two-factor modeling steps above with each of the 76
samples left out one at a time. For each iteration, the resulting gene
set was used to calculate GSVA scores on all primary samples. Once all
iterations were complete, the GSVA scores from the left-out sample
fromeachiteration were combined to generate a cross-validated GSVA
matrix. The cross-validated GSVA scores for pORG still correlated as
expected with the liver versus lung labels (P= 0.033), but not as well as
the over-fit scores did. Likewise, leave-one-out cross-validated GSVA
scores were calculated and tested for pSUB. pSUB scores correlated as
expected with the basal-like versus classical labels (P=3.1x10") and
did not show much over-fitting bias.

GSEA and GSVA analyses

The GSVA tool* was used with log scaled, TMM-normalized CPM data™*
to calculate relative pORG and pSUB gene set scores across all prima-
ries, all metastases and all tumors and identify top/bottom quartile
cohorts. GSEA* was runon clinical liver and lung cohorts, pORG, pSUB
and PurIST top/bottom quartile cohorts using the MSigDB database
v.7.5.1Hallmark gene set collection®. The eight genes used for the IRDS
signature were: STAT1,IFI44,IFIT3, OAS1,IFIT1,1SG15, MX1and USP18.To
calculate GSVA scores for Hallmarks and other signatures, the DESeq2 R
library was used toimport raw RNA-seq data via txiimport and perform
variance stabilized transformation for downstream GSVA analysis. The
GSVAR library was then used to calculate GSVA scores for gene sets,
including the Hallmark gene set collection from the MSigDB database
(v.7.5.1), response to IFN gene sets GO:0034341and GO:0071357 from
org.Hs.eg.db (v.3.17.0) and T and B cell signatures for profiling the
TME®*. To produce heatmaps of primary tumor GSVA results, we used
the R package pheatmap (v.1.0.12)””. Tumor samples (columns) were
ordered from highest to lowest pORG or pSUB, whereas MSigDB Hall-
marks (rows) were hierarchically clustered using default pheatmap
function parameters. Samples from patients who were not resected
nor intheliver/lung cohort were excluded (n = 6). Before running the
pheatmap function, GSVA results were subset to include only MSigDB
Hallmarks that were significantly different by GSEA (FDR Padjusted <
0.05) for high/low pORG or pSUB groups, respectively.

Single-cell RNA-seq analysis of public data

For single-cell analysis of pORG and pSUB gene sets, we obtained
single-cell RNA-seq profiles of primary PDAC tumors and liver metas-
tases from the National Institutes of Health (NIH) Gene Expression
Omnibus (GEO) (GSE205013)%. Primary tumors and liver metastases
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were analyzed separately using the R package Seurat (v.4.3.0)*® but
run through the same computational workflow. Per-cell quality cutoffs
were set to the same parameters originally used by Werba et al.”® at
1,500 min; reads, 500 min; unique genes detected; read percentage
from mitochondrial genes <15%; and read percentage <1% from eryth-
roid genes (ALAS2, HBA1, HBA2, HBB and HBM). For data integration,
we applied Seurat’s SCTransform® and RPCA integration workflow.
Briefly, we applied the SCTransform function with ‘v2’ regularization to
each sample, selected the top 3,000 features for integration through
SelectIntegrationFeatures and ran principal-component analysis on
eachsampleviaRunPCA. Integration was performed using FindIntegra-
tionAnchors withnormalizationset to‘SCT’ and reductionsetto ‘rpca’,
followed by IntegrateData with normalization method set to ‘SCT’. After
integration, Uniform Manifold Approximation and Projection (UMAP)
was performed on principal components 1:30, and clustering was run
with FindClusters resolution set to 0.7. Finally, RNA count data were
thennormalized and scaled for all downstream analysis. To identify cell
types, weranthe FindAllMarkers functionto find highly expressed genes
in each cluster. We labeled clusters by cell type in accordance with the
cell-type markers used by Werba et al.”, with the exception of a hepato-
cyte cluster identified by high albumin (ALB) gene expression foundin
theliver metastasis data. Clustersrepresenting epithelial-endothelial
doublets from the primary tumors and epithelial-myeloid doublets
fromtheliver metastases were identified from high coexpression of cell
type markers and consequently removed. Following cell type identifica-
tion, we computed module scores for the pORG and pSUB gene setson a
per-cell basis using the function AddModuleScore with default settings.

VIPER analysis and immune cell type estimation

The transcriptional regulon enrichment analysis was performed using
VIPER with the TCGA PAAD ARACNe-inferred network®*, Gene expres-
sion data were normalized before running VIPER by median center-
ing and scaling. VIPER regulon scores for all primaries were used for
cohort comparisons. Immune cell type estimation was run using the
R package immunedeconv (v.2.1.0)°° and selecting the quantiseq®,
mcp_counter®, xCell®* and epic®* algorithms. To perform Gene Ontol-
ogy (GO)**° enrichment analysis for regulons increased in high pORG
samples and liver cohort samples, we used the R package ClusterPro-
filer (v.4.6.2)”". The ClusterProfiler function enrichGO was set to test GO
biological process terms, threshold results at 0.05 Pand g-value, and
use all regulons as the background. Jaccard similarity was calculated
through the function pairwise_termsim with default settings. Enrich-
ment maps were plotted with the R package enrichplot (v.1.18.4)%.

Immunofluorescence multipleximaging

APDAC TMA was constructed at OHSU using FFPE blocks from tumors
analyzed by RNA-seq and included 1-2 cores each from 34 primary
tumors (55 coresintotal). Immunofluorescence staining, imaging and
image processing were performed on the TMA as described®. Briefly,
images were scanned with the Zeiss Axioscan Z1, acquired, stitched and
exportedto tiffformat using Zeiss Zen Blue software (v.2.3), registered
using MATLAB (v.9.11.0), followed by cellular segmentation using Cell-
pose’ or Mesmer” algorithms. Unsupervised clustering of single-cell
meanintensity was used to define cell types, using the Leiden algorithm
implemented inscanpy (v.1.9.3)"°.Ki67* epithelial cells were defined as
having meanintensity >256 for KRT and >768 for nuclear Ki67. The dif*-
ference of Gaussian algorithm implemented in scikit-image (v.0.19.3)”
was used to identify pRPA foci in segmented nuclei.

Multiplexed immunohistochemistry

Tumor specimen slides were processed and stained as described*®.
ROIs across the primary tumor resections were selected based on tis-
sue quality post-staining and annotated in Aperio ImageScope (Leica
Biosystems). LAregions were selected based on visual identification of
cell clusters containing >20 cells, positively stained with CD20 (B cell)

and CD3 (T cell), within 500 pm. Data were processed as described**™.
Inbrief,images were registered using MATLAB (The MathWorks), AEC
signalwas extracted using Fiji”*, single-cell segmentation and labeling
was performed using StarDist 2D”®, the mean signal intensity of each cell
for every marker was measured using CellProfiler”” and gating thresh-
olds were set using FCS Express Image Cytometry (De Novo Software).
Cell-type gating and cell type counts are in source data.

TCRp sequencing and analysis

Frozen leukocytes and 25-mm thick curls of FFPE tumor were submit-
ted to Adaptive Biotechnologies for human TCRp sequencing. The
tumor specimens were categorized as primary or metastasis. The blood
specimens were also categorized as associated with primary disease or
metastatic disease based on the following criteria. The blood sample
was considered primary-associated if it was collected before or on the
day of primary tumor resection, metastasis-associated if it was col-
lected after a recurrence, or uncharacterized if it was collected after
resection and before recurrence. For patients not treated by resec-
tion, the blood was considered primary-associated if it was collected
180 days before the latest date the patient was confirmed metastasis
free onimaging. The blood was considered metastasis-associated if it
was collected after the patient had metastasis confirmed on imaging
or was collected within 30 days before metastasis was detected on
imaging. Analyses were performed using the Immunoseq tool” pro-
vided by Adaptive Biotechnologies and custom code (https://github.
com/engjen/Liver_Lung_PDAC). Samples with fewer than 100 produc-
tive templates were excluded from analyses. The Diversity Metrics
Tool was used for richness and evenness metrics, and the differential
abundance tool was used to assess overlap between samples from 214
matched pairs of tumor and blood (91% collected on the same day). The
percentage of tumor-distinct clones was calculated from a list of all
rearrangements with >10 templatesin each patient’sblood plus tumor
samples combined, where tumor-distinct clones were defined as those
foundin tumor samples, but not found in matched blood samples. For
shared, dominant clonal sequences within cohorts, the top 50 CDR3
rearrangement amino acid sequences (by frequency in each sample)
were compiled for all samples, and the Immunoseq Sequence Search
Tool was used to identify all samples in the cohort that contained any
ofthose CDR3 TCRB sequences atany frequency. Only the CDR3 amino
acidsequences foundinatleast 25% of samplesin the cohort were con-
sidered shared, dominant clonal sequences. Shannon entropy, clonality,
Simpson’sd, tumor-distinct clone sequences, number of templates per
sample, patient-level shared, dominant clonal sequences, expanded
clones and putative KRAS-specific sequences were calculated from
amino acid CDR3 frequency usingscipy (v.1.11.4) and numpy (v.1.26.2).
Python libraries and custom code are found at https://github.com/
engjen/Liver_Lung_PDAC.Repertoire overlap was calculated using the
repOverlap function fromimmunarch (v.0.9.0) inRand selecting ‘public’
and ‘Jaccard’ methods. To summarize the amount of shared TCRs per
sample, we calculated each sample’s public overlap and Jaccard index
withevery other sample’s TCR repertoire and took the mean, indicative
of asample’s average T cell responses to common antigens.

External datasets

The TCGA PAAD dataset was obtained from cbioportal®* and filtered
for PDAC samples, resulting in n =140. The ICGC PDAC RNA-seq speci-
men dataset was the APGln =96 specimen cohort (n = 87 withsurvival
metadata)’, part of the ICGC study.

Software

R (v.3.6.0) was used for GSVA and VIPER. R (v.4.1.2) was used with R
packages DESeq2, GSVA, msigdbr, gplots and ggplot. R (v.4.2.2) was
used with R packages Seurat, enrichplot and ClusterProfiler. GSEA
wasruninJAVA using the command line interface. Statistical tests were
performed with R and Python (v.3.9.15). Environment information,
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data and code necessary to reproduce all paper figures are available
at https://github.com/engjen/Liver_Lung_PDAC.

Statistics and reproducibility

No statistical method was used to predetermine sample sizes, but our
samplesizes for clinical and transcriptomic analysis compare favorably
to those reported in previous publications (ICGC’, TCGA** and COM-
PASS”). Liver (n=9) and lung (n =4) cohort samples included in the
TMAwere selected before transcriptomic analysis and based on tissue
availability; sample size was constrained by available array space. All
liver/lung cohort samples on the TMA were also profiled by mIHC, but
we excluded one lung cohort sample from analysis due to quality control
failure. Norandomization was performedin our study asit is retrospec-
tive. Blinding was not used in any aspect of our study except during
histological dataappraisal by pathologists, who were blinded to study
cohorts. Alog-rank test was used to compare K-M survival and recur-
rence curves as indicated in figures. To determine optimal cutoffs for
binarizing pORG, pSUB and PurIST GSVA scores and TCR metrics scores
into high and low for survival analysis, we used the R package ROCit
or sklearn.metrics.roc_curve to generate a receiver-operator curve
comparing specificity and sensitivity of different cutoffs to predict
short-termsurvivors (<545 days) versus long-term survivors (>545 days).
We selected our optimal cutoff at the maximum Youden’s index (the
value giving maximum sensitivity + specificity for short-term versus
long-term survivor prediction). For GSVA scores, this cutoff was exter-
nally validated for prognostic significance in theICGC PDAC and TGGA
PAAD datasets. CPH modeling was used to estimate HRs for survival
and recurrence with associated P values. For all survival analysis, only
patients alive 30 days or more after surgery were included to avoid ana-
lyzing death related to surgical complications. Two-tailed ¢-tests were
used when comparing two conditions and analysis of variance (ANOVA)
was used when comparing more than two conditions within a dataset.
Data normality was assessed using Q-Q plots. For non-Gaussian data
(forexample, Simpson’s evenness of TCR sequences and tumor-distinct
clones) we used Kruskal-Wallis tests, or log transformed and applied
ANOVA or two-tailed t-tests if data were log-normal (for example, TCR
productive rearrangements, Simpson’s diversity, public clonotypes
and Jaccard index). Pearson, Spearman and Kendall tau correlation
coefficients were generated for Gaussian, non-Gaussian and censored
data, respectively. Two-sided Fisher’s exact tests were used for 2 x 2
categorical comparisons and two-way chi-squared was used for cat-
egorical comparisons with more categories. McNemar’s tests were used
for paired categorical data. FDR multiple comparisons correction was
applied using the Benjamini-Hochberg method.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All datagenerated for thisstudy are available as follows: DNA sequenc-
ing and variant data from the XT gene panel, and the RNA-seq data are
accessible through the NCI Genomic Data Commons deposited in
the controlled access database dbGaP under accession phs003597.
v1.pl. In accordance with informed patient consent for use and col-
lection of these samples and generated data, use of this dataset is
restricted to research pertaining to the study of pancreas disease.
According to NIH policy, access through the data portal is limited to
senior-level investigators (tenure-track professor, senior scientist or
equivalent). Requests to access the genomic data must be submit-
ted to dbGaP at https://dbgap.ncbi.nlm.nih.gov. The summarized,
gene-level RNA-seq data are available in the GEO database under
accession code GSE281129. TCR sequence data are available on the
Adaptive Biotechnologies platform or in the GEO database under
accession code GSE281129. The multiplexed immunofluorescence

images, segmentation masks and extracted features are available
at https://www.synapse.org/#!Synapse:syn51068458/wiki/620854.
The mIHC single-cell phenotype and location data are available at
https://www.synapse.org/#!Synapse:syn51078766. Source data for
Figs.1-7 and Extended Data Figs. 1-9 have been provided as Source
Data files. The external datasets analyzed are available at https://
static-content.springer.com/esm/art%3A10.1038%2Fnature16965/
MediaObjects/41586_2016_BFnaturel6965_MOESM271_ESM.xIsx
(ICGCQ), https://cbioportal-datahub.s3.amazonaws.com/paad_tcga_
pan_can_atlas_2018.tar.gz and https://www.cbioportal.org/study/
summary?id=paad_tcga_pan_can_atlas_2018 (TCGA). Human genome
Release 24 (GRCh38.p5)is at https://www.gencodegenes.org/human/
release_24.html. Source data are provided with this paper.

Code availability

Freeand open-source code and data used for analysis and all figuresin
thiswork are available at https://github.com/engjen/Liver_Lung_PDAC.
An explanation of the repository source data is included in the data
dictionary: Source Datasets README.txt.
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Extended Data Fig. 1| Survival and clinical characteristics of metastatic
cohort and subtype. A) Kaplan-Meier (K-M) estimates of days from resection
to follow-up for resected patients with known liver (N = 84 patients) and/or lung
metastases (N =30 patients, P = 0.003), other recurrence site (neither liver nor
lung, N = 73 patients) or no documented recurrence (N = 103 patients, P = 0.005).
B) K-M estimates of survival after liver (N = 83) or lung (N =29, P = 0.053)
recurrence. C) Kendall tau correlation (for censored data) between survival after
liver (N=83,P =2.6e-14) or lung (N =29, P = 0.031) recurrence and survival after
resection. D) Kendall tau correlation between time to recurrence after resection
and survival after liver (N =83, P =0.3) or lung (N =29, P = 0.87) recurrence.

E) Venn diagram of patient overlap (left, RNA-seq (N = 277), DNA-seq (N = 260],
TCR-seq tumor (N =216], TCR-seq blood (N = 288], and table of number of
specimens (right, RNA-seq [N = 289], DNA-seq [N = 271], TCR-seq tumor [N = 216],
TCR-seq blood [N =288] with the indicated analyses. F) K-M estimates of days
between resection and recurrence for all basal-like (N = 29) vs classical (N =101,

P =0.01) patients, and all liver cohort (N = 43) vs lung cohort (N =15,P = 0.004)
classical patients. For the two patients with more than one specimen analyzed,
the resected primary tumor was used for subtype assignment. G-H) Fraction

of patientsin liver or lung cohort with different clinical covariates, that is, male
or female (N=165,P =0.71),age <=70 or>70 (N =165, P = 0.48), stage (N =163,
P=0.14), grade (N=100, P = 0.054), LN positive (N =113,P = 0.35),and LN
invasion (N =82, P =0.91).1) Fraction of patients in liver or lung cohort receiving
aresection (left, [N =165, P=0.011]) and the ratio of resected patients receiving
neoadjuvant chemotherapy (right, [N =115, P = 0.19]).J) K-M estimates of overall
survival of resected patients stratified by neoadjuvant treatment (Neo) in the
liver cohort (noneo [N = 66],neo [N=18,P =0.79 or lung cohort (noneo [N = 20],
neo [N=10, P=0.92]), categorized by PurIST tumor subtype basal-like (no neo
[N=39],neo[N=9,P=0.64] orclassical (noneo [N=122],neo [N =37,P=0.56]),
pORG primary high (noneo [N =84], neo [N =13, P = 0.23]) or pORG primary low
(noneo[N=71],neo[N=32,P=0.56] and pSUB primary high (noneo [N =108],
neo [N =25,P=0.013]) or pSUB primary low (noneo [N =47],neo [N = 20,
P=0.00333]). A-B, F,J) Patients who died <30 days after resection were omitted.
P values between groups indicated with brackets determined by log-rank test
and shaded regions represent 95% confidence intervals. N=number of patients.
C-D) Statistic and P value from two-sided Kendall tau correlation. N=number of
patients. G-I) P value from Chi-squared test. N=number of patients.
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Extended Data Fig. 2| Organotropism and subtype association with
histology, recurrence, and cell type. A) Fraction of patientsinliver or lung
cohort with different inflammatory features scored by a pathologist from
hematoxylin and eosin (H&E) stained slides from the primary tumor that

is, inflammation (N =59, P = 0.35), TLS (N =59, P = 0.95), and plasmacytoid
inflammation (N = 59, P = 0.15). B) Fraction of patientsin liver or lung cohort with
differentinflammatory features scored from metastatic tumor H&E slides that
is, Metastases inflammation (N =28, P =1.0), TLS met (N =28, P = 0.045), and
plasmacytoid inflammation met (N = 28, P = 6.6e-5). C) Fraction of patientsin
liver or lung cohort with perineural invasion (PNI) from primary (N =59, P = 2.0)
or metastatic tumors (N =28, P = 0.18) and angiolymphatic invasion (ALI) scored
from H&E slides from the primary tumor (N =59, P = 0.73) or metastatic tumor
(N=28,P=0.7).D) Fraction of patientsin liver or lung cohort with desmoplasia
scored from H&E slides from the primary tumor (left, [N =59, P = 0.97]) or
metastatic tumor (right, [N = 28, P = 0.18]). E) Kaplan-Meier (K-M) estimates

of recurrence-free survival (RFS) in OHSU patients splitinto high and low pORG
(high,[N =101], low [N =107, P = 0.00062]), pSUB (high [N = 1401, low [N = 68,

P =0.00013]) and PurlST (high [N =126], low [N = 40, P = 0.021]) by cutoffs from
Fig.2d.F) K-Mestimates of RFS in ICGC patients split into high and low pORG
(high [N =47], low [N =82, P=0.03]), pSUB (high [N = 59], low [N = 28, P = 0.001])
and PurlST (high [N =26], low [N = 51, P = 0.0038]) by same cutoffs as OHSU

patients. G-H) GSVA scores of matched primaries and mets from the same patient
for PurlST (left, [N =10 pts., P = 0.31]), pSUB (center, [N =10 pts., P=0.77]) and
PORG (right, [N =10 pts., P= 0.32]). G) colored by patient, P value from two-side
Wilcoxon signed-rank test and H) grouped by met collection site showing mean
GSVA (point) and 95% confidence intervals (error bars) (N =10 pts. for

all cohorts). I-J) Single-cell RNA-seq data from Werba G et al. (2023).1) UMAP

of 17 primary PDAC tumors colored by cell types (top) and corresponding
expression of cell type markers in each population (bottom). J) UMAP of 10
PDAC liver metastases colored by cell types (left) and corresponding cell type
marker expression (right). K) pSUB module scores in primary tumors (left) and
PDAC liver metastases (right). A-D) P value from chi-squared test. Plasmacytoid
inflammation defined as the presence of plasma cells in a background of chronic
inflammation (thatis lymphocytes). Lymphoid aggregates/tertiary lymphoid
structures (TLS) are specifically defined as clusters of ymphocytes forming
areactive germinal center in the tissue. PNI: Perineural invasion requires the
carcinomainvades into the perineurial space around nerves. ALI: angiolymphatic
invasion, defined as the presence of tumor cells within venous or lymphatic
spaces. Desmoplasia is defined as dense fibrosis with elastin and collagen
deposition around invading tumor cells. N=number of patients. E-F) P values
between groups indicated with brackets determined by log-rank test and shaded
regions represent 95% confidence intervals. N=number of patients.
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Extended Data Fig. 3| Genomic alterations associated with metastatic
cohort, organotropism, and subtype. A-C) Oncoprintsindicating the top ten
most frequently altered genes and their alteration types in primary tumors in the
top quartile (left) versus bottom quartile (right) by A) pSUB primary GSVA score
(top quartile [N =50], or bottom quartile [N = 501) B) PurIST primary score (top
quartile [N =50], bottom quartile [N = 50]) and C) liver (left, [N = 55]) and lung
(right, [N =16]) cohort primary tumors. D-F) Oncoprints indicating the top ten
most frequently altered DDR-relevant genes and their alteration types in primary
tumorsin the top quartile (left) versus bottom quartile (right) by D) pSUB
primary GSVA score (top quartile [N = 50], bottom quartile [N = 50] E) PurIST
primary score and F) liver (left, [N = 55]) and lung (right, [N = 16]) cohort primary

tumors. G-J) Oncoprints indicating the top ten most frequently altered genes
and their alteration types in metastatic tumors in the top quartile (left) versus
bottom quartile (right) by G) pORG metastatic GSVA score (top quartile [N =16],
bottom quartile [N =16]) H) pSUB metastatic GSVA score (top quartile [N =16],
bottom quartile [N =16]) I) PurIST metastatic score (top quartile [N =16], bottom
quartile [N =16]) and}) liver (left, [N = 26]) and lung (right, [N =16]) cohort
metastatic tumors. A-J) To the left of each panel is the gene alteration frequency
inthe cohort, the top bars indicate variant types by tumor, and right bars indicate
variant types by gene. Variant type legend in lower right of figure. N=number of
patients.
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Extended Data Fig. 4 | Gene alteration and tumor cellularity association

with organotropism, subtype, distant recurrence, and survival. A-C) Gene
alteration status (Altered or WT) versus GSVA score of A) pORG in primary tumors
thatis KRAS (altered [N =170], WT [N = 31, FRD = 0.091]), CDKN2B (altered [N=7],
WT[N=194,FDR = 0.068]), SMAD4 (altered [N = 37], WT [N =164, FDR = 0.091]),
GATAI1 (altered [N = 41], WT [N =160, FDR = 0.068]), and ELF3 (altered [N =7], WT
[N=194, FDR = 0.068]). B) pORG in metastases that is TP53 (altered [N = 47], WT
[N =20, FDR = 0.00048]). C) PurIST in metastases that is MTAP (altered [N =10],
WT[N=57,FDR = 0.014]), CDKN2A (altered [N =23], WT [N =44, FDR = 0.019]),
and CDKN2B (altered [N = 6], WT [61, FDR = 0.0022]). D) Cox proportional hazard
multi-variable modeling of overall survival versus PurIST (primary [N =193,
P=0.00049] orall [N =251, P=3.1e-05]) or pSUB (primary [N =193, P = 3e-06],
orall[N =251, P =4.8e-07]) GSVA score combined with genomic alterations

that were prognosticin single-variable CPH. HR and associated P value for
variable in bold was determined by CPH modeling. Squares indicate hazard

ratio estimates, and error bars show 95% confidence interval. Patients who died
within 30 days after resection are not shown. E) Fraction of tumors altered for
genes with significantly different alteration frequency between primaries and
mets thatis MTAP (N =260, Fisher’s P =0.0024, FDR = 0.077), SMARCBI (N = 260,
Fisher’s P =0.013, FDR = 0.12), KDM5C (N = 2600, Fisher’s P = 0.011, FDR = 0.12)
and GATA1 (N =260, Fisher’s P=0.015, FDR = 0.12). P value from Fisher’s exact
test corrected with the Benjamini/Hochberg method. F) Alteration status of
genes with at least one alteration in nine patients with matched primaries and
mets thatis ATM (N =9, McNemar’s P =0.5), ATRX (N=9, McNemar’s P =1.0),

CDKN2A (N=9,McNemar’s P=0.38), CDKN2B (N =9, McNemar’s P =1.0), GATA1
(N=9,McNemar’sP =0.25), KDM5C (N =9, McNemar’s P=0.25), GNAS (N =9,
McNemar’s P =2.0), KRAS (N =9, McNemar’s P =1.0), MTAP (N =9, McNemar’s
P=0.25), NOTCHI1(N =9, McNemar’s P =1.0), PBRM1 (N =9, McNemar’s P =1.0),
RBM10 (N =9, McNemar’s P = 0.5), SMAD4 (N =9, McNemar’s P =1.0), SMARCB1
(N=9,McNemar’sP=1.0), TGFBR2 (N =9, McNemar’sP=1.0),and TP53(N=9,
McNemar’s P =1.0). P value from McNemar’s test. G) Histogram of number

of alteration differences between matched primary and met from the same
patient (N =9 patients with DNA sequencing). H) The percentage of tumor cells
in primary tumor samples analyzed by RNA-seq determined by mutant allele
frequencies from the amplicon-based, high-throughput sequencing of 595 genes
on the Tempus xT genomic alteration panel for the indicated comparisons that
islungorliver (N=70, P=0.66) classical or basal-like PurIST subtype (N =201,

P =0.015), low or high pORG primary quartiles (N=102, P = 0.0023), and low or
high pSUB primary quartiles (N = 99. P = 1e-05).1I). The percentage of tumor cells
in metastatic tumor samples analyzed by RNA-seq determined asin (C) for the
indicated comparisons thatis lung or liver (N = 35, P = 0.14) classical or basal-
like PurIST subtype (N = 66, P = 0.63), low or high pORG met quartiles (N =32,

P =0.51), and low or high pSUB met quartiles (N = 33. P = 0.67). A-C) For genes
with >10 alterations in the dataset, P values obtained from two-tailed t-test and
corrected with the Benjamini/Hochberg method. Black bars represent means.
N=number of patients. H-I) P values from two-tailed t-test. Black bars represent
means. N=number of patients.

Nature Cancer


http://www.nature.com/natcancer

Article https://doi.org/10.1038/s43018-024-00881-3
A ORI IARRTTEr B e  —— e
X pORG —_—— s
SSVA oM 00 00 [IIIIIIIIIGroup 15{ . rORc0000E s°,e B lIlIIIIIII\H LI L Group
—_——af
FDR=0.079
0-6! —\l\\ll”ll NIl |]\|\H||| Ihl\lHlll l\‘\l \l\ll\l\l lnterferonAlpha Response _ ;g | FDR=0.015 " H ‘ ‘ ’ H’ ‘lm ‘ ‘ EMT
Repair < FDR=3.7e-'07_'
04 Mltonc Spindle < —
I | \ Cholesterol Homeostasis 25 0.5 - Glycolysis
02 Glycolysis 8 "
\ MTORC1 Signaling o y . i
° 4 h \‘ [l ‘ MYC Targets V1 € 007 ". s Apical Junction
. 02
02 {[ [ 1110 \ \ E2FTargets %_ N —— 2
G2M Checkpoint ~0.5 1 o [
04, H Iif | H A Oxidative Phosphorylation © H —04 Hypoxia
Andmgen Hesponse Liver Lung No Duc. Recur. Other Site
0.8 ||H H | IHIH I HIIH Protein Secretion (NZ30) (N=24)  (N=86)  (N=56) —oe
pe Group (N=212) Subtype Group (N=212)
Classical Liver Cohort Other Recurrence Site Classlcal leer Cohort Other Recurrence Site
Basal-like Lung Cohort  No Documented Recurrence cellular macromole@iaprocess BasaH "ke '-“"9 Cohort [/ No Documented Recurrence
B [ - " @ o
P rote | n 2anonltrogen\compound blﬁynthetlc process “ERBB signaling pathway
. @
H [} Metab I|S liyer.develol
pment
Regulation/gea °® @ Y %

intracellular protein transport epithelial cell differentiation

regulatlorw |ntracelmrltra'msEE

positive re&laﬂon of Wtel localization
regulation'ef/cellular: quahﬁ E‘Imracellular transport

regulation.of proteinlocalization

epithelial cell developme& . ()

skin development

intestinal epithelial.céll development
cell-cell junctioniorganization.

estlnal eplthellal cell dlf@rentlatlon
ligh(\junc% as‘é"embly
® @

factin filamem-based‘process

cytoskeleton- orgamzitle Fa-'tin?lamem organization

Metabolism
()

(N=108)

negative] regulatln of chromosome organiz ]

on
) \blastocysl development
A

DNA| ilabollc Process
double-slrand break’ egr via homologous recombination

DINAS rewmlon regulation of DNA replication

/Repair

Top/Bottom pORG Regulons O

m

elopment

glycoprotem blosynthetlc process

double-strand breakgpair' Via

DNAY new;‘,ti mw‘

DNA m@bolic process actin filament-based RIgeess

ag in'cytoskeleton or\ga\mization
chromosome-organization ment (ﬁanlzatlon
iVisions \Cytoskeleton org nlzatlon 3.
organe[le localization
ule=based ‘process
g | O1iC splndle orgamza ion /
negative regulation of mitotic sister chromatld segregat n pindle assembly

CyCl mltotlc spindle assembly

Liver/Lung Regulons

c.ytokinetic‘process

Extended Data Fig. 5| See next page for caption.

macromolecule catab rocess
-g”‘ \
cellulag macromolecule catabolic process

number of genes
O 10
O 20
O 30
O
O 50

p.adjust
0.04
0.03
0.02
0.01

DNA Replication

number of genes
O 10
O 20
O 30

O 2

(O s0

p.adjust
0.025
0.020
0.015
0.010
0.005

ERBB2 sif nalln athway Metab0|lsm : H
. Prote ulation
.blastocyst development
DNA Replication L am e
© air - pésn ive regu‘.a ion|offpretein logalization
'\ positive regulation of proteintranspent;
“ ‘”mologous recombinationPOsitive regulation of establishmegtof protein Iocaligﬁon
N—"

Nature Cancer


http://www.nature.com/natcancer

Article

https://doi.org/10.1038/s43018-024-00881-3

Extended Data Fig. 5| Organotropism and subtype association with
recurrence site and biological processes. A) Heatmap of GSVA scores of
MSigDB “Hallmark” gene sets with NES > 1.7 and FDR.Q < 0.05 by GSEA for top
versus bottom quartile by pORG. Primary tumor samples (columns) are ordered
from highest-to-lowest by pORG score. N = 212 pts. B) pORG score of primary
tumorsinliver, lung, other site or no documented recurrence metastatic cohorts
thatisliver orlung (N =59 and N =24, FDR = 3.7e-07), liver or no documented
recurrence (N =59 and N =86, FDR =2.1e-05), liver or other site recurrence (N =59
andN =56, FDR=0.016), lung or no documented recurrence (N =24 and N = 86,
FDR=0.016), lung or other site recurrence (N =24 and N = 56, FDR = 0.00082),
and no documented recurrence or other site recurrence (N=86 and N = 56,

FDR =0.079). P values obtained from two-tailed t-test and corrected with the
Benjamini/Hochberg method. Black bars represent means. N=number of
patients. C) Heatmap of Hallmark GSVA scores with NES >1.7 and FDR.Q < 0.05 by

GSEA for top versus bottom quartile by pSUB. Primary tumor samples (columns)
are ordered from highest-to-lowest by pSUB score. N =212 pts. D-E) Enrichment
map depicting Gene Ontology (GO) biological process enrichment results for
the top 300 VIPER regulons significantly increased (by one-way ANOVA; FDR.Q-
value < 0.05) in D) top pORG primary tumors compared to bottom pORG (N =108
pts.), or E) liver cohort primary tumors compared to lung cohort (N =76 pts.).
Top regulons were selected by order of greatest increase in mean regulon score
for (D) top pORG samples or (E) liver cohort samples. Up to 150 enriched GO
terms (points) are shown, but only the top 3 most significant terms within each
cluster (large colored circles) are labeled. GO terms were arranged into clusters
based on their semantic similarity. Point size scales with the number of regulons
annotated with theindicated GO term. Edges connecting GO termsindicate a
Jaccard similarity of at least 0.2 (scaled by width).
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Relationship of organotropism to replication stress,
tolerance of DDR-pathway alteration and immune infiltration. A) pRPA foci
per epithelial cell (left, liver [N = 9], lung [N = 4, P = 0.26]) and per Ki67+ epithelial
cell (right, liver [N=9], lung [N =4, P = 0.4]) in liver versus lung cohort primary
tumors on the TMA. B) Percent of epithelial cells positive for pRPA foci for pPORG
highorlow (N=16 and N =17,P = 0.055) and liver versus lung cohort (N =9 and
N=3,P=0.26) C) Percent of proliferating epithelial cells positive for pRPA foci for
pORG highorlow (N=16 and N =17, P = 0.048) and liver versus lung cohort (N=9
andN =3, P=0.44). D) Percent of pRPA+ epithelial cells that are proliferating for
PORG highorlow (N=12and N =16, P = 0.018) and liver versus lung cohort
(N=7andN =3, P =0.38).E) Kaplan-Meier estimates of overall survival for
patients with tumors with high or low pORG GSVA scores stratified by tumors
with or without a non-silent somatic alteration in a DDR-related gene that is

DDR altered high (N = 34), DDR altered low (N =29), DDRintact high (N = 62),
and DDRintactlow (N = 68, P =0.0073). P value determined by log-rank test and
shaded regions represent 95% confidence intervals. F) VIPER regulon scores
inliver versus lung cohort for genes CD3G (N =72, FDR = 0.25), MS4A1 (N =72,
FDR=0.062), MX1(N=72,FDR=0.062), STAT1(N =72,FDR = 0.062), IFNAR1
(N=72,FDR = 0.25) and IFNAR2 (N =72, FDR = 0.82). G) Pearson correlation

of marker gene expression from RNA-seq and pORG GSVA score for primary
tumors (Exact FDR values are 0.24, 0.43,0.026, 5.9e-06,0.0018, 0.44, 0.11, na,

1.9e-09, 6.6¢-11,0.0008, 0.24, 0.0018, 6.4e-05, N = 204). H) Pearson correlation
of deconvolution algorithm scores and pORG GSVA score for primary tumors.
Deconvolution algorithms include QTS: quanTIseq; MCP: MCP-counter; EPC:
EPIC (see Methods, exact FDR values are 0.062, 7e-20,1.2e-08, 2.2e-17,0.012,
0.7,0.1,0.1,0.012,0.0017,0.0053, 0.01, 0.025,0.005,0.034, 0.1, 0.012, 2.5¢-07,
0.0008,0.81,0.0029,0.0001, na, 0.84,0.095, 0.68, 0.45,0.065, 0.45,N = 204).

I) mIHC mean cell density per patient for each indicated cell type thatis CD4 T
helper cells (N=12,FDR = 0.19), immature DC (N =12, FDR = 0.22), Bcells (N=12,
FDR =0.22),and T regulatory CD4 cells (N =12, FDR = 0.22) significant at the

ROI cohortlevel in lung versus liver cohort primaries (top) and low versus high
pPORG score primaries (bottom) that is CD4 T helper cellsN =12, FDR = 0.43),
granulocytes (N =12, FDR = 0.43), Macrophage (N =12, FDR = 0.43), immature DC
(N=12,FDR=0.43), Bcells (N=12,FDR = 0.43), T-regulatory. Each dot represents
apatient. A-D) Each data point is the average across two primary tumor TMA
cores imaged per patient in high and low pORG or liver and lung cohort groups.

P values from two-tailed t-test. Black bars represent the means. N=number of
patients. F, I) P values from two-tailed t-test corrected with Benjamini/Hochberg
method. Black bars represent the means. N=number of patients. G, H) FDR
corrected P values from two-sided Pearson correlation with pORG GSVA score,
**FDR < 0.001**FDR < 0.005*FDR < 0.05. N=number of patients.
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Extended Data Fig. 7| Association of tumoral TCR sequences and
organotropism, patient outcome or recurrence site. A-C) Total productive
TCRp templates sequenced per patient in A) blood samples or samples from
primary or metastatic tumors (blood versus primary [N =288 and N =174,

P =1e-38], blood versus met [N =289 and N =42, P = 4.7e-21] and primary versus
met[N=174and N = 42, P = 2.3e-05]) or blood or tumor samples from B) primary
liver or lung cohort (left, liver versus lung blood [N =46 and N =13, P = 0.35],
liver versus lung tumor [N =42 and N =13, P = 0.71]) or metastatic liver or lung
cohort (right, liver versus lung blood [N = 24 and N =3, P = 0.084], liver versus
lung tumor [N =17 and N =3, P = 0.093]) or C) high or low pORG primary (left,
low versus high pORG blood [N =35 and N =34, P = 0.42], low versus high pORG
primary [N =35and N =35, P= 0.056]) or metastatic (right, low versus high pORG
blood[N=9andN=8,P=0.81], or low versus highpORGmet[N=9andN=8,

P =0.015]) cohort samples. Primary tumors and blood collected during primary
resectable disease and metastatic tumors and blood collected during metastatic
disease. D) Kaplan-Meier (K-M) estimation of overall survival (OS) in primary
tumor sampled patients in the TCRP dataset with high (N = 82) versus low (N = 65,
P =0.0078) pORG GSVA scores. E) Cox proportional hazards multi-variable
modeling of OS versus TCR[3 dataset patient’s primary tumor pORG GSVA score
with clinical covariates (N =104, P = 0.0024). HR and associated P value for
variable in bold was determined by CPH modeling. Hazard ratios indicated by
boxes and 95% confidence intervals by error bars. F-G) K-M estimate of OS of
patients with high versus low F) templates per nanogram (ng) (left, high [N =70]
orlow[N=99,P=0.0065]) or productive rearrangements (right, high [N =23]
orlow [N =146, P = 0.0045]) or G) Simpson’s evenness in primary tumors (high

[N=101] or low [N = 68, P = 0.15]). H) Tumor TCRp Clonality in high/low pORG
(N=70,P=0.25)or liver/lung (N = 55, P = 0.82) cohorts in primaries. I) K-M
estimate of OS of patients with high versus low Clonality in all tumors (left, high
[N=157]orlow [N = 54, P=0.19]) and primary tumors (right, [N = 143] or low

[N =26,P=0.771).)) K-M estimate of OS of patients with high versus low TCR
Shannon entropy (left, high [N =29] or low [N =140, P = 0.033]) and Simpson’s
diversity (right, high [N =115] or low [N = 54, P = 0.27]) in primary tumors.

K) TCRp Simpson’s diversity in high/low pORG or liver/lung cohorts in primary
tumors (top, high orlow pORG [N =70, P = 0.02], liver or lung [N =55, P = 0.32])
or metastases (bottom, high or low pORG [N =17,P = 0.97], liver or lung [N = 20,

P =0.016]). L) K-M estimate of OS of patients with high (N =140) versus low
(N=71,P=0.47) TCRpB Simpson’s diversity. M) Templates per nanogram (ng) in all
primary tumors and metastases (N =216, P = 0.96).N) The indicated TCR metrics
in metastatic tumors colored by collection site of metastasis that is lung (N = 2),
peritoneum (N =9), liver (N =19), near hepatic artery (N =1), mesocolon (N=1),
gallbladder (N =1), or lymph node (N =2), grouped by liver versus lung cohort
(left), high versus low pORG quartiles (center), and metastatic collection site
based on surgical and radiologic notes (right). Black bars represent the means
A-C) P values from two-tailed Mann-Whitney U test, black bars represent the
means. N=number of patients. D, F-G, I-J, L) High/low cutoff determined with the
max Youden index. P values between groups indicated with brackets determined
by log-rank test and shaded regions represent 95% confidence intervals. Patients
who died within 30 days after resection are not shown. N=number of patients.

H, K, M) P values from one-way ANOVA, black bars represent the means.
N=number of patients.
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Extended Data Fig. 8| Association of blood TCR sequences and
organotropism, patient outcome or disease progression. A-B). Metastatic
tumors’ TCRp repertoire A) Clonality and B) tumor-distinct clones that is,

found in tumor but not matched blood, colored by collection site of metastasis,
i.elung (N =2), peritoneum (N =9), liver (N =19), near hepatic artery (N=1),
mesocolon (N =1), gallbladder (N=1), or lymph node (N = 2), grouped by liver
versus lung cohort (left), high versus low pORG quartiles (center), and metastatic
collection site based on surgical and radiologic notes (right). C) Kaplan-Meier
estimate of overall survival of patients with high versus low TCR metricsin

blood samples that is productive rearrangement (high [N =130] or low [N = 62,

P =0.02]), Simpson’s evenness (high [N = 83], or low [N =199, P = 0.1]), clonality
(high [N =144], or low [N =138, P = 0.058]), Shannon entropy (high [N =113], or
low [N =169, P = 0.085]) and Simpson’s diversity (high [N =113], or low [N =169,

P =0.077]). High/low cutoff determined with the ROC max Youden index. P values
between groups indicated with brackets determined by log-rank test and shaded
regions represent 95% confidence intervals. Patients who died within 30 days
after resection are not shown. N=number of patients. D) TCR Simpson’s diversity
(1-Simpson’s D) in all (left, liver or lung [N = 92, P = 0.12], high or low pORG
quartiles [N =97, P =0.69)), primary- associated (center liver or lung [N = 59,

P =0.11], high or low pORG quartiles [N =7, P = 0.93]), and metastatic blood (right,
liver or lung [N =27, P = 0.45], high or low pORG quartiles [N =18, P = 0.051]).

E) TCR Clonality (thatis1-Normalized Shannon Entropy) in all (left, liver or lung
[N=92,P=0.091], high or low pORG quartiles [N =97, P = 0.63]) and primary-
associated blood (right, liver or lung [N = 59, P = 0.13], high or low pORG quartiles

[N =73, P=0.5]) F-H) TCR metrics inall blood samples (top), blood collected
from patients at the time of primary resectable disease (center) and collected
during metastatic disease (bottom) from the indicated cohorts. Metrics are

F) Shannon entropy in all blood samples (top, liver or lung [N=92,P = 0.57],

high or low pORG quartiles [N =97, P = 0.37]), and at time of primary resectable
disease (center, liver or lung [N =59, P = 0.34], high or low pORG quartiles [N =73,
P =0.92]).G) Simpson’s evenness in all blood samples (top, liver or lung [N =92,

P =0.037], high or low pORG quartiles [N =97, P = 0.94]), at time of primary
resectable disease (center, liver or lung [N = 59, P = 0.092], high or low pORG
quartiles [N =73, P =0.76]), and during metastatic disease (bottom, liver or lung
[N =27,P=0.14], high or low pORG quartiles [N =18, P = 0.058]). H) (log) number
of unique productive rearrangements of TCR[3 templates in all blood samples
(top, liver or lung [N =92, P = 0.23], high or low pORG quartiles [N =97, P = 0.45]),
attime of primary resectable disease (center, liver or lung [N =59, P = 0.83], high
orlow pORG quartiles [N = 73, P = 0.41]), and during metastatic disease (bottom,
liver or lung [N =27, P=0.093], high or low pORG quartiles[N=18,P=0.41) ) TCR
metrics for richness (N = 256, P = 0.055), evenness that is Simpson’s evenness
(left, [N =256, P=0.75) and clonality (right, [N = 256, P = 0.69]) and diversity
thatis Shannon entropy (left, [N = 256, P = 0.22]), and Simpson’s diversity (right,
[N =256, P =0.25]) inblood collected from patients at the time of primary
resectable disease or collected during metastatic disease. D-I) P values one-way
ANOVA or from Kruskal-Wallis H-test for plots with dashed lines. A-B, D-I) black
bars represent the means, or dashed line represent median and interquartile
range. N=number of patients.
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Extended Data Fig. 9 | Association of organotropism or KRAS-specific TCRs
with clonal expansion. A-C) Pie charts of fraction of each cohorts’ repertoire
made up of expanded clones, where the largest slice is all the small clones, that
isthose presentinless than or equal to one template per patient on averagein
the blood and each additional slice of pie is an expanded clone present at greater
than1template per patient on average across the blood samples. Comparisons
are as follows: A) Blood from patients with primary-associated (N =198 pts.) or
metastatic-associated (N = 58 pts.) disease, B) Blood from patients in the liver
(primary [N =46 pts.], metastatic [N = 24 pts.]) or lung cohort with primary

(N =13 pts.) or metastatic (N = 3 pts.) disease, C) Blood from patients in the high
(primary [N =35 pts.], metastatic [N = 8 pts.]) or low pORG cohort with primary
(N =35pts.) or metastatic (N = 9 pts.) disease. D) Cox proportional hazards
(CPH) modeling of overall survival (OS) for mean public overlap (top, [N =282,

P =0.76]) and Jaccard index (bottom, [N = 282, P = 0.82]) of blood samples with
eachtumor’s clonotypes. E) Mean public overlap (left, liver or lung [N =92,

P =0.29], high or low pORG quartile [N = 97, P = 0.58]) and Jaccard index (right,
liver or lung [N =92, P = 0.99], high or low pORG quartile [N = 97, P = 0.88]) of
blood samples with each tumor’s clonotypes inliver versus lung and high versus
low pORG cohorts. F) CPH modeling of OS versus mean public clones (top,
[N=282,P=0.62]) andJaccard overlap (bottom, [N = 282, P = 0.42]) of blood
samples with each blood sample’s clonotypes. G) Mean public overlap (left, liver
orlung[N=92,P=0.21], high or low pORG quartile [N = 97, P = 0.45]) and Jaccard
index (right, liver or lung [N =92, P = 0.18], high or low pORG quartile [N =97,

P =0.34]) of blood samples with each blood sample’s clonotypes of cohorts

asin (E). H) CDR3 frequency of all shared clonal sequences from lung present
ineach patient’s primary tumor repertoire in liver (N = 42) versus lung (N=13,

P =6.1e-09) cohort (left) and high (N = 3) versus low (N = 35, P = 0.034) pORG
primaries (right).I) CDR3 frequency of all shared clonal clonotypes from lung
presentin each patient’s metastatic tumor repertoire in liver (N =17) versus lung
(N=3,P=0.017) cohort (left) and high (N = 8) versus low (N =9, P = 0.072) pORG
metastases (right). J) Kaplan-Meier estimate of OS for patients with high (N =110)
versus low (N =58, P = 0.52) tumor-distinct clones in primaries. P values between
groups indicated with brackets determined by log-rank test and shaded regions
represent 95% confidence intervals. K) Example of identification of lymphoid
aggregates in mIHC data; Defined as CD20+ cells clustered with CD3+ cells
present. N =12 tissues analyzed. L) CDR3 frequency of putative mutant KRAS-
specific TCRB sequences in tumor samples in liver (N = 59) versus lung (N =16,

P =0.97) cohort (left) and the top (N = 45) versus bottom (N =45, P = 0.31) quartile
of pORG tumors by GSVA scores from all patients (right). M) TCRp repertoire
richness (left, true [N = 61], false [N =155, P = 2.2e-05]) and diversity (right, true
[N = 61]. False [N =155, P = 5.6e-06]) in tumors with and without putative mutant
KRAS-specific sequencesin tumor. D, F,J) Patients who died within 30 days after
resection are not shown. N=number of patients. E-G) P values from one-way
ANOVA, black bars represent the means. N=number of patients. H-M) P values
from two-tailed t-test, black bars represent the means. N=number of patients.
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Software and code

Policy information about availability of computer code

Data collection  Image data for multiplexed immunofluorescence was collected on a Zeiss Axioscan Z1 using the Zeiss Zen Blue software v2.3. Image data for
multiplexed immunohistochemistry was collected on a Leica Aperio AT2 scanner.

Data analysis Code used for data analysis and all figures in this work is available at: https://github.com/engjen/Liver_Lung_PDAC.

Statistical, machine learning, image analysis, and graphing software used:
R versions v3.6.0, v4.1.2, and v4.2.2
python v3.9.15

RNA-Seq alignment and gene expression summaries:
kallisto v0.44.0

Bioconda package bioconductor-tximport v1.12.1

FastQC v0.11.8 and MultiQC v1.7

trim-galore v0.6.3

anaconda package management system (conda v4.8.2)
genome assembly GRCh38.p5 with gencode v24 annotation

Analysis of RNA-Seq Data:
PurlST subtype scores were calculated using software from: https://github.com/naimurashid/PurlST.
R packages - DESeq2 v1.42.1, edgeR v4.0.16, fdrtool v1.2.17
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scRNA-Seq (single cell RNA-Seq) analysis:
R package Seurat v4.3.0

Pathway analysis:
GSEA v4.1.0 was run using the command line interface
R packages - GSEABase v1.64.0, GSVA v1.32.0, msigdbr v7.5.1, msigdbr v, org.Hs.eg.db v3.17.0

Graphing:
R packages - Cairo v1.6.2, ggplot2 v3.5.1, ggfortify v0.4.17, pheatmap v1.0.12, ComplexHeatmap v2.18.0, enrichplot v1.18.4, ClusterProfiler
v4.6.2

Image analysis:

Matlab v9.11.0 (https://www.mathworks.com/products/matlab.html)

sklearn v1.0.2

scanpy v1.9.3 (https://github.com/theislab/Scanpy)

scikit-image v0.19.3 (http://scikit-image.org)

Cellpose [PMID: 33318659]

Mesmer [PMID: 34795433]

FIJI (https://doi.org/10.1038/nmeth.2019)

StarDist 2D (Schmidt U, W. M., Broaddus C, et al. . in Medical Image Computing and Computer Assisted Intervention — MICCAI (ed Schnabel JA
Frangi AF, Davatzikos C, et al.) 265-273 (Springer International Publishing, 2018).)
FCS Express Image Cytometry (De Novo Software, Glendale, CA)

Survival analysis:
R packages - survival v3.6.4, ROCit v2.1.2

VIPER regulon enrichment analysis and Immune cell type estimation:
VIPER scores were calculated using the TCGA PAAD ARACNe-inferred network.
R packages - ClusterProfiler v4.6.2, immunedeconv v2.1.039 using algorithms: quantiseq4, mcp_counter, xcell, and epic.

Other:
R packages - XLConnect v1.0.10, enrichplot v1.22.0

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All data generated for this study are available as follows: DNA sequencing and variant data from the xT gene panel and the RNA-seq sequencing data are accessible
through the NCI Genomic Data Commons deposited in the controlled access database dbGaP under accession phs003597.v1.p1: http://www.ncbi.nlm.nih.gov/
projects/gap/cgi-bin/study.cgi?study_id=phs003597.v1.p1. In accordance with informed patient consent for use and collection of these samples and generated
data, use of this dataset is restricted to research pertaining to the study of pancreas disease. According to NIH policy, access through the data portal is limited to
senior level investigators (tenure-track professor, senior scientist, or equivalent). Requests to access the genomic data must be submitted to dbGaP at https://
dbgap.ncbi.nlm.nih.gov. The summarized, gene level RNA-seq data is available in the Gene Expression Omnibus (GEO) database under accession GSE281129:
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE281129. TCR sequence data is available on the Adaptive Biotechnologies platform, or in the Gene
Expression Omnibus (GEO) database under accession GSE281129. The multiplexed immunofluorescence images, segmentation masks and extracted features are
available at: https://www.synapse.org/#!Synapse:syn51068458/wiki/620854. The multiplexed immunohistochemistry single cell phenotype and location data are
available: https://www.synapse.org/#!Synapse:syn51078766. Source data for Fig. 1-7 and Extended Data Fig. 1-9 have been provided as Source Data files. External
datasets analyzed are available at https://static-content.springer.com/esm/art%3A10.1038%2Fnature16965/
MediaObjects/41586_2016_BFnature16965_MOESM271_ESM.xIsx (ICGC) and https://cbioportal-datahub.s3.amazonaws.com/
paad_tcga_pan_can_atlas_2018.tar.gz and https://www.cbioportal.org/study/summary?id=paad_tcga_pan_can_atlas_2018 (TCGA). Human genome Release 24
(GRCh38.p5): https://www.gencodegenes.org/human/release_24.html.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Neither sex nor gender was used to select patients or specimens used in this study. Sex was self-reported and obtained from
the medical records. The numbers of patients by sex are given in Table 1 and as disaggregated data is in Source Dataset 1.
Patients in the study consent to individual demographic data sharing. There are 193 females and 229 males in the study. Sex
was considered as a variable in the Cox proportional hazards survival analysis (Source dataset 2) and tested for sex
differences across the study cohorts in Table 1.

Reporting on race, ethnicity, or We included self reported race in Table 1. We did not report on ethnicity. The participants in our study only included White,
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Reporting on race, ethnicity, or ' Asian and Unknown based on self-reporting in the electronic medical records. Race was tested and found to not be a
other socially relevant confounding variable in our study, see Table 1.

Population characteristics Demographic and clinical covariates known are given in Table 1 and Source Dataset 1, including age, treatment, stage, grade
and primary tumor site.

Recruitment All patients treated for pancreatic adenocarcinoma at Oregon Health & Science University are given the option to consent to
the Oregon Pancreatic Tissue Registry. Only specimens from consented patients were used for this study. Our center is a
referral site for the whole state of Oregon and the majority of our patients agree to consent which provides us with a
representative sample of patients. Many patients with advanced disease do not qualify for surgery which biases our
collection of primary tumors for RNA-Seq and DNA gene panel analysis.

Ethics oversight Our research complies with all relevant ethical regulations and was approved under Oregon Health & Science University
(OHSU) IRB protocol #00003609. Patient data, blood, and tissues were obtained with informed consent in accordance with
the Declaration of Helsinki and were acquired through the Oregon Pancreas Tissue Registry. Patients were not compensated
for participation.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Sample sizes are given for each result on figures or in figure legends. Sample size was constrained by available samples in our registry over a 5
year period prior to our study that allowed for at least 2 years of follow up. We did not perform a power analysis, but our sample size
compares favorably with similar, public data sets (e.g., TCGA PAAD and ICGC APGI). In most cases, our sample numbers were in the hundreds
and more than sufficient. In some cases, when comparing cohorts, some cohorts had limited numbers (e.g., basal-like cohorts) which did limit
the statistical significance of results as noted in the manuscript).

Data exclusions  Data exclusions are given in figure legends. Patients without pancreatic adenocarcinoma were excluded. Patients who died within 30 days of
primary tumor surgical resection were excluded from survival outcomes analyses.

Replication Where possible, analyses of data from OHSU were also applied to publicly available datasets (e.g., TCGA PAAD and ICGC APGI). We were able
to replicate our main findings regarding pORG and pSUB scores and survival in both TCGA PAAD and ICGC APGI datasets. We did not have
access to independent datasets with primary PDAC with metastatic site information. To address this, we performed leave-one-out (LOO) cross
validation within our dataset and reported in methods under pORG gene set generation that LOO cross validation significantly called liver or
lung cohort primary tumors in the left-out samples. We also changed the language regarding pORG and metastatic tropism to an "association"
and we stated that independent datasets with known metastatic site information are needed to replicate our study.

Randomization  For some comparisons, tumor specimens were assigned scores and patients were assigned to cohorts. The scores and cohort assignments
were made while investigators were blinded.

Blinding Investigators were blinded to tumor and blood specimen type and origin when performing analyses and scoring. Clinical data were collected
before the study and static throughout the study.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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