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Fundamental Properties of the Field at the Interface
Between Air and a Periodic Artificial Material

Excited by a Line Source
Filippo Capolino, Senior Member, IEEE, David R. Jackson, Fellow, IEEE, and Donald R. Wilton, Fellow, IEEE

Abstract—An efficient algorithm based on a moment-method
formulation is presented for the evaluation of the field produced
by a line source at the interface between an air superstrate and a
one-dimensional-periodic artificial-material slab. The formulation
provides physical insight into the nature of the fields via path
deformation in the complex wavenumber plane. From an asymp-
totic analysis in the complex wavenumber plane it is found that
the space wave produced by a line source consists of an infinite
number of space harmonics that decay algebraically as 3 2.
Guided modes may also exist and be excited, including leaky
modes.

Index Terms—Artificial surfaces, electromagnetic bandgap
(EBG), metamaterials, periodic structures, photonic bandgap
(PBG).

I. INTRODUCTION

PERIODIC artificial surfaces and materials such as electro-
magnetic bandgap (EBG) structures [1], artificial magnetic

conductors [2] and artificially soft surfaces [3] have been used
recently to modify the radiation pattern and other characteristics
of sources located near or within them. For example, artificial
EBG materials have been used to suppress surface-wave prop-
agation on dielectric substrates [2], [4], [5]. Artificial surfaces
and materials have also been used to obtain highly directive an-
tenna patterns in the microwave and millimeter-wave ranges [6],
[7]. Artificially soft surfaces have found use in several fields,
including applications that require the attenuation of the spatial
field produced by a source along an interface [8].

In the present investigation an efficient numerical scheme for
evaluating the field produced by a line source above an artifi-
cial material (or any other periodic structure) that is periodic in
one-dimension (1-D) is first examined. For simplicity, a two-
dimensional (2-D) problem is considered (see Fig. 1), which is
invariant along the dimension, with a 1-D-periodicity along
(in the following, a material periodic in one dimension is called
1-D-periodic material.) An extension of the method to 2-D-pe-
riodic structures, periodic along and , is possible, but is not
considered here. The focus is then placed on some fundamental
properties pertaining to the nature of the field along the interface
between air and the material. The results are directly applicable
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to determining the coupling between sources located in prox-
imity of a periodic artificial structure, such as a wire medium of
finite thickness.

The periodic artificial material consists of a periodic (along )
structure made of layers of conducting strips or cylinders, with
period . A finite number of layers may be stacked along to
form an artificial material slab with a finite thickness as shown
in Fig. 1(a), or there may be a single layer of elements, as for the
corrugated structure of Fig. 1(b) or the strip grating of Fig. 1(c).
An electric line source in the direction (parallel to the periodic
elements) is either placed inside or outside the artificial material,
at . (The method could be extended to treat the case of a
dipole excitation near the 1-D periodic structure, but this is not
considered here.) The problem is thus one of transverse electric
(TE) (to ) polarization. Although transverse magnetic (TM) po-
larization could be treated in a similar fashion, the TE case has
been selected here for two reasons: first, for consistency with the
EBG material consisting of the wire medium in Fig. 1(a), since
the TE polarization is most affected by the presence of the wires.
Second, to numerically isolate and study the space wave fields
on the structure, which is easier in the absence of guided modes.
Indeed, as shown in [9], for TM polarization, periodic structures
such as the corrugated structure have propagating modes for low
frequencies since the structure behaves as an inductive surface,
with mode suppression occurring when the depth of the teeth is
approximately a quarter wavelength (the structure acts as an ar-
tificially soft surface at this point). For the TE case it is possible
to obtain a modeless structure, so that the total field excited by
the source is the same as the spatial (space-wave) field.

An efficient field evaluation is obtained in Sections II and III
using the “array scanning method” [10]–[12]. To improve the
computational efficiency of the method, a 2-D Ewald accelera-
tion scheme [13], [14] is used to improve the convergence of the
periodic free-space Green’s function. The resulting field from
the line source then has a representation in the form of an inte-
gral in (over the Brillouin zone).

In Section IV an alternative representation of the field from
the line source is obtained by “unfolding” the integration over
the Brillouin zone onto the entire real axis in the plane.
This allows for a convenient path deformation to enclose any
singularities in the complex wavenumber plane, including pole
and branch-point singularities. In Section V it is shown how the
complex wavenumber plane for such problems has an infinite
number of periodically spaced branch points, and also a periodic
set of poles (assuming that a guided mode exists). (This was
anticipated in [15] and demonstrated in [16] for a specific type
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Fig. 1. Geometry of several periodic materials, showing a line-source
excitation. In all cases, a denotes the periodicity along x. (a) The material is an
infinite periodic array of metallic cylinders with period a that is truncated in the
negative z direction after a finite number of layers. In the figure, the periodic
supercell (i.e., unit cell with multiple conductors) n = 2 is highlighted.
The source is located in the n = 0 supercell [arrows point to three of the
conductors within the n = 2 supercell in Fig. 1(a)]. S denotes the surface of
the conductors in the nth supercell. The volumetric region of the nth supercell
is denoted by V . (b) A corrugated surface consisting of metallic teeth above a
ground plane. The thickness of the teeth is h. (c) A metallic strip grating. Also
shown is an expanded view of one of the strips, with a sketch of the current
shape for a small strip width w.

of structure. An infinite number of periodically spaced branch
points has also been found in a similar problem [17] where
the waves arising at the truncation of a periodic set of metallic
strips have been rigorously analyzed.) The residue evaluations
at the set of poles yields the modal amplitudes of the Floquet
harmonics of the guided mode (if any) on the periodic structure,
while the branch points determine the space-wave field radiated
by the line source. In Section VI a structure consisting of a
periodic arrangement of metallic strips is used as an example,
since closed-form expressions for the integrand are available in
the case of narrow strips. Asymptotic evaluations involving path
deformations into steepest-descent paths are used to determine
the field behavior on the interface with increasing
distance from the source. In Section VII, it is shown that the
general conclusions are valid for a line-source excitation of any
artificial material structure comprising a periodic arrangement
of conducting objects that are invariant in the direction, the
structure being infinite and periodic in the direction with
a finite extent in the direction. In Section VIII, results are
presented for the structures of Fig. 1 to confirm the validity
of the conclusions.

II. THE ARRAY SCANNING METHOD

The array scanning method (ASM) (as the method was called
in [11], though it had seen previous use, e.g., in [12]) is an ana-
lytic procedure that synthesizes the field from a single source in
terms of a spectral wavenumber integration over a phased array
of sources, as shown in Fig. 2. Therefore, a convenient numer-
ical evaluation of the aperiodic (single source) excitation of an
infinite periodic structure such as the EBG material slab in Fig. 1
can be obtained using the ASM. The first step is to note the fol-
lowing relation between an infinite periodic array of impressed
linearly-phased line sources with currents directed
along , and the corresponding single line source

(1)

where is an impressed wavenumber along . The single line
source is thus synthesized from the periodic phased array
of line sources spaced along the axis by integrating in the
wavenumber variable over the Brillouin zone. The electric
field at any point produced by the periodic array of phased line
sources in free space (the field that is incident on the periodic
structure from the phased array of sources) is denoted as

(2)

where

(3)

is the periodic Green function for the magnetic vector potential
component produced by the phased array of line sources, in
which

(4)

are the Floquet mode wavenumbers along and , respectively,
with the homogeneous-space ambient wavenumber. There are
an infinite number of branch points in the plane, located at

(5)

The th branch point corresponds to the square root involved
in that appears in . The top Riemann sheet of the
plane for the branch point is defined as .
The field produced by the periodic phased array of line sources
near the EBG slab is denoted as . By the same
weighted superposition used in (1), the electric field produced
by the single source in that periodic environment is then
given by

(6)

The calculation of , which involves the periodic
moment method, is discussed in the next section.
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Fig. 2. Illustration of the array scanning method (ASM). The field produced
by a single line source is reconstructed from the field produced by an array of
sources having the same periodicity as the artificial material.

III. FIELD PRODUCED BY A LINE-SOURCE ABOVE A

PERIODIC MATERIAL

The electric field in Fig. 1 is polarized along the direction,
since there is no variation along the axis. For simplicity, we
consider here only metallic scatterers, e.g., as those shown in
Fig. 1. We denote by and the surface current in
the direction on the metallic conductors and the electric field
directed along at any point, respectively.

The current on the surface of the conductors (posts)
within the supercell due to the phased array of line
sources is found by solving the EFIE

(7)

for , where the periodic Green’s function
is accelerated using the 2-D Ewald method [2], [4]. Note that

is a periodic function of with period .
The electric field that is scattered by the periodic structure from
the phased array of line sources is determined by integrating
over the post currents as

(8)

with the integral performed over the post currents within
the unit supercell by using the periodic Green’s function

. Note that is also a periodic
function of with period . The scattered field in the th
supercell from the single line source is then found from the
field within the zeroth supercell in the phased-array problem as

(9)

where . The total field is obtained by adding the scattered
field (9) to the incident field produced by the line source,

(10)

It has been observed that the integrand in (9) has a
branch point singular behavior at that may result
in a numerical inefficiency in the numerical integration of (9).
(There are an infinite number of branch points, as seen from

(5), although only these two branch points are encountered for
many practical situations, where .) To overcome this dif-
ficulty, the total electric field in (10) could alternatively be
obtained by representing the incident electric field in terms of
its spectral representation

(11)

with given in (2). The total electric field (10) is thus ex-
pressed as

(12)

where

(13)

While the integrand in (9) at possesses a sin-
gularity behavior of the type , the integrand
in (12) instead contains weaker branch point singularities of the
type . (Physically, this corresponds to the fact
that the total spatial field along the interface decays faster than
does the scattered field alone.) These features are established in
Appendix A and Section VII. Because the integrand in (12) is
less singular than that in (9), the integration requires fewer-in-
tegration points near the branch point singularities at .

IV. UNFOLDING THE INTEGRATION PATH

The integrand in (9) is a periodic function of with
period . Indeed, is periodic because

is excited by a periodic (in ) phased array
of line sources. After inserting (8) into (9), and using the
explicit form of the Green’s function in (3), (8) is written as

(14)

Since the term is periodic in , applying the
shift of variables for every term of the sum
leads to

(15)

which eliminates the sum and expresses the scattered field as a
continuous integration over the entire axis, physically corre-
sponding to a continuous-spectrum plane wave expansion of the
scattered field.
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V. THE COMPLEX PLANE AND FIELD REPRESENTATION

In addition to the two branch-point singularities introduced
by the term in (15), the periodic function
introduces a periodic set of branch-point singularities. Fur-
thermore, this function may also exhibit a periodic set of
poles, each one representing modal propagation along . The
branch point singularities at in (5) of the spectral function

arise from the periodic Green’s function in
(7) and are shown in Fig. 3. This figure also shows a possible
set of periodic pole singularities, representing a leaky mode on
the structure (with a complex wavenumber). Complex poles
are located symmetrically with respect to both the real and
imaginary axes, though only one set of poles is shown here for
simplicity (the set that is shown corresponds to a physical leaky
mode in the fourth quadrant of the fundamental Brillouin zone).
If the mode is a physical leaky mode radiating in the forward
direction, then it is on the improper sheet with respect to its
nearest branch point, and on the top sheet of all other branch
points. This corresponds to a mode for which all of the space
harmonics (Floquet waves) of the guided mode on the structure
are proper (decaying vertically) except for the one that is a fast
wave, i.e., that with wavenumber smaller than . If the mode is
a physical leaky mode radiating into the backward region, then
all of the poles are on the top sheet of all the branch points.
(In this case the pole located in the fundamental Brillouin zone
would have a negative phase constant.)

As shown in Fig. 3, the original integration path on the real
axis can be deformed around the spectral singular points to high-
light the space-wave and modal contributions. When evaluating
the total field, the path deformation leads to the representation

(16)

where the modal field arises from the reside evaluations
at the periodic pole locations, with the residue at each loca-
tion determining the amplitude of the corresponding Floquet
mode contribution to the guided leaky mode. The space-wave
field arises from the evaluation of the integral around each
branch point.

In the case of , the vertical paths shown
in the figure are the steepest descent paths. One can infer that the
space wave arises from all of the branch points, and consists of
an infinite number of space harmonics.

From an asymptotic evaluation of the spectral integral carried
out in Appendix B, it is seen that each space harmonic that is part
of the space-wave field has a spreading factor along the
interface. The remaining spatial integral in (15) determines the
weight of each decaying spatial harmonic.

VI. CANONICAL EXAMPLE: STRIP GRATING IN FREE SPACE

Some properties derived from the above discussion are illus-
trated for the simple case of a single-layer periodic structure
consisting of an infinite periodic arrangement of narrow con-
ducting strips located at and excited by an electric
line source at . We assume a fixed current
distribution on each strip, proportional to the basis function

defined about the center of
each strip. This is a good approximation when , with

Fig. 3. Spectral k plane. The poles and branch points are periodic in the k
plane, with period 2�=a. The original path on the real axis (detouring around
the branch-point singularities) is shown, along with the path deformation around
the periodically spaced branch points and leaky-wave poles.

the free-space wavelength. This simple case allows for an
analytic solution for the strip current in the 0th unit cell when
the structure is illuminated by the phased array of line sources,
as

(17)

with

(18)

where the Bessel function of zeroth order, , is the
Fourier transform of the basis function. From this current repre-
sentation it is immediate to see that the infinite periodic arrange-
ment of branch points is as shown in Fig. 3. The expression for
the scattered field in (15) is represented as

(19)

with

(20)

It can be shown (see also the general discussion in Section VII)
that near the branch point at and the current
function in (20) behaves as

(21)

As detailed in Appendix B, the dominant term arising from the
constant at the branch yields the field

(22)

with , which exactly cancels the inci-
dent field at any observation point . At the higher-order branch
points with the current in (20) behaves as

where .
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As shown in Appendix B, the higher-order asymptotic con-
tribution arising from the term of (21) at the branch
point, as well as the dominant contributions from the other
branch points in each th region (see Fig. 3) provides a spatial
wave that varies along the interface as

(23)

with propagation wavenumbers for
defined in (5), and being coefficients that are defined in
Appendix B. Hence, the space wave along the periodic artificial
material interface decays algebraically as , and consists
of an infinite number of space harmonics.

VII. ASYMPTOTIC BEHAVIOR OF THE SPATIAL WAVE

AT THE INTERFACE

The properties observed above for the simple analytical
canonical problem of the conducting strip grating are here
generalized to structures as those in Fig. 1(a) and (b). For
observation points sufficiently away from the source, and
along the air interface of the periodic material, i.e., for

, an asymptotic evaluation based on the
steps reported in Appendix B is carried out for the general case
involving the radiation integral in (15). To this end, the integral
(15) is rewritten as

(24)

where is now the 2-D Fourier transform of the post
current with transform variables , as defined in (29). In
order to factorize the observer and the source terms in (24) it
has been assumed for simplicity that the observation point is
slightly above the periodic material, i.e., for all .
Once the definition of is used in (7) it is possible to
observe that for (note that (21)
assumes that ). This follows from substituting (3) into
(7), multiplying both sides by , and then taking the limit as
approaches . The branch points at [see (5)] appear in
the higher-order expansion terms of near ,
as already seen for the strip grating case. By using the same
argument as in Section III, once the incident field is included
in (24), an expansion of the total field becomes (assuming here
that )

(25)

An asymptotic evaluation of the integral is carried out by de-
forming the original integration path along the real axis onto
the infinite number of vertical path contributions shown

in Fig. 3. In the case that the source and observation points
have approximately the same z-coordinate, i.e.,

, and , the paths
coincide with the steepest-descent paths passing through .
Note that asymptotically, the dominant contribution at
vanishes because . An asymptotic eval-
uation of the higher order term at and of the domi-
nant contributions at , with , as shown in Appendix B
leads to a general representation of the spatial field in terms of
an infinite number of space harmonics with a spreading factor

as in (23), where the propagation wavenumbers
are given in (5). Thus, the general form of the spatial field ex-
cited by a line source over a general periodic structure is ob-
served to be the same as (23) for the canonical strip grating
structure. In summary, from this asymptotic evaluation it is clear
that the spatial field contribution in and decays as

and , respectively.
This is evidently the first time that such a conclusion has

been reached for a line source over a general periodic structure.
This property is expected to be relevant for the estimation of
the coupling between two sources near a 1-D periodic artificial
material. The conclusion should remain valid as the period
tends to zero, in which case the periodic artificial material slab
approaches a homogeneous artificial slab (e.g., a metamaterial
slab with a negative permittivity).

VIII. NUMERICAL EXAMPLES

A first example is shown in Figs. 4–6, where an electric line
source is placed over an artificial material EBG slab consisting
of three layers of periodic conducting cylinders with normalized
radius in free space. The axes of the cylinders in
the first row are located at . The source is located
at . In the MoM calculations each
cylinder has been discretized using 16 sub-domain pulse basis
functions. In Fig. 4, the operating frequency corresponds to

and is thus in the 0th band gap of
the infinite EBG material [18]. The total field (normalized
by multiplying with the period ) is plotted versus the distance

from the line source parallel to the EBG interface, at points
and , with

denoting the supercell index. The total field is obtained by
adding the scattered field in (9) to the incident field. In Fig. 4, it
is seen that the total field is dominated by the space wave, and
exhibits the expected algebraic decay of the space wave
at both observer locations. (The curves are normalized
to the exact curves for large .) This indicates the absence of
guided modes for this structure at this particular frequency.

In Fig. 5, the field is evaluated along the interface for various
frequencies, and the decay is compared with the algebraic decay

normalized to the exact fields for large . These numer-
ical experiments indicate that the field at large distance behaves
like

(26)
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Fig. 4. Spatial decay of the total field produced by a line source over the
periodic EBG material of Fig. 1(a) made of 3 layers of periodic conducting
cylinders. The field is evaluated at points r and r where n denotes the
supercell index. The fields match well with a simple 1=n factor (normalized
to the exact fields for large n).

Fig. 5. For the same geometry of Fig. 4, the field is evaluated at points r ,
where n denotes the supercell index, for various frequencies. The fields match
well with a simple 1=n factor (which is normalized to the exact fields for
large n) for the two lower frequencies.

Fig. 6. For the same geometry of Fig. 5, the normalized weighting coefficient
aw(r; r ) (in decibels relative to 1 V) of the space wave is plotted versus
normalized frequency.

where denotes the observation point within the super-
cell. The weights are reported for various frequencies
in Fig. 6. Although the weight expression

(27)

could be derived from (23), here it has been determined by
simply matching the exact field with the fitting curve
for large .

Note that is at the edge of the passband [18]
where the material approximately behave like an artificial ma-
terial with a zero permittivity [19].

At higher frequencies, such as , a leaky mode is
propagating along the interface as can be seen from the interfer-
ence between the space wave and the leaky wave in Fig. 5 (the
interference subsides for larger distances, due to the exponen-
tial decay of the leaky mode). From a numerical search in the
complex plane, it has been found that the wavenumber
of the leaky wave pole (corresponding to the pole location in the
zeroth Brillouin zone) is approximately

The above phase and attenuation constants correlate well with
the “subtracted field” on the interface that is obtained after the
asymptotic spatial field is subtracted from the total field (the
results are omitted here). The subtracted field exhibits an expo-
nential decay, as expected. As before, the spatial field decays as

.
As a second example, in Fig. 7 the total field is evaluated

along the interface of the corrugated structure shown in Fig. 1(b)
with cm, cm, for various frequencies. The
source is located at cm and the field is ob-
served along the interface at locations (in cm)

. The MoM calculations are performed discretizing
the unit-cell tooth into 10 subdomain pulse basis functions and
using image theory to account for the ground plane. For this
geometry the space wave once again exhibits the expected alge-
braic decay for all the frequencies examined. Note that
at GHz the teeth height is a quarter-wavelength in
free space, which is the condition to realize an artificially soft
surface [3], [8]. The frequency GHz is the cutoff fre-
quency for the TE polarization analyzed here to propagate into
the teeth region as a waveguide mode. At GHz the
teeth are such that where is the wavelength of the
fundamental TE polarized waveguide mode in the parallel plate
waveguide with plate separation cm.

These numerical experiments indicate that the field at large
distance behaves like (26) with the weight reported for
various frequencies in Fig. 8. Expression (26) coincides with
(23) when the spatial harmonics are summed. It is worth noting
that for GHz, the total radiated field still exhibits a

spatial decay, in contrast to a decay expected at
the interface between air and a PMC, due to the presence of the
conducting teeth.

The above results also verify that for TE polarization, the cor-
rugated structure does not support surface-wave (bound) guided
modes. This can be explained by the fact that the interface acts as
a capacitive reactance for frequencies below 40.36 GHz, so that
modal propagation of surface-wave modes is prohibited. Also,
above 37.5 GHz the periodicity is greater that a half wavelength,
so that any guided mode would be a leaky mode. Hence, prop-
agation of surface-wave modes is prohibited in all frequency
regions.
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Fig. 7. Spatial decay of the total field produced by a line source over the
corrugated surface shown in Fig. 1(b). The field is evaluated at points r where
n denotes the supercell index. The field matches well with a simple 1=n
factor (normalized to the exact fields for large n).

Fig. 8. Weighting coefficient w(r; r ) (in dB relative to 1 V/m) for the
space wave representation in (26) versus frequency. Note that the amplitude of
the space wave is maximum at approximately the frequency where the depth
of the teeth is a quarter of wavelength for the fundamental TE mode of the
corresponding parallel plate waveguide defined by the teeth.

IX. CONCLUSION

An efficient algorithm for the evaluation of the field produced
by a line source near a periodic slab of artificial material has
been derived using an “array-scanning method”, which relates
the field of a single line source to that produced by a periodic
phased array of line sources. The complex wavenumber plane
provides insight into the nature of the field produced. The main
results from this study are as follows.

a) An efficient algorithm for the numerical evaluation of the
field produced by a line source on top of the artificial
material has been obtained.

b) The nature of the complex wavenumber plane and the pe-
riodic arrangement of the branch point singularities has
been examined.

c) Based on the nature of the complex wavenumber plane, it
was concluded that the space-wave field on the interface
consists of an infinite number of space harmonics, each
decaying algebraically as .

d) Guided modes (including leaky modes) may also be ex-
cited, if these are supported by the structure. The ampli-
tudes of the Floquet waves that make up the guided mode

are determined by the residues at the periodic pole loca-
tions in the complex wavenumber plane.

e) For a physical leaky mode, each pole in the periodic set
is located on the lower sheet of the nearest pair of branch
points, and on the top sheets of all others, when the mode
radiates in the forward direction. When the mode radiates
in the backward direction, the poles are located on the
top sheet of all branch points. For a surface-wave mode,
all of the poles are located on the top sheet of all branch
points. (For the polarization and frequencies considered
here, there were no surface-wave modes, however.)

The decay of the spatial wave has been demonstrated by
numerical results, and also by an asymptotic analysis of a
canonical problem consisting of a periodic conducting strip
grating. This work lays the foundation for further studies in-
volving other surfaces, including artificial magnetic conductors
and other EBG materials. A formulation for 2-D periodic
structures excited by a dipole source is also possible.

APPENDIX A
DETERMINATION OF THE SINGULARITY ORDER

We determine here the order of the singularity of the inte-
grand in (9) at
where is defined in (5). We first note that since

for , because of (10)
has the same singularities as for .
Thus, has a periodic set of singularities of

the type for . It remains to

demonstrate that has also the same type of
singularities for other observation points . To show this, for
simplicity assume that the observation point is slightly above
the periodic material interface, i.e., for all .
Then, substituting the explicit spectral form of the periodic
Green’s function (3) in (8) yields

(28)

with

(29)

Note that the terms do not depend on the observa-
tion point , and that the property

(30)

holds. Now, if for any point the singularity of
is , for a different does not

change and from (28) we infer that the singularity is still .
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APPENDIX B
ASYMPTOTIC EVALUATIONS

In this Appendix, we provide the asymptotic evaluation of
two important spectral integrals in order to determine the spatial
behavior of the fields. Consider the form

(31)

where and has branch points at
, with as given in (5) and shown in Fig. 3. The

th term denotes the integration along the th steepest-descent
path in Fig. 3. After the path deformation depicted in Fig. 3,
the integral is represented as the sum of all the integration paths

around the branch points (corresponding to the terms ).
The asymptotic evaluation is first performed for the contribution
of the path at the branch , with , that renders

. At this branch point,

and the integral in (31) is written as

(32)

The term with vanishes, for it does not possess a branch point
and the two parts of the corresponding vertical steepest descent
path cancel. Asymptotically the integral is further reduced
using as

(33)

The root assumes opposite values on the integration path in the
top and bottom Riemann sheets. Next, the change of variables

, with is applied and is
rewritten as

(34)

where has been used for the top
Riemann sheet. Therefore, is evaluated asymptotically as

(35)

It follows, therefore, that for the constant in (23) is

At any other branch point, the integrand in (31) is ap-
proximated as and the
corresponding in (31) reduces to

(36)

(The term does not contribute since the two contributions
from the top and bottom surfaces of the th branch point cancel.)
Asymptotically the integral is further reduced as

(37)

The root inside the integral assumes opposite values on the in-
tegration path in the top and bottom Riemann sheets. Next, the
change of variable , with
is applied and is rewritten as

(38)

where has been used on the
top Riemann sheet. The remaining integral in (38) is evaluated
exactly leading to

(39)

It follows, therefore, that for the constants in (23) are
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