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Abstract
TRIM11 (tripartite motif-containing protein 11), an E3 ubiquitin ligase, is known to be involved in
the development of the central nervous system. However, very little is known regarding the role of
TRIM11 in cancer biology. Here, we examined the expression profile of TRIM11, along with two
stem cell markers CD133 and nestin, in multiple glioma patient specimens, glioma primary
cultures derived from tumors taken at surgery, and normal neural stem/progenitor cells (NSCs).
The oncogenic function of TRIM11 in glioma biology was investigated by knockdown and/or
over-expression in vitro and in vivo experiments. Our results showed that TRIM11 expression
levels were up-regulated in malignant glioma specimens and in high-grade glioma-derived
primary cultures, while remaining low in glioblastoma multiforme (GBM) stable cell lines, low-
grade glioma-derived primary cultures, and NSCs. The expression pattern of TRIM11 strongly
correlated with that of CD133 and nestin, and differentiation status of malignant glioma cells.
Knockdown of TRIM11 inhibited proliferation, migration and invasion of GBM cells,
significantly decreased EGFR levels and MAPK activity, and down-regulated HB-EGF mRNA
levels. Meanwhile, TRIM11 over-expression promoted a stem-like phenotype in vitro
(tumorsphere formation) and enhanced glial tumor growth in immunocompromised mice. These
findings suggest that TRIM11 might be an indicator of glioma malignancy, and has an oncogenic
function mediated through the EGFR signaling pathway. TRIM11 over-expression potentially
leads to a more aggressive glioma phenotype, along with increased malignant tumor growth and
poor survival. Taken together, clarification of the biological function of TRIM11 and pathways it
affects may provide novel therapeutic strategies for treating malignant glioma patients.
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Introduction
Malignant gliomas are the most common primary tumors in the central nervous system, and
are characterized by rapid cell proliferation, high invasiveness, genetic alteration, and
increased angiogenesis (1). Despite continued advances in surgical and medical therapeutics,

*Corresponding Author: Dr. Daniela A. Bota, UC Irvine Medical Center, 101 The City Drive South, Shanbrom Hall, Suite 121,
Orange, CA, 92868, Phone: 714-456-7032, Fax: 714-456-6894.

Conflict of interest
The authors declare no conflict of interest.

NIH Public Access
Author Manuscript
Oncogene. Author manuscript; available in PMC 2013 October 19.

Published in final edited form as:
Oncogene. 2013 October 17; 32(42): 5038–5047. doi:10.1038/onc.2012.531.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the prognosis for patients diagnosed with the most common and aggressive malignant
glioma --glioblastoma multiforme (GBM)--remains poor, with a median survival of only
12–15 months (2).

In recent years, glioma molecular markers such as MGMT (O6-methylguanine-DNA
methyltransferase), EGFR and IDH1 (isocitrate dehydrogenase-1) have played important
roles in profiling the diagnosis, prognosis, and disease management in subtypes of glioma
patients (2, 3). More recently, CD133 (prominin-1) and nestin have been considered as
prognosis markers for glioma patients since their expression is associated with poor
prognosis and correlates better with clinical course than the histological grading (4, 5). They
are also used as markers for glioma stem-like cells (GSCs), a small subset of tumor cells
situated at the apex of the cellular differentiation hierarchy, and responsible for sustaining
long-term tumor growth through self-renewal and the production of more differentiated
daughter cells (6–8). GSCs are known to contribute to tumorigenesis and radiation resistance
in malignant glioma (9), and are regulated via many signaling pathways including Notch,
Hedgehog, and MAPK cascades, etc (10). Due to the malignancy-driving roles of GSCs,
drugs that specifically targeting the GSCs have a very important potential role in glioma
therapy (11). However, both CD133 and nestin are also present on non-malignant neural
stem/progenitor cells (NSCs) (12, 13), and targeting GSCs through these markers will likely
damage NSCs. This is particularly problematic in the brain, since damage to NSCs resulting
from glioma therapies (14) can produce profound cognitive side effects that impair patient
functional independence and quality of life (15, 16).

The tripartite motif-containing (TRIM) family is characterized by unique structural motifs: a
RING finger domain, a B-box domain and a coiled-coil domain, making them members of
the RING B-box coiled-coil (RBCC) protein family (17–19). Members of this family have
been implicated in various cellular processes, including development, neurodegenerative
diseases, cellular response to viral infection and cancer (20). As a 3 typical RBCC protein,
TRIM11 functions as an E3 ubiquitin ligase, and binds to and destabilizes Humanin (HA), a
neuroprotective peptide against Alzheimer’s disease-relevant insults (21). In addition,
TRIM11 interacts with and destabilizes the activator-mediated cofactor complex (ARC105),
which in turn suppresses ARC105-mediated transcriptional activation induced by
transforming growth factor β (TGF-β) signaling (22). TRIM11 also binds to and mediates
the ubiquitination of PAX6 (paired box 6), a member of the PAX family of transcription
factors and plays a key role in organogenesis of the eye, pancreas, and brain (23). Finally,
TRIM11 is involved in the specification of noradrenergic (NA) phenotype by interacting
with Phox2b, a homeodomain transcription factor that could modulate development of NA
neurons (24). These findings implicate an important, albeit still incompletely defined, role of
TRIM11 in nervous system function and development. Nonetheless, an oncogenic function
of TRIM11 has yet to be identified in cancer cells of glial origin which shares a lot of
common characteristics with the normal glial cells of the brain (25). In this study, we not
only provide evidence that TRIM11 expression levels correlate with the malignancy of
glioma, but also investigate the oncogenic function of TRIM11 in vitro and in vivo.

Results
TRIM11 is over-expressed in human high-grade glioma tumors and glioma-derived GSCs
but not in NSCs, low-grade glioma-derived GSCs or stable malignant glioma cell lines

To investigate the correlation between TRIM11 and malignancy of glioma,
immunohistochemical analysis of TRIM11 was performed using patient-derived glioma
samples (Figure 1a). Strong TRIM11 staining was detected in GBM tissues, but much less in
Grade II tissues and normal brain (representative results shown). Next, we profiled TRIM11
mRNA levels using nineteen diverse histological primary GSCs derived from glioma

Di et al. Page 2

Oncogene. Author manuscript; available in PMC 2013 October 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



patients (Table 1), four stable GBM cell lines (U-251, D-54, LN-229 and U-87), and three
NSCs (SC23, SC27 and SC30). Overall, TRIM11 was low in all GBM cell lines, 6 of 7
(85.7%) low grade-GSCs, and all NSCs (normalized fold expression <2.5). By comparison,
1 of 3 (33.3%) Grade III-GSC and 7 of 9 (78%) GBM-GSCs had higher levels of TRIM11
(normalized fold expression >2.5, Table 1 and Supplementary Figure 1a). The expression
pattern of TRIM11 in cells was further confirmed at the protein levels. Western blotting data
showed that TRIM11 expressed higher in GBM-GSCs (Supplementary Fig 1b), consistent
with its mRNA levels. To evaluate the role of TRIM11 on clinical prognosis, we compared
the outcome of patients with different expression levels of TRIM11. As shown in Table 1
(survival data), the high-grade glioma patients with lower TRIM11 had a better prognosis
(average 13.5 month survival for GBM patients) compared to patients with higher TRIM11
(average 7.3 month survival for GBM patients).

Next, we compared TRIM11 mRNA levels to those of CD133. Consistent with a previous
report (26), the three NSC cultures displayed excessively high CD133 (up to 3000-fold
normalized expression). While all stable GBM cell lines and low-grade glioma-derived
GSCs (except DB51) showed very low CD133, CD133 was strongly expressed in all GBM-
GSCs, and in one Grade III-GSC (Table 1 and Supplementary Figure 1a). Our results were
consistent with previous reports (4, 5) that high CD133 mRNA levels correlate with glioma
malignancy. More importantly, GSCs having elevated TRIM11 expressed concurrently
higher CD133 (shading in Table 1). For example, the two GBM-GSCs (DB32 and
HuTuP01) that showed the highest levels of TRIM11 (29.25-fold and 13.78-fold,
respectively) also displayed the highest levels of CD133 (66.07-fold and 27.34-fold,
respectively), indicating a positive correlation between TRIM11 and CD133 in gliomas.
Next, we performed immunofluorescent double staining to further compare the expression
parallel between CD133 and TRIM11 using corresponding tissue sections. As shown in
Figure 1b, both DB44 (Grade II) and DB32 (GBM) revealed co-expression of TRIM11 and
CD133, but the strong immunopositivity was detected only in DB32. HuTuP01-GSC was
used to confirm these data. As shown in Figure 1c, TRIM11 was localized diffusely mainly
in the cytoplasm but also in the nucleoplasm (top), which was consistent with previous
reports (17, 22), and strongly expressed on tumorsphere (bottom). Meanwhile, the cells
positive for TRIM11 staining also displayed strong CD133 immunopositivity in both
tumorsphere and monolayer cells.

For nestin expression study, U-251 was used as a positive control as previous described
(27). Our results showed that nestin expressed at elevated levels in almost all glioma-drived
GSCs tested and more robustly in all GBM-GSCs and NSCs (Table 1 and Supplementary
Figure 1a).

Taken together, our results suggest that the levels of TRIM11 correlate with the malignancy
of glioma and potentially with glioma patient prognosis. Compared to CD133 and nestin,
TRIM11 might be a more specific indicator for GSCs since it is up-regulated only in
malignant glioma-derived GSCs, but not in NSCs or low-grade glioma-derived GSCs.

TRIM11 mRNA levels correlate with differentiation status and CD133 mRNA levels in
gliomas

When cultured in serum-free medium, which allows for the maintenance of an
undifferentiated stem cell state, glioma cells form tumorspheres, along with an increased
expression of CD133 (28, 29). To further investigate the correlation between TRIM11,
differentiation status and CD133 expression levels in gliomas, we used serum-free stem cell
medium (SCM) to culture the stable glioma cell line D-54, and measured the changes in
TRIM11 and CD133 mRNA levels by qRT-PCR. When cultured in 10% FBS-containing
medium (differentiation medium), D-54 grew as a monolayer and attached to the culture
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flask (Supplementary Figure 2a, left photo). After re-seeding in SCM, they grew as typical
tumorspheres varied in size and floating in the medium (Supplementary Figure 2a, right
photo). In addition, both TRIM11 and CD133 were increased when cells were cultured in
SCM (Figure 2a), suggesting that D-54 cells cultured in stem cell conditions can achieve the
properties classically ascribed to GSCs, and confirming again a positive correlation between
TRIM11 and CD133. Next, using two GBM-GSCs which expressed highest TRIM11 and
CD133 (DB32-GSC and HuTuP01-GSC), we switched culture media from SCM to
differentiation medium to induce GSC differentiation. Accompanying with morphology
changes (Supplementary Figure 2b and c), TRIM11 and CD133 significantly decreased
when GSCs underwent differentiation [Figure 2b and c (left panel)]. Furthermore, when
HuTuP01-GSC was switched back to SCM (leading to a less differentiated state), both
TRIM11 and CD133 increased again (Figure 2c, right panel), and the morphology of the
cells changed back to that of the cells cultured directly in SCM (Supplementary Figure 2c).
By comparing with early and late passages of DB32-GSC and HuTuP01-GSC, we found
both TRIM11 and CD133 decreased after continuous expansion (Figure 2d), further
confirming that TRIM11 levels are correlated with differentiation status and CD133 levels
of GSCs. The stem cell character of HuTuP01-GSC was further identified by differentiation
assay (Supplementary Figure 2d), confirming their multipotential nature.

Down-regulation of TRIM11 suppresses proliferation, migration and invasion of glioma
cells, and inhibits EGFR expression, MAPK signaling pathway, and transcription of HB-
EGF and CCND1

To investigate the potential oncogenic function of TRIM11 in glioma, we knocked down
TRIM11 in glioma cells through RNA interference. Both protein and mRNA levels of
TRIM11 were decreased in siTRIM11 transfectants (Supplementary Figure 3a and b). We
next investigated the effect of TRIM11 on cell proliferation using D-54. MTT assay (Figure
3a, upper panel) and BrdU cell proliferation analysis (Figure 3a, lower panel) indicated that
loss of TRIM11 was able to significantly inhibit cell proliferation. Cell cycle analysis further
showed that down-regulation of TRIM11 led to increased G1 phase cells and decreased S
phase cells (Supplementary Figure 3c).

The invasive behavior of malignant gliomas limits the effectiveness of local therapies and
contributes to their poor prognosis (30). Therefore, wound closure assay (Figure 3b) was
performed to compare the migration capability between controls and TRIM11 knockdown
U-251 cells. TRIM11 down-regulating cells displayed a slower migration capability than
control: while control cells were able to migrate in and fill up the gap in 30 hours, the gap
was only partially filled in siTRIM11 transfectants at the same time. Similar results were
found in LN229 cells (Supplementary Figure 4a). The role of TRIM11 on cell invasion was
next measured using the Matrigel invasion chamber assay (Figure 3c). In both D-54 and
U-251 cells, suppression of TRIM11 inhibited cell invasion and the difference was
statistically significant (P<0.05).

In GBMs, amplification and/or mutation of the gene encoding EGFR occurs in up to 60% of
tumors and the constitutive activation of EGFR can promote glioma cell proliferation and
invasion (31). As one of the main intracellular protein cascades of EGFR, deregulated
MAPK pathway due to activation of EGFR will influence a diverse array of vital cellular
functions such as proliferation, survival and differentiation (32, 33). We next evaluated the
expression levels of EGFR and phosphorylation status of MAPK in glioma cells having
different TRIM11 levels. As shown in Figure 3d and Supplementary Figure 4b, down-
regulation of TRIM11 led to decreased expression of EGFR, p-c-Raf, p-MEK1/2, and
p-44/42MAPK, suggesting that TRIM11 might regulate the EGFR/MAPK pathway.
Meanwhile, PI3K-AKT signaling, another downstream of EGFR, was not affected by
TRIM11 (Supplementary Figure 4c).
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Next, we used the human EGF/PDGF signaling PCR array to study whether TRIM11
differentially regulate the transcription of any genes in the EGF/PDGF signaling pathway.
Table 2 showed the profile of various differentially expressed genes with fold changes of 2
or higher. There were 6 up-regulated and 5 down-regulated genes in D-54 siTRIM11 (si-4)
transfections, and 1 up-regulated and 4 down-regulated genes in U-251 siTRIM11 (si-4)
transfections. Among all the genes changed, down-regulation of two genes, HB-EGF
(Heparin-binding EGF-like growth factor) and CCND1 (Cyclin D1), was found in both cell
lines. Meanwhile, the expression of EGFR was not significantly changed. To confirm these
results, we measured again mRNA levels of EGFR, HB-EGF and CCND1 using different
primers (Figure 3e). Our results showed that both HB-EGF and CCND1 were dramatically
decreased, while there was no statistically difference on EGFR in siTRIM11 transfectants.
Similar results were found in LN229 cells transfected with three different siTRIM11s
(Supplementary Figure 4d).

To compare with knockdown experiments, gain of function studies were further performed.
Following transfection of a Flag-Trim11 construct (Supplementary Figure 5a), both the
levels of EGFR and the activity of MAPK pathway were increased (Supplementary Figure
5b), further confirming an oncogenic function of TRIM11 through promoting the
accumulation of EGFR and activity of MAPK cascade.

Over-expression of TRIM11 promotes tumorsphere formation and proliferation in vitro and
tumor growth in vivo

To further test the oncogenic function of TRIM11 both in vitro and in vivo, transient and
stable TRIM11 over-expressing transfectants (pDsRed2-Trim11) were generated using
mouse GL261 glioma cells. Expression of TRIM11 mRNA was analyzed in Figure 4a
(stable transfection) and Supplementary Figure 5c (transient transfection). Consistent with
our TRIM11 knockdown results, increased HB-EGF mRNA revealed in both transient
(Supplementary Figure 5c) and stable (Supplementary Figure 5d) TRIM11 over-expressing
cells. Interestingly, large tumorspheres were detected in stable pDsRed2-Trim11 cells, but
not control cells (Figure 4a, right). This morphological change supports our hypothesis that
TRIM11 plays an important role in achieving/maintaining the stem cell state and led us to
test the sphere formation capability induced by up-regulation of TRIM11. As shown in
Figure 4b, over-expression of TRIM11 significantly promoted tumorsphere formation
(upper panel), and the size of spheres driven from pDsRed2-Trim11 cells was significantly
larger than that of control cells (right). Meanwhile, cell proliferation rate was dramatically
increased in pDsRed2-Trim11 cells when cells grew on Matrigel-coated surface (Figure 4b,
lower panel).

Based on our in vitro data (which suggest that TRIM11 significantly increases glioma cell
proliferation and invasion), we then tested whether TRIM11 over-expression can promote
glioma growth in vivo. Stable pDsRed2-Trim11-GL261 cells and control cells were injected
s.c. into BALB/C nu/nu mice. The tumors generated by the pDsRed2-Trim11-GL261 cells
were more than three times larger (both tumor volume and weight) than the tumors
generated by the control cells (Figure 4c and d). Furthermore, macroscopic examination of
these tumors showed increased vascularization and extensive areas of necrosis-
characteristics well described to predict an aggressive phenotype in glial tumors. These
findings further support that TRIM11 over-expression enhances glioma cell ability to form
aggressive tumors, and correlate with our findings in human specimens, where high
TRIM11 levels correlated with poor prognosis.
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Discussion
Significant progress has been made on investigating the cellular, molecular, and genetic
changes involved in malignant gliomas aggressive biological behavior, treatment resistance
and poor survival. Recently, identifying and targeting the GSCs has been considered as a
powerful tool for developing therapeutic strategies, since GSCs are chemo- and radiotherapy
resistant and possess self-renewal, differentiation, and multi-potentiality, leading to therapy
failure and recurrence (8, 9, 34). However, this is a difficult task as majority of the GSC
markers described to date, such as CD133 and nestin, are also present at similar or higher
levels in the adult neural stem cells. Thus a cancer therapy targeted using these ubiquitous
and non-specific markers would risk eradicating reserves of normal self-renewing neural
stem cells. Furthermore, animals with decreased neurogenesis have impaired performance
on hippocampus-dependent learning tasks (35), suggesting that ablation of NSCs in the
course of glioma therapy might lead to undesirable cognitive side-effects.

Here, we provided evidences that TRIM11 may act as a novel marker for malignant gliomas.
TRIM11 expression levels correlated with the glioma malignancy, similar to those of CD133
and nestin--- whose expression levels are indicators for grade levels of gliomas, and are
well-published as prognostic markers (4, 5). More importantly, high TRIM11 were detected
only in malignant glioma-derived GSCs and tissue sections (Table 1, Fig 1a and
Supplementary Figure 1), suggesting that TRIM11 has the potential to become a specific
GSC marker. In addition, TRIM11 levels, concurrent with CD133, were associated with
differentiation status of cells (Figure 2). Concurrence between TRIM11 and CD133 not only
occurred at mRNA levels, but also at patterns of protein expression in cells. Co-expression
of these two proteins was detected in both tissue sections (Figure 1b) and GSCs (Figure 1c).
Interestingly, even though CD133 is a cell surface marker, immunofluorescence staining of
CD133 generally shows a diffused cytoplasmic staining in our study and others (36, 37),
possibly due to permeabilization of the cell membranes by fixative that inadvertently
damage surface marker antigens (38).

We not only demonstrated for the first time that TRIM11 acts as a malignant glioma marker,
but provided evidences that TRIM11 may exert its oncogenic function through promoting
cell proliferation (Figs. 3a, 4b and Supplementary Figure 3c), migration (Figure 3b and
Supplementary Figure 4a) and invasion (Figure 3c). Most importantly, our results indicated
that TRIM11 exerts its effect through EGFR oncogenic pathway. A decreased expression of
EGFR and weakened activity of Raf/MEK/ERK1/2 MAPK pathway were found in TRIM11
knocked down GBM cells (Figure 3d and Supplementary Figure 4b), which harbor the wild-
type EGFR gene (39). In contrast, over-expressing TRIM11 increased the expression of
EGFR and enhanced the activity of MAPK pathway (Supplementary Figure 5b).

HB-EGF is a heparin-binding member of the EGF family (40), and is up-regulated in
response to oncogenesis (41, 42). Co-expression of HB-EGF with the amplified EGFR has
been found in malignant gliomas, resulting in the formation of an autocrine loop (43). By
binding and activating EGFR, HB-EGF in turn triggers EGFR downstream signaling
pathways including MAPKs, which then induce a rapid and sustained induction of HB-EGF
mRNA expression and secretion of HB-EGF (44). Besides being a ligand for EGFR, HB-
EGF also induces the expression of matrix metalloproteinases MMP-9 and MMP-3, and
elevates activation of cyclin D1 promoter (45), suggesting a role of HB-EGF as a potent
inducer of tumor growth and angiogenesis. In our study, while the mRNA levels of EGFR
were not affected by TRIM11 down-regulation, a significant decrease on HB-EGF and
CCND1 mRNA levels was detected in TRIM11 knock-down cells (Table 2 and Figure 3e).
By comparison, over-expression of TRIM11 increased the HB-EGF mRNA levels
(Supplementary Figure 5c and d). Further studies will be needed to identify: (1) whether
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TRIM11 directly regulates the transcription of HB-EGF and/or CCND1, or alternatively,
down-regulation of HB-EGF is a consequence of reduced EGFR levels and weakened
MAPK pathway; or (2) whether TRIM11 may modulate the process of EGFR ubiquitination
and degradation.

Finally, we provided evidence for the first time that over-expression of TRIM11 promotes
tumorsphere formation in vitro and tumor growth in vivo (Figure 4). These in vivo results
further support the hypothesis that TRIM11 over-expression predicts the development of
large, vascular and necrotic tumors associated with poor prognosis.

In summary, our study profiles the gene expression pattern of TRIM11 in various grade
glioma specimens, as well as multiple GSCs, stable serum-grown glioma cell lines and
NSCs, and finds a strong positive correlation among TRIM11, CD133, and nestin in high-
grade GSCs. In addition, we investigated the oncogenic function of TRIM11 on
proliferation, migration and invasion, demonstrating that TRIM11 may modulate EGFR
expression and MAPK pathway, and bring the first evidence that TRIM11 over-expression
promotes glial tumor growth in vivo. This finding expands our knowledge of the TRIM11
biology from its known roles in normal brain development and Alzheimer’s neurotoxicity
into cancer biology, while opening the door for a novel new area of glioma biology study
with the potential to identify new translational targets and/or strategies.

Materials and Methods
Glioma tissues, cells and media

Institutional Review Board approval was obtained at University of California Irvine Medical
Center and Children’s Hospital of Orange County. Surgical specimens of brain tumors
(Table 1) were obtained from patients who had undergone tumor resection with the
neuropathological review completed by a specialty neuropathologist. NSCs (SC23, SC27,
SC30) were derived from brains of premature neonates by Dr. Philip Schwartz (26).
HuTuP01 GBM-GSCs were a gift from Dr. David Panchision (Children’s National Medical
Center) (46). As previously described (14), both NSCs and GSCs were cultured in
undifferentiated conditions on Matrigel-coated dishes in 1:1 DMEM:F12 medium (Irvine
Scientific), containing 10% BIT9500 (Stem Cell Technologies), 292 μg/mL glutamine
(Irvine Scientific), 40 ng/mL FGF, 20 ng/mL EGF, and 20 ng/mL PDGF. For expansion,
one-half of this medium was replaced every other day, and the cultures were passaged every
seven days or when confluent using Non-enzymatic Cell Dissociation Solution (Sigma). All
our GSCs are able to form spheres when grown on non-adherent surfaces. The GSCs express
GFAP when they are grown under conditions favoring glial differentiation, and βIII-tubulin
when they are grown under conditions favoring neural differentiation, confirming their
multipotential nature (Supplementary Figure 2d).

The stable human glioma cell lines D-54 MG and U-251 MG were gifts from Dr. Darrell
Bigner (Duke University, Durham, NC), LN229 was obtained from Dr. Martin Jadus (VA
Long Beach Hospital), and U-87 MG as well as mouse cell line GL261 were gifts from Dr.
Florence Hofman (University of Southern California). All the differentiated malignant
glioma cell lines were cultured in a high glucose 1:1 DMEM/F12 medium (Irvine Scientific)
containing 2 mM L-glutamine (Gibco/Invitrogen), 10% FBS (Omega Scientific, Inc.) and
1% penicillin/streotomycin (Gibco/Invitrogen). All cells were cultured at 37°C in a
humidified incubator with 5% CO2.

Quantitative RT-PCR (qRT-PCR) analysis
Total RNA was extracted using RNeasy Mini Kit (Qiagen), and cDNA was generated using
the iScript™ cDNA Synthesis Kit (Bio-rad). Quantitative PCR reactions (iQ™ SYBR Green
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Supermix, Bio-rad) were conducted using a Bio-Rad CFX96 Real-time System, and the
gene expression levels were normalized to those of ACTB. The primers were described in
Supplementary Methods.

Immunohistochemical and immunofluorescent staining
VECTASTAIN ABC kit (Vector Laboratories., Inc.) was used for immunohistochemical
staining. Formalin-fixed, paraffin-embedded tissue sections (5μm) were deparaffinized and
rehydrated. After antigen retrieval, the endogenous peroxidase activity was blocked with 1%
H2O2 in PBS for 20 min. The sections were incubated with 5% normal goat serum and then
exposed to rabbit anti-TRIM11 antibody (1:40, ProteinTech Group, Inc.) at 4 °C overnight,
followed by incubation with biotinylated anti-rabbit IgG for 1 hour at room temperature, and
counterstained by hematoxylin and eosin. Slides were then mounted with Permount (Fisher
Scientific). For immunofluorescent double staining, the cells or tissue sections were first
incubated with rabbit anti-TRIM11 and FITC-conjugated anti-rabbit secondary antibody
(Millipore), and then CD133/1 (AC133)-PE antibody (Miltenyi Biotec Inc.), Nuclei were
counterstained with DAPI (4′-6-diamidino-2-phenylindole) and slides were mounted with
IMMU-MOUNT (Thermo Scientific).

siTRIM11 transfection
Four human FlexiTube siRNAs targeting TRIM11 (SI00153230, SI00153237, SI00153244
and SI00153251) and negative control siRNA (1022076) were purchased from Qiagen, and
were transfected into cells using HiPerFect transfection reagent (Qiagen). One siTRIM11
(si-4) was found to knockdown TRIM11 expression most efficiently and was used in most
of experiments.

Plasmid construction and transient and/or stable transfection assay
pcDNA3.1/Zeo Flag-Trim11 and pDsRed2-Trim11 were gifts from Dr. Seok Jong Hong
(Northwestern University). Briefly, mouse brain mRNA was used to amplify full length
TRIM11 by RT-PCR followed by cloning into pcDNA3.1/Zeo vector and pDsRed2-C1
vector (24). Transfection was performed using FuGene 6 (Roche). For transient transfection,
the cells were analyzed 72 hours after transfection. For generation of stable transfectants, the
cells were selected by 0.4mg/ml of G418 (InvivoGen) for two weeks.

Western blotting
Antibodies with detailed descriptions were provided in Supplementary Methods. The images
were exposed by KODAK M35A X-OMAT Processor.

BrdU cell proliferation analysis
Cell proliferation rates were determined by BrdU incorporation according to the
manufacture’s recommendation (Calbiochem). Briefly, the cells were incubated with BrdU
Label for 24 hours, and then fixed. Monoclonal anti-BrdU antibody was added, followed by
peroxidase-conjugated secondary antibody. The BrdU incorporation was measured at dual
wavelengths of 450 and 570 nm, using a Model 680 Microplate Reader (Bio-Rad).

3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay
Cells (6 × 103/well) were seeded into 96-well plates. Before testing, MTT solution (5 mg/
ml; 20 μl/well) was added and cells were incubated at 37 °C for 5 hours. The culture
medium was then aspirated and DMSO (200 μl/well, Fisher Scientific) was added to
dissolve the dark blue crystals. The absorbance was measured at a wavelength of 570 nm.
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Wound closure assay
Cells were plated in 6-well plates and grew to full confluency. Similar sized wounds were
then induced to monolayer cells by scraping a gap using a micropipette tip. After removing
cell debris by rinsing with PBS, fresh medium was added and cells started migrating from
the edge of the wound and repopulated the gap area. The time required for ‘wound closure’
was monitored and photographed immediately after wound incision and at indicated time
points.

Invasion assay
Invasion assay was performed using BD BioCoat™ Matrigel™ Invasion Chamber with 8 μm
PET membrane (BD Biosciences). Cells were seeded in medium without serum, and
medium containing 1.5% FBS was used as chemoattractant. After an incubation of 24 hours
at 37°C, non-invasive cells were removed and invading cells were fixed with 100%
methanol. Cells were then stained in Hematoxylin.

Human EGF/PDGF signaling PCR array
Human EGF/PDGF signaling PCR array of 84 genes (SABiosciences, Qiagen) was
performed according to the manufacturer’s instructions. One μg of total RNA was used to
synthesize cDNA. The manufacturer’s web-based software package was utilized to calculate
fold changes. Genes with greater than 2 fold differences were considered as significant.

Tumorsphere formation assay
Cells were plated at low density (500/well) in 6-well ultra-low attachment plates (Corning).
After two weeks of culture, the number of floating tumorspheres in each well (diameter >50
μm) was counted.

Tumorigenicity assay in immunosuppressed mice
Ten 6-week old BALB/C nu/nu female nude mice were randomly divided into two groups
(n=5 in each group): GL261 cells stably transfected with pDsRed2-C1 vector or pDsRed2-
Trim11. Aliquots (100 μl) of 5 × 105 cells of each cell group in 25% Matrigel (BD
Biosciences) were subcutaneously injected into nude mice anterior to their right and left
thighs on both sides. After injection, the growth of tumor nodules was estimated with caliper
at a 3-day interval. On Day 15 after injection, all mice were sacrificed. Tumors were
removed and tumor weight was evaluated. The tumor volume was calculated using the
formula V = (L*W2*π)/6 (L, length; W, width).

Statistical analysis
Statistical analyses were prepared using GraphPad Prism version 5.04 (GraphPad Software).
All values were presented as mean ± standard error of the mean (S.E.M.). Statistical
significance was determined with simple paired t-tests of one-way ANOVA.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
Financial support: This work was supported by research funds donated by Ralph and Suzanne Stern and the
Community Foundation of Jewish Federation. This study was also supported in part by start-up funds to Dr. Bota
from the University of California, Irvine and the UCI Cancer Center Award Number P30CA062203 from the
National Cancer Institute.

Di et al. Page 9

Oncogene. Author manuscript; available in PMC 2013 October 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



We thank Xing Gong for the preparation of glioma primary cultures, Dr. Ronald C. Kim for the neuropathologic
diagnosis of tumor samples, and Dr. Abhishek Chaturbedi for the organization of the tumor list used in the study.

References
1. Gladson CL, Prayson RA, Liu WM. The pathobiology of glioma tumors. Annu Rev Pathol. 2010;

5:33–50. [PubMed: 19737106]

2. Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med. 2008; 359:492–507. [PubMed:
18669428]

3. von Deimling A, Korshunov A, Hartmann C. The next generation of glioma biomarkers: MGMT
methylation, BRAF fusions and IDH1 mutations. Brain Pathol. 2011; 21:74–87. [PubMed:
21129061]

4. Ma YH, Mentlein R, Knerlich F, Kruse ML, Mehdorn HM, Held-Feindt J. Expression of stem cell
markers in human astrocytomas of different WHO grades. J Neurooncol. 2008; 86:31–45. [PubMed:
17611714]

5. Zhang M, Song T, Yang L, Chen R, Wu L, Yang Z, et al. Nestin and CD133: valuable stem cell-
specific markers for determining clinical outcome of glioma patients. J Exp Clin Cancer Res. 2008;
27:85. [PubMed: 19108713]

6. Singh S, Clarke I, Terasaki M, Bonn V, Hawkins C, Squire J, et al. Identification of a cancer stem
cell in human brain tumors. Cancer Res. 2003; 63:5821– 5828. [PubMed: 14522905]

7. Singh S, Hawkins C, Clarke I, Squire J, Bayani J, Hide T, et al. Identification of human brain
tumour initiating cells. Nature. 2004; 432:396– 401. [PubMed: 15549107]

8. Chen J, Li Y, Yu TS, McKay RM, Burns DK, Kernie SG, et al. A restricted cell population
propagates glioblastoma growth after chemotherapy. Nature. 2012

9. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, et al. Glioma stem cells promote
radioresistance by preferential activation of the DNA damage response. Nature. 2006; 444:756–760.
[PubMed: 17051156]

10. Li Z, Wang H, Eyler CE, Hjelmeland AB, Rich JN. Turning cancer stem cells inside out: an
exploration of glioma stem cell signaling pathways. J Biol Chem. 2009; 284:16705–16709.
[PubMed: 19286664]

11. Dey M, Ulasov IV, Tyler MA, Sonabend AM, Lesniak MS. Cancer stem cells: the final frontier for
glioma virotherapy. Stem Cell Rev. 2011; 7:119–129. [PubMed: 20237963]

12. Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, et al. Direct isolation of human
central nervous system stem cells. Proc Natl Acad Sci U S A. 2000; 97:14720–14725. [PubMed:
11121071]

13. Zimmerman L, Parr B, Lendahl U, Cunningham M, McKay R, Gavin B, et al. Independent
regulatory elements in the nestin gene direct transgene expression to neural stem cells or muscle
precursors. Neuron. 1994; 12:11–24. [PubMed: 8292356]

14. Gong X, Schwartz PH, Linskey ME, Bota DA. Neural stem/progenitors and glioma stem-like cells
have differential sensitivity to chemotherapy. Neurology. 2011; 76:1126–1134. [PubMed:
21346220]

15. Schmidinger M, Linzmayer L, Becherer A, Fazeny-Doemer B, Fakhrai N, Prayer D, et al.
Psychometric-and quality-of-life assessment in long-term glioblastoma survivors. J Neurooncol.
2003; 63:55–61. [PubMed: 12814255]

16. Corn BW, Wang M, Fox S, Michalski J, Purdy J, Simpson J, et al. Health related quality of life and
cognitive status in patients with glioblastoma multiforme receiving escalating doses of conformal
three dimensional radiation on RTOG 98-03. J Neurooncol. 2009; 95:247–257. [PubMed:
19533025]

17. Reymond A, Meroni G, Fantozzi A, Merla G, Cairo S, Luzi L, et al. The tripartite motif family
identifies cell compartments. EMBO J. 2001; 20:2140–2151. [PubMed: 11331580]

18. Saurin AJ, Borden KL, Boddy MN, Freemont PS. Does this have a familiar RING? Trends
Biochem Sci. 1996; 21:208–214. [PubMed: 8744354]

19. Borden KL. RING fingers and B-boxes: zinc-binding protein-protein interaction domains.
Biochem Cell Biol. 1998; 76:351–358. [PubMed: 9923704]

Di et al. Page 10

Oncogene. Author manuscript; available in PMC 2013 October 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



20. Hatakeyama S. TRIM proteins and cancer. Nat Rev Cancer. 2011; 11:792–804. [PubMed:
21979307]

21. Niikura T, Hashimoto Y, Tajima H, Ishizaka M, Yamagishi Y, Kawasumi M, et al. A tripartite
motif protein TRIM11 binds and destabilizes Humanin, a neuroprotective peptide against
Alzheimer’s disease-relevant insults. Eur J Neurosci. 2003; 17:1150–1158. [PubMed: 12670303]

22. Ishikawa H, Tachikawa H, Miura Y, Takahashi N. TRIM11 binds to and destabilizes a key
component of the activator-mediated cofactor complex (ARC105) through the ubiquitin-
proteasome system. FEBS Lett. 2006; 580:4784–4792. [PubMed: 16904669]

23. Tuoc TC, Stoykova A. Trim11 modulates the function of neurogenic transcription factor Pax6
through ubiquitin-proteosome system. Genes Dev. 2008; 22:1972–1986. [PubMed: 18628401]

24. Hong SJ, Chae H, Lardaro T, Hong S, Kim KS. Trim11 increases expression of dopamine beta-
hydroxylase gene by interacting with Phox2b. Biochem Biophys Res Commun. 2008; 368:650–
655. [PubMed: 18275850]

25. Sanai N, Alvarez-Buylla A, Berger MS. Neural stem cells and the origin of gliomas. N Engl J Med.
2005; 353:811–822. [PubMed: 16120861]

26. Schwartz PH, Bryant PJ, Fuja TJ, Su H, O’Dowd DK, Klassen H. Isolation and characterization of
neural progenitor cells from post-mortem human cortex. J Neurosci Res. 2003; 74:838–851.
[PubMed: 14648588]

27. Kurihara H, Zama A, Tamura M, Takeda J, Sasaki T, Takeuchi T. Glioma/glioblastoma-specific
adenoviral gene expression using the nestin gene regulator. Gene Ther. 2000; 7:686–693.
[PubMed: 10800092]

28. Griguer CE, Oliva CR, Gobin E, Marcorelles P, Benos DJ, Lancaster JR Jr, et al. CD133 is a
marker of bioenergetic stress in human glioma. PLoS One. 2008; 3:e3655. [PubMed: 18985161]

29. Zhou XD, Wang XY, Qu FJ, Zhong YH, Lu XD, Zhao P, et al. Detection of cancer stem cells from
the C6 glioma cell line. J Int Med Res. 2009; 37:503–510. [PubMed: 19383245]

30. Lim DA, Cha S, Mayo MC, Chen MH, Keles E, VandenBerg S, et al. Relationship of glioblastoma
multiforme to neural stem cell regions predicts invasive and multifocal tumor phenotype. Neuro
Oncol. 2007; 9:424–429. [PubMed: 17622647]

31. Rao RD, Uhm JH, Krishnan S, James CD. Genetic and signaling pathway alterations in
glioblastoma: relevance to novel targeted therapies. Front Biosci. 2003; 8:e270–280. [PubMed:
12700121]

32. Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the
treatment of cancer. Oncogene. 2007; 26:3291–3310. [PubMed: 17496923]

33. Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2000; 103:211–225. [PubMed:
11057895]

34. Eramo A, Ricci-Vitiani L, Zeuner A, Pallini R, Lotti F, Sette G, et al. Chemotherapy resistance of
glioblastoma stem cells. Cell Death Differ. 2006; 13:1238–1241. [PubMed: 16456578]

35. Zhao C, Deng W, Gage FH. Mechanisms and functional implications of adult neurogenesis. Cell.
2008; 132:645–660. [PubMed: 18295581]

36. Kordes C, Sawitza I, Muller-Marbach A, Ale-Agha N, Keitel V, Klonowski-Stumpe H, et al.
CD133+ hepatic stellate cells are progenitor cells. Biochem Biophys Res Commun. 2007;
352:410–417. [PubMed: 17118341]

37. Sherman JH, Redpath GT, Redick JA, Purow BW, Laws ER, Jane JA Jr, et al. A novel fixative for
immunofluorescence staining of CD133-positive glioblastoma stem cells. J Neurosci Methods.
2011; 198:99–102. [PubMed: 21402102]

38. Fredens K, Dahl R, Venge P. An immunofluorescent method for a specific demonstration of
granulocytes and some of their proteins (ECP and CCP). Histochemistry. 1986; 84:247–250.
[PubMed: 3519546]

39. Bigner SH, Humphrey PA, Wong AJ, Vogelstein B, Mark J, Friedman HS, et al. Characterization
of the epidermal growth factor receptor in human glioma cell lines and xenografts. Cancer Res.
1990; 50:8017–8022. [PubMed: 2253244]

40. Raab G, Klagsbrun M. Heparin-binding EGF-like growth factor. Biochim Biophys Acta. 1997;
1333:F179–199. [PubMed: 9426203]

Di et al. Page 11

Oncogene. Author manuscript; available in PMC 2013 October 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



41. Suo Z, Risberg B, Karlsson MG, Villman K, Skovlund E, Nesland JM. The expression of EGFR
family ligands in breast carcinomas. Int J Surg Pathol. 2002; 10:91–99. [PubMed: 12075402]

42. Tarbe N, Losch S, Burtscher H, Jarsch M, Weidle UH. Identification of rat pancreatic carcinoma
genes associated with lymphogenous metastasis. Anticancer Res. 2002; 22:2015–2027. [PubMed:
12174879]

43. Mishima K, Higashiyama S, Asai A, Yamaoka K, Nagashima Y, Taniguchi N, et al. Heparin-
binding epidermal growth factor-like growth factor stimulates mitogenic signaling and is highly
expressed in human malignant gliomas. Acta Neuropathol. 1998; 96:322–328. [PubMed: 9796995]

44. McCarthy SA, Samuels ML, Pritchard CA, Abraham JA, McMahon M. Rapid induction of
heparin-binding epidermal growth factor/diphtheria toxin receptor expression by Raf and Ras
oncogenes. Genes Dev. 1995; 9:1953–1964. [PubMed: 7649477]

45. Ongusaha PP, Kwak JC, Zwible AJ, Macip S, Higashiyama S, Taniguchi N, et al. HB-EGF is a
potent inducer of tumor growth and angiogenesis. Cancer Res. 2004; 64:5283–5290. [PubMed:
15289334]

46. Pistollato F, Chen H-L, Rood BR, Zhang H-Z, D’Avella D, Denaro L, et al. Hypoxia and
HIF1alpha Repress the Differentiative Effects of BMPs in High-Grade Glioma. Stem Cells. 2009;
27:7–17. [PubMed: 18832593]

Di et al. Page 12

Oncogene. Author manuscript; available in PMC 2013 October 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
TRIM11 is enriched in GBM tissues as well as high-grade glioma-derived GSCs. (a)
Immunohistochemical staining for TRIM11 in human normal brains, Grade II (DB30 and
DB44) and GBM (DB32 and DB54) surgical biopsies. (b) Immunofluorescent staining for
CD133 (red) and TRIM11 (green) in DB44 and DB32 surgical biopsies. (c)
Immunofluorescent staining of endogenously expressed CD133 and TRIM11 on monolayer
(top) and budding tumorsphere (bottom) of HuTuP01-GSC. Nuclei were counterstained with
DAPI (blue).
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Figure 2.
TRIM11 mRNA levels correlate with differentiation status and CD133 mRNA levels in
malignant glioma cells. (a) D-45 MG cells were cultured in stem cell medium for 1 month
and RNA was isolated. (b) DB32-GSC was cultured with differentiation medium for 1
month and RNA was isolated. (c) HuTuP01-GSC was cultured with differentiation medium
for different time points and switched back to stem cell medium followed by RNA isolation
at the indicated time points. (d) Early and late passages of DB32-GSC and HuTuP01-GSC
were collected and RNA was isolated. qRT-PCR was then performed to measure the mRNA
levels of TRIM11 and CD133, and ACTB was an internal control. *p < 0.05, **p < 0.01,
***p < 0.001.
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Figure 3.
TRIM11 down-regulation inhibits cell proliferation, migration, invasion, EGFR/MAPKs
signaling pathway as well as transcription of HB-EGF and CCND1. (a) The effect of
TRIM11 knockdown on D-54 cell growth rate was measured by MTT assay (upper panel)
and BrdU incorporation analysis (lower panel) in siCon and siTRIM11 (si-4) transfectants.
Data were the ratio of the absorbance of transfected cells to that of untransfected (baseline)
cells. (b) Wound closure assay was performed using siTRIM11 (si-4) or siCon transfectants
of U-251. The time required for ‘wound closure’ was monitored and photographed at
indicated time points. (c) Invasion activity of the transfectants was analyzed by using
Matrigel Invasion chambers. The summary of the invasion assay was showed in percent. (d)
The effect of TRIM11 suppression by siTRIM11 (si-4) on the expression of EGFR,
phospho-c-Raf, phospho-MEK1/2 and phospho-44/42MAPK were analyzed by Western
blotting. (e) qRT-PCR was performed to compare the mRNA levels of EGFR (left), HB-
EGF (middle) and CCND1 (right) between siTRIM11 (si-4) or siCon transfectants, and
ACTB was an internal control. *p < 0.05, **p < 0.01, ***p < 0.001.
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Figure 4.
Over-expression of TRIM11 promotes tumorsphere formation and proliferation in vitro and
tumor growth in vivo. (a) Stable over-expression of TRIM11 in mouse GL261 cells was
achieved by transfection of pDsRed2-Trim11 vector, and followed by G418 selection.
Expression of TRIM11 mRNA was analyzed by qRT-PCR and normalized to expression of
ACTB. The morphology of stable transfectants was shown on right. Tumorspheres can be
detected in pDsRed2-Trim11 cells. (b) Overexpression of TRIM11 promoted tumorsphere
formation (upper panel), and representative images of tumorspheres derived from GL261
stable transfectants were shown on right. Increased proliferation was found in pDsRed2-
Trim11 cells when cultured on Matrigel-coated surface (lower panel). (c) GL261 cells stably
transfected with pDsRed2-Trim11 or a control vector were injected s.c. into nude mice.
Fifteen days after the injection, mice were sacrificed and photographed. (d) Tumor volume
(left) and weight (right) were measured. ***p < 0.001.
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